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1. Introduction 

 It is very widely recognized that linear rational expectations (RE) models 

typically feature a multiplicity of solutions, i.e., processes for endogenous variables that 

satisfy all the model’s equations and the orthogonality conditions for RE.  Various 

“selection criteria” or “solution refinements” have been proposed over the years, by 

writers including Taylor (1977), Blanchard and Kahn (1980), Whiteman (1983), 

McCallum (1983), Evans (1986), Evans and Honkapohja (2001), Driskill (2006), Ellison 

and Pearlman (2011), and Cho and Moreno (2011).  None of these proposals, however, 

has been generally accepted by researchers.  The most prominent approach—that of 

Blanchard-Kahn and Whiteman—is to assume that if there is only a single solution that is 

dynamically stable then it will prevail; otherwise each stable solution represents a 

possible outcome.  But it too has a number of critics, with various objections being 

voiced by the other writers listed above plus Bullard (2006), Bullard and Mitra (2002), 

and Cochrane (2007).
1
 

 In monetary economics the Blanchard-Kahn-Whiteman “determinacy” approach 

is by far the most popular, partly due to the enormous influence of Woodford (2003, pp. 

77-85, 90-96, 252-261).  That the issues generated by solution multiplicities are central to 

the logical foundations of today’s mainstream New-Keynesian approach to monetary 

policy analysis, and that they remain unsettled, is clearly evidenced by the recent 

exchange between Cochrane (2009) and McCallum (2009b,c).
2
  Obviously, this situation 

is highly unsatisfactory.  The purpose of the present paper, consequently, is to propose a 

                                                 
1
 It should be noted that the current revised version of Cochrane’s NBER Working Paper 13409, a version 

of which has been published as Cochrane (2011),  has eliminated most of the discussion that is mentioned 

critically in McCallum (2009b).  
2
 For a brief account, see Appendix D. 
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criterion or refinement, one that is based on continuity of solution coefficients with 

respect to structural parameters.  The spirit of the undertaking is that the basic objective 

in economic modelling is not primarily to conform to some particular definition of 

equilibrium, but to develop models that are plausible, in terms of their predictions about 

the consequences of alternative economic arrangements and policies.
3
  Throughout the 

present discussion, the analysis will be limited to linear models. 

2. Basic Univariate Case 

 Consider the following univariate model, assumed to be structural:  

(1) t t t 1 t 1y aE y cy                                                                           ac 0.25 . 

Here we have for simplicity omitted the constant term and exogenous shocks, which are 

inessential to the argument.
4
  The “fundamental” solutions are of the form 

(2) t t 1y y    

so 2

t t 1 t 1E y y   .  Then substitution of the latter and (2) into (1) followed by 

undetermined-coefficient (UC) reasoning indicates that  must satisfy  

(3) 2a c 0   . 

Thus the fundamental solutions are given by (2) with the following two values for :  

(4a) ( ) 1 1 4ac

2a

  
   

(4b) ( ) 1 1 4ac

2a

  
  . 

 The proposed refinement is that  must be continuous in the parameters a and c.  

                                                 
3
 The latter is indeed a motivation for requiring agent maximization in the usual definition of equilibrium. 

4
 With respect to exogenous variables, see Appendix A.  Note that the condition ac<0.25 is imposed so as 

to require real-valued solutions, which we now also assume for the multivariate cases below. 
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In particular,  must be continuous in ‘a’ over intervals of values that include a = 0.  The 

rationale is that in this extreme case expectational variables are entirely absent from the 

system so the solution is unambiguously t t 1y cy  .  In addition, small values of ‘a’ reflect 

cases in which expectational effects are small, so they should imply solutions with  

close to c.  Furthermore, continuity of solution parameters is necessary for impulse-

response functions to be well behaved when exogenous variables are included in the 

model.
5
 

 Clearly, this requirement implies that the solution for model (1) is given by (2) 

with the limiting value, as a 0 , of ( ) = c, as in (4a), and not by ( )   , i.e., an 

infinite discontinuity.
6
  It is useful to note that (with a 0 ) as the parameter c 0  we 

have ( ) 0  , whereas ( ) 1/ a  .  Thus the refinement leads to the same solution as 

the minimum state variable (MSV) solution suggested by McCallum (1983).
7
 

 From the foregoing we see that the proposed refinement leads to a single solution 

when we are limiting consideration to fundamental solutions.  But suppose we admit 

solutions of the general “sunspot” form 

(5) t 1 t 1 2 t 2 3 ty y y      , 

where t  is a stationary stochastic process with the property t t 1 tE    .
8
  Then we have 

