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ABSTRACT

We use measures of neural activity provided by functional magnetic resonance imaging (fMRI) to
test the "realization utility" theory of investor behavior, which posits that people derive utility directly
from the act of realizing gains and losses. Subjects traded stocks in an experimental market while we
measured their brain activity. We find that all subjects exhibit a strong disposition effect in their trading,
even though it is suboptimal. Consistent with the realization utility explanation for this behavior, we
find that activity in the ventromedial prefrontal cortex, an area known to encode the value of options
during choices, correlates with the capital gains of potential trades; that the neural measures of realization
utility correlate across subjects with their individual tendency to exhibit a disposition effect; and that
activity in the ventral striatum, an area known to encode information about changes in the present
value of experienced utility, exhibits a positive response when subjects realize capital gains. These
results provide support for the realization utility model and, more generally, demonstrate how neural
data can be helpful in testing models of investor behavior.
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Over the past twenty years, economists have accumulated a large amount of evidence on how 

individual investors manage their financial portfolios over time. Some of this evidence is 

puzzling, in the sense that it is hard to reconcile with the simplest models of rational trading 

(Barberis and Thaler (2003); Campbell (2006)). Theorists have responded to this challenge by 

constructing new models of investor behavior. Empiricists, in turn, have started testing these 

newly-developed models. 

Most of the empirical work that tests theories of investor behavior uses field data (Barber 

and Odean (2000); Barber and Odean (2001); Choi et al. (2009); Grinblatt and Keloharju (2009)). 

A smaller set of studies uses data from laboratory experiments. The advantage of experimental 

data is that it gives researchers a large degree of control over the trading and information 

environment, which can make it easier to tease theories apart (Plott and Sunder (1988); Camerer 

and Weigelt (1991); Camerer and Weigelt (1993); Weber and Camerer (1998); Bossaerts and 

Plott (2004); Bossaerts et al. (2007)).1 

In this paper, we show how another kind of data, namely measures of neural activity 

taken using functional magnetic resonance imaging (fMRI) while subjects trade in an 

experimental stock market, can also be very useful in testing theories of investor behavior. In 

particular, we use neural data to test the validity of the “realization utility” theory of trading, a 

theory that has been used to address several facts about investor trading behavior, including the 

so-called disposition effect. 

The disposition effect is the robust empirical fact that individual investors have a greater 

propensity to sell stocks trading at a gain relative to purchase price, rather than stocks trading at a 

loss2. This fact has attracted considerable attention because it has proven challenging to explain 

                                                        
1 While economic behavior in the laboratory may not be subject to all of the forces that apply in real 
financial markets, the predictions of any economic theory should be just as applicable inside the lab as 
outside it, especially because of the advantages of experimental control. As a result, experiments provide an 
ideal setting in which to try to falsify theories of economic behavior. 
2 See for example, Shefrin and Statman (1985); Odean (1998); Genesove and Mayer (2001); Grinblatt and 
Keloharju (2001); Feng and Seasholes (2005); Frazzini (2006); Jin and Scherbina (2011). 
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using simple rational models of trading behavior. This impasse has motivated the development of 

multiple competing alternative theories, both rational and behavioral (Shefrin and Statman 

(1985); Odean (1998); Barberis and Xiong (2009); Kaustia (2010)). The realization utility model 

(Shefrin and Statman (1985); Barberis and Xiong (2012)) is based on the assumption that, in 

addition to deriving utility from consumption, investors also derive utility directly from realizing 

gains and losses on the sale of risky assets that they own. For example, if an investor realizes a 

gain (e.g., by buying a stock at $20 and selling it at $40), he receives a positive burst of utility 

proportional to the capital gain. In contrast, if he realizes a loss (e.g., by buying a stock at $20 and 

selling it at $10), he receives a negative burst of utility proportional to the size of the realized 

loss. The presence of realization utility is important because, in combination with a sufficiently 

high time discount rate, it leads investors to exhibit a disposition effect (Barberis and Xiong 

(2012)). 

Testing for the validity of a theory such as realization utility is difficult because it, and 

other theories of investor trading, often make similar predictions about behavior (see Weber and 

Camerer (1998) for an exception). Furthermore, it is extremely difficult, using data on behavior 

alone, to carry out direct tests of the computations driving behavior (e.g., tests of whether 

potentially realizable capital gains rather than net expected values are tracked when selling).  On 

the other hand, a combination of neural measurement and careful experimental design allows for 

direct tests of the extent to which the computations made by the brain at the time of decision-

making are consistent with the mechanisms posited by different models. 

In this paper, we describe the results of an fMRI experiment designed to test the 

hypothesis that subjects experience realization utility while trading in an experimental stock 

market, and that this is associated with trading patterns consistent with the disposition effect. The 



 4

experiment allows us to test several behavioral and neural predictions of the realization utility 

hypothesis.3 

Behaviorally, we find that the average subject in our experiment exhibits a strong and 

significant disposition effect. This stands in sharp contrast to the prediction of a simple rational 

trading model in which subjects maximize the expected value of final earnings. The reason is that 

our experimental design induces positive autocorrelation in stock price changes, which, in turn, 

implies that a risk-neutral rational trader would sell losing stocks more often than winning stocks, 

thereby exhibiting the opposite of the disposition effect. The strong disposition effect displayed 

by our subjects is, however, consistent with the existence of realization utility effects.  

When taken literally as a model of the decision-making process, the realization utility 

model makes several predictions about the neural computations that should be observed at 

different points in time.  We describe these predictions in detail in the main body of the paper, but 

summarize them briefly here.  

First, the realization utility model predicts that, at the moment when a subject is making a 

decision as to whether to sell a stock, neural activity in areas of the brain that are associated with 

encoding the value of potential actions at the time of a decision should be proportional to the 

capital gain that would be realized by the trade (i.e. to the difference between the sale price and 

the purchase price). In particular, the model implies that, at the time of decision, activity in the 

ventromedial prefrontal cortex (vmPFC), an area of the brain that has been reliably shown to be 

involved in the computation of the value of the different options4, should be positively correlated 

with the capital gain or loss associated with selling a stock. 

                                                        
3 We use the word “behavioral” in two different senses. Most of the time, as in the last sentence of this 
paragraph, we take it to mean “pertaining to behavior.” Occasionally, we take it to mean “less than fully 
rational” or “psychological,” as is common in the social sciences. It should be clear from the context which 
of the two meanings is intended. 
4 The vmPFC is located at the front of the brain directly behind the bridge of the nose.  See Section II.C for 
a detailed discussion of the relevant literature on the vmPFC. 
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Second, the realization utility model predicts that, across individuals, the strength of the 

disposition effect should be correlated with the strength of the realization utility signal in the area 

of the vmPFC that computes decision values. This follows from the fact that a subject who is 

strongly influenced by realization utility should exhibit both a strong disposition effect and neural 

activity in decision value areas that reflect the computation of the associated capital gain. 

Third, the realization utility hypothesis states that realizing a capital gain generates a 

positive burst of utility, while realizing a capital loss generates a negative one. This predicts that, 

controlling for the size of the capital gain or loss, and regardless of the precise timing of the 

actual utility bursts, realizing a capital gain should increase activity in areas of the ventral 

striatum (vSt), while realizing a capital loss should decrease its activity. This is because the vSt is 

known to encode so-called reward prediction errors, which measure the change in the expected 

net present value of lifetime utility induced by new information or changes in the environment. 

Since selling a stock at a gain generates a utility burst, it also generates a change in the expected 

net present value of utility, one that should be reflected in the striatum at the moment of sale.5  

Our fMRI measurements reveal patterns of neural activity that are largely consistent with 

the three neural predictions. This provides novel and strong support for the key mechanisms at 

work in the realization utility model. Furthermore, to our knowledge, this also provides the first 

example of how neural evidence can be used to test economic models of financial decision-

making. We emphasize that the results do not imply that realization utility provides a complete 

description of the forces driving investor behavior, even in the context of our experiment. 

However, the fact that activity in the decision-making circuitry corresponds to some of the 

computations hypothesized by the realization utility model provides novel evidence in support of 

the model. It further suggests that mechanisms of this kind might also be at work in the real-world 

transactions of individual investors. 

                                                        
5 The vSt is a smaller structure compared to the vmPFC, and is located near the center of the brain.  See 
Section II.C for more details and for a discussion of the relevant literature on the vSt. 
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Using neural data to test an economic model is an unusual exercise in the field of 

economics because a common view in the profession is that models make as-if predictions about 

behavior, and are not to be taken as literal descriptions of how decisions are actually made (Gul 

and Pesendorfer (2008); Bernheim (2009)). In contrast to this view, we adopt a neuroeconomic 

approach which is based on the idea that knowledge about the computational processes that the 

brain uses to make decisions should be of central interest to economists because, since these 

processes describe the actual determinants of observed behavior, they provide valuable insights 

into the drivers of economic behavior (Camerer et al. (2005); Camerer (2007); Rustichini (2009); 

Glimcher (2010); Fehr and Rangel (2011)).  

Our study contributes to the nascent field of neurofinance, which seeks to characterize the 

computations undertaken by the brain to make financial decisions, and to understand how these 

computations map to behavior. Several early contributions are worth highlighting. Lo and Repin 

(2002) investigate the extent to which professional experience affects the emotional arousal of 

traders in stressful situations, where arousal is measured using skin conductance responses and 

changes in blood pressure. Kuhnen and Knutson (2005) measure neural responses using fMRI 

during a simple investment task and find that activity in brain regions previously associated with 

emotional processing, such as the nucleus accumbens and the insula, predict subjects’ subsequent 

willingness to take risks. Knutson et al. (2008) take these ideas further by showing that 

exogenous emotional cues (e.g., erotic pictures) can be used to affect investment behavior, and 

that these cues increase activity in the same areas that they identified in their previous study. 

More recently, Bruguier et al. (2010) show that neural fMRI measurements of the extent to which 

subjects activate brain areas associated with concrete cognitive skills, such as the ability to 

predict another person’s state of mind, might be useful in identifying which subjects would be 

successful traders, and Wunderlich et al. (2011) discover how the brain tracks correlation in an 

attempt to optimally hedge two sources of risk.  DeMartino et al. (2012) show that fMRI 

measures of activity in valuation and mentalizing (theory of mind) regions are associated with the 
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propensity to buy during experimental price bubbles.  Our paper contributes to this literature by 

showing that a combination of fMRI neural measurements and careful experimental design can be 

used to test the validity of specific economic theories of financial decision making. Our work also 

contributes more broadly to the rapidly growing field of neuroeconomics, which seeks to 

characterize the computations made by the brain in different types of decisions, ranging from 

simple choices to choices involving risk, self-control, and complex social interactions.6  

The paper is organized as follows. Section I presents some background information about 

the disposition effect and realization utility. Section II describes the experimental design and the 

predictions of the realization utility hypothesis. Section III provides a detailed description of how 

the neural predictions can be tested using fMRI. Section IV describes the results. Section V 

briefly concludes. 

