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1 Introduction

Potentially irreversible shifts in system dynamics play a key role in important economic

applications such as the macroeconomic consequences of bankruptcies, institutional changes

resulting from mass uprisings, and management of environmental systems subject to abrupt

degradation. How these shifts affect welfare depends on the policy decisions made before and

after tipping occurs. Crucially for policy, however, the thresholds that trigger such tipping

points are generally uncertain: the policymaker often trades immediate payoffs against the

chance of tipping the dynamic system into a new regime. Further, while a policymaker can

learn about a threshold’s location over time, the probabilities governing tipping points are

rarely known with confidence. The policymaker therefore often also trades more confidently

known payoffs against less confidently known payoffs. We capture both types of trade-offs in

a dynamic model of optimal policy, which is the policy trajectory that maximizes the present

value of net benefits for a given welfare criterion and a given specification of state dynamics.

We analyze the determinants of policy when choices affect both the probability of a tipping

point and its welfare impact. By combining our analysis of uncertain tipping points with a

model of ambiguity, we also analyze how optimal policy changes when a decision-maker is

more averse to tipping point uncertainty than to more confidently known risks.

Our numerical application explores how tipping points in the climate system affect op-

timal carbon taxes over time. Scientists have grown increasingly concerned about the pos-

sibility of abrupt changes caused by crossing temperature thresholds (Alley et al., 2003;

Overpeck and Cole, 2006; Lenton et al., 2008). While these concerns have shaped the pol-

icy debate, economic models for estimating the social cost of carbon have only allowed for

smooth and reversible changes in the climate system (Greenstone et al., 2011). In our base

case specifications, tipping points raise the current optimal carbon tax by around 40%, with

ambiguity aversion raising the tax further. We explore qualitative policy differences arising

from different tipping points, and we demonstrate the importance of explicitly modeling how

dynamics shift and also how policy affects the probability of a shift.

Our model endogenizes the timing and probability of crossing a threshold. Crossing a

threshold causes an irreversible change in system dynamics, which we call a tipping point.1

1A different notion of tipping point sometimes used in the economics literature refers to shifts between
equilibria due to small changes in parameters. These changes can occur due to preferences in residential
sorting models (Schelling, 1971), network externalities in technology adoption models (Katz and Shapiro,
1994), increasing returns in agglomeration models (Ellison and Fudenberg, 2003), and human capital accu-
mulation in growth models (Azariadis and Drazen, 1990). The non-convex control literature directly models
the possibility of tipping a system into a new type of equilibrium (e.g., Skiba, 1978; Brock and Starrett,
2003; Mäler et al., 2003; Wagener, 2003). In these deterministic models, it is always known whether a given
policy path will or will not tip the system, so tipping along the optimal path depends entirely on the initial
conditions. Skiba points divide the space of initial conditions into regions with and without optimal tipping.
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We also endogenize both the welfare change induced by crossing a threshold and learning

about the threshold location. Previous work has not jointly endogenized these tipping point

characteristics. The macroeconomic literature studies the potential for monetary policy to

stabilize the economy when nominal interest rate rules might shift discontinuously in the

future (Davig and Leeper, 2007), and the real options literature studies optimal investment

when demand dynamics might shift discontinuously in the future (Guo et al., 2005). Be-

cause these regime shifts are controlled by exogenously fixed transition probabilities, the

decision-maker can only change the welfare impact of tipping (self-insure) but not change

the likelihood of tipping (self-protect). The resources literature allows policy to affect the

probability of an irreversible “climate catastrophe,” but the flow of disutility due to the catas-

trophe is specified exogenously (Clarke and Reed, 1994; Tsur and Zemel, 1996; Gjerde et al.,

1999; Nævdal, 2006; Nævdal and Oppenheimer, 2007). In contrast, the welfare changes in

our model derive from the explicit changes in system dynamics and depend on how optimal

policy adjusts to tipping points.

More closely related work in the resources literature develops models that shift system

dynamics upon crossing a threshold (Heal, 1984; Brozović and Schlenker, 2011; Polasky

et al., 2011; de Zeeuw and Zemel, 2012). Our analytic model is more general than these

stylized models, adds learning and ambiguity, and provides new insights into the equilibrium

conditions that drive optimal policies in the face of tipping points. In particular, as in

Tsur and Zemel (1996), learning enables our decision-maker to realize that already-explored

regions of the state space are free of thresholds. The most closely related numerical work

is by Keller et al. (2004), who model a threshold that alters ocean circulation. In contrast

to their approach, we use a recursive dynamic programming framework that enables us to

include endogenous learning and annual stochasticity. Further, we directly model the effect

of a tipping point on climate dynamics rather than approximating its effects by shifting the

damage function.

The probability of incurring a tipping point is less understood than are the distributions

governing many stochastic processes. For instance, in our climate application, the probability

of crossing a temperature threshold is less confidently known than is interannual tempera-

ture variability. We employ a recent model of ambiguity attitude based on Klibanoff et al.

(2005, 2009) and Traeger (2010) to express the decision-maker’s relative lack of confidence

in threshold probabilities as opposed to the probabilities governing more standard risks.2

We demonstrate that ambiguity aversion generally has an “ambiguous” effect on optimal

policies and analyze the determinants of its impact. In our numerical climate change appli-

2Keynes (1921), Knight (1921), and Ellsberg (1961) each suggested distinguishing confidence in different
types of uncertainty.
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cation, we find that ambiguity aversion slightly increases the optimal carbon tax. Previous

work on ambiguity in the climate change context either uses abstract two-period models or

evaluates exogenous policy paths (Lange and Treich, 2008; Millner et al., 2010). We are not

aware of any work analyzing ambiguity in the context of tipping points or analyzing smooth

ambiguity aversion in a dynamic, optimizing integrated assessment model.

Sections 2 and 3 introduce the general model and analytically describe how anticipating

tipping points affects optimal policy. Sections 4 and 5 present our numerical integrated

assessment model of climate change and show the expected optimal carbon tax and optimal

temperature path. Section 6 discusses implications of learning and system inertia for optimal

policy paths. We conclude in Section 7. The online appendix provides the complete model

description, additional results, and derivations.

2 Modeling tipping points

Our tipping points are irreversible shifts in system dynamics that occur upon crossing a

threshold in the state space. The policymaker does not know the precise location of the

threshold. The probability of a tipping point occurring (i.e., the hazard rate) is endogenous.

It depends on the evolution of the state variables, which in turn depend on policy choices as

well as on the stochastics governing system dynamics. The policymaker learns that regions in

the state space she has already visited are free of tipping points.3 Crossing the threshold shifts

the world from the “pre-threshold” regime to a “post-threshold” regime with permanently

altered system dynamics. Optimal pre- and post-threshold policies together determine the

welfare loss triggered by the tipping point.

The policymaker solves an infinite-horizon dynamic optimization problem. Optimal pol-

icy at time t depends on the vector St of state variables. We denote the value of the optimal

policy program by Vψ(St).
4 The parameter ψ indicates whether V is the value function for

the pre-threshold regime (ψ = 0) or for the post-threshold regime (ψ = 1). In general, the

threshold is an unknown function of the state variables. In the case of climate change, the

threshold is the temperature level. Once the threshold is crossed, system dynamics change

irreversibly. Returning state variables to earlier values does not restore the original dynam-

ics. In our climate application, the new dynamics include melted ice sheets, large methane

3The more of the relevant state space that is already explored without crossing the threshold, the more
likely that the threshold is in the remaining unexplored state space. Some region of the relevant state space
might not be explored even under policies optimized without considering tipping point possibilities. The
probability mass on the permanently unexplored region can be interpreted as the chance that there is no
tipping point.

4In our numerical application, each value function Vψ(·) will be non-stationary. We absorb this non-
stationarity in the the state vector by making time t a component of St.
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releases, or disrupted forest ecosystems; lowering temperature would not undo any of these

changes over policy-relevant timescales. Similarly, macroeconomic changes can permanently

alter expectations and institutions. Optimal policy in the pre-threshold regime must consider

its effect on both the pre- and post-threshold value functions, but once the state variables

cross the threshold, optimal policy depends only on post-threshold dynamics. Therefore, we

solve the model recursively, starting with the post-threshold problem and then substituting

the solution into the pre-threshold problem.

In the post-threshold world, we obtain our value (and policy) functions from solving the

following Bellman equation:

V1 (St) = max
xt

{
u (xt, St) + βt

∫
V1 (St+1) d IP

}
(1)

s.t. St+1 = g1 (xt, εt, St)

xt ∈ Γ(St) .

