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Abstract

We measure the impact of a drastic new technology for producing steel – the minimill –
on the aggregate productivity of U.S. steel producers, using unique plant-level data between
1963 and 2002. We find that the sharp increase in the industry’s productivity is linked to
this new technology, and operates through two distinct mechanisms. First, minimills displaced
the older technology, called vertically integrated production, and this reallocation of output
was responsible for a third of the increase in the industry’s productivity. Second, increased
competition, due to the expansion of minimills, drove a substantial reallocation process within
the group of vertically integrated producers, driving a resurgence in their productivity, and
consequently of the industry’s productivity as a whole.

1 Introduction

Identifying the sources of productivity growth of firms, industries, and countries, has been a central

question for economic research. There remain, however, many empirical obstacles to credibly

identify the underlying sources of productivity growth. First, the measurement of productivity at

the producer level typically requires an estimate of the production function and, therefore, has to

confront both the endogeneity of inputs and unobserved prices for inputs and outputs. Second,

it is difficult to observe potential explanatory variables at the producer level, such as technology,

competition, and management practices.1 Finally, in order to establish causality, exogenous shifters

∗This project was funded by the Center for Economic Policy Studies (CEPS) at Princeton University and the
Center for Global Economy and Business (CGEB) at New York University. We would like to thank Jun Wen for
excellent research assistance, and Jonathan Fisher for conversations and help with Census Data. We would like
to thank Rob Clark, Liran Einav, Ariel Pakes, Kathryn Shaw, Chad Syverson, Raluca Dragusanu, and seminar
participants at many institutions. This paper uses restricted data that was analyzed at the U.S. Census Bureau
Research Data Center in New York City. Any opinions and conclusions expressed herein are those of the authors and
do not necessarily represent the views of the U.S. Census Bureau. All results have been reviewed to ensure that no
confidential information is disclosed.

1See Syverson (2011) for an excellent overview of the various potential determinants of productivity at both the
producer and industry level. Two prominent studies on the triggers of productivity growth are Schmitz (2005) and
Olley and Pakes (1996), who study the role of two such triggers: import competition in the iron ore market and
deregulation in the telecommunications market. Hortaçsu and Syverson (2004), Bloom, Eifert, Mahajan, McKenzie,
and Roberts (2011), and Jarmin, Klimek, and Miranda (2009) show that factors such as vertical integration, man-
agement, and large retail chains lead to systematic differences in productivity between plants and consequently, have
implications for aggregate industry performance.
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of such variables are required in order to trace out their effects on productivity.

In this paper, we shed light on the role of a specific driver: the arrival of a new technology. We

evaluate the impact of a drastic technological change on aggregate productivity growth, while at the

same time controlling for potentially additional drivers of productivity growth such as international

competition, geography, and firm-level factors such as organization and management.

A recent literature has emphasized the distinction between the productivity effects that occur at

the producer level, and those realized by moving resources between producers – i.e., the reallocation

mechanism. Although it is well established, by now, at both a theoretical and empirical level that

the reallocation of resources across producers is important in explaining aggregate outcomes, it has

been very hard to identify the exact mechanisms behind it.2 In this paper, we focus on the role of

technology and associated changes in competition in driving reallocation.

We examine one particular industry, the U.S. steel sector, for which we have detailed producer-

level production and price data. Our setting is well suited to measuring the role of technological

change, since we directly observe the exogenous arrival of a new production process – the minimill

– at the plant level. In addition, we observe detailed output and input data, including physical

measures of inputs and outputs, as well as standard revenue and expenditure data, to obtain

measures of productivity and market power. These inputs and outputs are remarkably unchanging

over a forty year period, and the steel products shipped in the sixties are very similar to those

shipped in 2000. Thus, productivity growth in steel is almost uniquely driven by process innovation,

rather than through the introduction of new goods. The long panel, 1963-2002, of steel producers

allows us to study the long-run implications of increased competition, such as the (slow) entry and

exit process.

The U.S. steel industry shed about 75 percent of its workforce between 1962 to 2005, or about

400,000 employees. This dramatic fall in employment has far-reaching economic and social impli-

cations. For example, between 1950 to 2000, Pittsburg – which used to be the center of the U.S.

Steel Industry – dropped from the 10th largest city in the United States to the 52nd largest.

While employment in the Steel Sector fell by a factor of five, shipments of steel products in 2005

reached the same level of the early sixties.Thus output per worker has grown by a factor of five,

while total factor productivity (TFP) increased by 38 percent. Over the last three decades, this

makes the steel sector one the fastest growing industries among large manufacturing industries,

behind only the computer software and equipment industries. We highlight the special features

of the U.S. steel industry in Table 1, where we report the change in output, employment and

TFP over the period 1972-2002 for the U.S. steel sector and compare it to the mean and median

manufacturing sector’s experience.

Table 1 points out the unique feature of the steel industry: The period of impressive productivity

growth, 28 percent compared to the median of 3 percent, occurred while the sector contracted by

35 percent. The starkest difference is the drop in employment of 80 percent compared to a decline

2For instance Melitz (2003), shows how trade liberalization impacts aggregate productivity through a reallocation
towards more-productive firms, while Foster, Haltiwanger, and Krizan (2001) and Bartelsman, Haltiwanger, and
Scarpetta (2009) document the role of reallocation empirically, using firm-level data.
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of 5 percent for the average sector.

We find that the main reason for the rapid productivity growth and the associated decline in

employment is neither a steady drop in steel consumption, nor a consequence of globalization. Nor

is it a displacement of production away from the midwest. The increase in productivity can be

directly linked to the introduction of a new production technology, the steel minimill. The minimill

displaced the older technology, called vertically integrated production, and this reallocation of

output was responsible for about a third of the increase in the industry’s total factor productivity.

In addition, minimills’ productivity steadily increased through a slow process of learning by doing.

We directly attribute almost half of the aggregate productivity growth to the entry of this new

technology.

However, the older technology was not entirely displaced. Instead, vertically integrated produc-

ers experienced a dramatic resurgence of productivity and, by 2002, are on average as productive

as minimills. This resurgence was not driven by improvements at integrated plants. Instead, less-

productive vertically integrated plants were driven out of the industry, and output was reallocated

to more-efficient producers. We find that the increased competition, due to the entry and expansion

of minimills, was directly responsible for this reallocation process among incumbents.

In addition to identifying the exact mechanisms underlying productivity growth, which are of

interest to a growing literature on reallocation and productivity dispersion, the steel industry is

also important in and of itself. Even today, it is one of the largest sectors in U.S. manufacturing:

In 2007, steel plants had shipments of over 100 billion dollars, of which half was value added.

Therefore, understanding the sources of productivity growth in this industry is of independent

interest.

The remainder of the paper is organized as follows. In Section 2, we discuss the rich plant-level

data from the Census. In Section 3, we present five key facts that help guide the empirical analysis,

which we take up in Section 4. We discuss alternative explanations in Section 5 and conclude in

Section 6.

2 Data

We study the production of steel: plants engaged in the production of either carbon or alloy

steels.We rely on detailed Census micro data to investigate the mechanisms underlying the impres-

sive productivity growth in the U.S. steel sector. Our analysis is based on plant-level production

data of U.S. steel mills from 1963 to 2002.

We use data provided by the Center for Economics Studies at the United States Census Bureau.

Our primary sources are the Census of Manufacturers (CMF), the Annual Survey of Manufacturers

(ASM), and the Longitudinal Business Database (LBD). We select plants engaged in the production

of steel, coded in either NAICS (North American Industrial Classification) code 33111, or SIC

(Standard Industrial Classification) code 3312. The CMF is sent to all steel mills every five years,

while the ASM is sent to about 50 percent of plants in non-Census years. However, the ASM
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samples all plants with over 250 employees and, encompasses over 90% of the output of the steel

sector.

In addition, we collect data on the products produced at each plant using the product trailer

to the CMF and the ASM, and, collect the materials consumed by these plants from the material

trailer to the CMF.

We rely on our detailed micro data to break up steel mills into two technologies: Minimills

(MM, hereafter) and Vertical Integrated (VI, hereafter) Producers. VI production takes place

in two steps. The first stage takes place in a blast furnace, which combines coke, iron ore, and

limestone to produce pig iron and slag. The pig iron, along with oxygen and fuel, is then used

in a basic oxygen furnace (BOF) to produce steel.3 The steel products produced in either MM

or VI plants are shaped into sheets, bars, wire, and tube in rolling mills. These rolling mills are

frequently collocated with steel mills, but can also be freestanding units.

In contrast, MMs are identified primarily by the use of an electric arc furnace (EAF) to melt

down a combination of scrap steel and direct reduced iron. Because these mills have a far smaller

efficient scale, they are, on average, an order of magnitude smaller than vertically integrated pro-

ducers. Historically EAFs were used to produce lower-quality steels, such as those used to make

steel bars, while virtually all steel sheet (needing higher-quality steel), was produced in BOFs.

However, since the mid-1980s, innovation in the EAFs has enabled them to produce certain types

of steel sheet products, as well.4

We classify plants into minimills, vertically integrated plants, and rolling mills using their

response to a specific questionnaire on steel mills attached to the 1997, 2002, and 2007 CMF. For

prior years, we use the material and products produced by each plant to identify MM and VI plants.

More detail on the classification of plants can be found in the Data Appendix. Table A.3 shows

summary statistics for the sample of MM and VI plants. The average VI plant had shipments of

647 million dollars, of which 47 percent is value added, while the average MM plant shipped 153

million dollars, of which 44 percent is value added.

3 Key Facts in the U.S. steel sector 1963-2002

In this section, we briefly go over some key facts of the U.S. steel sector. These facts will be

important to keep in mind when we analyze the sources of productivity growth.

3.1 Stagnant Shipments, Rising Productivity

From Table 1, we know that the productivity growth in the U.S. steel sector was one of the fastest

in manufacturing. To better understand this period of impressive productivity growth, we plot

total output next to labor and capital use in Figure 1. An important observation is that the

3There were a few open-hearth furnaces in operation during the sample period. However, as of the late 1960s,
open-hearth plants account for only a very small portion of output, and the last open-hearth plant closed in 1991.
See Oster (1982) for more on the diffusion of BOF mills.

4EAFs have a long history in steel making. However, before the 1960s, they primarily produced specialty steels.
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period of productivity growth came about while the industry as a whole contracted severely: Steel

producers sold about 60 billion dollars in 1960 and, reached 100 billion dollars in shipments by the

early seventies. A decade later, only 40 billion dollars were shipped, or, put differently, the sector’s

shipments decreased by more than half.

Total employment, on the other hand, consistently decreased, even during the recovery of output

in the late eighties and throughout the nineties. The employment panel of Figure 1 shows that

total employment fell from 500,000 to 100,000 employees. This is one of the sharpest drops in

employment experienced by any sector in the U.S. economy. By 2000, the steel industry employed

a fifth of the number of workers that it did in 1960, while production of steel went from 130 million

tons in 1960 to 110 million tons in 2000. This implies that output per worker increased from 260 to

1100 tons.5 Total material use tracks output quite closely, while labor and capital fell continuously

over the entire period, which suggests that TFP had to increase to offset the sharp drop in labor

and capital.6

3.2 A New Production Technology: Minimills

The entry of minimills in steel production constituted a drastic change in the actual production

process of steel products. A natural question to ask is whether MM are any different than the

traditional VI steel producers. We rely on a descriptive OLS regression where we regress direct

measurable characteristics on an indicator variable, whether a plant is a vertically integrated pro-

ducer. We consider a log specification such that the coefficient on the technology dummy directly

measures the percentage premium of VI plants.