 

I. Background: The Disposition Effect and the Realization Utility Model 

 Using an argument based on Kahneman and Tversky’s (1979) prospect theory, Shefrin 

and Statman (1985) predict that individual investors will have a greater propensity to sell stocks 

trading at a gain relative to purchase price, rather than stocks trading at a loss. They label this the 

“disposition effect” and provide some evidence for it using records of investor trading. More 

detailed evidence for the effect is presented by Odean (1998), who analyzes the trading activity, 

from 1987 to 1993, of 10,000 households with accounts at a large discount brokerage firm. The 

phenomenon has now been replicated in several other large databases of trading behavior.7 

It is useful to explain Odean’s (1998) methodology in more detail because we will adopt 

a similar methodology in our own analysis. For any day on which an investor in Odean’s (1998) 

sample sells shares of a stock, each stock in his portfolio on that day is placed into one of four 

                                                        
6 For recent reviews, see Fehr and Camerer (2007); Glimcher et al. (2008); Rangel et al. (2008); Bossaerts 
(2009); Kable and Glimcher (2009); Rangel and Hare (2010); Fehr and Rangel (2011); and Rushworth et 
al. (2011). 
7 See for example, Shefrin and Statman (1985); Odean (1998); Genesove and Mayer (2001); Grinblatt and 
Keloharju (2001); Feng and Seasholes (2005); Frazzini (2006); Jin and Scherbina (2011). 
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categories. A stock is counted as a “realized gain” (“realized loss”) if it is sold on that day at a 

price that is higher (lower) than the average price at which the investor purchased the shares. A 

stock is counted as a “paper gain” (“paper loss”) if its price is higher (lower) than its average 

purchase price, but it is not sold on that day. From the total number of realized gains and paper 

gains across all accounts over the entire sample, Odean (1998) computes the Proportion of Gains 

Realized (PGR): 

. 

In words, PGR computes the number of gains that were realized as a fraction of the total number 

of gains that could have been realized. A similar ratio, PLR, is computed for losses: 

. 

The disposition effect is the empirical fact that PGR is significantly greater than PLR. Odean 

(1998) reports PGR = 0.148 and PLR = 0.098. 

 While the disposition effect is a robust empirical phenomenon, its causes remain unclear. 

In particular, traditional rational models of trading have had trouble capturing important features 

of the data. Consider, for example, an information model in which investors sell stocks with paper 

gains because they have private information that these stocks will subsequently do poorly, and 

hold on to stocks with paper losses because they have private information that these stocks will 

rebound. This hypothesis is inconsistent with Odean’s finding that the average return of the prior 

winners that investors sell is 3.4% higher, over the next year, than the average return of the prior 

losers they hold on to. Another natural model involves taking into account the favorable treatment 

of losses by the tax code. However, this model also fails to explain the disposition effect because 

tax-loss selling predicts a greater propensity to sell stocks associated with paper losses. Another 

model attributes the disposition effect to portfolio rebalancing of the kind predicted by a standard 

framework with power utility preferences and i.i.d. returns. However, under this hypothesis, 

PGR =
# of realized gains

# of realized gains + # of paper gains

PLR =
# of realized losses

# of realized losses + # of paper losses
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rebalancing is the “smart” thing to do, which implies that we should observe a stronger 

disposition effect for more sophisticated investors. In contrast to this prediction, the data show 

that it is less sophisticated investors who exhibit a stronger disposition effect (Dhar and Zhu 

(2006)). 

 Researchers have also proposed behavioral economics models of the disposition effect; 

these can potentially explain the stylized facts that the rational frameworks just described cannot 

explain. One popular model assumes that investors have an irrational belief in mean-reversion 

(Odean (1998); Weber and Camerer (1998); Kaustia (2010)). If investors believe that stocks that 

have recently done well will subsequently do poorly, and that stocks that have recently done 

poorly will subsequently do well, their optimal trading strategy would lead to a disposition effect. 

We label such beliefs “irrational” because they are at odds with Odean’s (1998) finding that the 

winner stocks investors sell subsequently do well, not poorly. While the mean-reversion 

hypothesis is appealing for its simplicity, and is consistent with some evidence from psychology 

on how people form beliefs8, some studies cast doubt on its empirical validity. For example, 

Weber and Camerer (1998) ask subjects to trade stocks in an experimental stock market, and find 

that they exhibit a disposition effect in their trading. In order to test the mean-reversion 

hypothesis, they add a condition in which subjects’ holdings are exogenously liquidated at full 

value at random times, after which subjects are asked to reinvest the proceeds across stocks in 

any way they like. Note that if subjects are holding on to stocks with paper losses because of a 

belief in mean-reversion, we would expect them to re-establish their positions in these stocks. But 

in fact, they do not.9 

Another popular behavioral economics model posits that the disposition effect results 

from prospect theory preferences (Kahneman and Tversky (1979)). Prospect theory is a 

prominent theory of decision-making under risk which assumes that individuals make decisions 

                                                        
8 For a review, see Rabin (2002). 
9 Odean (1998) and Kaustia (2010) provide additional evidence that is inconsistent with the mean-reversion 
hypothesis. 
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by computing the utility of potential gains and losses. These gains and losses are measured 

relative to a reference point that is often assumed to be the status quo, and utility is concave over 

gains and convex over losses. At first sight, it appears that prospect theory preferences may be 

helpful for understanding the disposition effect. If an investor is holding a stock that has risen in 

value, he may think of it as trading at a gain. If, moreover, the concavity of the value function 

over gains induces risk aversion, this may lead him to sell the stock. Conversely, if the convexity 

of the value function over losses induces risk-seeking, the investor may be inclined to hold on to a 

stock that has dropped in value. Contrary to this intuition, Barberis and Xiong (2009) have 

recently shown that it is surprisingly difficult to derive behavior consistent with the disposition 

effect using this model. In fact, they show that an investor who derives prospect theory utility 

from the annual trading profit on each stock that he owns will often exhibit the opposite of the 

disposition effect. Further theoretical arguments against this model are provided by Kaustia 

(2010), who shows that it predicts that investors’ propensity to sell a stock depends on the 

magnitude of the embedded paper gain in a way that is inconsistent with the empirical evidence. 

 Another behavioral model of the disposition effect, and the one we focus on in this paper, 

is based on the realization utility hypothesis (Shefrin and Statman (1985); Barberis and Xiong 

(2012)). The central assumption of this model is that investors derive direct utility from realizing 

capital gains and losses on risky assets that they own: they experience a positive burst of utility 

when they sell an asset at a gain relative to purchase price, where the amount of utility depends 

on the size of the realized gain; and a negative burst when they sell an asset at a loss relative to 

purchase price, where the amount of disutility again depends on the size of the realized loss. 

Importantly, this hypothesis states that trades have a direct utility impact on investors, not just an 

indirect one through their effect on lifetime wealth and consumption.10  Barberis and Xiong 

                                                        
10 Barberis and Xiong (2012) speculate that realization utility might arise because of the way people think 
about their investing history. Under this view, some investors – in particular, less sophisticated investors -- 
do not think about their investing history in terms of overall portfolio return, but rather as a series of 
investing “episodes,” each of which is characterized by three things: the identity of the asset, the purchase 
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(2012) show that, when realization utility is linear and the time discount rate is sufficiently 

positive, a trader who maximizes the expected discounted sum of future realization utility bursts 

will exhibit a disposition effect. The intuition is simple. If an investor derives pleasure from 

realizing capital gains and, moreover, is impatient, he will be very keen to sell stocks at a gain. 

Conversely, if he finds it painful to sell stocks at a capital loss and also discounts future utility at 

a high rate, he will delay selling losing stocks for as long as possible.11   

While the realization utility hypothesis makes predictions about behavior that are 

consistent with the disposition effect, as well as with other empirical patterns12, it is based on 

assumptions that depart significantly from those of traditional models. In particular, its 

predictions rely on the assumption that utility depends not only on consumption, but also on the 

act of realizing capital gains and losses. Given the unusual nature of this assumption, it seems 

especially important to carry out direct tests of the extent to which the hypothesized source of 

utility is actually computed by subjects and affects their decisions. In the rest of the paper, we 

show how this can be done using a combination of fMRI measures of neural activity and careful 

experimental design. 

    

II. Experimental Design and Predictions 

 

                                                                                                                                                                     
price, and the sale price. “I bought GE at $40 and sold it at $70” might be one such episode, for example. 
According to this view, an investor who sells a stock at a gain feels a burst of positive utility right then 
because, through the act of selling, he is creating a positive new investing episode. Similarly, if he sells a 
stock at a loss, he experiences a burst of disutility: by selling, he is creating a negative investing episode.  

 
11 Time discounting is not a critical part of the realization utility hypothesis. The disposition effect also 
follows from realization utility combined with an S-shaped value function, as in prospect theory (Barberis 
and Xiong, 2009). Adopting this interpretation of the realization utility hypothesis would not significantly 
affect the analysis that follows. 
12  Barberis and Xiong (2012) show that realization utility can shed light on many empirical phenomena, 
not just on the disposition effect. Some of the other applications they discuss are the poor trading 
performance of individual investors, the greater volume of trading in bull markets than in bear markets, the 
individual investor preference for volatile stocks, and the low average return of volatile stocks. 
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In this section, we first describe the experimental stock market that we set up to test the 

realization utility model, and then lay out the specific behavioral and neural predictions of the 

theory that we test. 

 

A. Design 

The design of the experimental stock market builds directly on an earlier non-neural 

experiment conducted by Weber and Camerer (1998). 

Subjects are given the opportunity to trade three stocks – stock A, stock B, and stock C – 

in an experimental market. The experiment consists of two identical sessions separated by a one-

minute break. Each session lasts approximately 16 minutes and consists of 108 trials. We use t to 

index the trials within a session.13 

 At the beginning of each session, each subject is given $350 in experimental currency 

and is required to buy one share of each stock. The initial share price for each stock is $100; after 

the initial purchase, each subject is therefore left with $50. Every trial t > 9 consists of two parts: 

a price update and a trading decision, each of which corresponds to a separate screen that the 

subject sees (Figure 1). In the price update part, one of the three stocks is chosen at random and 

the subject is shown a price change for this stock. Note that stock prices only evolve during the 

price update screens; as a result, subjects see the entire price path for each stock. In the trading 

part, one of the three stocks is again chosen at random and the subject is asked whether he wants 

to trade the stock. Note that no new information is revealed during this part.  

We split each trial into two parts to temporally separate different computations associated 

with decision-making. At the price update screen, subjects are provided with information about a 

change in the price of one of the three stocks, but do not have to compute the value of buying or 

selling the stock, both because they are not allowed to make decisions at this stage, but also 

                                                        
13 We split our experiment into two sessions in order to avoid running the fMRI machine for too long 
without a break, as this could lead to potential medical risks for the subjects.  
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because they do not know which of the three assets will be selected for trading in the next screen. 

At the trading screen the opposite situation holds: subjects need to compute the value of buying or 

selling a stock, but do not need to update their beliefs about the price process since no new 

information about prices is provided. 

Trials 1 through 9 consist only of a price update stage; i.e., subjects are not given the 

opportunity to buy or sell during these trials. This initial set of trials was added to allow subjects 

to accumulate information about the three stocks before having to make any trading decisions. 

