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1 Introduction

It is currently common practice in empirical work to use standard errors and associated

confidence intervals that are robust to the presence of heteroskedasticity. The most widely

used form of the robust, heteroskedasticity-consistent standard errors is that associated

with the work of White (1980) (see also Eicker, 1967; Huber, 1967), extended to the case

with clustering by Liang and Zeger (1986). The justification for these standard errors

and the associated confidence intervals is asymptotic: they rely on large samples for their

validity. In small samples the properties of these procedures are not always attractive:

the robust (Eicker-Huber-White, or EHW, and Liang-Zeger or LZ, from hereon) variance

estimators are biased downward, and the normal-distribution-based confidence intervals

using these variance estimators can have coverage substantially below nominal coverage

rates.

There is a large literature documenting and addressing these small sample problems

in the context of linear regression models, some of it reviewed in MacKinnon and White

(1985), Angrist and Pischke (2009), and MacKinnon (2012). A number of alternative

versions of the robust variance estimators and confidence intervals have been proposed

to deal with these problems. Some of these alternatives focus on reducing the bias of the

variance estimators (MacKinnon and White, 1985), some exploit on higher order expan-

sions (Hausman and Palmer, 2011), others attempt to improve their properties by using

resampling methods (MacKinnon and White, 1995; Cameron, Gelbach, and Miller, 2008;

Hausman and Palmer, 2011), and some use t-distribution approximations (Bell and Mc-

Caffrey, 2002; Donald and Lang, 2007). Few of these alternatives are regularly employed

in empirical work. In fact, some researchers argue that for commonly encountered sample

sizes (e.g., fifty or more units) the improvements are not necessary because the EHW

and LZ standard errors perform well. Perhaps it is also the multitude and the ad hoc

nature of many of the proposed alternatives to the EHW and LZ procedures, combined

with the lack of clear guidance among them, that makes empirical researchers wary of

using any of them.

Here we review some of this work and provide specific recommendations for empirical

practice. The main recommendation of this paper is that empirical researchers should,

as a matter of routine, adopt a particular improvement to the EHW and LZ confidence
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intervals, due to Bell and McCaffrey (2002), BM from hereon. The BM improvement is

simple to implement and in small and moderate-sized samples can provide a considerable

improvement over the EHW and LZ confidence intervals. Here is a brief description of

the BM improvement. Let V̂ehw be the standard EHW variance estimator, and let the

EHW 95% confidence interval for a parameter β be β̂ ± 1.96
√

V̂ehw. The BM modifi-

cation consists of two components, the first removing some of the bias and the second

changing the approximating distribution from a normal distribution to the best fitting

t-distribution. First, the commonly used variance estimator V̂ehw is replaced by V̂HC2 (a

modification for the general case first proposed by MacKinnon and White, 1985), which

removes some, and in special cases all, of the bias in V̂ehw relative to the true variance V.

Second, the distribution of (β̂ − β)/
√

V̂HC2 is approximated by a t-distribution. When

t-distribution approximations are used in constructing robust confidence intervals, the

degrees of freedom are typically fixed at the number of observations minus the number of

estimated regression parameters. The BM adjustment uses a more sophisticated choice

for the degrees of freedom (dof). The dof of the approximating t-distribution, denoted

by KBM, is choosen so that under homoskedasticity the distribution of KBM · V̂HC2/V has

the first two moments in common with a chi-squared distribution with dof equal to KBM.

The BM degrees of freedom is a simple analytic function of the matrix of regressors.

To ease comparisons with other methods we convert this procedure into one that

only adjusts the standard errors. What we then refer to as the BM standard error is

then
√

V̂BM =
√

V̂HC2 · (tKBM

0.975/t
∞

0.975), where tK
q is the q-th quantile of the t-distribution

with dof equal to K (so that t∞q is the q-th quantile of the normal distribution and thus

t∞0.975 = 1.96). A key insight is that the BM dof can differ substantially from the sample

size (minus the number of estimated parameters) if the distribution of the covariates is

skewed.

We make three specific points in the current paper. One modest novel contribution

is to show that the BM proposal is the principled extension from an approach developed

by Welch (1951) to a simple, much-studied and well-understood problem, known as the

Behrens-Fisher problem (see for a general discussion, Scheffé, 1970). Understanding

how the BM proposals and other procedures perform in the simple Behrens-Fisher case

provides insights into their general performance. Second, and this has been pointed out

in the theoretical literature before (e.g., Chesher and Jewitt, 1987), without having been
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appreciated in the empirical literature, problems with the standard robust EHW and LZ

variances and confidence intervals can be substantial even with moderately large samples

if the distribution of the regressors is skewed. It is the combination of the sample size and

the distribution of the regressors that determines the accuracy of the standard robust

confidence intervals and the potential benefits from small sample adjustments. Third,

we suggest a modification of the BM procedure in the case with clustering that further

improves the performance of confidence intervals in that case.

This paper is organized as follows. In the next section we study the Behrens-Fisher

problem and the solutions offered by the robust standard error literature specialized to

this case. In Section 3 we generalize the results to the general linear regression case, and

in Section 4 we study the case with clustering. In each of these three sections we provide

some simulation evidence regarding the performance of the various confidence intervals,

using designs previously proposed in the literature. We find that in all these settings the

BM proposals perform well relative to the other procedures. Section 5 concludes.

2 The Behrens-Fisher Problem: the Performance of

Various Proposed Solutions

In this section we review the Behrens-Fisher problem, which can be viewed as a special

case of linear regression with a single binary regressor. For this special case there is a

large literature and several attractive methods for constructing confidence intervals with

good properties even in very small samples have been proposed. See Behrens (1929),

Fischer (1939), and for a general discussion Scheffé (1970), Wang (1971), Lehman and

Romano (2005), and references therein. We discuss the form of the standard variance

estimators for this case, and discuss when they perform poorly relative to the methods

that are designed especially for this setting.

