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ABSTRACT

This paper establishes an inequality that may be used to test the null
hypothesis that a stock price equals the expected present discounted value of
its dividend stream, with a constant discount rate. The inequality states that
if this hypothesis is true, the variance of the innovation in the stock price
is bounded above by a certain function of the variance in the innovation in the
dividend. The bound is valid even if prices and dividends are nonstationary.

The inequality is used to test the null hypothesis, for some long term
annual U.S. stock price data. The null is decisively rejected, with the stock
price innovation variance exceeding its theoretical upper bound by a factor of
as much as twenty. The rejection is highly significant statistically.
Regression diagnostics and some informal analysis suggest that the results are
more consistent with there being speculative bubbles in the U.S. stock market
than with a failure of the raticnal expectations or constant discount rate

hypothesis.
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The source of fluctuations in stock prices has long been argued. Some
observers have suggested that a major part of the fluctuations result from self
fulfilling rumors about potential price fluctuations. In a famous passage,
Keynes, for example, described the stock market as a certain type of beauty
contest in which judges try to guess the winner of the contest: speculators
devote their "intelligence to anticipating what average opinion expects average
opinion to be" [15, p136]. An examination of practically any modern finance
text (e.g., Brealey and Myers [5]) indicates that the economics profession
tends to hold the opposite view. Stock price fluctuations are argued to result
solely from changes in the expected present discounted value of dividends.

The subject has received increased attention in recent years because of the
volatility tests of Leroy and Porter [21] and, especially, Shiller [33]. These
tests seem to indicate that stock price fluctuations are too large to result
solely from changes in the expected present discounted value (PDV) of
dividends. There is, however, some question as to the validity of this
conclusion. Marsh and Merton [24,25] have objected to the tests' assumption
that dividends are stationary around a time trend; Flavin [8] and Kleidon [20]
have argued that in small samples the tests are biased toward finding excess
volatility.

This paper develops and applies a stock market volatility test that is not
subject to these criticisms. The test is based on an inequality on the
variance of the innovation in the expected PDV of a given stock's dividend
stream, and was first suggested by Blanchard and Watson [41].2 1Tpe inequality
states that if discount rates are constant this variance is larger when
expectations are conditional on just the set of current and past dividends than
when expectations are conditional on a larger information set. It may be shown

that this implies that the variance of the innovation in a stock price is
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bounded above by a certain function of the variance of the innovation in the
corresponding dividend.

The paper checks whether the bound is satisfied by some long term annual
data on the S and P 500 and the Dow Jones indices. It is not. The estimated
variance of the stock price innovation is about four to twenty times its
theoretical upper bound. The violation of the inequality is in all cases
highly statistically significant.

It is to be emphasized that the inequality is valid even when prices and
dividends are integrated ARIMA process with infinite variances, and that the
empirical work allows for such nonstationarity. In addition, the test
procedure does not require calculation of a perfect foresight price; this price
appears to be central to the small sample biases that are argued by Flavin [8]
and Kleidon [20] to plague the Shiller [33] volatility test. The paper
nonetheless performs a small Monte Carlo experiment to check whether under
certain simple circumsténces the small sample bias in this paper's test
procedure could explain the results of the test. The answer is no.

While one of the purposes of this paper is to apply a volatility test with
a relatively weak set of maintained statistical assumptions, that is not its
only aim. It also considers the consistency of some of the test's maintained
economic assumptidns with the data, to help determine which among these should
be relaxed, so that the excess price volatility might be explained. To that
end, the paper uses a battery of formal diagnostic tests on the regressions
that must be estimated to calculate the inequality. The test results are in
general quite consistent with the test's maintained hypotheses of rational
expectations and, perhaps suprisingly, of a constant rate for discounting
future dividends. Some additional, less formal analysis, which considers

further the constant discount rate hypothesis, does not suggest that the



excessive price variability results solely from variation in discount rates.
The test maintains essentially only one additional assumption, which is a
transversality condition that puts an upper bound on expected growth in stock
prices. If this condition is false, the excess volatility might be due to
speculative bubbles of the sort considered by, for example, Blanchard and
Watson [4].

The evidence, then, is more consistent with a failure of the transversality
condition than of the rational expectations or constant discount rate
assumptions. The paper does not, however, attempt to make a detailed case for
bubbles, or, for that matter, any other factor, as the explanation of the
excess volatility. Instead what is emphasized are two empirical regularities
that seem to characterize the data studied here. The first is that prices
appear to be too variable to be set as the expected PDV of dividends, with a
constant discount rate; this holds even if prices and dividends are
nonstationary. The second is that a rational expectations, constant discount
rate model appears to characterize these data remarkably well. Reconciliation
of these two points is a task left for future research.

Before turning to the details of the subject at hand, a final introductory
remark seems worth making. The inequality established here may be of general
interest in that it could be used to test other infinite horizon present value
models. Possible examples include testing whether consumption is too variable
to be consistent with the permanent income hypothesis (a subject considered in
Deaton [6]), or whether exchange rates are too variable to be consistent with a
standard monetary model (West [40]). That the inequality is valid even in a
nonstationary environment makes it particularly appealing in these and perhaps
other contexts.

The plan of the paper is as follows. Section II establishes the basic



inequality. Section III explains how the inequality may be used to test a
rational expectations, constant discount rate stock price model. Section IV
presents formal econometric results. Section V considers informally whether
small sample bias or discount rate variation are likely to explain the section

IV results. Section VI has conclusions. An appendix has econometric details.

I1.The Basic Inequality

The following proposition is the basis of this paper.

Proposition 1: Let I, pe an information set consisting of the space spanned by

the current and past values of a finite number of random variables. After
suitable differencing, the random variables are assumed to be covariance
stationary, and, without loss of generality, to have zero mean. Let dt be one
Of these variables. Let Hi be a subset of Iy consisting of the space spanned
by current and past values of some subset of the variables in It' including at
a minimum current and past values of d . Let b be a positive constant, 0sb<1.

Define X, = idet+j' (The preceding and all other summations in this section
0

run over j.) Suppose that xtI=Ext|It and xtH=Ext|Ht both exist. Then
(1 E(x, -EX,  [H,_,)2 2 E(x, ~Ex_|I,_,)2
tH tHI"t-1 = tI tIl™t-1

Pr'oof‘:3 Write

(2) xt = dt + bxt+1

Project (2) onto I, to obtain

(3) Xep = dp * DExg.q|Iy

=g * by 1 T Derey

®ar = Xpap, 1 BXpeq [Ty = Xpar, 1 BXper, 1l T



Recursive substitution for xt+1,I- then for Xap Tr etc. yields

- e, - x. - Pl

4 - Fo -
(4) X bdy , 5 17 X¢ ;

tr =k t+]

By a similar argument, involving projections onto Ht'

- ~ 2pd
(5) Xey = X fb ft+j

Foes = Xeeg, m B g, 1 lMes 5o

Now, since Var(xt-xtl) and var(xt-xtH) are finite (see below), we have

(6) var(xt—xtﬂ) = var (X "X p+Xgp Xey) = var{xg=xer) + var (X, ;7Xe i)

2 var(xt—xtl)

The second equality follows since Xt—xtl=xt—Ext|It is uncorrelated with

anything in I including, in particular, X ;=X y. The assumptions of the

tl
proposition insure that e_ and ft have zero mean, constant variance and are

1op2
t,

t

serially uncorrelated. So var(xt—xtH)= b2(1-b2)- Ef
2

2, and (6) implies E(x 2

var(xt-xtl)=b2(1-b2)_1Ee tH_EXtHlHt—1) 2
E(x,p-Ex, |I,_)% Q-E.D.

A verbal restatement of Proposition 1 is as follows. Suppose we are
forecasting the present discounted value of dt' by calculating X 1 and XeHe
Each period as new data become available we revise our forecast.
E(xtI“EXtI|It-1)2 and E(xtH-EXtHlHt—1)2 are measures of the average size of

this period to period revision. Proposition 1 says that with less information

the size of the revision tends to be larger. That is, when less information is



used, the variance of the innovation in the expected present discounted value
of d. is larger.

It is worth making four comments on the conditions under which (1) is
valid. Further details on some of the comments may be found in footnote 4.