 Each subject is allowed to hold a maximum of one share and a minimum of zero shares 

of each stock at any point in time. In particular, short-selling is not allowed. The trading decision 

is therefore reduced to deciding whether to sell a stock (conditional on holding it), or deciding 

whether to buy it (conditional on not holding it). The price at which a subject can buy or sell a 

stock is given by its current market price. 

 The price path of each stock is governed by a two-state Markov chain with a good state 

and a bad state. The Markov chain for each stock is independent of the Markov chains for the 

other two stocks. Suppose that, in trial t, there is a price update for stock i. If stock i is in the good 

state at that time, its price increases with probability 0.55 and decreases with probability 0.45. 

Conversely, if it is in the bad state at that time, its price increases with probability 0.45 and 

decreases with probability 0.55. The magnitude of the price change is drawn uniformly from {$5, 

$10, $15}, independently of the direction of the price change. 

 The state of each stock changes over time in the following way. Before trial 1, we 

randomly assign a state to each stock. If the price update in trial t >1 is not about stock i, then the 

state of stock i in trial t remains the same as its state in the previous trial, t-1. If the price update in 

trial t >1 is about stock i, then the state of stock i in this trial remains the same as in trial t-1 with 

probability 0.8, but switches with probability 0.2. In mathematical terms, if is si,t ∈ {good, bad}



 14

the state of stock i in trial t, then  if the time t price update is not about stock i, whereas 

if the time t price update is about stock i, the state switches as follows: 

 

The states of the stocks are never revealed to the subjects: they have to infer them from the 

observed price paths. To ease comparison of trading performance across subjects, the same set of 

realized prices is used for all subjects. 

A key aspect of our design is that, conditional on the information available to subjects, 

each of the stocks exhibits positive short-term autocorrelation in its price changes. If a stock 

performed well on the last price update, it was probably in a good state for that price update. 

Since it is highly likely (probability 0.8) to remain in the same state for its next price update, its 

next price change is likely to also be positive. 

 At the end of each session, we liquidate subjects’ holdings of the three stocks and record 

the cash value of their position. We give subjects a financial incentive to maximize the final value 

of their portfolio at the end of each session. Specifically, if the total value of a subject’s cash and 

risky asset holdings at the end of session 1 is $X, in experimental currency, and the total value of 

his cash and risky asset holdings at the end of session 2 is $Y, again in experimental currency, 

then his take-home pay in actual dollars is 15 + (X+Y)/24.14 Subjects’ earnings ranged from 

$43.05 to $57.33 with a mean of $52.57 and a standard deviation of $3.35. 

 In order to avoid liquidity constraints, we allow subjects to carry a negative cash balance 

in order to purchase a stock if they do not have sufficient cash to do so at the time of a decision. If 

a subject ends the experiment with a negative cash balance, this amount is subtracted from the 

terminal value of his portfolio. The large cash endowment, together with the constraint that 

                                                        
14 In other words, we average X and Y to get (X+Y)/2, convert the experimental currency to actual dollars 
using a 12:1 exchange rate, and add a $15 show-up fee. 

si,t = si,t−1

 si,t+1=good si,t+1=bad 
si,t=good 0.8 0.2 
si,t=bad 0.2 0.8 
 



 15

subjects can hold at most one unit of each stock at any moment, was sufficient to guarantee that 

no one ended the experiment with a negative portfolio value, or was unable to buy a stock 

because of a shortage of cash during the experiment. 

N=28 Caltech subjects participated in the experiment (22 male, age range 18 – 60, std. of 

age: 7.6).15 All subjects were right-handed and had no history of psychiatric illness, and none 

were taking medications that interfere with fMRI. The exact instructions given to subjects at the 

beginning of the experiment are included in the Appendix. The instructions carefully describe the 

stochastic structure of the price process, as well as all other details of the experiment. Subjects 

were not explicitly told that there was short-term positive autocorrelation in the stock price 

changes. However, they were given details regarding the Markov chain governing the stock price 

paths before the experiment, and so they had sufficient information to infer the positive 

autocorrelation.  Before entering the scanner, the subjects underwent a practice session of 25 

trials to ensure familiarity with the market software. 

Note that there is a straightforward way to measure the extent to which a subject exhibits 

a disposition effect in his trading. We simply adapt Odean’s (1998) methodology, described in 

Section I, in the following way. Every time a subject faces a decision about selling a stock, we 

classify his eventual action as a paper gain (loss) if the stock’s current price is above (below) the 

purchase price and he chooses not to sell; and as a realized gain (loss) if the stock’s current price 

is above (below) the purchase price and he chooses to sell. We then count up the number of paper 

gains, paper losses, realized gains, and realized losses over all selling decisions faced by the 

subject and compute the PGR and PLR measures described earlier. We assign the subject a 

disposition effect measure of PGR-PLR. When this measure is positive (negative), the subject 

exhibits (the opposite of) a disposition effect. 

 

                                                        
15 One additional subject participated in the experiment but was excluded from further analyses because his 
head motion during the scanning exceeded a pre-specified threshold, thereby interfering with the reliability 
of the neural measurements. 
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B. Optimal trading strategy 

 We now characterize the optimal trading strategy for a risk-neutral Bayesian investor 

who is maximizing the expected value of his take-home earnings – from now on, we refer to this 

investor as an “expected value” investor. The optimal strategy for this investor is to sell (or not 

buy) a stock when he believes that it is more likely to be in the bad state than in the good state; 

and to buy (or hold) the stock when he believes that it is more likely to be in the good state.  

Formally, let  be the price of stock i in trial t, after any price update about the stock, and let 

 be the probability that a Bayesian investor, after seeing the 

price update in trial t, would assign to stock i being in the good state in trial t. Also, let zt take the 

value 1 if the price update in trial t indicates a price increase for the stock in question; and -1 if 

the price update indicates a price decrease. Then  if the price update in trial t was not 

about stock i; but if the price update in trial t was about stock i, then: 

(1) 

 

 

 

The optimal strategy for an expected value investor is to sell (if holding) or not buy (if not 

holding) stock i in trial t when ; and to hold or buy it otherwise. 

 Note that a trader who follows the optimal strategy described above will exhibit the 

opposite of the disposition effect. If a stock performed well on the last price update, it was 

probably in a good state for that price update. Since it is very likely to remain in the same state 

for its next price update, its next price change is likely to also be positive. The optimal strategy 

therefore involves selling winner stocks relatively rarely, and losing stocks more often, thereby 

generating the reverse of the disposition effect. 

pi,t

qi,t = Pr(si,t = good | pi,t, pi,t−1,..., pi,1)

qi,t = qi,t−1

qi,t < 0.5

qi,t (qi,t−1, zt ) =
Pr(zt | si,t = good)* Pr(si,t = good | qi,t−1)

qi,t−1 Pr(zt | si,t−1 = good)+ (1− qi,t−1)Pr(zt | si,t−1 = bad)

=
(0.5 + 0.05zt )*[0.8*qi,t−1 + 0.2 *(1− qi,t−1)]

qi,t−1[0.8* (0.5 + 0.05zt )+ 0.2 *(0.5− 0.05zt )]+ (1− qi,t−1)[0.2 *(0.5+ 0.05zt )+ 0.8*(0.5− 0.05zt )]
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 Of course, it is difficult for subjects to do the exact calculation in equation (1) in real time 

during the experiment. However, it is relatively straightforward for subjects to approximate the 

optimal strategy: they need simply keep track of each stock’s most recent price changes, and then 

hold on to stocks that have recently performed well while selling stocks that have recently 

performed poorly. The fact that a stock’s purchase price is reported on the trading screen makes it 

particularly easy to follow an approximate strategy of this kind: subjects can simply use the 

difference between the current market price and the purchase price as a proxy for the stock’s 

recent performance.16 

  

C. Behavioral and neural predictions of the realization utility model 

 We now lay out the behavioral and neural predictions of the realization utility model, and 

contrast them with the predictions of the expected value model which assumes a risk-neutral 

optimal Bayesian decision-maker. The realization utility model we have in mind is one where, as 

in Barberis and Xiong (2012), realization utility has a linear functional form, the time discount 

rate is strongly positive, and the agent maximizes the discounted sum of current and future 

expected realization utility flows. 

 Consider the behavioral predictions first. During the instruction session, subjects were 

given the structure of the data generating process for stock prices. From this, it is straightforward 

to infer that price changes are positively autocorrelated. In such a market, an expected value 

investor will exhibit the opposite of the disposition effect: for the actual price process that our 

subjects see, the value of the PGR-PLR measure under the optimal trading strategy for an 

expected value investor is -0.76. In other words, this investor will have a much greater propensity 

                                                        
16 Our rational benchmark assumes risk-neutrality because the monetary risk in our experiment is small. We 
have also considered the case of risk aversion, however, and have concluded that its predictions do not 
differ significantly from those of risk neutrality. In some frameworks, risk aversion can generate a 
disposition effect through rebalancing motives. This is not the case in our experiment, however, because 
the volatility of stock price changes is independent of the level of the stock price. Furthermore, any 
rebalancing motives would be of second-order importance relative to time variation in the mean stock 
return. 
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to realize losses than to realize gains. By contrast, a trader who experiences bursts of realization 

utility and who discounts future utility at a high rate will sell winner stocks more often than the 

expected value trader and loser stocks less often. After all, he is keen to realize capital gains as 

soon as possible and to postpone realizing capital losses for as long as possible. Recall that the 

disposition effect is simply the statement that PGR-PLR>0; this statement is consistent with the 

realization utility hypothesis and not with the expected value model.  Our first prediction is as 

follows. 

 

Prediction 1 (Behavioral): For an expected value investor, the value of the PGR-PLR measure is 

given by -0.76. On the other hand, for the realization utility investor, the value of PGR-PLR is 

greater than -0.76. 

 

 We now turn to the neural predictions of the expected value and realization utility 

models. As noted earlier, a key goal of the paper is not only to test the behavioral predictions of 

these models, but also to test if the models’ basic assumptions are consistent with the 

computations that subjects actually make during the choice process. 

 The neural predictions build on a basic finding from the field of decision neuroscience. A 

sizable number of studies have found evidence consistent with the idea that, in simple choice 

situations, the brain makes decisions by assigning values (often called “decision values”) to the 

options under consideration, and then comparing them to make a choice. These value signals are 

thought to reflect the relative value of getting the option under consideration versus staying with 

the status quo. In the context of our experiment, during selling decisions this variable would 

reflect the value of selling a stock versus keeping it, while during a buying decision it would 

reflect the value of getting the stock versus not buying it. A substantial body of work has shown 
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that, in particular, activity in an area of the ventromedial prefrontal cortex (vmPFC) reliably 

encodes decision value computations at the time of choice. 17 

 Since this finding is critical to our analysis, it is important to summarize the key lines of 

evidence that support it. First, activity in the vmPFC reliably correlates with behavioral measures 

of the value of the objects of choice, across a wide class of stimuli and choice paradigms, and 

regardless of whether the object is actually chosen or not.18  Second, additional studies have 

shown that the activity in these areas of the vmPFC is more likely to be associated with the 

computation of value than with alternative signals that are often correlated with values, but are 

distinct from them. For example, Plassmann et al. (2010) rule out that the vmPFC responses can 

be attributed to confounding anticipatory emotions or anticipatory emotion signals, and also show 

that these responses cannot be attributed to attentional, motor, or saliency signals.  Litt et al. 

