
NBER WORKING PAPER SERIES

DIVIDEND INNOVATIONS AND
STOCK PRICE VOLATILITY

Kenneth D. West

Working Paper No. 1833

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
February 1986

A previous version of this paper was circulated under the title
"Speculative Bubbles in Stock Price Volatility." The research
reported here is part of the NBER's research program in Economic
Fluctuations. Any opinions expressed are those of the author and
not those of the National Bureau of Economic Research.



NBE2 Working Paper #1833
Februaty 1986

Dividend Innovations and Stock Price Volatility

ABSTPACT

This paper establishes an inequality that may be used to test the null

hypothesis that a stock price equals the expected present discounted value of

its dividend stream, with a constant discount rate. The inequality states that

if this hypothesis is true, the variance of the innovation in the stock price

is bounded above by a certain function of the variance in the innovation in the

dividend. The bound is valid even if' prices and dividends are nonstationary.

The inequality is used to test the null hypothesis, for some long term

annual U.S. stock price data. The null is decisively rejected, with the stock

price innovation variance exceeding its theoretical upper bound by a factor of

as much as twenty. The rejection is highly significant statistically.

Regression diagnostics and some informal analysis suggest that the results are

more consistent with there being speculative bubbles in the U.S. stock market

than with a failure of the rational expectations or constant discount rate

hypothesis.
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Princeton, NJ 08544



The source of fluctuations in stock prices has long been argued. Some

observers have suggested that a major part of the fluctuations result from self

fulfilling rumors about potential price fluctuations. In a famous passage,

Keynes, for example, described the stock market as a certain type of beauty

contest in which judges try to guess the winner of the contest: speculators

devote their "intelligence to anticipating what average opinion expects average

opinion to be" [15, p136:1. An examination of practically any modern finance

text (e.g., Brealey and Myers [5]) indicates that the economics profession

tends to hold the opposite view. Stock price fluctuations are argued to result

solely from changes in the expected present discounted value of dividends.

The subject has received increased attention in recent years because of the

volatility tests of Leroy and Porter [21] and, especially, Shiller [33]. These

tests seem to indicate that stock price fluctuations are too large to result

solely from changes in the expected present discounted value (PDV) of

dividends. There is, however, some question as to the validity of this

conclusion. Marsh and Merton [214,25] have objected to the tests' assumption

that dividends are stationary around a time trend; Flavin [8] and Kleidon [20]

have argued that in small samples the tests are biased toward finding excess

volatility.

This paper develops and applies a stock market volatility test that is not

subject to these criticisms, The test is based on an inequality on the

variance of the innovation in the expected PDV of a given stock's dividend

stream, and was first suggested by Blanchard and Watson [14],2 The
inequality

states that if discount rates are constant this variance is larger when

expectations are conditional on just the set of current and past dividends than

when expectations are conditional on a larger information set. It may be shown

that this implies that the variance of the innovation in a stock price is
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bounded above by a certain function of the variance of the innovation in the

corresponding dividend.

The paper checks whether the bound is satisfied by some long term annual

data on the S and P 500 and the Dow Jones indices. It is not. The estimated

variance of the stock price innovation is about four to twenty times its

theoretical upper bound. The violation of the inequality is in all cases

highly statistically significant.

It is to be emphasized that the inequality is valid even when prices and

dividends are integrated ARIMA process with infinite variances, and that the

empirical work allows for such nonstationarity. In addition, the test

procedure does not require calculation of a perfect foresight price; this price

appears to be central to the small sample biases that are argued by Flavin [8]

and Kleidon [20] to plague the Shiller [33] volatility test. The paper

nonetheless performs a small Monte Carlo experiment to check whether under

certain simple circumstances the small sample bias in this paper's test

procedure could explain the results of the test. The answer is no.

While one of the purposes of this paper is to apply a volatility test with

a relatively weak set of maintained statistical assumptions, that is not its

only aim. It also considers the consistency of some of the test's maintained

economic assumptions with the data, to help determine which among these should

be relaxed, so that the excess price volatility might be explained. To that

end, the paper uses a battery of formal diagnostic tests on the regressions

that must be estimated to calculate the inequality. The test results are in

general quite consistent with the test's maintained hypotheses of rational

expectations and, perhaps suprisingly, of a constant rate f or discounting

future dividends. Some additional, less formal analysis, which considers

further the constant discount rate hypothesis, does not suggest that the
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excessive price variability results solely from variation in discount rates.

The test maintains essentially only one additional assumption, which is a

transversality condition that puts an upper bound on expected growth in stock

prices. If this condition is false, the excess volatility might be due to

speculative bubbles of the sort considered by, f or example, Blanchard and

Watson [14].

The evidence, then, is more consistent with a failure of the transversality

condition than of the rational expectations or constant discount rate

assumptions. The paper does not, however, attempt to make a detailed case for

bubbles, or, f or that matter, any other factor, as the explanation of the

excess volatility. Instead what is emphasized are two empirical regularities

that seem to characterize the data studied here. The first is that prices

appear to be too variable to be set as the expected PDV of dividends, with a

constant discount rate; this holds even if prices and dividends are

nonstationary. The second is that a rational expectations, constant discount

rate model appears to characterize these data remarkably well. Reconciliation

of these two points is a task left for future research.

Before turning to the details of the subject at hand, a final introductory

remark seems worth making. The inequality established here may be of general

interest in that it could be used to test other infinite horizon present value

models, Possible examples include testing whether consumption is too variable

to be consistent with the permanent income hypothesis (a subject considered in

Deaton [6]), or whether exchange rates are too variable to be consistent with a

standard monetary model (West [140]). That the inequality is valid even in a

nonstationary environment makes it particularly appealing in these and perhaps

other contexts.

The plan of the paper is as follows. Section II establishes the basic
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inequality. Section III explains how the inequality may be used to test a

rational expectations, constant discount rate stock price model. Section IV

presents formal econometric results. Section V considers informally whether

small sample bias or discount rate variation are likely to explain the section

IV results. Section VI has conclusions. An appendix has econometric details.

II.The Basic Inequality

The following proposition is the basis of this paper.

Proposition 1: Let t be an information set consisting of the space spanned by

the current and past values of a finite number of random variables. After

suitable differencing, the random variables are assumed to be covariarice

stationary, and, without loss of generality, to have zero mean. Let dt be one

of these variables. Let Ht be a subset of 't consisting of the space spanned

by current and past values of some subset of the variables In I, Including at

a minimum current and past values of dt. Let b be a positive constant, Ob<1.

Define X = bJdt+.. (The preceding and all other summations In this section
0

run over j.) Suppose that XtiExt1I and xtH=ExtlHt both exist. Then

(1) E(xH_ExHlJ.Jl)2 E(xti-ExtilIti)2

Proof:3 Write

(2) X = dt + bxt+i

Project (2) onto to obtain

(3) X1 = dt + bExt+iIIt
=

dt + bxt+i,i
—

bet+i

e+1 = xt+i,i-Ext+ilIt = xt+i,i-Ext+i,ilIt
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Recursive substitution for then for xt÷2,I, etc. yields

() X,1 = b3d —
!bJet+ = Xt

—

By a similar argument, involving projections onto Ht,

(5) X = x — b3ft+
rt+j

=
xt+j,HExt+j,HIHt+j_l

Now, since var(xt_xti) and var(xt—xtH) are finite (see below), we have

(6) var(xt_xfH) var(xt—xtI+xtIxtH) = var(xtxti) + var(xtI—xH)

var(x-.x)

The second equality follows since Xt_xti=xtExtIIt is uncorrelated with

anything in It,, including, in particular, XtIXtH. The assumptions of the

proposition insure that e and f, have zero mean, constant variance and are

serially uncorrelated. So var(x-xH)= b2(1-b2)1Ef,

var(xt_xtI)=b2(1_b2)lEe,
and (6) implies E(xtH_ExtHIHt_l)2

E(xti_ExtitIti)2. Q.E.D.