2.1 The Behrens-Fisher Problem

Consider the following linear model with a single binary regressor, allowing for het-

eroskedasticity:

Yi = β0 + β1 · Xi + εi, (2.1)
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with Xi ∈ {0, 1}, and

E[εi|Xi = x] = 0, and Var(εi|Xi = x) = σ2(x).

We are interested in β1 = Cov(Yi, Xi)/Var(Xi) = E[Yi|Xi = 1] − E[Yi|Xi = 0]. Because

the regressor Xi is binary, the least squares estimator for the slope coefficient β1 can be

written as

β̂1 = Y 1 − Y 0,

where, for x = 0, 1,

Y x =
1

Nx

∑

i:Xi=x

Yi, and N1 =
N
∑

i=1

Xi, N0 =
N
∑

i=1

(1 − Xi).

Over repeated samples, conditional on X = (X1, . . . , XN )′, the exact finite sample vari-

ance for the least squares estimator β̂1 is

V = Var(β̂1|X) =
σ2(0)

N0
+

σ2(1)

N1
.

If in addition we assume normality for εi given Xi, εi|Xi = x ∼ N (0, σ2(x)), the exact

distribution for β̂1 conditional on X is

β̂1|X ∼ N
(

β1,
σ2(0)

N0
+

σ2(1)

N1

)

.

The problem of how to do inference for β1 in the absence of knowledge of σ2(x) is old,

and known as the Behrens-Fisher problem.

Let us first review a number of the standard least squares variance estimators, spe-

cialized to the case with a single binary regressor.

2.2 The Homoskedastic Variance Estimator

Suppose the errors are homoskedastic: σ2 = σ2(0) = σ2(1), so that the exact variance

for β̂1 is V = σ2/(1/N0 + 1/N1). We can estimate the common error variance σ2 as

σ̂2 =
1

N − 2

N
∑

i=1

(

Yi − β̂0 − β̂1 · Xi

)2

.
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This variance estimator is unbiased for σ2, and as a result the estimator for the variance

for β̂1,

V̂homo =
σ̂2

N0

+
σ̂2

N1

,

is unbiased for the true variance V. Moreover, under normality for εi given Xi, the

t-statistic has an exact t-distribution:

thomo =
β̂1 − β1

√

σ̂2/N0 + σ̂2/N1

∣

∣

∣

∣

X ∼ t(N − 2). (2.2)

This t-distribution with dof equal to N − 2 can be used for the construction of exact

confidence intervals. The exact 95% confidence interval for β̂1, under homoskedasticity,

is

95% CIhomo =

(

β̂1 + tN−2
0.025 ×

√

V̂homo, β̂1 + tN−2
0.975 ×

√

V̂homo

)

,

where tN
q is the q-th quantile of a t-distribution with dof equal to N . This confidence

interval is exact under these two assumptions, normality and homoskedasticity.

2.3 The Robust EHW Variance Estimator

The familiar form of the robust EHW variance estimator, given the linear model in (2.1),

is
(

N
∑

i=1

XiX
′

i

)−1( N
∑

i=1

(

Yi −Xiβ̂
)2

XiX
′

i

)(

N
∑

i=1

XiX
′

i

)−1

.

In the Behrens-Fisher case with a single binary regressor the component of this matrix

corresponding to β1 simplifies to

V̂ehw =
σ̃2(0)

N0
+

σ̃2(1)

N1
, where σ̃2(x) =

1

Nx

N
∑

i:Xi=x

(

Yi − Y x

)2
, for x = 0, 1.

The standard, normal-distribution-based, 95% confidence interval based on the robust

variance estimator:

95% CIehw =

(

β̂1 − 1.96 ×
√

V̂ehw, β̂1 + 1.96 ×
√

V̂ehw

)

. (2.3)

Even if the error term εi has a normal distribution, the justification for this confidence

interval is asymptotic. Sometimes researchers use a t-distribution with N − 2 degrees of
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freedome to calculate the confidence limits, replacing 1.96 in (2.3) by the corresponding

quantile of the t-distribution with dof equal to N − 2, tN−2
0.975. However, there are no

assumptions under which this modification has exact 95% coverage.

2.4 An Unbiased Estimator for the Variance

An alternative to V̂ehw is what MacKinnon and White (1985) call the HC2 variance

estimator, here denoted by V̂HC2. In general this correction removes only part of the

bias, but in the single binary regressor (Behrens-Fisher) case the MacKinnon-White HC2

correction removes the entire bias. Its form in this case is

V̂HC2 =
σ̂2(0)

N0
+

σ̂2(1)

N1
, where σ̂2(x) =

1

Nx − 1

N
∑

i:Xi=x

(

Yi − Y x

)2
, (2.4)

for x = 0, 1. These conditional variance estimators σ̂2(x) differ from σ̃2(x) by a factor

Nx/(Nx − 1). In combination with the normal approximation to the distribution of the

t-statistic, this variance estimator leads to the 95% confidence interval

95% CIHC2 =

(

β̂1 − 1.96 ×
√

V̂HC2, β̂1 + 1.96 ×
√

V̂HC2

)

.

The estimator V̂HC2 is unbiased for V, but the resulting confidence interval is still not

exact. Just as in the homoskedastic case, the sampling distribution of the t-statistic

(β̂1 − β1)/
√

V̂HC2 is in this case not normally distributed in small samples, even if the

underlying errors are normally distributed (and thus (β̂1−β1)/
√

V has an exact standard

normal distribution) . However, whereas in the homoskedastic case the exact distribution

is a t-distribution with degrees of freedom equal to N−2, the exact sampling distribution

of (β̂1 −β1)/
√

V̂HC2 does not lend itself to the construction of exact confidence intervals.