Table A.2 lists the set of estimated coefficients, and confirms that vertically integrated producers

are, on average, four times bigger, as measured by the large coefficients on shipments, value added,

and inputs. For example, VI plants, on average, ship 144 percent more than MM. Moreover, VI

producers generate about 20 percent more shipments per worker, which suggests that they are more

productive. However, when we combine the coefficients on all three inputs (labor, materials and

capital) with the shipment premium, we see that total factor productivity (TFP) of MM is at least

as high as that of VI producers. We turn to a more precise comparison of TFP across technologies

in Section 4.

In addition to the average premium over the entire sample, we report time-specific coefficients.

Across all the various characteristics, the VI coefficient falls over time. Most notably, shipments per

worker were 23-percent higher for VI plants in 1963, but by 2002, there was no significant difference

between the two technologies in terms of labor productivity. This pattern suggests that, over time,

VI and MM producers became more alike, although VI producers still produce on a larger scale.

The coefficients on wages of six percent, shown in the last row of Table A.2, confirms the well-

known fact that VI producers, on average, pay higher wages. This is likely due to the impact of

5Shipments of steel in tons are collected from various Iron and Steel Institute Annual Statistical Reports (American
Iron and Steel Institute, 2010).

6For this aggregate analysis, we rely on the NBER’s five-factor TFP estimate. See Bartelsman, Becker, and Gray
(2000) for more detail.
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unionization – minimill workers typically being non-unionized.7 It is interesting to note that the

wage gap between the technologies closes over time.

An important difference between MM and VI producers is the set of products they manufacture.

Figure 2 shows that in 1997 MMs accounted for 59 percent and 68 percent of shipments of steel

ingots and hot-rolled bar, but only 15 percent and 14 percent of hot and cold rolled sheet. MM

typically produce lower quality steel products, which are generally thicker products, while VI plants

produce higher quality products, which are usually sheet products. However, the product mix

accounted for by MM changed dramatically over the last 40 years. Figure 2 shows that, in 1977,

MMs produced 27 percent of steel ingots and 24 percent of hot-rolled bar. Between 1977 and 1982,

MMs increased their share of these products to 40 percent, and by 2002, 81 percent of hot-rolled

bar was produced by MMs. As stated above, in 1997, only 15 percent and 14 percent of hot and

cold rolled sheet are produced by MMs.8 Thus, the market share of MM in the higher-quality

product segments, sheet products, was rather stable up to 1997, after which their market shares

did increase substantially.

3.3 A Stable Product Mix over Time

We list the product mix of the steel industry in Table A.3. We break down steel into various

products: a) hot-rolled steel sheet (HRS) b) hot-rolled bar (HRB) c) cold-rolled sheet (CRS) d)

ingots and shapes e) pipe and tube (P&T) f) Wire g) cold-finished bars (CFB), and h) coke oven

and blast furnace products (Blast). Over 40 years, the product mix for steel has barely changed.

Hot-rolled sheet account for 23 percent of shipments in 1963 and 31 percent in 2002, and hot-rolled

bar account for 23 percent of shipments in 1963 and 22 percent in 2002.

The fact that the steel industry’s products have been unchanged is essential for our identification

of productivity growth, as the industry’s production process has changed far more than its products.

3.4 Heterogeneous Price Trends Across Products

While the product mix of steel producers has been relatively unchanged from 1963 to today, the

prices for these products have dropped considerably, which is unsurprising given the large increases

in TFP in the industry. Figure 6 presents the price indices for the four main products – hot and

cold rolled sheet, hot rolled bar and steel ingots – which, taken together, represent 80 percent of

shipments in 1997.9

Figure 6 shows that the prices of all steel products followed a very similar, and gradually

increasing, pattern up to 1980. But from 1982 to 2000, there is a 50-percent drop in the real price

7See Hoerr (1988) – and in particular, page 16 – for evidence of the role of unionization on wages for VI and MM
producers.

8Giarratani, Gruver, and Jackson (2007) discuss the entry of Minimills into the production of sheet products
around 1990.

9We have taken care to deflate these price indices by the GDP deflator to show price trends for steel relative to
the rest of the economy.
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of steel. This implies that, while shipments of steel in dollars dropped since 1980, the quantity

shipped has gradually increased since the mid-eighties (see Panel 1 of Figure 1).10

In addition, when we decompose these price trends further, we find that the prices of hot-rolled

bars and steel ingots have fallen faster than the prices for hot and cold rolled sheet. While sheet

steel is produced primarily by VI producers, prices for bar and ingot products fell by ten percent

more than those for sheet products in 1982-1984. This occurred precisely at the point at which

MM saw an increase of their market share of bar and ingot products.

In order to correctly identify the productivity effect of the arrival of the minimills, and their

associated increased competition, it will therefore be imperative to control for price differences

across plants and time.

3.5 Simultaneous Entry and Exit

From Figure 1, we know that the number of plants increased over time. In Table 2, we go a step

further, and show both the number of MM and VI plants that entered or exited, and as well as the

market share these plants represent. There was marked entry of new plants in the early eighties, a

period during which the industry as a whole was severely contracted.

The market share of plants entering from 1982 to 1992 was 20 percent, versus five percent in the

previous two decades, while the market share of exitors was 18 percent during this period. Most

entry in this period was due to minimills, and most exit was from vertically integrated producers.11

From these entry and exit statistics, we expect an important role for entry and exit in explaining

productivity growth.

4 Drivers of productivity growth

The previous section highlighted the difference in performance between MM and VI producers, and

suggests a large potential role for reallocation across these technologies in explaining productivity

growth. This paper is concerned with studying the productivity differences in detail and verify the

extent to which the entry of minimills contributed to the stark aggregate productivity growth in

the industry, and we proceed in two steps.

First, we start by presenting our empirical framework. Second, we rely on our productivity

estimates to verify the importance of reallocation, both across and within technology, in productiv-

ity growth. We consider both static and dynamic decompositions, which enables us to investigate

the importance of entry and exit in productivity growth. Finally, we relate a direct measure of

competition – markups – to the reallocation analysis by connecting markups to the analysis of

reallocation, which relates market shares to productivity.

10Annual reports of the American Iron and Steel Institute (2010), where total tons of steel are recorded annually,
indicate that quantity produced increased by about thirty percent between 1982 and 2002.

11This phenomenon, the speeding up of exit and entry during a downturn, has been documented by Bresnahan
and Raff (1991) in the motor vehicles industry during the Great Depression.
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4.1 Productivity Differences Across Technology

Denote each technology – either MM or VI – as ψ ∈ {V I,MM}.12 A plant i at time t can produce

output Qijt of a given product j, using a technology ψ specific production technology:

Qijt = Fψ,t(Lijt,Mijt,Kijt) exp(ωit). (1)

Our notation highlights that VI and MM producers rely on different technologies, which we allow

to vary over time. As is common in the literature, productivity ωit is modeled as a Hicks-neutral

term. Moreover, we assume that productivity is plant-specific.

4.1.1 Measurement

Recovering productivity using revenue and expenditure data requires that we correct for potential

price variation across plants and time, for both output and inputs. Below, we describe our procedure

briefly, and Appendix C provides more details.

In order to guarantee that we recover productivity, ωit, using plant/product revenue data, we

construct a plant-specific price (Pit) . We assume that each product j is homogeneous, and we

directly observe each price Pjt in the product-level BLS price data. Furthermore, we follow the

literature and consider a Cobb-Douglas specification by type. We can, therefore, write equation

(1) as:

Rijt = LαlijtM
αm
ijt K

αk
ijt exp(ωit)Pjt. (2)

Since we are interested in recovering a measure of productivity at the plant level, we aggregate

product-level sales up to plant-level sales. A common restriction in these type of data is that we

do not directly observe the input use by product (see Foster, Haltiwanger and Syverson 2008). We

allocate inputs across products using product-specific sales shares, sijt =
Rijt
Rit

, such that Xijt ≡
sijtXit with X = {L,M,K}.13 After aggregating (2) to the plant level we obtain:

Rit∑
j sijtPjt

= LαlitM
αm
it Kαk

it exp(ωit). (3)

Although the focus in the literature has mostly been on the heterogeneity of output prices,

input price variation potentially plagues the measurement of productivity as well. The data on

intermediate input use, Mit, are potentially the most contaminated by input price variation, both

in the the time series, and in the cross-section, particularly between MM and VI plants. The

two technologies use vastly different intermediate inputs, or use inputs at very different intensities

12Plants cannot change from one technology to another. In the steel industry, a plant never switches technology,
such as becoming a minimill. This is in contrast to the a setting of technology adoption. See Van Biesebroeck (2003)
for an empirical analysis of technology adoption in US car manufacturing.

13As discussed in detail in Appendix C, this implies that we implicitly restrict markups to be common across
products within a plant. We are not interested in explaining within-plant markup differences across products, but
mainly aim to recover measures of plant-level productivity that are not contaminated by price variation across plants
and time.
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and, therefore, we expect the relevant input price to vary substantially across plants of different

technologies.

We construct our input price deflators in a similar way as the output price deflator. First,

we need to distinguish between our three main input categories: labor, intermediate inputs and

capital. We directly observe labor Lit: hours worked at the plant-level. For capital, we rely on the

NBER capital deflator (P kt ) to correct the capital stock series.

We construct an intermediate input price index Pnt for each intermediate input n, where

n = {Fuels, Electricity, Coal for Coke, Iron Ore, and Scrap Steel}, using either the NBER fuel

price deflator, or reported quantities and costs in the material trailer to the CMF (which allow

us to back out prices). We construct a plant-specific input price index (PMit ) using a weighted

average of these intermediate input specific prices, Pnt, where the shares are the share of an in-

termediate n in total intermediate input use. Deflated intermediate input use is, thus, given by

Mit =
∑

n
ME
int

PMit
, where ME

int is the expenditure of plant i, at time t, on intermediate input n.

We present the time series pattern of our constructed input price index in Figure B.1. We

compare the publicly available NBER Material Price Index (NBER MPI) with our constructed

input price index. We compute the mean of the latter by technology and find that the NBER MPI

follows our price index closely. However, the aggregate input price index hides the heterogeneity

in input prices, in particular during the energy price spike in the late seventies and early eighties.

This is particularly important given our focus on correctly identifying productivity differences across

technology: We would overestimate the productivity premium for minimills. While input prices

were very similar around 1972, by 1982, integrated producers faced almost 20-percent-higher input

prices and this fact would artificially increase the productivity premium for minimills.

We estimate the production function using our constructed output and input price deflators

using:

q̃it = βllit + βmmit + βkkit + ωit + εit, (4)

where lower cases indicate logs of deflated variables when appropriate.14 We allow for unanticipated

shocks to production and measurement error in output and prices, as captured by εit.
15 In the next

section, we report the production function coefficients, and the corresponding minimill productivity

premium, if any, under various specifications.

4.1.2 Production function coefficients and technology premium

We start by considering a few baseline specifications for the standard Cobb-Douglas production

function. Table 3 presents estimates of the production function. Columns I, II and III show results

with output defined as sales deflated by an aggregate price deflator, while Columns IV through

14E.g., q̃it = ln
(

Rit∑
j sijtPjt

)
and mit = ln

(∑
n

ME
int
Pnt

)
.

15Formally the inclusion of εit is compatible with the existence of measurement error and unanticipated shocks
in both revenue and price data. E.g. we observe revenue in the data and it relates to a firm’s measure as follows:
Rit = R∗it exp(εit). The error term εit thus captures, potentially, multiple iid error terms. The distinction is not
important for our analysis.
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IX show estimates using plant-level output and input deflators. Columns III, VI and IX present

estimates using an investment control function approach as discussed in Ackerberg, Benkard, Berry,

and Pakes (2007). We underscore that it is important in this context to explicitly allow the

underlying demand and technology factors to vary with the technology type. More specifically, we

index the investment policy function, the exit rule and the productivity process with the technology

type indicator. Appendix C.1 provides more details on the estimation procedure. We compare our

results to a few baseline OLS estimates, listed in the other columns, to highlight the importance of

our corrections.

