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1. Introduction 

 Field experiments play an increasingly important role in economic research. Greenberg 

and Schroder (2004) catalog over 250 social experiments that have been carried out since the late 

1960s. Those studies cover a broad array of topics, including job training, welfare programs, and 

tax compliance initiatives, among others. Examples from the US include the Gary Negative 

Income Tax Experiment; the National Job Training and Partnership Act Study; the 

Unemployment Insurance Bonus experiments; and numerous welfare-reform experiments 

(Greenberg, Moffitt, and Friedman 1981; Bloom, et al, 1997; Meyer 1995; Grogger and Karoly 

2005). A sampling of social experiments outside the US includes the Canadian Self-Sufficiency 

Project; the Dutch Counseling and Monitoring Program; and job-training programs in Norway 

(Michalopoulos, Tattrie, et al 2002; Gorter and Kalb 1996; Raaum and Torp 2002). 

 The chief virtue of social experiments stems from random assignment. By assigning 

participants at random between control and treatment groups, they provide a means to estimate 

the effects of experimental programs in a manner that is free of the omitted variable bias that 

may arise in non-experimental designs. Experimental designs also lend themselves to simple 

analytical methods that are relatively transparent and easy for non-statisticians to comprehend. 

 Evaluations of social experiments often make use of longitudinal administrative data. 

This has been increasingly the case in recent years (Greenberg and Schroder 2004). 

Administrative data come from sources such as unemployment offices and welfare agencies. 

Depending on the focus of the experiment, evaluation studies may make use of administrative 

data on a number of different outcomes from a number of different sources. As compared to 

survey data, administrative data may be much less expensive to obtain.  
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 Despite their cost advantage, administrative data suffer from an important missing data 

problem. Since programs such as unemployment insurance and welfare are run at the state- or 

country-level, the administrative data systems used to operate those programs only track activity 

within the jurisdiction. They are not designed to capture out-of-jurisdiction migration. Thus 

when a worker moves to a new jurisdiction, she will appear to have zero earnings in her 

jurisdiction of origin, even if she is working in her new jurisdiction of residence. This has long 

been a problem in the US, where cross-state migration is common. With increasing international 

migration, the same problem may increasingly affect European register data.  

 Cross-jurisdiction migration means that zeros in the data arise for two reasons: because 

the participant has no earnings or benefits, or because she has moved to a new jurisdiction. Since 

out-of-jurisdiction migration is not directly observed, and most evaluations obtain data from a 

single jurisdiction, the analyst faces a corrupted sample. Rather than observing data on the 

outcomes of interest, the analyst observes a mixture of such outcomes and out-of-jurisdiction 

migration, without being able to distinguish between them. 

 If such migration were random, then the observed data would provide a lower bound on 

the effect of the program. However, if attrition arises from choices made by experimental 

subjects, it may be non-random. Under non-random attrition, the observed data identify neither 

the effect of the program nor a lower bound.  

 In this paper I consider one aspect of the out-of-jurisdiction migration problem. I analyze 

permanent out-of-jurisdiction migration, which I refer to as attrition. Although this is not the 

only form of migration, it is extensive. Moreover, it leaves a distinctive trail in the data. When a 

study participant moves from one jurisdiction to another, all of her subsequent entries in the 

administrative data systems of her jurisdiction of origin become zeros. I propose using these 
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terminal runs of zeros to impute attrition. I show how the observed data and the imputed attrition 

indicator can be used to provide bounds on the average treatment effect without imposing 

assumptions about the process generating the attrition.  

 These bounds are informative, but their width depends on the information used to impute 

attrition. More information reduces imputed attrition and with it the width of the bounds. The 

magnitude of the reduction can be sizeable. In the welfare experiment that I analyze below, 

imputations based on multiple outcomes cut the width of the bounds by one-half to one-third as 

compared to imputations based on a single outcome. 

 The bounds can also be narrowed by imposing additional structure. I focus on a 

stationarity assumption that allows me to use non-terminal runs of zeros to estimate the share of 

terminal runs that represent true attrition. A virtue of the stationary bounds is that the underlying 

stationarity assumption can be tested. 

 The bounding strategy fits with the approach of Horowitz and Manski (1995) and 

particularly Horowitz and Manski (2000), who provide bounds on experimental treatment effects 

in the presence of attrition. However, there are two key differences between the setting that I 

consider and that of Horowitz and Manski (2000). First, attrition in their setting means that no 

outcome data are observed. That is different from my setting, where data are observed but the 

analyst does not know whether they represent the outcome of interest or the consequence of out-

of-jurisdiction migration. Second, I assume the availability of longitudinal data, as is often the 

case in social experiments, which allow bounds to be constructed on the basis of imputed 

attrition.  

 The application reported below makes use of data from the Connecticut Jobs First (JF) 

welfare-reform evaluation. The treatment condition in JF included both a substantial earnings 



 4

disregard, which allowed recipients to keep most of their benefit after they started working, and a 

short time limit on benefit receipt. Previous analyses that did not account for the attrition 

problem indicated that JF raised welfare receipt substantially before the time limit became 

binding, and reduced it sharply thereafter (Bloom et al. 2002). The analysis below suggests that 

there is a great deal of ambiguity in the effects of the program once one accounts for attrition. 