First, (1) holds whenever x are well defined, as they will be if, for

tI and xtH

example, the variables in It and H, follow a finite parameter ARIMA process.

t
Note that this includes in particular processes with unit AR roots (an example
is given below). Second, (1) does not extend immediately if logarithms or
logarithmic differences are required to induce stationarity in dt' If, for
example, lOg(dt)=log(dt_1)+et, et"N(O,oz), it may be shown that

2 . _ . . :
E(xtH—Extﬂlﬁt_1) does not even exist for Ht'{dt-j}' Third, the inequality

need not hold for a finite horizon. That is, it need not hold if we consider

n .,
the variance of the innovation in the expected PDV of Zdet+J instead of
0
fbjdt+j. Fourth, (1) does not hold for arbitrary subsets of It’ If, for
0
example, Ht were the empty set, Xy would also be the empty set, and the left

hand side of (1) would be identically zero.u
Before developing the implications of (1) for stock price volatility, it
may be helpful to work through a simple example. Suppose It consists of lags

of dt and of one other variable, Zy . Let Ht consist simply of lags of dt' Let

the bivariate (d ) representation be

t*Zt

(7) d

N
o
I "
o e
o b
N al
o
)
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m
s
o

t- Eot

: .. 2 2 2 2
with |¢|s1, €4p and ey i.i.d, Egqpe, =0 for all t,s. Let Eeq=0y» Eesi=05-

The wunivariate representation of d clearly is d =¢dt—1+vt’

t t
V. =g, +2 =g, . +€ Ev2=02+02 Let us calculate both sides of (1)
t C1t “t-1" "1t Tet-1? t 1 2° °



= J
(8) Ed JlH = ¢ d
1

= ESpd = (1-bs) "
Xey = Egb dt+J|Ht = (1-b¢) 'd,

it
U]
v

==> E(xtH—ExtHIHt_1)2 = E[(1-b¢)_1vt]2 = (1-b¢)_2(0$+o§)
Ed |1, = q,
Edg 51T = olay + o772, 3>0

= xgp = EBla |1, = (1-09) " (dvbzy)

0
==> E(x -Ex 1|1, )% = EL(1-b¢) (e, +bz, )12

- (1—b¢)'2(of+bzs§)

Since b2<1, o$+o§>o$+b2c§, so (1) holds. Observe that (1) holds even when ¢=1

S0 that dt is nonstationary.

II11.The Model

According to a standard efficient markets model, a stock price is

determined by the arbitrage relationship (9) (Brealey and Myers [5, pp42-451):

(9) Pe = BE(Py 1+ T

where Pt is the stock price at the end of period t, b the constant ex-ante real

discount rate, 0<b=1/(1+r)<1, r the constant expected return, E denotes
mathematical expectations, di,. the real dividend paid to the owner of the
stock in period t+1, and 1, information common to traders in period t. I, is
assumed to contain, at a minimum, current and past dividends, and, in general,

other variables that are useful in forecasting dividends.

Equation (9) may be solved recursively forward to get
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(10) bl n
Py = $b Edt+j I, + b Ept+nllt

If the transversality condition

; n
(11) lim n-->a b Ept+n|1t =0
holds, then
74 AN — K Jm [P
ti2) pt = %_,b bdt'rj“t

Proposition 1 is used to test the model (12) as follows. Note first that

. e L _ _ 2 _
since x | = Egb d¢,51I¢s (12) implies that x;y=pg+dy. So E(xi; Exgp|Te-q)

2
E[pt+dt_g(pt+dt|1t_1)] , and, therefore,
(13) E(X, y-Ex,y |H,_1) 2 2 E[P_+d, -E(p +d, |T,_,)1°
tH™=XeH -1 e TE WP e e

The intuitive reason that the model (12) implies (13) is as follows.

2

E(x is by definition a measure of the average size of the

e Ex gy [Heop)
innovation in the expected present discounted value (PDV) of dividends, when
expectations are conditional on Ht‘ According to (12), price adjusts
unexpectedly only in response to news about dividends.
E[pt+dt_E(pt+dt|It-1)]2 is a measure of the average size of the innovation in
the expected PDV of dividends, with expectations conditional on the market's
information set I,. Since the market is presumed to use the variables in I
forecast optimally, the market's forecasts tend to be more precise, i.e., (13)

holds.”

To make (13) operational, both sides of it must be calculated. Consider
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first E[pt+dt'E(pt+dt]It-1)] . A consistent estimate of this is easily
obtained by estimating (9) with the instrumental variables method of McCallum

[26] and Hansen and Singleton [18]. Rewrite (9) as

(14) = - -
Pt = D(Ppaqtdpg) = blpp gt E(py g+ [T)]

(P 1¥dq) * upy,

Q
]

> >
B ELp +dy~E(py+d¢ [I_¢)]

Equation (14) can be estimated by instrumental variables, using as instruments

variables known at time t. An estimate of E[pt+dt_E(pt+dtiIt-1)32 is then

obtainable as b 2 5

Estimation of E(xtH_EXtHlHt-1)2 is slightly more involved. It requires
first of all specification of Ht' The simplest possible one is
Ht={1,dt_j1320}, and Hy defined this way is what is used in this paper's
empirical work.® Choices of H, that include lags of additional variables might

produce sharper results, but would also entail more complex calculations. With

> .
Ht={1'dt—j}' E(xtH'EXtHlHt—1) can be calculated as a function of d.'s

univariate ARIMA parameters. Suppose dt"ARIMA(q,s,O)
S S S
(15) A dt+1 =u+ A dt + ..+ ¢QA dt-q+1 * Vs

where AS.(1-1)S | the lag operator. (A moving average component to dt is

assumed absent for notational and computational simplicity.) Then

q+s

= j = s r
xtH EIb dt+j}Ht-m+ ? 5idt-i+1' The 51 are complicated functions of b and the

¢, Hansen and Sargent [17] provide explicit formulas for the 6. In

i-
particular, given b and the ARIMA parameters of dt’ one can use the Hansen and

2 2 2

Sargent [17] formula for 61 to calculate 61ov = E(xtH-ExtHIHt_1) . To test the
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null hypothesis that prices are determined according to (12), then, we

calculate

and test HO: 5?03 - b~20§ 2 0. If the estimate of (16) is negative (that is,
the implications of (12) for the innovation variances are not borne out by the
data), a convenient way to quantify the extent of the failure of the model (12)
is to calculate

(17 -100(8%62 - b7262)/ (b7 %02)

When (16) is negative, (17) yields a number between O and 100. I will
refer to this somewhat loosely as the percentage of the variance of the
innovation in pt that is excessive. This is of course somewhat imprecise in
that b_zoi is the variance of the innovation in the sum of dividends and
prices. But given that price innovations are much larger than dividend
innovations (see the empirical results below), this terminology does not seem
misleading.’

What alternatives might explain a rejection of the null hypothesis that
(16) is positive? Three have figured prominently in discussions of related
work: expectational irrationality (e.g., Ackley [1]), variation in discount
rates (e.g., Leroy [22]) and speculative bubbles (e.g., Blanchard and Watson
[4]). Elaboration of the relevant implications for asset price variability of
the first two seems unnecessary since these are well known from the work of
Shiller [33,34,35]. The speculative bubble alternative is perhaps less

familiar, so some discussion seems warranted.
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Let us begin by noting that pt=Ezb3d |1t is not the only solution to (1).

t+3

If the transversality condition (11) fails, there is a family of solutions to

(1) (Blanchard and Watson [4], Shiller [32], Taylor [36]). For any ¢, that

t

e -1
satisfies Ectllt—1=b c

nond . . .
t-1» Py=EID dt+j|lt+ct is also a solution to (1). c, is

by definition a speculative bubble, an otherwise extraneous event that affects

stock prices because everyone expects it to do so. An example of a stochastic

process for C,, similar to one described in Blanchard and Watson [4], is

(18) ] )' (Ct_1-6)/(wtb) with probability m,
\ 3/L(1-7,)b] with probability 1-m,
0<m <1, >0

According to (18), strictly positive bubbles grow and pop. (See Blanchard
and Watson [4] for an argument that negative bubbles are inconsistent with

rationality.) In this example, the probability that a bubble grows is = that

t!
it collapses is 1-m . The bubble may reflect events like sunspots that have no
connection with the expected present discounted value of dividends. m, might

then be a random variable uncorrelated with anything in I A more interesting

£
possibility is that the bubble is intimately connected with fundamentals, with
™ dependent on news about fundamentals. A simple example is nt=1/2 for all t,
with the bubble popping if and only if the innovation in dividends is negative.
If m is constant (m =n for all t), each bubble has an expected duration of
(1—w)_1. (w is not an identifiable parameter.) Combination of several bubbles
are possible; the growth and collapse of the bubbles may be either tightly or
loosely related. See Blanchard and Watson [4] for further examples and

discussion.