A verbal restatement of Proposition 1 is as follows. Suppose we are

forecasting the present discounted value of dt, by calculating XtI and XtH.

Each period as new data become available we revise our forecast.

E(xtl_ExtIIIt_l)2 and E(xtH_EXtHIHt_1)2 are measures of the average size of

this period to period revision. Proposition 1 says that with less information

the size of the revision tends to be larger. That is, when less information is
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used, the variance of the innovation in the expected present discounted value

of dt is larger.

It is worth making four comments on the conditions under which (1) is

valid. Further details on some of the comments may be found in footnote 1L

First, (1) holds whenever x1 and XtH are well defined, as they will be if, for

example, the variables in I arid follow a finite parameter ARIMA process.

Note that this includes in particular processes with unit AR roots (an example

is given below). Second, (1) does not extend immediately if logarithms or

logarithmic differences are required to induce stationarity in dt. If, for

example, log(d)=log(d1)+, etN(O,a2) it may be shown that

E(xtH_ExtHIHt_l)2 does not even exist for Ht={dt_3}. Third, the inequality

need not hold for a finite horizon. That is, it need not hold if we consider
n.

the variance of the innovation in the expected PDV of Zb3dt+. instead of
0

Fourth, (1) does not hold for arbitrary subsets of If, for

0

example, Ht were the empty set, XtH would also be the empty set, and the left

hand side of (1) would be identically zero.

Before developing the implications of (1) for stock price volatility, it

may be helpful to work through a simple example. Suppose consists of lags

of dt and of one other variable, zt. Let Ht consist simply of lags of dt. Let

the bivariate (d,zt) representation be

= Fii i
I (I 14—J I

2ILt-jj L2tJ

with 4t1, and 2t i.i.d, Ecitc25.O for all t,s. Let Et=a, Ect=o.

The univariate representation of dt clearly is

Ev=aa. Let us calculate both sides of (1).
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(8) Edt+.IHt = 4dt
==> Xf1 EbJdt+.fH =

(1—b4)1dt
==> E(xtfl_ExtHtHtl)2 E[(1-b)1vtJ2 = (1-b)2(o+o)

Edt II. = dt

Edt+It = + j>O

==> X1 EbJdt+j 11t = (1_b)1(dt+bzt)
==> E(xti_ExtilIti)2 E[(1-b)1(eit+bzt)]2

= (1—bY2(g+b2)

Since b2<1, o+>a+b2o, so (1) holds. Observe that (1) holds even when 4=1

so that dt is nonstationary.

III.The Model

According to a standard efficient markets model, a stock price is

determined by the arbitrage relationship (9) (Brealey and Myers [5, pp142145]):

Pt = bE(pt+i+dt+i)lIt

where p is the stock price at the end of period t, b the constant ex—ante real

discount rate, O<b=1/(1+r)<1, r the constant expected return, E denotes

mathematical expectations, dt+i the real dividend paid to the owner of the

stock in period t+1, and I information common to traders in period t. is

assumed to contain, at a minimum, current and past dividends, and, in general,

other variables that are useful in forecasting dividends.

Equation (9) may be solved recursively forward to get



—8—

(10) Pt = bJEdt+IIt + bnEP+flhI

If the transversality condition

(11) urn
bT1EPt+nIIt

0

holds, then

—vt') t = b

Proposition 1 is used to test the model (12) as follows. Note first that

since x1 = EbJdt+j lIt, (12) implies that xti=pt+dt. So E(xti—ExtiIIt_i)2 =

and, therefore,

(13) E(xtH_ExtHIHtl)2 E[pt+dt_E(pt+dtllt_i)]2

The intuitive reason that the model (12) implies (13) is as follows.

E(xtfl_ExtHlHt_l)2 is by definition a measure of the average size of the

innovation in the expected present discounted value (PDV) of dividends, when

expectations are conditional on Ht. According to (12), price adjusts

unexpectedly only in response to news about dividends.

is a measure of the average size of the innovation in

the expected PDV of dividends, with expectations conditional on the market's

information set Since the market is presumed to use the variables

forecast optimally, the market's forecasts tend to be more precise, i.e., (13)

holds.5

To make (13) operational, both sides of it must be calculated. Consider



—9--

first E[pt÷dt_E(pt+dtjltl)J2. A consistent estimate of' this is easily

obtained by estimating (9) with the instrumental variables method of NcCallum

[26] and Hansen and Singleton [18J. Rewrite (9) as

(1) Pt = b(pt÷i+dt+i) -
b[pt+i+dt+i-E(pt+i+dt÷i It)]

=
b(Pt+i÷d1) + Ut+l

=

Equation (1k) can be estimated by instrumental variables, using as instruments

variables known at time t. An estimate of E[pt+dt_E(pt+dtlIti)]2 is then

obtainable as b"2a2.

Estimation of E(2 is slightly more involved. It requires

first of all specification of Ht. The simplest possible one Is

and Ht defined this way is what is used in this paper's

empirical work.6 Choices of Ht that include lags of additional variables might

produce sharper results, but would also entail more complex calculations. With

Ht(1,dt_J}, E(xtH-ExtHHt_l)2 can be calculated as a function of dt's

univariate ARIMA parameters. Suppose
dARIMA(q,s,o)

(15)
sdt÷i + isdt + •.. + qASd_q1 + Vt+l

where LS(l_L)s L the lag operator. (A moving average component to dt is

assumed absent f or notational and computational simplicity.) Then

q+s
xtH=EEbdt+.lHtm+ E S1dt_1+i. The are complicated functions of b and the

. Hansen and Sargent [17] provide explicit formulas for the 6. In

particular, given b and the ARIMA parameters of dt, one can use the Hansen and

Sargent [17] formula for to calculate =
E(XtH_EXtHIHt l)2. To test the



—10—

null hypothesis that. prices are determined according to (12), then, we

calculate

(16) o2 — b2o

and test H0: 6o — b2o 0. If the estimate of (16) is negative (that is,

the implications of (12) for the innovation variances are not borne out by the

data), a convenient way to quantify the extent of the failure of the model (12)

is to calculate

(17) _100(2 — b2o)/(b2o)

When (16) is negative, (17) yields a number between 0 and 100. I will

refer to this somewhat loosely as the percentage of the variance of the

innovation in Pt that is excessive. This is of course somewhat imprecise in

that b2q2 is the variance of the innovation in the sum of dividends and

prices. But given that price innovations are much larger than dividend

Innovations (see the empirical results below), this terminology does not seem

misleading.7

What alternatives might explain a rejection of the null hypothesis that

(16) is positive? Three have figured prominently in discussions of related

work: expectational irrationality (e.g., Ackley [1]), variation in discount

rates (e.g., Leroy [22]) and speculative bubbles (e.g., Blanchard and Watson

[ii]). Elaboration of the relevant implications for asset price variability of

the first two seems unnecessary since these are well known from the work of

Shiller [33,314,35]. The speculative bubble alternative is perhaps less

familiar, so some discussion seems warranted.
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Let us begin by noting that Pt=EbJdt+IIt is not the only solution to (1).

If the transversality condition (11) fails, there is a family of solutions to

(1) (Blanchard and Watson [14], Shiller [32], Taylor [36]). For any c, that

satisfies ECtIIt_ibct 1' PtEZb3dt+IIt+ct
is also a solution to (1). c is

by definition a speculative bubble, an otherwise extraneous event that affects

stock prices because everyone expects it to do so. An example of a stochastic

process for c, similar to one described in Blanchard and Watson [MI, is

(18)
J (c_l_)/(lrtb) with probability lit

t
/[(1_lit)b] with probability

According to (18), strictly positive bubbles grow and pop. (See Blanchard

and Watson [14] for an argument that negative bubbles are inconsistent with

rationality.) In this example, the probability that a bubble grows is ,r,, that

It collapses is The bubble may reflect events like sunspots that have no

connection with the expected present discounted value of dividends.
ir, might

then be a random variable uncorrelated with anything in I. A more interesting

possibility is that the bubble is intimately connected with fundamentals, with

' dependent on news about fundamentals. A simple example is for all t,

with the bubble popping if and only if the innovation in dividends is negative.