 In the next section I discuss the JF program, the data, and conventional estimates of the 

average treatment effect (ATE) of the program on employment and transfer receipt. In Section 3 

I show that those estimates do not identify the ATE. I discuss the attrition problem, my attrition 

indicator, and the bounds based on that indicator. Section 4 discusses the bounds that can be 

obtained under the assumption of stationarity and the specification tests. Empirical results from 

our application accompany each section.  

2. The Jobs First Program 

2.1 The Experiment 

 JF began in 1996 with the goal of testing the effects of Connecticut’s welfare reform 

program. New applicants to the welfare program were randomized between treatment and 

control status at the time they applied for aid. Ongoing recipients were randomized when their 

eligibility was reassessed (which typically took place every six months). The control group 

received aid under the rules of the Aid to Families with Dependent Children program. As 

compared to the control group, participants in the treatment group faced a financial work 

incentive, in that they were able to retain most of their benefits when they found a job. At the 

same time, the treatment group faced a short, 21-month time limit, whereas the control faced 

none for four years after random assignment.  
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 Economic theory predicts that the combination of a financial incentive and a time limit 

should increase employment among welfare recipients. However, it predicts that the two 

components of the program should have differing effects on welfare receipt. Whereas the time 

limit should reduce welfare receipt, especially once it starts to bind, the financial incentive may 

prolong welfare receipt, since it provides the participant with an incentive to combine work and 

welfare (Grogger and Karoly 2005; Bitler, Gelbach, and Hoynes 2006).  

 There were 4803 participants included in the evaluation. Of these, 2396 were assigned to 

the control group and 2407 to the treatment group. The program and its evaluation are discussed 

in detail by Bloom et al. (2002). 

2.2 Data 

 Outcome data come from two administrative data systems: Connecticut’s Unemployment 

Insurance (UI) system and the state’s Eligibility Management System (EMS). The UI system 

records quarterly earnings for each worker covered by the UI program. Data are reported by 

employers to the state. Covered employment accounts for roughly 90 percent of all jobs 

nationwide (US Bureau of Labor Statistics 1989), although it misses roughly 10 to 20 percent of 

employment among welfare populations (Isaacs and Lyons 2000). Nevertheless, covered 

employment is a widely used outcome in the evaluation of both welfare- and training-related 

programs. By this definition, participants are employed if they have positive covered earnings 

during the calendar quarter and are nonemployed if they have zero covered earnings. 

 EMS provides data on monthly welfare payments and Food Stamp payments for all 

recipients in the state. Benefit data are available monthly, but have been aggregated to the 

quarterly level so as to be comparable to the employment data. A participant is recorded as a 

welfare recipient if she received a positive welfare benefit in any month during the quarter. 
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Likewise, she is recorded as a Food Stamp recipient if she received a positive Food Stamp 

benefit in any month during the quarter. 

3. Average Treatment Effects under Attrition 

 In this section I define the ATE and the conventional ATE as estimated from the 

observed data. I present estimates of the conventional ATE from JF. I show that, in the presence 

of attrition, such conventional estimates do not identify the true ATE. 

 Let iT  denote the participant’s treatment status, where 1iT  denotes assignment to 

treatment and 0iT  denotes assignment to control. In the typical social experiment, there may 

be several outcomes of interest. Attention here is restricted to binary outcomes, which are 

naturally bounded. These include the outcomes I focus on from JF. Denote the K potential 

outcomes for the ith participant at time t by  

Yit
k (Ti ) {0,1}   i=1,…,N; t=0,…,M; and k=1,…,K. 

There are N participants in the experiment; the sample period extends for M periods. Period t=0 

denotes the time at which random assignment takes place.  

 Since counterfactual outcomes are unobservable, in the absence of attrition the analyst 

would observe 

Yit
k  TiYit

k (1) (1Ti )Yit
k (0)  

Define the average treatment effects of the program at time t as t
k  EYit

k (1)EYit
k (0) . This 

represents the mean effect of the program among the population at risk of treatment. By virtue of 

random assignment to treatment status, t
k  could be identified from Yit

k , since1 

                                                 
1 I also require the stable unit treatment value assumption, which essentially rules out general 
equilibrium effects (Angrist, Imbens and Rubin 1996). Implicitly I am also assuming full 
compliance with the experiment, which is appropriate for this application. 
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t
k  EYit

k (1)EYit
k (0)

 E(Yit
k | Ti 1)E(Yit

k |Ti  0).
 

This approach could easily be extended to allow for treatment effects that vary according to 

observable characteristics, and such heterogeneity would often be of interest in applied settings. I 

leave it implicit here in order to avoid notational clutter. 

 The problem for the analyst is that k
itY  itself is observed only prior to the date of attrition, 

which is not directly observed. Define the latent, unobserved attrition indicator as  

1itA  if i has permanently left the jurisdiction on or before date t 

0  otherwise. 

Since I define attrition as permanent migration from the jurisdiction, 11   jitit AA , j=1,.., 

M-t. Once the participant has left the jurisdiction, I no longer observe k
itY . Rather, I observe zeros 

instead. Since k
itY  itself takes on zero values, the analyst does not know whether the observed 

zeros represent valid realizations of k
itY  or attrition.  

 Given the definition of itA , I can represent the observed data as 

Xit
k  (1 Ait )Yit

k   i=1,…,N; t=1,…,M; and k=1,…,K.      (1) 

The conventional ATE reported in the literature estimates not t
k , but rather 

Xt
k  E(Xit

k |Ti 1)E(Xit
k |Ti  0).        (2) 

 Estimates of Xt
k , obtained as treatment-control contrasts in the sample averages of the 

outcome variables, are represented by the black lines marked with squares in Figure 1. I follow 

much of the literature in reporting estimates by quarter after random assignment. The dashed 
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black lines show confidence intervals obtained as the 5th and 95th percentiles of estimates from 

500 bootstrap replications. 

