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1. Introduction 

Markets for technology have been extensively studied (Arora and Gambardella, 1990, 

1994a); however, there still remains little evidence about the determinants of technology 

demand in terms of the relationship between internal and external R&D (Arora and 

Gambardella, 1990). Firms choose their level of integration within the value chain, but the 

extent to which they adopt different R&D strategies as substitutes or complements remains 

uncertain. Some firms, such as Morgan Stanley, have advocated a radical shift for the 

management of R&D in certain industries (Morgan Stanley, 2010; Tollman, 2011). In 

particular, they argue that the pharmaceutical industry should abandon its current R&D 

model and fully adopt a “search and development” (S&D) model. Under an S&D framework 

firms would abandon all internal research and focus solely on development. Thus, 100% of a 

firm’s drug candidates would come from external licensing. While full adoption of an S&D 

model is an extreme position, some pharmaceutical companies have openly acknowledged a 

move toward more frequent engagement in external licensing. For example, in 2009, 

GlaxoSmithKline (GSK) terminated its legendary neuroscience program in order to free up 

capital to meet its stated goal of allocating 50% of its R&D budget to external projects 

(Knowles and Higgins, 2011). 

The S&D model implicitly suggests that internal and external R&D are substitute 

activities in the sense that implementation of one activity reduces marginal return on the other 

activity. Complementarity would arise if an increase in one of these activities increased the 

marginal returns from the other activity (Milgrom and Roberts, 1990). Substitution between 

these activities is consistent with the extreme case of backward integration, whereby firms 

rely exclusively on internal R&D investments. Backward integration dominated the 

organization of R&D in the past century. Substitution is also consistent with the opposite 

case, whereby a non-integrated firm relies exclusively on external technology, perhaps yet to 
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be developed, as in the case of the S&D model. Ultimately, the decision to choose between 

these two types of R&D is influenced by whether synergies exist between them. For example, 

internal R&D and licensing could fulfill quite distinct yet complementary purposes. R&D can 

serve functions not directly tied to the creation of new products, such as concept exploration, 

hypothesis testing, and market credibility, which are all activities that can complement the 

investment made on a technology licensed from other firms or institutions.  

Our review of the literature suggests that empirical evidence does not conclusively 

support substitution or complementarity across all industry settings. Moreover, there is 

surprisingly little research on the contextual factors that determine whether these two 

activities are complements or substitutes. Accordingly, the major objective of this paper is to 

provide a deeper understanding of the firm-level drivers that determine the degree of 

complementarity between internal and external R&D. To accomplish our goal, we adopt a 

two-step empirical strategy. In the first step, we estimate the coefficients of a flexible CES-

Translog innovation production function (Pollak et al., 1984) to find the most appropriate 

functional form to use in our context. We then provide structural estimates of the degree of 

complementarity or substitutability between these two types of R&D investments that vary 

across firms and time.  

Our study is focused on the global pharmaceutical industry, which is an ideal research 

setting for several reasons. In the pharmaceutical industry, internal productivity failures and 

the lack of capabilities in emerging technology, coupled with an increase in new external 

opportunities, have influenced the balance between internal R&D and in-licensing strategies 

(Malerba and Orsenigo, 2000). Furthermore, internal and external R&D are considered major 

drivers of firm performance (Scherer, 2007). Finally, the detailed availability of longitudinal 

measures relating to both internal and external research activities and their product innovation 
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output allows us to directly analyze the marginal productivity of these investments and 

drivers.  

Our results suggest that, on average, internal R&D and in-licensing investments are 

neither complements nor substitutes in the global pharmaceutical industry. However, we 

show that the degree of complementarity is enhanced for firms with stronger absorptive 

capacity, economies of scope, and past licensing experience. Taken together, our results 

highlight the complexity of this relation and suggest that a simple categorization 

(complement or substitute) may be misleading. In such a context, the framework presented in 

this paper appears to be valuable, since it recognizes the importance of heterogeneity across 

firms in terms of affecting complementarity of internal and external R&D capabilities within 

narrowly defined industries. Conditional on data availability, such an approach could be 

readily applied by other researchers to examine similar issues within various industry 

contexts.  

The remainder of the paper is organized as follows: Section 2 discusses the relevant 

literature and theoretical framework, Section 3 introduces our empirical model, Sections 4 

and 5 present data and empirical results, respectively, and Section 6 concludes. 

2. Literature review 

2.1. Complements or substitutes? 

Firms must continuously invest in the development of new products in order to stay 

competitive. Sources of innovative knowledge are no longer limited to internal investments, 

but they include more significant contributions from external sources, such as licensing. The 

importance of technology licensing has long been recognized in the literature on industrial 

organization. However, past research on markets for technology has mostly focused on the 

supply-side drivers of licensing decisions (Bresnahan and Gambardella, 1998; Arora et al., 

2001; Arora and Fosfuri, 2003; Arora and Ceccagnoli, 2006). Less attention has been paid to 
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the incentive to buy technology in the market, particularly on the relationship between 

internal and external R&D (Arora and Gambardella, 2010). This is an important gap in the 

literature, because technology buyers in most high-tech industries conduct extensive internal 

R&D, which could alter their external investment strategy. If it does, this creates a potential 

tension between developing technology internally and obtaining it externally. This tension 

raises the question of whether internal and external R&D investments are complements or 

substitutes. While a few studies have recently attempted to address this question, results to 

date are not conclusive.  

Several empirical studies support the substitution viewpoint. Pisano’s (1990) findings 

suggest that substitution is driven by transaction costs and their influence on the decision to 

externally expand R&D. Laursen and Salter (2006) find that internal R&D investments 

negatively moderate the relationship between external knowledge (licensing) and innovation 

performance. In a study on investments in advanced Internet technologies, Forman et al. 

(2008) find a substitute relationship between internal firm resources (e.g., programmers) and 

external technologies. In a model of technology adoption, they find that the marginal 

contribution of internal firm resources tends to diminish within large urban areas. It is 

therefore possible that the external resources available in cities are partial substitutes for both 

establishment-level and firm-level internal resources.  

Complementarity between internal and external R&D, on the other hand, implies that 

these two forms of R&D coexist and are interdependent. Unlike the substitute relationship, 

complementarity implies that firms acquiring external technologies must also continue to 

engage in internal R&D. Several studies provide evidence in support of complementarity 

(Lowe and Taylor, 1998; Cassiman and Veugelers, 2006; Tsai and Wang, 2008; Png, 2012). 

Cassiman and Veugelers (2006), for example, provide empirical evidence in support of 

complementarity between internal R&D and external technology acquisition strategies (these 



6 
 

include licensing, alliances, and acquisitions). The study of Tsai and Wang (2008) on 

Taiwanese electronics manufacturing demonstrates that external technology acquisition does 

not contribute to firm performance per se, but does show that external acquisition of 

technology has a positive effect on performance when interacting with internal R&D.  

Other empirical evidence, consistent with complementarity, suggests that external 

know-how can quickly bring new resources to a firm during different stages of production. 

New knowledge, such as externally generated patents or partially developed compounds, can 

boost the development process and potentially increase expected revenues. Along these lines, 

Higgins and Rodriguez (2006) find that internal knowledge is combined with technology 

acquisition to fill research pipeline gaps. Danzon et al. (2007) argue that firms acquire 

technology in order to replenish pipeline gaps and respond to excess capacity generated by 

patent expirations. Similarly, Chan et al. (2007) find that firms engage in the external 

technology market as a result of downstream cospecialized complementary assets.  