Here, xt is the vector of time t control variables, u(·) is the utility derived from time t

consumption, and βt is the discount factor.5 Constraints on the controls are captured by

the set Γ(St). The transition function g1(·) characterizes post-threshold dynamics. At time

t, the next period’s state vector is St+1. It depends on the vector εt of independently and

identically distributed stochastic shocks whose distribution is characterized by the probabil-

ity measure IP. The decision-maker maximizes the sum of immediate utility and discounted

expected future welfare. The value function V1 is defined as the fixed point of equation (1)

and determines welfare after crossing the threshold. The welfare change from crossing the

threshold depends on the state variables at the time of crossing and, thus, on the policy path

chosen prior to crossing.

Prior to crossing a threshold, the value of the optimal policy program is given by the

5The dependence of the discount factor βt on time can arise as a consequence of reformulating utility
and normalizing consumption and state variables. In our climate change application, we use effective labor
units for consumption and capital and transform the population-weighted utility function of per capita
consumption into the form stated above (Crost and Traeger, 2010).
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pre-threshold value function:

V0 (St) = max
xt

{
u (xt, St) + βt

∫ [
[1− h (St, St+1)] V0 (St+1)

+ h (St, St+1) V1 (St+1)

]
d IP

}
(2)

s.t. St+1 = g0 (xt, εt, St)

xt ∈ Γ(St) .

The pre-threshold value function captures the possibility of crossing the threshold. The

endogenous hazard h (St, St+1) determines the risk of crossing the threshold between the

current and the next period. This probability generally depends on the current state variables

and on how they change from one period to the next.6 With probability 1 − h, the system

dynamics stay unaltered and V0 characterizes future welfare. With probability h, the system

tips and V1 determines future welfare from period t + 1 on. Because of the stochasticity in

the equations of motion, we take expectations over the next period’s value functions and

over the hazard rate (via the integral). Once we have solved equation (1) for V1, we find V0

as the fixed point of equation (2).

Finally, we generalize the welfare evaluation in equation (2) to recognize that we often

know little about the distribution governing the threshold location. By assumption, we have

no records of having recently crossed a threshold, and abrupt changes in system dynamics

do not lend themselves to accurate forecasting. Tipping point possibilities therefore exhibit

a deeper uncertainty in the sense that the probabilities governing tipping points are less

confidently known than are well-measured probability distributions. The smooth ambiguity

model captures this distinction between well-known probabilities, here our annually observed

stochasticity captured by εt, and more subjective and less confidently known uncertainty, here

our hazard rate h. An ambiguity-averse decision-maker is more averse to the less confidently

known tipping point uncertainty than to the risk posed by the random shock. To capture

6In general, the state space contains informational variables that tell the decision-maker which part of
the state space has already been explored. In our climate application, the decision-maker keeps track of the
greatest historic temperature.
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ambiguity aversion, we generalize the pre-threshold welfare evaluation:

V0 (St) = max
xt

{
u (xt, St) + β

∫
f−1
amb

[
[1− h (St, St+1)] famb [V0 (St+1)]

+ h (St, St+1) famb [V1 (St+1)]

]
d IP

}
(3)

s.t. St+1 = g0 (xt, εt, St)

xt ∈ Γ(St) .

The concave function famb captures smooth ambiguity aversion (Klibanoff et al., 2005, 2009),

or intertemporal risk aversion to subjective uncertainty (Traeger, 2010). When famb is linear,

equation (3) reduces to the ambiguity-neutral form in equation (2). Behavioral evidence

supports a concave famb as a descriptive model of many decision-makers (Camerer and Weber,

1992). Further, when the von Neumann-Morgenstern axioms are extended to recognize that

a decision-maker can have differing confidence in different distributions, concave famb is

consistent with normatively attractive preferences (Traeger, 2010).

3 The effects of tipping points on optimal policy

We now identify the channels by which tipping points affect optimal policy. The possible

existence of a tipping point introduces two new terms into the marginal welfare impact

of changing a control. For ease of exposition, we analyze the case where a single state

variable determines the chance of crossing the threshold. The right-hand side of equation (3)

characterizes welfare for an optimal choice of the controls (with optimality denoted by ∗).

We evaluate the marginal welfare impact of varying a generic entry et of the control vector in

the neighborhood of the optimum. In our climate change application, the temperature state

variable determines the hazard, and the welfare impact of varying emissions determines the

optimal carbon tax. Suppressing all arguments independent of et, the value of the optimal

policy program is:

u(e∗t ) + βt

∫
f−1
amb

[[
1− h(St+1(e∗t ))

]
famb

[
V0(St+1(e∗t ))

]
+ h(St+1(e∗t ))famb

[
V1(St+1(e∗t ))

]]
︸ ︷︷ ︸

Veff (e∗t )

dIP.

The integrand Veff (e
∗
t ) expresses the value of future periods’ optimal policy program in

utility units. It is the ambiguity-averse mean of pre- and post-threshold value. The total

value aggregates Veff over standard risk and combines it with the immediate utility from
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current choices. Varying et gives us the following trade-off characterizing optimal policies:

∂u(e∗t )

∂et
= −β

∫ {[
1− h(St+1(e∗t ))

]f ′amb[V0(St+1(e∗t ))
]

f ′amb
[
Veff (e∗t )

] ∂V0(St+1(e∗t ))

∂St+1

∂St+1(e∗t )

∂et

+ h(St+1(e∗t ))
f ′amb

[
V1(St+1(e∗t ))

]
f ′amb

[
Veff (e∗t )

] ∂V1(St+1(e∗t ))

∂St+1

∂St+1(e∗t )

∂et

− ∂h(St+1(e∗t ))

∂St+1︸ ︷︷ ︸
(i)

∂St+1(e∗t )

∂et︸ ︷︷ ︸
(ii)

famb[V0(St+1(e∗t ))]− famb[V1(St+1(e∗t ))]

f ′amb
[
Veff (e∗t )

]︸ ︷︷ ︸
(iii)

}
dIP ,

(4)

where primes (′) indicate derivatives.7 We interpret this equation for the case where an

increase in et raises current utility but decreases expected future welfare. For instance,

additional carbon dioxide emissions increase current utility but decrease future welfare by

generating higher carbon stocks and temperatures; additional borrowing increases current

consumption but also increases future debt; and a political elite’s appropriation of resources

and repression increase social discontent and hamper growth. We assume for now that famb

is the identity function, which implies an ambiguity-neutral decision-maker.

The left-hand side of equation (4) characterizes the (immediate) benefits from increasing

the policy variable. At the optimum, these benefits must balance the expected future costs.

The costs are represented by the right-hand side of equation (4) and are subject to uncertainty

(captured by the integration). The integrand in the first line represents the impact of policy

on time t+ 1 welfare under the pre-threshold regime (i.e., on the pre-threshold continuation

value). This impact is composed of the control’s impact on the state vector and the effect

of the altered state vector on pre-threshold value V0, and it is weighted by the probability

of staying in the pre-threshold regime (1 − h). In a world without tipping points (where

the hazard rate h is zero), the first line characterizes the full trade-off between current and

future welfare.

The possibility of imminent tipping points introduces the second and third lines into the

optimal policy trade-off: altering et now also changes time t+1 welfare in the post-threshold

world (second line) and changes the probability of entering the post-threshold world (third

line). The first two lines together give the expected marginal welfare effect of increasing et

in situations where the immediate hazard rate h is exogenous. These lines adjust a model

without tipping points to account for the different marginal effect of the control et on pre-

7For a multidimensional state space, ∂V/∂St+1 and ∂h/∂St+1 denote gradients and ∂St+1/∂et denotes
the vector of state changes caused by the marginal change in et. These derivatives are taken with respect to
the pre-threshold dynamics g0.
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and post-threshold welfare. We therefore call this adjustment the differential welfare impact

(DWI):

DWIneutral ≡ h

[
∂V0

∂St+1

− ∂V1

∂St+1

]
∂St+1(e∗t )

∂et
, (5)

where we maintain the assumption of ambiguity neutrality. The DWI is proportional to

the hazard rate and to the difference in the marginal impact of the control on the pre- and

post-threshold value functions. If increasing the control decreases welfare relatively more

in the post-threshold regime, then the differential welfare impact makes raising the control

more costly.

The third line in equation (4) only arises when the tipping point’s probability is endoge-

nous. In this case, a change in the control et affects the hazard rate. The optimal policy now

has to account for this marginal change in the hazard rate in response to a change in the

control. We call this contribution the marginal hazard effect (MHE). The MHE is composed

of the response of the hazard rate to a change in the state vector (term i), the response of the

state vector to a change in the control (term ii), and the total welfare change from switching

regimes (term iii). For the tipping points in our climate application, increasing emissions

raises the hazard rate and the welfare difference [V0 − V1] is always positive. Therefore, the

MHE increases the cost of emissions relative to a case without tipping points. In general, a

change in the current control could also increase hazard rates at future times. Possible future

tipping points are included in the pre-threshold continuation value V0. If the current control

alters the probability of crossing a threshold in the future, then ∂V0/∂St+1 will include this

effect.