     [Figure 1 about here] 

 These estimates are similar to those reported by Bloom et al. (2002). They show that JF 

raised employment in every quarter after random assignment by an amount ranging from roughly 

4 to 7 percentage points. All of these estimates are significant in the sense that the low end of the 

bootstrap confidence interval exceeds zero. The conventional treatment effect estimates for 

welfare receipt are statistically significantly greater than zero during the first 7 quarters after 

random assignment. They become significantly negative thereafter. This pattern stems from the 

fact that time limits began to bind in quarter 8 and has been noted elsewhere in the literature 

(Bloom et al 2002; Grogger and Karoly 2005; Bitler, Gelbach, and Hoynes 2006). The 

conventional treatment effects for Food Stamp receipt are significantly positive for the first 

seven quarters after random assignment and insignificantly different from zero thereafter.  

 However, estimates of Xt
k  do not identify the average treatment effectst

k .To see this, 

write the conditional expectation of k
itY  in terms of Ait as  

E(Yit
k | Ti )  P(Ait  0 | Ti )E(Yit

k | Ti, Ait  0)P(Ait 1|Ti )E(Yit
k |Ti, Ait 1).  (3) 

Writing the conditional expectation of k
itX  similarly yields 

E(Xit
k | Ti )  P(Ait  0 |Ti )E(Yit

k |Ti, Ait  0)P(Ait 1| Ti )E(1 Ait | Ti, Ait 1)

 P(Ait  0 |Ti )E(Yit
k |Ti, Ait  0)

 E(Yit
k | Ti )

  (4) 

where the last line follows since both )|1( iit TAP   and )1,|( iti
k
it ATYE  are bounded between 

zero and one. This implies that  

Xt
k  P(Ait  0 |Ti 1)E(Yit

k | Ti 1, Ait  0)P(Ait  0 |Ti  0)E(Yit
k |Ti  0, Ait  0),  (5) 
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which does not identify t
k . Xt

k  would provide a lower bound for t
k  (in an absolute value 

sense) if attrition were independent of treatment status, since in that case P(Ait |Ti )  P(Ait ). 

However, if attrition is affected by treatment, then Xt
k  cannot be used to point-identify t

k . 

Estimates of Xt
k  can be used to provide bounds on t

k  that are valid for general departures from 

random attrition.2 

4. Bounds based on imputed attrition 

4.1 Hypothetical bounds based on Ait 

 To motivate my approach, it is instructive to consider how one might construct bounds if 

itA  were observable. Define 

Zit
k  (1 Ait )Yit

k  Ait    i=1,…,N; t=1,…,M; and k=1,…,K. Then  

E(Zit
k | Ti )  P(Ait  0 |Ti )E(Yit

k |Ti, Ait  0)P(Ait 1|Ti )E(Ait |Ti, Ait 1)

 P(Ait  0 |Ti )E(Yit
k |Ti, Ait  0)P(Ait 1|Ti )

 E(Yit
k |Ti ),

  (6) 

where the final inequality follows since 

)]1,|(1)[|1()|()|(  iti
k

itiiti
k

iti
k
it ATYETAPTYETZE   

and )|1( iit TAP  and )1,|( iti
k
it ATYE  are bounded between zero and one. Combining (4) and 

(6) yields 

)|()|()|( i
k
iti

k
iti

k
it TZETYETXE  , 

from which it follows that 

E(Xit
k | Ti 1)E(Zit

k |Ti  0)  t
k  E(Zit

k |Ti 1)E(Xit
k |Ti  0),    (7) 

                                                 
2 When t

k  varies as a function of covariates, the bounds are valid for the average treatment 

effect within the population at risk of treatment for given values of the covariates. 
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or equivalently, 

Xt
k P(Ait 1|Ti  0)  t

k  Xt
k P(Ait 1 |Ti 1) .     (8) 

 

Equation (8) shows that the width of the bound is )0|1()1|1(  iitiit TAPTAP .  

 The approach yields bounds because k
itX  and k

itZ  complement one another. Whereas 

k
itX  effectively replaces post-attrition values of k

itY  with zeros, k
itZ  replaces them with ones. Of 

course, the approach is not feasible empirically because the attrition indicator itA  is not 

observed. In the next section I introduce imputed attrition indicators based on observable data 

and show that they can be used in a similar way to construct bounds for t
k .  

4.2. Imputing attrition  

 The imputed attrition indicators are quite intuitive. Since attrition implies that 0k
itX  

for all periods following the date of departure, runs of zeros at the end of the sample period are 

suggestive of attrition. I use these terminal runs of zeros to impute attrition. 

 Although our primary interest is in terminal runs of zeros, it is useful for discussing the 

stationary bounds below to adopt notation for runs of arbitrary initial duration d. Such runs can 

be defined for any of the K observable outcome sequences. Define binary indicators of d-period 

runs of zeros for the kth outcome beginning at date t as 

ait
k (d)  I Xit j

k

j0

d1

  0








  

where I(A)=1 if the event A is true and I(A)=0 otherwise. Thus 1)( dak
it  if 0

k
jitX  for 

j=0,…,d-1. Data from all K outcome sequences can be pooled by defining 
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






  


K

k

k
itit KdaIda

1
)()( . 