In contrast, Vega-Jurado et al. (2009) find no evidence of complementarity nor 

substitution in the Spanish manufacturing sector. These authors analyze the effect of external 

knowledge sourcing strategies on the development of both product and process innovation for 

a sample of innovative Spanish firms. Their results suggest that firms rely on both internal 

R&D and external knowledge sources, but that the two activities do not have synergistic 

effects. 

In sum, previous research demonstrates the importance of effective internal R&D and 

external technology acquisition strategies for superior economic performance. However, 

there is mixed evidence and limited understanding concerning the relationship between these 

two types of activities, especially their conditioning drivers. Moreover, the scope of prior 

work has often been limited by data availability, as cross-sectional survey data allows—at 
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best—only analysis of discrete choices of technology that a firm could “make” or “buy” at a 

specific point in time.  

2.2. Drivers of complementarity 

Our literature review suggests that the firm-level drivers of the degree of 

complementarity or substitutability between internal R&D and in-licensing can be grouped 

into factors determining a firm’s absorptive capacity, economies of scope, and licensing 

experience. 

2.2.1. Absorptive Capacity 

Absorptive capacity reflects a firm’s ability to identify, assimilate, and exploit 

knowledge from the environment (Cohen and Levinthal, 1989). Arora and Gambardella 

(1994b) formally link this concept to a firm’s external technology acquisition strategy. They 

emphasize two components of absorptive capacity that are relevant to the acquisition of 

external technology through alliances. One component is the ability to evaluate external 

technology, which depends on a firm’s upstream research capability. Another component is a 

firm’s ability to utilize external technologies, which depends on its technological and 

development skills.  

We build on Arora and Gambardella’s contribution by suggesting that both types of 

firm capabilities tend to be associated with a stronger complementarity between internal and 

external R&D activities. On one hand, an increase in the cumulated investment in internal 

R&D, especially when the type of R&D is more basic in nature, tends to generate scientific 

capabilities, which in turn makes in-licensing more efficient, as it enhances the selection of 

external technology projects. On the other hand, higher levels of internal R&D, especially 

when R&D is more geared toward design or development of new products increases the 

returns from external technology investments by facilitating the effective integration of 

external technology within the buyer’s value chain. We will exploit this distinction between 
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the ability to evaluate and utilize external technology in our empirical setting in order to 

guide our empirical measurement and analysis.    

2.2.2. Economies of scope 

A second set of drivers of complementarity between internal R&D and in-licensing 

relate to the concept of economies of scope, defined as the cost savings that are generated 

from adopting different activities in multiple markets (Panzar and Willig, 1981; Henderson 

and Cockburn, 1996).  The advantage gained through exploitation of economies of scope 

arises from sharing or jointly utilizing production inputs such as technological resources. 

When technologies are licensed for use in one market, they can freely or at reduced additional 

cost be re-adopted to other markets or products. Therefore, the opportunity to share 

technologies across different projects facilitate the generation of synergies among them by 

creating links between resources that would otherwise remain separate. While the logic of 

economies of scope typically refers to the benefits of related diversification in terms of cost 

advantages, these benefits can also be formulated in terms of products and services. The 

external knowledge developed for a given technological area may potentially be beneficial to 

the development of products in other technological areas. Given that knowledge can be 

articulated and codified within the firm (Zollo and Winter, 2002), the external knowledge 

acquired for a specific project can be utilized to improve the current development of products 

in other technological areas.  

Following this logic, we expect that firms with broader experience across different 

technological areas to be characterized by a stronger degree of complementarity between 

internal R&D and in-licensing. This implies that such firms may be using knowledge 

developed in different fields additively in the innovative process (Henderson and Cockburn, 

1996). Complementarities may arise if technologies purchased from external sources have 

different technical specifications, and thus are useful to fulfill internal capability gaps. In 
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such cases, economies of scope should increase the synergetic combination of internal and 

external inputs.  

2.2.3. Licensing Experience 

The logic underlying the effect of prior licensing experience on the complementarity 

between internal and external R&D is similar, in many respects, to the concept of absorptive 

capacity examined above. Licensing experience refers to the cumulative experience in 

leveraging external knowledge, whereas absorptive capacity is based on the cumulative 

experience developed by investing in internal knowledge. Under this view, collaborative 

agreements, such as licensing, joint ventures, and acquisitions, may enhance a firm’s ability 

to more effectively combine internal and external technologies.  

The literature suggests that firms with prior licensing experience are more likely to have 

developed effective communication mechanisms, more flexible organizational structures, and 

other successful organizational routines that can facilitate the integration of external 

technologies within existing R&D structures (Zollo and Winter, 2002; Hoang and 

Rothaermel, 2010).  Indeed, firms vary in the extent to which their organizational structure 

supports the management of technology acquisition. For example, Pfizer has recently 

invested in creating a new division called “the Research Network Initiative,” in order to allow 

external technologies from their various partnerships to become more accessible to internal 

projects.1 

Furthermore, similar to the effect of scientific capabilities highlighted in the previous 

section, firms with more extensive licensing experience are better able to identify valuable 

external technologies that best fit their internal R&D efforts, thus increasing the synergies 

between the two activities.  

3. Model description and estimation procedure 

                                                 
1 http://www.labnews.co.uk/comment/big-ask/dating-agency-scientists-andrew-mcelroy/. Accessed June 6th, 
2012 
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3.1. Step 1: CES-Translog specification and functional form tests 

We assume that each firm is characterized by an innovation production function (n), 

which depends on investments for the acquisition of external technology (Re), internal R&D 

expenditure (Ri), and a constant term that represents firm-specific effects as well as other 

exogenous components affecting the productivity of resources invested in innovation (S): 

(1)                   ݊ ൌ ݂ሺܴ௜, ܴ௘, ܵሻ  

Hereafter, the firm and time subscripts are omitted for simplicity. We start by adopting 

a CES-Translog specification, a flexible, functional form that nests the Cobb-Douglas, CES, 

and Translog specifications. Previous work using a CES-Translog specification include 

Pollak et al. (1984) and Dewan and Min (1997). The former provide estimates of a CES-

Translog cost function and find that it fits significantly better multiple datasets covering 

different industries and countries than had been previously used in the literature. The latter 

builds upon Pollak et al. (1984) to directly estimate the CES-Translog as a production 

function to analyze the effect of IT and non-IT capital on productivity in the IT industry.  

There are two main advantages of using a CES-Translog specification. First, it is a 

flexible, functional form that is compatible with a wider range of substitution possibilities 

than CES or Translog. Second, we can exploit its nested properties to find the best functional 

form that describes the innovative process without losing efficiency in terms of likelihood 

(Pollak et al., 1984) and without imposing a priori restrictions on our model. Overall, this 

methodology helps improve upon existing research, because estimating the complementarity 

relationship between internal and external R&D using restrictive production models may 

cause specification errors and yield biased econometric estimates.    

