
NBER WORKING PAPER SERIES

ECONOMETRIC ANALYSIS OF PRESENT VALUE MODELS WHEN THE DISCOUNT
FACTOR IS NEAR ONE

Kenneth D. West

Working Paper 18247
http://www.nber.org/papers/w18247

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
July 2012

I thank Nonarit Bisonyabut, Roberto Duncan, Terry Iverson and Ping Yu for research assistance, and
two anonymous referees, seminar audiences at Duke, the Triangle Econometrics Conference, the Far
Eastern Meetings of the Econometric Society and the University of Wisconsin for helpful comments,
and the National Science Foundation for financial support. The views expressed herein are those of
the author and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2012 by Kenneth D. West. All rights reserved. Short sections of text, not to exceed two paragraphs,
may be quoted without explicit permission provided that full credit, including © notice, is given to
the source.



Econometric Analysis of Present Value Models When the Discount Factor Is near One
Kenneth D. West
NBER Working Paper No. 18247
July 2012
JEL No. C58,F31,F37,G12,G15,G17

ABSTRACT

This paper develops asymptotic econometric theory to help understand data generated by a present
value model with a discount factor near one.  A leading application is to exchange rate models.  A
key assumption of the asymptotic theory is that the discount factor approaches 1 as the sample size
grows.  The finite sample approximation implied by the asymptotic theory is quantitatively congruent
with modest departures from random walk behavior with imprecise estimation of a well-studied regression
relating spot and forward exchange rates.

Kenneth D. West
Department of Economics
University of Wisconsin
1180 Observatory Drive
Madison, WI  53706
and NBER
kdwest@wisc.edu



1. INTRODUCTION

This paper develops and evaluates, via simulations and analytical calculations, asymptotic

econometric theory intended to better explain the behavior of data generated by a present value model

with a discount factor near one.  A leading area of application is floating exchange rates.  The research is

motivated by two stylized facts that are well known in the asset pricing literature.

The first stylized fact is that it is difficult to document predictability in changes in asset prices

such as floating exchange rates or equity prices, and that the bulk of the modest evidence we have of

predictability comes from cross-correlations of asset price changes with other variables rather than

univariate autocorrelations of asset price changes.   Random walk like behavior in asset prices is not

necessarily an implication of an efficient markets model such as the classic one exposited by Samuelson

(1965).  For example, in the exchange rate context, that efficient markets model, which assumes risk

neutrality, requires that forward rates be unbiased and efficient predictors of spot rates.  Yet forward rates

are dominated by lagged spot rates as predictors of exchange rates.  The classic reference on predicting

exchange rates with forward rates and other variables is Meese and Rogoff (1983); recent updates are

Engel et al. (2007) and Molodstova and Papell (2009).  Difficulties in prediction perhaps are less striking

for equities than for exchange rates but are still notable; see Campbell and Thompson (2008) and Goyal

and Welch (2008) for a recent studies. 

The second stylized fact pertains to exchange rates but not stock prices.  It concerns the pattern of

signs in regressions of levels or changes in exchange rates on forward rates on forward premia.  (Here and

throughout, exchange rates and forward rates are measured in logs.)   In particular, the regression of the

exchange rate change on the previous period’s forward premium (i.e., the difference between the previous

period’s forward and actual exchange rates) yields a coefficient estimate that is sensitive to sample and to

currency, but with tendency to be less than one.  To illustrate, consider Table 1, which reports three

related regressions using quarterly bilateral U.S. dollar exchange rates against the other six G7 countries. 
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The first line of the table reports estimates of the regression of the exchange rate change on the previous

quarter’s forward premium.  Five of the six estimates are below one, and four of the six are negative; the

estimates range from -2.703 to 1.697.  A value of one would obtain if forward rates were unbiased

predictors of spot rates.  This value is reflected in the second line of the table, which reports estimates of

the regression of the level of the exchange rate on the level of the previous quarter’s forward rate.1  The

coefficient estimates are near one.  Since the first regression is a transformation of the second regression

obtained by subtracting the lag of the exchange rate from the left and right hand side, a coefficient of one

would still obtain, at least in population, if the forward rate were an unbiased predictor of the spot rate. 

(The third regression will be discussed below.)  One class of explanations for a value less than one in

regressions such as those reported in the first line of Table 1 turns on time varying risk premia.  Hansen

and Hodrick (1983) and Fama (1984) are early papers on this topic, Verdelhan (2010) a recent

contribution.   Other explanations for a value less than one turn on expectational or informational biases

(e.g., Frankel and Froot (1987), Bacchetta and van Wincoop (2006)) or on liquidity, transaction or

portfolio costs (e.g., Bacchetta and van Wincoop (2010)).

To my knowledge, a systematic econometric theory to rationalize the first stylized fact–that is, to

rationalize our findings of modest evidence against the random walk–has not been proposed.  Among the

possible econometric explanations for the second stylized fact is that the regression produces biased

estimates.  Indeed, the fact that the regression cannot be reliably used to predict exchange rate changes

(the first stylized fact) suggests that the point estimates should not be taken at face value.  Maynard and

Phillips (2001), building on Baillie and Bollerslev (1994, 2000), develop a theory in which fractional

integration of the forward premium leads to bias in the point estimate, even asymptotically.   A number of

authors have argued that with samples of size available in practice, the regression produces estimates that

are biased downward relative to ones predicted by asymptotic theory.  Evans and Lewis (1995) present

analytical arguments for bias that turn on small probability events not being realized in the samples that

2



we observe.  They and other authors have found downward biases in simulations.

This paper offers econometric theory to help rationalize both stylized facts.  Its starting point is

Engel and West (2005).  That paper shows that in present value models with constant discount factors,

random walk like behavior is expected in the population as the discount factor approaches unity.  The

present paper develops econometric theory motivated by that analytical result.  I derive an asymptotic

approximation that, given a DGP, allows one to determine how close to a random walk an asset price will

behave in a finite sample: under this approximation, hypothesis tests of zero predictability of asset price

changes have size greater than the nominal size that would apply for a pure random walk, but less than the

unit size that would apply under the usual asymptotics.  In congruence with the first stylized fact,

calibration of exchange rate and stock price data sets implies size barely above nominal size for univariate

autocorrelations, modestly above nominal size for tests of cross-correlation.

This econometric theory also leads to a reinterpretation of the regression that is at the heart of the

second stylized fact (a regression that, incidentally, is not discussed in Engel and West (2005)). 

According to the theory developed here, the regression of the exchange rate change on the previous

period’s forward premium is inconsistent: even if the forward rate is the expectation of the exchange rate,

and even with large samples sizes, estimates of the slope coefficient will not have high probability of

being clustered near one.  Hence relatively little weight should be put on the estimates of this regression.  

Finally, the theory suggests that a closely related regression–that of the two period change in the

exchange rate on the difference between the previous period’s forward rate and the two period lagged

exchange rate–should produce a coefficient of one.  Some of the explanations of the second stylized fact

given above imply that this coefficient will be less than one.  A tendency of this regression to yield a

coefficient near one has not achieved the status of a stylized fact.  But this indeed seems to be the case, as

is indicated by the estimates in the third line of Table 1 (which range from 1.054 to 1.239) and by the

similar values reported for a different sample by McCallum (1994).
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While this paper is motivated by results in the stock price and especially the exchange rate

literature, the analytical results are derived for a general present value model.   Hence they may be of

interest in interpretation of results for other asset prices.  For that reason, much of the exposition below

refers to “the asset price.”

It should be noted that the paper assumes throughout that risk premia are constant (a zero risk

premium is a special case), and abstracts as well from possible contributions from informational biases or

liquidity or transactions costs.  On the roles of such factors for exchange rates, see the references above;

for stock returns, see, e.g., Campbell et al. (1997) or Barberis and Thaler (2003).   Whatever those roles

may be for asset prices and returns, my aim in the present paper is to supply a relatively clean analysis of

behavior that is implied in a relatively simple setting.  I defer to future work consideration of the effects

of such complications.

Section 2 outlines the model.  Section 3 develops asymptotic theory for correlations and

predictability (the first stylized fact).  Section 4 develops asymptotic theory for forward-spot regressions

(the second stylized fact).   Section 5 presents preliminary Monte Carlo results.  Section 6 concludes.  An

Appendix has proofs.

2. MODEL AND ASSUMPTIONS

2.1 The model: The model is

(2.1) yt = cy + (1-b)3 j
4

=0b
jEtxt+j.

In (2.1), yt is the scalar (log) asset price (exchange rate, stock price); cy is a constant that will not play a

role in the analysis; b is a discount factor 0<b<1; xt is a scalar; Et is mathematical expectations, assumed

equivalent to linear projections.  In the monetary model of the exchange rate, xt is a linear combination of

foreign and domestic money supplies, output levels, money demand and purchasing power parity shocks;

b depends on the interest semielasticity of money demand; cy is proportional to a constant (possibly zero)
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risk premium.  In Campbell and Shiller’s (1989), log-linearized stock price model, with constant expected

returns, xt is log dividends and cy and b depend on the average log dividend-price ratio.2  Observe that

even with constant expected returns, yt does not, in general, follow a random walk: insofar as Δxt is

predictable, then Δyt will be predictable as well, with predictable movements in Δyt offsetting predictable

movements in Δxt to keep total return (capital gain plus dividend) unpredictable. 