Suppose that pt=Eijdt+j‘It+°t for some bubble Cy (possibly one not
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following the stochastic process (18)). Since Py+d =X, *C., We have

1 Elp, +d, - - - :
(19) [Dt+dt E(pe+dy [I¢-q)] Exgp-Expp|Te-q)" *

2
2E(XtI—ExtI|It_1)(ct-Ectllt_1) + E(ct—Ect]It_1)

When a bubble is present, the right hand side of (19) may be larger than
E(xtI—ExtIllt-1)2' It will unambiguously be larger if the innovation in the
bubble is positively correlated with thé innovation in Xe 1o This will be the
case if, for example, the bubble is connected with fundamentals and reflects a
tendency of the market to overreact to news about dividends. This is sometimes
argued to be plausible (e.g., Blanchard and Watson [14]).8

In the presence of bubbles, then, b-203 will plausibly be bigger than

E(x and, therefore, (16) will be positive. In light of some

o1 Exerl T s
empirical evidence yet to be presented, it is of particular interest to
consider how to distinguish between bubbles on the one hand and expectational
irrationality and time varying discount rates on the other as possible
explanations of any excess price volatility. Formal econometric tests will
help here. Consider, for example, diagnostic tests on the residual to equation
(14). As long as (9) is correct--which it will be if expectations are rational
and the discount rate is constant, even if there are bubbles—-ut+1’ the
disturbance to (14), is an expectational error. So U 4 should be serially
uncorrelated and uncorrelated with anything in It’ including, in particular,
lagged dividends. But if expectations are not rational, ut+1 will not in
general have these properties. Nor will it if discount rates vary through time
(see footnote 12).

Other diagnostics may also help distinguish between bubbles and other

alternatives as possible explanations; some of these were calculated and are
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described in the next section. For the present, the important point to note is
that when bubbles are absent, the arbitrage equation (14) and the dividend
equation (15) together imply that (16) is positive. The only apparent form of
misspecification that leaves (14) and (15) legitimate, but is still consistent
with (16) being negative, is speculative bubbles. So an essential part of the
strategy used here to distinguish between bubbles and other alternatives as
explanations of excessive price variability is to perform diagnostic tests on
equations (14) and (15). If these appear to be well specified, a logical
inference is that bubbles explain the excess volatility.9

Such an inference may of course be incorrect. There may be small sample
biases in the diagnostic tests. In addition, one may have a strong theoretical
presumption that speculative bubbles are not present, or that the basic model
has been misspecified in that, say, discount rates vary through time: it is
certainly true that a consensus view on how general are the equilibria that
admit bubbles is far from established, and that intertemporal asset pricing
theories suggest that discount rates vary in general.’o It would then be
reasonable to give little credence to formal econometric evidence based on
asymptotic distributions.

It is beyond the scope of this paper to consider these points in great

detail. Section V does, however, analyze informally some of them.
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IV. Empirical Results.

A. Data and Estimation Technique.

The data used were those used by Shiller [33] in his study of stock
price volatility, and were graciously supplied by him. There were two
data sets, both containing annual aggregate price and dividend data. One
had the Standard and Poor 500 for 1871-1980 (pt = price in January
divided by producer price index (1979 = 100), dt+1 = sum of dividends
from that same January to the following December, deflated by the average
of that year's producer price index). The other data set was a modified
Dow Jomes index, 1928-19%
discussion of the data.

The following aspects of estimation are discussed in turn:

(i) selection of the dividend process's lag length q , (ii) estimation
of (14), (15) and (16), (iii) calculation of the variance-covariance
matrix of the parameters estimated, and (iv) diagnostic tests performed.
(i) It was assumed that the univariate d,_ process required at most one
difference to induce stationarity. That is, in equafion (15), s=0 (the
original series used) or s=l (first difference of original series used).
No other values of s were tried.

For both the differenced and undifferenced versions of each data
set's dividend process, two values of lag length q were used. One was
arbitrarily selected as q=4. The other was the q selected by the
information criterion of Hannan and Quinn [14]. This criterion chooses
the value of q that minimizes a certain function of the estimated
parameters, and asymptotically chooses the correct q if the process

truly has a finite order autoregressive representation.11
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Thus, for each data set up to four sets of parameter estimates were
calculated: q=4, q=lag length selected by the information criterion,
for differenced and undifferenced series. In one case (Dow Jones,
differenced), the Hannan‘and Quinn [14] criterion chose g=4. So only
three sets of parameters were calculated for Dow Jones.

(ii) Calculation of (16) required estimation of the bivariate system
consisting equations (14) and (15). Equation (14) was estimated by
Hansen's [15] and Hansen and Singleton's [18] two-step two-stage least
squares. The first step was standard two stage least squares. The
second step obtained the optimal instrumental variables estimator. The
g*l instruments used were the variables on the right hand side of (15),
i.e., a constant term and gq lags of Asdt (s=0 or s=1). Equation
(15) was estimated by OLS, with the covariance matrix of the parameter
estimates adjusted for conditional heteroscedasticity as described in
(iii).

With Asdt ~ AR(q), the & parameter in equation

1

S - q .
(16) is [(1-b) é®)]° L, é®) =1 - 3 b'¢,, (Hansen and Sargent [17]).

1
A q»\,a -A A-A
Thus, equation (16) was calculated as [(1-b)°(1 - 3 b1¢i)] 203 - b 203.
i=1
Ui and 03 were calculated from the moments of the residuals of the

Py

. . . 2
regressions with a degrees of freedom correction used for 0,:
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A T-S A
2 _ o y-1 2
(20) o, = (T-s) E U
t=1
A T-SA
PR | 2
o, = (T-s-q-1) t§1vt+1 .

T is the number of observations, T = 110 for the Standard and Poor's

index, T = 51 for the Dow Jones index.

A A A ~ A A Py
. 2 °2
The parameter vector estimated was thus 0 = (b,p1,¢1, ’¢q’0u’0§)'
A
® is asymptotically normal with an asymptotic covariance V (see the

appendix and (iii) below). Let £(6) be equation (16) above. The
standard error on the estimate of equation (16) was calculated as

1/2

[(8f/906)V(9f/98)'] (See Rao [29, pp. 385-86].) The derivatives of f

were calculated analytically.

(iii) The estimate of V, the variance-covariance matrix of 8, was
calculated by the methods of Hansen [15] and White and Domowitz [42] so
that the estimate would be consistent for an arbitrary ARMA process for
u, and A This is necessary because, for example, the correlation

between u, and vt+j may in principle be nonzero for all j > 0 . The
Newey and West [27] procedure was used to insure that V was positive
definite. Details may be found in the appendix. It suffices to note
here that the procedure for calculating the standard error on (16)
properly accounts for the uncertainty in the estimates of both the
regression parameters and the variances of the residuals.

(iv) The final item discussed before results are presented is diagnostic

tests on equations (14) and (15). Four diagnostic checks were performed.
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The first checked for serial correlation in the residuals to the

equations, using a pair of tests. As noted above, the disturbance

Ue+1?

to equation (14), is an expectational error. If expectations are

rational, then, u will be serially uncorrelated. Equation (15)'s

t+l

disturbance v should also be serially uncorrelated, since v is

t+l t+l

the innovation to the dividend process.

The first of the pair of serial correlation tests checked for first
order serial correlation in U4 and Viel This was done as suggested
in Pagan and Hall [28, pp. 191, 170]. The second of the pair of serial
correlation tests, performed only for (15), calculated the Box-Pierce Q
statistic for the residuals. This statistic of course simultaneously
tests for first and higher order serial correlation, see Granger and
Newbold [10, p. 93].