If ii is constant (Trt=li for all t), each bubble has an expected duration of

(1ir)1. (li is not an identifiable parameter.) Combination of several bubbles

are possible; the growth and collapse of the bubbles may be either tightly or

loosely related. See Blanchard and Watson [14] for further examples and

discussion.

Suppose that Pt=EEbidt+IIt+ct for some bubble Ct (possibly one not
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following the stochastic process (18)). Since Pt+d,=xti+ct, we have

(19) E[Pt+dt_E(pt+dtlIti)]2 = E(xti_ExtilIt_i)2 +

2E(xti_ExtIIIti)(ct_EctlIt_l) + E(ct-EctIIt_i)2

When a bubble is present, the right hand side of (19) may be larger than

E(xti_ExtiIIt.i)2.
It will unambiguously be larger if the innovation in the

bubble is positively correlated with the innovation in x1. This will be the

case if for example, the bubble is connected with fundamentals and reflects a

tendency of the market to overreact to news about dividends. This is sometimes

argued to be plausible (e.g., Blanchard and Watson [J43).8

In the presence of bubbles, then, b2a2 will plausibly be bigger than

E(xti_ExtilIt_i)2, and, therefore, (16) will be positive. In light of some

empirical evidence yet to be presented, it is of particular interest to

consider how to distinguish between bubbles on the one hand and expectational

irrationality and time varying discount rates on the other as possible

explanations of any excess price volatility. Formal econometric tests will

help here. Consider, for example, diagnostic tests on the residual to equation

(lii). As long as (9) is correct——which it will be if expectations are rational

and the discount rate is constant, even if there are bubbles—-u+1, the

disturbance to (114), is an expectational error. So u÷1 should be serially

uncorrelated and uncorrelated with anything In I, including, in particular,

lagged dividends. But if expectations are not rational, will not in

general have these properties. Nor will it if discount rates vary through time

(see footnote 12).

Other diagnostics may also help distinguish between bubbles and other

alternatives as possible explanations; some of these were calculated and are
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described in the next section. For the present, the important point to note is

that when bubbles are absent, the arbitrage equation (1k) and the dividend

equation (15) together imply that (16) is positive. The only apparent form of'

misspecification that leaves (1) and (15) legitimate, but is still consistent

with (16) being negative, is speculative bubbles. So an essential part of the

strategy used here to distinguish between bubbles and other alternatives as

explanations of excessive price variability is to perform diagnostic tests on

equations (1k) and (15). If these appear to be well specified, a logical

inference is that bubbles explain the excess volatility.9

Such an inference may of course be incorrect. There may be small sample

biases in the diagnostic tests. In addition, one may have a strong theoretical

presumption that speculative bubbles are not present, or that the basic model

has been misspecified in that, say, discount rates vary through time: it is

certainly true that a consensus view on how general are the equilibria that

admit bubbles is far from established, and that intertemporal asset pricing

theories suggest that discount rates vary in general.'1° It would then be

reasonable to give little credence to formal econometric evidence based on

asymptotic distributions.

It is beyond the scope of this paper to consider these points in great

detail. Section V does, however, analyze informally some of them.
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IV. Empirical Results.

A. Data and Estimation Technique.

The data used were those used by Shiller [33 in his study of stock

price volatility, and were graciously supplied by him. There were two

data sets, both containing annual aggregate price and dividend data. One

had the Standard and Poor 500 for 1871-1980 = price in January

divided by producer price index (1979 = 100), dt+l = sum of dividends

from that same January to the following December, deflated by the average

of that yearts producer price index). The other data set was a modified

Dow Jones index, 19281978 (p,d+i as above). See Shiller [33 for a

discussion of the data.

The following aspects of estimation are discussed in turn:

(i) selection of the dividend processts lag length q , (ii) estimation

of (14), (15) and (16), (iii) calculation of the variance-covariance

matrix of the parameters estimated, and (iv) diagnostic tests performed.

(1) It was assumed that the univariate dt process required at most one

difference to induce stationarity. That is, in equation (15), s0 (the

original series used) or s1 (first difference of original series used).

No other values of s were tried.

For both the differenced and undifferenced versions of each data

set's dividend process, two values of lag length q were used. One was

arbitrarily selected as q4. The other was the q selected by the

information criterion of Hannan and Quinn [14]. This criterion chooses

the value of q that minimizes a certain function of the estimated

parameters, and asymptotically chooses the correct q if the process

truly has a finite order autoregressive representation.'1
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Thus, for each data set up to four sets of parameter estimates were

calculated: q4, qlag length selected by the information criterion,

for differenced and undifferenced series. In one case (Dow Jones,

differenced), the Hannan and Quinn [14] criterion chose q4. So only

three sets of parameters were calculated for Dow Jones.

(ii) Calculation of (16) required estimation of the bivariate system

consisting equations (14) and (15). Equation (14) was estimated by

Hansen's [is] and Hansen and Singleton's [18] twostep two-stage least

squares. The first step was standard two stage least squares. The

second step obtained the optimal instrumental variables estimator. The

q+1 instruments used were the variables on the right hand side of (15),

i.e., a constant term and q lags of 5d (s0 or s1). Equation

(15) was estimated by OLS, with the covariance matrix of the parameter

estimates adjusted for conditional heteroscedasticity as described in

(iii).

With Sd AR(q), the ô parameter in equation

s
-1 q.

(16) is [(1—b) 4(b)] , 4(b) 1 -
b14, (Hansen and Sargent [17]).

1

q —2'2 '—22
Thus, equation (16) was calculated as [(1_b)S(1 - 1 b1)]

- b
i= 1

and a2 were calculated from the moments of the residuals of the

regressions with a degrees of freedom correction used for



-16-

1T-s 2
(20) a = (T-s) u1U

= (T-s-q-1) v1
t= 1

T is the number of observations, T = 110 for the Standard and Poor's

index, T = 51 for the Dow Jones index.

The parameter vector estimated

:E"nssy aswas w cli ao,wy •

appendix and (iii) below). Let f(O) be equation (16) above. The

standard error on the estimate of equation (16) was calculated as

[(af/ao)V(af/ao)']1"2 (See Rao [29, pp. 385-86].) The derivatives of f

were calculated analytically.

(iii) The estimate of V, the variance-covariance matrix of 0, was

calculated by the methods of Hansen [is] and White and Domowitz [42] so

that the estimate would be consistent for an arbitrary ARNA process for

and v. This is necessary because, for example, the correlation

between u and may in principle be nonzero for all j > 0 . The

Newey and West [271 procedure was used to insure that V was positive

definite. Details may be found in the appendix. It suffices to note

here that the procedure for calculating the standard error on (16)

properly accounts for the uncertainty in the estimates of both the

regression parameters and the variances of the residuals.

(iv) The final item discussed before results are presented is diagnostic

tests on equations (14) and (15). Four diagnostic checks were performed.
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The first checked for serial correlation in the residuals to the

equations, using a pair of tests. As noted above, u1, the disturbance

to equation (14), is an expectational error. If expectations are

rational, then, will be serially uncorrelated. Equation (15)'s

disturbance v1 should also be serially uncorrelated, since v1 is
the innovation to the dividend process.