I note that the results presented here are applicable to data generated by a present value model in

which the factor (1-b) is omitted, i.e., the model ~yt = constant + 3 j
4

=0b
jEtxt+j.  This is discussed in section 4

below.3 

2.2 Technical assumptions: I begin by spelling out assumptions about the data generating process.  These

assumptions allow (but do not require): forecasts of xt that are made using private data not observable to

the econometrician;  unobservable fundamentals (xt is a linear combination of variables, some of which

are unobservable); and complex dynamics (e.g., data not following a finite parameter ARMA process). 

Technical statements of assumptions now follow; the reader interested in results but not proofs is advised

that he can skip to section 2.3 with no loss of ability to follow the rest of the text.  Formally, assume that

there is a n×1 vector of variables wt used to forecast xt.  The vector wt at a minimum includes xt.  It may

include additional observable variables as well as variables used by private agents that are not observable

to the econometrician.  The first difference of this vector is stationary, with mean EΔwt, an n×1 Wold

innovation et and Wold representation

(2.2)  Δwt = EΔwt + Ψ(L)et,  Ψ(L)et = 3 j
4

=0Ψjet-j, EetesN=0n×n for t…s, EetetN a constant matrix of rank n;

Δxt = αNΔwt  for a suitable (n×1) vector α, αNΨ(1)…0.

Then in (2.1), Etxt+j is defined as 

(2.3) Etxt+j = xt + E(Δxt+1 + Δxt+2 +  ...  Δxt+j|1, et, et-1, et-2, ... )
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The condition αNΨ(1)…0 says that xt is I(1), i.e., Δxt is not an overdifferenced stationary process.  I allow 

Ψ(1) to have deficient rank: there may be cointegration across the variables used to forecast xt, and there

may be some overdifferenced stationary variables in Δwt. 

For a matrix A, let “|.|” denote maximum element, 2.2 denote Euclidean norm.  I assume either

(2.4a) (i)3 j
4

=0 j2Ψj2<4. (ii)et i.i.d. with finite fourth moments; or

(2.4b) (i)Δwt is fourth order stationary and follows a stationary finite order ARMA process with E(et | 1,

et, et-1, et-2, ... ) = 0.  (ii)Let qt = (ΔwtN, etN)N.  Then qt is strong mixing, with E2qt2
4ν <4 for some

ν>4, and with mixing coefficients of size ν/(ν-1).

(2.4a) and (2.4b) each rule out fractionally integrated processes, which have received some attention in

empirical work on asset prices (e.g., Aloy et al. (2010) is a relatively recent example).  The assumption of

fourth order stationarity is for convenience; moment drift could be accommodated, at the expense of more

complicated notation.  

2.3 The model, continued: We shall need to split Δyt into three parts: (1)a deterministic component

denoted μ, (2) an unpredictable component, denoted ηt, and (3)a zero mean component denoted (1-b)zt-1

that, in general, will be predictable.  The deterministic term μ will not play an interesting role in the

analysis, but is included because some asset prices (such as stock prices) do drift (upwards) over time; the

focus is on the second and third components ηt and zt-1.  Specifically, define

(2.5) μ = EΔxt, ηt = (Δyt-Et-1Δyt), zt-1 = 3 j
4

=0b
jEt-1(Δxt+j-μ).

Using the definitions in (2.5),we can first difference and then rearrange (2.1) as

(2.6) Δyt = (Δyt-Et-1Δyt) +                 Et-1Δyt

      = 3 j
4

=0b
j(Et-Et-1)Δxt+j +      [μ  +  (1-b)3 j

4
=0b

jEt-1(Δxt+j-μ)]

      / ηt +      [μ  +  (1-b)zt-1    ].
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Consider the random variables that results by setting b=1 in the definitions of ηt and zt.  Write the

results as

(2.7) Δy*
t = η*

t + μ, η*
t / 3 j

4
=0(Et-Et-1)Δxt+j, z

*
t / 3 j

4
=0Et(Δxt+j+1-μ).

Assumption (2.4) insures that η*
t and z*

t are stationary.  For convenience of exposition, I refer to Δy*
t as the

random walk return and z*
t as the random walk fundamental; the random walk return is the innovation in

the random walk fundamental.  For convenience, Table 2 lists these and other basic variables.

2.4 A new assumption: Clearly if b is very near one, then one might need very large samples to

distinguish between the martingale difference (2.7) and the potentially serially correlated process given in

(2.6).   The conventional asymptotic approximation that lets T64 might suggest that estimation and

inference will proceed with precision that is impractical given current sample size.  I suggest instead an

alternative assumption, which, as we shall see, does lead to an asymptotic approximation in which it is

very difficult to distinguish between y*
t and yt.  In particular, I assume that as T64, 

(2.8) (1-b) = δ, 0<δ<4.T

(2.8) states that as T grows bigger, b grows closer to 1.  One can rewrite (2.8) as b=1-(δ/ ).  The resultsT

of course follow if (2.8) is replaced by (1-b) 6 δ.   I assume that xt and presample values of yt areT

unchanged as T grows, with changes in b affecting yt for t$1.  The rate , rather than T θ for arbitraryT

θ>0, was chosen because, as we shall see, this will imply consistency with what I view as the stylized

finding that hypothesis tests yield some mild evidence against a random walk model and considerable

dispersion in estimates such as those reported in line (1) of Table 1.  The proofs in the Appendix in fact

provide for a rate of T θ(1-b)=δ, for arbitrary θ>0.  I note in the text below how results vary for arbitrary

θ>0, as well as for the usual fixed b asymptotics which in the present context can be described as setting

T θ(1-b)=δ for θ=0 and δ=1-b.
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Of course, under (2.8) one should not think of the data as literally being generated with b

changing as additional observations appear.  In general equilibrium models, changes in b would likely

change the stochastic process followed by xt, and, as just stated, my asymptotics hold this process fixed.4 

Instead, (2.8) should be thought of as a way of delivering an asymptotic approximation that rationalizes

finite sample distributions better than does the usual approximation derived with b fixed.

3. ASYMPTOTIC RESULTS FOR CORRELATIONS

Consider first univariate autocovariances and autocorrelations of the observable change in the

asset price Δyt and the unobservable martingale difference Δy*
t.   Under conventional asymptotics, sample

autocovariances and autocorrelations of Δyt converge to their population counterparts; if these

counterparts are nonzero, conventional hypothesis tests have unit asymptotic probability of rejecting the

null that the given moment is zero.  As for the martingale difference Δy*
t: its autocovariances and

autocorrelations are zero.  If we were able to observe data on Δy*
t to construct sample auto- and

cross-covariances and correlations, these sample quantities converge in probability to zero; conventional

hypothesis tests at a given nominal size have asymptotic rejection probability equal to size.

The first result of this section is that under condition (2.8), sample autocovariances and

autocorrelations constructed from Δyt converge in probability to zero, as do sample cross-covariances and

cross-correlations between Δyt and lags of forecasting variables such as Δxt.  Thus these moments behave

like those of the unobservable variable Δy*
t.  In contrast, hypothesis tests do not behave like those applied

to the moments of Δy*
t.  Instead, such tests  have asymptotic probability of rejecting that is greater than

nominal size but less than unity.  The implication is that regressions of Δyt on forecasting variables will

yield some, though perhaps not decisive, evidence against predictability.  A calibration from exchange

rate and stock price data indeed suggests asymptotic probability of rejection that is barely above nominal

size for autocorrelations, but is modestly above nominal size for certain cross-correlations.  In my view,

this matches the empirical evidence.
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Specifically: Let a “-” over a variable denote the usual sample mean, e.g., Δ'y /T -13 t
T

=1Δyt.  Let ^γj

and ^γ*
j denote the usual estimates of the lag j autocovariance of Δyt and Δy*

t for j$0:

(3.1) ^γj = T -13 t
T

=j+1(Δyt - Δ
'y)(Δyt-j - Δ

'y), ^γ*
j = T -13 t

T
=j+1(Δy*

t - Δ
'y*)(Δy*

t-j - Δ
'y*).

(Of course, one does not observe Δy*
t, so one could not in practice construct ^γ*

j.)  Under the mild

conditions stated in (2.4), ^γ*
j 6p 0 for j…0.   Under the additional condition (2.8), ^γj behaves similarly. 

Specifically:

Theorem 3.1: For j>0, (^γj-
^γ*

j) 6p δEη*
t-jz

*
t-1.T

It follows from Theorem (3.1) that ^γj-
^γ*

j 6p 0, implying that ^γj 6p 0 for j…0. 

