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1. Introduction

Climate and economy are both continuous-time systems. The mutual

interaction between these two systems forms the core of any Integrated As-

sessment Model. Nevertheless, it is common practice in the IAM literature

to specify the climate-economy in discrete time, typically assuming very long

discrete time-steps of 5 or 10 years. If IAMs use e.g. decadal time steps, it

would be highly desirable that they properly represent the true continuous

time dynamics of the underlying system and address the appropriate policies

to cope with adverse effects of climate change. The insights obtained from

IAMs are frequently used by policy makers to design and evaluate various

climate policies, such as carbon taxes and global warming targets. For ex-

ample the United States government (Interagency Working Group on Social

Cost of Carbon, 2010) has recently engaged in determining the social costs of

carbon, the dollar value on damages from one more ton of carbon emissions.

The DICE model was one the three models used for this analysis. It comes at

not surprise that DICE was part of the study. It is well known amongst the

climate and economics communities and widely used in the IAM literature.

Furthermore, it is well documented and simple.

Because of it simplicity and commendable openness DICE has been used

and modified extensively over the last 20 years.1 Moreover, some attempts

1Professor Nordhaus, the author of DICE, has always made available all equations and
codes of his model. Furthermore, his calculations are extensively documented and anyone
can scrutinize them. Unfortunately, within the IAM community, this is one of the few
exceptions, rather than the rule. See Cai, Judd and Lontzek (2012a) for a comment on
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have been made to incorporate intrinsic stochasticity into the DICE frame-

work to study optimal climate policies under risk and uncertainty. Most

of the modifications and extensions also adopte the 10-year time step for-

mulation, and reduce the state space. We argue that, in particular when

studying intrinsic uncertainty within an IAM such as DICE, great care has

to be taken. For example, dynamic stochastic general equilibrium (DSGE)

models in economics use relatively short time periods; usually at most a year.

10-year time steps are too long and might jeopardize economically plausible

and quantitatively reliable policy analysis. If one wants to know how car-

bon prices should react to business cycle shocks or tipping events, the time

period needs to be at most a year. Cai, Judd and Lontzek (2012b) provides

such a 1-year time step DSGE version of DICE with stochastic shocks (called

DSICE). Lontzek, Cai and Judd (2012) investigates the impact of the tipping

point on optimal mitigation policy based on the annual DSICE model. No

one would accept a policy that takes ten years to respond to current shocks

to economic or climate conditions.

For the reasons outlined above, we develop DICE-CJL, a continuous-time

formulation of DICE that allows an analyst to choose among several time pe-

riod lengths without recalibrating the model for each different period length.

A continuous-time formulation allows us to show how to use finite-difference

methods from numerical analysis to formulate discrete-time versions that

openness in integrated assessment models.
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can be used in computations. We demonstrate that many substantive results

depend critically on the time step, strongly supporting our contention that

short time periods are necessary for quantitatively reliable analysis.

In addition to the 10-year time-step length, the DICE2007 model is in-

consistent in its use of finite difference methods. DICE2007 uses an explicit

method for the economic module, but the climate model uses an implicit

finite difference method. This mixing of explicit and implicit finite difference

methods has no mathematical foundation and may lead to errors. We ap-

ply two finite difference methods to the DICE-CJL system: the Euler finite

difference method, and the implicit Crank-Nicolson finite difference method.

Since the true underlying model is in continuous time, modelers should ask

themselves how large can the time-step be and still approximate the solution

of the continuous time problem with small errors. They also need some di-

agnostics that tell them they have made a reliable choice. To address these

issues, we apply Richardson extrapolation (Richardson and Gaunt, 1927) to

DICE-CJL. We find that an annual version of DICE performs very well using

either method. In addition, we compare the annual version to much shorter

time-step versions. Indeed, we find that the solution of the annual version

is identical to e.g. a weekly version, which de facto can be thought of as

a continuous time version of DICE. We also find that a ten-year time step

using Crank-Nicolson produces a good approximation. The issue is not re-

ally what is the right time step. The question is finding reliable numerical

methods, and using appropriate time steps for the method we use. Overall,
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we find that the optimal policy results from the basic decadal DICE model

are significantly distorted due to the use of an inappropriate finite difference

method.

This paper proceeds as follows. Section 2 provides a summary of the

DICE2007 model. Section 3 critically assesses some core assumptions of

the model. Section 4 introduces the continuous-time version of DICE2007.

Section 5 provides an example on how to specify the terminal value func-

tion for discrete time specifications. Section 6 offers a general discussion on

how to apply a feasible finite difference scheme and calibrate parameters on

DICE-CJL. Section 7 describes the DICE-CJL models using appropriate fi-

nite difference schemes. Section 8 discusses the calibration models for the

DICE-CJL models. Section 9 shows the numerical solutions of DICE-CJL.

Section 10 focuses on the numerical implementation and evaluation of the

DICE-CJL models. Section 11 concludes.

2. DICE2007

DICE2007 (Nordhaus, 2008) maximizes social welfare with tradeoffs be-

tween carbon dioxide (CO2) abatement, consumption, and investment. DICE2007

assumes ten-year time steps, and maximizes total discounted social utility

subject to economic and climate constraints.

Nordhaus (2011) claims that DICE2007 has 18 dynamic equations. This

description overstates the true complexity of DICE, which de facto has only
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six state variables.2

The annual social utility function is

u(ci, li) =
(ci/li)

1−γ − 1

1− γ
li,

for i = 0, 1, . . . , 59, where i is the number of decades from 2005, γ = 2 in

DICE2007, ci is annual consumption and li is labor supply at the decade i:

li = 6514e−0.35i + 8600(1− e−0.35i),

which is inelastic and equals world population in millions of people. There-

fore, the total discounted social utility over 600 years in (Nordhaus, 2008)

is
59∑
i=0

β10i10u(ci, li),

where β = 1.015−1 is the annual discount factor.