In summary, anticipating possible tipping points adjusts the first-order conditions gov-

erning optimal policy for the differential impact of the control on pre- and post-threshold

welfare (DWI) and for the control’s effect on the immediate hazard rate (MHE). In our cli-

mate change application, the effects of DWI and MHE together increase the optimal carbon

tax. If we instead consider additional borrowing by a highly indebted state, additional debt

increases the risk of altering investors’ beliefs about solvency and so tipping into a credit

regime with high interest rates on sovereign debt (MHE). This change in dynamics can lead

to default. In October of 2011, Eurozone leaders managed the post-tipping dynamics by

negotiating “haircuts” on Greek debt. However, this type of post-threshold management

can result in a DWI effect that reduces a country’s incentive to avoid the tipping point.

If other highly indebted countries in the monetary union count on a similar post-threshold

“haircut”, their cost of taking up additional debt is reduced because, in case of tipping, they

only have to pay back a fraction of the debt. Here the DWI acts as a benefit, reducing the

8
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cost of the tipping point for each individual nation.

In another example, a political elite that appropriates its country’s resources has to

account for the increased risk of an uprising that puts an end to its rule (MHE). We consider

two possible post-threshold scenarios. In the first, a successful uprising puts a clear end to

power and wealth. Then the DWI merely adjusts the elite’s calculus by eliminating payoffs

in the event of losing power. It increases the cost of tipping and, in general, reduces its

optimized likelihood. This scenario is equivalent to a model with constant post-threshold

utility and endogenous tipping risk. In the second, a successful uprising puts an end to the

elite’s power but does not affect its previously accumulated wealth. If money and power

are substitutes, the value of a marginal unit of wealth would be larger in the post-threshold

regime. The DWI now works in the opposite direction from the first scenario, increasing the

optimized likelihood of a tipping point.

We now consider the consequences of ambiguity aversion. An ambiguity-averse decision-

maker is additionally averse to the types of poorly understood uncertainty that characterize

tipping points. A strictly concave function famb captures her additional aversion to tipping

point uncertainty. Our extended definition of DWI now collects all the changes in the first

two lines of equation (4) with respect to the continuation value:

DWI total = DWIneutral+

DWIambig︷ ︸︸ ︷
(1− h)

[
f ′amb(V0)

f ′amb(Veff )
− 1

] [
−∂V0

∂et

]
+ h

[
f ′amb(V1)

f ′amb(Veff )
− 1

] [
−∂V1

∂et

]
︸ ︷︷ ︸

DWIambig

. (6)

These changes capture the effect of an exogenous hazard and its interaction with ambiguity

aversion. In our interpretation, we assume that increasing the control (e.g., emitting an

additional unit) reduces future welfare more in the post-threshold regime than in the pre-

threshold regime (DWIneutral > 0).8 For an ambiguity-averse decision-maker who faces a

welfare-decreasing tipping point, the concavity of famb implies f ′(V0) < f ′(Veff ) < f ′(V1).

Therefore, the first term’s contribution to DWIambig in equation (6) is negative, while the

second term’s contribution is positive. For a small hazard rate and a second-order expansion

8In our climate application, the current control interacts with future threshold crossings even if a threshold
is not crossed in the current period. Damages increase faster with emissions in the post-threshold world,
which raises DWI. However, at the same time pre-threshold emissions can trigger future tipping via the delay
in the temperature equation (see appendix), which decreases the DWI. Our simulations suggest that these
conflicting effects do produce DWIneutral < 0 in some cases.
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of famb (see appendix), we find

DWIambig ≈ −f
′′
amb

f ′amb

∣∣∣∣
Veff

[V0 − V1]

DWIneutral︷ ︸︸ ︷
h

[
∂V0

∂et
− ∂V1

∂et

]
− 1

2

−f ′′amb
f ′amb

∣∣∣∣
Veff

−f ′′amb
f ′amb

∣∣∣∣
V0

[V0 − V1]2 h

[
−∂V0

∂et

]
. (7)

The ambiguity effect captured in the first line increases the ambiguity-neutral DWI in propor-

tion to the measure of absolute ambiguity aversion −f ′′amb/f ′amb|Veff . The measure of absolute

ambiguity aversion is zero for an ambiguity-neutral decision-maker and is positive for an

ambiguity-averse decision-maker. The effect captured in the second line relates closely to

how ambiguity aversion adjusts the pre-threshold value function. When DWIneutral > 0,

the first line increases the marginal cost of the control while the second line decreases it. In

our climate change application, the second line’s contribution is often the larger one, making

ambiguity aversion decrease the optimal carbon tax.

Ambiguity aversion also affects the marginal hazard effect (MHE) via term iii in the third

line of equation (4):

famb[V0]− famb[V1]

f ′amb
[
Veff

] = [V0 − V1]
famb[V0]− famb[V1]

[V0 − V1] f ′amb
[
Veff

]︸ ︷︷ ︸
ambiguity multiplier

. (8)

The first term in brackets is the ambiguity-neutral contribution. The fraction characterizes

the ambiguity contribution. It is unity for an ambiguity-neutral decision-maker and when

f ′amb[Veff ] = famb[V1]−famb[V0]
[V1−V0]

. Given the concavity of famb, this condition has to be satisfied

for some Veff and, thus, for some hazard h. If the hazard is lower than this critical value,

then f ′amb[Veff ] is also lower and ambiguity aversion amplifies the MHE. This insight relates

closely to the common finding that ambiguity aversion increases the effective weight of low-

probability catastrophic events (pessimism bias). If the hazard is greater than the critical

value, ambiguity aversion reduces MHE. The intuition is familiar from the standard risk

setting: a risk-averse agent is not always willing to pay more for a risk reduction than is a

risk-neutral agent.9 Here, the MHE captures willingness to pay for a marginal reduction in

the tipping point hazard. In our climate change application, the annual hazard rate is small,

9The more risk-averse (ambiguity-averse) the decision-maker, the more he values wealth in bad states
relative to good states. Giving up wealth for a hazard reduction makes an ambiguity-averse decision-maker
even worse off if the bad outcome happens. If a hazard is large enough and costly enough to reduce, he
prefers carrying wealth into the post-threshold world over spending it on reducing the hazard.
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leading ambiguity aversion to always increase the MHE and so the optimal carbon tax.

In general, the effect of increasing ambiguity aversion is less easily determined than that

of a high or low hazard rate. Increasing ambiguity aversion for a given hazard rate has two

effects. First, increasing ambiguity aversion reduces the mean value Veff , decreasing the

ambiguity multiplier. Second, increasing ambiguity aversion changes the derivative f ′amb at

a given value (relative to the secant). For the case of small hazard rates as in our climate

change application, a first-order expansion in h pins down the effect of increasing ambiguity

aversion. Employing once more a second-order expansion of famb (see appendix), we obtain

the following approximation of the ambiguity multiplier:

famb[V0]− famb[V1]

[V0 − V1] f ′amb
[
Veff

] ≈
1 +
−f ′′amb
f ′amb

∣∣∣∣
Veff

(V0 − V1)

(
1

2︸ ︷︷ ︸
order zero

−h

[
1 +

1

2

−f ′′amb
f ′amb

∣∣∣∣
V0

[V0 − V1]

]
︸ ︷︷ ︸

first-order correction

)
. (9)

For a sufficiently small hazard, the ambiguity multiplier increases proportionally to the mea-

sure of absolute ambiguity aversion. As the hazard becomes larger, the first-order correction

reduces the ambiguity effect. The hazard rate in our climate change application is sufficiently

small that the first-order correction is negligible. On the whole, we find that ambiguity aver-

sion alters both channels by which tipping points affect optimal policy. Because our climate

change application has a small annual hazard, ambiguity aversion primarily increases the

ambiguity-neutral MHE in proportion to the measure of absolute ambiguity aversion.

4 A climate-economy model with tipping points, learn-

ing, and ambiguity

We now consider the effect of climate tipping points on the optimal carbon tax. The optimal

carbon tax equals the social cost of carbon when evaluated along the optimal policy path in

a welfare-maximizing integrated assessment model.