The second of the four diagnostic checks was performed only on
equation (14). This was a test of instrument-residual orthogonality,
basically checking whether the residual to (14) is uncorrelated with
lagged dividends (Hansen and Singleton [18]). Let Z, be the ((g+1) x 1)

vector of instruments and b the estimate of b. The orthogonality test

is computed as:

T-s ~ ~ T-s ~
: -1 )
(21) (t§1 Zi[p,-b(p, gt d, )] (TS) (t§1 Z,[p,-blp, gt 4,0 ])

~ '

. . -1 2
Sz1s an estimate of E(Ztu ) (Ztut+1) and was calculated as T (ZZtZtu ),

t+l t+1

u, the 2SLS residual to (14). The statistic (21) is asymptotically

distributed as a chi~-squared random variable with q degrees of freedom.

As explained in a footnote, this test in general has the power to detect
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failures of the model (12) such as expectational irrationality and
variation in discount rates.12

The third of the four diagnostic checks tested for the stability of
the regression coefficients in (14) and (15). Each sample was split in
half, a pair of regression estimates was obtained, and equality of the
pair was tested. The resulting statistic is asymptotically chi-squared,
with one degree of freedom for (14) and (q+1) degrees of freedom for
(15). This test clearly has the power to detect shifts in the discount
rate, as well as in the dividend process.

The fourth and final diagnostic check performed is i
estimation procedure described above. A variety of specifications for
the dividend process were used--differenced and undifferenced, with a
variety of lag lengths. Since the results did not prove sensitive to the
specification of the dividend process, the likelihood is relatively small
that changes in the specification of the dividend process will affect the

results.

B. Empirical Results.

Regression results for (14) and (15) are reported in Tables IA and
IB. The results in Table IA strongly suggest that the basic arbitrage
equation (1) is a sensible one. The entries in column (4) allow
comfortable acceptance of the null hypothesis of no serial correlation in
Uit the disturbance to equation (14). The test statistic in all cases
is far from significant at the .05 level. In addition, the equation (19)
test for instrument-residual orthogonality also allows easy acceptance of

the null hypothesis of no correlation between the instruments and the

residuals. A possible exception is the Standard and Poor's data set,
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undifferenced, lag length = 2. See column (5). The generally successful
results in column (5) are perhaps especially noteworthy since failures of
rational expectations models to pass this test are quite common (e.g.,
Hansen and Singleton [18], West [38]).

Most important, the discount rate b is estimated plausibly and
extremely precisely in all regressions. See column (3). The implied
annual real interest rates are about six to seven per cent. These rates
are quite near the arithmetic means for ex post returns: 8.1 percent for
the Standard and Poor's index (1872-1981) and 7.4 per cent for the Dow
Jones index (1929-1979). The estimates of the discount rate therefore
are reasonable. The plausibility of the estimates of the discount rate
provide special reassurance that the specification of the arbitrage
equation (1) is an attractive one, since rational expectations models
often fail to estimate ex ante real rates either sensibly or precisely
(e.g., Blanchard [3], Rotemberg [30], Sargent [31]). Moreover, there is
little evidence that the rate was different in the two halves of either
sample. As indicated in column (6), the null hypothesis of equality
cannot be rejected at the five per cent level for any specification
except Standard and Poor's, undifferenced, q=2. In addition, no evidence
against the comstancy of the discount rate may be found in a comparison
of the two halves' mean ex post returns. For the Standard and Poor's
index, these were (in per cent) 8.09 (1872-1926) versus 8.12 (1927-1981);
for the Dow Jones the figures are 7.87 (1929-1954) versus 6.92
(1955-1979).

In general, then, the specification of the arbitrage equation (14)
seems quite attractive, with the possible exception of the Standard and

Poor's data set with dividends undifferenced. Let us now turn to the
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estimates for the dividend process, reported in Table IB. Once again,
the entries in columns (8) and (9) allow comfortable acceptance of the
null hypothesis of no serial correlation in the disturbance to equation
(15). With one exception, both test statistics in all regressions are
far from significant. The only exception was the estimate of the first
order serial correlation coefficient ; for the Standard and Poor's index,
undifferenced, lag length g=2. Note, however, that this regression’'s Q
statistic in column (9) comfortably accepts the null hypothesis of no
serial correlation. Overall, then, no serial correlation to the residual
to (15) is apparent. Also, the estimates of most regression coefficients
are fairly precise, at least when the lag length q was chosen by the
Hannan and Quinn [14] procedure. Finally, the null hypothesis that the
parameters of the dividend process are the same in the two halves of each
sample cannot be rejected for any specification except the Standard and
Poor's, undifferenced. See column (10). Overall, then, the
specification of the dividend process seems quite acceptable, again with
the possible exception of the Standard and Poor's data set,
undifferenced.

The null hypothesis that price is the expected present discounted
value of dividends, with a constant discount rate, does not, however,
appear acceptable, for any specification. As may be seen from column )
in Table II, equation (16) was always negative, and significantly so.

The asymptotic z-stat (ratio of parameter to asymptotic standard error)
was always larger than 2.5. This means that the column (7) entries are
always significant at the one-half per cent level, using a one-tailed
test. The null hypothesis may therefore be rejected at traditional

significance levels. Furthermore, the fraction of the variance of the



-21-
price innovation that is excessive is substantial, about 80 to 95 percent
(column (8) of Table II).

The residual price fluctuation might reflect irrational reaction to
news about dividends, variation in discount rates, or some combination of
these and other factors. For the S and P undifferenced
specifications, the econometric evidence is not particularly helpful in
discriminating among these possibilities. It is worth noting, however,
that for the other specifications, the results of the diagnostic tests
were more consistent with the residual volatility being due to
speculative bubbles than to a misspecification of the arbitrage or

dividend equations.13



-22-

V.Some Additional Analysis

This section considers the possibilities that the previous section's
results are due to (4) small sample bias, or (B)variation in discount rates.
It is to be emphasized that the analysis is informal, and the conclusions are
far from definitive. The goal here is simply to gather some evidence on
whether either possibility explains the results; a complete, rigorous
econometric examination of either possibility would require a separate paper.

(A)Small Sample Bias

This section uses two small Monte Carlo experiments to get a feel for the
importance of two types of bias. Part (1) below considers whether under
certain simple circumstances small sample bias is likely to account for the
finding of excess variability. Part (2) studies whether under equally simple
circumstances low small sample power of the equation (21) test of instrument
residual volatility is likely to explain the generally favorable results of the
diagnostic tests.

(1)It is important to consider whether small sample bias explains the finding
of excess variability, in light of the evidence in Kleidon_[ZO] and Marsh and
Merton [25] suggesting that if prices and dividends are nonstationary, thg
Shiller [33] variance bounds test is strongly biased towards finding excess
variability. To see whether there is a similar bias in the present paper's

test, an enviromment similar to that in Kleidon [20] and Marsh and Merton [25]

was assumed. A Monte Carlo experiment was performed, assuming: (a)dividends

follow a random walk, Adt=u+vt, and (b)H,=I,, so that equations (16) and (17)
are zero.

In this experiment, u and 03 were matched to the S and P sample values of
the mean and variance of Adt’ u=.0373, o$=.1574. b was set to .9413, the value

estimated in line 2 of Table IA. For each of 1000 samples, the following was
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done: A vector of 100 independent normal shocks was drawn, (v1""'v100)‘

Dividends and prices were calculated as Adt=.o373+vt; dt=do+ZAds (do=1.3);

pt=£(.9u13)3Edt+j|1t = m+8,de, m=(.0373)*(.9413)/(1-.9413), 6,=.9413/(1-.9413),

4 and 03 were then estimated by an OLS regression of Adt on a constant, b and
35 by an instrumental variables regression of equation {(14), with a constant as
the only instrument. Finally, equation (17), the percentage of price
variability that is excessive, was calculated from the estimated parameters.

Table IIIA presents the empirical distribution of equation (17). Ideally,
the median value of this statistic would be zero, with half the samples
ylelding a positive value to (17). Instead it is 15.0, and about two thirds of
the samples produced a positive value. So there is a bias towards a finding of
excess variability. The bias is not, however, particularly marked, and fewer
than 10 percent of the simulated regressioné produced the extreme values of the
sort found in all of the Table II specifications.