(2011) carry out an additional test that also rules out the interpretation of vmPFC activity as 

attentional, motor, or saliency signals, but show that activity in many other areas of the brain that 

has often been interpreted as a putative value signal (e.g., anterior insula activity) actually fits 

these alternative descriptions better.19  Third, patients with lesions in their vmPFC exhibit 

impairments in decision-making (such as an increase in the the inconsistency of their choices, 

such as GARP violations) that has been widely interpreted as causal evidence for the role of 

vmPFC decision value signals in choice ((Fellows and Farah (2007); Camille et al. (2011); 

Camille et al. (2011)). Taken together, these findings provide strong support for the view, now 

                                                        
17 See, for example, Hsu et al. (2005); Padoa-Schioppa and Assad (2006); Kable and Glimcher (2007); 
Knutson et al. (2007); Tom et al. (2007); Hare et al. (2008); Kennerley et al. (2008); Chib et al. (2009); 
Hare et al. (2009); Hsu et al. (2009); Hare et al. (2010); Levy et al. (2010); Rangel and Hare (2010); Litt et 
al. (2011). 
18 The evidence on this point is extensive: Kable and Glimcher (2007); Plassmann et al. (2007); Tom et al. 
(2007); Hare et al. (2008); Boorman et al. (2009); Chib et al. (2009); De Martino et al. (2009); FitzGerald 
et al. (2009); Hare et al. (2009); Peters and Buchel (2009); Talmi et al. (2009); Basten et al. (2010); Hare et 
al. (2010); Plassmann et al. (2010); Prevost et al. (2010); Smith et al. (2010); Tusche et al. (2010); 
Wunderlich et al. (2010); Hare et al. (2011); Hare et al. (2011); Levy and Glimcher (2011); Lim et al. 
(2011); Litt et al. (2011); Park et al. (2011); Hutcherson et al. (2012); Janowski et al. (2012); Kahnt et al. 
(2012); Lin et al. (2012); Sokol-Hessner et al. (2012).   
19 Roesch and Olson (2004) report similar findings using neurophysiology data from monkeys. 
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widely held in neuroscience,20 that vmPFC responses at the time of choice encode valuation 

signals for the different stimuli for the purpose of guiding choice.21  

The first two neural predictions involve comparing the decision value signals that we 

observe in the vmPFC to the decision value signals that would be predicted by the realization 

utility model and by the expected value model. To see the restrictions implied by these two 

theories, consider the decision value signal that would be computed at the time of making a 

selling decision by an individual who makes choices according to the expected value model. In 

the context of our experiment, the decision value of selling a stock is given by the value of selling 

the stock minus the value of holding it. For the expected value investor, the value of selling the 

stock is zero: if he sells it, he will no longer own any shares of it, and so it can no longer generate 

any value for him. In contrast, the value of holding the stock can be approximated by the stock’s 

expected price change on its next price update: 

 

        

It follows that the decision value signal at the time of making a selling decision is given by 

0-0.6(2qi,t-1), or 0.6(1-2qi,t); we will refer to this quantity throughout the paper as the net expected 

value of selling, or NEV.  Note that this is only an approximation because the exact value of 

holding a stock is the stock’s expected cumulative price change until the subject decides to sell it. 

However, this approximation has little effect on our later results because the value of holding a 

stock until its next price change is highly correlated with the value of holding the stock until it is 

actually optimal to sell it (the latter quantity can be computed by simulation). 

                                                        
20 See Rangel and Hare (2010); Grabenhorst and Rolls (2011); Wallis (2011); Levy and Glimcher (2012); 
Rangel and Clithero (Forthcoming); Rushworth et al. (In press). 
21 Some fMRI studies that look for neural correlates of value at the time of choice have also found such 
correlations in areas like the posterior cingulate cortex, the dorsolateral prefrontal cortex, the insula, and the 
ventral striatrum (vSt). There are two important differences with the vmPFC, however. First, activity in all 
of these other areas is correlated with decision values in some studies but not in others, whereas the vmPFC 
value signals are always present (except for studies in which the scanning parameters are not optimized to 
carry out measurements in this area, which is especially difficult to image well). Second, the additional 
tests described above (which are needed to make sure that the signals are really decision values, and not 
correlated but distinct variables) have not been carried out in these areas. As a result, the computational 
basis of these areas in the process of making a decision remains an open question. 

Et[∆pi,t+1 | qi,t,  ∆pi,t+1 ≠ 0] = 0.6(2qi,t −1).
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 Now consider the decision value signal that would be computed at the time of making a 

selling decision by an individual who makes choices according to the realization utility model. In 

particular, consider a simple form of the model in which subjects maximize the sum of expected 

discounted realized capital gains and losses. For such a trader, the value of selling is linearly 

proportional to the capital gain or loss, given by , where c is the purchase price, or cost 

basis. However, the expected impact of holding the stock on realization utility is approximately 

zero, as long as the discount rate is sufficiently high. Thus, for such an investor, the decision 

value of selling should be linearly related to .22   This, together with the fact that decision 

value signals have been found to be reliably encoded in the vmPFC, leads to the next prediction.  

 

Prediction 2 (Neural): For expected value traders, activity in the areas of the vmPFC associated 

with the computation of decision value should be linearly proportional to the NEV (given by 

0.6(1-2qi,t)) at the time of making selling decisions, and thus independent of the cost basis. In 

contrast, for subjects who experience realization utility proportional to realized capital gains and 

losses, activity in these areas of the vmPFC should be linearly related to the realizable gain or 

loss, . 

 

                                                        
22 We say that the value of holding a stock is “approximately” zero for a realization utility investor 
because, in principle, there is some value to holding, namely expected future realization utility flows. 
However, under the realization utility hypothesis, the trader is essentially myopic – he discounts future 
utility flows at a high rate. To a first approximation, then, the value of holding is zero. It may initially seem 
surprising that a subject would discount future utility at a high rate in the context of a 30-minute 
experiment. However, the literature on hyperbolic discounting suggests that discounting can be steep even 
over short intervals, perhaps because people distinguish sharply between rewards available right now, and 
rewards available at all future times. Furthermore, what may be important in our experiment is not so much 
calendar time, as transaction time. A subject who can trade stock B now may view the opportunity to trade 
it in the future as a very distant event -- one that is potentially dozens of screens away – and hence one that 
he discounts heavily. Finally, we note that discounting is not a critical part of our hypothesis. The 
disposition effect also follows from a model that combines realization utility with an S-shaped utility 
function, as in prospect theory. To a first approximation, this model would produce the same decision value 
as the discounting-based model. The reason is that, under an S-shaped utility function, the utility of selling 
a stock at a gain (loss) immediately is significantly higher (lower) than the expected utility of holding on to 
it. 

pi,t − c

pi,t − c

pi,t − c
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The previous arguments predict that subjects who place a larger weight on realization utility when 

making decisions should exhibit neural activity in the vmPFC that is more strongly correlated 

with the realizable capital gain or loss. At the same time, subjects with a larger weight on 

realization utility when making decisions should also exhibit a stronger disposition effect. It 

follows that the degree to which vmPFC activity correlates with the realizable capital gain should 

be correlated, across subjects, with the strength of the disposition effect that is observed in their 

trading. 

 

Prediction 3 (Neural): The degree to which vmPFC activity correlates with the realizable capital 

gain should be correlated, across subjects, with the strength of the disposition effect in their 

trading. 

 

The final neural prediction is qualitatively different, in that it seeks to test directly if 

subjects experience bursts of realization utility that are proportional to the realized capital gains. 

One difficulty in testing this prediction is that, while the theory of realization utility says that the 

trader receives a utility burst at the moment of trade, it is hard to know, in practice, when exactly 

this burst occurs. For example, in our context, does it occur at the moment the subject presses a 

button to indicate his decision, or does it occur a little later when he reflects on the trade? 

Moreover, it is unclear what the duration of the burst is, in practice. In fact, the realization utility 

model leads to identical predictions under all of these variations of the utility burst, provided that 

the net present value of the utility burst is held constant. This makes it very difficult to test the 

model by looking for neural markers of the hedonic response, since we do not know when exactly 

to look for them. 

Fortunately, however, an idea from computational neuroscience comes to the rescue. A 

sizable body of work has shown that an area of the brain called the ventral striatum (vSt) 
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computes a quantity known as a prediction error in response to new information23. The prediction 

errors measure the change in the expected net present value of utility before and after the news, 

taking into account all sources of utility. They are positive if the news indicates an improvement 

in the expected net present value of utility, and negative otherwise. Importantly, they reflect the 

change in discounted utility, but are insensitive to the precise timing of the hedonic impact of the 

news. This is useful because it means that we can test for hedonic effects associated with the 

realization of capital gains and losses by looking for a burst of activity in the vSt consistent with 

the change in utility that they generate. In short, when a trader sells a stock, this is associated with 

a utility burst; while we do not know the exact timing or duration of the burst, we do know that it 

generates a change in the expected net present value of utility, one that should be reflected at the 

moment of sale in the prediction error computed by the vSt. 

 

Prediction 4 (Neural): Under the realization utility hypothesis, neural responses in the area of the 

vSt known to encode prediction errors should increase at the precise moment that individuals 

decide to realize a capital gain, and decrease at the moment they decide to realize a capital loss.  

 

III. fMRI data collection and analysis  

 

In this section, we describe how the fMRI measures of neural activity were collected and 

analyzed. The section contains enough detail to serve as a brief primer on the subject to those 

unfamiliar with fMRI. For more details, see Huettel et al. (2004), Ashby (2011), and Poldrack et 

al. (2011). 

 

A. fMRI data collection and measurement 

                                                        
23 See, for example, Schultz et al. (1997); McClure et al. (2003); O'Doherty et al. (2003); Bayer and 
Glimcher (2005); Pessiglione et al. (2006); Hare et al. (2008); Caplin et al. (2010); Glascher et al. (2010); 
Daw et al. (2011); Lin et al. (2012). 
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We collected measures of neural activity over the entire brain using BOLD-fMRI, which 

stands for blood-oxygenated level dependent functional magnetic resonance imaging. BOLD-

fMRI measures changes in local magnetic fields that result from the local inflows of oxygenated 

hemoglobin and outflows of de-oxygenated hemoglobin that occur when neurons fire. fMRI 

provides measures of the BOLD response of relatively small “neighborhoods” of brain tissue 

known as voxels, and is thought to measure the sum of the total amount of neural firing into that 

voxel as well as the amount of neuronal firing within the voxel. 24 

One important complication is that the hemoglobin responses measured by BOLD-fMRI 

are slower than the associated neuronal responses. Specifically, although the bulk of the neuronal 

response takes place quickly, BOLD measurements are affected for up to 24 seconds thereafter. 

Figure 2A provides a more detailed illustration of the nature of the BOLD response. The top 

panel depicts the path of the BOLD signal in response to one (arbitrary) unit of neural activity of 

infinitesimal duration at time zero. The function plotted here is called the canonical hemodynamic 

response function (HRF). It is denoted by h(τ), where τ is the amount of time elapsed since the 

neural activity impulse, and has been shown to approximate well the pattern of BOLD responses 

for most subjects, brain areas, and tasks. 