We define our CES-Translog production function as: 

(2) log ݊ ൌ 				ܵ ൅ ଵ

ఘ
log൫ߙ௜ܴ௜

ିఘ ൅ ௘ܴ௘ߙ
ିఘ൯ ൅ ௜ሺlogߚ 	ܴ௜ሻଶ ൅ ௘ሺlogߚ 	ܴ௘ሻଶ ൅

γ୧ୣ log 	ܴ௜ log 	ܴ௘ ൅   ,ݑ
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where Ri and Re represent internal R&D expenditure and in-licensing investment (external 

R&D), 	ߙ௜ ൅ ௘ߙ ൌ 1, and u is a random error term representing the unobserved drivers of the 

internal and external R&D investments. Equation (2) shows that it is possible to innovate 

even if a firm does not invest in these two types of R&D, due to the effect of an exogenous 

component, S, which might include factors such as knowledge flows from other firms or 

universities. The additive linear term is equivalent to a classic CES specification, where ρ 

represents the elasticity of substitution between Ri and Re. The βs and γ coefficients represent, 

respectively, the quadratic impact and the cross-effect of R&D investments on the production 

of innovations.2  

According to Pollak et al. (1984), researchers can exploit the nested properties of the 

CES-Translog to test for other functional forms, and to reduce model complexity without 

reducing its estimation efficiency. These tests offer more flexibility to researches in modeling 

innovation functions, because they do not require that prior assumptions on data behavior be 

made. The Cobb-Douglas, CES, and Translog forms are all special cases of the CES-

Translog. When all quadratic terms are equal to zero, we obtain a CES function. The Cobb-

Douglas is obtained when all quadratic terms are equal to zero and ρ tends to zero. The 

Translog specification can be found when ρ approaches 0 and all the other parameters are 

different from zero. These nested properties enable testing for model specification using 

conventional test procedures (Pollak et al., 1984). Table 1 summarizes these three 

specification tests. A rejection of all the specification tests presented in Table 1 would lead to 

the adoption of the CES-Translog innovation production function. However, a simpler, but 

still efficient functional form can be adopted if one of the tests is rejected. 

<Insert Table 1 here> 

3.2.Step 2: Estimation of the degree of complementarity 
                                                 
2 Our definition of the degree of complementarity/substitutability is based on the cross partial derivative of the 
production function. This is different from the elasticity of substitution, which is defined as the percentage 
change in factor proportions due to a change in the marginal rate of technical substitution ((Hicks, 1932) 
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After testing the coefficients of the CES-Translog, we are able to choose the most 

efficient functional form specification to be used in our model. Our empirical findings, 

discussed below in Section 5.1, will show that the Translog production function better fits our 

data. Therefore, we will only compute and focus on the degree of complementarity or 

substitutability for the Translog production function in the sections that follow.   

The Translog specification is defined as follows: 

(3) ݊ ൌ 	R୧
α౟Rୣ

α౛eௌାఉ೔ሺ୪୭୥ 	ோ೔ሻ
మାఉ೐ሺ୪୭୥ 	ோ೐ሻమାஓ౟౛ ୪୭୥ 	ோ೔ ୪୭୥ 	ோ೐ା୳	,	

where S is the exogenous component of the production function, u is the error component, 

and Ri and Re represent internal and external research, respectively. We estimate the Translog 

by taking logarithms of both sides of (3), which allow us to employ linear estimation 

techniques.  

The marginal productivity of internal and external R&D using the Translog 

specification can be written as follows: 

(4) 
ୢ୬

ୢୖ౟
ൌ ௡

ோ೔
൫α୧ ൅ 2β୧ log 	ܴ௜ ൅γ୧ୣ log 	ܴ௘൯ ൌ

௡

ோ೔
Z୧	

(5) 
ୢ୬

ୢୖ౛
ൌ ௡

ோ೐
൫α௘ ൅ 2β௘ log 	ܴ௘ ൅γ୧ୣ log 	ܴ௜൯ ൌ

௡

ோ೐
Zୣ	

We then estimate the degree of complementarity or substitutability using the following 

cross-partial derivative: 

(6) 
ௗమ௡

ௗோ೔ௗோ೐
ൌ ቂ

௡

ோ೐
൫αୣ ൅ 2βୣ log 	ܴ௘ ൅γ୧ୣ log 	ܴ௜൯

୞౟
ோ೔
൅

୬γ౟౛

ୖ౟ୖ౛
ቃ ൌ	

୬

ୖ౟ୖ౛
൫Z୧Zୣ ൅γ୧ୣ൯ ൌ

୬

ୖ౟ୖ౛
Z෨	, 

where ෨ܼ ൌ 	 ൫Z୧Zୣ ൅γ୧ୣ൯ and all other variables are as defined above. In contrast to the signs 

for CES and Cobb-Douglas, the sign of 
ௗమ௡

ௗோ೔ௗோ೐
 for the Translog functional form is less 

intuitive. Although the values of Ri, Re, and n are positive, the sign of ෨ܼ is ambiguous and we 

cannot predict ex-ante whether internal and external R&D investments are complementary or 
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substitutable. However, we can estimate the predicted value of n and ෨ܼ for each firm year by 

estimating the log-log specification of the innovation production function expressed by 

Equation (3). We then evaluate 
ௗమ௡

ௗோ೔ௗோ೐
 for representative (mean or median) values of Ri, Re, 

and the exogenous predictors of n, with particular attention to the firm-level drivers of 

complementarity summarized in Section 2.2.        

3.3.Empirical strategy 

Our estimation procedure involves two steps. First, we identify whether the innovation 

production function is better represented by a Cobb-Douglas, CES, Translog, or CES-

Translog by estimating and testing the coefficients of Equation (2). Second, we select the best 

functional form to estimate the degree of complementarity/substitutability. We are able to 

estimate all model parameters regardless of the functional form of the production function. 

Therefore, all the equations are identified. Once the innovation production function is 

estimated, we can compute the sign and magnitude of the cross-partial derivative 
ௗమ௡

ௗோ೔ௗோ೐
 . 

Notice thatγ୧ୣ ≡
ௗమ ୪୭୥௡

ௗ ୪୭୥ோ೔ௗ ୪୭୥ோ೐
 in (3)-(6) represents a percentage change in the elasticity of 

internal R&D for a percentage change in licensing or vice versa. While this is a more easily 

interpretable notion of complementarity, an evaluation of the sign of the cross-partial 

derivative (6) suggests that its sign is not determined by the sign of γ୧ୣ.    

The production functions presented in the previous sections can be used in the context 

of a profit maximization model with endogenous internal and external R&D investment 

levels (available from the authors upon request). Such models generate exclusion restrictions 

which imply that variables affecting the optimal level of internal R&D and licensing (external 

R&D) do not affect the innovation production function other than through Ri and Re. This 

provides information about instrumental variables that can be utilized in order to deal with 

the endogeneity of internal R&D and licensing. The source of endogeneity comes from 
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unobserved factors that may drive both the production of innovations as well as the efficiency 

of internal and external R&D investments. As discussed more fully below, we use exogenous 

drivers of the expected value of an innovation as instruments for internal and external R&D 

investments in the innovation production function. We also experiment using controls for 

unobserved firm-specific heterogeneity to test the sensitivity of the results to our 

identification strategy.  

4. Data 

Our sample is based on a unique longitudinal dataset built from a variety of sources. We 

began by creating a comprehensive list of global pharmaceutical firms from Pharmaprojects 

that were active in drug development at any point during 1997–2005. Data includes both the 

timeline of drug development (e.g., the various stages of clinical trials, FDA approval, and 

project discontinuations) and detailed information on the potential size of the market and the 

novelty of the compound.  

Next, we matched our list of firms with Compustat, collecting data on firm sales, total 

R&D expenditures, and the number of firm employees. Licensing information was obtained 

from Deloitte ReCap and includes data on royalties, up-front payments, and milestones. 

Finally, from IMS MIDAS™ we obtained product-level promotion expenditures. All 

financial variables are in year 2000 constant US dollars. Descriptive statistics are provided in 

Table 2 and correlations are presented in Table 3. 