 The terminal runs of zeros that I use to impute attrition are indicated by )1(  tMak
it  

for single outcomes and )1(  tMait  for multiple outcomes. For ease of notation, I define 

)1(  tMaa k
it

k
it  and )1(  tMaa itit . I focus attention on the multiple-outcome indicator 

ita  for the rest of the theoretical development, although the same analysis could be carried out in 

terms of the single-outcome indicators k
ita .  

4.3. Bounds based on imputed attrition  

 The observed data k
itX , which are defined in terms of the latent attrition indicator itA , 

can be defined equivalently in terms of the imputed attrition indicator ita . To see this, let 

xit
k  (1 ait )Yit

k    i=1,…,N; t=1,…,M; and k=1,…,K.    (9) 

Equations (1) and (9) imply that k
it

k
it xX   whenever itit aA  . itit aA   implies that 0itA  and 

1ita , since 11  itit aA . This arises when Xit j
k  0 , for k = 1,…,K and j=0,…, M-t-1, even 

though the participant has not yet left the jurisdiction. In this case, Xit
k  0 and xit

k  0  (since 

ait 1), so the two sequences are equivalent. Thus k
itx identifies Xt

k . 

 Proceeding along the lines of section 4.1, define 

zit
k  (1 ait )Yit

k  ait    i=1,…,N; t=1,…,M; and k=1,…,K.    (10) 

Evaluating the expectations of (9) and (10) yields 

E(xit
k | Ti )  P(ait  0 | Ti )E(Yit

k |Ti, ait  0)P(ait 1|Ti )E(1 ait | Ti, ait 1)

 P(ait  0 | Ti )E(Yit
k |Ti, ait  0)

   (11) 
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and 

E(zit
k | Ti )  P(ait  0 |Ti )E(Yit

k |Ti, ait  0)P(ait 1| Ti )E(ait | Ti, ait 1)

 P(ait  0 |Ti )E(Yit
k |Ti, ait  0)P(ait 1| Ti ).

   (12) 

Writing the conditional expectation of k
itY  along the lines of (2), but in terms of ita  rather than

itA , yields 

)1,|()|1()0,|()|0()|(  iti
k
itiititi

k
itiiti

k
it aTYETaPaTYETaPTYE .  (13) 

Comparing (11) and (12) to (13) yields 

)|()|()|( i
k
iti

k
iti

k
it TzETYETxE  , 

from which it follows that 

E(xit
k |Ti 1)E(zit

k | Ti  0)  t
k  E(zit

k | Ti 1)E(xit
k |Ti  0),     (14) 

or equivalently, 

Xt
k P(ait 1| Ti  0) t

k  Xt
k P(ait 1|Ti 1) .      (15) 

The width of the bound is )0|1()1|1(  iitiit TaPTaP . This is wider than the 

hypothetical bounds above, since 11  itit aA . As a general rule, one would expect the 

width of the bound to depend on the amount and nature of the information used to impute 

attrition. The next section illustrates. 

4.3 Terminal Runs of Zeros and Estimated Bounds on t
k  

 Table 1 displays the sample distribution of terminal runs of zeros by the quarter in which 

the run begins. The first three pairs of columns report tabulations based on terminal runs of zeros 

in each of the separate outcome sequences. These represent tabulations of k
ita  .  

     [Table 1 about here] 
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 Within each pair of columns, the first column reports the entry hazard for a terminal run, 

that is, the probability that a terminal run begins at time t, given that it had not yet begun at time 

t-1. The entry hazard for terminal runs based on single outcome sequences can be written as 

P[ait
k 1| ai,t1

k (1)  0)].  The second column reports the probability of imputed attrition, which can 

be written in terms of the entry hazards as  





 

1

0
1, )]0)1(|1[)1(

t

j

k
jti

k
jit

k
it aaPaP .       (16) 

 Thus the first entry in the first column shows that 17.2 percent of the sample began a 

terminal run of zero employment in the first quarter after random assignment. By definition of a 

terminal run, these runs were fifteen quarters long. In the second quarter, the probability that a 

14-quarter run of zero employment began was 0.6 percent, so the cumulative probability of 

attrition in quarter 2 was 17.8 percent. 

 Since the probability of imputed attrition is defined as the cumulative probability of 

terminal runs of zeros, it grows over the sample period. Based on the employment data alone, 

attrition is imputed to 42.7 percent of the sample by the end of the sample period. Imputed 

attrition is even higher based on the other outcomes. Imputed attrition amounts to 75 percent of 

the sample based on the welfare receipt indicator and 57.3 percent based on the Food Stamp 

receipt indicator.  

 Terminal runs of zeros based on all three outcome series, corresponding to ita , appear in 

the final pair of columns. Combining the three data series to impute attrition has a dramatic 

effect on the distribution of terminal runs of zeros. Based on all three outcomes, only 1 percent 

of the sample began a terminal run of zeros in the first quarter of the sample period, as compared 
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to 17 percent based on the employment outcome alone. Based on the multiple-outcome attrition 

indicator, only 20.8 percent of the sample appears to leave by the end of the sample period.  

 Combining data series to impute attrition can greatly reduce the amount of attrition that 

appears in the sample. Although this reduction is particularly large due to the negative 

correlation among our outcomes, multiple-outcome attrition indicators will yield lower levels of 

imputed attrition than their single-outcome counterparts provided that the underlying outcomes 

are not perfectly correlated. This is important, because the analysis above suggests that the width 

of our bounds will be roughly twice the probability of imputed attrition. It has implications for 

the design of social experiments, as I elaborate in Section 6. 