The production side of DICE2007 is a basic optimal growth model. Out-

put during decade i is produced from capital, ki (measured in trillions of

2005 U.S. dollars), and labor supply li according to the production function

fi(ki, li) = Aik
α
i l

1−α
i , (1)

where α = 0.3 is the capital share, and Ai is total productivity factor defined

2DICE2007 includes the cumulative resource stock of carbon as a state variable. It
enters the model as a constraint on the cumulative extraction of fossil fuels. This constraint
is not binding. Therefore, we omit this redundant state variable throughout our analysis.
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by

A0 = 0.02722,

Ai+1 =
Ai

1− 0.092e−0.01i
. (2)

Global average atmospheric temperature, TAT
i (measured in degrees Cel-

sius above the 1900 temperature), reduces output by a factor

Ωi =
1

1 + π1TAT
i + π2(TAT

i )2
,

where π1 = 0 and π2 = 0.0028388. Abatement efforts can reduce CO2

emissions at some cost. Therefore, net output during decade i is

Yi(ki, TAT
i , µi) =

(
1− ψ1−θ2

i θ1,iµ
θ2
i

)
Ωifi(ki, li), (3)

where θ2 = 2.8, ψi is the participation rate (it is assumed to be equal to 1

after 2010 in DICE2007), µi ∈ [0, 1] is the emission control rate, and

θ1,i =
1.17σi(1 + e−0.05i)

2θ2
(4)

is the adjusted cost for backstop, where σi is the technology factor following

the path

σ0 = 0.13418,

σi+1 =
σi

1 + 0.073e−0.03i
. (5)
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Thus, the next-decade capital is

ki+1 = (1− δ)10ki + 10
(
Yi(ki, TAT

i , µi)− ci
)
, (6)

where δ = 0.1 is the annual rate of depreciation of capital.

Industrial production processes cause CO2 emissions

EInd
i (ki, µi) = σi(1− µi)fi(ki, li), (7)

so the annual total carbon emissions (billions of metric tons) during decade

i is

Ei (ki, µi) = EInd
i (ki, µi) + ELand

i , (8)

where

ELand
i = 1.1× 0.9i

represents annual emissions from biological processes during decade i.

DICE2007 uses a simple box model for the carbon cycle. The CO2 con-

centrations for the carbon cycle are modeled by a three-layer model,

Mi = (MAT
i ,MUP

i ,MLO
i )>,

representing carbon concentration (in billions of metric tons) in the atmo-

sphere (MAT
i ), upper oceans (MUP

i ) and lower oceans (MLO
i ) . The transition

system of the CO2 concentration from decade i to next decade i+ 1 is

Mi+1 = ΦM
DICE2007Mi + 10 (Ei (ki, µi) , 0, 0)> ,
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where ΦM
DICE2007 is the carbon diffusion matrix (flows per decade),

ΦM
DICE2007 =


0.810712 0.097213 0

0.189288 0.852787 0.003119

0 0.05 0.996881

 .
The CO2 concentrations impact the surface temperature of the globe

through the radiative forcing (watts per square meter from 1900):

Fi
(
MAT

i

)
= η log2

(
MAT

i /MAT
0

)
+ FEX

i , (9)

where η = 3.8 and FEX
i is the exogenous radiative forcing:

FEX
i =


−0.06 + 0.036i, if i ≤ 10,

0.3, otherwise.

DICE2007 uses a simple box model for the climate. The global mean

temperature is represented by a two-layer model,

Ti = (TAT
i , T LO

i )>,

representing temperature (measured in degrees Celsius above the 1900 tem-

perature) of the atmosphere (TAT
i ) and lower oceans (T LO

i ). The transition

system of the global mean temperature from decade i to next decade i+ 1 is

Ti+1 = ΦT
DICE2007Ti + 10

(
ξ1Fi

(
MAT

i

)
, 0
)>
,

where ξ1 = 0.022, and ΦT is the climate temperature diffusion matrix per
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decade,

ΦT
DICE2007 =

 0.787333 0.066

0.05 0.95

 .
Therefore, Nordhaus (2008) solves the problem

max
ci,µi

59∑
i=0

β10i10u(ci, li)

s.t. ki+1 = (1− δ)10ki + 10
(
Yi(ki, TAT

i , µi)− ci
)
,

Mi+1 = ΦM
DICE2007Mi + 10 (Ei (ki, µi) , 0, 0)> ,

Ti+1 = ΦT
DICE2007Ti + 10(ξ1Fi

(
MAT

i

)
, 0)>.

where the social planner has two control variables, ci and µi, and there are

six states (ki,Mi,Ti), at each decade i. 3

3. Numerical Issues with DICE2007

Before we formulate a continuous time version of DICE and proceed with

our analysis, we would like to point out some critical issues with the current

version of DICE. Users familiar with the DICE2007 version (or other versions

of DICE) will find different results when running DICE-CJL. These difference

come from using shorter time-steps and the adjustments described in this

section.

3We omit the redundant constraint on the cumulative stock of carbon.
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3.1. Nonphysical Nature of DICE2007

The equations in DICE2007 differ from the corresponding ones in earlier

versions of DICE. Nordhaus (2008) explains these changes:

“The lags in the system are primarily caused by the diffusive

inertia of the different layers. We have changed the timing slightly

to improve the match of the impulse-response function with cli-

mate models. Additionally, we have adjusted the climate sensitiv-

ity to the center of the IPCC range of 3°C for an equilibrium CO2

doubling. The timing is calibrated to match model experiments

for the IPCC Third and Fourth Assessment Reports.”