The term Eη*
t-jz

*
t-1 is the covariance between (1)the j period lag of the random walk return Δy*

t-j

(=η*
t-j+μ, see (2.7)) and (2)the random walk fundamental z*

t-1.  To see why the normalized discrepancy

between ^γj and ^γ*
j is proportional to the covariance Eη*

t-jz
*
t-1, suppose that j=1 and μ=0 for notational

simplicity.  Let “c ^ov” denote a sample covariance.  Then ^γ1 = c ^ov[ηt+(1-b)zt-1, ηt-1+(1-b)zt-2] = c ^ov(ηt,ηt-1)

+ (1-b)c ^ov(ηt,zt-2) + (1-b)c ^ov(ηt-1,zt-1) + (1-b)2c ^ov(zt-1,zt-2).  Thus

(^γ1-^γ*
1) = [c ^ov(ηt,ηt-1)-c ^ov(η*

t,η
*
t-1)] + (1-b)c ^ov(ηt,zt-2) + T T T

(1-b)c ^ov(ηt-1,zt-1) + (1-b)2c ^ov(zt-1,zt-2).T T

Oversimplifying somewhat, the Appendix shows that as T64, zt and ηt behave sufficiently like z*
t and η*

t,

that to derive the limiting value of the terms on the right hand side, one can replace zt with z*
t and ηt with

η*
t.  Hence the first term converges to zero, the second term to δEη*

tz
*
t-2 = δ×0 = 0; the final term is (1-b)

times a term that converges to δEz*
t-1z*

t-2 and hence converges to zero because 1-b 6 0.  The only nonzero

quantity comes from the third term, which converges to δEη*
t-1z*

t-1.

Before interpreting Theorem 3.1, let me present the parallel result for correlations between Δyt

and stationary variables in the information set used to forecast xt.  Let ut be any such variable, with a
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leading example being ut = Δxt.  Let ^γj,yu and ^γ*
j,yu denote the usual estimators of the lag j cross-covariance

of ut-j with Δyt and Δy*
t for j$0, ^γj,yu = T -13 t

T
=j+1(Δyt - Δ

'y)(ut-j - Δ
'u) and similarly for ^γ*

j,yu.   Then

Theorem 3.2: For j>0, (^γj,yu-^γ*
j,yu) 6p δEut-jz

*
t-1.T

To interpret Theorem 3.1, let ^ρj/
^γj/

^γ0 and ^ρ*
j/

^γ*
j/

^γ*
0 denote the sample autocorrelations of Δyt and

Δy*
t.  Suppose that η*

t is i.i.d., implying that ^ρ*
j -A N(0,1), ^ρ*

j . N(0, 1/T).  Then Theorem 3.1 implies ^ρjT

. N(k/ , 1/T), k = δEη*
t-jz

*
t-1/γ*

0.   Thus, for any T, when (1-b) = δ the asymptotic approximationT T

implies that ^ρj is centered k standard deviations away from zero.  Let ζ denote a standard normal variable,

and consider tests of a given nominal size, say .10, in which case the critical value is 1.645.  Then the

asymptotic size of such a test is: 

(3.2) prob(ζ<-1.645-k) + prob(ζ>1.645-k), k = δEη*
t-jz

*
t-1/γ*

0.

To interpret Theorem 3.2, consider the asymptotic behavior of the usual t-test for H0:β=0 in the least

squares regressions such as Δyt = const. + βut-j + residual.  With ζ a standard normal variable, the

asymptotic size of a (say) .10 test t-test for H0:β=0 in this regression is

    δEut-jz
*
t-1(3.3) prob(ζ<-1.645-k) + prob(ζ>1.645-k), k = ––––––––––.

  [var(ut)γ
*
0]½

Here is a calibration of (3.2) and (3.3) for tests for predictability of changes exchange rates and

for stock prices.  We do not observe η*
t-j, z

*
t-1 or γ*

0, but perhaps we will not be led too far astray by

substituting Δyt-j, yt-1-xt-1 and ^γ0.  For exchange rates, I used Engel and West’s (2005) quarterly data on

bilateral U.S. dollar exchange rates versus the other G7 countries.  I set xt = log money - log output, as in

the simplest monetary model of the exchange rate.  (See Engel and West (2005) for discussion of both

model and data.)  For stock prices, I used long term annual data available from Robert Shiller’s web site. 

I set xt = log dividends, as in a Campbell and Shiller’s (1989) log linearized stock price model with
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constant expected returns.  In accordance with the baseline simulation presented below, I set δ=0.5 (a

value rationalized in the simulation section below).   

Univariate autocorrelations implied low probability of finding evidence against the random walk.  

For j=1, use of (3.2) yielded size between .10 and .128 for exchange rates versus the six other G7

countries and yielded size of  .109 for the stock price data set–barely above the .10 size that would apply

under a pure random walk.  For cross-correlations, I set the predictor u in (3.3) to be ut-1=Δxt-1 in the

exchange rate data and ut-1 = the log ratio of a ten year moving average of earnings to price in the stock

price data.5  Implied size ranged from just above .10 to .34 in the exchange rate data, and was about 0.23

in the stock price data–modestly but still distinctly above the .10 that would apply under a pure random

walk.  That rejection is more common with cross-correlations but that evidence of predictability is still

modest is of course consistent with empirical evidence for both exchange rates and equity returns (e.g.,

Engel et al. (2007) and Campbell et al. (1997)).

Six comments on Theorems 3.1 and 3.2: 

1. All else equal, higher predictability (i.e., higher size, size closer to unity) is associated with  δ being

bigger, i.e., with discount factor b being farther from 1.  This is consistent with Engel and West (2005).

2. As well, all else equal, higher predictability is associated in (3.3) with a higher absolute value of the

correlation between the predictor and the random walk fundamental z*
t-1.   This indicates that in searching

for or evaluating predictors of the change in the asset price, the correlation between a given predictor and

a proxy for the unobserved variable z*
t-1 can provide corroborating or perhaps discouraging evidence of

the strength or likely robustness of the predictor’s ability to predict.  

3. The theorems generalize in straightforward fashion to a multivariate regression of Δyt on a stationary

vector that includes some combination of lags of Δyt, Δxt and other elements of the information set used

for forecasting.   The least squares estimate converges in probability to zero; when normalized by ,T

the difference between this estimate and the estimate of a hypothetical regression of Δy*
t on the same
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variables converges in probability to a constant vector; the usual tests for zero coefficients have

asymptotic size greater than nominal size but do not have unit asymptotic probability of rejecting.

4. The theorems generalize to apply to regressions of multiperiod changes yt-yt-h for h>1 on elements of

the information set used for forecasting.  For equity returns, it is a stylized finding that there is more

evidence against unpredictability in long horizon than in one period ahead forecasts (e.g., Campbell et al.

(1997)).   This can be rationalized in the present framework via particular DGPs; see Engel et al. (2011)

for an example.  

5. For j=0 in Theorem 3.1 and j#0 in Theorem 3.2, it is still the case that (^γ0-^γ*
0) 6p nonzero constantT

and (^γj,yx-
^γ*

j,yx) 6p nonzero constant, with the constant proportional to δ; the factor of proportionality isT

different than that stated in the two theorems. 

6. Consider a generalization of assumption (2.8):

(3.4) T θ(1-b) = δ, 0<δ<4, 0<θ.

Then Theorems (3.1) and (3.2) continue to hold with  replaced by T θ: for j>0, T θ(^γj-
^γ*

j) 6p δEη*
t-jz

*
t-1,T

T θ(^γj,yu-^γ*
j,yu) 6p δEut-jz

*
t-1.   Thus estimates of correlations with lagged variables tend to zero: for any θ>0

in (3.4), ^γj 6p 0 (j…0), ^γj,yu 6p 0 (j>0).  In this sense, implications for point estimates are the same for all

θ>0.  But the hypothesis tests constructed under the null of a random walk asset price behave differently. 

For θ>½, actual size equals nominal size; for θ<½, actual size is unity.  The logic is outlined in a

footnote.6   I focus on θ=½ because, as illustrated in the calibrations in the discussion below Theorem 3.2,

it implies that results of hypothesis tests will accord with what I view as the stylized empirical fact that

there is some, though not great, evidence against the random walk model.

4. ASYMPTOTIC RESULTS FOR FORWARD-SPOT REGRESSIONS

Suppose that yt is the (spot) exchange rate.  It is well known that in practice the regression of yt on

the one period ahead forward rate yields a coefficient numerically close to unity, while the regression of
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Δyt on the forward premium (/ difference between forward rate at t-1 and yt-1) does not–indeed, it tends

to deliver a coefficient well less than one, though with a large standard error.  (See lines (1) and (2) in

Table 1.)   To analyze these regressions requires some additional notation.   First, define ft-1 as the one

period ahead expectation of the asset price:

(4.1) ft-1 / Et-1yt.

In certain contexts, the variable ft-1 is the one period ahead forward rate (possibly up to a constant risk

premium), so ft-1-yt-1 is the forward premium (again apart from a constant risk premium).  In any event,

whatever the observable counterpart (if any) to Et-1yt , I define ft-1 as Et-1yt.  Next, let us define the random

walk asset price y*
t whose first difference is the random walk return Δy*

t defined in (2.7) above.  Begin by

noting that with a little algebra, it may be shown that Δyt = Δxt + bΔzt.
7  So the level variable consistent

with this model and given presample values y0, x0 and z0 for t$0 is

(4.2) yt = c0 + xt + bzt, c0/y0-x0-bz0.