In this single-binary-covariate case it is easy to see that in some cases N − 2 will be

a poor choice for the degrees of freedom for the approximating t-distribution. Suppose

that there are many units with Xi = 0 and few units with Xi = 1 (N0 >> N1). In

that case E[Yi|Xi = 0] is estimated relatively precisely, with variance σ2(0)/N0 ≈ 0. As

a result the distribution of the t-statistic (β̂1 − β1)/
√

V̂HC2 is approximately equal to

that of (Y 1 − E[Yi|Xi = 1])/
√

σ̂2(1)/N1. The latter has, under normality, an exact t-

distribution with dof equal to N1 − 1, substantially different from the t-distribution with

N − 2 = N0 + N1 − 2 dof if N0 >> N1.
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2.5 Degrees of Freedom Adjustment: The Welch and Bell-McCaffrey

Solutions

One of the most attractive proposals for the Behrens-Fisher problem is due to Welch

(1951). Welch suggests approximating the distribution of the t-statistic (β̂1−β1)/
√

V̂HC2

by a t-distribution. Rather than using the sample size minus two as the degrees of

freedom for this t-distribution, he suggests using moments of the variance estimator

V̂HC2 to determine the most appropriate value for the degrees of freedom.

Let us describe the Welch suggestion in more detail. Consider the t-statistic in the

heteroskedastic case:

tHC2 =
β̂1 − β1
√

V̂HC2

=
β̂1 − β1

√

σ̂2(0)/N0 + σ̂2(1)/N1

.

Note that E[V̂HC2] = V, and that under normality V̂HC2 is independent of β̂1 − β1. Now

suppose there was a constant K such that the distribution of K · V̂HC2/V had a chi-

squared distribution with dof equal to K. Then tHC2 would have a t-distribution with

dof equal to K, which could be exploited to construct an exact confidence interval. The

problem is that there exists no such K such that the scaled distribution of the variance

estimator has an exact chi-squared distribution. Welch suggests approximating the scaled

distribution of V̂HC2 by a chi-squared distribution, with the dof choosen to make the

approximation as accurate as possible. Under normality, V̂HC2 is a linear combination of

two chi-squared random variables. To be precise, (N0−1)σ̂2(0)/σ2(0) ∼ X 2(N0−1), and

(N1 − 1)σ̂2(1)/σ2(1) ∼ X 2(N1 − 1), and σ̂2(0) and σ̂2(1) are independent of each other

and of β̂1 − β1. Hence it follows that

Var
(

V̂HC2

)

=
2σ4(0)

(N0 − 1)N2
0

+
2σ4(1)

(N1 − 1)N2
1

.

Welch’ specific suggestion is to choose the dof parameter K such that K · V̂HC2/V has

the first two moments in common with a chi-squared distribution with dof equal to K.

Because irrespective of the value for K, E[K · V̂HC2/V] = K, this amounts to choosing

K such that

Var
(

K · V̂HC2/V

)

= 2K, leading to K∗

welch =
2 · V

2

Var
(

V̂HC2

) =

(

σ2(0)
N0

+ σ2(1)
N1

)2

σ4(0)

(N0−1)N2

0

+ σ4(1)

(N1−1)N2

1

.
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This choice for K is not feasible because K∗

welch depends on unknown quantities, namely,

the conditional variances σ2(x). In the feasible version we approximate the distribution

of tHC2 by a t-distribution with dof equal to

Kwelch =

(

σ̂2(0)

N0
+

σ̂2(1)

N1

)2/(
σ̂4(0)

(N0 − 1)N2
0

+
σ̂4(1)

(N1 − 1)N2
1

)

, (2.5)

where the unknown σ2(x) are replaced by the estimates σ̂2(x). Wang (1971) presents

some exact results for the difference between the coverage of confidence intervals based

on the Welch procedures and the nominal levels, showing that the Welch intervals perform

extremely well in very small samples.

BM (2002) propose a slightly different degrees of freedom adjustment. For the

Behrens-Fisher problem (regression with a single binary covariate) the BM modification

is minor, but it has considerable attraction in settings with more general distributions of

covariates. The BM adjustment is based on assuming homoskedasticity. In that case the

Welch dof simplifies to

Kbm =

(

σ2

N0

+ σ2

N1

)2

σ4

(N0−1)N2

0

+ σ4

(N1−1)N2

1

=
(N0 + N1)

2(N0 − 1)(N1 − 1)

N2
1 (N1 − 1) + N2

0 (N0 − 1)
. (2.6)

Because the BM dof does not depend on the conditional variances, it varies less across

repeated samples and as a result tends to be more accurate then the Welch adjustment

which can be conservative in settings with noisy estimates of the conditional error vari-

ances. The associated 95% confidence interval is now

95% CIBM =

(

β̂1 − tKBM

0.975 ×
√

V̂HC2, β̂1 + tKBM

0.975 ×
√

V̂HC2

)

. (2.7)

This is the interval we recommend researchers use in practice.

To gain some intuition for the BM dof adjustment, consider some special cases. First,

if N0 >> N1, then Kbm ≈ N1 − 1. As we have seen before, as N0 → ∞, using N1 − 1

as the degrees of freedom leads to exact confidence intervals under normally distributed

errors. If the two subsamples are equal size, N0 = N1 = N/2, then Kbm = N − 2. Thus,

if the two subsamples are approximately equal size, the often-used dof adjustment of

N − 2 is appropriate, but if the distribution is very skewed, this adjustment is likely to

be inadequate.
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2.6 A Small Simulation Study based on a Angrist-Pischke de-

sign

Now let us see how relevant the small sample adjustments are in practice. We conduct a

small simulation study based on a design previously used by Angrist and Pischke (2009).

The sample size is N = 30, with N1 = 3 and N0 = 27. The parameter values are

β0 = β1 = 0 (note that the results are invariant to the values for β0 and β1). The

distribution of the disturbances is normal,

εi|Xi = x ∼ N (0, σ2(x)), for x = 0, 1,

with σ2(1) = 1. Angrist and Pischke report results for three choices for σ(0): σ(0) ∈
{0.5, 0.85, 1}. We add the complementary values σ(0) ∈ {1.18, 2}, where 1.18 ≈ 1/0.85.

Angrist and Pischke report results for a number of variance estimators, including some

where they take the maximum of V̂homo and V̂ehw or V̂HC2, but they do not the Welch or

BM dof adjustments. For the five designs the Welch dof correction is quite substantial.