That the Table IIIA distribution is only slightly biased suggests more
strongly than might be immediately apparent that small sample bias does not
explain the Table II results. For Table IIIA contains worst case figures,
since it is based on simulations in which Ht= ¢+ Proposition 1 implies that
for any given b and univariate Adt process, 05 will be smaller when It contains
additional variables useful in forecasting dt than when It=Ht. This suggests
that when I, contains these variables estimates of 05 and of equation (17) will
be smaller as well. But a simulation with such variables in It does not seem
worth undertaking, because even under worst case circumstances assumed here,
there is 1little to suggest that small sample bias explains the excess
variability reported in Table II.

(2)It is possible that the diagnostic tests reported basically favorable

results because the tests have low power. It is particularly difficult to



consider this comprehensively, even if only one of the diagnostic tests is
analyzed. This is because Monte Carlo experiments here are potentially quite
burdensome computationally. This will be true if Py or d, are generated
nonlinearly under the alternative, as will be the case, for example, in most
formulations of the Lucas [23] asset pricing model.

So this section has a relatively modest aim, of using a single diagnostic
test and a single, simple form of misspecfication, to suggest whether the data
and sample size are such that the diagnostic tests are unlikely to detect
plausible misspecifications. The test that is used is the equation (21) test

of instrument residual

rthogonality. The misspecification that is assumed is
that expectations are static rather than rational, Edt+J‘It = dt' In such a

case, the disturbance to the arbitrage equation (14) is 'b(Apt+1+Ad So

g+1)

the test must pick up a correlation between Apt+1+Adt+1 on the one hand and
lagged Ad, (the instruments, assuming a differenced specification) on the
other. That the results of a simulation for this alternative might produce
representative results is perhaps suggested by the fact that for just about any
alternative, the residual is some function, possibly nonlinear, of expected
and/or actual prices, dividends, and possibly, other variables. (See footnote
12.) So to have power against plausible alternatives, the test will basically
have to be able to pick up a correlation between prices and dividends on the
one hand and lagged Adt on the other, and, again, this is exactly what it must
do to have power against the static expectations alternative.

Under this alternative, py = [b/(1-b)]ld,; b=.9413 was again assumed.
Dividends were assumed to be generated by an ARIMA(2,1,0) process, with the
parameters given by line (2) of Table IB. The following was done 1000 times.
A vector of 100 independent normal disturbances was generated, with the

variance of the disturbances equal to that reported in line (2), column (6) of
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Table II. One hundred Ad ‘s, and then one hundred dy's and py's, were
computed, with initial conditions matching the initial values of the S and P
(Ad_,=.16,4d,=.11,d,=1.61). b was then estimated by two step, 25LS, with a
constant, Adt, and Adt_1 as instruments. Finally, the equation (21) statistic
was calculated.

The distribution of this statistic, which is a x2(2) random variable under
the null, is reported in Table IIIB. In about fourth fifths of the cases, the
statistic was above 5.99, the ninety five per cent level for a x2(2) random
variable. In over nine tenths of the cases, the statistic was over 2.87, the
value reported in line (2), column (5), in Table IA.

Against this alternative, then, the test of instrument residual
orthogonality appears to have reasonable power. Whether this applies to other
alternatives or to the other diagnostic tests performed is uncertain. But the
limited amount of evidence presented here at any rate does not suggest that the
favorable results of the diagnostic tests result solely from low power of the
tests.

B.Variation in discount rates

One possible explanation for the excess variability found in section IV is
that discount rates are time varying, so that the error in equation (14)
reflects not only news about dividends but also about discount rates (or,
equivalently, expected returns). The diagnostic tests performed in section IV
do not seem to suggest such variation, and the section VA(2) analysis just
completed does not seem to indicate that the results of these tests are easily
dismissed. Further consideration of the plausibility of this variation as an
explanation seems warranted nonetheless, given theoretical work such as Lucas
[23] and empirical evidence such as in Shiller [35].

This will be done in two separate exercises. The first (part (1) below)
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assumes as in, e.g., Hansen and Singleton [18], that a consumption based asset
pricing model determines expected returns, with the representative consumer's

utility function displaying constant relative risk aversion. For small values
of the coefficient of relative risk aversion, this permits exact calculation of
equation (17), the percentage excess variability. The second (part (2) below)
does not model expected returns parametrically but instead uses Shiller's [33]
linearized version of a completely general model. This permits calculation of
a lower bound to how large a standard deviation in expected returns is required
to explain the excess variability reported in Table II.

(1)Consider the class of models (e.g., Hansen and Singleton [18]) in which the

first order condition for the return on a stock is

- . N .
E{S(Ct+1/ct) [(pt+1+dt+1)/pt]}llt = 1, where B, 0<B<1, is the representative

consumer's subjective discount rate, Ct is his real consumption, a his

coefficient of relative risk aversion, with E, d and It defined as above.

t* Pt

This may be rearranged as

-~

(22) P, = BE(5t+1+at+1)|It
5t=ptc;“, 5t=dtc;“

Equation (22) is of the same form as equation (9). So if Et is stationary,
perhaps after one or more differences are taken, the statistics computed in the
constant discount rate case can be computed in this model as well.13
Repetition of the entire procedure is beyond the scope of this paper (and, in
light of the results about to be presented, seems pointless). Instead, I will
focus on obtaining a point estimate of equation (17), the percentage excess

variability, for various imposed values of B and a.

The Ct variable used in these calculations was the Grossman and Shiller
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[11] annual figure on real, per capita consumption of nondurables and services,

1889-1978. d, and p, were calculated using the S and P data for various values

of a. A simple plot of d, suggested that d_ in neither levels nor first or

t

higher differences is stationary for a much bigger than one. The problem is

-

that for big a, d, displays a marked secular decline; this is unsuprising
given that annual Ct growth was nearly 2 per cent per year, d, growth slignhtly
above one per cent.

I nonetheless calculated (17), the percentage excess variability, for a
wide range of a, just in case at really is stationary for large a. This was
done for B=.95 and B=.98, with very similar results. In all cases the lag
length of the at autoregression was set to four. Table IVA contains the
figures that resulted for some of the a, with B=.98. As may be seen, there is
no evidence supporting the hypothesis that the excess variability displayed in
Table II is explained solely by the sort of variation in expected returns

predicted by this asset pricing model. 12

Since at does not appear stationary for a much bigger than unity, it is
equally true that Table IVA contains no evidence against the hypothesis that
the Table II excess variability is explained by variation in expected returns
associated with a coefficient of risk aversion greater than, say, one. Table
IVA does, however, suggest if the model of expected returns assumed here is
correct, that the Table II excess variability is unlikely to be due to
variation in expected returns associated with a coefficient of relative risk
aversion of less than, say, one.

(2)Let us now consider a general model that does not parameterize expected

returns, linearized as in Shiller [33] to make the analysis tractable. Let

rt+j be the one period return expected by the market at period t+j, assumed

o 3 -
covariance stationary. Suppose pt = E{J§1[ig1(1+rt+i—1) 1]d }[It. Let us

t+]j



linearize the quantity in braces around ' and d. r is the mean of s

1

selection of @ is discussed below. Define b=(1+r) ', a=-d/r. Then (Shiller

-] j -
Proposition 1 may be used to show that in this linearized model
2)-1/2

(23) 6262 - p2¢° 2 —[a2+(1—b2)’1a2]o§ - [2(1-b

1%y u a610v]°r'

where °r is the standard deviation of res and 51 and o, are as defined in

equation (16). The algebra to derive (23) is in a footnote. 16

The left hand side of (23) is precisely the quantity studied in sections
III and IV. If this is positive, as it will be in the model (12), 0.=0 would
of course satisfy the inequality. The empirical estimates of (16), in Table
II, column (7), however, were negative; the minimum return variability needed
to explain the Table II results is given by the positive 0. that makes (23)
hold with equality.

This lower bound o, was calculated for all seven of the specifications.

02 02 51 and b were set equal to the estimated values reported in Table II.

u’ Sy

When dividends were assumed stationary, d was set equal to mean dividends,
3=T—1Zdt. When dividends were assumed nonstationary, d was set equal to
average expected discounted dividends, 3=(1-b)t§1bt_1Eodt, where:

E.d

Eyd, =Eydg+tEAd, , Eqdy=dg,

09t=Eqdg dy the level of dividends at the beginning of the

sample, and EAd, calculated as T-12Adt. The parameter a was in all cases set
to -d/F, with 7 defined implicitly by (1+r)” '=b.