(6) t t 1 1 1 t 1 2 t 2 3 t 2 t 1 3 tE y ( y y ) y             

and substitution into (1) leads to the following UC conditions: 

                                                 
5
 Again see Appendix A. 

6
 The first of these two limits is obtained by means of l’Hôpital’s rule; see Appendix A. 

7
 It should perhaps be mentioned that I am using the MSV terminology in the manner of McCallum (1983), 

not in that of Evans and Honkapohja (2001, p. 194), which does not imply that the MSV solution is unique. 
8
 It is the case that almost any RE solution to model (1) can be expressed in this form.  See appendix B 

below. 
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(7a) 2

1 1 2a a c       

(7b) 
2 1 2a     

(7c) 
3 1 3 3a a      . 

Now the third of these requires that either 3 = 0 or 1 = a1 + aρ.  If we take the latter as 

relevant we have the condition that 1 (1 a ) / a    , which clearly has an infinite 

discontinuity at a = 0.  Thus we reject that possibility and require 3 = 0.  Then (7a) and 

(7b) apply and the latter of these implies that either 2 = 0 or 1 = 1/a.  Since the latter has 

an infinite discontinuity at a = 0, we conclude that 2 = 0 is relevant.
 9

   But then (7a) 

becomes the same condition as (3) and we are back in the case, already discussed, with 

only fundamental solutions and with those corresponding to the expressions (4a) and (4b).  

Then, as before, only the former gives a solution, which is (4a), that satisfies our 

continuity requirement; i.e., the proposed refinement rules out all solutions except (2) 

with  given by ( ) .  Obviously, to be useful this result must extend to richer models.  

Even in the present context, however, it is interesting that there is only a single solution 

that satisfies the continuity principle.  Also significantly, perhaps, it is the same solution 

as the one that utilizes a “direction of causality” criterion as developed in McCallum 

(2009a), as well as the “minimum state variable” solution from McCallum (1983).
10

   

 One reader has asked why an analyst should be concerned with properties of 

( ) and ( ) prevailing in the vicinity of a = 0 in cases in which it is likely that ‘a’ is not 

                                                 
9
 The coefficient on yt-1 in (5) implies that a tiny change in the expectational parameter a—say, from 0.01 

to 0.01—could have an implausibly large effect on the dynamic behavior of yt.
10

 The latter has been recognized as a notable concept by numerous writers, including Evans (1986), Evans 

and Honkapohja (2001), Driskill (2006), Ellison and Pearlman (2011), and Cho and Moreno (2011). 
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close to 0 (e.g., the model has a = 0.95).  My response is that what we are concerned with, 

at this methodological step, is whether (for example) the solution with ( ) or the one 

with ( ) is appropriate for models of the specification at hand, which is presumed by the 

modeler to be relevant for a wide range of parameter values.  Thus we ask whether the 

functions ( ) and ( )  imply plausible solutions for all values of ‘a’ and c that are 

permitted by the model (here, all values such that ac < 0.25).  For example, how would 

the two solutions (functions of ‘a’ and c) behave in the case that a = 0.01?  And the case 

that a = 0.01?  Clearly the solution ( )  says that  would be huge and positive in one 

case but huge and negative in the other.  It is highly implausible, I suggest, that this small 

change in model calibration could have such a major effect on the implied economic 

behavior of variable yt, especially since the small absolute value of ‘a’ in both cases 

indicates that the influence of expectations about the next-period value should be very 

small—as is, in fact, implied by the solution ( ) .  Methodologically, that is,  it is 

desirable to decide which solution function is appropriate for the general model before 

turning to the specific parameter values relevant to the economy at hand—in this case ‘a’ 

and c—for the applied step of forecasting or policy analysis. 