 Figure 1 presents estimated bounds based on equation (15), which are constructed from 

the multiple-outcome attrition indicator ita . These are depicted as solid gray lines with circular 

plotting symbols near the top and bottom of each graph. Confidence intervals appear as dashed 

gray lines. These are based on bootstrapped standard errors derived from 200 bootstrap samples, 

for which individuals were sampled with replacement. 

 Consider first the employment results in the top figure. According to the conventional 

treatment effects, JF raised employment in every quarter after random assignment by an amount 

ranging from roughly 4 to 7 percentage points. However, the bounds show that there is 

considerable ambiguity associated with these results. Between quarters 5 and 6, the half-width of 

the bound becomes greater than the estimate of Xt
k . By (15), this implies that the bound covers 

zero, so the sign of t
k is ambiguous. Factoring in sampling variation, the lower bounds are 

statistically significant in only the first four quarters. Nevertheless, ambiguity owing to attrition 

is a much larger problem than uncertainty owing to sampling variation. Ignoring attrition makes 

the data appear much more informative than they truly are. 
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 Turning to the estimates for welfare receipt in the middle figure, the conventional 

treatment effects were significantly greater than zero during the first 7 quarters after random 

assignment and then became significantly negative, as discussed above. At the same time, 

attrition gives rise to considerable ambiguity. The lower bound exceeds zero during the first 7 

quarters, but the upper bound is never less than zero in the latter part of the sample period. 

Strictly speaking, there is ambiguity owing to attrition as to whether the effect of JF on welfare 

receipt became negative once the time limit became binding. 

 The bottom figure depicts the effects of JF on Food Stamp receipt. The conventional 

treatment effects are significantly positive for the first seven quarters after random assignment 

and insignificantly different from zero thereafter. However, the lower bound is never 

significantly greater than zero. 

5. Stationary Bounds 

 One can tighten the bounds, and reduce the ambiguity in the estimates, by relaxing the 

implicit assumption that all terminal runs are equally likely to reflect attrition. Whereas the long 

terminal runs that begin early in the sample period seem consistent with out-of-jurisdiction 

migration as discussed in Section 1, the short terminal runs beginning late in the sample period 

may just as well stem from fluctuations in k
itY . This may be a particular problem in light of the 

fluctuations in employment and transfer receipt that are typical of welfare recipients (Bane and 

Ellwood 1994; Isaacs and Lyon 2000). 

 Table 2 helps to illustrate this problem. Column (1) shows simply that the length of the 

terminal run is perfectly negatively correlated with the time that it begins. Columns (2) and (3) 

report the hazard and probability of a terminal run of zeros by quarter after random assignment, 
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taken from columns (7) and (8) of Table 1. The hazard rises toward the end of the sample period, 

which could be an artifact of the fixed end of the sample period. 

     [Table 2 about here] 

 

 To account for this artifact, I use data from the entire sample period to estimate the share 

of runs of a given initial duration that eventually become terminal runs. I then use this estimate to 

adjust the estimated attrition probability. For example, to adjust the hazard in quarter 15, when 

all new runs are one quarter long and are necessarily terminal, I estimate from the full data set 

the share of all one-quarter runs that eventually become terminal. The estimate is 42.7 percent. I 

use this number to adjust the hazard and the cumulative probability of attrition at quarter 15.  

 This approach comes at the cost of assuming a particular form of stationarity. As I 

illustrate below, I require the conditional probability of attrition, given an initial duration of 

length d, to be the same throughout the sample period. Fortunately, a partial test for this 

assumption can be constructed from the data. 

5.1 Adjusting the Attrition Hazards 

 The question is whether attrition at time t can be predicted from a run of length d that 

begins at time t. The attrition hazard at t can be written as  

P[Ait 1| ai,t1(1)  0)] P[Ait 1| ait (d) 1, ai,t1(1) 0)]P[ait (d)1 | ai,t1(1)  0)]  (17) 

for t=1,...,M-d+1. The left side of (17) is the probability that attrition takes place at t, since 

ai,t1(1)  0 implies that attrition could not have taken place prior to t. The right side expresses 

this as the product of two terms. The first is the probability that attrition takes place at t, given 

that a run of length d (at least) begins at t. The second is the probability that a run of length d (at 
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least) begins at t. The first term can be thought of as an adjustment factor that adjusts for the 

probability that a run of length at least d actually reflects attrition. 

 The key stationarity assumption is that the first term in constant in t, that is, that a run of 

at least d periods be equally likely to predict attrition for all values of t. This requires the 

relationship between true zeros and attrition to be the same for all t.  

 To estimate the key adjustment factor, one must replace the unobservable Ait with the 

observable ait . In principle, a separate estimate of the adjustment factor could be obtained from 

the sample counterpart of ]0)1(,1)(|1[ 1,  tiitit adaaP  for each value of t=1, ..., M-d. In 

practice, one would expect lower values of t to yield lower estimates, since they make use of 

longer follow-up periods. Whereas estimates based on runs beginning at t=1 make use of M-d 

follow-up periods of data, estimates based on runs beginning at t=M-d make use of a single 

follow-up period. I return to this issue below when I discuss stationarity tests. 