The changes implied nonphysical phenomena. In the program of DICE2007,

Fi
(
MAT

i

)
= η log2

(
MAT

i +MAT
i+1

2MAT
0

)
+ FEX

i ,

and

Ti+1 = ΦT
DICE2007Ti + 10

(
ξ1Fi+1

(
MAT

i+1

)
, 0
)>
.

This implies that

Ti+1 = ΦT
DICE2007Ti + 10

[
ξ1

(
η log2

(
MAT

i+1 +MAT
i+2

2MAT
0

)
+ FEX

i+1

)
, 0

]>
.

Thus, TAT
i+1 depends onMAT

i+2 . For example, if you set t = 2015, then warming

between 2015 and 2025 is affected by the stock of atmospheric CO2 in 2035,

implying that emissions between 2025 and 2035 will increase warming during

the ten years between 2015 and 2025. Nonphysical specifications of a physical

12



system are problematic in general, but particularly in an optimal control

problem, the focus of DICE, where the non-physicality of the climate system

will introduce non-Markovian features to what is really a Markov decision

problem.

Following standard practice in the IAM literature, Nordhaus (2008) chose

the parameters of the climate system so that a particular finite difference

method with a ten-year time period matches some target results. This is

not a standard way to deal with numerical design questions. The underlying

problem, a combination of climate and economic systems, is a system of

differential equations. The fundamental parameters are fixed by empirical

evidence. If a finite difference scheme is not producing accurate results then

it is natural to change it, but only to a theoretically valid finite difference

method of the given continuous-time econo-physical system.

Climate models are run at time resolutions far shorter than ten years;

some are run at resolutions measured in minutes. Climate models aim to

solve continuous-time models. It is unclear that it is possible to produce a

specification of the climate system with a time resolution of ten years that

can match important features of a continuous-time model. A more standard

response to problems with lags due to large time steps would be to solve the

model at a finer time resolution. Doing this for DICE is straightforward.

It just requires a proportional change of those parameters with time unit

dimensions; otherwise, no change in parameters or functional form of the

equations is necessary. Therefore, for the DICE diffusivity parameters, it is
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easy to solve the problem with one-year time steps.

We recomputed DICE2007 for time steps ranging from three months to

ten years. The results for the short time periods were very close, but differed

substantially from the ten year results. In particular, the ten-year formula-

tion produced carbon taxes 50% greater than the results using shorter time

periods. See Cai, Judd and Lontzek (2012a) and the accompanying website.

3.2. Terminal Condition

DICE2007 imposes an additional constraint on terminal capital by assum-

ing that investment at the terminal time must be at least 2% of the capital

stock at the terminal time. Moreover, DICE2007 assumes that the terminal

value function is 0 everywhere. This is not a reasonable assumption, as this

implies that people will consume the capital stock as much as possible before

the terminal time and do not control carbon emission or temperature at the

last period.

3.3. Flexible Savings Rate

In the program of DICE2007, the savings rate is fixed at 0.22 for stan-

dardization. A fixed savings rate is a good approximation here because of the

inelastic labor supply and the power utility function over consumption. How-

ever, in general, it is inappropriate to take a fixed savings rate as a solution,

although it is fine to use a fixed savings rate in preliminary computation to

generate an initial guess to feed into the real problem. We cancel this fixed

savings rate constraint in our examples.
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3.4. Extraneous Variables

DICE2007 looks complicated to some users. Its GAMS code has 1263

equations and 1381 variables. However, there are many variables (and equa-

tions) that could be cancelled, as they are, in fact, autonomous and time-

dependent parameters. These extra variables and equations make it time-

consuming for users to understand the essence of the model. After cleaning

up these extra variables and equations, DICE-CJL (with the same 10-year

time periods) has only 466 equations and 584 variables, about only one third

of the original DICE code.

4. A Continuous-Time Reformulation of DICE

The first step towards understanding the computational points we raise

below is to see the true underlying continuous-time model.

First, the total discounted utility is

ˆ ∞
0

e−ρtu(c(t), l(t))dt,

where ρ = 0.015 is the discount rate, c(t) is the consumption function. We

assume that labor supply l(t) is inelastic and equal to the population, which

evolves according to

l(t) = 6514e−0.035t + 8600(1− e−0.035t), (10)

for any continuous time t in units of years.

Second, in the production function (1), the total productivity factor is
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computed by the recursive formula (2), but in fact it could be represented

by a function of the continuous time:

A(t) = A0 exp
(
0.0092(1− e−0.001t)/0.001

)
, (11)

and in the industrial emission function (7), instead of the recursive formula

(5), the technology factor is also represented by a function of continuous

time:

σ(t) = σ0 exp
(
−0.0073(1− e−0.003t)/0.003

)
. (12)

Moreover, the function (4) for the adjusted cost for backstop becomes

θ1(t) =
1.17σ(t) (1 + e−0.005t)

2θ2
. (13)

With these continuous-time formulas, the net output at time t is

Y(k, TAT, µ, t) =
1− ψ(t)1−θ2θ1(t)µ

θ2

1 + π1TAT + π2(TAT)2
A(t)kαl(t)1−α, (14)

for any capital k > 0, surface temperature TAT and emission control rate

µ ∈ [0, 1], where ψ(t), the participation rate, is assumed to be equal to 1 in

our examples. Thus, the differential equation of capital is

k̇ = Y
(
k, TAT, µ, t

)
− c− δk, (15)

for any continuous time t.