The first of the pair of serial correlation tests checked for first

order serial correlation in u1 and v1. This was done as suggested

in Pagan and Hall [28, pp. 191, 170]. The second of the pair of serial

correlation tests, performed only for (15), calculated the Box-Pierce Q

statistic for the residuals. This statistic of course simultaneously

tests for first and higher order serial correlation, see Granger and

Newbold [10, p. 93].

The second of the four diagnostic checks was performed only on

equation (14). This was a test of instrument-residual orthogonality,

basically checking whether the residual to (14) is uncorrelated with

lagged dividends (Hansen and Singleton [18}). Let Z be the ((q+1) x 1)

vector of instruments and b the estimate of b. The orthogonality test

is computed as:

(21) ( Z[p-b(p+1+ d+1)]) (TS)1 ( Z[p-b(p÷i+ d+i)J)

is an estimate of E(Ztut+i) (Zu+i) and was calculated as

the 2SLS residual to (14). The statistic (21) is asymptotically

distributed as a chi-squared random variable with q degrees of freedom.

As explained in a footnote, this test in general has the power to detect
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failures of the model (12) such as expectational irrationality and

variation in discount rates.12

The third of the four diagnostic checks tested for the stability of

the regression coefficients in (14) and (15). Each sample was split in

half, a pair of regression estimates was obtained, and equality of the

pair was tested. The resulting statistic is asymptotically chi-squared,

with one degree of freedom for (14) and (q+1) degrees of freedom for

(15). This test clearly has the power to detect shifts in the discount

rate, as well as in the dividend process.

The fourth and final diagnostic check performed is implicit in the

estimation procedure described above. A variety of specifications for

the dividend process were used--differenced and undifferenced, with a

variety of lag lengths. Since the results did not prove sensitive to the

specification of the dividend process, the likelihood is relatively small

that changes in the specification of the dividend process will affect the

results.

B. Empirical Results.

Regression results for (14) and (15) are reported in Tables IA and

lB. The results in Table IA strongly suggest that the basic arbitrage

equation (1) is a sensible one. The entries in column (4) allow

comfortable acceptance of the null hypothesis of no serial correlation in

the disturbance to equation (14). The test statistic in all cases

is far from significant at the .05 level. In addition, the equation (19)

test for instrument-residual orthogonality also allows easy acceptance of

the null hypothesis of no correlation between the instruments and the

residuals. A possible exception is the Standard and Poor's data set,
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undifferenced, lag length = 2. See column (5). The generally successful

results in column (5) are perhaps especially noteworthy since failures of

rational expectations models to pass this test are quite common (e.g.,

Hansen and Singleton [18], West [38]).

Most important, the discount rate b is estimated plausibly and

extremely precisely in all regressions. See column (3). The implied

annual real interest rates are about six to seven per cent. These rates

are quite near the arithmetic means for ex post returns: 8.1 percent for

the Standard and Poor's index (1872—1981) and 7.4 per cent for the Dow

Jones index (1929-1979). The estimates of the discount rate therefore

are reasonable. The plausibility of the estimates of the discount rate

provide special reassurance that the specification of the arbitrage

equation (1) is an attractive one, since rational expectations models

often fail to estimate ex ante real rates either sensibly or precisely

(e.g., Blanchard [3], Rotemberg [30], Sargent [31]). Moreover, there is

little evidence that the rate was different in the two halves of either

sample. As indicated in column (6), the null hypothesis of equality

cannot be rejected at the five per cent level for any specification

except Standard and Poors, undifferenced, q=2. In addition, no evidence

against the constancy of the discount rate may be found in a comparison

of the two halves' mean ex post returns. For the Standard and Poor's

index, these were (in per cent) 8.09 (1872-1926) versus 8.12 (1927-1981);

for the Dow Jones the figures are 7.87 (1929-1954) versus 6.92

(1955—1979).

In general, then, the specification of the arbitrage equation (14)

seems quite attractive, with the possible exception of the Standard and

Poor's data set with dividends undifferenced. Let us now turn to the
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estimates for the dividend process, reported in Table lB. Once again,

the entries in columns (8) and (9) allow comfortable acceptance of the

null hypothesis of no serial correlation in the disturbance to equation

(15). With one exception, both test statistics in all regressions are

far from significant. The only exception was the estimate of the first

order serial correlation coefficient p for the Standard and Poor's index,

undifferenced, lag length q=2. Note, however, that this regression's Q

statistic in column (9) comfortably accepts the null hypothesis of no

serial correlation. Overall, then, no serial correlation to the residual

to (15) is apparent. Also, the estimates of most regression coefficients

are fairly precise, at least when the lag length q was chosen by the

Bannan and Quinn [14] procedure. Finally, the null hypothesis that the

parameters of the dividend process are the same in the two halves of each

sample cannot be rejected for any specification except the Standard and

Poor's, undifferenced. See column (10). Overall, then, the

specification of the dividend process seems quite acceptable, again with

the possible exception of the Standard and Poor's data set,

undifferenced.

The null hypothesis that price is the expected present discounted

value of dividends, with a constant discount rate, does not, however,

appear acceptable, for any specification. As may be seen from column (7)

in Table II, equation (16) was always negative, and significantly so.

The asymptotic z-stat (ratio of parameter to asymptotic standard error)

was always larger than 2.5. This means that the column (7) entries are

always significant at the one-half per cent level, using a one-tailed

test. The null hypothesis may therefore be rejected at traditional

significance levels. Furthermore, the fraction of the variance of the
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price innovation that is excessive is substantial, about 80 to 95 percent

(column (8) of Table II).

The residual price fluctuation might reflect irrational reaction to

news about dividends, variation in discount rates, or some combination of

these and other factors. For the S and P undifferenced

specifications, the econometric evidence is not particularly helpful in

discriminating among these possibilities. It is worth noting, however,

that for the other specifications, the results of the diagnostic tests

were more consistent with the residual volatility being due to

speculative bubbles than to a misspecification of the arbitrage or

dividend equations.
13
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V.Sorne Additional Analysis

This section considers the possibilities that the previous section's

results are due to (A) small sample bias, or (B)variation in discount rates.

It is to be emphasized that the analysis is informal, and the conclusions are

far from definitive. The goal here is simply to gather some evidence on

whether either possibility explains the results; a complete, rigorous

econometric examination of either possibility would require a separate paper.

(A)Small Sample Bias

This section uses two small Monte Carlo experiments to get a feel for the

importance of two types of bias. Part (1) below considers whether under

certain simple circumstances small sample bias is likely to account for the

finding of excess variability. Part (2) studies whether under equally simple

circumstances low small sample power of the equation (21) test of instrument

residual volatility is likely to explain the generally favorable results of the

diagnostic tests.

(1)It is important to consider whether small sample bias explains the finding

of excess variability, in light of the evidence in Kleidon [20] and Marsh and

Merton [25] suggesting that if prices and dividends are nonstationary, the

Shiller [33] variance bounds test is strongly biased towards finding excess

variability. To see whether there is a similar bias in the present paper's

test, an environment similar to that in Kleidon [20] and Marsh and Merton [25]

was assumed. A Monte Carlo experiment was performed, assuming: (a)dividends

follow a random walk, Ldti+v, and (b)!-It=It, so that equations (16) and (17)

are zero.

In this experiment, i and were matched to the S and P sample values of

the mean and variance of dt, i.i=.0373, o=.15714. b was set to .91113, the value

estimated in line 2 of Table IA. For each of 1000 samples, the following was
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done: A vector of 100 independent normal shocks was drawn, (V1,...,V100)

Dividends and prices were calculated as dt=.0373+vt;
dt=do+Zd5 (d0=1.3);

Pt=Z(.913)JEd+.II = m+61d, m=(.O373)*(.913)/(1_.913), 6i93/(1-.913).

u and a were then estimated by an OLS regression of dt on a constant, b and

by an instrumental variables regression of equation (1I), with a constant as

the only instrument. Finally, equation (17), the percentage of price

variability that is excessive, was calculated from the estimated parameters.