The resulting lower bound values may be found in Table IVB. They are
rather large. None of the estimates are less than .12. With 0.=.12 and r=.07,
a two standard deviation confidence interval for the (real) expected return is

about =17 percent to +31 percent. This would seem to be an implausibly large
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range.
In the linearized model considered here, then, variation in ex ante

discount rates do not plausibly explain the excess variability of stock prices.
How well this conclusion applies to any given nonlinear model of course depends
on how well the linear model approximates the nonlinear one. An example in
Shiller [33] suggests that if dividends are stationary the approximation can be
quite good, even when changes in expected returns are larger than are typically
considered reasonable. It is of course debatable that the approximation makes
any sense, let alone is very accurate, if dividends are nonstationary. But the
results here can in any case be said not to lend support to the hypothesis that
the excess price variability reported in Table II is solely due to variation in
expected returns.

VI.Conclusions

This paper has derived and applied a stock price volatility test. The test
required neither of two strong assumptions required by the Shiller [33]
volatility test: that prices and dividends have finite variance, and that a
satisfactory approximation to a perfect foresight price can be calculated from
a finite data series.

The test indicated that stock prices are too volatile to be the expected
present discounted value of dividends, with a constant discount rate. Possible
explanations for the test results include that expectations are not rational,
that discount rates vary and that there are speculative bubbles. The
econometric diagnostics and the informal analysis were notably more consistent
with the bubble explanation than with the other two.

A detailed case for bubbles, or, for that matter, any other factor as the
explanation of the excess volatililty is, however, beyond the scope of this
paper. A chalienging task for future research is to make such a case,
reconciling the apparently excessive price volatility with the apparently good

performance of a rational expectations, constant discount rate specification.



FOOTNOTES

1. I thank A. Blinder, J. Campbell, G. Chow, S. Fischer, R. Flood,

L.P. Hansen, W. Newey, J. Rotemberg, R. Trevor, and J. Taylor for helpful
comments and discussions, and the National Science Foundation for partial
financial support. Responsibility for remaining errors is my own. This paper

was revised while I was a National Fellow at the Hoover Institution.

2. While Blanchard and Watson [4] do suggest examining the inequality that is
the focus of this paper, they do not formally establish the validity a; the
inequality, consider possible nonstationarity of dividends or prices, or test
the inequality rigorously. Subsequent to the initial circulation of this
paper, however, M. Watson sent me a proof of this inequality that is valid when

‘prices and dividends are stationary.

3. I thank J. Campbell for this proof. I also thank L.P. Hansen and M. Watson
for providing alternative proofs. S. Leroy has suggested to me that a similar
proposition is implied in Leroy and Porter [21,p568]. My own, rather tedious,

proof may be found in an earlier version of this paper [41].

4. Elaboration on the first three comments: (1)I believe that X1 and x,, are

always well defined, given the assumptions of Proposition 1. The statement in
the text specifies finite parameter ARIMA models because to my knowledge the
theory for prediction of 1linear processes, which is well developed for
stationary variables, has been extended to nonstationary variables only for
such models. See Hansen and Sargent [17] for the ARIMA (q,s,0) case. It

follows from Hansen and Sargent [17] that X ; and x exist for the ARIMA

tH
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(g,s,r) case. This is because after r periods, the expectations follow the
same difference equation in each case. So if the discounted sum for an
arbitrary ARIMA (q,s,0) process converges, so does that for an arbitrary ARIMA
(q,s,r) process. (Strictly speaking, this statement does not hold for a
process with a unit MA root and an infinite past, which may be the case for a
stationary ARMA(q,r) process, since such a process does not have a convergent

autoregressive representation. See Granger and Newbold [10,ppl142-145].)
(2)In this case, X¢g=kdy=kd, _,exp(e, ) for a certain constant k (Kleidon [20]).

So ExtHIHt—1 = kd Eexp(et), and xtH_ExtH Ht-1 is proportional to dt-1‘ An

t-1
interesting project for future research is to develop an analogue of equation
(1) that holds when logs or log differences are required to induce
stationarity.
(3)An example: Let n=1, so x£=dt+bdt+1' Suppose dt~MA(1), de=v +08v, ., —1<8<T;
Ht={dt_j|j20}={vt_j|j20}; It={dt_j,vt_j+1|j20}={vt_j+1|j20}. Then
Xey Bx ylH _, (1+b8)v,, x, ;-Ex.|I,_ 4 = bv,,. Inequality (1) will be
violated if, for example, b=.9 and 8<-.2.

The reason the proof of (1) cannot be adapted to the finite horizon case is

n+1

that a term of the form b 'x will appear in equation (4), with an

t+n+1,1I

analogous term in equation (5). The fact that X 1 exists means that

bn+1xt+n+1 1 is expected to get arbitrarily small for arbitrarily large n, and
?

so can be ignored in the infinite horizon case. But for any finite n, the term

cannot be ignored, and the argument in the proof will not apply.

5. To emphasize that inequality (13) holds even when dividends and prices are
nonstationary, it is perhaps worth considering the class of dividend and price
processes studied by Marsh and Merton [25]. Marsh and Merton argue that both

theory and empirical evidence on dividends suggest that dividends are a
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distributed lag on prices: dt = Zei Pg-i = 6(L)py.

They also show that if dividends in fact are such a distributed lag on prices,
and if dividends and prices are nonstationary, the basic Shiller [33]
volatility test is no longer valid.

The test in this paper is, however, still valid if dividends are a
distributed lag on prices and dividends are nonstationary. For it may be shown
that dt = 8(L)p, and Py = EZbidt+i]It together imply that H, = I, -- only
lagged dividends are used to forecast future dividends. When Ht = It’
inequality (13) holds trivially, as a strict equality. (See footnotes 5 and 6
in West [41].) Even when dividends and prices are determined as suggested by

Marsh and Merton [25], then, a violation of inequality (13) is evidence against

the model (12).

6. Proposition 1 assumed that variables had zero mean. If not, Ht and It must
be expanded to include suitable deterministic terms. In the annual data used

here, a constant is the only relevant such term.

7. In fact, in some empirical work the variable that is here called dt+1 is

assumed known at time t and thus has an innovation of zero when forecast at

time t (Shiller [33], Leroy and Porter [21]).

8. Even if there are bubbles, the right hand side of (19) clearly is not

gauranteed to be larger, and, in particular, will not be larger in the

(implausible) case of a purely deterministic bubble, c, = b’tc

t A related

0°
paper (West [39]) develops and applies a test that is capable of finding such a
bubble. The results of that paper are consistent with the results of this

paper.
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Since the test in West [39] is a test of cross equation restrictions,
similar to the tests developed in Sargent [31] and Hansen and Sargent [17],
this seems the appropriate place to comment on Hansen and Sargent's [16] point
that tests of cross equation restrictions test all the restrictions of a linear
rational expectations model, while volatility tests do not. The latter part of
this statement is illustrated for the present paper's test by the comments in
the preceding paragraph.

There are at least two reasons why stock market volatility tests are
valuable nonetheless. The first is that a volatility test may have more power
against a particular aiternative than a test of cross equation restrictions.
In the present context, this is perhaps reflected by the stronger rejection of
the null in the present paper than in West [39], for differenced
specifications. The second is that if a model is rejected by both tests,
characterization of prices as "excessively volatile" may to some economists be
a more provocative stimulus to future research than is a characterization of
prices as "failing to obey cross equation constraints." That a
characterization as "excessively volatile" is provocative to some is perhaps
evidenced by the the strong reaction, both favorable and unfavorable, to the
Shiller [33] volatility test.

In any case, the West [39] test of cross equation restrictions and the
present paper are complementary studies. Those who argue for regression tests
instead of volatility tests (see the discussion Hansen and Sargent [16]) are
likely to prefer West [39], while those who argue for the converse (see the

discussion in Shiller [34]) are likely to prefer the present paper.

9. Standard diagnostic tests will not suffice to find a misspecification of

the dividend eqguation if the sample size is not large enough to infer the
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parameters of the true dividend process. This might be the case because a
small probability event, which is rationally considered by market participants,
has not occurred. The best protection against such a biased sample is
obviously to use a large sample, which is what I did.