Third, with the continuous time formulas of the productivity factor, the

technology factor and the adjusted cost for backstop, the rate of carbon
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emissions at time t becomes

E(k, µ, t) = σ(t)(1− µ)A(t)kαl(t)1−α + ELand(t),

for any capital k > 0 and emission control rate µ ∈ [0, 1], where

ELand(t) = 1.1e−0.01t

is the rate of carbon emissions from biological processes. Thus, the carbon

cycle system is

Ṁ = ΦMM + (E (k, µt, t) , 0, 0)> , (16)

where

ΦM =


−φ12 φ12ϕ1 0

φ12 −φ12ϕ1 − φ23 φ23ϕ2

0 φ23 −φ23ϕ2

 , (17)

where ϕ1 = MAT
∗ /MUP

∗ and ϕ2 = MUP
∗ /MLO

∗ , where MAT
∗ , MUP

∗ and MLO
∗

are the preindustrial equilibrium states of the carbon cycle system.

Moreover, the total radiative forcing rate becomes

F
(
MAT, t

)
= η log2

(
MAT/MAT

0

)
+ FEX(t), (18)

for any carbon concentration in the atmosphere MAT, where the exogenous

radiative forcing rate is

FEX(t) =


−0.06 + 0.0036t, if t ≤ 100,

0.3, otherwise.
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Thus, the temperature system satisfies the following differential system

Ṫ = ΦTT +
(
ξ1F

(
MAT, t

)
, 0
)>
, (19)

where

ΦT =

 −ξ1η/ξ2 − ξ1ξ3 ξ1ξ3

ξ4 −ξ4

 , (20)

where ξ2 is the climate sensitivity (we choose ξ2 = 3 in this paper).

Therefore, the continuous time model becomes

max
c,µ

ˆ ∞
0

e−ρtu(c, l(t))dt

s.t. k̇ = Y
(
k, TAT, µ, t

)
− c− δk,

Ṁ = ΦMM + (E (k, µ, t) , 0, 0)> ,

Ṫ = ΦTT +
(
ξ1F

(
MAT, t

)
, 0
)>
,

where there are six continuous time state variables (k,M,T) and two con-

tinuous time control variables (c, µ).

5. Terminal Value Function

DICE2007 solves a 600-year horizon optimization problem. Hence, we

change the infinite-horizon continuous time model to a 600-year horizon prob-

lem by replacing the integration of discounted utilities from the terminal time

(the 600th year) to infinity with a terminal value function. We estimate the

terminal value function using the summation of discounted utilities which is

discretized over [600,∞) using a one-year interval. Some might argue that,
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due to discounting, economic costs and benefits in the far distant future have

little value from today’s point of view.4 Nevertheless, our aim is to provide

the IAM community with numerical tools which facilitate the design and

execution of an IAM in accordance with accepted standards in mathematics

and economics.

Assume that at the terminal time, the capital is k̃, the three-layer CO2

concentration is M̃, the two-layer global mean temperature is T̃. For any

time t ≥ 600, we assume that the population is l(t) = l̃ = 8600, the to-

tal production factor and the adjusted cost for backstop will be the same

with the numbers at the terminal time respectively, i.e., A(t) = 1.7283 and

θ1(t) = 0.00386. We assume that at terminal time, the world reaches a partial

equilibrium: after the terminal time, capital will be the same, and emission

control rate will always be 1, so that emission of carbon from industry will

always be 0, i.e., k(t) = k̃ and µ(t) = 1, for any time t ≥ 600. Thus, using

the explicit Euler method discussed in Section 7, the one-year discretized

dynamics of the climate system becomes

Mt+1 = Mt + ΦMMt +
(
ELand(t), 0, 0

)>
,

Tt+1 = Tt + ΦTTt +
(
ξ1F

(
MAT

t , t
)
, 0
)>
,

for any year t ≥ 600, where M600 = M̃, T600 = T̃.

To keep the above partial equilibrium, the consumption at year t ≥ 600

4E.g. a one percent annual discount rate over 600 years results in a discount factor of
roughly one quarter of a percent.
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is

ct = Y(k̃, TAT
t , 1, t)− δk̃.

Therefore, we have our terminal value function:

V (k̃, M̃, T̃) =
∞∑

t=600

e−ρ(t−600)u(ct, l̃).

To compute the terminal value function, we will use the summation of dis-

counted utilities over 800 years from t = 600 to t = 1399 with one year as the

time interval for each period instead. It will be a very good approximation of

the summation of the infinite sequence, because e−800ρ ≈ 6.1× 10−6 is small

enough. That is,

V (k̃, M̃, T̃) ≈
1399∑
t=600

e−ρ(t−600)u(ct, l̃).

It would be too time-consuming to use the terminal value function of the

above formula in optimizers to compute optimal solutions, so we will use its

approximation to save computational time. In our examples, we will use a

degree-4 complete Chebyshev polynomial approximation, V̂ (k,M,T), over

the 6-dimensional state space where k ∈ [50000, 90000], MAT ∈ [650, 1050],

MUP ∈ [1400, 1800],MLO ∈ [19000, 21000], TAT ∈ [1, 3], and T LO ∈ [1.5, 3.5].

Detailed discussion of complete Chebyshev polynomials can be found in Judd

(1998), Cai (2009) and Cai and Judd (2010).
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Using the terminal value function, we have the new model:

max
c,µ

ˆ 600

0

e−ρtu(c, l(t))dt+ e−600ρV̂ (k600,M600,T600) , (21)

s.t. k̇ = Y
(
k, TAT, µ, t

)
− c− δk,

Ṁ = ΦMM + (E (k, µ, t) , 0, 0)> ,

Ṫ = ΦTT +
(
ξ1F

(
MAT, t

)
, 0
)>
.