 3. Multivariate Extension 

 We now consider richer models of the form 

 (10) yt = A Etyt+1 + C yt-1 + D ut, 

where yt is a m×1 vector of endogenous variables, A and C are m×m matrices of real 

numbers, D is mn, and ut is a n×1 vector of exogenous variables generated by a 

dynamically stable process 

(11) ut = Rut-1 + εt,  
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with εt a white noise vector and R a matrix with all eigenvalues less than 1.0 in modulus.  

It will not be assumed that A is invertible.  In this formulation the endogenous variables 

in yt are jump variables whereas their lagged values in yt-1 are predetermined, that is, 

dependent only on lagged values of exogenous or endogenous variables.  This 

specification is useful for various reasons, the main one with respect to the issue at hand 

being that it is very broad and inclusive.  In particular, any model satisfying the 

formulations of King and Watson (1998) or Klein (2000), can (with the use of auxiliary 

variables) be written in this form—and the form will accommodate any finite number of 

lags, expectational leads, and lags of expectational leads.
11

  In that context, we consider 

fundamental solutions to the model (10)-(11), which are of the form 

(12) yt = Ω yt-1 + Γ ut. 

in which  is required to be real.
12

  Then we have that Etyt+1 = (yt-1 + ut) + Rut and 

straightforward undetermined-coefficient reasoning shows that  and  must satisfy 

(13) A
2
   + C = O 

(14)  = A + AR + D. 

For any given , (14) yields a unique  generically,
13

 but there may be many mm real 

matrices that solve (13) for .  Accordingly, the following analysis centers around (13), 

setting D = O for notational simplicity.  For reference below, note that, from (13), each 

solution will satisfy 

(15) 1(I A ) C   , 

                                                 
11

 See McCallum (2007, p. 1379). 
12

 A constant term can be defined by the coefficient on an exogenous variable that is a driftless random 

walk with innovation variance of zero. 
13

 Generically, I  R[(I  A)
-1

A] will be invertible, permitting solution for vec() using the identity  

vec(ABC) = [CA]vec(B) that holds for any conformable A, B, and C.
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provided that the inverse exists (a regularity condition that is generally assumed). 

 In order to accommodate singular A matrices, we write  

(16) 
A

0





O

I





2 
 
 

 = 
 I

 I





   
C

  O

 



 
 I

 
 
 

, 

in which the first row reproduces the matrix quadratic (13).  Let the 2m2m matrices on 

the left and right sides of (16) be denoted A  and C , respectively.  Then we solve for the 

(generalized) eigenvalues of the matrix pencil [C A] , alternatively termed the 

(generalized) eigenvalues of C  with respect to A  (e.g., Uhlig (1999)).  Specifically, the 

Schur generalized decomposition theorem establishes that there exist unitary matrices Q 

and Z of order 2m2m such that QCZ  = T and QAZ  = S with T and S triangular.
14

  

Then (generalized) eigenvalues of the matrix pencil [C A]  are defined as tii/sii. Some 

of these eigenvalues may be “infinite,” in the sense that some sii may equal zero.  This 

will be the case, indeed, whenever A and therefore A  are of less than full rank since then 

S is also singular.  All of the foregoing is true for any ordering of the eigenvalues and 

associated columns of Z (and rows of Q).  For the moment, let us temporarily focus on 

the arrangement that places the tii/sii in order of decreasing modulus, which will be 

referred to as the MOD ordering.
15

  

 To begin the analysis, premultiply (16) by Q.   Since QA  = SH and QC  = TH, 

where H  Z
1

, the resulting equation can be written as  

                                                 
14

 Provided only that there exists some  for which det[ C  A ]  0. See Klein (2000) or Golub and Van 

Loan (1996).  In what follows, the term eigenvalues will be used to refer also to generalized eigenvalues. 
15

 The discussion proceeds as if none of the tii/sii equals 1.0 exactly.  If one does, the model can be adjusted, 

by multiplying some relevant coefficient by (e.g.) 0.9999 or by eliminating the variable in favor of its first  

 difference. 
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(17) 
11

21

S

S



 22

O

S





11

21

H

H





12

22

H

H





2 
 
 

   = 
11

21

T

T



 22

O

T





11

21

H

H





12

22

H

H



  I

 
 
 

. 