Fortunately, there is a standard way of dealing with this complication. In particular, the 

BOLD response has been shown to combine linearly across multiple sources of neural activity 

(Boynton et al. (1996)). This property, along with knowledge of the specific functional form of 

the HRF, allows us to construct a mapping from predicted neural activity to predicted BOLD 

responses. Specifically, if the predicted level of neural activity at any particular time is given by 

a(t), then the level of BOLD activity at any instant t is well approximated by  

 

   ���� = � ℎ���	�� − �����

 , 

                                                        
24 Note that the neural activity measured by fMRI in a 1-mm3 cube (about the size of a grain of salt) 
represents the joint activity of between 5,000 to 40,000 neurons, depending on the area of the brain. 
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which is the convolution between the HRF and the neural inputs. The integral can be interpreted 

in a straightforward way: it is simply a lagged sum of all the BOLD responses triggered by 

previous neural activity. The properties of the BOLD response are illustrated in Figure 2B, which 

depicts a hypothetical path of neural activity (solid line), together with the associated BOLD 

response (dashed line). 

 During our experiment, we acquired two types of MRI data in a 3.0 Siemens Tesla Trio 

MRI scanner with an eight-channel phased array coil. First, we acquire BOLD-fMRI data while 

the subjects perform the experimental task with a voxel size of 3 mm3. We acquire this data for 

the entire brain (~ 100,000 voxels) every 2.75 seconds.25 We also acquire high-resolution 

anatomical scans that we use mainly for realigning the brains across subjects and for localizing 

the brain activity identified by our analyses.26 

 

B. fMRI data pre-processing 

 

Before the BOLD data can be analyzed to test our hypotheses, it has to be converted into 

a usable format. This requires the following steps, which are fairly standard – see Huettel et al. 

(2004), Ashby (2011), and Poldrack et al. (2011)  – and which were implemented by way of a 

specialized but commonly-used software package called SPM5 (Wellcome Department of 

Imaging Neuroscience, Institute of Neurology, London, UK). 

                                                        
25 More precisely, we acquired gradient echo T2*-weighted echoplanar (EPI) images with BOLD contrast. 
To optimize functional sensitivity in the orbitofrontal cortex (OFC), a key region of interest, we acquired 
the images in an oblique orientation of 30° to the anterior commissure–posterior commissure line 
(Deichmann et al. (2003)).  Each volume of images had 45 axial slices.  A total of 692 volumes were 
collected over two sessions. The imaging parameters were as follows: echo time, 30 ms; field of view, 192 
mm; in-plane resolution and slice thickness, 3mm; repetition time, 2.75 s. 
26 More precisely, we acquired high-resolution T1-weighted structural scans (1 x 1 x 1 mm) for each 
subject. These were coregistered with their mean EPI images and averaged across subjects to permit 
anatomical localization of the functional activations at the group level. 
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First, we correct for slice acquisition time within each voxel. This is necessary because 

the scanner does not collect data on all brain voxels simultaneously. This simple step, which 

involves a non-linear interpolation, temporally realigns the data across all voxels.  

Second, we correct for head motion to ensure that the time series of BOLD measurements 

recorded at a specific spatial location within the scanner is always associated with the same brain 

location throughout the experiment.27 

 Third, we realign the BOLD responses for each individual into a common 

neuroanatomical frame (the standard Montreal Neurological Institute EPI template). This step, 

called spatial normalization, is necessary because brains come in different shapes and sizes; as a 

result, a given spatial location maps to different brain regions in different subjects. Spatial 

normalization involves a nonlinear reshaping of the brain to maximize the match with a target 

template.  Although the transformed data are not perfectly aligned across subjects due to 

remaining neuroanatomical heterogeneity, the process suffices for the purposes of most studies. 

Furthermore, any imperfections in the realignment process introduce noise that reduces our 

ability to detect neural activity of interest. 

 Fourth, we also spatially smooth the BOLD data for each subject by making BOLD 

responses for each voxel a weighted sum of the responses in neighboring voxels, with the weights 

decreasing with distance.28 This step ensures that the error structure of the data conforms to the 

normality assumptions about the error structure of the regression models that we will later use to 

test our hypotheses (Huettel et al. (2004); Poldrack et al. (2011)). 

                                                        
27 BOLD measurements were corrected for head motion by aligning them to the first full brain scan and 
normalizing to the Montreal Neurological Institute’s EPI template.  This entails estimating a six-parameter 
model of the head motion (three parameters for center movement, and three parameters for rotation) for 
each volume, and then removing the motion using these parameters.  For details, see Friston et al. (1996). 
28 Spatial smoothing was performed using an 8 mm full-width half-maximum Gaussian kernel. Essentially, 
this step entails replacing every measurement at every voxel with a weighted sum of the measurements in a 
neighborhood centered on the voxel, and using weights that are given by the Gaussian kernel. 
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 Finally, we remove low-frequency signals that are unlikely to be associated with neuronal 

responses to individual trials.29 An example of such a signal is the effect of a continuous head 

movement over the course of the experiment that is not fully removed by the second correction 

step described above. 

 

 
C. fMRI main data analyses 

The key goals of our analysis are to test if the region of the vmPFC that has been 

repeatedly shown to encode decision values at the time of choice exhibits activity consistent with 

Predictions 2 and 3; and if the area of the vSt known to encode prediction errors at the time of 

receiving utility-relevant news exhibits activity consistent with Prediction 4. To do this, we run 

statistical tests to see if there are areas within these regions of the brain, given by collections of 

spatially contiguous voxels called clusters, where the BOLD response reflects neural activity that 

implements the computations of interest (e.g., realization utility computations). This is 

complicated by the fact that, since every voxel contains thousands of neurons, the BOLD 

responses in a voxel can be driven by multiple signals. Fortunately, the linear properties of the 

BOLD signal allow for the identification of the neural signals of interest using standard linear 

regression methods. 

 The general statistical procedure is straightforward, and will be familiar to most 

economists (see Figure 3 for a summary). The analysis begins by specifying two types of 

variables that might affect the BOLD response: target computations and additional controls. The 

target computations reflect the signals that we are looking for (e.g., a realization utility signal at 

the time of selling a stock). They are specified by a time series si(t) describing each signal of 

interest. For each of these signals, let Si(t) denote the time series that results from convolving the 

                                                        
29 Specifically, we applied a high-pass temporal filter to the BOLD data with a cut-off of 128 seconds. 
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signal si(t) with the HRF, as described above30. The additional controls, denoted by cj(t), are other 

variables that might affect the BOLD time series (e.g., residual head movement or time trends). 

These are introduced to further clean up the noise inherent in the BOLD signal, but are not 

explicitly used in any of our tests. The control variables are not convolved with the HRF because 

they reflect parameters that affect the measured BOLD responses, and not neural activity that 

triggers a hemodynamic response.31 

 The linearity of the BOLD signal implies that the level of BOLD activity	�� ���  in any 

voxel v at time � should be given by 

	�� ��� = constant + ∑ ��������� + ∑ �������� + ����� , 

 

where ���� denotes AR(1) noise. This model is estimated independently in each of the voxels that 

fall within the relevant region of interest (the vmPFC for Predictions 2 and 3, and the vSt for 

Prediction 4). 

 Our hypotheses can then be restated as tests about the coefficients of this regression 

model: signal i is said to be associated with activity in voxel v only if ��� is significantly different 

from zero. 

 Two additional considerations apply to most fMRI studies, including this one.  First, we 

are interested in testing hypotheses about the distribution of the signal coefficients in the 

population of subjects, not hypotheses about individual coefficients. This would normally require 

estimating a random effects version of the linear model specified above which, given the size of a 

typical fMRI dataset, is computationally intensive. Fortunately, it has been shown that there is a 

straightforward shortcut that provides a good approximation to the full mixed effects analysis 

                                                        
30 In all analyses, we assume that anytime si(t) takes on a non-zero value, it does so for an infinitesimal 
duration.  
31 For example, linear trends are often included because the scanner heats up with continuous operation and 
this induces a linear change in the measured BOLD responses. 
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(Penny et al. (2006)).  It involves estimating the parameters separately for each individual subject, 

averaging them across subjects, and then performing t-tests. This is the approach we follow here. 

 Second, since our tests are carried out in each of the voxels in the relevant regions of 

interest (429 voxels for the vmPFC, and 68 for the vSt), there is a concern about false-positives. 

To address this problem, we correct for multiple comparisons within the relevant region of 

interest, a procedure known in the fMRI literature as a small volume correction (SVC). We report 

results as significant if they pass SVC correction at a level of p<0.05.32  

 As noted earlier, we will conduct our tests in an area of the vmPFC that, in prior work, 

has been linked to the computation of decision values; and also in an area of the vSt that has been 

linked to the computation of prediction errors. Specifically, for the vmPFC region of interest, we 

construct a sphere with a 15 mm radius around the coordinates (MNI-space, x=3, y=36, z=-18) 

that were found to exhibit peak correlation with decision values at the time of choice in 

Plassmann et al. (2010), and then intersect this sphere with an anatomical mask of the vmPFC33.  

For the vSt region of interest, we construct a sphere with a 15 mm radius around the coordinates 

(MNI-space, x = -15, y=6, z=-12) that were found to exhibit peak correlation with prediction 

errors in Lin et al. (2012), and then intersect this sphere with an anatomical mask of the vSt34. As 

discussed in Section II, many studies have found very similar results; it is therefore not crucial 

which exact papers are used to define the regions of interest (so long as the radii of the spheres 

are sizable, as they are here). 

 

IV. Results 

                                                        
32 Specifically, we report results as significant if voxels within the pre-specified ROI pass p<0.001 
uncorrected with a 15 voxel extent threshold and if they pass SVC with a family-wise error rate of less than 
0.05.    
33 The vmPFC anatomical mask was identified using the AAL digital atlas of the human brain (Tzourio-
Mazoyer et al. (2002)) and includes the rectus, the orbital part of the superior frontal gyrus, and the orbital 
part of the middle frontal gyrus. 
34 The anatomical mask of vSt is taken from Chib et al. (2012), and is comprised of the nucleus accumbens 
and the ventral putamen. 
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A. Test of Behavioral Prediction 1 

 We begin our test of Prediction 1 by computing the strength of the disposition effect for 

each subject using the PGR-PLR measure described at the end of Section IIA. We find that the 

average PGR and PLR across subjects are 0.412 and 0.187, respectively. This implies an average 

PGR-PLR value of 0.225, which is significantly greater than 0 (p<0.001, in a two-tailed t-test 

against 0). In other words, not only is the average value of PGR-PLR significantly greater than 

the expected value benchmark of -0.76, but it is actually significantly positive. These results are 

inconsistent with the hypothesis that our subjects are all expected value investors, but are 

consistent with the hypothesis that some of them are influenced by realization utility. 