<Insert Table 2 and Table 3 here> 

Our final sample consists of 94 global pharmaceutical firms active in drug development 

between 1997 and 2005. Of those, 85% of the firms were located in North America and 12% 

were located in Europe and the U.K. The average firm has approximately 11 compounds in 

its pipeline. Our firms, like most major pharmaceutical companies, operate in a number of 

therapeutic areas. In the sample, the average number of therapeutic categories per firms is six. 
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Almost one-third of the compounds under development are focused in three therapeutic areas: 

central nervous system, alimentary tract and metabolism, and cardiovascular.3 

4.1.Dependent variables 

Product pipeline. Our dependent variable is the firm-year product pipeline, which 

represents a firm’s innovative output. The importance of studying a firm pipeline is based on 

the idea that compounds are developed in stages, all of which require different resources and 

capabilities in order to reach commercialization. These resources can be developed internally 

or acquired through the markets for technology. Using data from Pharmaprojects, we 

generate a yearly pipeline stock by cumulating the number of FDA approved drugs and those 

being developed for each firm in our sample.4 To account for development uncertainty, 

compounds are weighted by average probabilities of successfully reaching FDA approval, 

conditional on their phase of development (Grabowski, 2002). In this way, we provide greater 

weight to later-stage drug candidates (Higgins and Rodriguez, 2006). This is consistent with 

our objective to compare the efficiency of internal R&D and in-licensing in obtaining new, 

marketable products.  

4.2.Independent variables 

Internal R&D investments. We compute internal R&D investments using data from 

Compustat and Deloitte ReCap. R&D data from Compustat includes expenditures in R&D 

                                                 
3 ATC stands for Anatomical Therapeutic Chemical as defined by the World Health Organization 
(http://www.whocc.no/). These therapeutic classes are: A: alimentary tract and metabolism; B, blood and blood 
forming organs; C, cardiovascular system; D, dermatologicals; G, genitourinary system and sex hormones; H, 
systemic hormonal preparations, excl. sex hormones and insulins; J, anti-infectives for systemic use; L, 
antineoplastic and immunomodulating agents; M, musculoskeletal system; N, nervous system; P, antiparasitic 
products, insecticides, and repellents; and R, respiratory system.  
4 To deal with observations equal to zero (10% of our sample), we compute our pipeline variable as log(1+x). 
We also tried Poisson’s estimation for count data models. Our results remain robust. 



16 
 

that could be performed internally or externally.5 In order to isolate internal R&D, we use 

licensing data from Deloitte Recap and subtract it from the Compustat data. The resulting 

difference is our proxy for purely internal R&D expenditures. Finally, since developed 

knowledge can become obsolete over time, we use a 15% depreciation rate to compute an 

internal R&D stock variable (Hall, 1993). 

In-licensing investment (external R&D). We use Deloitte ReCap data to collect 

licensing payments. Our in-licensing variable is based on the sum of milestones and upfront 

payments.6 As with the internal R&D variable, we build the stock of licensing investment 

using a 15% depreciation rate (Hall, 1993). In the case of missing values, we imputed the 

payments based on the average investment for agreements with similar characteristics, such 

as the same year of signing, stage at signing, disease, and type of technology.7 Because the 

stock of licensing expenditures also capture a firm’s licensing experience, we will also use 

this variable to evaluate the extent to which such experience may affect the degree of 

complementarity between the internal generation and external acquisition of technologies. 

4.3.Instrumental variables for internal and external R&D 

                                                 
5 In-licensing upfront fees and milestones are expensed when incurred as R&D expenditures (FAS 2R.12). The 
following examples from public filings explain the underlying accounting principles. 1) ABBOTT 2010 10-K 
SEC filing (p. 51) states:  

“Internal research and development costs are expensed as incurred. Clinical trial costs incurred by third 
parties are expensed as the contracted work is performed. Where contingent milestone payments are 
due to third parties under research and development arrangements, the milestone payment obligations 
are expensed when the milestone results are achieved.”  

2) BIOMARIN 2010 10-K SEC filings (p. 43) states:  
“Research and development expenses include expenses associated with contract research and 
development provided by third parties.... Amounts due under such arrangements may be either fixed 
fee or fee for service, and may include upfront payments, monthly payments and payments upon the 
completion of milestones or receipt of deliverables.”  

3) MERCK 2010 10-K SEC filings (p. 115) states:  
“Research and development is expensed as incurred. Upfront and milestone payments due to third 
parties in connection with research and development collaborations prior to regulatory approval are 
expensed as incurred.”  

6 We are not able to include royalties in our in-licensing measure because they are included in the income 
statement as part of operating expenses or as cost of sales and are not explicitly available in a consistent way in 
either public documents or Deloitte ReCap. Given this limitation, we acknowledge that our in-licensing measure 
is downward biased and most likely provides a lower bound of the in-licensing effect on innovative output. 
7 Only 9% of data had missing values for this variable. To check the robustness of our results to the imputation 
method, we re-estimated the model without the imputed values, and the results were unchanged. 
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As noted above, internal R&D (Ri) and in-licensing (Re) are correlated with unobserved 

productivity factors affecting both inputs and output of innovation. Our R&D optimization 

model suggests that variables affecting the expected value of an innovation should only affect 

the production of innovation through these variables’ effects on the levels of internal and 

external R&D investments.8 We therefore use variables that should affect the profitability of 

marketed drugs, such as potential size of the market, drug novelty, number of competitors, 

and the strength of a firm’s complementary assets. As shown in the empirical results section, 

the above instruments appear to have sufficient power and seem to be uncorrelated with the 

econometric error term, as indicated by the tests for instrument validity.  

First, we use potential product market size as an instrument for internal and external 

R&D investments, because it reflects exogenous drivers of the future demand of the firm. In 

the case of successful approval and commercialization, each firm is able to service the 

potential market and gain the associated revenues. The larger the expected size of the market, 

the higher will be the overall R&D effort (both internal and external investments) to develop 

a final product (Acemoglu and Linn, 2004). Pharmaprojects includes estimates of the 

potential product market size for drugs in development. We compute the expected market 

size for pipeline products by summing the estimated values of each firm’s drugs in each year.  

Second, we use drug novelty as another potential instrument. This data is made 

available by Pharmaprojects, which contains independent ratings about the novelty of 

compounds. Each compound’s novelty is categorized using a discrete range between 1 and 6, 

where the value 6 represents the most innovative drugs. Consistent with recent work, our 

measure of drug novelty is based on drugs with the highest novelty rank, corresponding to 

“leading compounds” (Grabowski and Wang, 2006; DiMasi and Faden, 2011; Azoulay and 

                                                 
8  The formal optimization model is available from the authors upon request. 
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Fishman, 2013).  We then use the proportion of novel drugs in the pipeline for each firm-year 

of each firm as an additional instrumental variable.   

Third, we use the number of competitors to proxy for the incentive to be innovative and 

productive. While the effect on incentives for product innovation is ex-ante ambiguous, the 

number of competitors does affect market prices and demand elasticity (Vives, 2008). This 

variable reflects the number of firms with at least one product sold in the main therapeutic 

area (ATC) of the focal company. The data was collected from IMS MIDASTM. 

Finally, ownership and strength of downstream complementary assets is an important 

driver of the appropriability of returns from innovation (Teece, 1986). We use two variables 

to proxy for a firm’s strength of complementary assets. First, we employ a firm’s detailing 

expenditures, obtained from IMS MIDAS™, to capture that firm’s marketing capability. 

Detailing is defined as promotion activities directed toward physicians and hospitals, journal 

advertising, and direct-mail. We also use the stock of a firm’s trademarks to proxy for that 

firm’s brand capital (Fosfuri et al., 2008). These two instruments are associated with both 

internal and external R&D investments, since they enhance the appropriability of both types 

of investments. We collect data on active trademarks from the USPTO and use them to build 

a stock variable.  