The first row of (17) reduces to 

(18) S11(H11 + H12) = T11(H11 + H12). 

Then if H11 is invertible the latter can be used to solve for , which is mm, as 

(19)  = H11
1

 H12 = 









where the second equality uses the upper right-hand submatrix of the identity HZ = I, 

provided that H11 is invertible, which we assume without significant loss of generality.
16

  

  As mentioned above, there are many fundamental solutions  to (13).  These 

correspond to the (2m)!/(m!)
2
 different combinations of the 2m eigenvalues taken m at a 

time, which result in different groupings of the columns of Z and therefore different 

compositions of the submatrices Z12 and Z22.  Here, with the eigenvalues tii/sii temporarily 

arranged in order of decreasing modulus, the diagonal elements of S22 will all be non-

zero provided that S has at least m non-zero eigenvalues, which we assume to be the 

case.
17

  For any solution under consideration to be dynamically stable, all the eigenvalues 

of  must of course be smaller than 1.0 in modulus.  To evaluate them in terms of the 

ratios tii/sii, note that with  given by (19), the second row of (17) becomes 

(20) S22(H21 + H22) = T22(H21 + H22), 

or 

(21)  S22(H22 


H12) = T22(H22 


H12). 

                                                 
16

 This invertibility condition, also required by King and Watson (1998) and Klein (2000), obtains except 

for degenerate special cases of (1) that can be solved by simpler methods than considered here. Note that 

the invertibility of H11 implies the invertibility of Z22, given that H and Z are unitary.   
17

 It is obvious that A  has at least m nonzero eigenvalues so, with Q and Z unitary, S must have rank of at 

least m.  This is not sufficient for S to have at least m nonzero eigenvalues, however; hence the assumption.   
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The latter, by virtue of the lower right-hand submatrix of HZ = I, is equivalent to 

(22)  S22

 = T22Z22

1
. 

Therefore we have the result 

(23)  = Z22S22
1

T22Z22
1

, 

so  has the same eigenvalues as S22
1

T22.  The latter is triangular, moreover, so the 

relevant eigenvalues are (given the MOD ordering) the m smallest of the 2m ratios tii/sii.  

For dynamic stability, the modulus of each of these ratios must then be less than 1.  (In 

many cases, some of the m smallest moduli will equal zero.)  

 Now we consider alternative fundamental solutions, which will involve departures 

from the MOD ordering.  There are (2m)!/(m!)
2 

different groupings of system 

eigenvalues (and associated eigenvectors) that include two groups of m each.
18

  It is well 

known (and is shown in (23)) that m of the system eigenvalues will be the eigenvalues of 

.  The other half of the system eigenvalues are the inverses of the eigenvalues of the 

matrix F, where 1F (I A ) A   .
19

  According to our refinement, we now select the 

solution for which C  as A O .  By continuity of eigenvalues with respect to 

structural parameters (Horn and Johnson, 1985, pp. 539-540), this is the same solution as 

the MSV solution for which O  as C O .
20

 It can be identified operationally by 

replacing C by C in all equations and then letting the scalar  decrease continuously 

from 1 to 0.  Examination of a plot or table of the eigenvalues for various  values will 

indicate which solution—i.e., which —has this property.  [This procedure is mentioned 

                                                 
18

 Some of these may yield complex values for solution coefficients; these are of course eliminated. 
19

 This result, which is somewhat tedious, is developed in McCallum (2007, pp. 1382-3). 
20

 This generalization of the univariate case regarding (4a) and (4b) is implied by the analysis on p. 165 of  

McCallum (1983), with an extension to singular A matrices provided by noting that they imply eigenvalues 

of F equal to zero.  For details, see Appendix C.   
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in McCallum (2004) and is illustrated in McCallum (2009a).]  Let us use 0 to denote the 

 matrix for this particular solution, with the related F matrix being 1

0 0F (I A ) A   . 

Furthermore, we observe crucially that any other fundamental solution will have one or 

more of the eigenvalues of Ω approaching ±∞ as A →O.  See Appendix C. Thus we have 

developed the multivariate extension of the argument for fundamental solutions.   