The production function coefficients, across all specifications, are stable and have reasonable

estimates of returns to scale and output elasticities. An important test for our purpose is to

check whether minimills and vertically integrated producers rely on different input factor shares.

In order to test this, we simply interact every coefficient with our technology type dummy and

run a F -test on the joint significance of the interacted coefficients. In doing so, we cannot reject

that both technologies produce under the same output elasticities of labor, materials, and capital.

At first, it might seem surprising that, for instance, the coefficient on materials does not vary

across technologies. However, note that this coefficient reflects the importance of the total use of

intermediate inputs in final production. Aggregating over the various intermediate inputs into Mit

masks the distinct inputs used in production, which differ tremendously by technology.16

Four main results emerge from this analysis. First, minimills are, on average, more productive,

as indicated by a negative coefficient on the VI dummy. Under specification I, minimills have a

three-percent-higher TFP than vertically integrated producers, but this is not statistically signif-

icant. This result is surprising, both since industry participants believe that minimills are more

productive, and since these plants show large increases in market share over the sample period.

Second, the TFP premium for minimills decreases over time as indicated by the positive co-

efficient of 0.3 percent on the technology-year. Although this coefficient is relatively small in

magnitude, one has to keep in mind that our sample covers 40 years, which implies that by the

end of our sample, the TFP premium for MM has disappeared. This will be important when we

compute our decompositions – i.e., we expect the impact of minimills in aggregate productivity

growth to be concentrated at the beginning of the sample.

Third, the results in Panel B demonstrate the importance of controlling for unobserved prices

in the revenue-generating production function (Panel A) and confirm the findings of De Loecker

(2011). In particular when we correct for plant-specific prices, we find that the minimill TFP

premium is twice as high, and becomes significant. The impact of including detailed price data

on the technology coefficient is as expected since we know from Figure 6 that VI plants are active

in the relatively higher-quality segments, where producer prices are higher. Therefore, when we

do not properly deflate the sales data, the productivity premium for minimills is dampened. The

results in column IX indicate that correcting for differences in input prices across plants and time, in

16For instance, in 2002, Iron and Steel Scrap represented 42 percent of the coded material inputs for minimills, and
Coal for the production of Coke represented 15 percent of the coded material inputs for vertically integrated plants.
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particular across technology, has the predicted effect: The magnitude of the minimill productivity

premium is somewhat lower, 6.3 percent versus 11 percent, but it is still highly significant and

substantial. The lower point estimate reflects the pattern of input prices in Figure B.1, that input

prices for VI producers were higher in the late seventies and early eighties.

The impact of our price corrections are as expected. To illustrate our results, we find it useful

to write out the potential bias induced by not deflating either output or inputs in light of our

productivity analysis. We refer the reader to De Loecker (2011) and De Loecker, Goldberg, Khan-

delwal, and Pavcnik (2012) for more details on the impact of unobserved output and input prices,

respectively. Using our production function, it is easy to show that, without deflating, the following

equation is estimated on the data (in fact, Panel A considers such a specification):

rit = βllit + βkkit + βmm
E
it + ωit + pit − βmpMit + εit. (5)

This equation relates plant-level revenue (rit) to (physical) labor, capital, and intermediate input use

that potentially still contains input price variation (mE
it). In addition to unobserved productivity,

and a standard error term (ε), the production function also includes two price errors: (1) output

price and (2) intermediate input price. Two observations are important to make. First, we will

obtain biased production function coefficients since it is very likely that input use (both in physical

terms and in expenditure terms for materials) is correlated with output and input prices. Second,

the estimate for productivity is obtained using biased coefficients and will also include output and

input price variation. We would not correctly identify the productivity difference between minimills

and integrated plants without correcting for price variation, at both the input and output level.

Fourth, the selection and simultaneity biases understate the productivity advantages of min-

imills. Attenuation bias lowers the estimated returns to scale. Since VI plants are larger than

minimills, this will make VI plants look more productive than they really are. Likewise, simul-

taneity typically results in downward bias on the capital coefficient. Since VI plants are more

capital-intensive than minimills, this will again make VI plants appear more productive. When we

correct for the simultaneity and selection biases in Columns III and VI, using an investment control

function correction, the capital coefficient is twice as large. Moreover, the minimill TFP premium

doubles to an average effect of 11 percent, starting at 25 percent in 1963 but disappearing by 2002.

In all the subsequent analysis, we rely on estimates of productivity, ωit, from Column VI of Table

3. We also show all our main results using the various specifications discussed in Table 3.

Technology does not explain all the differences in productivity, as the standard deviation of ωit

is about 30 percent, while differences in technology account for an 11-percent gap in productivity.

Thus, there remain substantial productivity differences between producers, both within and across

technology types. This finding sits well with recent evidence on the dispersion of productivity

across producers in narrowly defined industries. See Syverson (2011) for a recent survey.
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4.2 The Role of Reallocation

Following Olley and Pakes (1996), we consider industry-wide aggregate productivity as the market

share, denoted by sit, weighted average of productivity ωit. In particular, we rely on the following

definition of aggregate productivity: Ωt ≡
∑

i sitωit which is different from the unweighted average

of productivity ωit ≡ 1
Nt

∑
i ωit.

4.2.1 Static Analysis: introducing a between-technology covariance

In recent work, Bartelsman, Haltiwanger, and Scarpetta (2009) discuss the usefulness of the Olley

and Pakes decomposition methodology. They highlight that the positive covariance between firm

size and productivity is a robust prediction of recent models of producer-level heterogeneity (in

productivity), such as Melitz (2003). We follow the standard decomposition of this aggregate

productivity term (also referred to as the OP decomposition) into unweighted average productivity

and the covariance between productivity and market share.

Definition Olley-Pakes Decomposition

Ωt = ωt +
∑
i

(ωit − ωt)(sit − st) = ωt + ΓOPt (6)

where ΓOPt is the Olley-Pakes Covariance.

The same decomposition can be applied by technology type ψ – i.e., treating MM and VI

producers as if they belong to separate industries – and this decomposition will help us understand

whether average productivity of the different technology types evolved differently, and whether

there is any substantial reallocation across producers of the same vintage. We call this the within

decomposition. The market share of each technology is denoted s(ψ)t =
∑

i∈ψ sit. Likewise, the

type-specific aggregate productivity is Ωt(ψ), while the average productivity within a technology

type is ω̄t(ψ).

Definition Within-Technology Decomposition

Ωt =
∑

ψ∈MM,V I

st(ψ)

ωt(ψ) +
∑
i∈ψ

(ωit − ωt(ψ))(sit(ψ)− st(ψ))


=

∑
ψ∈MM,V I

st(ψ)
(
ωt(ψ) + ΓOPt (ψ)

)
.

(7)

This within decomposition reflects both the change in the actual type-specific component, the

unweighted average and the covariance term, as well as the type-specific market share.

To measure the importance of reallocation of resources between technologies, we interact the

productivity index with the type-specific market share, st(ψ). We apply the same type of decom-

position, but now the unit of observation is a type hence, one can think of two plants, an aggregate
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minimill and an aggregate vertically integrated producer. This allows us to isolate the between-

type reallocation component in aggregate productivity. Denote Ωt = 1
2

∑
ψ Ω(ψ)t the industry

productivity if minimills and vertically integrated producers had the same market share– i.e., the

unweighted average, we obtain:

Definition Between Technology Decomposition

Ωt = Ωt +
∑

ψ∈MM,V I

(st(ψ)− 1/2)(Ωt(ψ)− Ωt) = Ωt + ΓBt , (8)

where ΓBt is the between Covariance measuring the extent to which the resource reallocation towards

minimills contributed to the aggregate productivity for the entire industry. Notice that since the

average market share is always one half, when the market share of minimills equals the market

share of vertically integrated producers, the between covariance term ΓBt is zero, regardless the

productivity difference between the two types.17

Finally, we can group the within-technology and between-technology decomposition together to

explain aggregate TFP:

Ωt =
1

2

∑
ψ∈MM,V I

[ω̄t(ψ) + ΓOPt (ψ)] + ΓBt . (9)

Notice that equation (9) allows us to explain changes in productivity, through i) changes in the

average productivity of minimills and vertically integrated plants (ω̄t(ψ)); ii) changes in the covari-

ance between output and productivity for both MM and VI plants (ΓOPt (ψ)); or iii) reallocation

across technologies (ΓBt ).

4.2.2 Static reallocation analysis: results

Table 4 shows the various cross-sectional decompositions of aggregate productivity – Olley-Pakes,

Between, and Within – looking at their change from 1963 to 2002.

Three important results emerge. First, the Olley-Pakes decomposition of aggregate productivity

across all plants shows, the average producer became 15.5 percent more-productive between 1963

and 2002. In addition, the reallocation towards more productive plants was an important process

in generating higher productivity, generating a 7.5-percent increase from 1963 to 2002. Thus,

aggregate productivity went up by 23 percent, of which one third was due to the reallocation

towards more-productive plants. This indicates that reshuffling of market shares across producers

was an important mechanism through which the industry realized productivity gains.

Second, we find a large role for the between-technology reallocation component (ΓB). In 1963,

the between covariance is -6.6 percent, as the older vintage of VI plants had both lower productivity

and greater market share. The between covariance ΓB then became less negative as the minimills,

17Given the substantial entry of minimills that typically entered on a smaller scale, and remain smaller, we can
expect the covariance term to be negative –i.e., the more-productive plants have a smaller market share. But we do
expect this covariance term to become less negative over time, as Figure 2 shows that minimills started with a very
small market share and gradually captured a larger part of the market.
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who have a productivity premium, gradually increased their market share. Towards the end of the

sample period, minimills had about half of the market, which mechanically implies a zero between

reallocation component. This between reallocation of output from VI plants to MMs accounts for a

6.3-percent increase in productivity, 27 percent of the overall productivity growth of the industry.

The fact that the arrival of a new production technology can account for changes in the covariance

term is critical since this suggests an important role for technology in explaining the reallocation

that led to a sharp increase in productivity.

Third, drilling down to the technology type, we see that minimills increased their aggregate TFP

(Ω(MM)) by ten percent, while vertically integrated plants raised their aggregate TFP (Ω(V I))

by 24 percent. This “catching-up” of vertically integrated producers mirrors the results in Table

3: While vertically integrated producers were less productive than the minimills, by the end of the

sample period, they had almost completely caught up. Interestingly, the reason for this catch-up of

vertically integrated producers is not due to changes in the Olley-Pakes covariance term ΓOPt (ψ),

whose contribution to productivity growth is 5.2 percent for minimills and 5.3 percent for vertically

integrated producers. Rather, it was the much higher increase in average plant productivity for

vertically integrated producers (ωit(V I)) of 18.3 percent, versus a ωit(MM) of 4.8 percent for

minimills.

Our analysis so far points to a large impact of minimill entry on shaping overall industry

productivity. We find that about 48 percent of total aggregate productivity growth can directly be

attributed to minimills, with 27 percent due to reallocation away from the old technology and the

remaining 21 percent due to productivity improvements at minimill plants, which captures learning

by doing taking place at minimills.18

4.2.3 Dynamics: the role of entry and exit

The above decomposition masks the potential impact of entry and exit on aggregate productivity.

The average productivity term ω mixes changes in productivity inside plants, with changes in the

distribution of productivity due to entry and exit. A similar concern also affects the measured

covariance terms. We turn to this and consider a dynamic version of our decomposition. Let us

consider three distinct sets of producers for a given time window t − 1, t, where t is a ten-year

window: incumbents (A), entrants (B) and exiting plants (C).19 Using these sets, we can write

aggregate productivity growth, ∆Ωt, as:∑
i∈A

sit−1∆ωit︸ ︷︷ ︸
Plant Improvement

+
∑
i∈A

∆sitωit−1 +
∑
i∈A

∆sit∆ωit︸ ︷︷ ︸
Reallocation

+
∑
i∈B

sitωit︸ ︷︷ ︸
Entry

−
∑
i∈C

sit−1ωit−1︸ ︷︷ ︸
Exit

. (10)

18We do not pursue an explicit analysis of the learning by doing effects at minimills, since our data do not contain
the level of detail needed for us to credibly infer this process. See Benkard (2000) for such an analysis and what type
of data are key to identifying learning by doing.