 Column (4) of Table 2 reports estimates of ]0)1(,1)(|1[ 1,  tiitit adaaP . For each 

value of d, they average over all runs beginning between t=1 and t=M-d. Not surprisingly, these 

adjustment factors rise in d. All 15-period runs must begin in quarter 1, so the adjustment factor 

equals 1. Runs of at least 14 periods can begin in either quarter 1 or quarter 2. The entry of 1 in 

the second row of column (4) tells us that all runs of length at least 14 were in fact terminal runs, 

regardless of when they began.  

 Shorter runs are much less predictive of attrition. As mentioned above, among all single-

period runs in the data, only 42.7 percent were terminal, as shown in the last row of column (4). 

About three quarters of all four-period runs were terminal.  
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 Column (5) of Table 2 reports estimates of the product on the right side of (17). This is 

simply the product of the numbers in columns (2) and (4). This adjusted hazard rises much less 

strongly over time than its unadjusted counterpart. This suggests that much of the increase in the 

unadjusted hazard was not due to an increase in the attrition hazard over time, but due to the fact 

that a run is more likely to be terminal, the closer it begins to the end of the sample period.  

 The adjusted probability of imputed attrition, defined as the cumulative sum of the 

adjusted attrition hazards, is reported in column (6). Early in the sample period, it differs little 

from the unadjusted probability displayed in column (3). As time from random assignment 

increases, the two probabilities become more different. By the end of the sample period, the 

adjusted probability of imputed attrition is just over three-fourths of the unadjusted probability.  

 Stationary bounds based on the adjusted probability of imputed attrition are displayed in 

Figure 2 as solid gray lines. For comparison purposes, the general bounds from Figure 1 appear 

as solid black lines. I have omitted confidence intervals to avoid clutter. The stationary bounds 

are somewhat narrower than the general bounds, particularly toward the end of the sample 

period.  

    [Figure 2 about here] 

 

5.2 Testing for Stationarity 

 The stationarity tests take advantage of the multiplicity of estimates for the adjustment 

factor ]0)1(,1)(|1[ 1,  tiitit adaaP . In principle, one could test whether  

]0)1(,1)(|1[]0)1(,1)(|1[ 1,,,1,   jtijtijtitiitit adaaPadaaP   (18) 
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for j=1,...M-d. In practice, there may be reasons to adjust this procedure. As discussed above, 

empirical estimates of ]0)1(,1)(|1[ 1,  tiitit adaaP  may differ by t not only because of 

non-stationarity, but also because runs that begin later in the sample period are more likely to be 

terminal runs simply because they involve fewer follow-up periods. To deal with this problem, I 

fix the follow-up period at a particular value s, and base our test on  

]0)1(,1)(|1)([]0)1(,1)(|1)([ 1,,,1,   jtijtijtitiitit adasdaPadasdaP
 (19)

 

for j=1,...,M-d-s. This limits the number of tests that can be conducted, particularly of those 

involving runs that begin close to the end of the sample period. Panel A of Table 3 presents 

estimated values of ]0)1(,1)(|1[ 1,  tiitit adaaP  from (18) for odd values of d ranging from 

1 to 13 by quarter after random assignment. The other three panels of the Table present estimated 

values of ]0)1(,1)(|1)([ 1,  tiitit adasdaP  from (19) for the same values of d and the 

arbitrarily chosen values of s=3, 5, and 7.  

     [Table 3 about here] 

 Results in panel A show clear pattern: for fixed initial duration d, the conditional 

probability of terminal runs is generally higher at the end of the sample period than at the 

beginning. Particularly consistent are the high conditional probabilities at time t=15-d. F-

statistics for tests of stationarity of the conditional attrition probabilities are shown at the bottom 

of each column. These have been calculated so as to account for the presence of multiple 

observations from each participant. Also shown are p-values for the F-tests that have not been 

corrected for multiple comparisons. For an overall test of size 0.05, a Bonferroni correction 

would lead one to reject the null if any of the unadjusted p-values was greater than 

0.05/7=0.0071. The null of stationarity is clearly rejected by the estimates in panel A. 
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 As discussed above, the rejection could arise either from true non-stationarity in the 

conditional attrition probabilities or from variation in the length of the follow-up period. The 

pattern in Panel A is consistent with the latter interpretation, since one would expect estimated 

conditional probabilities to be higher, the shorter the follow-up period used to estimate them. 

Panels B through D present estimates based on fixed follow-up periods for all values of t and d. 

 Not surprisingly, the conditional attrition probabilities estimated from fixed follow-up 

periods are higher than their counterparts in panel A, which utilize all available follow-up data. 

Shorter follow-ups increase the appearance of attrition. This is evident in moving from Panel B, 

with the shortest follow-up period and the highest conditional probabilities, to Panel D, with the 

longest fixed follow-up period and the lowest conditional probabilities. 

 Fixing the follow-up period also reduces the extent to which the estimated conditional 

probabilities rise with t, holding d (and s) constant. Indeed, for short initial runs of 1 to 3 periods, 

the estimated conditional attrition probabilities are lower toward the end of the sample period 

than at the beginning. 

 The significance levels of the F-tests for stationarity fall as well. Nevertheless, the tests 

still reject the null at the 5 percent level in the case of panels B and C, applying Bonferroni 

corrections. In both cases, the rejections come in the case of the shortest initial runs, where d=1. 

Only in the case of the longest follow-up period (panel D) does the stationarity test fail to reject. 