 It is important to note that the Ω0, F0 solution does not necessarily coincide with 

the MOD solution.  In most cases these two solutions will coincide, but in a few they will 

differ.  This fact, which is mentioned by Uhlig (1999, p. 46), is illustrated in McCallum 

(2004) and (2009a).
21

      

 Continuing the analysis, sunspot solutions can be considered for model (10)(11) 

by looking for solutions of the form 

(24) t t 1 1 t 2 2 ty y y     , 

where I have used D = O to avoid clutter but have added yt-2 and a m1 sunspot vector t 

that has the property Ett+1 = Gt for all t.  Then in this case we have 

(25) t t 1 t 1 1 t 2 2 t 1 t 1 2 tE y ( y y ) y G              

and substitution into (10) gives 

(26) t 1 1 t 2 2 ty y      = A[ t 1 1 t 2 2 t 1 t 1 2 t( y y ) y G          ] + t 1Cy  . 

Consequently, the implied undetermined coefficient equations are 

(27a)  = A
2
 + A1 + C 

(27b) (I  A)1 = O 

(27c) (I  A)2 = A2G. 

                                                 
21

 Uhlig’s objection that “…uniqueness is lost once two or more such paths cross each other …” is handled 

by presuming that the slopes of the paths are continuous. 
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Now the argument is an extension of that for the univariate case of Section 3.  Equations 

(27b) and (27c) imply that if (I  A) is nonsingular, then 1 = O, 2 = O, and we again 

have the solution with  = 0 with no sunspot terms.  If on the other hand (I  A) is 

singular, 2 is not determined and (27) admits an infinity of sunspot solutions.  But in 

this case  (27b) implies det(1) = det(A)det()det(1) or det() = 1/det(A), so as 

A O  we have det( )   which implies a discontinuity in the solution for yt.  

Therefore, the sunspot solutions do not satisfy our refinement criterion. 

4. Conclusion 

 We conclude with a very brief description of the paper’s argument.  Linear RE 

models typically have more than one solution and fairly often possess more than one 

dynamically stable solution.  Consider, however, the requirement that the solution 

coefficients should be continuous in the model’s structural parameters.  In particular, we 

require that the solution coefficients should be continuous in the limit as certain 

parameters, which express the extent to which expectations affect endogenous variables, 

go to zero.  (If expectations enter the structural equations very weakly, they should not 

have much effect on the solution expressions.)  The paper shows that, for a very broad 

class of linear RE models,
22

 this requirement is satisfied by only a single solution.    

 

                                                 
22

 The class is one that permits any finite (i) number of endogenous variables, (ii) lag length, (iii) 

expectational lead length, and (iv) lag length for expectational  leads.   
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Appendix A 

 The purpose here is to illustrate that it is sufficient for this paper’s argument to 

examine cases in which exogenous variables are not explicitly included.  For the simplest 

case, suppose that we extend equation (1) to include an exogenous shock zt that is 

generated by a stable first-order autoregressive process with coefficient ρ.  Then we have 

(A-1)  t t t 1 t 1 ty aE y cy dz        

(A-2)  t t 1 tz z     

where εt is white noise.  Then fundamental solutions are of the form 

(A-3)  yt = 1yt-1 + 2zt.   

Consequently, 2

t t 1 1 t 1 1 2 tE y y ( ) z .         Using the latter and (A-3) in (A-1) we have 

(A-4)  2

1 t 1 2 t 1 t 1 2 1 t t 1 ty z a[ y ( )z ] cy dz            

so equating coefficients yields 

(A-5)  2

1 1a c     

(A-6)  2 2 1a ( ) d      . 

 As in Section 2, therefore, from (A-5) we have 

(A-7a)  ( )

1

1 1 4ac

2a

  
   

(A-7b)  ( )

1

1 1 4ac

2a

  
  . 