We reformulate the benchmark Dynamic Integrated model of Climate and the Economy

(DICE) from Nordhaus (2008) as an infinite-horizon dynamic programming problem with

a tipping point in the climate system, optimal learning about the threshold that triggers a

tipping point, and a generalized welfare evaluation.10 DICE is a Ramsey-Cass-Koopmans

10The appendix provides the model equations. The standard DICE model is a nonlinear programming
problem with constant system dynamics. For previous work using recursive versions of DICE, see Kelly and
Kolstad (1999), Leach (2007), and Crost and Traeger (2010).
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Figure 1: A simplified schematic of the relation between the economy and the climate. Boxes
indicate stock variables, and dashed arrows indicate the decision variables of consumption,
investment, and abatement. The climate feedback tipping point makes temperature more
sensitive to forcing (a), and the carbon sink tipping point increases the persistence of CO2

(b).

growth model that has an aggregate world economy interacting with a climate module (Fig-

ure 1). Gross economic output (or potential gross world product) is determined by an

endogenous capital stock, an exogenously growing labor force, and exogenously improving

production technology. Gross output produces carbon dioxide (CO2) emissions. Non-abated

CO2 emissions accumulate in the atmosphere and ultimately translate into global warm-

ing, which causes damage proportional to world output. Cumulative temperature change

affects the total output available for allocation by the policymaker. The control variables are

abatement and consumption, and residual output not allocated to these two options becomes

capital investment. The state variables are capital per effective unit of labor, the stock of

CO2 in the atmosphere, the change in global mean surface temperature since 1900, and, to

keep track of exogenously evolving variables, time.

A tipping point irreversibly changes the climate system from its conventional representa-

tion in DICE to a new regime with altered dynamics. The tipping point occurs upon crossing

some unknown temperature threshold. Emission decisions determine the future CO2 stock,

thereby affecting future temperatures and the probability that a tipping point occurs. The

decision-maker anticipates how he would choose emissions and consumption in the post-

threshold world. The timing, probability, and welfare consequences of a regime switch are

endogenous because they depend on the policies chosen before and after the threshold occurs.

To model tipping points, we specialize the recursive structure from Section 2 to DICE.

We have one dynamic programming problem for the post-threshold world and another for the

pre-threshold world. The pre-threshold world has standard DICE dynamics along with the

tipping possibility and temperature shocks calibrated to the historical record. A tipping point

produces the post-threshold world by irreversibly changing the standard dynamics. We first

solve the post-threshold problem and then use its solution in the pre-threshold problem. We

numerically solve each dynamic programming problem for the unknown value function using

12
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function iteration. Employing a projection method, we approximate the value functions by

Chebychev polynomials and use collocation at the Chebychev nodes in the four-dimensional

state space (Miranda and Fackler, 2002).

We evaluate two tipping points of prominent concern in the climate science literature.11

In every model run, the policymaker faces a single tipping point and knows in advance what

its effects would be. The first tipping point increases the climate feedbacks that amplify

global warming (arrow a in Figure 1), and the second increases the atmospheric lifetime of

CO2 (arrow b in Figure 1). The first tipping point therefore increases the effect of emissions

on temperature, and the second increases the time during which emissions affect the climate.

The climate science literature has compiled a number of pathways by which tipping points

could abruptly change the strength of feedbacks that determine surface temperature. As one

example, warming could mobilize large methane stores locked in permafrost and in ice lattices

(clathrates) in the shallow ocean (Hall and Behl, 2006; Archer, 2007; Schaefer et al., 2011).

If warming mobilizes these methane stocks, they would cause further warming that could

mobilize additional stocks. As another example, if land ice sheets begin to retreat on decadal

timescales, the resulting loss of reflective ice could double the long-term warming predicted

by models that hold land ice sheets fixed (Hansen et al., 2008). Temperature dynamics in

DICE depend on a parameter known as climate sensitivity, which is the equilibrium warming

from doubling CO2. The value of 3◦C used in DICE is inferred from climate models that

hold land ice sheets and most methane stocks constant. We represent a climate feedback

tipping point as increasing climate sensitivity to 4◦C, 5◦C, or 6◦C.

The second tipping point reflects the possibility that carbon sinks weaken beyond the

predictions of coupled climate-carbon cycle models. Warming-induced changes in oceans

(Le Quéré et al., 2007), soil carbon dynamics (Eglin et al., 2010), and standing biomass

(Huntingford et al., 2008) could affect the uptake of CO2 from the atmosphere. We represent

these weakened sinks by decreasing the transfer of CO2 out of the atmosphere by 25%, 50%,

or 75%. The reader may think of this tipping point as reducing the long-term “decay rate” of

atmospheric CO2. If the threshold triggers a strong form of this tipping point, then the flow

of carbon from land and ocean sinks back into the atmosphere can temporarily outweigh the

flow of carbon out of the atmosphere. These flows can result in a temporarily negative decay

rate as the earth system comes to a new equilibrium with more CO2 in the atmosphere.

The system passes from the pre-threshold regime (ψt = 0) into the post-threshold regime

(ψt+1 = 1) when cumulative temperature change Tt+1 crosses an unknown threshold T̃ . Every

11Each modeled tipping point is an extreme case: climate dynamics change severely, abruptly, and irre-
versibly. The scientific literature does not offer clear guidance on the best way to model a given tipping point,
so we translate two common tipping stories into DICE’s reduced climate system in order to gain intuition
about policy implications.
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temperature between the maximum temperature previously reached and an upper bound T̄

has an equal chance of being the threshold, meaning T̃ is uniformly distributed between the

historic maximum and T̄ .12 In our base case model runs, we use T̄ = 4.27◦C so that the

year 2005 expected value for the threshold is 2.5◦C.13 Sensitivity analyses vary T̄ between

3◦C and 9◦C, implying year 2005 expected values of about 1.9◦C to 4.9◦C. The probability

of crossing the threshold between periods t and t+ 1 conditional on not having crossed the

threshold by time t is:14

h(Tt, Tt+1) = max

{
0,

min{Tt+1, T̄} − Tt
T̄ − Tt

}
. (10)

This expression is the hazard of crossing the tipping point. As the world reaches higher

temperatures without reaching a threshold, the decision-maker learns that the threshold is

above the current temperature and updates his beliefs by moving probability density from the

newly safe region to the remaining unexplored temperatures. Therefore, as the world safely

reaches higher temperatures, each unit of temperature increase creates a greater hazard than

it did at lower temperatures. The state variable Tt that controls the threshold crossing is

a climate variable whose equation of motion is determined by CO2 concentrations and does

not reflect annual stochastic fluctuations.

As noted in discussing equation (3), the function famb captures smooth ambiguity aver-

sion (Klibanoff et al., 2005, 2009), or intertemporal risk aversion under subjective uncertainty

(Traeger, 2010). We use the term “subjective uncertainty” to describe uncertain outcomes

when there is less information available for determining probabilities. This deficiency in

probabilistic knowledge applies to climate tipping points, which are less understood than

other climate phenomena (Alley et al., 2003; Lenton et al., 2008; Ramanathan and Feng,

2008; Kriegler et al., 2009; Smith et al., 2009). Sticking to isoelastic preferences, we adopt the

power function famb(V ) = ((1− η)V )
1−γ
1−η . Here γ is a measure of Arrow-Pratt relative risk

12The optimal policy path in the absence of tipping points reaches a maximum temperature of 3.33◦C.
Our model with T̄ > 3.33 is therefore equivalent to one with the uniform distribution’s upper bound at
3.33◦C and probability (T̄ − 3.33)/(T̄ − Tt) that there is no threshold.

13Using E2005 T̃ = 2.5◦C is consistent with the political 2◦C limits for avoiding dangerous anthropogenic
interference. Further, in Smith et al. (2009), 2.5◦C is in the upper end of the temperature region that
produces significant risk of large-scale discontinuities and is just below the temperatures that produce severe
risk.

14In DICE-2007, the CO2 stock increases monotonically until the model reaches a sufficiently high level of
abatement. From this point on, the “decay” of CO2 outweighs the flow of emissions, making the CO2 stock
decrease monotonically. Temperature in DICE follows the same pattern. When temperature is increasing, the
probability of crossing the threshold is proportional to the difference between the next period’s temperature
and the current temperature. When temperature is decreasing, the probability of crossing the threshold is
0. As long as temperature is a quasiconcave function of time, we do not need an additional state variable to
keep track of the highest historic temperature.
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aversion with respect to subjective or poorly understood uncertainty and η is the constant

Arrow-Pratt measure of relative risk aversion used in the standard DICE utility function. The

subjective uncertainty contrasts with the standard risk posed by the historically-grounded

temperature stochasticity and governed by IP (see appendix). If Arrow-Pratt risk aversion

with respect to subjective risk γ coincides with standard risk aversion η, the function famb

is linear and drops out. In that case, the policymaker is ambiguity-neutral and the welfare

evaluation is as in DICE. However, when γ > η, the function famb measures the policy-

maker’s additional aversion to ambiguity (or subjectivity of belief) governing tipping points

as opposed to annual temperature stochasticity.

5 The optimal carbon tax when facing possible tipping

points

We compare several sets of model runs to assess how the optimal carbon tax responds to

the type of tipping point considered, to the strength of a tipping point, to prior beliefs

about the temperature threshold location, and to aversion to tipping point ambiguity. The

optimal carbon tax is the policy trajectory that maximizes the present value of net benefits

within our extension of the benchmark DICE integrated assessment model. All of our graphs

present results conditional on not having crossed the threshold: we want to understand how

optimal policy changes in the face of a potential tipping point. The depicted paths draw the

multiplicative temperature shock at its expected value in each period. Each graph compares

the baseline scenario without tipping point awareness to runs with tipping points of various

strengths. The appendix contains additional results.