4.4.Complementarity drivers and other control variables 

One theoretical argument related to absorptive capacity suggests that the firm’s 

cumulated investment in basic research is complementary to in-licensing. Data pertaining to 

analysis of this argument is typically unavailable using secondary sources. From an empirical 

point of view, a way around this problem is to identify the type of R&D conducted by each 

firm. Indeed, the complementarity between commonly observed measures of R&D 

expenditures (which includes applied research and development activities) should increase 

the more a firm conducts relatively basic research activities. Consistent with this idea, 
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Cassiman and Veugelers (2006) suggest that the extent to which a firm relies on more “basic” 

know-how affects the strength of the complementarity between internal and external 

innovation strategies. Therefore, as measures of a firm’s type of R&D we use the focal firm’s 

cumulative number of scientific publications, according to data provided by the Web of 

Science. A strong scientific publications record indicates that a firm’s technology is based on 

advances in science. As a measure of absorptive capacity, which reflects a firm’s ability to 

effectively integrate external technology, we follow Arora and Gambardella (1994b) and 

utilize two alternative measures: the cumulative number of patents granted each year to the 

focal firm (available from the USPTO) and the cumulative stock of internal  R&D.    

To measure the potential for economies of scope across different scientific fields, we 

use the total number of therapeutic areas covered by the drugs in the pipeline of the focal firm 

each year, which we label, “number of ATCs”. Firms that operate in different ATCs may 

develop capabilities unique to a specific therapeutic area and exploit possible economies of 

scope. Moreover, innovations in the pipeline can often be used in multiple therapeutic areas, 

thereby increasing their application possibilities. For example, Topamax® was originally 

approved as an anti-epileptic but was subsequently used for obesity and peripheral pain. 

Among other exogenous variables, we include firm size, which is measured by the total 

number of firm employees (obtained from Compustat) and intended to control for size-related 

factors that might drive differences in innovative performance. To control for possible 

differences in uncertainty between in-licensed and internally developed drugs, we include the 

percentage of licensed compounds (gathered from Pharmaprojects) that a firm has at each 

phase of the clinical development process. Indeed, firms that license new compounds may 
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face a higher probability of success because they pay for a compound that has already gone 

through part of the earliest and more uncertain stages of the development process.9  

Finally, we control for industry, firm, location, and year of unobserved fixed effects. To 

control for technological opportunities and other unobserved factors associated with the main 

technological field of the focal firm, we identify the primary ATC as the therapeutic are with 

the highest level of annual sales, then we include a set of dummy variables that would equal 

one for the main therapeutic area of the focal firm (based on the primary ATC) and zero 

otherwise. Given our definition of primary ATC, the ATC dummy variables vary over time. 

We also include specifications with year dummies and controls for firm fixed effects. The 

latter are included to control for firm heterogeneity. In models without firm-fixed effects, we 

also include 4-digit SIC-code dummies and geographic location dummies (North America, 

Europe, and other). 

5. Results 

5.1.First step: Functional form tests 

Our estimation procedure starts by estimating the coefficients of a CES-Translog 

production function (Equation 2). The tests are summarized in Table 1. The advantage of 

adopting a flexible specification in the first step is due to its nested properties. Equation (2) 

allows us to test whether the production function can be simplified by using a Cobb-Douglas, 

CES, or Translog function. Our regression specification tests are reported in Table 4. In this 

first set of analyses, we are not interested in the marginal effect of our independent variables 

but rather focus only on the specification tests described in Table 1. Marginal effects and the 

                                                 
9 Pisano (1997) finds evidence of the existence of a market for lemons in the external technology market. If true, 
this would suggest that firms would not achieve any reductions in risk and the expectations for success of those 
products would be less than internally developed molecules. However, Arora et al. (2009)find the opposite to be 
true. They find that compounds licensed during preclinical trials are as likely to succeed as internal compounds 
of the licensor. Danzon et al. (2005) also find that products developed in an alliance tend to have a higher 
probability of success. 
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degree of complementarity or substitutability, if any, are the focus of the second step of our 

empirical estimation procedure, discussed below.  

<Insert Table 4 here> 

We report the results for different models in Table 4. Model (1) is estimated using OLS 

Fixed Effect. It includes our main variables (internal R&D and licensing expenditures) and 

our full set of controls, including firm fixed-effects. Model (2) is estimated using GMM and 

incorporates the main variables and a full set of controls.10,11 The instrumental variables pass 

the validity tests, as discussed in Table 4. 

Our results, which are robust across the estimated models, indicate that ρ is not 

significantly different from zero. As a result, we can adopt a Translog specification for our 

production function, as defined by Equation (4). Moreover, we clearly reject the possible use 

of both a Cobb-Douglas and CES specification, because the related tests specified in Table 1 

are significant. While ρ is not significantly different from zero, all the coefficients on the 

quadratic terms (βi, βe, and γie, respectively) are jointly different from zero.  

5.2.Second step: Estimating the degree of complementarity/substitutability using the 

Translog production function.  

After identifying Equation (4) as the appropriate innovation production function, we 

focus on estimating the degree of complementarity and its distribution across key firm 

characteristics. To facilitate estimation and interpretation of the coefficients, we adopt a log-

log form of the Translog.  This transformation makes the model linear with respect to the 

natural logarithm of our main independent variables. We then estimate the elasticities and the 

                                                 
10 The nonlinearity of Equation 4 does not allow us to eliminate the firm fixed effects using first-differences, nor 
by transforming the data to within-firm deviations. As a result, we control for unobserved firm heterogeneity 
using a set of firm-specific dummy variables.  
11 The GMM model with all controls (2) and all firm fixed-effects, however, did not converge. Thus, it is not 
reported. Details are available from the authors upon request. 
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degree of complementarity by taking the derivative with respect to the logarithm of internal 

R&D and in-licensing (external R&D). 

The estimates of the Translog are reported in Table 5. We use three different estimation 

methods: a benchmark panel data fixed-effects model with instrumental variables estimated 

with GMM (columns 1-4), a panel random effects model (column 5), and a panel fixed 

effects model (column 6). The magnitude and significance of the cross-partial derivative 

ௗమ௡

ௗோ೔ௗோ೐
 (Equation 6) associated with the models of Table 5 are reported in Table 6. The cross-

partials are evaluated at the mean and median of the variables included in Equation (6).  

<Insert Tables 5-6 here> 

Overall, these results suggest that internal R&D and in-licensing expenditures are 

neither complements nor substitutes. In particular, the estimated cross-partials presented in 

Table 6 are not significantly different from zero across estimation methods.  

One possible explanation may reside on the specificity of the drug discovery process. 

Pharmaceutical firms rely on external technologies in all development stages, and licensed 

drugs may be used to either substitute an existing stream of research or to complement it. In-

licensing is one way to access new knowledge, and new knowledge boosts innovation. 

However, in-licensing may have two opposite mechanisms. On one hand, external knowledge 

can fill gaps in internal capabilities. On the other hand, external knowledge can complement 

internal knowledge by integrating the two sources of knowledge.  

These results may not be significant because the complementarity effect experienced by 

some firms may be offset by the negative effect experienced by others. It follows that 

studying complementarity without understanding its drivers and the distribution across firms’ 

characteristics may generate misleading results.  

The results presented in Table 6 improve upon the existing literature in several ways. 

Our use of in-licensing investments provides more direct evidence on the marginal 



23 
 

productivity of the financial resources invested in innovation. The extant literature more 

commonly uses a stock of external deals as a measure of external R&D or self-reported 

discrete measures of whether a firm acquires technology in the market. Furthermore, our 

empirical approach offers a new method to estimate complementarity without imposing 

methodological restrictions on the estimation, which could bias the results. Finally, and more 

substantively, our results indicate that internal R&D and in-licensing do not, on average, have 

a significant joint effect on the production of new drugs. 