Table lilA presents the empirical distribution of equation (17). Ideally,
the median value of this statistic would be zero, with half the samples

yielding a positive value to (17). Instead it is 15.0, and about two thirds of

the samples produced a positive value. So there is a bias towards a finding of

excess variability. The bias is not, however, particularly marked, and fewer

than 10 percent of the simulated regressions produced the extreme values of the

sort found in all of the Table II specifications.

That the Table lilA distribution is only slightly biased suggests more

strongly than might be immediately apparent that small sample bias does not

explain the Table II results. For Table lilA contains worst case figures,
since it is based on simulations in which HtI. Proposition 1 implies that
for any given b and univariate dt process, a will be smaller when I contains
additional variables useful in forecasting dt than when It.=Ht. This suggests

that when It contains these variables estimates of and of equation (17) will

be smaller as well. But a simulation with such variables in I, does not seem

worth undertaking, because even under worst case circumstances assumed here,

there is little to suggest that small sample bias explains the excess
variability reported in Table II.

(2)It is possible that the diagnostic tests reported basically favorable
results because the tests have low power. It is particularly difficult to
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analyzed. This is because Monte Carlo experiments here are potentially quite

burdensome computationally. This will be true if Pt or dt are generated

nonlinearly under the alternative, as will be the case, f or example, in most

formulations of the Lucas [23] asset pricing model.

So this section has a relatively modest aim, of using a single diagnostic

test and a single, simple form of misspecfication, to suggest whether the data

and sample size are such that the diagnostic tests are unlikely to detect

plausible misspecifications. The test that is used is the equation (21) test

of instrument residual orthogonality. The misspecification that is assumed is

that expectations are static rather than rational, Edt+ lIt = dt. In such a

case, the disturbance to the arbitrage equation (14) is —b(pt+i+dt+i). So

the test must pick up a correlation between Pt+i+dt+i on the one hand and

lagged Adt (the instruments, assuming a differenced specification) on the

other. That the results of a simulation f or this alternative might produce

representative results is perhaps suggested by the fact that for just about any

alternative, the residual is some function, possibly nonlinear, of expected

and/or actual prices, dividends, and possibly, other variables. (See footnote

12.) So to have power against plausible alternatives, the test will basiclly

have to be able to pick up a correlation between prices and dividends on the

one hand and lagged dt on the other, and, again, this is exactly what it must

do to have power against the static expectations alternative.

Under this alternative, Pt = [b/(1—b)]dt; b=.9413 was again assumed.

Dividends were assumed to be generated by an ARIMA(2,1,O) process, with the

parameters given by line (2) of Table lB. The following was done 1000 times.

A vector of 100 independent normal disturbances was generated, with the

variance of the disturbances equal to that reported in line (2), column (6) of
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Table II. One hundred dtts, and then one hundred dt's and t'' were

computed, with initial conditions matching the initial values of the S and P

b was then estimated by two step, 2SLS, with a

constant, dt, and dt_i as instruments. Finally, the equation (21) statistic

was calculated.

The distribution of this statistic, which is a x2(2) random variable under

the null, is reported in Table IIIB. In about fourth fifths of the cases, the

statistic was above 5.99, the ninety five per cent level for a x2(2) random

variable. In over nine tenths of the cases, the statistic was over 2.87, the

value reported in line (2), column (5), in Table IA.

Against this alternative, then, the test of instrument residual

orthogonality appears to have reasonable power. Whether this applies to other

alternatives or to the other diagnostic tests performed is uncertain. But the

limited amount of evidence presented here at any rate does not suggest that the

favorable results of the diagnostic tests result solely from low power of the

tests.

B.Variation in discount rates

One possible explanation for the excess variability found in section IV is

that discount rates are time varying, so that the error in equation (1

reflects not only news about dividends but also about discount rates (or,

equivalently, expected returns). The diagnostic tests performed in section IV

do not seem to suggest such variation, and the section VA(2) analysis just

completed does not seem to indicate that the results of these tests are easily

dismissed. Further consideration of the plausibility of this variation as an

explanation seems warranted nonetheless, given theoretical work such as Lucas

[23] and empirical evidence such as in Shiller [35].

This will be done in two separate exercises. The first (part (1) below)
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assumes as in, e.g., Hansen and Singleton [18:1, that a consumption based asset

pricing model determines expected returns, with the representative consumer's

utility function displaying constant relative risk aversion. For small values

of the coefficient of relative risk aversion, this permits exact calculation of

equation (17), the percentage excess variability. The second (part (2) below)

does not model expected returns parametrically but instead uses Shiller's [33]

linearized version of a completely general model. This permits calculation of

a lower bound to how large a standard deviation in expected returns is required

to explain the excess variability reported in Table II.

(1)Consider the class of models (e.g., Hansen and Singleton [18]) in which the

first order condition for the return on a stock is

E[(Ct+1,ct)[(pti+dti)/pt]}IIt = 1, where B, O<B<1, is the representative

consumer's subjective discount rate, C is his real consumption, a his

coefficient of relative risk aversion, with E, dt, Pt and defined as above.

This may be rearranged as

(22) t =
-a -a

dt=dCt

Equation (22) is of the same form as equation (9). So if dt is stationary,

perhaps after one or more differences are taken, the statistics computed in the

constant discount rate case can be computed in this model as well.13

Repetition of the entire procedure is beyond the scope of this paper (and, in

light of the results about to be presented, seems pointless). Instead, I will

focus on obtaining a point estimate of equation (17), the percentage excess

variability, for various imposed values of B and a.

The C, variable used in these calculations was the Grossman and Shiller
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Eli] annual figure on real, per capita consumption of nondurables and services,

1889-1978. d arid t were calculated using the S and P data for various values

of a. A simple plot of dt suggested that in neither levels nor first or

higher differences is stationary for a much bigger than one. The problem is

that for big a, dt displays a marked secular decline; this is unsuprising

given that annual C growth was nearly 2 per cent per year, dt growth slightly

above one per cent.

I nonetheless calculated (17), the percentage excess variability, for a

wide range of a, just in case really is stationary f or large a. This was

done f or =.95 and =.98, with very similar results. In all cases the lag

length of the dt autoregression was set to four. Table IVA contains the
figures that resulted for some of the a, with 8=.98. As may be seen, there is
no evidence supporting the hypothesis that the excess variability displayed in

Table II is explained solely by the sort of variation in expected returns

predicted by this asset pricing model.15

Since dt does not appear stationary f or a much bigger than unity, it is

equally true that Table IVA contains no evidence against the hypothesis that

the Table II excess variability is explained by variation in expected returns

associated with a coefficient of risk aversion greater than, say, one. Table

IVA does, however, suggest if the model of expected returns assumed here is

correct, that the Table II excess variability is unlikely to be due to

variation in expected returns associated with a coefficient of relative risk

aversion of less than, say, one.

(2)Let us now consider a general model that does not parameterize expected

returns, linearized as in Shiller [33] to make the analysis tractable. Let

be the one period return expected by the market at period t+j, assumed
3 —covariance stationary. Suppose Pt E{jZi[jIIi(1+rt+.i) ]dt+}JIt. Let us



—zo—

linearize the quantity in braces around r and . r is the mean of rt;

selection of is discussed below. Define b=(1+r) , a=—a/. Then (Shiller

[33]), PtE[ibJ[a(rt+_i_r)+dt+j]}IIt. Let ut+i=pt-b(pt+i+dt+i).

Proposition 1 may be used to show that in this linearized model

(23) - b2 -[a2÷(1-b2Ya2]u2 - [2(1_b2)2aóiav]or

where 0r is the standard deviation of rt, and and are as defined in

equation (16). The algebra to derive (23) is in a footnote.16

The left hand side of (23) is precisely the quantity studied in sections

III and IV. If this is positive, as it will be in the model (12), 0r° would

of course satisfy the inequality. The empirical estimates of (16), in Table

II, column (7), however, were negative; the minimum return variability needed

to explain the Table II results is given by the positive 0r that makes (23)

hold with equality.