6. Solving and Calibrating Differential Equation Models

Suppose that you have an ODE

dx(t)

dt
= f(x(t), t),

while x(t0) = x0 is given at the initial time t0. Integrating the ODE,

x(t) = x(t0) +

ˆ t

t0

f(x(s), s)ds.

Defining a sequence of times tn = t0 + nh where h is the “step size”, we have

x(tn+1) = x(tn) +

ˆ tn+1

tn

f(x(s), s)ds.

We denote by xn a numerical estimate of x(tn), i.e., xn ≈ x(tn), by estimating

the integration of f over [tn, tn+1], for n = 1, 2, . . .. There are many ways

to numerically compute the integration. The explicit Euler method has the

form

xn+1 = xn + hf(xn, tn).
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From numerical analysis (Iserles, 1996), the explicit Euler method is conver-

gent5 and its numerical error decays as O(h), i.e., linearly when h is halved.

The integration of f over [tn, tn+1] can be estimated more accurately by

the trapezoid rule, so the Crank-Nicolson method is derived:

xn+1 = xn +
h

2
(f (xn, tn) + f (xn+1, tn+1)) .

Since xn+1 can not be produced explicitly by knowing xn and computing

a value of f like the explicit Euler method, the Crank-Nicolson method is

said to be implicit. From numerical analysis (Iserles, 1996), the Crank-

Nicolson method is convergent and its numerical error decays as O(h2), i.e.,

quadratically when h is halved.

Suppose one has some unknown parameters of the ODE in the function f

and wants to choose them so that the solution hits some target points. Denote

a as the unknown parameters, and the function f has the form f(x, t; a).

Assume that x∗n is a given state sequence that we want to match. Then we

can write this as a minimum norm problem. We can use L1 or L2 objectives.

5The method is convergent if there exists a real constant λ such that the function f
that maps Rd × [t0,∞) to Rd satisfies that

‖f(x, t)− f(y, t)‖ ≤ λ ‖x− y‖ for all x, y ∈ Rd, t ≥ t0,

in a given norm ‖·‖, and the Taylor series of f about every (x0, t) ∈ Rd × [t0,∞) has a
positive radius of convergence.
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That is,

min
a

N∑
n=0

‖xn − x∗n‖ , (22)

s.t. xn+1 = xn +
h

2
(f (xn, tn; a) + f (xn+1, tn+1; a)) ,

where ‖·‖ could be L1 or L2 norm.

7. Finite Difference Methods of Continuous Time DICE

In this section, we apply the ideas in the previous section to our continuous-

time IAM.

7.1. Explicit DICE-CJL Model

We use the explicit Euler finite difference rule to discretize the continuous

time model with any time interval h. First, the total discounted utility over

the first 600 years is
N−1∑
n=0

e−ρnhu(cn, ln)h,

where labor supply ln = l(nh) from the function (10) for n = 0, 1, . . . , N − 1.

Second, from the explicit Euler finite difference rule for the continuous

time differential equation of capital (15), the next-stage capital is

kn+1 = (1− δh) kn +
(
Y
(
kn, T

AT
n , µn, nh

)
− cn

)
h, (23)

where the function Y is defined in (14).

Third, from the explicit Euler finite difference rule for the continuous time
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climate system (16) and (19), the next-stage climate state becomes

Mn+1 = Mn +
[
ΦMMn + (E (kn, µn, nh) , 0, 0)>

]
h,

Tn+1 = Tn +
[
ΦTTn +

(
ξ1F

(
MAT

n , nh
)
, 0
)>]

h.

Therefore, the discretized model with the explicit Euler finite difference

method becomes

max
cn,µn

N−1∑
n=0

e−ρnhu(cn, ln)h+ e−ρhN V̂ (kN ,MN ,TN) , (24)

s.t. kn+1 = kn +
(
Y
(
kn, T

AT
n , µn, nh

)
− cn − δkn

)
h,

Mn+1 = Mn +
[
ΦMMn + (E (kn, µn, nh) , 0, 0)>

]
h,

Tn+1 = Tn +
[
ΦTTn +

(
ξ1F

(
MAT

n , nh
)
, 0
)>]

h.

7.2. Trapezoidal DICE-CJL Model

We use the trapezoidal rule (the Crank-Nicolson method) to discretize the

continuous time model with any time interval h. First, we use the trapezoidal

rule for the integration in the continuous time model (21) to estimate the

total discounted utility over the first 600 years, which is

N∑
n=0

e−ρnhwnu(cn, ln)h

where wn are the weights with wn = 1 for n = 1, . . . , N − 1 and w0 = wN =

0.5, and labor supply ln = l(nh) from the function (10) for n = 0, 1, . . . , N−1.

Second, from the Crank-Nicolson method for the continuous time differ-

24



ential equation of capital (15), the next-stage capital satisfies

kn+1 = kn +
[
Y
(
kn+1, T

AT
n+1, µn+1, (n+ 1)h

)
− cn+1 − δkn+1

] h
2

+[
Y
(
kn, T

AT
n , µn, nh

)
− cn − δkn

] h
2
, (25)

where the function Y is defined in (14).

Third, from the Crank-Nicolson method for the continuous time climate

system (16) and (19), the next-stage climate state satisfies

Mn+1 = Mn +
[
ΦMMn+1 + (E (kn+1, µn+1, (n+ 1)h) , 0, 0)>

] h
2

+[
ΦMMn + (E (kn, µn, nh) , 0, 0)>

] h
2
, (26)

Tn+1 = Tn +
[
ΦTTn+1 +

(
ξ1F

(
MAT

n+1, (n+ 1)h
)
, 0
)>] h

2
+[

ΦTTn +
(
ξ1F

(
MAT

n , nh
)
, 0
)>] h

2
. (27)

Therefore, the discretized model with the trapezoidal rule becomes

max
cn,µn

N∑
n=0

e−ρnhwnu(cn, ln)h+ e−ρNhV̂ (kN ,MN ,TN) , (28)

subject to the constraints (25), (26) and (27).