I define y*
t by dropping c0 and setting b=1:

(4.3)  y*
t = xt + z*

t.

An arbitrary constant (including c0) can be added to the right hand side of (4.3) without changing any of

the analysis; I set this constant to zero for notational simplicity. 

Under conventional asymptotics, a regression of yt on ft-1 (/Et-1yt), or of Δyt on ft-1-yt-1, will yield

a coefficient near unity with high probability, for sufficiently large T.   Write these regressions as 

(4.4) Δyt = constant + βr(ft-1-yt-1) + residual,

(4.5) yt = constant + βf ft-1 + residual.
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Let ^βr and ^βf denote the least squares estimators of the slope coefficients.

Theorem 4.1: (a)^βr-1 -A N(0,V/ δ
2), with V >0 the asymptotic variance of the estimator of the slope

coefficient in a least squares regression of Δy*
t on a constant and z*

t-1.

(b)Suppose EΔxt/μ=0.  Let ^β*
f denote the slope coefficient in a regression of y*

t on a constant and y*
t-1.

Then  T(^βf-
^β*

f) 6p 0.

Both parts of the Theorem generalize for multiperiod forecasts using overlapping data.

Consider first part (b) of the theorem.  Since y*
t is a random walk, T(^β*

f-1) is nondegenerate

asymptotically, with a nonstandard distribution; ^β*
f 6p 1 at a superconsistent rate.  Thus part (b) of

Theorem 4.1 reassures us that the framework used here continues to deliver a familiar result–the estimator

of βf is superconsistent.    To see why, recall from equations (4.2) and (4.3) that yt = c0 + xt + bzt, y
*
t = xt +

z*
t.  From the point of view of the I(1) variables yt and y*

t, the finite variance discrepancy between bzt and

z*
t is very small for b near 1, so small that part (b) of the theorem is implied.8  

Part (a) suggests a possible reason that estimates of ^βr are not clustered near unity–the estimator is

inconsistent.  (Note that the quantity that is asymptotically normal is ^βr-1 rather than the usual (^βr-1).) T

The reason for the inconsistency is that under condition (2.8), the forward rate ft-1 approaches yt-1 as T64. 

Thus the variance of the r.h.s. variable in (4.4) gets smaller as T increases.  

To understand why the variance V is that of a regression of Δy*
t on z*

t-1, observe that ft-1-yt-1 =

(1-b)zt-1+μ.9  For large T, a regression of Δyt on a constant and zt-1+μ will behave like that of a regression

of Δy*
t on z*

t-1 and hence imply a variance V for the regression coefficient; the actual regression is of Δyt

on (1-b)zt-1+μ, with the factor of (1-b) contributing the factor of 1/δ2.   The variance V/δ2 of the limiting

normal distribution of ^βr-1 is larger when δ is smaller: the “closer” is b to 1 (in the sense of small δ), the

noisier is the slope coefficient.  Though not stated in the theorem, the conventional t-test of H0: βr=1 is

well-behaved asymptotically, despite the inconsistency in estimation of βr.  
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The fact that the limiting (nondegenerate) distribution is centered around 1 means that Theorem

4.1(a) does not rationalize a systematic tendency for ^βr to be less than unity, which seems to be the case in

practice.  One possible explanation is small sample bias.  This is suggested by the simulations discussed

in the next section. 

Other econometric explanations have been offered for the failure to find ^βr.1.  One such

explanation is that the regression is imbalanced: the forward premium ft-1-yt-1 is fractionally integrated, it

is argued, while Δyt is stationary.  Maynard and Phillips (2001) develop an asymptotic theory that derives

the implications for ^βr.   That theory also implies that a regression of yt-yt-2 on ft-1-yt-2 will also produce a

slope coefficient converges in probability to zero.10  But a less well-known regularity from the exchange

rate literature is that a such regression in fact tends to produce a coefficient near unity.  (See line (3) in

Table 1.)  Write the regression as 

(4.6) yt-yt-2 = constant + βm(ft-1-yt-2) + residual.

Let ^βm be the least squares estimator of βm.

Theorem 4.2:  (^βm-1) -A  N(0, V), with V >0 the asymptotic variance of the estimator of the slopeT

coefficient in a least squares regression of y*
t-y

*
t-2 on a constant and y*

t-1-y*
t-2.

A similar result applies when any lag yt-j for j>1 is subtracted from both sides of (4.5).  The usual least

squares t-statistic for H0: βm=1 is asymptotically N(0,1).

Three comments:

1. Theorem 4.2 and a generalization of Theorem 4.1 obtain when one maintains (3.4), i.e., T θ(1-b) = δ for

arbitrary θ>0.  The generalization of Theorem 4.1 is

(4.7) T½-θ(^βr-1) -A N(0,V/ δ
2).   
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For θ<½, one implication of (4.7) is that ^βr6p1; for θ>½, one implication is that ^βr-1 becomes increasingly

disperse as T grows.  The θ=½ result stated in Theorem 4.1 is congruent with what I view as the stylized

fact that the dispersion in estimates of βr do not seem to either grow or shrink as we get more and more

data.

The next two comments build on the results in not only this section but also the previous.

2. It may be helpful to contrast these results with those that obtain under the usual asymptotics with fixed

b.   In terms of the present section:  ^βr6p1 and (^βr-1) is asymptotically normal; Theorem 4.2 continuesT

to apply.  In terms of the previous section: Except in the special case in which xt follows a random walk

(i.e., EtΔxt+j=0 for all j>0), one or more sample autocovariances and autocorrelations of Δyt converge in

probability to nonzero constants.  So, too, do cross-correlations of Δyt with lags of Δxt and other

stationary variables that help predict future Δx’s.  Convergence is at the usual  rate.  Hypothesis testsT

constructed under the null of no correlation are consistent.  Hence with the exception of Theorem 4.2,

results are qualitatively different for my b61 asymptotics than for the usual fixed b asymptotics.

3. For the most part, the results in both this section and the previous apply when data is generated without

the (1-b) factor scaling the present value in (2.1).  Specifically suppose that the asset price, call it ~yt, is

determined via

(4.8)  ~yt = constant + 3 j
4

=0b
jEtxt+j.

Continue to maintain assumption (2.8) (i.e., (1-b) = δ) and the assumptions in section 2.2.   Let meT

first note some results that do not still apply.  Estimators of autocovariances and cross-covariances of the

first difference of the asset price no longer converge in probability to zero.  For the first difference of the

asset price Δ~yt,, let Δ'~y be the sample mean and for j$0 let ~γj be the sample autocovariance: Δ'~y =

T -13 t
T

=1Δ
~yt, 

~γj / T -13 t
T

=j+1(Δ
~yt - Δ

'~y)(Δ~yt-j - Δ
'~y).  Then it is no longer true that ~γj 6p 0.  This is because

under (4.8) and the assumptions in section 2, as b 61 the variance of Δ~yt-Et-1Δ
~yt grows without bound. 
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Similarly, and in contrast to Theorem 3.2, sample cross-covariances do not converge in probability to

zero.

To obtain limiting results under (4.8), one needs to normalize such moments.  Fortunately, natural

normalizations, which do not require unusual construction, will suffice.  Consider, for example, sample

autocorrelations.  Let ~ρj / ~γj/
~γ0.   Define in the usual way sample autocovariances and autocorrelations ^γj

and ^ρj from the artificial and unobserved random variable yt/(1-b)~yt.  Clearly ~ρj=
^ρj, because a factor of

(1-b) cancels out of the numerator and denominator of ^ρj.  And the asymptotic behavior of ^ρj was

characterized in the previous section.  Hence under (4.8), the technical assumptions in section 2.2 and

assumption (2.8): (a)~ρj 6p 0, and (b)hypothesis tests on the null of zero autocorrelation of Δ~yt of nominal

size (say) .10 have size greater than .10 and less than 1.0, and (c)there is continued applicability of results

listed in comment 6 of the previous section, describing what happens when assumption (2.8) is

generalized by (3.4) (i.e., T θ(1-b) = δ for some θ>0).

The same cancellation of a factor of (1-b) occurs in Theorems (4.1) and (4.2) and in t- or F

statistics of a regression of Δ~yt on lagged stationary elements of the information set used to forecast xt. 

Hence those results continue to apply to the model (4.8).

4.  We see from the previous comments that Theorem 4.2 holds as stated above, without reference to θ or

δ, under each of the setups described in those previous comments.  Perhaps this suggests an advantage to

regression (4.6) relative to the much more commonly estimated regression (4.4).

5. SIMULATION EVIDENCE

A small simulation was executed to evaluate the finite sample accuracy of the proposed

asymptotic approximation.  The DGP for Δxt was as follows:

(5.1a) Δxt = Δx1t + u3t-1,

(5.1b) Δx1t = φΔx1t-1 + u2t + u1t-1 + u1t-2,
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(5.1c) et/(u1t, u2t, u3t)N ~ i.i.d. N(0,diag(σ2
1, σ2

2, σ2
3)).