This lower bound ar was calculated for all seven of the specifications.

and b were set equal to the estimated values reported in Table II.

When dividends were assumed stationary, d was set equal to mean dividends,

d=T1Zdt. When dividends were assumed nonstatioriary, d was set equal to

average expected discounted dividends, =(1_b)Jlbt_lEodt, where:
EodtEodo+tEtdt, E0d0=d0, d0 the level of dividends at the beginning of the

sample, and Edt calculated as Tdt. The parameter a was in all cases set

to —dir, with defined implicitly by (1+)1=b.

The resulting lower bound values may be found in Table IVB. They are

rather large. None of the estimates are less than .12. With 0r12 and r=.07,

a two standard deviation confidence interval for the (real) expected return is

about -17 percent to #31 percent. This would seem to be an Implausibly large
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range.

In the linearized model considered here, then, variation In ex ante

discount rates do not plausibly explain the excess variability of stock prices.

How well this conclusion aplies to any given nonlinear model of course depends

on how well the linear model approximates the nonlinear one. An example in

Shiller [33] suggests that if dividends are stationary the approximation can be

quite good, even when changes in expected returns are larger than are typically

considered reasonable. It is of course debatable that the approximation makes

any sense, let alone is very accurate, if dividends are nonstationary. But the

results here can in any case be said not to lend support to the hypothesis that

the excess price variability reported in Table II is solely due to variation in

expected returns.

VI. Conclusions

This paper has derived and applied a stock price volatility test. The test

required neither of two strong assumptions required by the Shiller [33]

volatility test: that prices and dividends have finite varIance, and that a

satisfactory approximation to a perfect foresight price can be calculated from

a finite data series.

The test indicated that stock prices are too volatile to be the expected

present discounted value of dividends, with a constant discount rate. Possible

explanations for the test results Include that expectations are not rational,

that discount rates vary and that there are speculative bubbles. The

econometric diagnostics and the informal analysis were notably more consistent

with the bubble explanation than with the other two.

A detailed case for bubbles, or, for that matter, any other factor as the

explanation of the excess volatililty is, however, beyond the scope of this

paper. A challenging task f or future research is to make such a case,

reconciling the apparently excessive price volatility with the apparently good

performance of a rational expectations, constant discount rate specification.



FOOTNOTES

1. I thank A. Blinder, J. Campbell, G. Chow, S. Fischer, R. Flood,

L.P. Hansen, W. Newey, J. Rotemberg, R. Trevor, and J. Taylor for helpful

comments and discussions, and the National Science Foundation for partial

financial support. Responsibility for remaining errors is my own. This paper

was revised while I was a National Fellow at the Hoover Institution.

2. While Blanchard and Watson [LU do suggest examining the inequality that is

the focus of this paper, they do not formally establish the validity of the

inequality, consider possible nonstationarity of dividends or prices, or test

the inequality rigorously. Subsequent to the initial circulation of this

paper, however, H. Watson sent me a proof of this inequality that is valid when

prices and dividends are stationary.

3. I thank J. Campbell for this proof. I also thank L.P. Hansen and H. Watson

f or providing alternative proofs. S. Leroy has suggested to me that a similar

proposition is implied in Leroy and Porter [21,p568]. My own, rather tediqus,

proof may be found in an earlier version of this paper [141].

LU. Elaboration on the first three comments: (1)1 believe that X1 and
XtH are

always well defined, given the assumptions of Proposition 1. The statement in

the text specifies finite parameter ARIMA models because to my knowledge the

theory for prediction of linear processes, which is well developed for

stationary variables, has been extended to noristationary variables only for

such models. See Hansen and Sargent [17] for the ARIMA (q,s,O) case. It

follows from Hansen and Sargent [17] that x1 and
XtH exist f or the ARIMA
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(q,s,r) case. This is because after r periods, the expectations follow the

same difference equation in each case. So if the discounted sum for an

arbitrary ARIMA (q,s,O) process converges, so does that for an arbitrary ARIMA

(q,s,r) process. (Strictly speaking, this statement does not hold for a

process with a unit MA root and an infinite past, which may be the case f or a

stationary ARMA(q,r) process, since such a process does not have a convergent

autoregressive representation. See Granger and Newbold [10,ppl)42-1145J.)

(2)In this case, xtHkdtkdt 1exp(e ) for a certain constant k (Kleidon [20]).

So
ExtHIHt_l kdt_iEexp(ct), and xtHExtHIHt_l is proportional to dt_i. An

interesting project for future research is to develop an analogue of equation

(1) that holds when logs or log differences are required to induce

stationarity.

(3)An example: Let n=1, so xt=dt+bdt+i. Suppose dtMA(1), dt=vt+Ovt_i, —1<0<1;

Ht={dt.IjO}=(vt.IjO}; Then

xtHExtHIHt_l = (1+be)vt, xti—ExtiIIt_i = bvt+i. Inequality (1) will be

violated if, for example, b=.9 and 0<—.2.

The reason the proof of (1) cannot be adapted to the finite horizon case is

that a term of the form b'xt++i will appear in equation (14), with an

analogous term in equation (5). The fact that x1 exists means that

b1xt++ii is expected to get arbitrarily small for arbitrarily large n, and

so can be ignored in the infinite horizon case. But for any finite n, the term

cannot be ignored, and the argument in the proof will not apply.

5. To emphasize that inequality (13) holds even when dividends and prices are

nonstationary, it is perhaps worth considering the class of dividend and price

processes studied by Marsh and Merton [25]. Marsh and Merton argue that both

theory and empirical evidence on dividends suggest that dividends are a
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distributed lag on prices: dt = p_1 = e(L)p.
They also show that if dividends in fact are such a distributed lag on prices,

and if dividends and prices are nonstatioriary, the basic Shiller [33]

volatility test is no longer valid.

The test in this paper is, however, still valid if dividends are a

distributed lag on prices and dividends are nonstationary. For it may be shown

that dt = e(L)pt and t = EEb'dt+111t together imply that Ht = —— only

lagged dividends are used to forecast future dividends. When Ht =

inequality (13) holds trivially, as a strict equality. (See footnotes 5 and 6

in West [141].) Even when dividends and prices are determined as suggested by

Marsh and Merton [25], then, a violation of inequality (13) is evidence against

the model (12).

6. Proposition 1 assumed that variables had zero mean. If not, Ht and I must

be expanded to include suitable deterministic terms. In the annual data used

here, a constant is the only relevant such term.
-

7. In fact, in some empirical work the variable that is here called dt+i

assumed known at time t and thus has an innovation of zero when forecast at

time t (Shiller [33], Leroy and Porter [21]).

8. Even if there are bubbles, the right hand side of (19) clearly is not

gauranteed to be larger, and, in particular, will not be larger in the

(implausible) case of a purely deterministic bubble, c = btc0. A related

paper (West [39]) develops and applies a test that is capable of finding such a

bubble. The results of that paper are consistent with the results of this

paper.
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Since the test in West [39] is a test of cross equation restrictions,

similar to the tests developed in Sargent [31] and Hansen and Sargent [17],

this seems the appropriate place to comment on Hansen and Sargent's [16] point

that tests of cross equation restrictions test all the restrictions of a linear

rational expectations model, while volatility tests do not. The latter part of

this statement is illustrated for the present paper's test by the comments in

the preceding paragraph.

There are at least two reasons why stock market volatility tests are

valuable nonetheless. The first is that a volatility test may have more power

against a particular alternative than a test of cross equation restrictions.