7.3. Detrended Finite Differences

Since the population is growing, the productivity factor is increasing and

the adjusted cost for backstop is decreasing, the capital path will be explosive.

This causes systematic bias in the standard finite difference methods we

discussed above. Curvature in the solution is a source of error when one is

using piecewise linear approximations.
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Next, we transform the differential system to detrend the capital stock

path, and apply a finite difference method to the detrended variable. This

path is bounded with less curvature, and should be better for the finite

difference method. We transform k(t) to its detrended variable e−λtk(t) where

λ is an estimated parameter such that e−λtk(t) has less curvature. One typical

choice of λ is ln (kN/k0) /(Nh) by giving an estimated terminal capital kN .

From (15), we have

d

dt

(
e−λtk(t)

)
= e−λt

(
−λk(t) +

d

dt
(k(t))

)
= e−λt

(
Y
(
kt, T

AT
t , µt, t

)
− ct − (λ+ δ) k(t)

)
.

By discretizing the new differential equation using the explicit finite difference

formula for the capital, we have

e−λ(n+1)hkn+1 − e−λnhkn = he−λnh
(
Y
(
kn, T

AT
n , µn, nh

)
− cn − (λ+ δ) kn

)
,

which implies that

e−λhkn+1 = (1− (λ+ δ)h) kn + h
(
Y
(
kn, T

AT
n , µn, nh

)
− cn

)
. (29)

Similarly, if we use the Crank-Nicolson method to discretize the new differen-

tial equation of the detrended capital, we have the detrended implicit finite

difference method:

e−λhkn+1 = kn +
[
Y
(
kn+1, T

AT
n+1, µn+1, (n+ 1)h

)
− cn+1 − (λ+ δ) kn+1

] h
2

+
[
Y
(
kn, T

AT
n , µn, nh

)
− cn − (λ+ δ) kn

] h
2
. (30)
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7.4. Richardson Extrapolation

The true model is a continuous-time model. We hope that the solutions

converge to the continuous-time solution as we reduce the time period. Also,

our optimizer may not give a good optimal solution with a very small time

step. For both reasons, we want to check if our discrete time solutions con-

verge to a common limit.

Richardson extrapolation (Richardson and Gaunt, 1927) is a standard

way to check if our solutions are consistent with convergence. We apply

Richardson extrapolation to our solutions and find that they are consistent

with convergence. Let x∗t,h be the optimal solution at time t of an ODE with

h as the time interval. The 3-point Richardson extrapolation of x∗t,h, x∗t,h/2,

and x∗t,h/4 is defined as

xRt,h/4 =
1

3

(
8x∗t,h/4 − 6x∗t,h/2 + x∗t,h

)
.

From numerical analysis, we know that the 3-point Richardson extrapolation

has less errors than x∗t,h/4.

8. Calibration

In the equations of the carbon cycle and temperature systems, there are

five unknown parameters, φ12, φ23, ξ1, ξ3, and ξ4, that we should calibrate.

At first, we generate the Business-As-Usual (BAU) paths of carbon cycle and

temperature, which are optimal solutions of the integrated models separating

the climate part and the economic part by fixing the emission control rate to
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be 0 at any time. We denote MD (t) and TD (t), respectively, as the carbon

cycle and the temperature paths of DICE2007, and let ED(t) be the path of

the carbon emission rates. Then we find the parameters so that the paths of

the carbon cycle and the temperature of the continuous time model match

the BAU paths of DICE2007, by assuming that both models have the same

path of the carbon emission rates.

If we choose the L2 norm in the equation (22), then the calibration model

becomes

min
φ12,φ23,ξ1,ξ3,ξ4

N∑
n=1

{(
MAT

n −MAT
D (tn)

MAT
D (tn)

)2

+

(
MUP

n −MUP
D (tn)

MUP
D (tn)

)2

+(
MLO

n −MLO
D (tn)

MLO
D (tn)

)2

+

(
TAT
n − TAT

D (tn)

TAT
D (tn)

)2

+(
T LO
n − T LO

D (tn)

T LO
D (tn)

)2
}
, (31)

where Mn and Tn are the sequences generated from the equality constraints

(26) and (27) by assuming E (kn, µn, nh) = ED (tn).

If we choose the L1 norm in the equation (22), then the calibration model
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becomes

min
φ12,φ23,ξ1,ξ3,ξ4

N∑
n=1

{
εAT+
n + εAT−n + εUP+

n + εUP−
n + εLO+

n + εLO−n +

τAT+
n + τAT−n + τLO+

n + τLO−n

}
s.t. MAT

n −MAT
D (tn) = MAT

D (tn)
(
εAT+
n − εAT−n

)
,

MUP
n −MUP

D (tn) = MUP
D (tn)

(
εUP+
n − εUP−

n

)
,

MLO
n −MLO

D (tn) = MLO
D (tn)

(
εLO+
n − εLO−n

)
,

TAT
n − TAT

D (tn) = TAT
D (tn)

(
τAT+
n − τAT−n

)
,

T LO
n − T LO

D (tn) = T LO
D (tn)

(
τLO+
n − τLO−n

)
,

εAT+
n , εAT−n , εUP+

n , εUP−
n , εLO+

n , εLO−n , τAT+
n , τAT−n , τLO+

n , τLO−n > 0.