19This decomposition has been suggested by Davis, Haltiwanger, and Schuh (1996) and has been used in other
empirical work by e.g. De Loecker and Konings (2006).
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The first term is denoted Plant Improvement, the next two terms on are the Reallocation terms,

and the last two terms are the Entry and Exit components. The above decomposition directly

isolates the net-entry effect on aggregate productivity by verifying the importance of the last two

components in total productivity growth. Finally, to isolate the role of entry and exit for both

types of technology separately, we expand the above by computing equation (10) by technology

type ψ. When we refer to the total impact of reallocation, we group all terms except for the

plant-improvement component.

Table 5 presents the decomposition across all plants and by technology.The first row of Table

5 restates the 23-percent productivity growth in the U.S. steel sector, but far faster growth for

vertically integrated plants than for minimills.

Across the entire sample period, over which productivity increased by 23 percent productivity

growth, within plants accounted for a 10 percent increase in aggregate productivity (or a 43 percent

share), while reallocation and net entry are responsible for the remainder. Thus, the total share of

reallocation in aggregate productivity growth, including both the reallocation induced by market-

share reallocation across incumbents and the net-entry process, is two-thirds.

A clear picture emerges when we move to the decomposition by technology. The main driver of

productivity growth for minimills is the within component of 14.7 percent, capturing the technolog-

ical change in minimills. This is suggestive of the substantial learning by doing that took place in

minimill production– in particular learning how to produce higher quality steel – over the sample

period. The reallocation component is negligible.

The same analysis of VI producers yields substantially different results: The plant improvement

component, of 10.2 percent, is smaller than that of minimills (14.7 percent), the net entry term of

3.9 percent is almost 19 percent of total productivity growth over the sample. Most noteworthy is

that the reallocation term of 11.8 percent is responsible for 48 percent of industry-wide productivity

growth.

In the last row of Table 5, we restate the distinct role of the net-entry process across technologies.

We present the productivity premium of entrants, compared to the set of exiting plants. Across the

entire sample period, VI entrants were 4.4 percent more productive than those VI plants that exited

the industry. New minimills, on the other hand, entered with no specific productivity advantage.

To summarize, we find a drastic difference in the role of reallocation between technologies.

The productivity growth of minimills is entirely due to common within-plant productivity growth,

whereas integrated producers’ productivity growth came from the reallocation of resources across

producers (67 percent). In the next section, we focus on the role of reallocation among vertically

integrated producers, which was instrumental for the productivity growth among producers relying

on the old technology, and consequently triggered productivity growth for the industry as a whole.

4.3 Catching up of the old technology

So far, we have shown that a substantial part of the industry’s productivity growth can be ac-

counted for by the arrival of the new technology and its own technological progress, capturing
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about half of the productivity growth in the industry. The entry of the new technology, however,

spurred a dramatic reallocation process in the incumbent technology leading to a sharp increase in

productivity– where the exit margin played a key role. It is, therefore, natural to ask how incum-

bents became more productive. From our various decompositions we already know that the exit of

inefficient producers was a key driver, in addition to the reallocation among existing producers.

To uncover the underlying mechanism, we incorporate the product space of the industry. We

know from Figure 6 that the market-share trajectories of minimills for, broadly speaking, two prod-

uct categories – bar products and sheet products – were very different. Indeed, minimills took over

bar products, but not sheet products. Therefore we verify whether the substantial productivity

gains among (surviving) VI producers over our sample period were related to the product-market

competition – i.e., did VI producers of bar products exit, leaving only those VI producers special-

izing in sheet products? In other words: How important was the increased competition, due to

minimill entry, for incumbents’s productive efficiency?

The distinction between the two product groups is relevant to the extent that (1) there exists

a productivity difference among bar and sheet producers, and (2) survival is related to specializa-

tion.20 In order to verify whether this mechanism is important in the data, we first test whether

plants specializing in sheet products were, on average, more productive, than those specializing

in bar products. Subsequently, we ask whether the product specialization variable predicts plant

survival. We run both tests on the total sample of plants in our data, and on the subsample of

VI producers. In the latter, we compare plants of the same technology and verify whether product

specialization can explain the rapid productivity growth among the group of VI producers.

Table 6 estimates both a technology and sheet-specialization productivity premium for a number

of specifications, where sheet specialization refers to the share of a plant’s revenue accounted for

by sheet products.21 In Panel A, we consider all plants in the industry, and find a robust and

highly significant productivity advantage for plants specializing in sheet products, while controlling

for technology, and an exhaustive set of fixed effects. Even if we compare plants of the same

technology, within the same firm and state, in the same year, we find a 12 percent productivity

premium for plants that completely specialized in sheet. In Panel B, we focus on the VI producers,

and find a similar premium. These results, therefore, strongly suggest that the rapid productivity

growth of VI producers was due to the reallocation from bar to sheet producers. The latter is

consistent with the market-share trajectories presented in Figure 6, which showed MM taking over

bar products but not sheet products.

Taking the sheet productivity premium as given, we verify whether VI producers producing

primarily sheet products had a higher likelihood of survival. In Table 7, we present survival

20A potential third component would be the change in product specialization at the plant level over time. However,
we find very little change in product specialization over time; and thus this mechanism cannot generate within-plant
productivity improvements. This finding sits well with our implicit assumption of plant-level productivity.

21For all practical purposes, minimills do not produce sheet products. Moreover, there is little year-to-year variation
in the share of revenues accounted for by sheet products within a plant. This suggests that it is difficult to alter
the product mix at the plant level. Given the lack of within-plant variation in sheet specialization, regressions with
plant-level fixed effects will have little power to identify the productivity premia of sheet producers.
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regressions, where we run an indicator of plant survival – whether a plant which was in active

in 1963, survived until 2002 – against plant technology and sheet specialization.22 In Panel A, we

consider all plants in the industry and find that the sheet specialization ratio variable has a strong

positive impact on a plant’s survival probability, holding fixed its technology. Indeed, a plant that

was fully specialized in sheet had a 31-percent-higher probability of surviving than a plant that

was fully specialized in bar. This is a very large effect, as plants have a 33-percent likelihood of

survival to begin with. Moreover, this effect is robust to controlling for the plant’s capital and

productivity– standard predictors of plant survival.23

The productivity difference between sheet and bar producers is only relevant to the extent that

it exists among integrated producers. In Panel B, we focus on VI producers and find a very similar

effect: VI producers specializing in sheet products in 1963 had a 31-percent-higher probability of

surviving to the year 2002. We note that predicting plant survival over a forty year period is a

very demanding task. Even when our sample size is reduced to 78 VI producers active in 1963,

we obtain a t-statistic of 1.6 on the sheet-specialization variable, while controlling for capital and

productivity.

Thus, the joint productivity and survival premium for sheet producers helps explain the overall

productivity growth of VI producers in the aftermath of minimill entry. Minimills increased com-

petition in the bar market, leading to the exit of inefficient VI producers. As a consequence, the

set of remaining VI producers was more productive due to an increased concentration in the sheet

product market. This mechanism, therefore, manifests itself in substantially higher productivity of

VI producers and a dramatic drop of VI’s market share of bar products. In light of our decomposi-

tion results, presented in Tables 4 and 5, 34 percent of the industry’s productivity growth is due to

the reallocation process among VI producers, in which the specialization in sheet products seem to

have played a crucial role. To obtain the 34 percent contribution, we use the fact that 67 percent

of the VI productivity growth was due to reallocation (Table 5).

Finally, the only component we have not explained is the pure within-plant productivity growth

component for VI producers, which, according to our results in Table 5, accounts for only 13 percent

of aggregate TFP growth. This common shift of the production frontier for VI producers captures

the direct technological innovations in steel making at integrated plants due to active investments,

and improvements in technical efficiency. Put another way, it would be surprising if 40 years of

innovation in the engineering and management of vertically integrated plants had not manifested

itself in increased productivity. Still, this means that 87 percent of total productivity growth can

be attributed to the reallocation induced by minimill entry.

22These results are robust to looking at survival from 1967, 1972 or even 1977, until 2002. Likewise, these results
are also robust to looking at survival until 1997 and 1992.

23See Collard-Wexler (2009) and the references therein.
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4.4 Market Power and Reallocation

The drop in demand for U.S. steel producers and the variation in the market-shares trajectories

across products point to drastic changes in competition. We argued that the entry of the min-

imill intensified competition for domestic steel producers, in particular for the bar segment of the

industry (see Section 4.3). In addition to this increased domestic competition, it is well known

that international competition intensified through a substantial increase of imports. The increased

competition is expected to affect a plant’s residual demand curve and, therefore, impact its abil-

ity to charge a price above marginal cost. The change in the residual demand elasticity, and its

associated markup response, are expected to affect the reallocation across producers, as well.

We rely on our empirical framework to (1) show that markups indeed decreased as competition

increased, and (2) show how lower markups are directly related to our measure of reallocation, the

covariance of productivity and a plant’s market share.

A nice feature of our approach is that we can generate measures of market power from our

estimates of the production function. We rely on our production function framework to recover

markups by technology type and plant. In order to obtain markups from the plant-level production

data, we follow the approach suggested by De Loecker and Warzynski (2012). Appendix C.2

presents the details of this approach. At the core of this approach lies the assumption that plants

minimize costs and that at least one input of production faces no adjustment costs.

The two main ingredients of computing markups are the output elasticity of intermediate inputs,

such as materials and energy, and the corresponding expenditure share of the input. The latter is

directly observed in the data, whereas the output elasticities are recovered after we estimate the

production function as discussed above.

We compute markups by technology as obtained from technology-specific aggregate expendi-

tures on an intermediate input (Et(ψ)), materials in our case, and sales (Rt(ψ)) while relying on a

time-invariant Cobb-Douglas output elasticity of the intermediate input (βm):

µt(ψ) = βm
Rt(ψ)

Et(ψ)
. (11)

Under the commonly assumed Cobb-Douglas production function these markups are in fact the

correct technology-specific markups, with the markup by technology thought of as a weighted

average across plants where the weights are the expenditure share on materials of a given plant in

the total expenditures for plants of the same technology.24 Figure 4 plots the markup trajectory

over 40 years for both MM and VI plants. Markups have steadily decreased over time and are

consistent with the drop in prices and external measures of concentration reported for the steel

sector. Markups were, on average, higher for minimills, confirming the results from the augmented

production function estimation in Table 3, and this is as expected since they produce more efficiently

while competing in the same product market.

24To see this, use ciψt = Eit
Et(ψ)

in the share weighted markup expression for a type ψ, where ciψt is the share of an

individual plant in the type’s total: µt(ψ) =
∑
i∈ψ ciψtµit =

∑
i∈ψ ciψtβm

Rit
Eit

= βm
Rt(ψ)
Et(ψ)

.
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Markups fell at the same time as the covariance between output and productivity increases.

Suppose that this fall in markups is due to a firms’ residual demand curve becoming more elastic.

In other words, markups fell because the product market for steel became more competitive. This

does not seem unlikely since there are far more steel producers in 2002 than 1963 competing over

a roughly similar market size.25

A more elastic residual demand curve will accentuate the relationship between productivity and

output. Furthermore, the increase in the residual demand curve for integrated firms is consistent

with the increased competition from minimills and a resulting decline in their market share. A

similar point is made, in the context of variable markups and trade liberalization, by Edmond,

Midrigan, and Xu (2012) and Mayer, Melitz, and Ottaviano (2011). Thus we expect the extent of

competition to be directly linked to reallocation, which is what we find in the data.