In addition, it is worth noting that one important example of such a low
probability event is allowed in the present framework. Suppose the market is
considering a disaster such as nationalization that will set dividends to zero.
The probability of disaster is 6. Shiller [34] shows that equation (9) is
still valid, with b interpreted as the product of a discount rate and 1-6. It

follows that if (12) is true, (13) should hold.

10. For a nice general equilibrium model that allows bubbles, see Tirole [37];
it is perhaps worth noting that in Tirole's deterministic, perfect foresight

steady state, asset returns are constant, just as are expected returns in the
stochastic environment considered here. For an argument that volatility tests

cannot be used to infer the presence of bubbles, see Hamilton and Whiteman

[12].

11. The Hannan-Quinn procedure selects the r that minimizes
v *T ZklnlinT, oo =T )) Ve

for r<R for some fixed R, with k>1. I set R=4, k=1.001.

12. Suppose discount rates are time varying. Let bt be the one period rate
from period t to period t+1, b the probability limit of the instrumental
variables estimate of the discount rate in equation (14), and Nyyq = pt+1+dt+1'
The proper specification of equation (1) is thus Py = thnt+1lIt' Equation

(14) is then
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Py = blg,q *+ (by=bNpyy * beng g Eng g |Ie) = by + up,.
In general the instruments (lagged dividends) will be correlated with the

residual u . since they will be correlated with (b.-b)n . =

(bt-B)(Pt+1+d The only apparent exceptions are implausible or

g+1)

uninteresting -- e.g., when bt—E, the deviation of ex-ante rates from a fixed

level, is uncorrelated with both pt+1+d and with lagged dividends (the

t+1
instruments).

Observe also that in general the residual to the equation above will be
serially correlated when discount rates are not constant (i.e., when bt not

equal b_ for all t). Thus testing for serial correlation in the residual to

t
(14) checks not only whether expectations are rational but also whether

discount rates are constant.

13.This seems an appropriate place to give the results of another test of this

model. Equation (6) states that var(xt-xtH) - var(xt-xtl) - var(xtI-xtH) = 0.

So, under the null hypothesis that xtI=pt+dt’
22 _ . -22 _ . -2,._.2 _ g+s -
8§70, = b “ol - b “(1-b%)var[p +d, (m+z1 §,d _;,01 =0
The parameters needed to calculate xtH under the null--m, 51,...,6q+s-—are

complicated functions of b,u, and the ¢i. The formula for m may be found in
West [39], for the 6, in Hansen and Sargent [17].

I tested this equality constraint for all seven specifications, with the
number of lags used in the calculation of the matrix § (defined in the
appendix) set to 11. The z-statistics for the seven specifications, presented
in the same order as in Table 1I, were: 1.88, 2.07, 1.71, 2.23, 1.85, 2.17,
1.71. Thus this suggests some mild evidence against the null hypothesis.

The basic reason for the relatively low statistics was a very noisy

estimate of var‘[pt+dt - (m+2?+séidt_i+1)]. This was insignificantly different
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from zero at the five per cent level, for all seven specifications. One
possible reason for this noisy estimate is that there are bubbles: if so,
- q+s
varlp +d, - (m+17°8.4d

t-i+1)] 1s not even finite.

14. I thank R. Flood for pointing this out to me.

15. Note that the entries in the table are not a monotonic function of a. To
make sure that the entries were representative, I calculated the percentage
excess variability for o in steps of 0.1 from O to 3.0, in steps of 1.0 from
3.0 to 10.0, and in steps of 5.0 from 10.0 to 50.0. The results were quite
similar to those reported in the table. The lowest percentage happened to

occur at a=2.0.

16.In the 1linearized model the analogue to equation equation (9) is

Dt=bE[a(rt—r)+dt+1+pt+1][It. Let yt+j=a(rt+j_1~r‘)+dt+j and redefine

Xt=£b3yt+j, xtI=ExtlIt' (Of course, if expected returns are constant, rt=F for

all ¢, X, and x, ; as defined here reduce to their Proposition 1 counterparts.)

tI
The efficient markets model considered in section III implied xtI=dt+pt; the
one currently under consideration implies Xep = Yi*Pe = a(rt_1-r)+dt+pt. So

with r._. an element of I _,, xtI-ExtIIIt_1 = dt+pt—E(dt+pt|It_1). Now,

(%) Upipq = Pe=b(dyyq*Ppyq) = [ba(rt-r)+bE(pt+1+dt+1IIt) - b(dt+1+pt+1)]

blalrp-r)=(xp,q 1Exeeq, 1l10)]

ces p2.2 _ .22 _ 2
> B %op = a%el ¢ Elxg,q 17Expyq 1]T¢)
- ) > _,-22_ 22

> E(Xp g 17BXgaq, 1|I)C = D Top — 2%

Now define Jt as the space spanned by a constant and all current and lagged
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dividends and expected returns, XtJ=EthJt. Let XtJ'EXtJ]Jt—1 = awqgtW,,

where w,, and W,y are the innovations in the expected present discounted values

2

w1 t

follows the autoregression (15). Then since Ht is a subset of J., Proposition

of rt and d Shiller [35] shows that o < 03/(1—b2). Assume that dt or Ad

t

2 .
1 tells us that o g 6?03, where, as previously, 03 is the variance of the
2

univariate dividend innovation and 61 is defined above equation (16). So

%% _ 2 _ ;2 2 2
(%¥) E(xtJ ExtJIJt_1) a“o, * 2ag, .+ o,
1 1" 2 2
< a2 +2ag g + o2
W w w2 w2
S (1._b%\"1,,2_2 + ,.,_\,.‘_‘__2\"1/2: _ 1.2‘__2
AY / a Ur‘ cd\1—L J U-] Uv r 01 Uv

Since J, is a subset of I., Proposition 1 tells us that E(xtI—Extlllt_1)2 <
E(XtJ'EXtJlJt-1)2' So with a little rearrangement, (¥) and (*¥) together imply

equation (23) in the text.



APPENDIX

This describes the calculation of the variance-covariance matrix of the
parameter vector e=(b.¢.05.05) = (b’u’¢1""’¢q’°5'°3)' It also establishes
suitable conditions for the calculation to be appropriate when dividends are

assumed nonstationary.

s
greceod dt-q+1)' be the (q+1) x 1 vector of instruments, s=0

) be the right hand side variable in (14). One way of

Let Z,=(1,4%
or s=1, My 1=(dp, 1 Peey
describing the estimation technique is to note that 6 was chosen to satisfy

the orthogonality condition

T_I(Znt+1zt')(ng)-122t(pt-nt+18;
T8z, (0,2, 0)
0-1'm® - | o?- 15,0, 07
o2 - 1,2, 0)°
B J

-~ -~

(The degrees of freedom corrections in 03 and 03 are suppressed for notational

simplicity.) The summations in the orthogonality condition run over t, from 1

~

to T. SZ is an estimate of EZtZ£u€+1, calculated as described below equation

(21). Thus b is estimated by two step, 2S5LS, ¢ by OLS, oi and 03 from moments
of the residuals.

Since Eht(e)-o, where 0 is the true but unknown parameter vector, it may

be shown that under fairly general conditions, vT(8-6) is asymptotically

- - - L -
normal with a covariance matrix V = (plimT 1the) 1S(plimT 1the) ! (Hansen

[15]), White and Domowitz [42]). hte is the (q+U8)x(q+4) matrix of derivatives

1 - ] '
- 1
of h, with respect to & and S En.h, + jzl[Ehtht—j+(Ehtht-J) l. heo is
straightforward to calculate. Calculation of S is slightly more involved.

Newey and West [27] show that in general S and thus V are consistently
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estimated if S = no + ZT_1w(i,m)(ni+Q '), where: m-->= as T-->= and m is

TI/R

) : q .7 15T - - PO
H i,m)=i/(m+1); = ' -
)i w(i,m)=i/(m+1); Q=T '] ¢N'g-qr De=h (8), & an initial

consistent estimate (2SLS and OLS). The weights w(i,m) insure that S is

= 2 B ol

of =i+
positive definite. 1In the absence of any theoretical or Monte Carlo evidence
on the small sample properties of various choices of m, I tried various
values: m=3,7 or 11. The value of m that led to the largest standard error
in column (7) of Table II is what is reported in Table II. For all
specifications, this turned out to be m=11.