Consider the first design with σ(0)/σ(1) = 0.5. Then the value for the infeasible Welch

dof is K∗

welch = 2.1. Given that t20.975 = 4.30, compared to the normal 0.975 quantile

t∞0.975 = 1.96, this leads to an adjustment in the standard errors by a factor of 2.2. For

the other four designs the infeasible Welch dof values are equal to 2.3, 2.5, 2.7, and 4.1

respectively, in each case leading to substantial changes in the confidence intervals even

though the overall sample size is substantial.

When we implement the Welch and BM degrees-of-freedom adjustments the adjusted-

degrees-of-freedom are not necessarily integer. In that case we use the distribution for

the t-distribution defined as the ratio of two random variables, one a random variable

with a standard (mean zero, unit variance) normal distribution and and the second a

random variable with a gamma distribution with parameters α = KBM/2 and β = 2. We

include the following confidence intervals. First, two intervals based on the homoskedastic

variance estimator V̂homo, using either the normal distribution or a t-distribution with

N − 2 dof. Next, two confidence intervals based on V̂ehw, again either using the normal

or the t-distribution with N − 2 dof. Next, six confidence intervals based on V̂HC2. First

among these is the one with the normal distribution, next the t-distribution with degrees

of freedom equal to N − 2, Kwelch, K∗

welch, and KBM. Finally, a resampling method,

specifically the wild bootstrap, discussed in more detail in Appendix A. Next we include
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two confidence intervals based on V̂HC3 (see Appendix A for more details), either using

the normal distribution or the wild bootstrap. Finally we include normal distribution

based confidence intervals based on the maximum of V̂homo and V̂ehw, and one based on

the maximum of V̂homo and V̂HC2. For each of the analytic variance estimators we use

1,000,000 replications. For those based on the wild bootstrap we use 100,000 replications

and 10,000 draws from the wild bootstrap distribution.

Table 1 presents the simulation results for the Angrist-Pischke design. For each of the

variance estimators we report coverage properties for nominal 95% confidence intervals.

We also report the median of the standard errors over the simulations. In cases where the

confidence intervals are based on t-distributions with K degrees of freedom, we multiply

the standard error by tK
0.975/t

∞

0.975, to make the standard errors comparable. For the

variance estimators included in the Angrist-Pischke design our simulation results are

consistent with theirs. However, the three confidence intervals based on the (feasible

and infeasible) Welch and BM degrees of freedom adjustments are superior in terms

of coverage to all others. Consider the case with σ(0) = 0.5. The coverage rate for the

normal-distribution confidence interval based on V̂ehw is 0.77. Using the unbiased variance

estimator V̂HC2 raise that to 0.82, but only using the t-distribution approximation with

Welch or BM degrees of freedom gets that close to the nominal level. An interesting

aspect of the Welch dof calculation is that it leads to confidence intervals that are typically

substantially wider, and have substantially more variation in their width. For the two

confidence intervals based on Kwelch and KBM, the median widths of the confidence

intervals are 6.45 and 3.71, but the 0.95 quantile of the widths are 14.89 and 7.59.

The attempt to base the approximating chi-square distribution on the heteroskedasticity

consistent variance estimates leads to a considerable increase in the variability of the

width of the confidence intervals. One of the attractions of the BM intervals is that it

avoids this variation.

For comparison purposes we report in Table 2 the results for a simulation exercise

with a balanced design where N0 = N1 = N/2 = 15. Here the actual coverage rates

are close to nominal coverage rates for essentially all procedures: for a sample size of

30 with a balanced design asymptotic, normal-distribution-based, approximations are

fairly accurate and refinements are unnecessary. Note that KBM = 28, and t28
0.975 = 2.05,

close to the 1.96 for the normal distribution, so the BM dof correction is unlikely to be
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important here.

3 Linear Regression With General Regressors

Now let us look at the general regression case, allowing for multiple regressors, and

regressors with other than binomial distributions.

3.1 The Set Up

We have a L-dimensional vector of regressors Xi, and a linear model

Yi = X ′

iβ + εi, with E [εi|Xi] = 0, and Var (εi|Xi) = σ2(Xi).

Let X be the N ×L dimensional matrix with ith row equal to X ′

i, and let Y and ε be the

N -vectors with ith elements equal to Yi and εi respectively. The ordinary least squares

estimator is:

β̂ = (X′X)
−1

(X′Y) =

(

N
∑

i=1

XiX
′

i

)−1( N
∑

i=1

XiYi

)

.

Without assuming homoskedasticity, the exact variance for β̂ conditional on X is

V = Var
(

β̂
∣

∣

∣X
)

=

(

N
∑

i=1

XiX
′

i

)−1( N
∑

i=1

σ2(Xi) · XiX
′

i

)(

N
∑

i=1

XiX
′

i

)−1

,

with k-th diagonal element Vk. For the general regression case the EHW robust variance

estimator is

V̂ehw =

(

N
∑

i=1

XiX
′

i

)−1( N
∑

i=1

(

Yi − Xiβ̂
)2

XiX
′

i

)(

N
∑

i=1

XiX
′

i

)−1

,

with k-th diagonal element V̂ehw,k. Using a normal distribution the associated 95%

confidence interval for βk is

95% CIehw =

(

β̂k − 1.96 ×
√

V̂ehw,k, β̂k + 1.96 ×
√

V̂ehw,k

)

.

This robust variance estimator and the associated confidence intervals are widely used

in empirical work.

[11]



3.2 The Bias-adjusted Variance Estimator

In Section 2 we discussed the bias of the robust variance estimator in the case with a

single binary covariate. In that case there was a simple modification of the EHW variance

estimator that removes all bias. In the general regression case the bias-adjustment is more

complicated. Here we focus on a particular adjustment for the bias due to MacKinnon

and White (1985). In the special case with only a single binary covariate this adjustment

is identical to that used in Section 2. It does not, however, remove all bias in general.