Figure 2 gives the effect of tipping points on the optimal carbon tax (social cost of carbon),

the optimal CO2 concentration path, and the optimal temperature path. The figure assumes

ambiguity neutrality and the base case prior over the threshold location. The year 2015

optimal carbon tax is near $10/tCO2 in the absence of tipping points, the strongest version

of the feedback tipping point increases it to $13.5/tCO2, and the strongest version of the

carbon sink tipping point increases it to $14/tCO2. While tipping point possibilities have

only a modest effect on near-term abatement, they can nonetheless have a large effect on

cumulative abatement because they increase the optimal tax by proportionally more later in

the century.15 The optimal path without possible tipping points produces a peak temperature

(CO2 concentration) of 3.3◦C (637 ppm), reached in the year 2187 (2163). The optimal tax

15The climate feedback tipping points have their greatest proportional effect on the optimal carbon tax
shortly after 2100, while the proportional effect of the carbon sink tipping points peaks shortly after 2050.
The appendix plots how abatement and other variables respond to each tipping point possibility.
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path in the presence of the weak climate feedback tipping point reduces this peak temperature

to 3.0◦C (592 ppm), while the higher taxes justified by the strong climate feedback tipping

point further reduce peak temperature to 2.8◦C (560 ppm). The tax path in the presence

of the weak carbon sink tipping point reduces peak temperature only to 3.2◦C (617 ppm),

while the possibility of the strong carbon sink tipping point reduces peak temperature to

3.0◦C (588 ppm). By reducing peak temperature and CO2, the decision-maker reduces the

cumulative probability of crossing the temperature threshold. The stronger the anticipated

tipping point, the more output the decision-maker devotes to reducing this probability.

By explicitly modeling the effects of tipping points on system dynamics and the ability

to adapt policy to the new dynamics, we learn how different types of tipping points can

have qualitatively different effects on optimal policy. In comparison to the carbon sink

tipping points, the climate feedback tipping points affect the optimal carbon tax relatively

less in the near-term but relatively more later in the century. When the feedback threshold

is crossed, the policymaker responds by sharply increasing abatement. If the threshold

is crossed when the CO2 stock is still relatively low, then optimal post-threshold policy

prevents CO2 from rising much more and limits the additional warming due to higher climate

sensitivity. However, if the threshold is crossed when the CO2 stock is already relatively high,

then even sharply increased abatement cannot rapidly reduce the CO2 stock and the higher

climate sensitivity produces greater warming along the optimal policy path. Crossing the

feedback threshold is therefore more expensive at a high CO2 stock than at a low CO2 stock.

The feedback tipping point’s increment to the optimal carbon tax increases over time as

the CO2 stock increases. In comparison, the carbon sink tipping point affects policies more

evenly over time. Tipping in an early time period with low atmospheric carbon stocks can

induce a net flow of carbon from the land and ocean reservoirs into the atmosphere. This

temporary flow raises the CO2 concentration independently of abatement policy and imposes

high costs even when crossing the threshold at a relatively low CO2 concentration.

Recognizing the present inability of climate science to provide a probability distribution

for the temperature threshold, we now consider the implications of more and less diffuse priors

for the threshold location and of aversion to the ambiguity in the threshold’s distribution.

Figure 3 plots the year 2015 optimal carbon tax and the peak temperature for values of

T̄ between 3◦C and 9◦C, with all calculations still being for optimal policy paths under

ambiguity neutrality and conditional on not having crossed the threshold. As the upper

bound T̄ increases, optimal policy converges asymptotically to the scenario without a tipping

point. A more diffuse prior on the threshold location reduces the importance of the tipping

point contributions in equation (4) by reducing both the hazard rate and its derivative.

Lowering T̄ from its base case value has a stronger effect on optimal policy than does raising

16
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Climate feedback tipping point Carbon sink tipping point

Optimal
carbon tax

CO2 stock

Temperature

Figure 2: Time paths for the optimal carbon tax (current value), the CO2 stock, and tem-
perature under each type of tipping point possibility using expected draws. We simulate a
path that happens to never cross a threshold in order to see how the modeled policymaker
adjusts to the possibility over time. Results are for an ambiguity-neutral policymaker with
T̄ = 4.27◦C.
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Climate feedback tipping point Carbon sink tipping point

Optimal
carbon tax
in 2015

Peak
temperature

Figure 3: The optimal carbon tax in 2015 and the peak temperature reached for each
upper bound T̄ for the temperature threshold’s distribution. The plotted simulations assume
expected draws of the temperature shock, assume that the tipping point never occurs, and
model an ambiguity-neutral policymaker. Points marked by X use the base case distribution.

T̄ . For low values of T̄ , the hazard rate is a steeper function of emissions (raising MHE) and

realized temperatures can approach regions with a high hazard rate (raising DWI). When

T̄ = 3◦C, the optimal carbon tax in 2015 rises as high as $16.5/tCO2 for the strong tipping

points, with temperature peaking just above 2.5◦C.

Finally, we turn to the effect of ambiguity aversion on optimal policy. Figure 4 varies

γ from ambiguity-neutral (γ = 2 = η) to extremely ambiguity-averse (γ = 100 > 2 = η).

We find that optimal policy is not highly sensitive to the policymaker’s level of ambiguity

aversion. The near-term carbon tax varies by less than $2/tCO2 across the modeled range

of γ, the peak CO2 concentration varies by less than 20 ppm, and peak temperature varies

by less than 0.2◦C. Ambiguity aversion decreases DWI and raises MHE. However, because

of the small annual hazard, its effect on MHE is more significant. Equation (9) shows that

this amplification is proportional to the total welfare loss from crossing the threshold and

to the measure of absolute ambiguity aversion (near 3 for γ = 100). Ambiguity aversion

therefore increases the MHE by more for stronger tipping points that have more severe
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(a) Optimal carbon tax (b) Optimal temperature

Figure 4: The optimal carbon tax and the optimal temperature for different degrees of aver-
sion (γ) to threshold uncertainty. Crossing the threshold triggers the mid-strength climate
feedback tipping point. An ambiguity-averse policymaker has γ > 2. The plotted simu-
lations assume expected draws of the temperature shock and also assume that the tipping
point never occurs.

welfare implications, and the effect of ambiguity aversion on the optimal tax grows as the

welfare loss from crossing a tipping point grows over time. For the middle climate feedback

tipping point, the extreme form of ambiguity aversion with γ = 100 increases the optimal

carbon tax by 6% in 2015 and by 12% in 2050. For the middle carbon sink tipping point,

the extreme form of ambiguity aversion also increases the optimal carbon tax by 6% in 2015,

but increases it by only 7% in 2050.16 Tipping point evaluation has to acknowledge that

threshold distributions are, by necessity, guesstimates rather than objective probabilities. In

our application, ambiguity aversion always increases the social cost of carbon. The effect on

policy of varying ambiguity aversion across our scenarios is slightly smaller than the effect

of varying the strength of a tipping point.

6 Policy implications of system inertia in the presence

of learning

How does learning affect the optimal trajectories in a model with tipping points? How does

inertia in the climate system alter the implications of learning? We first describe qualitative

implications of Bayesian learning in general optimally controlled systems with irreversible

16Note from Figure 4 that the effect of greater ambiguity aversion becomes more pronounced later in
the century for the climate feedback tipping point. With the carbon sink tipping point, the approximate
constancy of the ambiguity effect over time means that greater ambiguity aversion has about the same effect
late in the century as in the beginning of the century.
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tipping points. We then highlight the importance of explicitly capturing inertia when un-

dertaking quantitative analysis of optimal climate policy. In particular, when information

about threshold locations depends on the evolution of state variables, the form of the optimal

policy trajectory is sensitive to how precisely immediate policy controls the next period’s

state variables. While most deterministic integrated assessments of climate change capture

inertia, many models with uncertainty or learning do not.17 The basic insight underlying this

section is that, in the absence of inertia, it is eventually optimal to maintain temperature

for a long time at the highest level learned to be safe. However, with inertia in the sys-

tem, temperature only peaks once the CO2 concentration is already falling. The policy that

would keep temperature constant must change significantly from period to period, making

it inefficient to keep temperature constant for an extended time.

Optimal policy sets emissions so that marginal abatement cost equals marginal damage

in each period. Because marginal abatement cost falls exogenously over time in DICE,

abatement increases over time. Tipping point possibilities increase marginal damage through

the MHE, but as long as temperature has been monotonically increasing, learning makes

the MHE depend on whether the next period’s temperature is above the current period’s

temperature. The marginal damage curve therefore has a discontinuity at the emission level

ê(M,T, t) that keeps temperature constant in a period.18 For emissions above ê (point a in

Figure 5a), marginal damage includes the effect of emissions on tipping point possibilities.