The conditions in Hansen [15], White and Domowitz [42] and Newey and West

{27]) unfortunately do not cover the case when n is nonstationary. The

t+1

formulas just given are, however, still basically applicable, at least under
the conditions listed in the assumptions given below. The only difference
between the stationary and the nonstationary cases is that a certain term in

h that depends on plimT_12n is set to zero in the nonstationary case.

te t+1Y¢+1

The remainder of this appendix sketches the argument necessary to
establish the asymptotic distribution of 6 in the nonstationary case. A

detailed argument is available on request.

Theorem 1 below establishes the asymptotic distribution of b, Theorem 2
that of °5’ Theorem 3 that of the Joint asymptotic distribution of the

elements of 6. (In light of assumption (al¥) below, standard theory applies

for ¢ and 03.)

Assumptions.
2 2 .2 2
(atl)Let Ht be the (2q+4)x1 vector (Z

- - L]
Ztvt+1’ut+1 0 Vet ov). Then Ht

tYte1”
is (i)ergodic and covariance and fourth order stationary, with (ii)iid

innovations, and (iii)a moving average representation whose weights are

absolutely summable.

(a2)The innovations in the (yt.zt) process are zero for all tst., for some

o'
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tos-q; Ny g is a nonstochastic constant, that, for simplicity is assumed to
0

be zero.

(a3)EAnt¢0.

(al)The (Ant'Adt) process is covariance stationary, with a moving average

representation whose weights are absolutely summable.

2

Remark.The heart of the argument is in the lemma, which proves that T ZZtnt*l

converges in probability to a matrix of constants of rank one. Asymptotic

normality then follows easily. The convergence in probability is established

- . -2
by showing that lim (Et T zztnt+1) is a vector of constants of rank one and
0
-2 .
lim [var_ (T “IZ,n_ .)]) is zero. (E_ and var denote expectations and
to tt+1 to to

variances calculated conditionzl on the history of the (yt.zt) process at date
to; by assumption (a2), this means expectations and variances calculated
assuming that all past innovations in the (yt,zt) process are zero.) In

reading the lemma, it will be helpful to note that (a)by (a2), Et yt-l-:yt and

0
E, z,=Ez,, for all t2t.; (b)var, (.) § var(.), where (.) is any function of
to t t 0 to
yt's and zt's. tZto, with finite unconditional variance. The unconditional

operators E(.) and var(.) are understood to act as if the yt and z, processes
have infinite pasts, i.e., these operators do not condition on assumption
(a2).

Lemma. T’zzztnt+1 converges in probability to a (g+1)x1 constant vector of

rank 1.

-2 .
ZZth1 is T Znt+1. I will show that this

Proof: The first element of T 2

converges in probability to (1/2)EAnt, which is nonzero by (a3). A similar

but considerably messier argument can be used to establish that each of the

2

other elements of T XZtnt+1 converge in probability to a constant,

We have Znt+1 ] Tn1

-2 -2
that lim [EtoT (Tnl)]- lim [vartoT (Tn1)]=0. Now, Neyq = Ant+1+ eee *tAD_ +

+ z(nt+1-n1). It is easliy shown that (a2) implies
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n1. It follows that

Ao1 - =
(A1) t(ng,,-n,) 8n, + (8ny+8ng) + ... ¢ (8n,t...+8np, )

= Tan, + (T-1)An3 * ..o % bnp, .
==> Et(nt*I-n1) = [T*(T-1)*...+1]EAnt
- [(T2+T)/2]EAnt

-2
> lim T EZ(nt#1 n1) = (1/2)EAnt

Let Y(j) denote cov(Ant,Ant;j). As stated in the Remark, to establish

that lim var‘t [T-zz(nt*1-n1]) = 0, it suffices to establish that 1lim
0
VaP[T-Zt(nt*1-n1]) = 0. To show this, note that (A.1) implies

var[t(nt+1-n1)] = [T2+(T-1)2*...12]Y(0)
+2[T(T-1)+(T-1)(T-2)+...+2.1]Y(1)
+ wee * 2[TAAIV(T-1)
s ()0 + 2511 V(D]

s (DI + 2,F V)]

Assumption (al) implies that the right hand side of the above is finite
for given T (Hannan [13,p211]). The fact that ztz is of order T3 now implies
that 1im var[T-zt(nt#1-n1)] is zero. So T-Ztnt*l converges in mean square and

thus in probability to (1/2)EAnt.

Theorem 1. T3/2(b-b) converges in distribution to a N(O.vb) random variable,

. -2 ove ~1 m=2 -1
Vb plim [(T In, 2, )Sz (T zztnt+1)] .
Proof: We have
13/2(b-b) =
-2 “=1,.-2 -1,m=2 N RS 7
LT “zn, ,2,")s, (T “IZen, )] (T “In . Z ')S, (T "“IZ u,  .)
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1/2

Assumption (al) insures that (a)T £z converges in distribution to a

N(O.Sz) random variable, and (b)plim Sz=Sz. The lemma insures that T_thtn

tYe+1

t+1

converges in probability to a constant vector of rank 1. The theorem now

follows.
Theorem 2. /T(T-12u$ - oi) has the same asymptotic distribution as
/T(T-12u$ - 05). (Note: summation signs here and in the proof of Theorem 2 run

from 2 to T+1.)

Proof: We have

W2 = (p,_y-ng»)% = w2 - 2(b-DIngu, + (b-b)°n?
x> VT 'Ra2 - 02) = vT(r 'l - od)
- 2[T3/2(;-b)](T-22ntut)
+ 1132(5-5)72(17"21nd)

It may be shown that T.Z}:ntut and T_7/22n$ each converge in probability to
zero. For T_Ztntut this follows because E}:ntut is of order T, var(tntut) of
order T3. A similar argument applies to T-7/2£n$.

Since T3/2(;-b) has a well defined asymptotic distribtution, this impligs

2
t

2
t

It also obviously will imply that 03 is a consistent estimate of 03.

that /T(T-‘Zu - °§) has the same asymptotic distribution as /T(T_12u - oS).

Theorem 3.

(a)The normalized parameter vector [T3/2(b—b),/T(¢—¢),/T(oi—aﬁ),/T(;f-os)]

converges in distribution to a N(0,V) random variable, where: V-HSHH'; Sw =

@ L]
Ew L] L] * .
Vet J§1[Ewtwt-j + (Ewtwt_J) 1, W, defined in (al1); H is a block diagonal
.-1

~e1,. -2
ge12¢"08, (T "IZin, )5,

in the upper left hand block, plim (T-1ZZtZ£) in the middle block, and a (2x2)

matrix with plim [(T %zn y1" YT %En, .z

t+1

identity matrix in the lower right hand block.
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(b)If gw’ the Newey and West estimate of Sw’ is calculated using 2SLS and OLS
residuals, gw converges in probability to Sw.
Proof: It may be shown than assumption {(al) is strong enough to insure that
cross products of instruments and disturbances, and of instruments and
residuals calculated using estimated parameters, are well behaved. So parts
(a) and (b) of the theorem both follow from Theorems 1 and 23 given assumption
(a1).

Note that the covariance matrix in the nonstationary case, HSwH'. is the
same as the covariance matrix in the stationary case,
(plimT-1£hte)—1S(plimT-1Eh;e)-1, except that a term depending in part on plim

T-1tntﬂut+1 appears in the latter but not in the former.
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Table I1I A

Distribution of Equation (17) in Monte Carlo Experiment

Percentile 5 10 50 66
Equation (17) 91.8 4.7 15.0 0

Table 111 B

Distribution of Equation (21) in Monte Carlo Experiment

Percentile 5 10 50 78 90
Equation 25.26 22.29 10.80 . 5.99 3.07

Table IV A

Percentage Excess Price Variability

e - 2 3 10 25 50
Equation (17) 96.5 97.5 80.9 B88.4 99.6 100.0 100.0
Table IV B

Minimum 0. Needed to Explain Excess Variability

Data Set S&P S&P S&P S&P DJ DJ DJ
Differenced no yes no yes no yes no

2 2 y 4 3 y u
46 222 46,200 127 176 169

Q l,:
-3 oy
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