5.3.Firm-level drivers of complementarity 

To identify the impact of potential drivers of complementarity, we first present a 

graphical analysis of the cross partial derivative 
ௗమ௡

ௗோ೔ௗோ೐
 (Equation 6) obtained using our 

benchmark GMM instrumental variable method with fixed effects. The objective of this 

analysis is to understand whether firms that perform better than others across the four 

different drivers experience a different level of complementarity among the two types of 

investments. Figure 1 reports the values of the degree of complementarity captured by the 

cross-partial over the range of our measures of absorptive capacity (scientific publications, 

stock of internal R&D, patents), economies of scope (number of therapeutic categories, or 

ATC), and licensing experience (stock of in-licensing investments). 

<Insert Figure 1 here> 

In all of the five graphs, the sign and magnitude of the joint effect vary with changes in 

the levels of the drivers. Overall, 
ௗమ௡

ௗோ೔ௗோ೐
 exhibits a positive trend in all cases, thus confirming 

that a higher level of complementarity is associated with higher levels of drivers. These 

findings confirm the complexity of the relationship between internal and external R&D 

investments; they also suggest that most previous studies on complementarity have not been 

able to ascertain whether a more composite relationship exists than can be revealed by the 

estimated average effect. A clear conclusion on whether two activities are either 



24 
 

complementary or substitute may be non-informative, since the joint effect changes across 

different ranges of value of key firm characteristics.  

 As a robustness measure, we present estimates in Table 7a and 7b of the Translog 

production function (Equation 4) using our benchmark GMM method with firm-fixed effects 

within sub-samples of firms characterized by either low (bottom 25%) or high (top 25%) 

levels of the distribution of the examined driver.  

<Insert Tables 7a-b here> 

For an analysis of the significance of the differences across groups, we present tests for mean 

complementarity differences across groups of firms defined using bottom and top quartiles of 

the distributions of the examined drivers for both full and split-sample estimations. The 

resulting difference’s positive value implies a higher degree of complementarity for the group 

of firms above the top quartile. These tests are shown in Table 8.    

<Insert Table 8 here> 

Overall, our results confirm our expectations. We find that firms with highly cumulative 

levels of scientific publications, internal R&D, or patents are characterized, on average, by a 

higher level of the cross-partial derivative capturing the degree of complementarity. The 

results confirm that firms with broader experiences across therapeutic areas are characterized, 

on average, by a stronger complementarity relationship between internal R&D and in-

licensing. This finding suggests that these firms may be using knowledge developed in 

different fields additively in the innovative process, which would support Henderson and 

Cockburn (1996) view. Finally, results indicate that complementarity increases for firms that 

have a larger stock of prior licensing deals, which possibly indicates that higher levels of 

experience in licensing agreement formation facilitate the management and integration of 

external technologies (Hoang and Rothaermel, 2010).  
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6. Conclusion 

Our goal has been to offer a deeper understanding of the exact nature of the relationship 

between internal R&D and in-licensing (external R&D). While the extant literature remains 

unclear about the relationship between these two strategies, our primary focus is to 

understand how the joint effect of two activities varies across several different drivers. 

Excluding the research by Cassiman and Veugelers (2006), there is a lack of empirical work 

examining the conditions under which internal R&D and in-licensing are either complements 

or substitutes. 

We analyze possible determinants of this relationship by splitting our sample based on 

five potential drivers. Our mean tests confirm that complementarity appears to increase when 

associated with higher levels of the selected drivers. In other words, firms with higher 

absorptive capacity, those with alliance experience, and those that enjoy economies-of-scope 

are characterized by stronger complementarity. These results are confirmed by our graphical 

analysis and tests of hypotheses, which support a positive relation between complementarity 

and drivers. Existing theories offer theoretical support of our results and provide insights for 

further theoretical work on the complementarity between innovative activities. At the same 

time, we provide a methodological contribution, since our framework can be used for a more 

rigorous understanding of the industry and firm characteristics that affect the relationship 

between internal and external innovative activities.  

One limitation of this research comes from the fact that we only analyze one dimension 

of innovative performance, the introduction of new drugs.  In line with the contribution of  

Arora and Gambardella (1994b), for example, one could claim that absorptive capacity, in 

particular a firm’s scientific capability, will allow the technology buyer to be more discerning 

in the external technology that they select and will have a higher threshold value for each 

external R&D project. In other words, the mix of internal and external R&D may affect the 
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expected value of an innovation, which we do not observe. To the extent that we are 

neglecting a potentially positive effect of the mix of internal and external R&D on the 

profitability of new drugs, our analysis can be considered as providing estimates of 

complementarity that are downward biased. This may contribute to explain why on average 

we do not find complementarity. In order to more fully analyze the marginal returns from 

internal and external R&D we would need data on the profitability associated with each drug, 

a task we leave for future work.    

A second limitation of our study relates to our industry setting and the generalization of 

our results to other industries, since innovation factors are often determined by industrial 

dynamics. The R&D process in the pharmaceutical industry is characterized by long 

development cycles, high costs, and significant levels of uncertainty, which may affect the 

extent to which a firm relies on different innovative strategies. Industries that present a 

different innovative process might experience a different relationship. Although our results 

are not generalizable, our methodology can be replicated in different industry settings. 

A third limitation lies in the definition and treatment of uncertainty associated with the 

drug development process. Recent research presents contrasting results about the possibility 

of success correlated to internally developed or externally acquired compounds. For example, 

Guedj (2005) shows that alliance projects are 21% more likely to move from Phase I to Phase 

II, while co-developed compounds are less successful in later stages (Phase II, Phase III, and 

FDA approval) than internal projects. Conversely, Arora et al. (2009) suggest that 

asymmetric information and market imperfections increase costs, and the expected value of 

the licensed compound increases as a result. They show that the probability of success for a 

licensed compound is higher than for an internally developed one. We attempt to deal with 

the uncertainty related to in-licensing investments by controlling for the percentage of in-

licensed compounds in each phase. We also weight the firm’s research pipeline by the 
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average probability of success associated with each development stage to account for process 

development uncertainty. 

Finally, while our results help us to understand the relation among innovative factors, 

we do not directly test whether there might be an optimal balance between R&D strategies, as 

suggested by other scholars. For example, Rothaermel et al. (2006) suggest that by 

performing some activities of the value chain internally and some externally, a firm is able to 

exploit external technology and adopt a flexible strategy to introduce new products. Knowing 

whether internal development and in-licensing are complements or substitutes might help 

build a feasible equilibrium between these two strategies. This would allow for a more 

complete understanding of the proposed outsourcing move by companies such as 

GlaxoSmithKline (Knowles and Higgins, 2011). Ultimately, this knowledge also allows for a 

deeper understanding of the feasibility of more radical views of the innovative process, such 

as the search and development model proposed by Morgan Stanley (2010).  
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Table 1. Functional form tests 
 
 

Functional form Coefficients test 

Cobb-Douglas ρ = 0; βi = 0; βe = 0; γie = 0 

CES βi = 0; βe = 0; γie = 0 

Translog ρ = 0 

Coefficients from the CES-Translog production function (Equation 2). 
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Table 2. Descriptive Statistics 