It may be shown that the implied process for zt (and thus for ft-yt/(1-b)zt) follows an ARMA(1,1).  The

use of three shocks serves two purposes: first, there must be two or more shocks to preclude a singularity

in the interest parity regressions discussed in the previous section, and, second, the introduction of a

moving average components allows the first one or two autocorrelations of Δxt and ft-yt to be well below

φ, even if φ is near one so that the subsequent autocorrelations decline slowly.  (See  Baillie and

Bollerslev (1994) and Maynard and Phillips (2001) on slow decay of autocorrelations of ft-yt.)

For the baseline DGP, called DGP A in one of the tables, parameters were: φ=0.95,  (σ2
1, σ2

2, σ2
3) =

(1, 1, 50), (1-b)=0.5.  Sample sizes of T=100, 400, and 1600 were generated; implied values of b areT

0.95, 0.975, and 0.9875 for the three values of T.  These values are consistent with calibrations of

standard stock price and exchange rate models to annual and higher frequencies; see Campbell et al.

(1997) and Engel and West (2005).  Table 3 has some implied moments.  The DGP for Δxt does not vary

with T.  But moments of Δy and f-y do vary with T, since the implied value of b varies with T.  Table 3

demonstrates one sense in which a random walk better approximates Δyt as T grows with (1-b) heldT

fixed: the first order autocorrelation of Δyt falls from 0.08 to 0.03 to 0.01; the cross correlation between

Δyt and ft-1-yt-1 falls from 0.16 to 0.08 to 0.04.  All these values are more or less in line with point

estimates from a typical exchange rate dataset.  The main effect of increasing T is to increase the standard

deviation of Δyt relative to ft-yt.  

Table 4 has simulation results.  These and all other simulation results are based on 5000

repetitions.  Consider correlations first.  Upon comparing columns 2 and 3 in Table 4, panel A, with

columns 4 and 5 in Table 3, we see that the median values of the point estimates of the first order

autocorrelation of Δyt and the correlation between Δyt and Δxt-1 are close to the population values. 

Columns 2 and 3 in Table 4, panel B, shows that the power of tests for zero correlation is low.  The

implied asymptotic probabilities of rejection of a zero first order autocorrelation coefficient and of zero
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correlation between Δyt and Δxt-1, computed in accordance with (3.2) and (3.3) and reported in the line

labelled “4”, are 0.137 and 0.270 respectively, quite close to the actual rejection rates of 0.12-0.15 and

0.16-0.26.

Column (4) in Table 4 considers the regression of Δyt on ft-1-yt-1.  According to the asymptotic

theory proposed here, this regression is inconsistent.  Indeed, while the estimates of the slope coefficient

βr narrow somewhat as T increases, they are still quite disperse, even for T=1600.  The  asymptotic width

of the central 90% of the distribution is also wide, and includes a greater than 5% mass less than zero (see

“4” line in panel A).  For the finite samples considered in the simulation, median bias (downwards) in the

estimate of this slope coefficient is apparent, with median ^βr=0.36 for T=100, for example.  To introduce

an analytical complement to the simulation evidence, consider the following approximation to mean bias

in the estimator of ^βr.  Suppose counterfactually that right hand side variable ft-yt followed an AR(1) with

parameter ρ and i.i.d. normal innovation ut, ft-yt=ρ(ft-1-rt-1)+ut.  Then the results of Stambaugh (1999)

apply, and E^βr - 1 . -[cov(ut,ηt)/var(ut)](1+3ρ)/T.    In the DGPs in the simulations, ft-yt does not follow

an AR(1).  But let ρ be the first order autocorrelation of ft-yt, define ut/ft-yt-ρ(ft-1-rt-1), and compute an

approximate analytical bias as -[cov(ut,ηt)/var(ut)](1+3ρ)/T on the thought that the AR(1) formula might

be close enough to give insight even though ut so defined is serially correlated according to the DGP

actually used.  Here are some relevant quantities:

(5.2) Median   Median Mean Mean        Approx. bias
  T      ^βr      bias      %^βr<0    ^βr   bias         (analytical)
100    0.36     -0.64      36% 0.18 -0.82 -0.69
400    0.71     -0.29      19% 0.62 -0.38 -0.36
1600    0.84     -0.16      12% 0.80 -0.20 -0.19

The values for median ^βr are repeated from panel A in Table 4, and bias is computed by subtraction from

1.  The column %^βr<0 gives the percentage of the 5000 samples in which the estimate of βr was negative

(not reported in Table 4).  One can see in (5.2) that mean bias is more marked than median bias, because
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of the left tail of the distribution.  Finally, the values for analytical bias match tolerably well with the

mean bias found in the simulation.   Thus small sample bias in conjunction with inconsistency of the

estimator help explain the finding that ^βr tends to be below one.

Columns (5) and (6) in Table 4 consider the regression of yt on ft-1 and yt-yt-2 on ft-1-yt-2.  In

accordance with the asymptotic theory, both regressions are centered around 1.  Use of Dickey-Fuller

critical values (column (5), panel (B)) or standard normal critical values (column (6), panel B)) results in

reasonably well-sized tests.

Table 5 considers simulation results after modest permutations in the DGP, for T=100.  Parameter

values are given in the notes to the table.  DGP A is the DGP used in Tables 1 and 2.  Figures for DGP A

are repeated from those tables, for convenience.  DGP B puts slightly more predictability into Δyt, DGP C

puts slightly less.  The basic patterns seen in Tables 1 and 2 for DGP A are also found for DGP B and C:

(1)Poor power in tests of serial correlation.  (2)Wide dispersion of estimates of ^βr, with downward bias. 

(3)Good performance of estimates and hypothesis tests on βf and βm.

6. CONCLUSIONS

Asset prices such as stock prices or floating exchange rates behave like a random walk in that

their changes are hard to predict.  The limited predictability that we find tends to come not from lagged

changes of the asset price but from lags of fundamental variables such as interest rates, money supplies,

outputs, earnings and dividends.  Also, the behavior of regressions of exchange rate on forward rates or

forward premia has a distinctive pattern that is difficult to explain.  A regression of the exchange rate on

the lagged forward premium delivers a coefficient that generally is less than one and often negative; a

seemingly similar regression of the two period change in exchange rates on the difference between the

forward rate and the lagged exchange rate typically delivers a coefficient very near one.

An asymptotic approximation that allows the discount factor b to approach 1 delineates how close

to a random walk an asset price will behave in a finite sample: hypothesis tests of zero predictability have
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size that varies in a well defined way with the DGP; this size is less than unity but greater than the

nominal size that would apply for changes in a pure random walk.   The theory rationalizes patterns seen

in practice in tests of predictability.  The theory also rationalizes the behavior of forward-spot regressions. 

As well, simulations generally support the asymptotic approximation.

One priority for future work is to better explain the small sample bias observed in the regression

of the exchange rate change on the lagged forward premium.  A second priority is to include time varying

risk premia, informational biases and portfolio adjustment costs: for both theoretical and empirical

reasons, full understanding of the behavior of exchange rates and other asset prices requires allowing

substantive roles for one or more of these factors.
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1. Since the exchange and forward rate arguably are I(1) variables, the standard errors should be
interpreted with caution.  Another reason for caution, in interpreting all the point estimates in the table: as
stated in the notes to the table, forward rates were constructed using covered interest parity, and thus
likely depart slightly from measured forward rates (Bhar et al. (2004)).  I include this table not to present
new empirical results, but to focus the econometric discussion.  

2.  Campbell and Shiller (1989) consider cum-dividend stock prices.  If the stock price is, instead,
ex-dividend, as in Campbell et al. (1997, p264), then the summation begins at t+1 instead of t and the first
term that is discounted is xt+2 rather than xt+1.  Modulo straightforward changes in dating, the analysis
about to be presented can be adapted to ex-dividend pricing as well.

3. The analysis does not, however, immediately extend to models in which yt = const. + (1-b)3 j
4

=0b
jEtxt+j +

3 j
4

=0b
jEtθt+j, where xt ~ I(1) and θt is stationary.  This is the form of some asset pricing models in which θt

is a time varying risk premium.

4.  It is straightforward to allow certain forms of minor dependence of the xt process on b.  For example,
suppose that α depends on b.  (Recall that Δxt=αNΔwt.)  Index the dependence by writing α=α(b).  Then as
long as α(b)6α(1), with α(1) finite and α(1)Nwt ~I(1) , the results about to be presented go through.  I rule
out such dependence to avoid notational clutter.

5. Write this predictor as ut-1 = nt-1-yt-1 where nt-1 is the 10 year average of log earnings. Equation (3.3)
was applied as follows: Define u2t-1/nt-1-xt-1 and write ut-1 = xt-1-yt-1+u2t-1 = const. + zt-1+u2t-1; compute
the numerator of (3.3) as δ × [variance(zt)+covariance(zt-1,u2t-1)] and similarly for the denominator.