5 Alternative explanations and Robustness Analysis

In this section, we explore various alternatives that can potentially help explain the sharp increase

in productivity growth. It is important to note that these alternatives are not mutual exclusive.

The point of this section is not to argue that only technology was responsible for bringing about the

efficiency gains. We show that our main results are not affected by controlling for these alternative

explanations: Firm-level characteristics, geography, and international trade do not appear to play a

role in explaining either the differences in productivity between minimills and vertically integrated

producers, or the reallocation between these technologies.

Finally, we present the main results from our decomposition analysis using a variety of produc-

tivity estimates (as presented in Table 3). We discuss the robustness of our results, and highlight

the importance of our corrections in establishing a prominent role of technology in generating

aggregate productivity growth.

5.1 Management practices and ownership

Our analysis, thus far, has been focused on plants. To the extent that better plants are managed

by better firms, we are potentially attributing productivity differences across plants to technology,

where it might simply reflect that more-productive plants, regardless which technology they use,

are better-managed or belong to more efficiently organized firms. The potential role for firm-level

variables explaining productivity differences is, in particular, plausible given the recent findings of

Bloom and Van Reenen (2010). They present empirical evidence that measures of productivity,

like the one we use, are correlated with various management practices, reflecting human resource

(HR) practices and organizational design. Ichniowski, Shaw, and Prennushi (1997) find that better

HR practices lead to higher productivity using detailed product-line data. Their results confirm

recent theoretical models that stress the importance of complementarities among work practices.

25Total production in 1965 was about 130 million, and by 2000 is about 112 million tons. Also see Figure 1 where
the value of production as well as the number of plants are presented
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To check whether the minimill premium in our sample period was not driven by better-managed

firms, or any particular kind of firm-specific ownership structure, we compare minimills to VI plants

within the same firm and time period using by regressing productivity on technology, and a firm-

year fixed effect. Table 8 presents these results. We start out in column I with a base premium of

ten percent. We find an almost identical productivity premium, of around ten percent, for minimills

when including a firm-time fixed effect (column II).

These results suggest that the minimill productivity premium was not driven by a particular

allocation of minimill plants to more-productive firms with, say, better management or human

resource (HR) practices. Moreover, our results do not contradict those presented by Ichniowski,

Shaw, and Prennushi (1997), who rely on a sample of 17 rolling mills collocated with vertically

integrated plants in the United States and, therefore, omit minimills from the analysis. Thus,

there is no information on the relative performance of minimills. In addition, they focus on rolling

operations, which we purposefully leave out.26

Finally, including firm fixed effects does not rule out an effect of management. If management

practices differ between plants at the same firm, and these intra-firm differences in management are

precisely aligned with the technology used in production, then we could still attribute management

effects to minimills. However, while we think that this story is very unlikely, it would take historical

plant-level data on management to rule it out, and, Census data during our sample period do not

track this type of information.27

5.2 Geography

Although steel production has historically been concentrated in a few regions in the U.S., there is

still considerable variation of activity across regions. In 2002, 63 percent of steel was produced in

the Midwest – i.e., Illinois, Indiana, Michigan, Ohio, and Pennsylvania – while this figure was 75

percent in 1963. We check whether regional patterns influence our results by incorporating a full set

of state-year dummies, in a regression of productivity on our measure of technology. Table 8 shows

that the substantial minimill premium is largely unaffected when including state-time fixed effects.

This result reflects that minimills are, on average, 12.9 percent more productive than integrated

producers in the same state and year (column III). Furthermore, this result is robust with respect

to including technology-year interactions.

Finally, in column IV, we include a joint firm-state-year fixed effect and find that the tech-

nology premium is still strongly positive and significant, but with a point estimate of 25 percent.

This suggests that minimills are vastly more productive, even when we compare a minimill and a

vertically integrated plant owned by the same firm, and located in the same state. The results in

Table 8 indicate that the productivity premium for minimills is extremely robust, and is not an

26The main reason to omit rolling mills is because the boundary between rolling operations and other steel shaping
operations, such as pipe making or other more artisanal iron work, is less clear. By focusing on the production of
molten steel, we obtain a sharper definition of the industry.

27The new wave of economic Census will contain a Management and Organization Practices Survey (MOPS). See
World Management Survey and http://bhs.econ/census.gov/bhs/mops/ for more on this recent addition.
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artifact of a particular selection mechanism at the firm or regional level, or an interplay of both.

5.3 International Trade

It is well documented that the U.S. steel sector has faced stronger competition from foreign pro-

ducers over the course of the last four decades. However, for our purposes, the relevant question

is whether the mere increase in import competition could explain the rapid productivity growth in

the industry.

Table 9 lists the average productivity growth and import penetration ratio across the US man-

ufacturing industries (4-digit SIC codes), and compares them with the steel industry. The upper

panel lists the absolute imports and shows that the steel sector’s imports did not increase nearly

as much as the modal manufacturing industry.

The bottom panel reports the import penetration ratio and highlights that international compe-

tition increased across all U.S. manufacturing industries, and that steel was no exception. However,

both in an unweighted and weighted sense, the change in international competition for U.S. steel

was lower than the average across all sectors of US manufacturing. Productivity growth in the steel

industry, as documented previously in Table 1, has been three times higher than the average. While

we see increased import competition for domestic steel producers, this, by itself, cannot explain the

exceptional improvements in productivity.

Using the statistical relationship between productivity growth and the change in the import

penetration ratio, over the period 1972-1996, we would predict only an eight percent productivity

growth for the steel industry.28 Put differently: The change in international competition can explain

at most one third of the productivity growth.

These types of estimates are further subject to various biases and measurement problems.

For instance, the Semiconductor industry experienced remarkable productivity growth, while its

import penetration ratio increased as well. However, the import surge was due to U.S. producers

outsourcing production while focusing on R&D and design in the U.S. affiliates. Identifying the

impact of foreign competition on industry performance is further complicated due to endogenous

changes in international competition, as well as to reversed causality from productivity growth to

international trade.

In this paper, we focus on a clean and directly measurable source of productivity growth: the

arrival of a new technology. The potential role of international trade in affecting productivity

growth indirectly is further weakened since the specific trajectory of imports, or any alternative

measure of international competition, is not aligned with the arrival of the new technology. We

do acknowledge, as shown in Table 9, that changes in international competition did most likely

28We construct a matched production-trade database at the 4-digit SIC87 level using the NBER Manufacturing
Database and the U.S. Trade Database. We consider a simple long difference regression of TFP growth on the change
in the import penetration ratio. The estimated coefficients are used to predict the steel industry’s productivity
growth. Specifically, we run the following regression: ∆ΩI = γ0 + γ1∆IPRI + νI across the entire sample of 4-digit
SIC87 industries, where ∆ is the difference over the 1972-1996 period, and we weigh observations by the industry’s
share in total manufacturing production.
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affect domestic producers by shifting in the residual demand for steel products. In this sense, the

increased competition introduced by minimills was reinforced, if anything, by competing over a

smaller market share, a mechanism we account for in our analysis of markups.

Finally, one might still worry that the effects of international competition were more pronounced

for integrated producers than for minimills, thereby affecting the interpretation of our results.

Therefore, we checked whether the measures of international competition, such as import shares,

differed across products. As discussed previously, minimills were mainly active in the bar segment,

especially in the period 1972-1996, where we observe good measures of international competition

(also see Figure 2). When we break down imports and exports by product, we find that imports

show a rise for bar products produced by minimills that is similar to that of sheet products, which

minimills do not produce.

In addition, since minimills were historically more concentrated in the midwest, while integrated

producers were active in coastal areas, we might worry that minimills were more insulated from

foreign competition due to substantial intranational shipping costs. However, in the previous

subsection we discussed the robust productivity advantage of minimills when controlling for regional

differences.

5.4 Importance of Corrections and Robustness

Tables 10 and 11 presents robustness checks on our main decompositions of aggregate productiv-

ity growth, both static and dynamic. For each of the productivity estimates obtained using the

specifications listed in Table 3, we produce the static and dynamic decompositions.

The first column of Tables 10 and 11 rely on productivity estimates obtained using the pro-

duction function coefficients of specification VI in Table 3. We contrast these to results obtained

using productivity estimates obtained without correcting for unobserved price differences across

producers, and to results obtained without correcting for simultaneity and selection. To assess

the precision of our results, we include bootstrapped confidence intervals on the share of each

component for all decompositions.

5.4.1 Robustness

We find that our decompositions are qualitatively robust to alternative specifications of the produc-

tion function. We find similar differences in the speed of productivity growth between technologies,

a far larger role for reallocation among the vertically integrated producers than among the minimills,

and a large role for the between covariance in productivity growth.

The various components of the decompositions use plant-level estimates of productivity, which

rely on estimated production function coefficients, and thus are also estimates. We use a block

bootstrap routine to produce confidence intervals of the shares of each component. The 95 percent

confidence intervals around the various shares are reasonably tight.29 For example the confidence

29As far as we know, this is the first paper to produce confidence intervals around the components of the decom-
position of (an industry’s) aggregate productivity, and we cannot compare our results to existing work.
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interval around aggregate productivity growth is similar across all specifications.

5.4.2 Importance of Corrections

The results in Tables 10 and 11, also point out the importance of correcting for unobserved produc-

tivity and price errors when estimating the production function, to obtain the correct quantitative

effects of the entry of minimills on aggregate productivity. What is particularly sensitive to the

specification of the production function is the between decomposition. Indeed, the between compo-

nent is 27 percent in Column VI (GMM and price correction), as opposed to 11 percent using OLS

productivity estimates in Column I (OLS). These differences are statistically significant as the con-

fidence intervals for the between share do not overlap between these two columns. This is not too

surprising, as Table 3 showed that the minimill productivity premium was far larger in Column VI,

than in Column I. These difference in the estimated productivity advantages of minimills directly

spill over to the estimated magnitude of the between covariance. Further controlling for differences

in input price trends across plants does not change the results.

The role of entry and exit is altered by omitting to correct for price and productivity errors

in the production function. The impact of the exit process of integrated producers is cut in half

(from 19 to 8 percent between Column VI and I), while the within-plant minimill improvements

are underestimated (107 versus 79 percent from Column VI to I). These findings echo the results of

Foster, Haltiwanger, and Syverson (2008): Correcting for variation in plant-level prices is crucial to

obtain reliable productivity measures, and more importantly, to measure the impact of entry and

exit, an important part of our reallocation mechanism, on aggregate productivity.

Summing up, if we incorrectly ignored price variation across producers, the endogeneity of

inputs and the non-random exit of plants in the data, we would underestimate the reallocation

mechanism by a factor of two. Our results suggest that the total effect of minimill entry on

industry-wide productivity growth was 87 percent. This share drops to about 72 percent when

ignoring unobserved price and productivity heterogeneity. However, although we find a much

larger magnitude, the role of technology is present when using uncorrected productivity estimates,

which adds to the robustness of the importance of our specific reallocation mechanism.

6 Conclusion

There is by now extensive evidence that reallocation of resources across producers substantially

impacts productivity growth. This paper is one of the first to provide a specific mechanism under-

lying such a reallocation: The entry of a new technology, and its associated increased competition,

were largely responsible for the massive productivity growth in the U.S. steel industry.

We provide evidence that technological change can, by itself, bring about a process of resource

reallocation over a long period of time and lead to substantial productivity growth for the industry

as a whole. We find that the introduction of a new production technology spurred productivity

growth through two channels.
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First, the entry of minimills lead to a slow but steady drop in the market share of the incumbent

technology, the vertically integrated producers. As minimills were 11 percent more productive,

this movement of market share between technologies was responsible for a third of the industry’s

productivity growth. Second, while the new technology started out with a 25 percent productivity

premium, by the end of the sample, minimills and vertically integrated producers were very similar

in terms of efficiency. This catching-up process of the incumbents came about from a large within

reallocation of resources among vertically integrated plants.