Thus as a 0  we have ( )

1 c   and ( )

1

  as with equations (4a) and (4b).
23

 

 Continuing, for ( )

2

 we have ( ) ( )

2 1[1 a a ] d        or ( ) ( )

2 1d / [1 a a ]         

                                                 
23

 In the case of (A-7a), both numerator and denominator approach zero as a approaches zero, but their 

derivatives approach 2c and 2 respectively, so L’Hospital’s rule gives a limit of c.  
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so that ( )

2

   
d

1 1 4ac
1 a

2

 
  

 and  

(A-8)  ( )

2
a 0

d
lim d

1 1
1 0

2




  


 

. 

 

By contrast,           ( )

2
a 0

d
lim

1 1
1 0

2




   


 

. 

 Next, the non-fundamental solutions—permitting sunspots—are of form 

(A-9) t 1 t 1 2 t 3 t 1 4 t 5 t 2y y z z y           

for any t  with t 1 t t 1E g .      Then t t 1 1 1 t 1 2 t 3 t 1 4 t 5 t 2E y ( y z z y )            + 

2zt + 3zt +4t  whereby substitution into (A-1) plus equating of coefficients yields    

(A-10)  2

1 1a    

(A-11)  2 1 2 2 1 3d a a a           

(A-12)   3 1 3a     

(A-13)   4 1 4a     

(A-14)  5 1 5a      

Thus we have either 1 3 4 5 0         in which case 2 d / (1 a )    and yields the 

well-behaved MSV solution (2) with (4a); or else we have 1 1/ a   in which case   

2 3(d ) / a     and thus for any arbitrary 3 (except the zero-measure value of d)    

there is an infinite discontinuity in the limit as a 0 .  Accordingly, permitting sunspot 

solutions does not alter the conclusion that only the MSV solution avoids the implication 

of an infinite discontinuity in the implied impulse response function. 
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Appendix B 

 The object here is to demonstrate that the form of sunspot solution considered in 

equation (5) is highly general for the model (1), which we repeat as 

(B-1) t t t 1 t 1y aE y cy   . 

We now consider solutions of the form 

(B-2) t 1 t 1 2 t 2 ty y y      

where t  is any remaining term representing a covariance-stationary stochastic process.  

Then  t t 1 1 1 t 1 2 t 2 t 2 t 1 t t 1E y ( y y ) y E             and the undetermined-coefficient 

requirement is that the following must hold for all realizations: 

(B-3) 1 t 1 2 t 2 t 1 1 t 1 2 t 2 t 2 t 1 t t 1 t 1y y a[ ( y y ) y E ] cy                  . 

Thus we have UC conditions (7a), (7b), and 

(B-4) t 1 t t t 1a aE       . 

The latter requires, however, that 1
t t 1 t

1 a
E

a


 
   , which establishes the claim in 

Section 2 of the text. 

 In the more general case of model (10) (11), a similar argument leads to the 

following counterpart of (B-4): 

(B-5)  t t t 1(I A ) AE .      

Therefore, provided that 1(I A )   exists—a regularity condition that is presumed in 

virtually all multivariate analyses—we have the condition t t t 1GE     as assumed in 

equations (25)-(27). 
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Appendix C 

The object here is to show that the solution (12) to model (10)(11) for which C  as 

A O  is the same solution as the one for which O  as C O .  Let us begin with 

the case in which A is nonsingular.  Then we can express the crucial matrix quadratic 

(13) as 

(B-1)   
2 

 
 

 = 
1A

  I





   
1A C

    O

 



 
I

 
 
 

. 

Let M denote the square matrix of order 2m × 2m.  Clearly its eigenvalues are the 

numbers denoted  that satisfy 

(B-2)      det(M I) = det 
1A I

  I

 



     
1A C

  O I

 


 
 = 0. 

An identity for partitioned matrices reported by Johnston (1972, eqn. 4-37, p. 95) is as 

follows.  If the matrix 
11 12

21 22

B  B
B

B  B

 
  
 

  with B11 nonsingular, then  

(B-3)      det(B) = det(B11) 
1

22 21 11 12det[B B B B ] . 

The latter then implies that 

(B-4)       det(M I) = 1det(A I)  1 1 1det[ I (A I) A C] 0.        