 Figure 4 depicts tests of Prediction 1 at the individual level. Each vertical bar shows the 

value of PGR-PLR for a particular subject. The horizontal dashed line near the bottom of the 

figure marks the -0.76 value of PGR-PLR that corresponds to an expected value investor. The 

figure shows that every subject exhibits a disposition effect greater than -0.76. The hypothesis 

that the average disposition effect is not different from -0.76 is rejected with a t-statistic of 

16.52.35 

The figure also shows that there is significant heterogeneity in the strength of the 

disposition effect across subjects: the value of PGR-PLR ranges from -0.41 to 0.83 and has a 

standard deviation of 0.32. This cross-individual variation is consistent with Dhar and Zhu (2006) 

who, using data on actual trading decisions, also find significant variation in the strength of the 

disposition effect across investors. Interestingly, while each of PGR and PLR varies a good deal 

across our subjects, the two variables have a correlation of only 0.03: subjects who are slow to 

                                                        
35 We also test for the possibility that, due to learning effects, the disposition effect decreases in size over 
time. We find that the mean disposition effect is smaller in the second half of the experiment compared to 
the first half (0.145 vs. 0.259, p=0.087, a reduction of 11.2% relative to the optimal level of -0.76), but that 
it is still positive and sizable in the second half (0.145 vs. the optimal level of -0.76, p<0.001). 
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sell losing stocks are not necessarily also quick to sell winning stocks.36 This independence 

between selling behavior in the gain domain and in the loss domain is also consistent with the 

empirical findings of Dhar and Zhu (2006). 

 Figure 5 provides additional insight into our subjects’ selling behavior by showing, for 

each of the four types of decisions that a subject could make – decisions to realize a gain, 

decisions to realize a loss, decisions not to realize a gain, and decisions not to realize a loss -- the 

fraction of the decisions that are optimal, where “optimal” is defined by the expected value 

benchmark. For example, the figure shows that there were a total of 495 occasions in which our 

subjects realized gains, and that most of these decisions were suboptimal. Given that stocks 

exhibit short-term price momentum in the experiment, it is generally better to hold on to a stock 

that has been performing well. This explains why most (77.9%) of subjects’ decisions to hold on 

to winning stocks were optimal, and why most (67.5%) of subjects’ decisions to sell winning 

stocks were suboptimal. Similarly, in the experiment, it is generally better to sell a stock that has 

been performing poorly. This explains why most (79.2%) of subjects’ decisions to sell losing 

stocks were optimal, while most (80.3%) of their decisions to hold these stocks were suboptimal. 

The disposition effect exhibited by our subjects is stronger than that found in empirical 

studies (Odean (1998); Frazzini (2006)). One possible reason for this is that the current price and 

the cost basis of a stock are both prominently displayed on the trading screen.37 If, because of 

                                                        
36 The low correlation between PGR and PLR is not inconsistent with realization utility; it simply suggests 
that realization utility is not the only factor driving subjects' trading. For example, if our subjects care to 
varying extents about realization utility but also differ in how much they enjoy trading in general, they may 
exhibit a near-zero correlation between PGR and PLR: the negative correlation between the two variables 
induced by realization utility will be offset by the positive correlation induced by the taste for trading. 
37 One natural question about our experiment is: How much of the realization utility effect that we have 
found depends on the fact that we display the original purchase price on the trading screen in a highly 
salient way? We emphasize that it is unlikely that the presence of a realization utility effect depends 
critically on this aspect of the design. In follow-up work, we have carried out behavioral experiments to 
investigate the impact of the saliency with which the purchase price information is displayed (Frydman and 
Rangel (2012)). We find that eliminating the purchase price from the trading screen diminishes the size of 
the disposition effect, but that the effect is still well above the optimal level that an expected value investor 
would exhibit. This suggests that reporting the purchase price on the trading screen is not a critical aspect 
of our current design. Moreover, given that most investors in naturally occurring financial markets have at 
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realization utility, a subject has a preference for realizing gains and for not realizing losses, the 

fact that we report the purchase price might make it particularly easy for him to cater to this 

preference, and hence to exhibit a disposition effect.38  

In summary, the behavioral results indicate that all of our subjects exhibit a strong 

disposition effect. This is inconsistent with the expected value model, but is consistent with the 

realization utility model. 

 

B. Test of Neural Prediction 2 

We now turn to Prediction 2. This states that, for subjects who experience realization 

utility, activity in an area of the vmPFC known to encode decision values at the time of making a 

decision should be correlated with the capital gain variable (pt - ct). By contrast, it states that, for 

expected value subjects, activity in this area should correlate with the NEV variable, but not with 

the capital gain. 

The pre-specified region of the vmPFC in which we test for the decision value signals – a 

region we defined at the end of Section III -- is shown in Fig. 6 (light yellow). To carry out the 

main test of Prediction 2, we estimate the following general linear model (GLM) of BOLD 

activity for each individual: 

 

�1�							�� ��� = constant +	� �!"#$����%& − �&� + �'�!"#$���()*& + �+�controls + ε�t�. 
 

                                                                                                                                                                     
least a rough sense of the price at which they purchased a stock, displaying the cost basis on the trading 
screen is likely a better approximation of reality.   

 
38 At the same time, because our experimental design induces a negative correlation between the capital 
gain and the NEV of selling (r= - 0.55), the fact that we report the purchase price also makes it easy for an 
expected value subject to trade in a way that is close to his optimal strategy, namely to hold a stock when it 
has a capital gain and to sell it when it has a capital loss. If a subject is an expected value investor, then, we 
do not think that presenting the purchase price on the trading screen should bias him towards exhibiting a 
disposition effect. 
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As noted earlier, �� ��� denotes the BOLD signal at time t in voxel v.  Idec(t) is an indicator 

function that equals one if, at time �, the subject is presented with an opportunity to sell a stock. 

(pt - ct) is the realizable capital gain, and NEVt is the net expected value from selling the stock 

under consideration at time t, namely 0.6(1-2qi,t).
39

  Finally, the controls vector includes the 

following variables: 1) an indicator function denoting the onset of a selling opportunity, 2) an 

indicator function denoting the onset of a buying opportunity , 3) an indicator function denoting 

the onset of a buying opportunity interacted with the NEV of buying the asset, 4) an indicator 

function denoting the onset of a price update screen when the subject owns the asset, 5) an 

indicator function denoting the onset of a price update screen when the subject owns the asset 

interacted with the price change, 6) an indicator function denoting the onset of a price update 

screen when the subject does not own the asset, 7) an indicator function denoting the onset of a 

price update screen when the subject does not own the asset interacted with the price change, 8) 

regressors controlling for physical movement inside the scanner, and 9) session indicator 

variables. Controls (1) - (7) are convolved with the HRF, whereas controls (8) and (9) are not.40  

As described in Section III.A, these controls are necessary because the BOLD signal is affected 

up to 24 seconds after the initial neural impulse generated by the onset of a decision screen or 

price update screen41 (Figure 2). Therefore, a fraction of the variance in the BOLD signal we 

observe at the time subjects are computing their sell/hold decision can be attributed to the specific 

                                                        
39 Recall that NEVt is, under the expected value model, calculated as the value of selling the stock (zero) 

minus the value of holding until the next price change (0.6(2qi,t -1)).   
   
40 The onset of a decision or price update screen, the amount of the price change during the price update 
screen, and the NEV during a buying opportunity are convolved with the HRF because they will generate a 
BOLD response. Controls for physical movement inside the scanner and session-specific effects are not 
convolved because they do not generate a BOLD response.  
 
41 The computations that take place during the price update screen are not the focus of the current study, 
since they do not play a role in testing the realization utility model of investor behavior.  However, we have 
analyzed the neural activity during the price update screens in a companion paper (Frydman et al. (2012)) 
in which we use this dataset to test regret-based models of investment. We find that activity in the ventral 
striatum correlates positively with price changes at the time of a price update for assets that are owned by 
the subject. Interestingly, the sign of these correlations reverses for stocks that are not owned by the 
subject. 
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events we are controlling for. We will use this same vector of control variables in each GLM 

estimated in this paper.  Finally, inferences about the extent to which the signals of interest are 

encoded in a given voxel are made by carrying out a one-sided t-test of the average of the 

individually estimated coefficients (i.e., � � 	 and �'�) against zero, and by correcting for multiple 

comparisons within the pre-specified vmPFC region-of-interest. 

 As shown in Figure 6, the results from these tests are consistent with the predictions of 

the realization utility model, but not with those of the Bayesian expected value model. We find a 

cluster of 27 voxels where � � > 0 within the pre-specified vmPFC ROI associated with the 

computation of decision values in previous studies. Below, we refer to these 27 voxels as the 

vmPFCROI. In contrast to the significant results we find for the capital gain regressor, there are no 

clusters that significantly relate to the NEV variable at our statistical threshold.42   

 The previous analysis identifies a region of the vmPFC in which responses at the time of 

choice are consistent with the computation of the decision value predicted by the realization 

utility model. We carried out two additional post-hoc region-of-interest (ROI) tests of the 

properties of the signals in this area. The first test investigates if the extent to which the capital 

gains variable is reflected in the vmPFCROI is different in trials involving capital gains and capital 

losses. To do this, we estimated the following GLM: 

 

�2�											�� ��� = constant +	� �!"#$���	!234.6378	�%& − �&� + �'�!"#$���	!234.9:;;	�%& − �&� +

�+�controls + ε�t�, 
 

where Icap.gain and Icap.loss are indicator variables for trials involving capital gains and capital losses, 

respectively. For each individual, we then compute both the mean � � and the mean 	�'� across the 

                                                        
42 We ran an additional GLM where we also include the capital gain as a regressor of interest during the 
price update screen to test whether subjects might compute a sell decision as a function of the capital gain 
before the opportunity to trade. However, we find no areas of the brain in which BOLD responses during 
the price update screen significantly correlate with the capital gain regressor.    
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voxels in the vmPFCROI,. We find that the mean values, across subjects, of � � = 0.028	and	�'� =
0.029 are not significantly different from each other (p=0.94), and thus we cannot reject a linear 

functional form of the net capital gain signal. 

 The second test checks whether, as predicted by the realization utility model, the signal in 

the vmPFC related to decision values is both positively correlated with pt and negatively 

correlated with ct. This test is important because it goes to the core of the “irrationality” implicit 

in the realization utility model, namely that people are influenced by the cost basis when deciding 

whether to sell an asset. The test is based on the following GLM: 

 

�3�																		�� ��� = constant +	� �!"#$���%& + �'�!"#$����& + �+�controls + ε�t�. 
 

The key hypothesis of interest is that �'� < 0. Importantly, we cannot carry out this test in 

vmPFCROI, because, since this region consists of voxels that correlate with pt – ct , the test will be 

biased in favor of the hypothesis. To avoid this bias, we first estimate model (3) for each of the 

429 voxels in the independent vmPFC target region (taken from Plassmann et al. (2010) and an 

anatomical mask of vmPFC) and then identify voxels that exhibit significant correlation with pt  

(p<.05, SVC).  We define this set of voxels as vmPFCp and then test whether voxels in this region 

significantly correlate with the cost basis. The effect size, averaged across voxels in vmPFCp for 

each subject, and then across subjects, is given by β2=-0.019 (p=0.03). This provides further 

evidence in support of the realization utility hypothesis. 