6. I illustrate with tests for univariate autocorrelation as discussed below Theorem 3.2.  Choose j so that 
the covariance on the right hand side of Theorem 3.1 is nonzero, i.e., δEη*

t-jz
*
t-1…0.  Recall that γ*

j=0 for
j…0 and, by a standard argument, assumption 2.4 insures ^γ*

j = Op(1).  (a)When θ>½, T θ(^γj-
^γ*

j) 6pT
δEη*

t-jz
*
t-1 means (^γj-

^γ*
j) 6p 0.  So the limiting distribution of ^γj is that of ^γ*

j, and similarly forT T T
^ρj and ^ρ*

j.  (b)When θ<½, T θ^γ*
j 6p 0.  Since T θ(^γj-

^γ*
j) 6p δEη*

t-jz
*
t-1 we have T θ^γj 6p δEη*

t-jz
*
t-1 andT T

T θ^ρj 6p δEη*
t-jz

*
t-1/γ*

0.   But for a critical value of (say) 1.645, as T grows we increasingly tend to get
| ^ρj|> 1.645 because | ^ρj|> 1.645 <=> T ½-θ |Tθ^ρj|>1.645.T T

7.  Specifically, rewrite (2.1) as yt = cy + xt + 3 j
4

=1b
jEtΔxt+j.   First differencing this gives Δyt = Δxt +

3 j
4

=1b
jEtΔxt+j - 3 j

4
=1b

jEt-1Δxt+j-1 = Δxt + b3 j
4

=0b
jEt(Δxt+j+1-μ) - b3 j

4
=0b

jEt-1(Δxt+j-μ) / Δxt + bΔzt.

8. If EΔxt/μ…0, then T 3/2(^βf-1) is nondegenerate asymptotically and behaves like T 3/2(^β*
f-1). 

9.  This follows from the fact that equation (2.6) implies that Et-1yt-yt-1 / (1-b)zt-1+μ.

10.  Maynard and Phillips (2001) show that when ft-1-yt-1 is fractionally integrated, ^βr 6p 0.  The intuition
is that since the dependent variable is stationary and the regressor fractionally integrated, a stationary
regression residual is delivered only with a zero slope coefficient.  When the regressor is changed from
ft-1-yt-1 to ft-1-yt-2 = ft-1-yt-1 + yt-1-yt-2, the regressor is still fractionally integrated, and the zero slope
coefficient is still implied.  

FOOTNOTES
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APPENDIX

In the proofs, c denotes a generic constant, not necessarily the same from proof to proof.  For an

arbitrary matrix A, |A| denotes max i,j |Aij|.  All limits are taken as T64.  When the bounds on a summation

are not shown, the summation runs over t from t=1 to t=T.  A “-” over a variable denotes a sample mean,

e.g., 'z  = T -13zt-1.  For given b, 0<b#1, and for et defined in (2.2), write 

(A.1) zt = 3 j
4

=0ajbet-j, z
*
t = 3 j

4
=0a*

jet-j

where ajb and a*
j are 1×n, the “b” subscript in ajb emphasizes dependence of the moving average weights

on b, and a*
j/aj1.   For Ψj and α defined in (2.2), define the 1×n vectors ψj and ψ(b) as 

(A.2) ψj =  αNΨj, ψ(b) = αNΨ(b) / αN3 j
4

=0b
jΨj / 3 j

4
=0b

jψj.

Throughout the Appendix, I maintain assumption (3.4), with assumption (2.8) a special case.

Lemma A.1: (a)For ajb, a*
j, ψj and ψ(b) defined in A.1 and A.2,  ajb = 3 i

4
=0b

iψj+1+i, a
*
j = 3 i

4
=0ψj+1+i.  (b)ηt =

ψ(b)et.

Proof: (a)For Δwt defined in (2.2) and for 0<b#1, let  qt = 3 j
4

=0b
jEt(Δwt+j-EΔwt) = (say) 3 j

4
=0Ajbet-j.  Then

Ajb = 3 i
4

=0b
iΨi+j.  Since zt=αNEtqt+1, we have ajb/αNAj+1,b, which is the desired result.  

(b)Follows from: (Et-Et-1)Δwt+j=Ψjet, Δxt=αNΔwt and the fact that ηt=3 j
4

=0b
j(Et-Et-1)Δxt+j.

Lemma A.2: (a)3 j
4

=0 j|Ψj|<4.  (b)For θ defined in (3.4), T θ[Ψ(b)-Ψ(1))] 6 -δ3 j
4

=1 jΨj.  (c)3 j
4

=0|ajb| < c < 4

for a constant c that does not depend on b.  (d)3 j
4

=0|Eztzt-j| < c < 4 for a constant c that does not depend on

b.  (e)3 j
4

=0(ajb-a*
j)(ajb-a*

j)N 6 0.   (f)E(c+zt-z
*
t)

2 6 c2. 

Proof: (a)Assumed directly in (2.4a); under (2.4b), follows from the fact that Δwt follows a finite

parameter ARMA process.  

(b)We have T θ[(Ψ(b)-Ψ(1)] = T θ[3 j
4

=1(b
j -1)Ψj] =T θ[3 j

4
=1 (b-1)(1+b+...+bj-1)Ψj] =
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-δ3 j
4

=1[(1+b+...+bj-1)Ψj].  So the result follows if  3 j
4

=1 jΨj - 3 j
4

=1[(1+b+...+bj-1)Ψj] 6 0 as b61.  We have

|3 j
4

=1 jΨj - 3 j
4

=1[(1+b+...+bj-1)Ψj]| = |(1-b)3 j
4

=2Ψj + (1-b2)3 j
4

=3Ψj + ... | # (1-b)3 j
4

=1 j|Ψj| 6 0.  

(c)Define Ajb as in the proof of Lemma A.1, Ajb = 3 i
4

=0b
iΨi+j.  Then |Ajb|#3 i

4
=0|Ψi+j| Y 3 j

4
=0|Ajb| #

3 j
4

=0(j+1)|Ψj|.  Since ajb=αNAj+1,b, 3 j
4

=0|ajb| # n|α|3 j
4

=0(j+1)|Ψj|, which is finite by part (a).  

(d)Follows from part(c).   

(e)Write 3 j
4

=0(ajb-a*
j)(ajb-a*

j)N = 33 i
4

,k=0dik,bψiψkN for scalars dik,b.   With some straightforward algebra, it

can be shown that |dik,b| # (1-b)ik.   Then |3 j
4

=0(ajb-a*
j)(ajb-a*

j)N| # n2(1-b)33 i
4

,k=0ik|ψi||ψk| =

n2(1-b)(3 i
4

=0i|ψi|)
260. 

(f)It suffices to show E(zt-z
*
t)

2 60.  But E(zt-z
*
t)

2 = 3 j
4

=0(ajb-a*
j)EetetN(ajb-a*

j)N # 

n4|EetetN||3 j
4

=0(ajb-a*
j)(ajb-a*

j)N| 6 0 by part (e) of this Lemma.

Lemma A.3: For R=1,2,3,4, let the scalar qRt denote either zt or an element of et.  Let p denote a fourfold

product of z and of elements of e, at arbitrary dates, t, t-m, t-j and t-k: p = q1tq2t-mq3t-jq4t-k.  Then |Ep|  < c

< 4 for a constant c that does not depend on b.

Proof: I illustrate when qRs = zs; the argument when one or more of the q’s is an element of e is similar

though simpler.  Assume e is a scalar for notational simplicity. We have

   |Eztzt-mzt-jzt-k| = |3333 f
4

,g,h,i=0af bet-f agbet-m-gahbet-j-haibet-k-i| 

# 3333 f
4

,g,h,i=0|afbagbahbaib|E|et-fet-m-get-j-het-k-i|

# Ee4
t 3333 f

4
,g,h,i=0|afbagbahbaib| = Ee4

t (3 f
4

=0|afb|)4 # c <4,

where the last two inequalities follow from Lemma A.2(c).

Lemma A.4: (a)Let q*
t = (etN, ΔwtN, z

*
t)N.  Then for any j, T -13 t

T
=j+1q*

tq
*
t-jN 6p Eq*

tq
*
t-jN. (b)For θ defined in

(3.4), T -½-θ3 t
T

=1zt-1et 6p 0. (c)For any j,  T -13 t
T

=j+1 ztet-jN 6p Ez*
tet-jN.  (d)For any j, T -13 t

T
=j+1ztzt-j 6p Ez*

tz
*
t-j.  

Proof: (a)For moments involving et and Δwt but not z*
t, the result follows immediately under (2.4a) from

Hannan (1970, p210) and under (2.4b) from White (1984, p47).    But the same references apply as well

to moments involving z*
t: Under (2.4a), Lemma A.1(c) implies that z*

t’s moving average weights are
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absolutely summable, which makes Hannan (1970,p210) applicable; under (2.4b): since Δwt follows a

finite parameter ARMA process, zt is a function of a finite number of lags of Δwt and et (Hansen and

Sargent (1981)), implying that zt also obeys the mixing and moment conditions of (2.4b). 