Variable Mean Std. Dev. Min Max 

Product pipeline 1.764 1.184 0 5.029 

In-Licensing (deflated, Mil. $) 239.443 633.850 0 5184.333 

Internal R&D (deflated, Mil. $) 1345.112 3195.205 0.473 28756.440 

Detailing stock (deflated, Thousands $) 7042.601 19559.700 0 173521.400 

Trademark stock 11.590 34.003 0 426 

Expected market size (deflated, Thousands $) 2158.068 1556.527 0 10217.840 

Competitors 1308.882 578.575 201 2626 

Drug novelty 0.154 0.185 0 1 

Sales (deflated, Mil. $) 4510.527 10029.110 0 67674.560 

Firm size (hundreds) 13.841 26.717 0.001 122 

Scientific References 3.689 3.785 0 36 

North America 0.849 0.359 0 1 

Europe 0.116 0.320 0 1 

Other 0.035 0.184 0 1 

Number of ATCs 6.781 5.782 1 16 

% licensed compound (Phase 1) 0.029 0.076 0 1 

% licensed compound (Phase 2) 0.055 0.129 0 1 

% licensed compound (Phase 3) 0.056 0.139 0 1 
Main therapeutic areas 
    ATC A 0.112 0.316 0 1 

    ATC B 0.023 0.151 0 1 

    ATC C 0.095 0.294 0 1 

    ATC D 0.066 0.249 0 1 

    ATC G 0.050 0.217 0 1 

    ATC H 0.005 0.072 0 1 

    ATC J 0.102 0.302 0 1 

    ATC K 0.009 0.095 0 1 

    ATC L 0.043 0.203 0 1 

    ATC M 0.031 0.174 0 1 

    ATC N 0.145 0.352 0 1 

    ATC P 0.001 0.036 0 1 

    ATC R 0.061 0.240 0 1 

    ATC S 0.030 0.171 0 1 

    ATC T 0.009 0.095 0 1 

    ATC V 0.013 0.114 0 1 

N=767 
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Table 3. Correlation Table 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1. Product pipeline 1
2. In-Licensing (deflated, Mil. $) 0.492 1
3. Internal R&D (deflated, Mil. $) 0.629 0.733 1
4. Detailing stock (deflated, Thousands $) 0.642 0.783 0.937 1
5. Trademark stock 0.338 0.549 0.668 0.597 1
6. Expected market size (deflated, Thousands $) 0.109 0.090 0.156 0.110 0.096 1
7. Competitors 0.054 0.163 0.167 0.169 0.092 0.179 1 
8. Drug novelty -0.069 0.039 0.023 0.020 0.017 0.264 -0.049 1
9. Sales (deflated, Mil. $) 0.543 0.453 0.738 0.622 0.493 0.249 0.166 -0.045 1
10. Firm size (hundreds) 0.640 0.493 0.809 0.680 0.542 0.244 0.142 -0.036 0.902 1
11. Scientific References 0.301 0.217 0.239 0.214 0.177 -0.041 -0.020 -0.044 0.177 0.251 1
12. Number of ATCs 0.649 0.398 0.499 0.513 0.322 0.195 0.177 -0.135 0.580 0.638 0.218 1
13. % licensed compound (Phase 1) 0.157 0.137 0.129 0.103 0.121 0.162 0.154 0.004 0.085 0.119 0.084 0.100 1
14. % licensed compound (Phase 2) 0.072 0.086 0.097 0.068 0.049 -0.010 0.127 0.049 0.100 0.115 0.007 0.103 0.023 1
15. % licensed compound (Phase 3) 0.043 0.037 0.031 0.019 0.028 0.008 0.027 -0.077 0.059 0.062 0.023 0.065 0.049 0.054 1
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Table 4. Specification Test Results Using CES-Translog production function 

  

   

    

Model (1) 
NONLINEAR 

OLS  

Model (2)  
GMM 

Tests Cobb – Douglas 1480.7*** 428.36*** 

CES 1478.1*** 339.51*** 

Translog 0.45 0.18 

Firm Fixed effects Yes No 

 Number of Observations 748 632 

 Over-identification test (p-value)  0.767 

- The table reports Chi-Square statistics, with *** denoting p-value < 0.01, related to the Wald test 
of hypotheses presented in Table 1. 
- Both models include the main variables (R&D and Licensing) and the full set of controls. Model 
(1) also includes a full set of firm-specific dummy variables. Model (2) estimated with firm fixed-
effects did not converge. 
- We use Promotion, Trademarks, their squares, cross product, logs of square terms, and cross-
product of logs as instruments for internal and external R&D and the related non-linear terms. 
Auxiliary first-stage regressions (OLS linear regressions “within” firm) suggest that the instruments 
have power. Indeed, the F-test of the joint effect of the instruments on each endogenous variable are 
57.97, 5.38, 73.03, 12.57, 7.34 for R&D,  the log of R&D-squared, licensing, the log of licensing-
squared,  and the cross-product of the logs of R&D and licensing, respectively.
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Table 5. Panel Regressions. Dependent Variable: log(1+Pipeline). 

- Clustered standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
- While we use the notation “log” we are utilizing the natural log. 
- We use the natural logs of Promotion, Trademarks, Potential product market size, Drug novelty, Number of competitors, 
their logs of square terms, and cross-product of logs as instruments for internal and external R&D and the related non-linear 
terms. Auxiliary first-stage regressions (OLS linear regressions “within” firm) suggest that the instruments have power. 
Indeed, the F-test of the joint effect of the instruments on each endogenous variable are 3.44, 5.05, 1.57, 16.55, 6.85 for 
R&D,  the log of R&D-squared, licensing, the log of licensing-squared,  and the cross-product of the logs of R&D and 
licensing, respectively. 
- ATC dummies vary over time because based on the primary ATC defined as the main therapeutic area in terms of annual 
sales 
   
 

 GMM Fixed Effect Panel RE Panel FE 
 (1) (2) (3) (4) (5) (6) 
Log(R&D) 1.181 1.240* 1.078** 0.771** 0.178** 0.209*** 
 (0.781) (0.671) (0.438) (0.343) (0.0738) (0.0722) 
Log(Licensing) -0.355 -0.143 -0.203 -0.169 0.0436 0.00750 
 (0.306) (0.345) (0.257) (0.180) (0.0452) (0.0427) 
(Log R&D)2 -0.136 -0.0822 -0.0696 0.0118 0.00357 -0.00945 
 (0.126) (0.0935) (0.0709) (0.0631) (0.00826) (0.00868)
(Log Licensing)2 0.158 0.244* 0.243** 0.143** -0.00597 -0.0107* 
 (0.127) (0.141) (0.109) (0.0687) (0.00588) (0.00607)
Log(R&D)* Log(Licensing) -0.0715 -0.228 -0.221* -0.150 -0.00110 0.0103 
 (0.126) (0.162) (0.122) (0.0931) (0.00935) (0.00846)
Publications  -0.0853 -0.0428 0.0251 0.0182 -0.0157 
  (0.204) (0.140) (0.0923) (0.0289) (0.0291) 
% compound licensed–Phase I 1.269 1.287 0.823 0.409* 0.443*

  (0.876) (0.786) (0.569) (0.220) (0.229) 
% compound licensed–Phase II  -0.137 -0.0646 0.335 0.147 0.212 
  (0.609) (0.534) (0.307) (0.152) (0.146) 
% compound licensed–Phase III  -0.848 -0.757** -0.523* 0.287* 0.380*** 
  (0.617) (0.378) (0.301) (0.148) (0.144) 
Firm Size  0.0546* 0.0487** 0.0160 -0.0007 -0.001 
 (0.0323) (0.0244) (0.0144) (0.002) (0.002)
North America     0.453  
     (0.290)  
Europe     1.162***  
     (0.357)  
Number of ATC     0.067***  
     (0.017)  
Firm Fixed effect Yes Yes Yes Yes No Yes 
ATC dummies   Yes Yes Yes Yes 
Time dummies    Yes Yes Yes 
Observations 623 623 623 623 767 767 
Log-Likelihood -556.2 -693.7 -676.6 -470.7  -106.3 
Cluster 73 73 73 73 92 92 
Over-identification test (p-value) 0.530 0.753 0.736 0.116   
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Table 6. Degree of complementarity/substitution. 
 