On the one hand, one might wish to weight the evidence from the longest follow-up the most, 

since longer fixed follow-ups correspond more closely to the notion of attrition as described in 

Section 1. On the other hand, the longest follow-ups do not allow for stationarity tests toward the 

end of the sample period, where the gain in terms of tightening the bounds is greatest. 
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 More generally, how one weighs mixed evidence from the stationarity tests should be 

based on some notion of the loss function attached to tighter bounds on t
k . If the tighter 

stationary bounds resolved fundamental ambiguities stemming from the width of the general 

bounds, stringent rejection criteria for the stationarity tests might be viewed as appropriately 

cautious. With less at stake, the distinction might be less important. 

6. Discussion 

 Attrition due to out-of-jurisdiction migration poses an important problem for evaluating 

social experiments. Many such evaluations make use of administrative data. Administrative 

sources provide longitudinal data that are free of survey response errors and are generally 

cheaper to obtain than survey data. However, most administrative files cover residents of a single 

jurisdiction, and most evaluations avail themselves only of data from the jurisdiction in which 

the experiment is conducted. When a participant leaves the jurisdiction, the entries in her 

administrative records become made up of zeros. Since zeros are valid values in many cases, and 

migration is not directly observed, this means the analyst must deal with corrupted data. 

Conventional estimates based on corrupted data do not identify the average treatment effect. 

 I propose using terminal runs of zeros to impute attrition and using the imputed attrition 

indicators to estimate bounds for average treatment effects. The amount of information used to 

impute attrition plays a key role in determining the width of the bounds. In the empirical 

example, bounds based on individual outcomes, such as employment or welfare receipt, are too 

wide to be very meaningful. Bounds based on all available outcomes lead to dramatic reductions 

in imputed attrition and hence in the width of the bounds. Negative correlation among the 

outcomes is particularly helpful, but adding any imperfectly correlated outcomes should help 

produce tighter bounds. 
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 This finding has important implications for the design of experimental evaluations based 

on administrative data. It indicates that one should collect as much data as possible to reduce the 

width of the bounds. This is particularly important for experiments that focus primarily on a 

single outcome, such as employment. Even if other outcomes are of no direct interest given the 

objectives of the experiments, they may be invaluable for reducing the ambiguity that arises due 

to attrition. Data from unconventional sources such as school or Department of Motor Vehicle 

records may provide valuable additional information, as would data from nearby jurisdictions. 

Data from other time periods or locations within the state might also be used. 

 In terms of the experiment I analyze, attrition leads to considerable ambiguity regarding 

its effects. Conventional analyses that did not account for attrition showed the Jobs First welfare 

reform program to have strong and significant positive effects on employment. However, by the 

sixth quarter after random assignment, the half-width of the estimated bounds exceeded the 

magnitude of the conventional ATE.  

 To tighten the bounds I propose an approach which is valid under a particular stationarity 

assumption. The stationary bounds were somewhat smaller than the general bounds in the case of 

the JF program, especially toward the end of the sample period. I also provide tests for the 

stationarity assumption. 

 Considerable resources are expended on social experiments, often with the belief that 

such experiments provide the strongest possible evidence regarding the effects of social 

programs. Due to attrition, however, results from experimental evaluations may involve much 

more ambiguity than has previously been recognized. More extensive data collection can help to 

reduce that ambiguity. 
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Figure 1: Estimated Average Treatment Effects and General Bounds 
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Figure 2: Comparing General and Stationary Bounds 
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Table 1: Imputed Attrition, Based on Different Outcome Variables, by Quarter After Random Assignment  
            
 Employment   Welfare receipt  Food Stamp receipt  All three outcomes 

Quarter 
after RA 

Hazard for 
terminal run

)0)1(

|1(

1 




k
it

k
it

a

aP
 

(1) 

Cumulative 
probability 
for terminal 
run of zeros 

)1( k
itaP  

(2) 

Hazard for 
terminal 
run

)0)1(

|1(

1 




k
it

k
it

a

aP

 
(3) 

Cumulative 
probability 
for terminal 
run of zeros 

)1( k
itaP  

(4) 

Hazard for 
terminal run

)0)1(

|1(

1 




k
it

k
it

a

aP

 
(5) 

Cumulative 
probability 
for terminal 
run of zeros 

)1( k
itaP  

(6) 

Hazard for 
terminal 
run

)0)1(

|1(

1 




k
it

k
it

a

aP

 
(7) 

Cumulative 
probability for 
terminal run 

of zeros 
)1( itaP  

(8) 
1 0.172 0.172 0.086 0.086 0.077 0.077 0.010 0.010 
2 0.006 0.178 0.058 0.143 0.040 0.116 0.017 0.027 
3 0.009 0.187 0.054 0.197 0.037 0.153 0.014 0.041 
4 0.010 0.197 0.046 0.243 0.038 0.191 0.013 0.053 
5 0.013 0.210 0.044 0.288 0.034 0.226 0.012 0.065 
6 0.012 0.222 0.033 0.321 0.026 0.252 0.010 0.075 
7 0.010 0.232 0.039 0.360 0.031 0.283 0.009 0.084 
8 0.014 0.245 0.087 0.447 0.047 0.330 0.014 0.097 
9 0.012 0.257 0.041 0.488 0.029 0.359 0.010 0.107 