Let P = X(X′X)−1X′ be the N ×N projection matrix, with i-th column denoted by

Pi = X(X′X)−1Xi and (i, i)-th element denoted by Pii = X ′

i(X
′X)−1Xi. Let Ω be the

N × N diagonal matrix with i-th diagonal element equal to σ2(Xi), and let eN,i be the

N -vector with i-th element equal to one and all other elements equal to zero. Let IN be

the N × N identity matrix. The residuals ε̂i = Yi − X ′

iβ̂ can be written as

ε̂i = εi − e′N,iPε = e′N,i(IN − P)ε, and in vector form ε̂ = (IN − P)ε.

The expected value of the square of the i-th residual is

E
[

ε̂2
i

]

= E
[

(e′N,i(IN − P)ε)2
]

= (eN,i − Pi)
′Ω(eN,i − Pi),

which, under homoskedasticity reduces to σ2 · (1−Pii). This in turn implies that ε̂2
i /(1−

Pii) is unbiased for E [ε2
i ] under homoskedasticity. This is the motivation for the variance

estimator MacKinnon and White (1985) introduce as HC2:

V̂HC2 =

(

N
∑

i=1

XiX
′

i

)−1






N
∑

i=1

(

Yi − Xiβ̂
)2

1 − Pii
XiX

′

i







(

N
∑

i=1

XiX
′

i

)−1

. (3.1)

Suppose we want to construct a confidence interval for βk, the k-th element of β. The

variance of β̂k is estimated as V̂HC2,k = e′L,kV̂HC2eL,k, where eL,k is an L-vector with kth

element equal to one and all other elements equal to zero. The 95% confidence interval,

based on the normal approximation, is then given by

95% CIHC2 =

(

β̂k − 1.96 ×
√

V̂HC2,k, β̂k + 1.96 ×
√

V̂HC2,k

)

.

[12]



3.3 The Degrees of Freedom Adjustment

BM, building on Satterthwaite (1946), suggest approximating the distribution of

β̂k − βk
√

V̂HC2,k

,

by a t-distribution instead of a normal distribution. The degrees of freedom K are chosen

so that under homoskedasticity (Ω = σ2IN) the first two moments of K · (V̂HC2,k/Vk) are

equal to those of a chi-squared distribution with degrees of freedom equal to K. Note that

under homoskedasticity, E[V̂HC2] = V and thus E[V̂HC2,k] = Vk, so that the first moment

of K · (V̂HC2,k/Vk) is always equal to to that of a chi-squared distribution with dof equal

to K, and we choose K to match the second moment. Moreover, under normality V̂HC2,k

is a linear combination of N independent chi-squared one random variables (with some

of the coefficients equal to zero). Let λi be the weight for the i-th chi-squared random

variable, so we can write

V̂HC2,k =
N
∑

i=1

λi · Zi, where Zi ∼ X 2(1), all Zi independent.

Given these weights, the BM dof that match the first two moments of K · (V̂HC2,k/Vk)

to that of a chi-squared K distribution is given by

KBM =
2 · V

2
k

Var
(

V̂HC2,k

) =

(

N
∑

i=1

λi

)2/ N
∑

i=1

λ2
i . (3.2)

To characterize the weights, define, the N × N matrix G, with i-th column equal to

Gi =
1√

1 − Pii

(eN,i − Pi)X
′

i(X
′X)−1eL,k.

Then the λi are the eigenvalues of the N × N matrix

σ2 · G′G.

Note that because of the form of (3.2), the value of KBM does not depend on σ2 even

though the weights λi do depend on σ2. Note also that the dof adjustment may be

different for different elements of parameter β. Formally, the BM 95% confidence interval

is:

95% CIBM =

(

β̂k + tKBM

0.025 ×
√

V̂HC2,k, β̂k + tKBM

0.975 ×
√

V̂HC2,k

)

.

[13]



The BM contribution over the earlier Sattherthwaite (1946) work is to base the dof

calculation on the homoskedastic case with Ω = σ2 · IN . In general, the weights λi

that set the moments of the chi-squared approximation equal to those of the normalized

variance are the eigenvalues of G′ΩG. These weights are not feasible, because Ω is not

known in general. The feasible version of the Sattherthwaite dof suggestion replaces Ω

by Ω̂ = diag(ε̂2
i /(1 − Pii)). This often leads to substantially conservative confidence

intervals.

There is a somewhat subtle difference between between the binary and the general

regressor case. Applying the BM solution for the general case, given in (3.2), to data

with a single binary regressor, leads to the same value as applying the BM solution

for the binary case, given in (2.6). Similarly, applying the infeasible Sattherthwaite

solution, based on the eigenvalues of GΩG, to binary regressor data, leads to the same

dof as applying the infeasible Welch solution K∗

welch. However, applying the feasible

Sattherthwaite solution to the case with a binary regressor does not lead to the feasible

Welch solution. In the case with a single binary regressor, the Welch proposal for the dof

calculation given in (2.5) is numerically identical to

Kwelch =

(

N
∑

i=1

λwelch,i

)2/ N
∑

i=1

λ2
welch,i,

where the weights λwelch,i are the eigenvalues of

G′Ω̂welchG,

with Ω̂welch the diagonal matrix

Ω̂welch,ij =







σ̂2(0) if Xi = 0, i = j
σ̂2(1) if Xi = 1, i = j
0 if i 6= j.

The Welch dof solution is not equal to the dof based on the eigenvalues of G′Ω̂G, with

Ω̂ = diag(ε̂i/(1 − Pii)), even though the estimated variances are the same:

(X′X)
−1
(

X′Ω̂welchX
)

(X′X)
−1

= (X′X)
−1
(

X′Ω̂X
)

(X′X)
−1

.

3.4 A Small Simulation Study (Cragg, 1983)

We carry out a small simulation study based on designs by Cragg (1983). The model is

Yi = β0 + β1 · Xi + εi

[14]



with β0 = 1, β1 = 1, and

ln(Xi) ∼ N (0, 1), and εi|Xi = x ∼ N
(

0, γ0 + γ1 · x + γ2 · x2
)

.