 

C. Test of Neural Prediction 3 

 We now test Prediction 3. Specifically, we check whether, as predicted by the realization 

utility hypothesis, subjects whose neural activity in the vmPFC at the time of a sell decision is 

particularly sensitive to the realizable capital gain also exhibit a stronger disposition effect. 
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 The test is carried out as follows. For each subject, we compute a neural measure of the 

degree to which a positive capital gain is represented in the vmPFC at the time of choice; and also 

a neural measure of the degree to which a negative capital gain – in other words, a capital loss – 

is represented in the vmPFC at the time of choice. These individual statistics are given by the 

maximum beta value across voxels in the vmPFCROI for the capital gain and capital loss 

regressors from model (2).43 

Consistent with Prediction 3, we find that the correlation between � � and PGR is 0.58 

(p=0.001), indicating that subjects who exhibit stronger vmPFC activation in response to a capital 

gain do have a greater propensity to realize gains. In contrast, we do not find a significant 

correlation between �'� and PLR (p=0.475). Figure 7 depicts this graphically.  

The results in this section are consistent with Prediction 3 for the case of selling decisions 

involving capital gains, but not for those involving capital losses. In Section V, we discuss in 

some detail why this might be the case. 

 

D. Test of Neural Prediction 4 

 Prediction 4 tests another basic assumption of the realization utility model. The model 

posits that selling a stock at a gain should lead to a positive hedonic effect, and that selling a stock 

at a loss should lead to a negative hedonic effect, independently of the impact of the trade on life-

time consumption. As described in section II, while in theory this hedonic impact occurs at the 

moment of sale, in practice it is hard to know what its precise timing and duration are. However, 

we do know that the utility burst corresponds to a change in discounted lifetime utility; as such, it 

should generate a prediction error at the moment of sale. This leads to the following form of 

                                                        
43 We use the maximum statistic instead of the average statistic because of the heterogeneity in anatomical 
and functional structure of the vmPFC across subjects.  Since we are using this beta value to test for a 
correlation, rather than for a particular value of the mean, using the max statistic will not bias our results. 
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Prediction 4: controlling for the size of the capital gain, a decision to sell at a gain should lead to 

a positive response in the areas of the vSt known to correlate positively with prediction errors.   

The yellow region in Figure 8 depicts the pre-specified region of the vSt that has been 

identified in previous studies as being involved in the computation of predictions errors, and over 

which we look for a positive effect of realizing capital gains.44 The test of Prediction 4 is based on 

the following GLM: 

 

�4�											�� ��� = constant	 + � �!"#$���	!234.6378	����%& − �&� 

																																		+	�'�!"#$���	!234.6378	���	!B#CC	��� + �+�!"#$���	!234.9:;;	���+�D��EF�GEHI + ε�t� 

 

As before, !"#$  is an indicator function denoting an opportunity to sell a stock, 	!234.6378	is an 

indicator function denoting that the subject has an opportunity to sell a capital gain, and	!234.9:;;	is 

an indicator function denoting that the subject has an opportunity to sell a capital loss. Finally, 

	!;J99	is an indicator function denoting that the subject sold the stock.  Note that this model allows 

us to estimate the marginal effect that realizing a capital gain (the second non-constant regressor) 

has on neural activity in the vSt, after controlling for the size of the capital gain (the first non-

constant regressor)45.  The key test of interest is whether there are voxels within the target vSt 

region for which  �'� > 0. 

Consistent with Prediction 4, we find a region of the vSt in which activity correlates 

positively with the realization of capital gains (see Figure 8a, p<.05, SVC), while controlling for 

                                                        
44 Before describing our test of Prediction 4, we can further validate that our a priori ROI of vSt is 
responsible for computing a prediction error signal within our sample of 28 subjects.  Specifically, we can 
test whether the revelation of news about a positive price change for an owned stock – an event that should 
induce a positive prediction error – is positively correlated with activity in our vSt ROI.  We are able to use 
the estimation results from GLM (1) to test this hypothesis because the price change during the price update 
screen is included as a control in this model.  Our estimation results indicate that voxels within our vSt ROI 
do indeed exhibit positive correlation with the price change (p<0.05 whole-brain corrected FWE). This 
therefore provides independent validation that our vSt ROI computes a prediction error.           

 
45 We include the onset of the decision screen for capital loss trials only as a control variable in this model.   
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the magnitude of the capital gain. Figure 8b shows the timecourse of average BOLD response in 

the vSt when subjects issue a command to sell a capital gain (blue) compared to when they issue a 

command to hold a capital gain (red.)46  

 Ideally, we would also carry out a test for the case of capital losses; specifically, we 

would test for the presence of a negative impact in the same area of the vSt when a capital loss is 

realized. Unfortunately, there is an aspect of the data that does not allow us to do this. As 

predicted by the realization utility hypothesis, subjects realized very few losses over the course of 

the two fMRI sessions (the mean number of realized losses per subject scanning block is 3). We 

therefore do not have the necessary statistical power to look at the difference in neural responses 

in the conditions of realized vs. paper losses.   

  

 

E. Tests of the mean-reversion theory of the disposition effect 

As discussed in Section I, one prominent alternative behavioral theory of the disposition 

effect is that investors believe that stock prices mean-revert (Odean (1998); Weber and Camerer 

(1998); Kaustia (2010)). In our setting, such a belief would be irrational: stock prices in our 

experiment exhibit short-term positive autocorrelation. Nonetheless, if, for some reason, our 

subjects think that the stock prices in our experiment are mean-reverting, this could potentially 

explain why they tend to sell stocks that have recently gone up and hold on to stocks that have 

                                                        
46 The characterization of the timecourse of BOLD responses is based on a GLM specification that uses a 
series of “event-locked” dummy variables to our events of interest: holding a capital gain and selling a 
capital gain.  For each of these two events, x=hold and x=sell, (and with additional controls for the onset of 
price update screens, buying opportunities, and capital loss trials) and for n=1,….,T, define a series of 

dummy variables, ���|L, F� = N1 if	x	occurred	at	� − F
0 otherwise V.   The general linear model is then specified as: 

 

	�� ��� = constant +W XL,FY ���|L, F� +	�1YIZII[EF +
L,F

�2Y\EYZ\ZF� + ���� 

 
The estimate of the change in the BOLD response n seconds after the presentation of stimulus x is then 

given by X],^. “Session” and “movement” are control vectors for session specific effects and physical 

movement inside the scanner, respectively.    
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recently gone down. In this section, we test this alternative theory using both behavioral and 

neural data. 

 To investigate whether a belief in mean-reversion is driving our subjects’ behavior, we 

estimate the following mixed effects logistic model. The model tests whether, as predicted by the 

mean-reversion hypothesis, recent price changes can significantly predict subjects’ decisions to 

sell or hold a stock: 

 

�5�																								IZHH&,B = � + � ()*&,B + �'`%&,B − �&,Ba + �+Δ %&,B + �DΔ'%&,B + �&  

 

Here, sellt,s =1 if subject i sold stock s at time t and 0 if he held it, and Δc%&,B denotes the mth 

most recent price change for stock s (these price changes may not have occurred in consecutive 

trials because price updates in the experiment take place at random times).  We find that the 

capital gain has a coefficient of 0.017 and is a significant predictor of the propensity to sell, (t-

stat=2.93), but that none of the other variables are. In particular, neither β3 nor β4 is significantly 

different from zero (p=0.569 and p=0.197, respectively). In other words, contrary to the mean-

reversion hypothesis, recent price changes do not significantly predict the decision to sell.47   

 We can also use the neural data to test the mean-reversion hypothesis. In particular, we 

test if neural activity in the target region of the vmPFC is correlated with recent price changes.  

This is done by estimating the following GLM: 

 

�6�								�� ��� = constant +	!"#$���[� �`%& − �&a + �'�∆ %&,B + �+�∆'%&,B] + �D�controls + ε�t� 

 

                                                        
47 We note that our experimental design implies a high correlation between NEV and recent price changes. 
To check the robustness of our result to any collinearity issues, we also estimate the same logistic 
regression without the NEV variable. We again find that the capital gain significantly predicts the sell 
decision, but that neither of the two most recent price changes is predictive of the sell decision. 
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Under the mean reversion hypothesis, the decision value of selling should be positively correlated 

with recent price changes: a recent price increase indicates a lower expected future return and 

hence a higher decision value of selling. Under this hypothesis, then, responses in the vmPFC 

(i.e., the area involved in the computation of decision values) should correlate positively with past 

price changes. Contrary to this hypothesis, we do not find any activity in the vmPFC that is 

significantly associated with the past price regressors at our omnibus threshold of p<.05 SVC. 

In summary, then, both the behavioral and the neural analyses cast doubt on the mean-

reversion hypothesis.48      

 

V. Discussion 

In this paper we use neural data, obtained through fMRI while subjects traded stocks in an 

experimental market, to test the key assumptions of the “realization utility” theory of investor 

trading. We find broad (albeit not perfect) support for the neural predictions of the realization 

utility model. First, we find that activity in the vmPFC, an area known to encode decision values, 

is correlated with the capital gain (the decision value under realization utility), but not with a 

measure of the net expected value of future returns (the decision value under the expected value 

model). Second, we find that the strength with which the capital gain is reflected in the vmPFC 

decision value signal is correlated, across subjects, with the magnitude of proportion of gains 

realized; we do not, however, find the analogous correlation for capital losses. Finally, and 

perhaps most striking of all, we find that activity in the ventral striatum (an area known to encode 

                                                        
48 While our results cast doubt on the hypothesis that mean-reverting beliefs are driving our subjects’ 
decisions, one can ask whether there are other non-Bayesian belief specifications that could explain the 
observed trading patterns (see, e.g., Kuhnen and Knutson (2011)). In Frydman and Rangel (2012), a 
companion behavioral paper, we shed some light on this issue. In that paper, we compare subjects’ trading 
behavior across a variety of treatments that differ only in the information provided on the trading screen. 
One of the treatments is the one used here. In another treatment, however, we also give subjects the NEV 
statistic on each trading screen; in other words, we effectively give them the correct Bayesian beliefs. As a 
result, if subjects persist in exhibiting a disposition effect, it is very difficult to attribute this to non-
Bayesian beliefs. We find that the addition of the NEV statistic decreases the size of the disposition effect 
that subjects exhibit, but that it nonetheless remains substantial. This suggests that at least some portion of 
the disposition effect that we find in the current study cannot be attributed to non-Bayesian beliefs. 
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information about changes in the expected value of lifetime experienced utility) exhibits a 

positive response when subjects realize capital gains, while controlling for the size of those gains. 

This finding is striking because it provides a direct test of the key mechanism at work in the 

realization utility model, and one that would have been very hard to carry out without neural data. 

As noted in the previous paragraph, we do not find a correlation across individuals 

between the strength with which a capital loss is reflected in the vmPFC and the proportion of 

realized losses. Here we speculate as to why. One possibility is that the simple model of linear 

realization utility that we test is incomplete in important ways. For example, the model currently 

assumes that individuals react to capital gains and capital losses in symmetric and similar ways. 

But there are reasons to believe that this may not be fully correct. First, an asymmetry between 

the effect of capital gains and losses on the selling decision can be caused by the interaction of 

realization utility and myopic discounting, both of which are necessary to induce selling mistakes. 