The reallocation among vertically integrated plants was largely due the exit of inefficient produc-

ers active in the low-quality segment (bar products.) On the other hand, minimills’s productivity

increased gradually over time due to a shift in the production function for all minimill producers.

Although the first mimimill, producing at a commercial level, entered in the late fifties, the pro-

ductivity effects were long-lasting and still affect the industry’s performance today. In fact, the

recent trend in market shares suggests that minimills started to enter the high-quality segment

of the industry – sheet products – and taking our results at face value would indicate that more

substantial productivity gains are expected.

Our results indicate that the arrival of new technologies can have a major impact on produc-

tive efficiency through increased competition and its associated reallocation of economic resources,

leading to an increase in the industry’s overall performance. It is critical to obtain measures of

plant-level performance and technology to identify this mechanism – i.e., without indicators of

technology at the plant-level, we would falsely attribute the productivity gains to other factors

correlated with aggregate productivity, such as international competition, geography, and a variety

of firm-level characteristics.
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TABLES AND FIGURES

Table 1: Relative Performance of the steel sector

Sector ∆ TFP ∆ Shipments ∆ Labor

Steel Sector 28% -35% -80%
Mean Sector 7% 60% -5%

Median Sector 3% 61% -1%

Source: NBER-CES Dataset for SIC Code 3312. Note: Only sectors over 10 billion dollars are
included. Changes computed between 1972-2002.

Table 2: Entry and Exit in U.S. steel
Entrant Market Share (Plants) Exitor Market Share (Plants)

1963-1972 6 (29) 9 (D∗)
1973-1982 5 (49) 20 (20)
1983-1992 21 (55) 18 (47)
1993-2002 12 (30) 2 (41)

Minimills Entrants Exitors
1963-1972 17 D∗
1973-1982 39 0
1983-1992 43 26
1993-2002 D∗ 17

Vertically Integrated Entrants Exitors
1963-1972 12 D∗
1973-1982 10 20
1983-1992 12 21
1993-2002 D∗ 24

Note: D∗ cannot be disclosed due to the small number of observations. Numbers refer to the
revenue market share represented by exitors and entrants, while numbers in parenthesis refer to
the count of plants that enter or exit.
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Table 4: Static Decompositions of Productivity Growth (Change 1963-2002)

Aggregate TFP ∆Ω 23.0%
Olley-Pakes Decomposition:

Unweighted Average: ∆ω 15.5% (0.67)
Covariance: ∆ΓOP 7.5% (0.33)
Between Decomposition:

Unweighted Average: ∆Ω 16.8 % (0.73)
Between Covariance: ∆ΓB 6.3 % (0.27)

Within Decomposition: Minimills Integrated

Aggregate TFP: ∆Ω(ψ) 10.0% 23.6%
Unweighted Average: ∆ω(ψ) 4.8% (0.48) 18.3% (0.78)
Within Covariance: ∆ΓOP (ψ) 5.2% (0.52) 5.3% (0.22)

Note: The share of each component in the total aggregate productivity growth is listed in paren-
theses.

Table 5: Dynamic Decomposition of Productivity Growth

Component All Minimill Integrated

Total Change 23.0% 10.0% 23.6%
(0.21) (0.52)

Plant Improvement 10.2% 14.7% 10.2%
(0.23) (0.17)

Reallocation 10.6% -1.5% 11.8%
(-0.1) (0.25)

Net Entry 3.9% -0.8% 3.9%
(0.0) (0.10)

Entry-Exit Premium 0.0% 4.4%

Note: The share of each component in the total aggregate productivity growth is listed in paren-
theses. See equation (10) for definitions of various terms.
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Table 7: Determinants of Exit

Dependent Variable: Plant Exists in 2002
Panel A: All Plants Panel B: Vertically Integrated

I II III IV V
Vertically Integrated -0.36*** -0.39***

(0.09) (0.08)
Sheet Specialization Ratio 0.39** 0.36* 0.31* 0.31* 0.22

(0.14) (0.14) (0.13) (0.13) (0.14)
Log Capital (k) 0.02 0.20 0.33

(0.03) (0.24) (0.26)
Productivity (ω) 0.04 0.06

(0.14) (0.04)

Observations 128 128 78 78 78
Log-Likelihood -73.88 -73.69 -40.36 -40.02 -38.88
χ2 16.97 17.35 5.89 6.58 8.84
Baseline Probability 0.33 0.32 0.23 0.23 0.22

Note: Marginal Effects presented. Dependent variable is whether the plant has not exited by 2002
given it’s status in 1963. Very similar results are found with 1972 and 1977 as base years.

Table 9: International Competition: Comparing the Steel Sector to US Manufacturing

Change Total Imports
Period Steel Average Median

% ∆ [72-02] 4.1 66.1 23.7

Import Penetration Rate
Year Steel Average Weighted Average
1972 0.099 0.066 0.055
1996 0.180 0.220 0.157

Change 0.081 0.154 0.102
% Change 81 233 85

Note: The average and weighted average are computed over all available 4-digit SIC87 industries using data

provided by the NBER Manufacturing Database (for shipment data) and Bernard, Jensen, and Schott (2006)

(for import penetration data). The changes are computed by industry before taking averages. The import

penetration rate data is available only up to 1996. Weights are based on the industry’s share of shipments

in total manufacturing shipments as recorded in the NBER Manufacturing Database.
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Table 10: Static Decompositions under Alternative Productivity Measures

Specification in Table 3
VI III IX I IV VII

GMM X X X
Plant-Level Output Prices X X X X
Plant-Level Material Prices X X

Change in TFP (∆Ω) 0.23 0.25 0.21 0.31 0.30 0.28
[0.17 0.28] [0.19 0.29] [0.16 0.26] [0.26 0.35] [0.26 0.35] [0.23 0.33]

Olley-Pakes

Unweighted Average (∆ω) 67% 74% 68% 74% 69% 69%
[0.57 0.75] [0.66 0.81] [0.58 0.76] [0.69 0.78] [0.63 0.73] [0.62 0.73]

Covariance (∆ΓOP ) 33% 26% 32% 26% 31% 32%
[0.25 0.44] [0.19 0.34] [0.24 0.43] [0.22 0.31] [0.27 0.37] [0.27 0.38]

Between

Change in Ω 73% 78% 77% 89% 87% 90%
[0.63 0.80] [0.69 0.83] [0.69 0.84] [0.85 0.92] [0.82 0.90] [0.86 0.94]

Change in Between Technology 27% 22% 23% 11% 13% 10%
Covariance (∆ΓB) [0.20 0.37] [0.17 0.31] [0.16 0.31] [0.08 0.15] [0.10 0.18] [0.06 0.14]

Within Technology

Minimills
Change in TFP 0.43 0.50 0.40 0.77 0.74 0.74

(ratio to aggregate ∆Ω(MM)
∆Ω ) [0.19 0.60] [0.29 0.64] [0.18 0.60] [0.64 0.87] [0.61 0.85] [0.59 0.85]

Fraction from Unweighted Average 48% 71% 51% 70% 61% 62%
(∆ω(MM)) [-0.22 0.64] [0.51 0.79] [-0.06 0.68] [0.64 0.76] [0.52 0.68] [0.53 0.69]

Fraction from Covariance 52% 29% 49% 30% 39% 38%
(∆ΓOP (MM)) [0.36 1.22] [0.21 0.49] [0.33 1.06] [0.24 0.36] [0.32 0.48] [0.31 0.47]

Vertically Integrated
Change in TFP 1.03 1.05 1.13 1.01 0.99 1.07

(ratio to aggregate ∆Ω(V I)
∆Ω ) [0.96 1.10] [0.99 1.13] [1.05 1.24] [0.96 1.07] [0.94 1.04] [1.01 1.14]

Fraction from Unweighted Average 77% 85% 80% 82% 75% 76%
(∆ω(V I)) [0.68 0.88] [0.78 0.94] [0.71 0.89] [0.77 0.87] [0.69 0.81] [0.70 0.82]

Fraction from Covariance 23% 15% 20% 18% 25% 24%
(∆ΓOP (V I)) [0.12 0.33] [0.06 0.22] [0.11 0.29] [0.13 0.24] [0.19 0.31] [0.18 0.30]

Note: GMM refers to the Olley-Pakes control function approach. Plant-level output prices refers to de-
flating revenue using product level prices indexes. Plant-level material prices refers to deflating material
inputs costs using material specific price indexes. Bootstrapped 95% confidence intervals using 10,000
replications shown in brackets, and these only include sampling error in the computation of productivity
ω.
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Table 11: Dynamic Decompositions under Alternative Productivity Measures

Specification in Table 3
VI III IX I IV VII

GMM X X X
Plant-Level Output Prices X X X X
Plant-Level Material Prices X X

Dynamic Decomposition

All
Plant Improvement 34% 41% 40% 46% 41% 45%

[0.23 0.42] [0.34 0.47] [0.33 0.48] [0.41 0.50] [0.36 0.46] [0.40 0.50]

Reallocation 47% 43% 46% 40% 42% 42%
[0.39 0.58] [0.37 0.52] [0.37 0.56] [0.36 0.46] [0.38 0.49] [0.37 0.49]

Entry-Exit 19% 16% 14% 14% 16% 12%
[0.17 0.22] [0.14 0.18] [0.11 0.17] [0.13 0.15] [0.15 0.17] [0.11 0.13]

Minimills
Plant Improvement 107% 119% 130% 90% 79% 86%

[0.87 2.25] [1.01 2.11] [0.95 2.59] [0.83 1.08] [0.73 0.93] [0.77 1.03]

Reallocation -9% -12% -5% -1% 4% 5%
[-0.75 0.03] [-0.62 -0.04] [-0.49 0.08] [-0.12 0.04] [-0.06 0.09] [-0.03 0.12]

Entry-Exit 0% -6% -25% 11% 18% 8%
[-0.50 0.12] [-0.50 0.04] [-1.13 0.00] [0.04 0.15] [0.12 0.20] [-0.02 0.14]

Vertically Integrated
Plant Improvement 33% 39% 35% 43% 40% 40%

[0.20 0.43] [0.29 0.47] [0.25 0.45] [0.36 0.48] [0.32 0.46] [0.33 0.46]

Reallocation 47% 46% 51% 49% 50% 54%
[0.35 0.62] [0.34 0.58] [0.38 0.63] [0.43 0.56] [0.44 0.58] [0.47 0.61]

Entry-Exit 19% 15% 14% 8% 10% 6%
[0.14 0.26] [0.11 0.21] [0.09 0.19] [0.06 0.11] [0.08 0.13] [0.05 0.09]

Note: GMM refers to the Olley-Pakes control function approach. Plant-level output prices refers to de-
flating revenue using product level prices indexes. Plant-level material prices refers to deflating material
inputs costs using material specific price indexes. Bootstrapped 95% confidence intervals using 10,000
replications shown in brackets, and these only include sampling error in the computation of productivity
ω.
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Figure 1: Evolution of the Steel Industry, and Vertically Integrated Mills and Minimills
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Figure 2: Minimills Market share by Major Product.
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Figure 3: Producer Output Price Index by Product Segment
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Figure 4: Market Share Weighted Markups
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A Data Appendix

A.1 Sample Selection

We pull all plants in the Census of Manufacturing, Annual Survey of Manufacturing and Longi-
tudinal Business Database from 1963 to 2007 coded in either NAICS 33111 or SIC 3312 at some
point in their lives.

The Longitudinal Business Database has worse industry coding than the Census of Manufactur-
ing, and taking its coding literally introduces a large number of non-steel mills into the sample.30

Therefore, we include a plant in the sample only if it has been coded in steel in either the CMF or
the ASM.