At ê, however, marginal damage depends on whether it is assessed relative to the next unit

of emissions or relative to the last unit of emissions: the damages caused by the next abated

unit are strictly higher than the cost of abating that unit, but abatement cost is in turn

strictly higher than the damages caused by the last abated unit (point b). The policymaker

therefore holds emissions fixed at ê. As abatement cost falls, emissions move to a part of the

marginal damage curve that does not include threshold possibilities (points c and d) because

temperature stays in the region that has been shown to be safe.

If there were no inertia in atmospheric warming, each period’s temperature would be

determined wholly by its CO2 stock. In that case, the policymaker could more directly steer

the state variable triggering the tipping point, making it efficient to set the optimal policy

so that temperature sticks for an extended time to the boundary of the safe region (“state

stickiness”). We demonstrate this qualitative feature by implementing the climate feedback

17For instance, of the work in the resources literature that studies catastrophes or shifts in dynamics,
Gjerde et al. (1999), Keller et al. (2004), and Nævdal and Oppenheimer (2007) model inertia. The majority
do not model inertia (e.g., Heal, 1984; Clarke and Reed, 1994; Tsur and Zemel, 1996; Nævdal, 2006; Brozović
and Schlenker, 2011; Polasky et al., 2011; de Zeeuw and Zemel, 2012).

18The emission level that keeps temperature constant depends on current temperature and CO2 because
of the climate system’s inertia (discussed below) and depends on time because of exogenous variables that
affect forcing and non-industrial emissions (see appendix).
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(a) Schematic illustrating possible optima (b) The optimal temperature path and inertia

(c) Marginal damage in the model without inertia (d) Marginal damage in the model with inertia

Figure 5: The marginal hazard effect introduces a discontinuity into the marginal damage
(marginal benefit of abatement) curve at the emission level ê that keeps temperature constant
(plot 5a). The emission level ê depends on temperature, CO2, and time. Optimal emissions
are initially great enough to increase temperature (a). As marginal abatement cost (dashed
lines) falls over time, temperature becomes first constant (b) and then decreases (c and
d). Plots 5b through 5d show how the optimal temperature and marginal damage paths
depend on the presence of inertia in the climate system. These plots should be read for the
qualitative differences in policy paths, not for quantitative differences that are sensitive to
the different model calibrations. The dashed and dotted lines completely overlap in the full
model with inertia (plot 5d).
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tipping point in a model without temperature inertia.19 Figure 5b shows the qualitative

difference in the optimal expected temperature curve between this model without inertia

and our DICE extension with inertia. Optimal policy in the model without warming delay

keeps temperature constant over most of the next century, whereas optimal policy in our full

model shows no such stickiness. In the flat temperature region of the model without inertia,

the next unit of emissions causes enough damage (via tipping point risk) to make abatement

cost-effective, but the last unit of emission causes far less damage (Figure 5c).20 Eventually

abatement cost falls far enough that it becomes worth abating additional emissions, at which

point the damage curves for the next and the last unit of emissions merge again. In the full

model with inertia, emissions only have a small immediate effect on temperature (reducing

the MHE) and optimal policy stabilizes temperatures only once carbon concentrations are

already falling. At this point, temperature would remain constant only if emissions increased,

which usually is not optimal (Figure 5d). At the same time, the MHE that gives rise to the

marginal damage discontinuity is smaller because emissions have a smaller impact on the

immediate probability of tipping the system.21

7 Conclusions

We have shown how to model economic decisions in the face of irreversible tipping points

triggered by policy-dependent thresholds. We analytically demonstrated that tipping points

affect optimal policy via two channels: the differential welfare impact (DWI) recognizes

that today’s policy choices affect welfare in case a tipping point occurs, and the marginal

hazard effect (MHE) recognizes that today’s policy choices affect the probability of crossing

the threshold. Ambiguity aversion has an ambiguous effect on both terms. In particular,

ambiguity aversion amplifies the MHE for small hazards, but can reduce the MHE for large

19We model the 5◦C climate sensitivity feedback scenario. Temperature is no longer a state variable.
We calibrate the model to the same DICE baseline without tipping points by introducing time-dependent
feedback processes. Because eliminating warming delay increases marginal damage, we calibrate these feed-
back processes to suppress the total effect of CO2 on temperature and so induce policy in line with DICE.
The different temperature dynamics and model calibration warn against comparing precise numerical effects
between these models with and without inertia.

20We calculate marginal abatement costs from the optimal abatement policy, and we calculate marginal
damage from the value function as in Section 3. We can therefore calculate the value of additional abatement
even after reaching full abatement. The differences in these calculations lead to the small offset between the
solid line and the dashed and dotted lines over the period when temperature is non-constant. The marginal
damage curve jumps down upon eliminating the MHE by keeping temperature constant.

21In the full model with inertia, additional emissions do affect the probability of crossing the threshold
in future periods, but MHE only captures the effect of additional emissions on the probability of crossing a
threshold in the current period. The impact of future tipping risk on the social cost of carbon is captured
directly in the continuation value.
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hazards.

Our numerical application developed a dynamic climate-economy model that includes the

endogenous possibility of climatic tipping points, endogenous learning about the temperature

threshold triggering tipping points, endogenous welfare implications of tipping points, and

a generalized welfare evaluation that allows the policymaker to display ambiguity aversion.

We find that the possibility of tipping points in the climate system raises the optimal carbon

tax. Because of the small annual probability of crossing a climate threshold, these tipping

points primarily affect the optimal carbon tax via the MHE, which is amplified by ambiguity

aversion. The tipping point increment to the social cost of carbon is not merely a function of

the current period’s DWI and MHE but is also determined by how current emissions change

“tipping lotteries” in all future periods. The climate system’s warming delay can trigger

future threshold crossings even if future CO2 concentrations are stable.

Quantitatively, our base case tipping point possibilities can increase the near-term opti-

mal carbon tax by around 40%. The precise effect is sensitive to the type of tipping point,

to the strength of the tipping point, and to the distribution for the threshold that triggers

the tipping point. Carbon sink tipping points more strongly affect the near-term carbon tax,

but climate feedback tipping points have an increasing effect over time and thereby more

strongly reduce optimal peak temperature and CO2. This result demonstrates the value

of explicitly modeling tipping points’ effects on system dynamics (endogenizing the welfare

change). The importance of the MHE demonstrates the importance of endogenizing tipping

point possibilities. Ambiguity aversion raises the optimal carbon tax and does so by an

increasing amount over time.

In a model with endogenous learning, tipping point possibilities create a discontinuity in

the future benefits or costs deriving from a control that affects the hazard. This discontinuity

is created by the MHE jumping discontinuously from zero to a finite value whenever exploring

new, threshold-relevant regions in the state space. It can lead policy to keep the system at

the boundary of the safe region for long intervals: going further creates the cost of a possible

tipping point. However, if dynamics are governed by a delay equation, inertia can make it

inefficient to steer along the boundary. First, inertia in a threshold-relevant state variable

limits the ability to steer the state variables along the boundary (making it prohibitively

expensive or even impossible). Second, inertia generally reduces the control’s impact on

the next period’s state variables and, thus, reduces the MHE that incentivizes steering

exactly along the boundary in the first place. In general, these results demonstrate the

value of modeling the effect of learning on optimal policies. In our climate application,

we have shown that opting not to model temperature as a delayed state variable produces

qualitatively different policy paths. When temperature delay is significant, optimal carbon
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taxes and temperature do not stay constant for an extended period upon eliminating the

hazard.

Our numerical conclusions have implications for economic modeling, climate science, and

climate policy. First, economic models of climate change typically assume smooth changes

in the climate system. More broadly, nearly all economic models dealing with growth and

long-run dynamics assume smoothly changing systems. Those models allowing for discontin-

uous changes usually incorporate exogenous penalties. We have demonstrated the value of

explicitly modeling the shifts in dynamics, explaining how feedback and carbon sink tipping

points affect optimal abatement policies in different ways. Further, we have shown that the

main effect of tipping points on optimal policy is often due to their endogeneity. It is impor-

tant to model a tipping point’s structural effects rather than reducing it to a predetermined

shock to utility, and it is important to capture the effect of policy decisions on the tipping

point hazard.

Second, our work is a call to the climate sciences to improve knowledge about both the

effects of tipping points on system dynamics and the types of temperature paths that trig-

ger them. We have shown that different anticipated changes in dynamics can have quite

different effects on the optimal carbon tax. We demonstrate the economic value of scientific

information about tipping points and open the door to more comprehensive integrated as-

sessments of abrupt climate transitions. Our sensitivity analysis has shown that these more

comprehensive climate change assessments will benefit greatly from progress in the climate

sciences that constrains the regions and probabilities of tipping point occurrence.