We could also choose a weighted L2 norm, for example,

min
φ12,φ23,ξ1,ξ3,ξ4

N∑
n=1

{(
MAT

n −MAT
D (tn)

MAT
D (tn)

)2

+

(
MUP

n −MUP
D (tn)

MUP
D (tn)

)2

+(
MLO

n −MLO
D (tn)

MLO
D (tn)

)2

+ 100

(
TAT
n − TAT

D (tn)

TAT
D (tn)

)2

+(
T LO
n − T LO

D (tn)

T LO
D (tn)

)2
}
.

Using the above three models to calibrate over 500 years, we have the cal-

ibrated parameters listed in Table 1. The first data row gives the calibrated

values of the five parameters using the model (31), where we choose the time

interval as h = 1 year. Since the BAU paths are given in the decadal unit, we

use the picewise linear interpolation to generate the values of emission ED(t)

at each year, and then minimize the sum of square of relative errors of every
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Table 1: Calibration Parameters
φ12 φ23 ξ1 ξ3 ξ4

L2 with h = 1 year 0.0190837 0.005406 0.03711 0.2766 0.0048015
L2 with h = 10 years 0.0190793 0.005403 0.03732 0.2774 0.0047997
L1 with h = 10 years 0.0193771 0.005627 0.03164 0.2507 0.0049349

weighted L2 with h = 10 years 0.0199528 0.005323 0.04526 0.3157 0.0048156

decadal node. Table 1 also lists the calibrated values using the above three

models with the time interval as h = 10 years. We see that the difference

between these values and the first data row is not large. Thus, we can say

that the first data row of Table 1 is a close estimate of the five parameters in

the continuous-time DICE-CJL model. Therefore, we use the first data row

of Table 1 as our calibrated values in our examples.

9. Numerical Results

We apply the explicit Euler method to discretize the climate and eco-

nomic dynamic system and then solve the optimization problem (24) with

various time steps. We also apply the trapezoid rule and then solve the op-

timization problem (28) with various time steps. Numerically, if the time

step h is large, then the numerical errors may become too large so that the

numerical solutions may not be trusted. We use various time intervals to see

the difference of solutions of DICE-CJL with these different time steps h. We

use CONOPT in the GAMS environment (McCarl, 2011) to solve DICE-CJL

with different time period lengths in our GAMS code.
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9.1. Starting Point Strategy

It will become more challenging to solve DICE-CJL with a smaller time

interval h, because the number of variables and constraints and nonzero

elements in the system will increase proportionally.

A good initial guess of solutions will be very helpful for an optimizer

to solve such a large-scale optimization problem. In our examples, one good

initial guess is the linear interpolation of optimal solutions of DICE-CJL with

a larger time interval. For example, we could use the linear interpolation of

optimal solutions of the 2-year DICE-CJL as the initial guess for the annual

DICE-CJL problem.

9.2. Running times of DICE-CJL

Table 2 lists the running times of DICE-CJL with various time intervals

in the GAMS environment on a single-processor Mac. For the explicit model,

the one-year version takes less than 1 second and the weekly version only take

33 minutes. And for the trapezoidal model it takes only 4 minutes to solve

the monthly version. It seems surprising that the 2-year version (or larger

time step for the trapezoidal model) takes more time than 1-year and even

6-month versions. This happens because we do not use the starting strategy

for the 2-year version (or larger time step for the trapezoidal model), but for

other smaller time steps we use the starting strategy.

9.3. State Paths of DICE-CJL

Figures 1-3 plot the optimal paths of the capital stock, the atmospheric

carbon stock, and surface temperature of the explicit DICE-CJL model (24)
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Table 2: Running Times of DICE-CJL with Finite Difference Methods
Step Size h Explicit DICE-CJL Trapezoidal DICE-CJL
10 years - 0.9 seconds
5 years - 9.6 seconds
2 years 5.3 seconds 32.6 seconds
1 year 0.8 seconds 3.6 seconds

6 months 3.8 seconds 13 seconds
3 months 10.6 seconds 64 seconds
1 month 132 seconds 352 seconds
2 weeks 311 seconds 959 seconds
1 week 1733 seconds 3233 seconds

with 1-year time steps. For other smaller time steps and the solutions of the

trapezoidal DICE-CJL model (28) with various time steps from 10 years to

1 month, the paths are close to the 1-year solutions of the explicit model,

so we omit them here. We see that the line of DICE2007 using Nordhaus’s

program diverges strongly from our solutions in each figure.

9.4. Carbon Tax Results in DICE-CJL

One application of DICE2007 was to compute the optimal carbon tax;

see Nordhaus (2007, 2008) and Interagency Working Group on Social Cost

of Carbon (2010). Figure 4 displays the optimal path of the carbon tax for

three numerical approaches. DICE2007 is the path produced by DICE2007.

The dotted line is the path when we use DICE-CJL with the same diffusivity

rates as used in DICE2007, and is the path whether we use the non-causal

specification for warming in DICE2007 or use the DICE-CJL specification.

The solid red line is DICE-CJL with one-year time steps where the diffusivity

parameters are chosen so that the continuous-time climate system matches
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the results for the climate system in DICE2007. The results are striking.

The ten-year time period in DICE2007 consistently produces much higher

path for the carbon tax than other models with shorter time periods. This

example shows clearly why the continuous-time approach is the only proper

foundation for these models, and that finite-difference approximations must

be based on numerical methods for differential equations.

10. Error Analysis of DICE-CJL Model

We next analyze and compare the errors of alternative methods.

10.1. Explicit DICE-CJL Model

Figures 5-7 show that our solutions from the explicit finite difference

method are good. The vertical axis in each figure is

log10

(∣∣∣∣∣x∗t,h − xRtxRt

∣∣∣∣∣+ 10−7

)
,

where x∗t,h is the optimal solution at time t of the explicit DICE-CJL model

with h being the time interval, xRt is the 3-point Richardson extrapolation

of the optimal solution with 1 month, 0.5 month and 1 week (equals to 1/4

month by our assumption) for the explicit model, i.e.,

xRt =
1

3

(
8x∗t,1/48 − 6x∗t,1/24 + x∗t,1/12

)
.