Two designs were used: (γ0, γ1, γ2) = (0.6, 0.3, 0.0), and (γ0, γ1, γ2) = (0.3, 0.2, 0.1). The

latter case exhibits considerable heteroskedasticity. The median value of σ(x) is 0.77,

the 0.025 quantile is 0.57, and the 0.975 quantile is 2.60. This particularly impacts the

quality of the confidence intervals based on the feasible Sattherthwaite dof adjustment

with Ω̂. For comparison we also include the standard errors and coverage rates based on

the infeasible Sattherthwaite dof adjustment with the eigenvalue calculations based on

G′ΩG. We report results for two sample sizes, N = 25 and N = 100. For each design

and each of the analytic variance estimators we use 1,000,000 replications, and 100,000

for the wild bootstrap with 10,000 bootstrap replications. The results are in presented

in Table 3. For comparison, see Table III, panel 2, page 760 in Cragg (1983).

Qualitatively the results are similar to those for the Angrist-Pischke design. The

robust variance estimators V̂ehw and the bias-adjusted version V̂HC2 do not perform well

unless the confidence intervals are based on t-distributions with the KSatterthwaite or KBM

dof adjustments. The KBM dof adjustment leads to much narrower confidence intervals

with much less variation, so again that is the superior choice in this setting.

4 Robust Variance Estimators in the Presence of

Clustering

In this section we discuss the extensions of the variance estimators discussed in the

previous sections to the case with clustering. The model is:

Yi = X ′

iβ + εi, (4.1)

where i = 1, . . . , N indexes units. There are S clusters. In cluster s the number of units

is Ns, with the overall sample size N =
∑S

s=1 Ns. Let Si ∈ {1, . . . , S} denote the cluster

unit i belongs to. We assume that

E[ε|X] = 0, and E[εε′|X] = Ω,

where,

Ωij =

{

ωij if Si = Sj,
0 otherwise.

[15]



Let β̂ be the least squares estimator, and let ε̂i = Yi −X ′

i β̂ be the residual. Let ε̂s be

the Ns dimensional vector with the residuals in cluster s, let Xs the Ns ×L matrix with

ith row equal to the value of X ′

i for the ith unit in cluster s, and let X be the N×L matrix

constructed by stacking X1 through XS . Define the N × Ns matrix Ps = X(X′X)−1X′

s,

the Ns × Ns matrix Pss = Xs(X
′X)−1X′

s, and define the Ns × N matrix (IN − P)s to

consist of the Ns rows of the N × N matrix (IN − P) corresponding to cluster s.

The standard robust variance estimator, due to Liang and Zeger (1986), see also

Diggle, Heagerty, Liang, and Zeger (2002), is

V̂lz =

(

S
∑

s=1

X′

sXs

)−1 S
∑

s=1

X′

sε̂sε̂
′

sXs

(

S
∑

s=1

X′

sXs

)−1

.

Often a simple multiplicative adjustment is used, for example in STATA, to reduce the

bias of the LZ variance estimator:

V̂STATA =
N − 1

N − L
· S

S − 1
·
(

S
∑

s=1

X′

sXs

)−1 S
∑

s=1

X′

sε̂sε̂
′

sXs

(

S
∑

s=1

X′

sXs

)−1

.

The main component of this adjustment is typically the S/(S − 1) factor, because in

many applications (N − 1)/(N − L) is close to one.

The bias-reduction modification developed by Bell and McCaffrey (2002), analogous

to the HC2 bias reduction of the original Eicker-Huber-White variance estimator, is

V̂lz2 =

(

S
∑

s=1

X′

sXs

)−1 S
∑

s=1

X′

s(INs
−Pss)

−1/2ε̂sε̂
′

s((INs
−Pss)

−1/2)′Xs

(

S
∑

s=1

X′

sXs

)−1

,

where (INs
−Pss)

−1/2 is the inverse of the symmetric square root of (INs
−Pss). For each

of the variance estimators, let V̂lz,k, V̂STATA,k and V̂lz2,k are the k-th diagonal elements of

V̂lz, V̂STATA and V̂lz2 respectively.

To formalize the degrees-of-freedom adjustment, define the N ×S matrix G with s-th

column equal to the N -vector Gs defined as

Gs = (IN −P)′s(INs
− Pss)

−1/2Xs (X′X)
−1

eL,k.

Then the dof adjustment is given by

KBM =

(

∑N
i=1 λi

)2

∑N
i=1 λ2

i

.
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where λi are the eigenvalues of G′G. The 95% confidence interval is now

95% CIcluster
BM =

(

β̂k + tKBM

0.025 ×
√

V̂lz2,k, β̂k + tKBM

0.975 ×
√

V̂lz2,k

)

. (4.2)

We also consider a slightly different version of the dof adjustment. In principle we

would like to use the eigenvalues of the matrix G′ΩG, where Ω = E[εε|X]. It is difficult

to estimate ω accurately, which motivated BM to use σ2 · IN instead. In the clustering

case, however, we have some structure on Ω that may be useful. We estimate a model

for Ω where

Ωij =







σ2
ε + σ2

ν if i = j,
σ2

ν if i 6= j, Si = Sj,
0 otherwise.

We estimate σ2
ν as the average of the product of the residuals for units with Si = Sj, and

i 6= j, and then estimate σ2
ε as the average of the square of the residuals minus σ̂2

ν. We

then calculate the λ̃i as the eigenvalues of G′Ω̂G, and

KIK =

(

∑N
i=1 λ̃i

)2

∑N
i=1 λ̃2

i

.

4.1 A Small Simulation Study

We carry out a small simulation study following designs first used in Cameron, Gelbach,

and Miller (2008). The model is the same as in (4.1), with a scalar covariate:

Yi = β0 + β1 · Xi + εi,

with β0 = β1 = 0. We consider five specific designs. In the first design, Xi = VSi
+ Wi

and εi = νSi
+ ηi. The Vs, Wi, νs, ηi are all normally distributed, with mean zero and

unit variance. In the first design there are S = 10 clusters, with Ns = 30 units in each

cluster. In the second design we have S = 5 clusters, again with Ns = 30 in each cluster.