Third, our findings support the widespread supposition that the existence of tipping

points in the climate system should have a strong influence on our current policy decisions.

This influence would become stronger if we allowed the policymaker to face multiple tipping

points at once. Numerical integrated assessment models are the main quantitative input into

regulations that put a price on carbon emissions. Yet past studies omitted climatic features

we have shown to be highly relevant. We provide a quantitative basis for adjusting policy

for the possibility of tipping points. Much work remains to make tipping representations

more realistic, but we have demonstrated how to fully endogenize tipping point possibilities

and have provided a first assessment of their effect on policy.
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Appendix

A Additional numerical results for possible climate tip-

ping points

Figure 6 gives additional results for optimal policy in the face of a possible tipping point. As

indicated by the main text’s results for the optimal tax, the tipping point possibility increases

optimal abatement, and abatement jumps down upon first eliminating threshold risk by

preventing temperature from increasing. Even though emissions jump up at this point,

temperature inertia implies that these greater emissions still decrease temperature. Possible

thresholds decrease the optimal investment rate very slightly, but they also eventually lead

to slightly greater available output due to reduced climate damages. Threshold possibilities

primarily affect the optimal tax via the interaction between current emissions and future

threshold crossings. The current period’s marginal hazard effect (MHE) is the next largest

component, but the current period’s differential welfare impact (DWI) is insignificant.

Learning enters the model by expanding the set of safe temperatures and concentrating

probability mass on temperatures yet to be explored (Figure 7a). Therefore, as the world

reaches higher temperatures, a contemplated temperature increase poses a greater hazard

because it cuts through more probability mass (Figure 7b). Lower temperature profiles imply

both less learning and flatter hazard functions for each temperature reached (Figure 7c).

Optimal policy in the face of possible tipping points lowers the hazard rate by reducing

temperature change over time (Figure 7d).22

Figure 8 illustrates the policy response to crossing a threshold. It assumes that the

policymaker is ignorant of the tipping point possibility until 2075, when the tipping point

actually occurs. The effect of crossing a threshold depends on how it affects system dynamics

and on how policy can compensate for the altered dynamics. The carbon tax responds more

strongly to the threshold crossing when it increases climate feedbacks. The CO2 concentra-

tion in the regime with strengthened climate feedbacks follows a lower path than in a case

without thresholds, but degraded carbon sinks produce a much higher carbon concentration

by increasing the persistence of CO2 in the atmosphere. Temperature increases under either

tipping point, but the more aggressive abatement under the climate feedback tipping point

keeps the peak temperature below levels reached under the carbon sink tipping point.

22Each hazard path has a kink at the year 2100 when the exogenous non-CO2 forcing ceases to increase.
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(a) Abatement rate (µt) (b) Abatement cost

(c) Emissions not abated (et) (d) Investment rate

(e) Climate damages (Dt) (f) Components of the optimal tax

Figure 6: Additional results along optimal policy paths for the base case threshold distri-
bution. The plotted simulations assume expected draws of the temperature shock and also
assume that the tipping point never occurs. The lines in the investment plot almost com-
pletely overlap, and the DWI is too small to plot in the optimal tax decomposition. The
decomposition plot includes ambiguity aversion (γ = 100), and the others use the ambiguity-
neutral welfare evaluation.
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(a) Base case probability distribution for T̃ (b) Hazard as a function of temperature change

(c) Learning along the optimal path (d) Hazard along the optimal path

Figure 7: As the time t expected temperature increases without crossing a threshold, the
probability distribution for the threshold level T̃ places more mass on temperatures yet to
be reached (a). Each additional increase in temperature therefore also produces a greater
risk of crossing the threshold (b). Learning increases the hazard posed by a fixed increment
of temperature change as long as temperatures are increasing (c). The actual hazard along
the optimal path (d) also depends on the chosen emission policy. The plotted simulations
assume expected draws of the temperature shock and also assume that the tipping point
never occurs. The hazard in the cases without tipping points is calculated as if they were in
fact possible but the decision-maker is unaware of the tipping possibility.
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(a) Carbon tax (b) Abatement rate

(c) CO2 concentration (d) Temperature

Figure 8: The effect of tipping points on post-threshold policy and state variables. Sim-
ulations assume the decision-maker is ignorant of threshold possibilities until 2075, when
the specified tipping point occurs. The plotted simulations assume expected draws of the
temperature shock.
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B The dynamic climate-economy model

This appendix provides the complete equations for the climate-economy model extending

DICE-2007 from Nordhaus (2008). Table 1 provides the numerical parameterization. The

pre-threshold value function is:23

V0(kt,Mt, Tt, t)

= max
ct,µt

c1−η
t

1− η
+

βt
1− η

∫ [
[1− h(Tt, Tt+1)]

[
(1− η)V0(kt+1,Mt+1, Tt+1, t+ 1)

] 1−γ
1−η

+ h(Tt, Tt+1)
[
(1− η)V1(kt+1,Mt+1, Tt+1, t+ 1)

] 1−γ
1−η

] 1−η
1−γ

dIP

subject to

kt+1 =e−(gL,t+gA,t)

[
(1− δk)kt + (1−Ψtµ

a2
t )

Yt
1 +Dt

− ct
]

(Effective capital)

Mt+1 =et +Mt

[
b11 + b21 [b12 + (b22 + b32b23)αB(Mt, t) + b32b33αO(Mt, t)]

]
(CO2)

Tt+1 =Tt + CT

[
F (Mt+1, t+ 1)− f

s
Tt − [1− αT (Tt, t)]CO Tt

]
(Temperature)

ct+Ψtµ
a2
t

Yt
1 +Dt

≤ Yt
1 +Dt

(Output constraint)

µt ≤ 1 (Non-negativity constraint for emissions)

The state variables are effective capital kt, atmospheric CO2 Mt, cumulative temperature

change Tt, and time t.24 Tipping points change the bold parameters. The controls are

consumption ct, abatement µt, and, as a residual, investment. Welfare in a given period is

the sum of immediate utility u(ct) = c1−η
t /(1− η) and the discounted expectation of future

welfare. The parameter η is the Arrow-Pratt measure of relative risk aversion, and η−1

gives the intertemporal elasticity of substitution. The parameter γ measures aversion to the

less confidently known tipping point uncertainty, as described in Section 4. The constraints

prevent the decision-maker from using more than the output available after accounting for

damages and from abating more than 100% of emissions in a period. When the output

constraint is slack, we have positive capital investment, and when the abatement constraint

is slack, economic activity produces some CO2 emissions that are not abated.

23Normalizing the discount factor, the value function, and some of the equations of motion makes the
objective equivalent to maximizing population-weighted per capita consumption Lt u (Ct/Lt) as in DICE.
The discount factor βt captures a rate of pure time preference of 1.5% as in DICE-2007. It also adjusts for
population growth and technological progress, a step that is part of the normalization yielding a measurement
of consumption in effective labor units. See Crost and Traeger (2010) for details.

24We solve the model using a transformation mapping the infinite time horizon to the unit interval.
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Capital depreciates at rate δk, and capital investment comes from any available output

not allocated to the control variables of consumption ct and abatement µt. The exogenous

variable Ψt and parameter a2 determine the cost of abating the chosen fraction µt of emis-

sions. The term outside the brackets in the capital transition equation adjusts for the growth

of labor and technology to keep capital in effective terms. Gross output Yt is a function of

the capital stock:

Yt = kκt . (Gross output)

The parameter κ gives the capital elasticity in a Cobb-Douglas production function. Climate

damages Dt reduce gross output in accord with the total temperature change:

Dt = d1 (εtTt)
d2 , (Damages)

where the independent, normally distributed multiplicative shock εt has probability measure

IP. Optimal policy adjusts current controls in anticipation of possible future shocks, and a

given period’s realized shock affects the residual output allocated to investment. We calibrate

the mean-1 shock to the years 1881-2010 in the NASA Goddard Institute for Space Studies

(GISS) Surface Temperature Analysis dataset.25 We take expected temperature in each year

to be the mean of the surrounding 10 years’ realized temperatures. The realized standard

deviation of the resulting time series of multiplicative shocks is 0.0068.26 This multiplicative

noise captures period-to-period temperature variability that makes extreme outcomes more

likely as CO2 increases.