In the present context, this is perhaps reflected by the stronger rejection of

the null in the present paper than in West [39], for differenced

specifications. The second is that if a model is rejected by both tests,

characterization of prices as "excessively volatile" may to some economists be

a more provocative stimulus to future research than is a characterization of

prices as "failing to obey cross equation constraints." That a

characterization as "excessively volatile" is provocative to some is perhaps

evidenced by the the strong reaction, both favorable and unfavorable, to the

Shiller [33] volatility test.

In any case, the West [39] test of cross equation restrictions and the

present paper are complementary studies. Those who argue for regression tests

instead of volatility tests (see the discussion Hansen and Sargent [16]) are

likely to prefer West [39], while those who argue for the converse (see the

discussion in Shiller [3)4]) are likely to prefer the present paper.

9. Standard diagnostic tests will not suffice to find a misspecificatiori of

the dividend equation if the sample size is not large enough to infer the
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parameters of the true dividend process. This might be the case because a

small probability event, which is rationally considered by market participants,

has not occurred. The best protection against such a biased sample is

obviously to use a large sample, which is what I did.

In addition, it is worth noting that one important example of such a low

probability event is allowed in the present framework. Suppose the market is

considering a disaster such as nationalization that will set dividends to zero.

The probability of disaster is 0. Shiller [3)4] shows that equation (9) is

still valid, with b interpreted as the product of a discount rate and 1-0. It

follows that if (12) is true, (13) should hold.

10. For a nice general equilibrium model that allows bubbles, see Tirole [37];

it is perhaps worth noting that in Tirole's deterministic, perfect foresight

steady state, asset returns are constant, just as are expected returns in the

stochastic environment considered here. For an argument that volatility tests

cannot be used to infer the presence of bubbles, see Hamilton and Whiteman

[12].

11. The J-Iannan-Quinn procedure selects the r that minimizes

in + T 12rk in in T, = T1

for r<R for some fixed R, with k>1. I set R=Ll, k=1.001.

12. Suppose discount rates are time varying. Let bt be the one period rate

from period t to period t+1, b the probability limit of the instrumental

variables estimate of the discount rate in equation (1)4), and "+1 = pt+i+dt+i.
The proper specification of equation (1) is thus Pt = btEnt+1fI. Equation

(1)4) is then
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Pt = nt+i + (bt-b)nt+1 + bt(nt+i-Ent+i lIt) = t+i + Ut+l.
In general the instruments (lagged dividends) will be correlated with the

residual since they will be correlated with (bt—E)nt+1 =

The only apparent exceptions are implausible or

uninteresting —— e.g.11 when bt_b, the deviation of ex—ante rates from a fixed

level, is uncorrelated with both Pt+i+dt+i and with lagged dividends (the

instruments).

Observe also that in general the residual to the equation above will be

serially correlated when discount rates are not constant (i.e., when bt not

equal f or all t). Thus testing for serial correlation in the residual to

(1k) checks not only whether expectations are rational but also whether

discount rates are constant.

13.This seems an appropriate place to give the results of another test of this

model. Equation (6) states that var(x_xH) — var(xt-xti) —
var(xI—xH) = 0.

So, under the null hypothesis that xti=pt+dt,

6a — b2a —
b2(1—b2)var[p+d

— (m+6d_1+1)] 0

The parameters needed to calculate XtH under the null——rn,

complicated functions of b,.i, and the 4. The formula f or m may be found in

West [39], for the in Hansen and Sargent [17].

I tested this equality constraint for all seven specifications, with the

number of lags used in the calculation of the matrix S (defined in the

appendix) set to 11. The z—statistics for the seven specifications, presented

in the same order as in Table II, were: 1.88, 2.07, 1.71, 2.23, 1.85, 2.17,

1.71. Thus this suggests some mild evidence against the null hypothesis.

The basic reason for the relatively low statistics was a very noisy

estimate of var[p÷dt — (m56idt_1+i)J. This was insignificantly different
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from zero at the five per cent level, f or all seven specifications. One

possible reason for this noisy estimate is that there are bubbles: if so,

var[P+d — (m+'51dt_1+1)J is not even finite.

iLl. I thank R. Flood for pointing this out to me.

15. Note that the entries in the table are not a monotonic function of a. To

make sure that the entries were representative, I calculated the percentage

excess variability for a in steps of 0.1 from 0 to 3.0, in steps of 1.0 from

3.0 to 10.0, and in steps of 5.0 from 10.0 to 50.0. The results were quite

similar to those reported in the table. The lowest percentage happened to

occur at a'2.O.

16.In the linearized model the analogue to equation equation (9) is

Pt=bE[a(rt_r)+dt÷i+pt+i]lIt. Let yt+=a(rt+_i_r)+dt+ and redefine

XtZbJYt+j, xti=ExtIIt. (Of course, if expected returns are constant, rt=r for

all t, and x1 as defined here reduce to their Proposition 1 counterparts.)

The efficient markets model considered in section III implied xti=dt+pt; the

one currently under consideration implies x1 = = a(rt_i-)+dt+pt. •So

with r_, an element of 1i' xti—ExtiIIt_i = dt÷pt—E(dt+ptllt_i). Now,

(*) pcb(dt+i+pt+i) = [ba(rt_r)+bE(pt+i+dt+iIIt) — b(dt+i+pt+i)J

=bEa(r_)—(x+1 ,i—Ext+i ,iIIt)]

==> = a2a + E(xt+ii—Ext+iiIIt)2
> E(xt+i,i_Ext+i,ilIt)2

= b2a - a2

Now define J as the space spanned by a constant and all current and lagged
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dividends and expected returns, XtJrExtIJt Let xj—ExjIJ_1 = awit+w2t,

where W1 and are the innovations in the expected present discounted values

Of r and dt. Shiller [35] shows that o/(1—b2). Assume that dt or

follows the autoregression (15). Then since Ht is a subset of Proposition

1 tells us that where, as previously, is the variance of the

univariate dividend innovation and is defined above equation (16). So

(**) E(xtj_ExtjlJt_i)2 a2 + 2aG +

a2o2 + 2au
12

< _-1 2 2 ,, - - 2_2— ' 'r ai—u / ' °i"v

Since 3 is a subset of I, Proposition 1 tells us that E(xti—ExtiIIt_1)2

E(xtj_ExtjIJti)2. So with a little rearrangement, (*) and (**) together imply

equation (23) in the text.



APPENDIX

This describes the calculation of the variarice-covariance matrix of the

parameter vector 8(b,4,o02) It also establishes

suitable conditions for the calculation to be appropriate when dividends are

assumed nonstationary.

Let be the (q+i) x 1 vector of instruments, s—O

or s-i, nt+i(dt+i+pt+i) be the right hand side variable in (iLl). One way of

describing the estimation technique is to note that 0 was chosen to satisfy

the orthogonality condition

T1
(Lnt+iZt1 )(TS)1ZZ(pt-nt+ib)

T1ZZ(dt+i—Zt')
0 — T1Eh(0) — —

-

(The degrees of freedom corrections in and are suppressed for notational

simplicity.) The summations in the orthogonality condition run over t, from 1

to T. S is an estimate of EZtZtu+i, calculated as described below equation

(21). Thus b is estimated by two step, 2SLS, • by OLS, and from moments

of the residuals.

Since Eht(o).O, where e is the true but unknown parameter vector, it may

be shown that under fairly general conditions, v'T(O-O) is asymptotically

normal with a covariance matrix V - (plimT1Eh0)1S(plimT1Zh0)1 (Hansen

[15], White and Domowitz [Ll2]). ht0 is the (q+li)x(q+Ll) matrix of derivatives

of ht with respect to 0 and S — Ehtht + i[Ehtht_j+(Ehtht_j)t). is

straightforward to calculate. Calculation of S is slightly more involved.