In the third design there there are again S = 10 clusters, half with Ns = 10 and half

with Ns = 50. In the fourth and fifth design we return to the design with S = 10 clusters

and Ns = 30 units per cluster. In the fourth design we introduce heteroskedasticity, with

ηi|X ∼ N(0, 0.9X2
i ), and in the fifth design, the covariate is fixed within the clusters:

Wi = 0 and Vs ∼ N (0, 2).

For each design and each of the analytic variance estimators we use 1,000,000 repli-

cations, and 100,000 for the wild bootstrap, with 10,000 bootstrap replications.

[17]



5 Conclusion

Although there is a substantial literature documenting the poor properties of the conven-

tional robust standard errors in small samples, in practice researchers continue to use the

EHW and LZ robust standard errors. Here we discuss one of the proposed modifications,

due to Bell and McCaffrey (2002), and argue that it should be used more widely, even

in moderately sized samples. We discuss the connection to the Behrens-Fisher problem,

and suggest a minor modification for the case with clustering.
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Appendix A Other methods

A.1 HC3

A second alternative to the EHW variance estimator is V̂HC3. We use the version dis-

cussed in MacKinnon (2012):

V̂HC3 =

(

N
∑

i=1

XiX
′

i

)−1






N
∑

i=1

(

Yi − Xiβ̂
)2

(1 − Pii)
2 XiX

′

i







(

N
∑

i=1

XiX
′

i

)−1

. (A.1)

Compared to V̂HC2 this variance estimator has the square of 1−Pii in the denominator.

In the binary regressor case this leads to:

V̂HC3 = σ2(0)
N0

(N0 − 1)2
+ σ2(1)

N1

(N1 − 1)2
.

In simple cases this leads to an upwardly biased estimator for the variance.

A.2 The Wild Bootstrap

The simple bootstrap where we resample N units picked with replacement from the

original sample is unlikely to perform well. In particular in cases where either N0 or N1 is

small, the additional noise introduced by variation in the number of Xi = 0 units sampled

is likely to adversely affect the properties of the corresponding confidence intervals. In

this literature researchers have therefore focused on alternative resampling methods. One

that has been proposed as an attractive choice is the wild bootstrap (Liu, 1988; Mammen,

1993; Cameron, Gelbach, and Miller, 2008; MacKinnon, 2011).

Here we briefly describe the wild bootstrap in the regression setting, and then in the

cluster setting. First consider the regression setting. Let β̂0 and β̂1 be the least squares

estimates in the original sample, and ε̂ = Yi − β̂0 − Xi · β̂1 be the estimated residuals,

and let V̂ be a variance estimator, either V̂ehw, or V̂HC2, or V̂HC3. In the wild bootstrap

the regressor values are fixed in the resampling. In the b-th bootstrap sample, the value

for the i-th outcome is

Yi,b = β̂0 + Xi · β̂1 + Ui,b · ε̂i,

where Ui,b is a binary random variable with pr(Ui,b = 1) = pr(Ui,b = −1) = 1/2, with Ui,b

independent across i and b. (Other distributions for Ui,b are also possible, here we only

consider this particular choice.)
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Here we use a symmetric version of the bootstrap. In the b-th bootstrap sample we

calculate the t-statistic

tb =
β̂b,1 − β̂1
√

V̂b

,

for some variance estimator V̂b. Over all the bootstrap samples we calculate the 0.95

quantile of the distribution of |tb| (which, because of the symmetry of the design, are

approximately equal to minus the 0.025 and the 0.975 quantile of the distribution of tb.

Let this quantile be qwild
0.95 . We use this quantile instead of 1.96 to construct the confidence

interval as

95% CIHC2 =

(

β̂1 − qwild
0.95 ×

√

V̂, β̂1 + qwild
0.95 ×

√

V̂

)

. (A.2)

The wild bootstrap standard errors reported in the table are
√

V̂HC2(q
wild
0.95/1.96).

For the cluster version of the wild bootstrap, the bootstrap variable Us,b is indexed

by the cluster only. Again the distribution of Us,b is binary with values -1 and 1, and

probability pr(Us,b = 1) = pr(Us,b = −1) = 0.5. The bootstrap value for the outcome for

unit i in cluster s is then

Yis,b = β̂0 + β̂1 · Xis + Us,b · εis,

with the values for Xis and εis remaining fixed across the bootstrap replications.
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Table 1: Coverage Rates and Standard Errors, Angrist-Pischke Unbalanced Design, N0 =
27, N1 = 3

Design I Design II Design III Design IV Design V
σ(0) = 0.50 σ(0) = 0.85 σ(0) = 1.00 σ(0) = 1.18 .00 σ(0) = 2

variance dist cov med cov med cov med cov med. cov med
estimator /dof rate s.e. rate s.e. rate s.e. rate s.e. rate s.e.

V̂homo
∞ 0.73 0.33 0.90 0.52 0.94 0.60 0.97 0.70 1.00 1.17
N − 2 0.75 0.34 0.92 0.54 0.95 0.63 0.97 0.73 1.00 1.22

V̂ehw
∞ 0.77 0.40 0.79 0.42 0.81 0.44 0.82 0.45 0.87 0.55

N − 2 0.78 0.42 0.81 0.44 0.82 0.46 0.83 0.47 0.88 0.57

V̂HC2

∞ 0.82 0.49 0.84 0.51 0.85 0.52 0.86 0.53 0.90 0.62
N − 2 0.84 0.51 0.86 0.53 0.86 0.54 0.87 0.56 0.91 0.65

KWelch 0.93 1.00 0.92 0.93 0.92 0.90 0.93 0.87 0.93 0.80
K∗

Welch 0.96 1.04 0.97 1.02 0.97 1.00 0.97 0.97 0.97 0.87
KBM 0.95 0.90 0.96 0.94 0.97 0.95 0.98 0.98 0.99 1.14

wild 0.90 0.76 0.90 0.74 0.91 0.73 0.91 0.72 0.92 0.73

V̂HC3
∞ 0.87 0.60 0.89 0.61 0.89 0.62 0.90 0.63 0.92 0.71
wild 0.91 0.78 0.91 0.77 0.92 0.77 0.92 0.76 0.93 0.77

max{V̂homo, V̂ehw} ∞ 0.82 0.41 0.92 0.54 0.95 0.62 0.97 0.71 1.00 1.17

max{V̂homo, V̂HC2} ∞ 0.86 0.49 0.93 0.57 0.95 0.64 0.97 0.73 1.00 1.17
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Table 2: Coverage Rates and Standard Errors, Angrist-Pischke Balanced Design, N0 =
15, N1 = 15

Design I Design II Design III Design IV Design V
σ(0) = 0.50 σ(0) = 0.85 σ(0) = 1.00 σ(0) = 1.18 σ(0) = 2.00

variance dist cov med cov med cov med cov med. cov med
estimator /dof rate s.e. rate s.e. rate s.e. rate s.e. rate s.e.