Recall that individuals who experience realization utility at the time of selling, and who are 

sufficiently myopic, will accelerate the sale of assets involving capital gains and delay the sale of 

assets involving capital losses in order to maximize their present well‐being, even though it is 

suboptimal under the expected value model. If the cross-individual variation in the discount rate 

for losses is sufficiently larger than that for gains (a hypothesis that has not yet been tested), then 

the decision value of selling a loss would be measured in our regression models with more noise 

than the decision value of selling a gain49.  If this is the case, then we would expect to see a 

behavioral--‐neural correlation for capital gains, but not for losses, even if subjects experience 

realization utility in both cases.  Second, we find that the cross-subject correlation between the 

strength with which capital gains and capital losses are reflected in the vmPFC is only 0.01, and 

                                                        
49 Recall that our definition of the decision value of selling assumes a discount rate of a myopic agent, and 
therefore any (unobserved) variability in the discount rate across subjects will lead to misspecification of 
the decision value.  Under the assumption that the distribution of discount rates is bounded on one side, a 
larger cross-subject variability in discount rates should lead to a more severe misspecification of the 
decision value.        
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that the cross-subject correlation between their propensity to realize gains and their propensity to 

realize losses is 0.03.  This suggests the possibility that individuals might exhibit a differential 

tendency to pay attention to capital gains and losses that is not captured by the theory (Karlsson et 

al. (2009); Kuhnen and Knutson (2011)).  

These modifications of the benchmark realization utility model are inspired by the data, 

but are clearly also post-hoc and speculative. The good news, however, is that the same 

methodology developed here could be applied to test these alternative specifications directly.   

 We emphasize that the methods we present in this paper are not a substitute for 

traditional empirical methods in finance. On the contrary, brain imaging techniques are 

complementary tools that can be used to test assumptions about investor behavior that are 

difficult to evaluate using field data or experimental data alone. In particular, we see neural data 

as a valuable resource when studying the more psychological
 
dimensions of investor behavior, 

precisely because these may derive from variables that are only observable at the neural level.  

For example, using the same data set as in this study, we are examining how neural measures of 

regret, which are very difficult to measure objectively in the field, can impact trading behavior in 

a systematic way (Frydman et al. (2012)). The identification of investors’ reference point – the 

reference rate of return that they use to determine whether an investment outcome is a “gain” or a 

“loss” – is another challenging question that neural data may help us answer.  
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Figure 1.  Sample screens from a typical trial in the fMRI experiment.  For trials 10-108,  
subjects saw the price update screen for two seconds, followed by the trading screen for 
which they had up to three seconds to enter a decision (a blank screen was displayed in 
between in order to temporally separate neural activity associated with decision-making.)  
Because the blank screen is displayed for a random amount of time (uniformly distributed 
between 1 and 3 seconds), the average length of a trial, consisting of the three screens, is 7 
seconds. The screens shown below are for a trial in which the subject owns a unit of both 
stocks A and B.  If the subject had not owned stock A at the price update screen, the 
purchase price would not be displayed.  If the subject had not owned stock B at the trading 
screen, he would have had the opportunity to buy stock B.  The screens were displayed 
while subjects were inside the fMRI scanner, and decisions were entered with a handheld 
device.  For trials 1-9, subjects only saw the price update screen and the blank screen, which 
allowed them to accumulate information about the price changes before they were asked to 
make a decision starting on trial 10.   
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Figure 2.  BOLD measurements of neural activity.  (A) Because fMRI measures the blood 
oxygen level dependent (BOLD) response, and not neural activity directly, the mapping 
from neural activity to BOLD response is necessary in order to make inference about 
changes in neural activity.  This mapping is widely known as the canonical hemodynamic 
response function, and is displayed here as a function of one arbitrary unit of instantaneous 
neural activity at time 0.   (B) The BOLD response combines linearly across multiple sources 
of neural activity.  This figure displays the BOLD response (dashed) as a function of three 
sequential sources of neural activity (solid).   
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Figure 3.  Process of constructing a general linear model (GLM).  There are two sets of 
regressors: target computations and additional controls.  Target computations reflect the 
signals of interest whereas additional controls are used to clean up noise that is inherent in 
the BOLD signal.  Because target computations are induced by neural activity, we convolve 
these regressors, while we do not convolve additional controls because these variables do 
not trigger a hemodynamic response.  Finally, we enter the two sets of variables, one of 
which is convolved, into a GLM with AR(1) noise. 
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Figure 4.  Measures  of the disposition effect (PGR-PLR) for each subject.  Standard 
error bars are computed as in Odean (1998) and the dotted line indicates the optimal level 
of the disposition effect that an expected value trader would exhibit, namely -0.76. All 
subjects exhibit a disposition effect greater than the optimal level and a majority of subjects 
have a disposition effect that is significantly positive.  The figure indicates that there is 
significant heterogeneity in the size of the disposition effect across subjects (SD: 0.32).  
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Figure 5.  Total number of sell decisions by decision type and optimality.  Realized 
gains and losses refer to decisions where subjects sold a stock trading at a gain (loss.)  
Paper gains (losses) refer to decisions where subjects decided to hold a stock trading at a 
gain (loss).  The optimality measures show an important aspect of our design: selling 
winners and holding losers, which leads to a disposition effect, are typically suboptimal 
decisions.  Decisions are pooled across all subjects. 
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Figure 6.  vmPFC activity reflects realization utility. Estimation results from GLM 1,  

�1�							�� ��� = constant +	� �!"#$����%& − �&� + �'�!"#$���()*& + �+�controls + ε�t� 

The yellow area depicts our pre-specified region of interest of the vmPFC.  Red voxels are 
those which exhibit activity at the time of trading screen onset that significantly correlate 
with the realizable capital gain. Orange voxels satisfy both features. For illustration 
purposes, the significance threshold for the image is p<0.001 with a 15 voxel extent 
threshold, but all statistics reported in the paper are also small volume corrected at p<0.05 
using FWE.  The z=-21 coordinate and the y=39 coordinate indicate which 2-dimensional 
plane is shown in each of the two brain maps.   
 
 

 
 
  

z=-21 y=39 
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Figure 7. Correlation between brain activity and measures of the disposition effect. 
Each data point in the figure represents a single subject.  (A) We find that activity in the 
vmPFC at the time subjects are offered the opportunity to sell a capital gain is highly 
correlated with their proportion of gains realized. (B) We do not find a similar correlation 
between vmPFC activity and the proportion of losses realized.  
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Figure 8. Direct tests of the realization utility hypothesis.  (A) Red voxels are those 
which exhibit greater activity when subjects realize capital gains compared to when they 
hold capital gains (shown at p<0.001 uncorrected with a 15 voxel extent threshold for 
illustrative purposes only).  Yellow voxels indicate our a priori region of interest (ROI), 
which is based on peak voxels that correlate with prediction error in Lin et al. (2012) and an 
anatomical mask of vSt.  Orange voxels indicate overlap between our a priori ROI and voxels 
which exhibit activity that correlates with realization of a capital gain.  The y=6 coordinate 
indicates which 2-dimensional plane is shown in the brain map.    (B) Activity in the vSt 
(averaged over a priori ROI) during trials when subjects were offered the opportunity to sell 
capital gains. The blue time series plots the average activity in trials where subjects realized 
capital gains, while the red time series plots the average activity in trials where subjects 
decided to hold capital gains.  ** denotes p<0.01, * denotes p<0.05 (paired t-test).   t=0 

corresponds to the instant at which the subject enters his trading decision on a hand-held 
device.   
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Appendix: Experimental Instructions 
 
Buying your stock 

 

In this experiment you will be given 350 experimental dollars to invest in three 
different stocks.  Your job is to choose when to buy and sell each stock, so that you 
earn the most money by the end of the experiment.  Throughout the experiment, 
you will see the price of each stock changing (more detail below), and you will use 
this information to decide when to buy and sell.  When you sell a stock, you receive 
an amount of cash equal to the price of the stock.  When you buy a stock, you receive 
one unit of the stock, but you must give up an amount of cash equal to the current 
price of the stock. 
 
The three stocks you can buy or sell are simply called Stock A, Stock B, and Stock C.  
To begin the experiment you MUST buy all three stocks, where each stock costs 
$100.  Therefore, after you buy the three stocks, you will own one unit of each stock 
and have a total of $50 remaining.  For the remainder of the experiment, you are 
only allowed to hold a maximum of 1 unit of each stock, and you cannot hold 
negative units (no short selling.)  However, you can carry a negative cash balance by 
buying a stock for more money than you have, but any negative cash balances will 
be deducted from your final earnings.      
 
 
Structure of the market 

 

In the experiment, you will see two types of screens, a price update screen and an 
action screen.  In the price update screen, one stock will be randomly selected and 
you will be told if the selected stock price has gone up or down, and by how much.  
Note that you will only see an update for one stock at a time.  You will not be asked 
to do anything during this screen, you will simply see information about the change 
in price. 
 
Following the price update screen, another stock will be randomly chosen (it may be 
the same one you just saw) and you will be asked to take an action.  If you currently 
hold a unit of the stock, you will be asked if you would like to sell the stock at the 
current price.  If you do not currently own a unit of the stock, you will be asked if 
you would like to buy a unit at the current price.   
 
The experiment will start out with 9 consecutive price update screens, and then you 
will have the opportunity to buy or sell after each subsequent price update screen.  
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How the stock prices change 

 

Each stock changes price according to the exact same rule.  Each stock is either in a 
good state or in a bad state.  In the good state, the stock goes up with 55% chance, 
and it goes down with 45% chance.  In the bad state, the stock goes down with 55% 
chance and it goes up with 45% chance.   
 
Once it is determined whether the price will go up or down, the size of the change is 
always random, and will either be $5, $10, or $15.  For example, in the bad state, the 
stock will go down with 55% chance, and the amount it goes down by is $5, $10, or 
$15 with equal chance.  Similarly, the good stock will go up with 55% chance, and 
the amount it goes up by will either be $5, $10, or $15.   
 
The stocks will all randomly start in either the good state or bad state, and after 
each price update, there is a 20% chance the stock switches state.      
 
Stock price changes 

 Good state Bad state 

+  55% 45% 

-   45% 55% 
 
 
State changes 

 Good state today Bad state today 

Good state tomorrow 80% 20% 

Bad state tomorrow 20% 80% 
 
 
 
Earnings and payout 

 

You will play this market game TWO SEPARATE TIMES in the scanner.  Each game 
will last approximately 15 minutes, and each game is independent from the previous 
one.  This means when you start the second game, you will have to buy the three 
stocks at $100 again, and the stocks will start randomly in each state again.   
 
Your earnings at the end of the experiment will be equal to the amount of cash you 
accrued over the two scanning sessions from buying and selling stocks, plus the 
current price of any stocks that you own.   
 
Earnings=cash +   price A*(Hold A)    +    Price  B*(Hold B)    +    Price C*(Hold C) 

 

 

Finally, your earnings will be converted using an exchange rate of 12:1.  That means 
we divide your earnings by 12, and pay you this amount plus the $15 show up fee.   
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Button presses 

 
During the Action screens, you will either be given the option to “Buy?” or “Sell?” 
depending on whether you hold the stock or not.  The LEFT (blue) button indicates 
“YES”.  And the RIGHT (yellow) button indicates “NO.”  You have three seconds to 
enter your response, otherwise the computer will randomly select a response for 
you.  
 