A.2 Coding Minimills, Vertically Integrated, and Rolling Plants

A primary issue in understanding the Steel industry is how to code plants as being minimills,
vertically integrated or rolling and processing plants. For references on the differences between
minimills and vertically integrated plants and the production process for steel, see Fruehan (1998)
p.1-12 and Crandall (1981) p.5-15.

The 2007, 2002 and 1997 Census of Manufacturing have a special inquiry questionnaire for the
steel industry (SI) appended to it. This questionnaire asks plants if they are considered a minimill
or not. Moreover, the SI also asks for plant hours in electric arc furnaces, blast furnaces, coke ovens,
and basic oxygen furnaces. If a plant reports plant hours in coke, blast, or basic oxygen furnace, we
flag this plant as a vertically integrated plant, since vertically integrated plants are defined by the
production process that first produces pig iron and slag, and then processes the result in a basic
oxygen furnace. If a plant reports being a minimill or if it reports hours in an electric arc furnace,
then we code this plant as a minimill.

Some vertically integrated plants occasionally have electric arc furnaces. Whenever a plant
report hours in an electric arc furnace and in a basic oxygen or blast furnace, we assign this plant
to the vertically integrated category. The reason is that the vertically integrated section of the
plant is usually far bigger than the electric furnace section.

Many plants do not report hours in any steel mill department, and do not report being minimills
either. We call these plants rolling mills or processors, as they do not produce steel per se, but
process steel products. For instance, a rolling mill might use steel ingots, blooms and billets (steel
shapes), and roll these into steel sheet. Alternatively, a mill might take steel rods and shape them
into steel screws.

For plants that were still in operation in 1997, or were built after 1997, the SI file is all we need
to identify the plant’s type. However, for plants that shut down pre-1997, we use the material and
product trailer to the Census of Manufacturing to classify them.

Minimills can be identified by their input use. Electric arc furnaces use a combination of scrap
steel and direct-reduced iron as inputs. Thus, if a plant uses any direct-reduced iron, we flag this
plant as a minimill. Likewise, if scrap steel represents more than 20 percent of a plant’s material
use, we flag this plant as a minimill.31

Vertically integrated plants can also be identified from their input use. If a plant uses “Coal for
Coke”, this is a good indication that a plant has a blast furnace. We flag rolling mills by their use
of “Steel Shapes and Forms” – steel ingots and so on that are shaped into steel products.

30In particular, the Zip Business Patterns database, that uses the same underlying source as the LBD, has a large
number of entrants coded in NAICS 33111 from 1997 to 2002 that are not steel mills.

31Basic oxygen furnaces at vertically integrated plants also can a take a small percent of scrap steel. For this
reason, we flag a plant as a minimill only if scrap steel is a large part of their inputs.
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We also use the product trailer to categorize plants. If a plant produces “Coke Oven or Blast
Furnace Products”, we flag this plant as vertically integrated. In addition, if a plant produces “Cold
Rolled Sheet Steel” before 1980, we flag this plant as vertically integrated, as minimills only started
producing cold rolled sheets in the mid-80s. For references on the changing ability of minimills to
produce sheet products, see Rogers (2009) on page 162 and chapter 8 of Hall (1997).

Plants are not always consistently coded as either minimills, vertically integrated, or rolling mills
from one year to another. Thus, we classify a plant based on its history of such flags. Specifically,
a plant is vertically integrated if it is flagged as such at least 80 percent of the time. Likewise, a
plant is assigned to the minimill category if it is flagged as such at least 80 percent of the time.

Since vertically integrated plants, as their name suggests, are typically engaged in multiple
activities, such as having an electric arc furnace and a basic oxygen furnace, along with a rolling
mill, we first flag plants as vertically integrated or not, then flag the remaining plants as minimills.
Leftover plants are assigned to be rolling mills.

A.3 Coding Products

We use the product trailer of the Census Bureau to investigate the products produced by steel
producers. We categorize products into the following types which are responsible for 93 percent
of output not categorized as “other” or “unclassified” in 1997: Hot-Rolled Steel Bar: SIC 33124,
NAICS 3311117; Hot Rolled Sheet and Strip: SIC 33123, NAICS 3311115; Cold Rolled Sheet and
Strip: SIC 33127, SIC 33167, NAICS 3312211, NAICS 3312211D; Cold Finished Bars and Bar
Shapes: SIC 33128, SIC 33168, NAICS 3312213, NAICS 331111F; Steel Ingots and Semi-Finished
Shapes: SIC 33122, NAICS 3311113; Steel Wire: SIC 33125, SIC 33155, NAICS 3312225, NAICS
3311119; Steel Pipe and Tube: SIC 33170, SIC 33177, NAICS 3312100, NAICS 331111B.

The tables below provide summary statistics of our sample, and contrast the minimill produc-
ers to the traditional vertical integrated producers. We also provide more details on the various
products of the industry.
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Table A.1: Summary Statistics for Minimills and Vertically Integrated Producers
Vertically Integrated

Mean Std. Dev. Observations
Shipments† 647 671 2,192
Value Added† 261 311 2,192
Cost of Materials† 343 369 2,192
Investment† 36 63 2,192
Assets† 690 860 1,525
Workers 3,062 3,721 2,192
Wage Per Hour 25 8 2,192

Minimills
Mean Std. Dev. Observations

Shipments† 153 178 2,687
Value Added† 61 80 2,687
Cost of Materials† 85 112 2,687
Investment† 7 17 2,687
Assets† 103 139 1,705
Workers 633 750 2,687
Wage Per Hour 25 9 2,687

Note: † In millions of 1997 dollars. The number of observations for total assets is smaller since
these are not part of the ASM after 1992.
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Table A.2: Differences between Minimills and Vertically Integrated Plants
Plant-level characteristic Premium for VI Plants

All 1963 1972 1982 1992 2002

Shipments 1.44 1.60 1.60 1.46 1.32 1.02
(0.08) (0.27) (0.25) (0.23) (0.23) (0.26)

Value Added 1.32 1.43 1.33 1.23 1.31 0.97
(0.09) (0.30) (0.26) (0.24) (0.25) (0.28)

Assets 1.68 2.11 1.88 1.88 1.46 1.17
(0.10) (0.32) (0.29) (0.27) (0.28) (0.31)

Cost of Materials 1.57 1.88 1.74 1.70 1.34 1.04
(0.08) (0.28) (0.25) (0.23) (0.24) (0.26)

Employment 1.24 1.37 1.30 1.32 1.20 0.97
(0.08) (0.26) (0.24) (0.22) (0.22) (0.25)

Shipment per worker 0.20 0.23 0.25 0.14 0.12 0.05
(0.03) (0.10) (0.09) (0.08) (0.08) (0.10)

Value Added per worker 0.08 0.06 0.03 -0.09 0.12 0.00
(0.04) (0.13) (0.11) (0.10) (0.11) (0.12)

Wage 0.06 0.04 0.07 0.14 0.00 0.07
(0.01) (0.05) (0.04) (0.04) (0.04) (0.04)

Note: Estimates display the log of the ratio of the mean for VI plants over the mean for MM plants.
Thus, 1.44 in the top left cell indicates that the average vertically integrated plant shipped 144
percent more than the average minimill or, equivalently, 4.2 times more, while a coefficient of 0
indicates that VI and MM plants have identical means. Year Controls included in each regression.
There are a total of 1499 observations in these regressions.
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Table A.3: Production by Product

Year HRS HRB CRS Ingots P&T Blast CFB Wire Other
1963 23 23 16 13 7 5 1 2 9
1967 21 23 14 13 7 5 1 2 14
1972 27 23 16 10 6 5 1 2 9
1977 26 22 17 10 8 7 1 1 8
1982 30 21 15 8 11 5 1 1 9
1987 38 20 17 8 5 3 1 1 7
1992 37 21 16 8 5 4 2 1 7
1997 35 21 17 7 6 4 2 1 7
2002 31 22 23 7 6 2 2 2 6

Note: Fraction of Industry Output Accounted for by each product: Hot-rolled steel sheet (HRS), Hot-rolled
bar (HRB), Cold-rolled sheet (CRS), Ingots and shapes, Pipe and tube (P & T), Wire, Cold-finished bars
(CFB), and coke oven and blast furnace products (Blast), Steel Wire (Wire). The one product whose
shipments fall notably over this period is steel ingots and semi-finished shapes (SISS). However, SISS are
used primarily in rolling mills to produce steel sheet and bar. Since the mid 1990’s with the development of
slab casting technologies, steel has been directly shaped into sheets at the mill.
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B Output and Input Deflators

Recovering productivity using revenue and expenditure data requires that we correct for poten-
tial price variation across plants and time, for both output and inputs. Below, we describe our
procedure.

B.1 Output price deflator

In order to guarantee that we recover productivity, ωit, using plant/product revenue data we rely
on a plant-specific output deflator. We construct this deflator using product-level revenues at the
plant level (recorded in the census data) in combination with product-level price data (from the
BLS).32

To make sure that price variation – across plants and time – is fully controlled for, we assume
the following structure: Plants charge the same markup across all their products, while markups
can flexibly vary across plants and time. The heterogeneity in markups will naturally arise if plants
are heterogeneous in their underlying productivity.

Before we derive the exact price deflator, we state explicitly what we observe in the data:
revenues (Rijt), input (Xit) and prices (Pjt).

We start out with the following production function:

Qijt = XijtΩit, (B.1)

where we are explicit about productivity only being plant-specific and not plant-product-specific.
The input bundle Xijt contains labor, intermediate inputs and capital, scaled by their corresponding
technology parameters, X = LβlKβkMβm .

Now consider plant-level revenue, which is obtained by summing product-specific revenues, and
using the production function:

Rit =
∑
j

XijtΩitPjt. (B.2)

To recover plant-level productivity from a regression of plant-level (deflated) revenues and input
use, we use:

Xijt ≡ sijtXit (B.3)

Plugging the last expression into the one for plant-level revenue, we get:

Rit = ΩitXit

∑
j

sijtPjt (B.4)

Up to sijt, which we will discuss below, everything is directly observable and, therefore, we can
recover productivity using standard estimation techniques using:

Rit∑
j sijtPjt

= XitΩit (B.5)

or in logs:

32Specifically, we use the following BLS price series: PCU331111331111: Steel; PCU3311113311111: Coke oven and
blast furnace products; PCU3311113311113: Steel ingots and semifinished products; PCU3311113311115: Hot rolled
steel sheet and strip; PCU3311113311117: Hot rolled steel bars, plates, and structural shapes; PCU3311113311119:
Steel wire; PCU331111331111B: Steel pipe and tube; PCU331111331111D: Cold rolled steel sheet and strip and
PCU331111331111F: Cold finished steel bars.
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rit − p̃it = βllit + βkkit + βmmit + ωit + εit, (B.6)

where p̃it ≡
∑

j sijtPjt is the plant-level output price deflator, and we use that the (log) input bundle
can be decomposed into labor and capital input, scaled by their corresponding output elasticity
β. The additional error term εit captures measurement error in either revenue or prices, as well as
unanticipated shocks to output.

In order to take equation (B.6) to the data, we need to take a stand on the input allocation or
what sijt is. We use revenue shares:

sijt =
Rijt∑
j Rijt

, (B.7)

which we can directly compute in our data. The use of revenue shares restricts the markups to be
the same across the products of a, potentially, multi-product plant. To see this it is useful to use
the framework of De Loecker and Warzynski (2012) to recover markups and apply it to our setting.
The markup µijt is obtained using the FOC on input X of cost minimization:

µijt = βX
Rijt

PXit sijtXit
. (B.8)

Now, using equation (B.7), we get the following expression for markups:

µijt = βX
Rit

PXit Xit
(B.9)

which highlights that µijt = µit and ∀j ∈ Ji, with Ji the set of products produced by i.
Note that the reason we need to restrict markups across products within a plant to be constant,

is because we see aggregate input use only at the plant level.33 Finally, although we directly observe
revenues for all product-plant combinations, we only observe product specific prices and assume
away the variation across plants for a given product. In our empirical analysis, we rely on both the
aggregate price index and our constructed plant-specific price index.