Figures 5-7 plot the relative difference over time intervals of optimal paths

of capital, carbon concentration in the atmosphere, and surface temperature

respectively. We omit the figures of the other three state variables, as they
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show a similar pattern. Each line represents the difference between the solu-

tion for a time step and the Richardson extrapolant.

From the figures, we see that Nordhaus’ solution has a O(1) error in

the optimal capital, and O(10−1) errors in the atmospheric carbon and sur-

face temperature, and even for the first 100 years the errors are still around

O(10−1) or even worse. However, the explicit DICE-CJL model has O(10−2)

errors for each state variable when the time step is 2 years, and then it de-

cays down to O(10−4) when the time step drops to 1 week almost uniformly

along the time path and along the time step. Moreover, since 1 week (equals

to 1/4 month by assumption) is equal to 1/96 of 2 years, and the error of

1-week explicit DICE-CJL is also about 1/96 of the error of 2-year explicit

DICE-CJL, we see that the error of each state variable is decreasing linearly

as we reduce the time step in the explicit DICE-CJL model.

10.2. Trapezoidal DICE-CJL Model

Figures 8-10 show that our solutions from the trapezoidal rule are more

accurate than the solutions given by the explicit DICE-CJL model. The

vertical axis in each figure is

log10

(∣∣∣∣∣x∗t,h − xRtxRt

∣∣∣∣∣+ 10−7

)
,

where x∗t,h is the optimal solution at time t of the trapezoidal DICE-CJL

model with h as the time interval, xRt is the 3-point Richardson extrapolation

of the optimal solution with 1 month, 2 weeks and 1 week (equals to 1/4
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month by our assumption) for the trapezoidal model, i.e.,

xRt =
1

3

(
8x∗t,1/48 − 6x∗t,1/24 + x∗t,1/12

)
.

From the figures, the trapezoidal DICE-CJL model hasO(10−2) ∼ O(10−3)

errors for each state variable when the time step is 10 years which has almost

the same accuracy with the 1-year explicit DICE-CJL model. When the time

step is reduced to 1 month, the error has already converged to O(10−6). The

1-month trapezoidal DICE-CJL results also show the convergence. Since 1

month is equal to 1/40 of 10 years, and the error of 1-month trapezoidal

DICE-CJL is about 1/1000 of the error of 10-year trapezoidal DICE-CJL,

we see that the error of each state variable decays about quadratically as we

reduce the time step in the trapezoidal DICE-CJL model.

10.3. Detrended Finite Difference

From Figure 1, we see that the capital path has a high curvature, so

we use the detrended finite difference method by detrending the capital path

k(t) to e−λtk(t), where we choose λ = ln (70000/k0) /600 = 0.0104. Figure 11

gives the relative errors of optimal capital under logarithmic scale from the

detrended finite difference method using 10-year step size. We see that the

detrended explicit finite difference method using (29) (the dotted line) has

less errors than the explicit DICE-CJL without detrending (the dot-dashed

line). Moreover, the detrended trapezoidal finite difference method using (29)

(the dashed line) improves half a digit accuracy than the trapezoidal DICE-

CJL without detrending (the dot-dashed line). For other climate states, the
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detrended DICE-CJL has solutions close to those without detrending because

we just do detrending on the economic side.

Figure 12 verifies that the detrended capital has less curvature: it ranges

from 125 to 200 while the optimal capital has a much wider range along the

time.

11. Conclusion

Both the climate and economy are continuous-time systems. Climate

system modelers have always based their work on continuous-time models,

but economists have used discrete-time models with long time periods. Using

DICE as an example, we show that continuous-time formulations of IAM

models are natural, that many reliable methods from numerical analysis are

available to solve such models, and that the choice of time step and finite-

difference method can have economically significant effects on the answers to

basic questions in economic policy.

The DICE example is a simple one which can be solved by a variety of

numerical methods that are reliable when one takes very short time steps.

However, as we move to multisector and multiregional models that signifi-

cantly increase the dimensionality of the system of ordinary differential equa-

tions, it will become increasingly important to use efficient finite difference

methods that allow for time steps of moderate size without losing accuracy.

The value of the arguments mentioned in this paper will be even higher in

these more realistic models.
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Figure 1: Capital Stock
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Figure 2: Carbon Concentration in the Atmosphere
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Figure 3: Surface Temperature
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Figure 4: Carbon Tax
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Figure 5: Relative Errors of Capital of Explicit DICE-CJL
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Figure 6: Relative Errors of Atmospheric Carbon of Explicit DICE-CJL
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Figure 7: Relative Errors of Surface Temperature of Explicit DICE-CJL
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Figure 8: Relative Errors of Capital of Trapezoidal DICE-CJL

2050 2100 2150 2200 2250 2300 2350 2400 2450 2500
−7

−6

−5

−4

−3

−2

−1

0

Year

lo
g

1
0

 o
f 

R
e

la
ti
v
e

 D
if
fe

re
n

c
e

Capital Stock

 

 

DICE2007 10−year

CJL 10−year

CJL 5−year

CJL 2−year

CJL 1−year

CJL 6−month

CJL 3−month

CJL 1−month

42



Figure 9: Relative Errors of Atmospheric Carbon of Trapezoidal DICE-CJL
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Figure 10: Relative Errors of Surface Temperature of Trapezoidal DICE-CJL
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Figure 11: Relative Errors of Capital with Detrended Finite Difference Method
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Figure 12: Detrended Capital
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