The carbon dynamics in DICE-2007 are determined by a transition matrix governing the

flow between the atmospheric stock (stock 1), the combined biosphere and shallow ocean

stock (stock 2), and the deep ocean stock (stock 3). We represent the combined biosphere

and shallow ocean stock as a fraction αB(M, t) of the atmospheric stock and the deep ocean

stock as a fraction αO(M, t) of the atmospheric stock. The parameter b12 gives the fraction

of atmospheric CO2 absorbed by land and ocean sinks over a single timestep. The parameter

b11 = 1 − b12 determines the fraction of CO2 that remains in the atmosphere from period

to period, with the remaining terms in the CO2 transition equation together governing the

transfer of carbon from land and ocean sinks back into the atmosphere. As described in

Section 4, carbon sink tipping points reduce the parameter b12 by a fraction, which also

changes b11, αB, and αO. For both the pre- and the post-threshold regimes, we run DICE-

2007 under several representative emission paths and then approximate the entire coefficient

25Available at http://data.giss.nasa.gov/gistemp/.
26We implement the continuous distribution numerically using a Gauss-Legendre quadrature rule with 8

nodes.
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Table 1: Parameterization of the numerical model following DICE-2007. Several values are
rounded, and CT and δκ vary slightly over time in order to reproduce the DICE results with
an annual timestep.

Parameter Value Description

A0 0.027 Initial production technology
gA,0 0.009 Initial annual growth rate of production technology
δA 0.001 Annual rate of decline in growth rate of production technology

L0 6514 Population in 2005 (millions)
L∞ 8600 Asymptotic population (millions)
δL 0.035 Annual rate of convergence of population to asymptotic value

σ0 0.13 Initial emission intensity before emission reductions
(GtC/output)

gσ,0 -0.0073 Initial annual growth rate of emission intensity
δσ 0.003 Annual change in growth rate of emission intensity

a0 1.17 Cost of backstop technology in 2005 ($1000/tC)
a1 2 Ratio of initial backstop cost to final backstop cost
a2 2.8 Abatement cost exponent
gΨ -0.005 Annual growth rate of backstop cost

B0 1.1 Initial non-industrial CO2 emissions (GtC/y)
gB -0.01 Annual growth rate of non-industrial emissions

EF0 -0.06 Forcing in 2005 from non-CO2 agents (W m−2)

EF100 0.30 Forcing in 2105 from non-CO2 agents (W m−2)

κ 0.3 Capital elasticity in Cobb-Douglas production function
δκ 0.06 Annual depreciation rate of capital
d1 0.0028 Coefficient on temperature in the damage function
d2 2 Exponent on temperature in the damage function
s 3 Climate sensitivity (◦C)

f 3.8 Forcing from doubled CO2 (W m−2)
Mpre 596.4 Pre-industrial atmospheric CO2 (GtC)
CT 0.03 Translation of forcing into temperature change
CO 0.3 Translation of surface-ocean temperature gradient into forcing

b11,b12,b13 0.978,0.023,0 Transfer coefficients for carbon from the atmosphere
b21,b22, b23 0.011,0.983,0.005 Transfer coefficients for carbon from the combined biosphere and

shallow ocean stock
b31,b32,b33 0,0.0003,0.9997 Transfer coefficients for carbon from the deep ocean

ρ 0.015 Annual rate of pure time preference
η 2 Relative risk aversion (also aversion to intertemporal substitu-

tion)

k0 137/(A0L0) Effective capital in 2005, with 137 US$trillion of capital
M0 808.9 Atmospheric carbon dioxide (GtC) in 2005
T0 0.73 Surface temperature (◦C) in 2005, relative to 1900
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on Mt in the CO2 transition equation as an interpolated function of CO2 and time. Time t

emissions et are given by:

et = σt(1− µt)Yt +Bt . (Emissions)

The exogenous variable σt is the emission intensity of gross output and Bt gives exogenous

CO2 emissions from non-industrial sources such as land use change.

DICE-2007 determines time t surface temperature from the stock of CO2, from surface

temperature in the previous period, and from the previous period’s difference between the

surface temperature and the deep ocean temperature. We represent the deep ocean temper-

ature as a fraction αT (T, t) of surface temperature, where αT is an interpolated function of

temperature and time based on output from DICE-2007 under several representative emis-

sion paths. Forcing F (Mt, t) measures the additional energy (W m−2) trapped at the earth’s

surface by greenhouse gases and other atmospheric agents. Forcing is concave in CO2:

F (Mt, t) = f ln (Mt/Mpre) + EFt , (Forcing)

where f is the forcing from doubled CO2 and EFt gives the time t exogenous (non-CO2)

forcing. The parameter s in the temperature transition equation is climate sensitivity, or

the equilibrium temperature change from doubling CO2 concentrations. This parameter is

altered by climate feedback tipping points as described in Section 4. Finally, the parameter

CO determines how a temperature gradient between the surface and the deep ocean affects

forcing at the surface, and the parameter CT controls the speed with which aggregate forcing

changes temperature.

We implement our model with an annual timestep, while DICE-2007 uses a decadal

timestep. We therefore adjust all transition equations from those in DICE by calculating the

parameter values that would reproduce the state variables’ paths if the transition equations

were instead applied to an annual timestep with constant policies over the decade. Our

model replicates DICE’s results when run with DICE’s policy path or when optimizing with

a 10-year timestep as in DICE. However, when optimizing with an annual timestep and

without tipping point possibilities, the policymaker’s ability to smooth emissions within a

decade leads to the peak CO2 level being about 30 ppm lower than in DICE, the maximum

temperature being about 0.15◦C lower, and the year 2015 social cost of carbon being about

$4/tCO2 lower.

The transition equations for the exogenous variables are as follows. In each case, t = 0
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corresponds to the year 2005.

At =A0 exp

[
gA,0
δA

(
1− e−tδA

)]
(Production technology)

gA,t =gA,0e
−tδA (Growth rate of production technology)

Lt =L0 + (L∞ − L0)
(
1− e−tδL

)
(Labor)

gL,t =δL

[
L∞

L∞ − L0

etδL − 1

]−1

(Growth rate of labor)

βt = exp (−ρ+ (1− η)gA,t + gL,t) (Effective discount factor)

σt =σ0 exp

[
gσ,0
δσ

(
1− e−tδσ

)]
(Uncontrolled emissions per output)

Ψt =
a0σt
a2

(
1− 1− etgΨ

a1

)
(Abatement cost factor)

Bt =B0e
tgB (Non-industrial CO2 emissions)

EFt =EF0 + 0.01(EF100 − EF0) min{t, 100} (Non-CO2 forcing)

The primary computational challenge in solving the model lies not in finding the optimal

actions for a given value function but in determining the value functions that satisfy the

relations in equations (1) and (3) (see Kelly and Kolstad, 1999, 2001). We begin with a

guess for the value function and a set of Chebychev nodes in the four-dimensional state

space. We then use the initial guess for the continuation value to find each node’s optimal

controls c∗t and µ∗t and optimal value. Knowing the optimal value at each Chebychev node,

we approximate the value function across the rest of the state space using a set of Chebychev

basis polynomials. We repeat the process using this approximated value function as the new

initial guess, with iteration continuing until the coefficients of the value approximant’s basis

functions change by less than 0.0001. We confirm the results by checking that they are

robust to variations in the number of nodes and basis polynomials and to variations in the

approximated region of the state space.

C Approximating the effects of ambiguity aversion

We here describe how we analytically approximate the effect of ambiguity aversion on the

differential welfare impact (DWI) and the marginal hazard effect (MHE).

First, the contribution of ambiguity aversion to the total DWI was given by:

DWIambig = (1− h)

(
f ′amb(V0)

f ′amb(Veff )
− 1

)(
−∂V0

∂et

)
+ h

(
f ′amb(V1)

f ′amb(Veff )
− 1

)(
−∂V1

∂et

)
.
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Ambiguity aversion increases the DWI whenDWIambig > 0 and decreases it whenDWIambig <

0. Substituting first-order expansions of f ′amb around Veff yields:

DWIambig ≈h f
′′
amb

f ′amb

∣∣∣∣
Veff

(
(V0 − Veff )

∂V0

∂et
− (V1 − Veff )

∂V1

∂et

)
+
f ′′amb
f ′amb

∣∣∣∣
Veff

(V0 − Veff )
(
− ∂V0

∂et

)
.

We derive an expression for Veff by undertaking a second-order expansion of Veff around

famb[V0]. We then substitute in a second-order expansion of famb[V1] around V0 and drop

terms of order greater than h to obtain:

Veff ≈ V0 − h[V0 − V1]− 1

2
h
−f ′′amb
f ′amb

∣∣∣∣
V0

[V0 − V1]2 +O(h) . (11)

Substituting for Veff in DWIambig and again dropping terms of order greater than h yields

the result in the text.

Ambiguity aversion changes the MHE through the multiplier

famb[V0]− famb[V1]

[V0 − V1] f ′amb
[
Veff

] .

Ambiguity aversion increases the MHE when this multiplier is greater than 1. We approxi-

mate the multiplier by first approximating famb by a second-order Taylor expansion around

Veff :

famb[V0]− famb[V1]

[V0 − V1] f ′amb
[
Veff

] ≈ 1− −f
′′
amb

f ′amb

∣∣∣∣
Veff

(V0 − Veff ) + (V1 − Veff )
2

.

Substituting for Veff using equation (11) yields the result in the text.
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