Thus we see, from the latter, that half of the eigenvalues of M are the eigenvalues of A
1

, 

while the other half, the eigenvalues of  , depend upon both A and C (see McCallum 

2007, pp. 1382-3).  Then by further inspection of (B-4) we see that when C = O, the 

second half of the s are all equal to 0.  Thus the single solution given by the particular 

arrangement, for which all eigenvalues of  approach zeros as C O , simultaneously 

has the other half of the eigenvalues of M approaching the eigenvalues of A
1

. 
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. Now consider the same arrangement but with C held fixed and consider the 

implication of A O .  Then the eigenvalues that approached zeros before now approach 

the eigenvalues of C while the eigenvalues that approached those of A
1

 before now 

approach ± .  This establishes the result at issue for the case in which A is nonsingular.  

For any other solution—i.e., any other arrangement—as A→O we would have a different 

Ω and one or more of its eigenvalues would approach ± . 

 When instead A is singular, similar results obtain but with the matrix A being 

replaced in the argument by the matrix F = (I  A)
1

A.
24

  The system eigenvalues then 

include those of   and the inverses of the eigenvalues of F, instead of those of  and 

A
1

.  As C O , we have the m eigenvalues of  approaching zeros and the other m 

eigenvalues approaching the inverses of the eigenvalues of F .  Then with the same 

arrangement, i.e., the solution such that the eigenvalues of Ω approach zeros as C O , 

we find that as A O  (with C fixed) also F O  and the inverses of the eigenvalues of 

F each approach  ± .

                                                 
24

 Again, see McCallum (2007, pp. 1381-1383) for this result. 
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Appendix D 

 In recent monetary policy analysis, it has been common practice to view models 

as possessing determinacy if they feature a single RE solution that is dynamically stable.  

Cochrane (2007) has usefully emphasized that this single-stable-solution (SSS) condition 

is not sufficient as a criterion of determinacy, however, because in typical New 

Keynesian models, if the Taylor Principle is satisfied, there exists a dynamically 

explosive solution for the inflation rate that is not ruled out by any transversality 

condition and accordingly can be eliminated only by an arbitrary dictum.  McCallum 

(2009b) agrees with this specific proposition, but shows that in these models it is 

typically the case that the explosive solutions in question are not least-squares learnable 

in the sense of Evans and Honkapohja (2001).  Further, he argues that such learnability 

should be considered a necessary condition for a solution to be regarded as a model’s 

prediction of the depicted economy’s behavior since it amounts to a feasibility condition 

that pertains to quantitative information available to individual agents.
25

  Consequently, 

he argues that, despite Cochrane’s important point, the solution typically utilized in 

recent policy analysis is in many (perhaps not all) cases the appropriate one. Cochrane’s 

(2009) response contends that there are three weaknesses in McCallum’s argument.  

McCallum’s (2009c) rejoinder claims that in all three cases Cochrane’s argument is 

analytically incorrect or inapplicable, as follows.  First, the presence of unobserved 

exogenous shocks does not, in contrast to Cochrane’s presumption, overturn learnability 

conclusions.
26

  Second, Cochrane’s argument about “hyperinflationary threats” is not 

consistent with the analytical setting in which the argument is normally conducted, 

                                                 
25

 See the discussion in McCallum (2012). 
26

 This is established in McCallum (2009b) by drawing on results of Evans and Honkapohja (1998). 
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namely, one in which the central bank is following a specified policy rule for an interest-

rate instrument.  Third, the point—that a particular structural parameter, concerning the 

central bank’s policy behavior, is not identifiable by an econometrician studying the 

economy-plus-policy process—is not relevant to the learning process for the private-

sector agents in the model.  Their learning concerns forecasting of inflation and output in 

the model economy from a reduced form perspective; the identification of a structural 

parameter by these agents is not necessary for this step. 

 In his revised WP13409 and in (2011), Cochrane emphasizes a distinct argument 

to the effect that the reasoning utilized by Clarida, Gali, and Gertler (2000), among 

others, who contend that empirical estimates show that the Taylor Principle was not 

satisfied in the United States during the “Great Inflation” period of the 1970s, is invalid 

because the crucial policy parameter is not identified.  I agree with this significant point 

as applied to the particular studies discussed by Cochrane, but withhold judgment on the 

universality of a general conclusion regarding non-identification. 
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