V̂homo
∞ 0.94 0.28 0.94 0.33 0.94 0.36 0.94 0.39 0.94 0.57
N − 2 0.95 0.30 0.95 0.35 0.95 0.38 0.95 0.41 0.95 0.59

V̂ehw
∞ 0.93 0.27 0.93 0.32 0.93 0.35 0.93 0.38 0.93 0.55

N − 2 0.94 0.29 0.94 0.34 0.94 0.36 0.94 0.40 0.94 0.57

V̂HC2

∞ 0.94 0.28 0.94 0.33 0.94 0.36 0.94 0.39 0.94 0.57
N − 2 0.95 0.30 0.95 0.35 0.95 0.38 0.95 0.41 0.95 0.59

KWelch 0.95 0.30 0.95 0.35 0.95 0.38 0.95 0.41 0.95 0.60
K∗

Welch 0.95 0.30 0.95 0.35 0.95 0.38 0.95 0.41 0.95 0.60
KBM 0.95 0.30 0.95 0.35 0.95 0.38 0.95 0.41 0.95 0.59

wild 0.95 0.30 0.95 0.35 0.95 0.38 0.95 0.41 0.95 0.60

V̂HC3
∞ 0.94 0.29 0.95 0.35 0.95 0.37 0.95 0.41 0.94 0.59
wild 0.95 0.30 0.95 0.35 0.95 0.38 0.95 0.41 0.95 0.60

max{V̂homo, V̂ehw} ∞ 0.94 0.28 0.94 0.33 0.94 0.36 0.94 0.39 0.94 0.57

max{V̂homo, V̂HC2} ∞ 0.94 0.28 0.94 0.33 0.94 0.36 0.94 0.39 0.94 0.57
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Table 3: Coverage Rates and Standard Errors, Cragg Design

(γ0, γ1, γ2) = (0.6, 0.3, 0.0) (γ0, γ1, γ2) = (0.3, 0.2, 0.1)

Design I Design II Design III Design IV
N = 25 N = 100 N = 25 N = 100

variance dist/ cov med cov med. cov med. cov med.
estimator dof rate s.e. rate s.e. rate s.e. rate s.e.

V̂homo
∞ 0.81 0.12 0.76 0.05 0.63 0.12 0.51 0.06

N − 2 0.83 0.13 0.76 0.05 0.65 0.13 0.51 0.06

V̂ehw
∞ 0.74 0.11 0.83 0.07 0.67 0.14 0.78 0.11

N − 2 0.76 0.12 0.83 0.07 0.69 0.15 0.78 0.11

V̂HC2

∞ 0.82 0.14 0.87 0.07 0.77 0.17 0.84 0.12
N − 2 0.84 0.15 0.87 0.07 0.79 0.18 0.84 0.12

KSatterthwaite 0.96 0.30 0.96 0.12 0.96 0.47 0.97 0.23
K∗

Satterthwaite 0.98 0.31 0.97 0.12 0.99 0.51 0.98 0.24

KBM 0.96 0.23 0.94 0.09 0.94 0.28 0.93 0.15
wild 0.79 0.15 0.87 0.09 0.78 0.21 0.88 0.15

V̂HC3
∞ 0.89 0.18 0.90 0.08 0.87 0.23 0.90 0.13
wild 0.81 0.17 0.88 0.09 0.81 0.24 0.89 0.16

max{V̂homo, V̂ehw} ∞ 0.83 0.13 0.85 0.07 0.71 0.15 0.78 0.11

max{V̂homo, V̂HC2} ∞ 0.87 0.15 0.88 0.08 0.79 0.18 0.84 0.12
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Table 4: Coverage Rates and Standard Errors, Cameron-Gelbach-Miller Clustering De-
sign

Design I Design II Design III Design IV Design V
variance dist/ cov med cov med cov med cov med cov med

estimator dof rate s.e. rate s.e. rate s.e. rate s.e. rate s.e.

V̂homo
∞ 0.47 0.06 0.52 0.08 0.50 0.06 0.53 0.07 0.36 0.06
S − 1 0.53 0.07 0.69 0.11 0.56 0.07 0.59 0.08 0.41 0.07

V̂lz
∞ 0.79 0.12 0.73 0.13 0.84 0.13 0.84 0.14 0.81 0.18
S − 1 0.85 0.14 0.86 0.18 0.89 0.14 0.89 0.16 0.86 0.21

V̂STATA
∞ 0.81 0.13 0.78 0.15 0.87 0.13 0.86 0.15 0.83 0.19

S − 1 0.87 0.15 0.90 0.21 0.91 0.15 0.91 0.17 0.88 0.22

V̂lz2

∞ 0.87 0.15 0.84 0.17 0.89 0.14 0.89 0.16 0.88 0.22
S − 1 0.91 0.17 0.93 0.24 0.93 0.17 0.93 0.18 0.91 0.26

KBM 0.94 0.19 0.95 0.27 0.94 0.18 0.94 0.20 0.96 0.34
K∗

Satterthwaite 0.98 0.25 0.98 0.34 0.97 0.21 0.96 0.23 0.96 0.34

KIK 0.97 0.24 0.97 0.32 0.97 0.20 0.96 0.22 0.96 0.34
wild 0.91 0.19 0.91 0.29 0.93 0.18 0.93 0.20 0.89 0.27
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