10 0.015 0.272 0.052 0.540 0.033 0.391 0.012 0.119 
11 0.017 0.289 0.043 0.582 0.034 0.425 0.012 0.131 
12 0.022 0.311 0.053 0.636 0.039 0.464 0.013 0.144 
13 0.029 0.340 0.039 0.675 0.031 0.495 0.016 0.160 
14 0.036 0.376 0.037 0.712 0.036 0.532 0.019 0.179 
15 0.051 0.427 0.038 0.750 0.041 0.573 0.029 0.208 
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Table 2: Adjustments for Stationarity, Imputing Attrition Based on All Three 
Outcomes 

Quarter 
after 
RA 

Length 
of 

terminal 
spells 

(d) 

Hazard for 
terminal run 

)0)1(

|1(

1 



it

it

a

aP  

Cumulative 
probability 
for terminal 

run of 
zeros 

)1( itaP  

Adjustment for 
stationarity 
P(ai,t 1|

ai,t (d) 1,
ai,t1(1)  0)

 

Adjusted 
hazard 

for 
terminal 

run 
(4)x(2) 

Adjusted 
cumulative 
probability 
for terminal 
run of zeros 
(Sum of (5))

 (1) (2) (3) (4) (5) (6) 
1 15 0.010 0.010 1.000 0.010 0.010 
2 14 0.017 0.027 1.000 0.017 0.027 
3 13 0.014 0.041 0.977 0.014 0.040 
4 12 0.013 0.053 0.947 0.012 0.052 
5 11 0.012 0.065 0.927 0.011 0.064 
6 10 0.010 0.075 0.929 0.009 0.073 
7 9 0.009 0.084 0.903 0.008 0.080 
8 8 0.014 0.097 0.874 0.012 0.092 
9 7 0.010 0.107 0.846 0.008 0.101 

10 6 0.012 0.119 0.814 0.009 0.110 
11 5 0.012 0.131 0.778 0.010 0.120 
12 4 0.013 0.144 0.734 0.010 0.129 
13 3 0.016 0.160 0.653 0.010 0.139 
14 2 0.019 0.179 0.558 0.011 0.150 
15 1 0.029 0.208 0.427 0.013 0.163 
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Table 3: Estimates of Adjustment Factor ]0)1(,1)(|1)([ 1,  tiitit adasdaP , by Period (t) , Minimum Initial Length of Run (d), and Length of Follow-Up (s) 

               
 A. No adjustment for length of follow-up period    B. Follow-up (s) = 3 quarters    

Quarter after 
RA (t) Minimum initial length of run (d)      Minimum initial length of run (d)    
 1 3 5 7 9 11 13  1 3 5 7 9 11 

1 0.315 0.495 0.667 0.754 0.790 0.821 0.979  0.541 0.72 0.87 0.934 0.864 0.821 
2 0.439 0.651 0.781 0.804 0.891 0.921 0.976  0.578 0.817 0.914 0.873 0.946 0.921 
3 0.419 0.578 0.684 0.788 0.893 0.957   0.675 0.784 0.806 0.859 0.907  
4 0.414 0.682 0.779 0.845 0.984 1.000   0.589 0.852 0.844 0.845 0.983  
5 0.424 0.648 0.843 0.952 0.983    0.547 0.736 0.857 0.952   
6 0.356 0.603 0.691 0.758 0.887    0.553 0.821 0.853 0.758   
7 0.333 0.667 0.792 0.955     0.444 0.746 0.811    
8 0.445 0.663 0.844 0.985     0.555 0.704 0.844    
9 0.392 0.681 0.839      0.525 0.725     

10 0.401 0.714 0.917      0.453 0.714     
11 0.386 0.694       0.458      
12 0.432 0.840       0.431      
13 0.532              
14 0.681              
15               

               
Mean 0.427 0.653 0.778 0.846 0.903 0.927 0.977  0.53 0.765 0.852 0.869 0.927 0.883 
Average N 144 88 73 69 67 69 66  145 90 77 74 72 73 
               
F 4.93 3.06 3.18 8.32 5.1 7.52 0.01  3.22 1.55 0.98 2.95 3.11 2.87 
p-value 0.0000 0.0005 0.0009 0.0001 0.0002 0.0001 0.9255  0.0002 0.1274 0.4437 0.0125 0.027 0.0925 
(continued)               
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Table 3 
(continued)               
 C. Follow-up (s) = 5 quarters      D. Follow-up (s) = 7 quarters    

Quarter after 
RA (t) Minimum initial length of run (d)      Minimum initial length of run (d)    
 1 3 5 7 9    1 3 5 7   

1 0.459 0.645 0.826 0.836 0.78    0.411 0.613 0.739 0.754   
2 0.551 0.762 0.848 0.853 0.891    0.513 0.706 0.829 0.804   
3 0.569 0.681 0.745 0.8     0.494 0.629 0.694    
4 0.517 0.739 0.779 0.845     0.448 0.682 0.779    
5 0.482 0.659 0.843      0.432 0.648     
6 0.485 0.744 0.691      0.439 0.603     
7 0.373 0.683       0.341      
8 0.473 0.663       0.445      
9 0.417              

10 0.401              
11               
12               
13               
14               
15               

               
Mean 0.478 0.699 0.791 0.834 0.848    0.445 0.65 0.762 0.785   
Average N 144 94 81 80 75    148 99 87 82   
               
F 2.44 0.98 1.71 0.32 3.1    1.68 0.75 1.84 0.53   
(p-value) 0.0093 0.4471 0.13 0.8123 0.08    0.1107 0.589 0.1393 0.4657   
Notes: F-statistics account for presence of multiple observations per participant         

 
 