(b)It is easy to show that T -½-θ3 t
T

=1zt-1
*et converges in mean square and hence in probability to zero. 

Hence it suffices to show T -½-θ3 t
T

=1(zt-1-zt-1
*)et 6p 0.  We have T -½-θ3 t

T
=1(zt-1-zt-1

*)et =

T -½-θ3 t
T

=1{3 j
4

=0[(ajb-a*
j)et-j]et}.  The T terms in braces are pairwise uncorrelated.  Assume et is a scalar for

notational simplicity.  Then the expectation of the square is T -2θ[T -13 t
T

=1E{3 j
4

=0[(ajb-a*
j)

2e2
t-j]e

2
t}] =

T -2θE3 j
4

=0[(ajb-a*
j)

2e2
t-j]e

2
t # T -2θEe4

t3 j
4

=0(ajb-a*
j)

2 6 0 by θ>0 and Lemma A.2(e).

(c)I will illustrate for given j$0.  Assume et is a scalar for simplicity.  We wish to show T -13 t
T

=j+1(zt-z
*
t)et-j

6p 0.  We have  

T -13 t
T

=j+1(zt-z
*
t)et-j = T -13 t

T
=j+1[3k

4
=0(akb-a*

k)et-k]et-j = 

3k
j
=0(akb-a*

k)[T
 -13 t

T
=j+1 et-ket-j] + T -13 t

T
=j+1[et-j3k

4
=j+1(akb-a*

k)et-k].

The first term converges in probability to zero because for given k, 0#k#j: (i)T -13 t
T

=j+1et-ket-j 6p Eet-jet-k (=0

if j … k, = Ee2
t if j=k), and (ii)akb-a*

k 6 0.  As for the second term: the (T-j) terms et-j3k
4

=j+1(akb-a*
k)et-k are

pairwise uncorrelated and the logic used in part (b) of this Lemma delivers the result.

(d)I will illustrate for j=0.  We have T -13 t
T

=1z2
t = T-13 t

T
=1(zt-z

*
t)

2 + 2T -13 t
T

=1zt(zt-z
*
t) + T -13 t

T
=1z*

t
2, and the

desired result follows if the first two terms converge in probability to zero. We have  T -13 t
T

=1(zt-z
*
t)

2 6p 0

by Lemma A.2(f).  Also |T -13 t
T

=1zt(zt-z
*
t)| # (T -13 t

T
=1z2

t)
½[T -13 t

T
=1(zt-z

*
t)

2]½, and T -13 t
T

=1zt(zt-z
*
t) 6p 0 will

follow if T -13 t
T

=1z2
t = Op(1).  But this does indeed follow since E[T -13 t

T
=1z2

t]
2 < c < 4 by Lemma A.3.  

Lemma A.5: (a)T -½3η*
t -A N(0,Eη*

t
2), T -½3z*

t-1η
*
t -A N(0,E(z*

t-1η
*
t)

2).  (b)T -½3zt-1ηt - T
 -½3z*

t-1η
*
t 6p 0.

Proof: (a)Follows from White (1984, p124).  

(b)Assume et is a scalar for notational simplicity. We have  T -½3zt-1ηt - T
 -½3z*

t-1η
*
t =  T -½3zt-1(ηt-η

*
t) +

T -½3(zt-1-z*
t-1)η*

t.  The first term is T θ[ψ(b)-ψ(1)][T -½-θ3zt-1et] 6p 0 since  Tθ[ψ(b)-ψ(1)] 6 c < 4 by

Lemma A.2(b) and T -½-θ3zt-1et 6p 0 by Lemma A.4(b).  The expectation of the square of the second term
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is T -13E(zt-1-z*
t-1)2η*

t
2 = E(zt-1-z*

t-1)2η*
t
2 = |33 j

4
,k=0E(ajb-a*

j)(akb-a*
k)et-j-1et-k-1η

*
t
2| #

(Ee4
t)

½(Eη*
t
4)½33 j

4
,k=0|(ajb-a*

j)(akb-a*
k)| # (Ee4

t)
½(Eη*

t
4)½(3 j

4
=0|ajb-a*

j|)
2 6 0 by Lemma A.2(e).

Lemma A.6:Let q*
t = (etN, ΔwtN, z

*
t, η

*
t)N, qt = (etN, ΔwtN, zt, ηt)N.  Then for any j, T-13 t

T
=j+1qtqt-jN 6p Eq*

tq
*
t-jN.

Proof: Follows from Lemma A.4 and algebra similar to that used the proof of that Lemma.

Proof of Theorem 3.1 and comment 6 in section 3: For algebraic simplicity, assume that it is known

that μ=0 and the estimators are uncentered rather than centered, e.g., ^γj = T-13 t
T

=j+1ΔytΔyt-j; terms relating

to the sample means of Δyt and Δy*
t  can be handled by an argument such as that below.  For θ defined in

(3.4), we have

(A.3) T θ(^γj-
^γ*

j) = T θ{T -13 t
T

=j+1[ηtηt-j - η
*
tη

*
t-j]} + T θ(1-b)[T -13 t

T
=j+1ηtzt-1-j]

+ T θ(1-b)[T -13 t
T

=j+1zt-1ηt-j] + T θ(1-b)2[T -13 t
T

=j+1zt-1zt-1-j]

Let ψi(b) and eit denote typical elements of the n dimensional vectors ψ(b) and et.  The first term on the

r.h.s. of (A.3) is T θ{T -13 t
T

=j+1[ψ(b)etψ(b)et-j - ψ(1)etψ(1)et-j] =

33 i
n

,k=1{T θ[ψi(b)ψk(b)-ψi(1)ψk(1)]T -13 t
T

=j+1eitekt-j}.  But for each i and k, T θ[ψi(b)ψk(b)-ψi(1)ψk(1)]

converges to a finite constant by Lemma A.2(b), and T -13 t
T

=j+1eitekt-j 6p 0 by Lemma A.6.  Hence this first

term converges in probability to zero.  The second term converges in probability to zero because  T θ(1-b)

= δ, and, by Lemma A.6, T -13 t
T

=j+1ηtzt-1-j 6p Etη
*
tz

*
t-1-j = 0.  By Lemma A.6, the third term converges in

probability to δEz*
t-1η

*
t-j.  The fourth term converges in probability to zero because T θ(1-b)2 60 and

T -13 t
T

=j+1zt-1zt-1-j 6p Ez*
tz

*
t-j by Lemma A.6.

Proof of Theorem 3.2: Similar to the proof of Theorem 3.1.

Lemma A.7: Suppose μ=0.  Then T -23(y*
t-1)

2 =  Op(1) and T -13y*
t-1η*

t  = Op(1).

Proof: Phillips (1987).

Proof of Theorem 4.1 and result (4.7): (a)Since ft-1-yt-1=(1-b)zt-1, we have T ½-θ[T θ(1-b)](^βr-1) =

[T -13(zt-1-'z)2 ]-1 × T -½3(zt-1-'z)ηt.  From Lemma A.6, T -13(zt-1-'z)2 - T -13z*
t-1

2 6p 0, and from Lemma A.5
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T -½3(zt-1-'z)ηt - T -½3z*
t-1η

*
t 6p 0, implying that T -½-θ[T θ(1-b)](^βr-1) = (T -13z*

t-1
2)-1(T-½3z*

t-1η
*
t) + op(1).

Since T θ(1-b)=δ and, by Lemmas A.4 and A.5, (T -13z*
t-1

2)-1(T-½3z*
t-1η

*
t) -A N(0, V), V= E(z*

t-1η
*
t)

2/(Ez*
t-1

2)2,

the result follows.

(b)Let θ/(α βf)N denote the constant and slope, X the T×2 matrix whose t’th row is (1 ft-1), N the T×1

vector whose t’th element is ηt, D a 2×2 diagonal matrix diag(T ½, T), A=DXNXD, B=DXNN.  Let θ*, X*, N*,

A* and B* denote the corresponding quantities for the regression with y*
t-1.  Then D(^θ-^θ*) = A-1B - A*-1B* =

(A-1-A*-1)B +  A*-1(B*-B).  Given that a standard argument (e.g., Hamilton (1994, pp490-492) for the i.i.d.

case) establishes that A* is invertible for large T, it suffices to show that A-A* 6p 0 and B-B* 6p 0.   I will

illustrate by presenting the argument for (i)the (2,2) element of A-A*, which is T -23ft-1
2 - T-23y*

t-1
2, and

(ii)the second element of B-B*, which is T -13ft-1ηt -T
 -13y*

t-1η
*
t.   It will be useful to note first that (2.1)

may be rewritten as yt = cy+xt-1+3 j
4

=0b
jEtΔxt+j Y Et-1yt = cy+xt-1+3 j

4
=0b

jEt-1Δxt+j.  Since 3 j
4

=0b
jEt-1Δxt+j /

zt-1 when μ=0, we have, using equations (4.1) and (4.3),

(A.4)  ft-1 = cy+xt-1+zt-1 Y ft-1-y*
t-1 = cy+zt-1-z*

t-1.