Newey and West [27] show that in general S and thus V are consistently
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estimated if S — +
1w(i,m)(Q1+g21'), where: as T-"> and in is

w(i,m)—i/(m+1); Qi..T11+ihth?tj, htht(6) 0 an initial

consistent estimate (2SLS and OLS). The weights w(i,m) insure that S is

positive definite. In the absence of any theoretical or Monte Carlo evidence

on the small sample properties of various choices of in, I tried various

values: m=3,7 or 11. The value of in that led to the largest standard error

in column (7) of Table II is what is reported in Table II. For all

specifications, this turned out to be m=11.

The conditions in Hansen [15). White and Doaiowitz [112] and Newey and West

[27) unfortunately do not cover the case when n41 is nonstationary. The

formulas just given are, however, still basically applicable, at least under

the conditions listed in the assumptions given below. The only difference

between the stationary and the nonstationary cases is that a certain term in

hte that depends on plimT1Zn+iu+1 is set to zero in the nonstationary case.

The remainder of this appendix sketches the argument necessary to

establish the asymptotic distribution of 0 in the nonstationary case. A

detailed argument is available on request.

Theorem 1 below establishes the asymptotic distribution of b, Theorem 2

that of o, Theorem 3 that of the joint asymptotic distribution of the

elements of 0. (In light of assumption (all) below, standard theory applies

for • and o.)

Assumptions.

(al)Let W be the (2q+14)xl vector Then

is (i)ergodic and covariance and fourth order stationary, with (1i)iid

innovations, and (iii)a moving average representation whose weights are

absolutely summable.

(a2)The innovations in the (Yt,z) process are zero for all tt0, for some
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t0-q; n +1 is a noristochastic constant, that, for simplicity is assumed to
0

be zero.

(a3)Etnt0.

(a)The (Mlt,Mlt) process is covariance stationary, with a moving average

representation whose weights are absolutely summable.

Remark.The heart of the argument is In the lemma, which proves that T2ZZtnt+1

converges in probability to a matrix of constants of rank one. Asymptotic

normality then ronows easily. The convergence In probability Is established

. ... —— , i_ it' r ri I ...4. .....4..# AUf IUW.LI1 t I ) J V IJI 'JI '.'J1I0L1 1 01 '110 01W
0

urn [var (T2ZZtnt+i)) is zero. (E and var denote expectations and
o 0 0

variances calculated conditional on the history of the (yt,z) process at date

by assumption (a2), this means expectations and variances calculated

assuming that all past Innovations in the (Yt,zt) process are zero.) In

reading the lemma, It will be helpful to note that (a)by (a2), Et Yt.EYt and
0

Et ZtWEZt, for
all tt0; (b)var (.) var(.), where (.) is any function of

0 0
and z's, tt0, with finite unconditional variance. The unconditional

operators E(.) and var(.) are understood to act as if the y and z processes

have infinite pasts, i.e., these operators do not condition on assumption

(a2).

Lemma. T2EZr1+i converges in probability to a (q+1)xl constant vector of

rank 1.

Proof: The first element of T2EZtnt+i Is T2Znt+i. I will show that this

converges in probability to (1/2)Etnt, which is nonzero by (a3). A similar

but considerably messier argument can be used to establish that each of the

other elements of T"2ZZn+, converge In probability to a constant.

We have Zn1 -
Tn1

+ E(n+1—n1). It is easuiy shown that (a2) implies

that urn [EtT'2(Tni)]. lim [varT2(Tn1)].O. Now, +1 — •.. +n +
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fl1. It follows that

.1)
Z(nt+i_n1) hn2 + (y+fl) + ••• +

— Tn2 +
(T—1)n3 ••• + T+1

——> EE(nt+1_n1)
— [T+(T—1)+.

— [(T2+T)/2JEn
> urn T2EZ(n+i_ni) — (1/2)Etn

Let 1(j) denote cov(n,n). As stated in the Remark, to establish

that urn var[f2E(n+1_n1]) 0, it suffices to establish that lirn

var[T2Z(n+1_n1]) 0. To show this, note that (A.1) implies

var[Z(n+1_ri1)] — [T2+(T—1)2+.. .i2jyco

+2[T(T—1 )+(T—1 ) (T—2)+.. .+2. 1 Jv( 1)

+ ••• + 2[T.1JY(T—1)

(Zt)[y(o) + 2'EIY(j)I]
(Et )[Y(0) + 23Z11Y(j)I)

Assumption (a1) implies that the right hand side of the above is finite

f or given T (Hannari [13,p211J). The fact that Et2 is of order now implies

that Jim var[T'E(n+1-n1)] is zero. So T2Ent+, converges in mean square and

thus in probability to (1/2)En.

Theorem 1. T3"2(b-b) converges in distribution to a N(O,Vb) random variable,

Vb plim [(T2En+iZt')S1(T2EZtnt+i)J.

Proof: We have

T3'2(b-b) —
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Assumption (al) insures that (a)T1"2ZZu+1 converges in distribution to a

N(O.S) random variable, and (b)plim S-S. The lemma insures that T2EZtnt+1

converges in probability to a constant vector of rank 1. The theorem now

follows.

Theorem 2. /T(T1u - o) has the same asymptotic distribution as

V'T(T1Zu — c). (Note: summation signs here and in the proof of Theorem 2 run

from 2 to T+1.)

Proof: We have

u —
2(b-b)ntut + (b-b)2n2

--> ,T(T1u — 2) - /T(T 1Lu - o)
—

2[T3"2(b—b)](T2Enut)
+

[T3'2(b—b)J2(T712En)

It may be shown that T 2Enu and T 7"2En each converge in probability to

zero. For T2zntut this follows because ELntut is of order T, var(Enu) of

order T3. A similar argument applies to T7"2En.

Since has a well defined asymptotic distribtution, this implies

that /T(T1Eu — a) has the same asymptotic distribution as /T(T 1Zu — ag).
It also obviously will imply that is a consistent estimate of a.

Theorem 3.

(a)The normalized parameter vector

converges in distribution to a N(O,V) random variable, where: V.HSH'; Si,, -

EWtWt
+ + (EWtWtJ)')I W defined in (al); H is a block diagonal

matrix with plim [(T2En+iZt')S1(T2EZtnt+ifl1(T2Er1t+iZtt)S'

in the upper left hand block, plim (T1EZZj) in the middle block, and a (2x2)

identity matrix in the lower right hand block.
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(b)If the Newey and West estimate of SW. is calculated using 2SLS and OLS

residuals, converges in probability to SW.

Proof: It may be shoWn than assumption (al) is strong enough to insure that

cross products of instruments and disturbances, and of instruments and

residuals calculated using estimated parameters, are well behaved. So parts

(a) and (b) of the theorem both follow from Theorems 1 and 2, given assumption

(al).
Note that the covarlance matrix in the nonstationary case, HSbJH', is the

same as the covariance matrix in the stationary case,

(plimT_htO)S(p11mT_Eh6)_1, except that a term depending in part on plim

T'Zr1+1u.1 appears In the latter but not In the former.
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Table III A

Distribution of Equation (17) in Monte Carlo Experiment

Table III B

Distribution of Equation (21) in Monte Carlo Experiment

Table IV A

Percentage Excess Price Variability

U

Equation (17) 96.5 97.5 80.9 88.11
10

99.6

25 50

100.0 100.0

Data Set
Di !'ferenced

Lags

0-r

Minimum 0r Needed to

s&P s&P

no yes

2 2

.1116 .222

Table IV B

Explain Excess

s&P s&P

no yes

14 Li

.1146 .201

Variability

DJ DJ

n3 yes

3

.127 .176

Percentile

Equation (17)

5

91.8

10

714.7

50

15.0 0

Percentile 5 10 50 78 90

Equation 25.26 22.29 10.80 5.99 3.07

DJ

no

14

.169