 
 Panel GMM Fixed Effect 

Panel 
RE 

Panel 
FE 

(1) (2) (3) (4) (5) (6) 

Mean -0.021 -0.031 -0.029 -0.019 -0.0001 0.001 

Standard Error 0.033 0.033 0.024 0.017 0.001 0.001 
      

Median -0.02 -0.034 -0.032 -0.012 -0.0001 0.0008 
Standard Error 0.033 0.041 0.031 0.011 0.001 0.0007 

The table presents estimates of the cross-partial derivative 
࢔૛ࢊ

ࢋࡾࢊ࢏ࡾࢊ
 (Equation 6) at the mean of the sample. 
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Table 7a. GMM fixed-effects regressions on split samples based on absorptive capacity 
 levels. Dependent variable: log(1+pipeline). 

- Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.  
- While we use the notation “log” we are utilizing the natural log. 

 

  

 (1) (2) (3) (4) (5) (6) 
 Bottom 25% 

Publication
Top 25% 

Publication
Bottom 

25% 
R&D 

Top 25%  
R&D 

Bottom 
25% 

Patent 

Top 25% 
Patent 

Log R&D 0.299 1.245*** -1.045 4.500 0.448 -0.804 
 (0.556) (0.402) (0.847) (5.962) (0.355) (1.055) 
Log Licensing -0.0509 -0.740** -0.0586 -0.260 -1.092** 0.728 
 (0.847) (0.341) (0.395) (1.548) (0.464) (0.735) 
(Log R&D)2 -0.0330 -0.108*** 0.0978 -0.353 -0.0205 0.0590
 (0.0613) (0.0417) (0.0956) (0.463) (0.0553) (0.130) 
(Log Licensing)2 0.0683 -0.0394 -0.142 -0.0761 0.348*** -0.0657 
 (0.0780) (0.0518) (0.165) (0.0761) (0.0840) (0.0655)
(Log R&D)* (Log Licensing) -0.00359 0.155 0.242 0.178 -0.272*** 0.0325 
 (0.107) (0.101) (0.212) (0.286) (0.0936) (0.163) 
Publications -0.227 -0.488* -0.163 -0.228*** 0.151 0.112 
 (0.159) (0.272) (0.180) (0.0543) (0.172) (0.305) 
% compound licensed–Phase I -0.186** 0.242 -0.254* -1.658** 0.374*** 0.335 
 (0.0944) (0.360) (0.143) (0.815) (0.129) (0.804) 
% compound licensed–Phase II 0.325** -2.224*** 0.590*** -1.794*** 1.951*** -1.587***

 (0.159) (0.342) (0.176) (0.386) (0.522) (0.492) 
% compound licensed–Phase III 0.678** -2.203*** 0.713* -2.249*** 0.0621 -0.904 
 (0.328) (0.456) (0.371) (0.477) (0.457) (0.654) 
Firm Size -0.0289 -0.0000161 -0.202 0.0120 0.00452 -0.00446
 (0.228) (0.00309) (0.193) (0.00843) (0.0305) (0.00336)
Firm Fixed Effect Yes Yes Yes Yes Yes Yes 
Time Dummies Yes Yes Yes Yes Yes Yes 
Observations 93 124 100 124 104 121 
Log-Likelihood -23.80 17.64 -9.087 3.005 -50.59 9.551
Cluster 19 19 29 20 25 20 
Over-identification test (p-
value) 

0.692 0.330 0.186 0.700 0.244 0.444 
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Table 7b. GMM fixed-effects regressions on split samples based on economies of scope 
 and licensing experience levels. Dependent variable: ln(1+pipeline). 

- Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.  
- While we use the notation “log” we are utilizing the natural log. 

 
 
 
  

 (1) (2) (3) (4) 
 Bottom 25% 

Number of ATCs
Top 25% Number 

of ATCs 
Bottom 25% 

Licensing  
Top 25% 
Licensing 

Log R&D 0.309 0.554** 0.705 0.113 
 (0.508) (0.246) (1.440) (0.492) 
Log Licensing 0.956 -0.328* 1.311 -1.473 
 (0.585) (0.176) (2.634) (0.901) 
(Log R&D)2 0.152* -0.0988** -0.182 -0.143
 (0.0921) (0.0403) (0.232) (0.0936) 
(Log Licensing)2 0.159 -0.0474 -0.282 0.0322 
 (0.114) (0.0340) (0.204) (0.298) 
(Log R&D)* (Log Licensing) -0.429*** 0.145** 0.264 0.367*** 
 (0.135) (0.0708) (0.526) (0.128) 
Publications 0.417** -0.216*** -0.421 -0.0794 
 (0.187) (0.0550) (0.437) (0.195) 
% compound licensed–Phase I 2.014*** 0.842 1.072 -0.671 
 (0.756) (0.652) (1.251) (0.978) 
% compound licensed–Phase II 0.0453 -1.020*** -0.750 0.0285 
 (0.357) (0.393) (0.888) (0.291) 
% compound licensed–Phase III -0.564*** -0.642 -1.062 -0.415** 
 (0.205) (0.468) (0.928) (0.179) 
Firm Size 0.232** 0.00349 0.00940 0.0281 
 (0.0970) (0.00231) (0.00858) (0.203) 
Firm Fixed Effect Yes Yes Yes Yes 
Time Dummies Yes Yes Yes Yes 
Observations 176 159 111 112 
Log-Likelihood -65.55 7.785 -4.450 10.30
Cluster 25 20 24 26 
Over-identification test 
(p-value) 

0.833 0.133 0.416 0.429 
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Table 8. Tests on mean complementarity ቀ
࢔૛ࢊ

ࢋࡾࢊ࢏ࡾࢊ
ቁ differences by group of firms. 

  

  Full Sample estimation Split-sample estimations 
Mean cross-

partial 
Standard 

Error 
Mean cross-

partial Standard Error 

Publications 
<= 25% -0.102 0.029 -0.00004 0.0002 
> 75% -0.019 0.001 0.007 0.003 

Difference 0.082**  0.007**  
    

Internal R&D 
<= 25% -0.165 0.039 -0.039 0.005 
> 75% 0.018 0.001 0.012 0.007 

Difference 0.146***  0.052***  
      

Patents 
<= 25% -0.063 0.026 -0.032 0.026 
> 75% 0.017 0.0006 0.059 0.004 

Difference 0.046**  0.092***  
      

Number of ATC 
<= 25% -0.093 0.02 -0.317 0.045 
> 75% -0.045 0.008 0.0012 0.0002 

Difference 0.047**  0.318***  
    

Licensing experience 
<= 25% -0.218 0.039 -0.077 0.016 
> 75% -0.016 0.0005 0.019 0.002 

Difference 0.202***  0.09***  

- The table contains estimates of the cross-partial 
ௗ௡మ

ௗோ೔ௗோ೐
 obtained using the GMM estimates from tables 6 and 7. 

- The table shows one tail tests. 
- ***, **, * indicate that the difference is < 0 at the 0.01, 0.05 and 0.1 confidence levels, respectively. 
- A positive mean difference suggests that firms above the top quartile of the distribution of the examined driver experience 
higher level of complementarity between internal and external R&D. 
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Figure 1. Distribution of complementarity across drivers 
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