(i): T -23ft-1
2 - T -23y*

t-1
2 =  T -23(ft-1-y*

t-1)2 + 2T -23[y*
t-1(ft-1-y*

t-1)].  The desired result follows from (A.4),

Lemmas A.2(f) and T -23[y*
t-1(ft-1-y*

t-1)] # [T -23(y*
t-1)

2]½[T -23(ft-1-y*
t-1)2]½ 6p 0 by Lemmas A.7 and A.2(f). 

(ii)T -13ft-1ηt -T
 -13y*

t-1η
*
t = T -13(cy+zt-1-z*

t-1)ηt + T -13y*
t-1(ηt-η

*
t).  The first term is op(1) from Lemmas

A.2(f) and A.6, the second is op(1) by Lemma A.7 and ψ(b)-ψ(1) 6 0.

Proof of Theorem 4.2: Straightforward.
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Table 1

Forward-Spot Regressions, U.S. Dollar

  Canada     France     Germany Italy   Japan    UK

(1)^βr -0.204  0.486 -0.767  1.697  -2.703 -1.433
    s.e. (0.774) (0.864) (0.818) (0.806) (0.918) (0.925)

(2)^βf 0.982    0.927   0.976  0.939 0.986  0.904
   s.e. (0.025)  (0.034) (0.027) (0.030) (0.025) (0.036)

(3)^βm 1.159     1.149  1.054  1.239  1.016  1.144
   s.e. (0.089)  (0.115) (0.092) (0.108) (0.094) (0.092)
 
Sample         79:2-11:1         79:2-98:4         79:2-11:1         79:2-98:4         79:2-11:1         79:2-11:1
period         

Notes:

1. Data are quarterly.  Three month interest rates and end of quarter bilateral U.S. dollar exchange rates
1979-2000 were obtained from Chinn and Meredith (2004), extended to 2001-2011 using LIBOR rates
obtained from economagic.com and Bloomberg and end of quarter exchange rates obtained from
International Financial Statistics.  Forward rates were constructed using covered interest parity.

2. Let yt be the log of the exchange rate, ft the log of the 3 month ahead forward rate.  Least squares
estimates and standard errors of the following regressions are reported: Δyt = const. + ^βr(ft-1-yt-1) +
residual; yt = const. + ^βf ft-1 + residual; yt-yt-2 =const. + ^βm(ft-1-yt-2)+ residual.



Table 2

Basic Variables and Parameters

Variable/ Equation Description
Parameter
xt 2.1  I(1) variable in present value determining log asset price yt
Δyt, yt 2.1 asset return, log asset price
zt 2.5 stationary fundamental that is proportional to the predictable component

of Δyt-EΔyt
ηt 2.5 innovation in Δyt and yt
Δy*

t, y
*
t, z

*
t, η

*
t 2.7, 4.1 random walk return, asset price, fundamental, innovation, obtained by

setting b=1 in solutions for Δyt, yt, zt, ηt that result when b<1
ft-1 4.1 Et-1yt

b 2.1 discount factor in present value
δ 2.8 parameter determining how close discount factor is to unity
μ 2.5 EΔxt

Note: these are the descriptions of variables and parameters in the formal analysis in sections 2 through 4
of the paper.



Table 3

Population Moments, Baseline DGP

-------- correlations ---------
(1) (2) (3) (4) (5) (6) (7)
T Δxt,Δxt-1  ft-yt, ft-1-yt-1 Δyt, Δyt-1  Δyt, ft-1-yt-1 Δyt, Δxt-1 σΔy /σf-y
100 0.49 0.95 0.08 0.16 0.11 6.2
400 0.49 0.95 0.03 0.08 0.05 12.4
1600 0.49 0.95 0.01 0.04 0.03 24.8

Notes:

1. The model is yt = (1-b)3 j
4

=0b
jEtxt+j, with ft-1=Et-1yt.

2. The moments are calculated for the DGP given in equation (5.1), with parameters: φ=0.95, (σ2
1, σ2

2, σ2
3)

= (1, 1, 50), (1-b)=0.5.T



Table 4

Simulation Results, Baseline DGP

A.  Quantiles of point estimates
 (1) (2)       (3) (4)       (5) (6)
 T        ^ρ1       ^ρ1,yx

^βr
^βf

^βm
   .05    .50    .95    .05    .50    .95    .05    .50    .95   .05    .50    .95   .05    .50   .95

100 -0.12  0.04  0.20 -0.15  0.03  0.21 -1.60  0.36  1.40 0.90  0.97  1.00 0.85  1.01  1.17
400 -0.06  0.03  0.11 -0.08  0.03  0.13 -0.68  0.71  1.60 0.97  0.99  1.00 0.94  1.02  1.10
1600 -0.03  0.01  0.05 -0.04  0.02  0.07 -0.35  0.84  1.79 0.99  1.00  1.00 0.97  1.01  1.05
 4  0.00  0.00  0.00  0.00  0.00  0.00 -0.03  1.00  2.03 1.00  1.00  1.00 1.00  1.00  1.00

B. Actual and asymptotic rejection rates of two-tailed nominal .10 tests
------------ Hypothesis ------------

   (1) (2)    (3) (4) (5) (6)
   T ρ1=0 ρ1,yx=0 βr=1 βf=1 βm=1
100 0.126 0.162 0.200 0.107 0.123
400 0.144 0.231 0.127 0.112 0.136
1600 0.153 0.259 0.115 0.100 0.139
 4 0.137 0.270 0.100 0.100 0.100

Notes:

1. The model and DGP are described in notes to Table 3.  

2.  The “4” lines give asymptotic values, computed analytically.  All other results are based on 5000
repetitions.

3. ρ1 is the first order autocorrelation of Δyt; ρ1,yx is the correlation between Δyt and Δxt-1; βr, βf and βm are
slopes in linear projections of yt-yt-1 on ft-1-yt-1, yt on ft-1, and yt-yt-2 on ft-1-yt-2.

4. Panel A gives the .05, median and .95 quantiles for the indicated statistics.  For example, the figure of
“-0.12" in the .05 column underneath column (2), panel A, means that in 250 of the 5000 repetitions, the
estimated first order autocorrelation of Δyt was less than or equal to -0.12.

5. For t-statistics computed as described in the next note, columns (2)-(4) and (6) in panel B give the
fraction of samples in which the t-statistic was greater than 1.645 in absolute value; column (5) gives the
fraction of t-statistics less than -2.86 or greater than -0.07.

6. In column (2) in panel B, t-statistics were computed by dividing the point estimate by the square root of
sample size.  In columns (3)-(6), t-statistics for H0:slope coefficient=1 were computed according to the
usual least squares formula.  According to the theory in this paper, the values in columns (2) and (3) will
remain above 0.10 for large T (see (3.2) and (3.3)), while the values in columns (4)-(6) will approach
0.10.



Table 5

Simulation Results, Alternative DGPs, T=100

A. Population Moments
-------- correlations      ---------

(1) (2) (3) (4) (5) (6) (7)
T Δxt,Δxt-1       ft-yt, ft-1-yt-1          Δyt, Δyt-1          Δyt, ft-1-yt-1          Δyt, Δxt-1           σΔy /σf-y
A 0.49 0.95 0.08 0.16 0.11   6.2
B 0.40 0.77 0.13 0.18 0.09   5.7
C 0.32 0.94 0.02 0.06 0.03 15.8

B.  Quantiles of point estimates
 (1) (2)       (3) (4)       (5) (6)
DGP   ^ρ1       ^ρ1,yx

^βr
^βf

^βm
   .05    .50    .95    .05    .50    .95    .05    .50    .95   .05    .50    .95   .05    .50   .95

A -0.12  0.04  0.20 -0.15  0.03  0.21 -1.60  0.36  1.40 0.90  0.97  1.00 0.85  1.01  1.17
B -0.08  0.10  0.27 -0.15  0.06  0.23 -0.44  0.76  1.62 0.90  0.97  1.00 0.88  1.03  1.17
C -0.15  0.01  0.16 -0.17 -0.01  0.15 -5.75 -0.68  2.04 0.88  0.96  1.00 0.83  1.00  1.16

C. Actual rejection rates of two-tailed nominal .10 tests
------------ Hypothesis ------------

   (1) (2)    (3) (4) (5) (6)
DGP ρ1=0 ρ1,yx=0 β          βf=1 βm=1
A 0.126 0.162 0.200 0.107 0.123
B 0.273 0.188 0.128 0.103 0.154
C 0.087 0.107 0.201 0.101 0.108

Notes:

1. The results for DGP A, which sets φ=0.95, (σ2
1, σ2

2, σ2
3) = (1, 1, 50), (1-b)=0.5, are repeated fromT

earlier tables. DGP B sets φ=0.8, (σ2
1, σ2

2, σ2
3) = (1, 1, 15), (1-b)=1.0.  DGP C sets φ=0.95, (σ2

1, σ2
2, σ2

3)T
= (1, 1, 100), (1-b)=0.2.T

2. See notes to earlier tables.