B.2 Input price deflator

The construction of the input price deflator is very similar to that of the output price deflator.
There are, however, a few important differences. First, we need to distinguish between our three
main input categories: labor, intermediate inputs and capital. Second, for some of the inputs, we
observe plant-level input prices, that we can directly use to construct the deflator.

B.2.1 Labor and capital

We directly observe hours worked at the plant-level. We rely on the NBER capital deflator to
correct the capital stock series. The use of an aggregate deflator implies that we assume a common
user cost of capital across plants.

B.2.2 Intermediate inputs

The data on intermediate input use is potentially the most contaminated by input price variation,
both in the cross-section and in the time series and, in particular, across the two types: VI and

33See De Loecker and Warzynski (2012) and De Loecker, Goldberg, Khandelwal, and Pavcnik (2012) for a detailed
discussion of the input allocation across products.
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MM. As discussed in the main text, both technologies use vastly different intermediate inputs or use
inputs at very different intensities. Note that the share of all intermediate inputs is not significantly
different across types, but this masks the underlying heterogeneity. Due to the very different input
use, we are concerned that the aggregate deflator does not fully capture the input price differences
across plants and time.

We construct a plant-level intermediate input price deflator in the following way. We consider
n intermediate inputs where n={Fuel (F), Electricity (E), Coal for coke (C), iron ore (I), iron and
scrap (S), Others (O)}. In the data we observe expenditures by intermediate input (ME

int) and
prices for each input n (Pnit).

The plant-level intermediate input price deflator is constructed as follows:

PMit =
∑
n

snitP
n
t (B.10)

snit =
ME
int∑

nM
E
it

(B.11)

Pnt = N−1
∑
i

Pnit . (B.12)

In words, we compute the average price for a given input n, Pnt , and weigh this by the plant’s
input share snit. This structure still assumes a common input price for all plants for a given input n,
but it recognizes that the intensity can vary across plants. In practice we compute (B.12) for all but
the Fuel and Others categories. For those two, we directly rely on the NBER Fuel Price Deflator
and the aggregate input price deflator, respectively. The other categories are a combination of
various inputs for which we do not observe reliable input price data and, therefore, we decided
to rely on the aggregate input price deflator. In terms of the log specification of the production

function mit = ln
(∑

n
ME
int

PMit

)
.

We plot our input price deflator, averaged by technology type, below and compare it to the
publicly available input price deflator – i.e., the NBER Material Price Index.

C Measuring Productivity and Markups

We briefly discuss how we estimate productivity and recover markups using our plant-level panel
on production and prices. This discussion will follow the exposition of control function estimation
of productivity in Ackerberg, Frazer, and Caves (2006).

C.1 Productivity

We take equation (4) to the data and follow the standard in the literature, relying on a plant’s
optimal investment equation to control for unobserved productivity shocks. See De Loecker and
Warzynski (2012) for more details.

Specifically, the first stage of this procedure runs output q̃it on a flexible function of inputs
(lit,mit, kit), an investment control function iit, as well as year-plant type controls. In other words:

q̃it = φψ,t(lit,mit, kit, iit) + εit. (C.1)

And productivity is recovered as ωit = φ̂it − fψ,t(Lit,Mit,Kit;β). A key component in the
estimation routine is the law of motion on productivity. In our baseline results, we stick to an
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Figure B.1: Producer Input Price Index
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exogenous Markov process given by

ωit = gψ(ωit−1, χ̂it) + ξit. (C.2)

Note that this evolution is allowed to vary for minimills and vertically integrated plants, as
we have seen in the OLS regressions that vertically integrated plants slowly catch up to minimills.
Moreover, we control for the selection effect due to the fact that we only observed productivity
conditionally on a plant remaining in the industry using the estimated propensity score of exiting
χ̂it. To the extent that vertically integrated plants are larger and thus, at an ex-ante level more
likely to remain in the industry, this will generate differential selection rules for minimills and
vertically integrated plants.

We recover estimates of the production function coefficients, β, by forming moments on this
productivity shock ξit. The identification of these coefficients relies on the rate at which inputs
adjust to these shocks. In particular, we allow both labor and capital to be dynamically chosen
inputs, whereby current values of capital (labor) do not react to current shocks to productivity
(ξit). Plants do, however, adjust their intermediate input use (scrap, energy, other material inputs)
to the arrival of a productivity shock ξit.

The exact moments will depend on the functional form we select for f(.). For our main speci-
fications, we rely on Cobb-Douglas production functions and use the following moments:

E

ξit(β)

 lit
mit−1

kit

 = 0. (C.3)

A recent literature (Ackerberg, Frazer, and Caves, 2006) has pointed out that the identification
of the variable input, the coefficient of βm in our case, relies on sufficient variation in plant-level
input prices. The coefficient on labor (capital) is identified using variation in adjustment cost and
relies on the fact that plants cannot immediately adjust their labor (capital) use to a productivity
shock. All our results are invariant to modifications of the timing assumptions discussed in the
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main text. Our approach is flexible and can allow for a variety of production functions combined
with various assumptions on the variability of inputs, as well as the use of alternative proxies such
as intermediate inputs.

C.2 Estimating Markups

Our approach to recovering markups follows De Loecker and Warzynski (2012). In the rest of
this section, we briefly review the approach. In addition to the production function we introduced
before, we only have to assume that producers active in the market minimize costs. Let Vit denote
the vector of variable inputs used by the firm. We use the vector Kit to denote dynamic inputs of
production. Any input that faces adjustment costs will fall into this category; capital is an obvious
one, but our framework allows us to also include labor.

The associated Lagrangian function is:

L(V 1
it , ..., V

V
it ,Kit, λit) =

V∑
v=1

P
v

itV
v
it + ritKit + λit(Qit −Qit(V 1

it , ..., V
V
it ,Kit, ωit)) (C.4)

where P
v

it and rit denote a firm’s input prices for a variable input v and dynamic inputs, respectively.
The first-order condition for any variable input free of adjustment costs is

∂Lft
∂V v

it

= P
v

it − λit
∂Qit(.)

∂V v
it

= 0. (C.5)

where the marginal cost of production at a given level of output is λit, as ∂Lit
∂Qit

= λit. Rearranging

terms and multiplying both sides by Vit
Qit

, generates the following expression.

∂Qit(.)

∂V v
it

V v
it

Qit
=

1

λit

P vitV
v
it

Qit
(C.6)

Cost minimization implies that optimal input demand is realized when a firm equalizes the
output elasticity of any variable input V v

it to 1
λit

P vitVit
Qit

.

Define markup µit as µit ≡ Pit
λit

. As De Loecker and Warzynski (2012) show, the cost-
minimization condition can be rearranged to write markup as:

µit = θvit(α
v
it)
−1. (C.7)

where θvit denotes the output elasticity on an input V v and αvit is the revenue share of variable input

v, defined by
P vitV

v
it

PitQit
, which is data. This expression will form the basis for our approach: We obtain

the output elasticity from the estimation of a production function and only need to measure the
share of an input’s expenditure in total sales. In particular, in our setting, θvit = βm.

In our context, the output elasticities are obtained by relying on product-specific price deflators,
and potentially leave plant-level price variation left uncontrolled for. The latter is expected to bias
the output elasticity downward and, therefore, downward-bias the level of the markup. Under
a Cobb-Douglas production technology, this has no implications for the time-series pattern of
markups and on the comparison of markups across minimills and integrated producers – as long as
the output elasticity is fixed across types.
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D Deriving decompositions

We provide more details on how we derive the various decompositions introduced in the main text.
We start with the standard aggregate productivity definition:

Ωt =
∑
i

sitωit (D.1)

where we define:

sit =
Rit∑
iRit

(D.2)

Rt =
∑
i

Rit (D.3)

and Rit is plant-level total sales.

D.1 Standard OP

Olley and Pakes show that (D.1) can be written as:

Ωit = ω̄t +
∑
i

(sit − s̄t)(ωit − ω̄t)

= ω̄t + ΓOPt

(D.4)

with Nt the number of active plants at time t and:

ω̄t = N−1
∑
i

ωit (D.5)

s̄t = N−1
∑
i

sit (D.6)

D.2 Deriving the Between covariance

We show that aggregate productivity can be decomposed in a between technology covariance com-
ponent and an average type-specific productivity component, which in itself is decomposed into
type-specific within and covariance terms.

Start from (D.1) and simply break up the sum into the two technology types, i.e. ψ =
{MM,V I}:

Ωt =
∑

i∈ψ=MM

sitωit +
∑

i∈ψ=V I

sitωit

= st(ψ = MM)
∑

i∈ψ=MM

sit
st(ψ = MM)

ωit

+ st(ψ = V I)
∑

i∈ψ=V I

sit
st(ψ = V I)

ωit

(D.7)
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The second line multiplies and divides each term by the relevant total market share of the type
in the industry, i.e. st(ψ) =

∑
i∈ψ sit.

34

The last equation can now be rewritten as another weighted sum where we now sum over two
groups: minimills and intergrated producers:

Ωt =
∑
ψ

st(ψ)Ωt(ψ) (D.8)

where

Ωt(ψ) =
∑
i∈ψ

sit
st(ψ)

ωit =
∑
i∈ψ)

sit(ψ)ωit (D.9)

The second line uses that the market share of a plant in the total industry divided by the total
type-specific market share is equal to the plant’s market share in the type’s total sales (sit(ψ)).
Formally:

sit(ψ) =
sit
st(ψ)

(D.10)

After having transformed the aggregate productivity expression into (D.8), we can rely on
the same insight as OP and decompose aggregate productivity into a unweighted average and
a covariance component. By transforming the expression using type-specific market shares we
guarantee that the plant market shares sum to one; a necessary condition for the OP decomposition.

Applying the OP decomposition idea to (D.8) gives us:

Ωt = Ω̄t(ψ) +
∑
ψ

(st(ψ)− 0.5)(Ωt(ψ)− Ω̄t(ψ))

= Ω̄t(ψ) + ΓBt

(D.11)

D.3 Within type decompositions

Starting from equation (D.11) we simply apply the OP decomposition by type ψ and use the fact
that we only have two technology types to obtain an expression for the average component:

Ω̄t(ψ) =
1

2

∑
ψ

(Ωt(ψ))

=
1

2

∑
ψ

(ω̄t(ψ) +
∑
i∈ψ

(sit(ψ)− s̄t(ψ))(ωit − ω̄t(ψ)))

=
1

2

∑
ψ

(ω̄t(ψ) + ΓOPt (ψ))

(D.12)

where we denote the average market share across a given type by s̄t(ψ) = N−1
ψ

∑
i∈ψ sit(ψ).

34The OP-decomposition relies crucially on the property that the market shares sum to one. However, if we were
to simply split the summation across the two types, we could not isolate the within covariance term. To see this,
note that

∑
ψ Ωt(ψ) 6= Ωt, due to the fact that

∑
ψ,i sit(ψ) > 1.

48



D.4 Total decomposition

To arrive at the expressions used in the main text we introduce Γt(ψ) to denote a covariance of a
given type and use superscripts B and OP to indicate whether the covariance is between or within
the type, respectively. This gives us the following total decomposition of aggregate productivity:

Ωt =
1

2

∑
ψ

[ω̄t(ψ) + ΓOPt (ψ)] + ΓBt (ψ) (D.13)

If there was no entry or exit we can then directly evaluate the share of each component by
tracking Ωt over time. We incorporate the turnover process by relying on dynamic decompositions
within a given type and can always scale the various subcomponents back to the decomposition
discussed above.
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