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1 Introduction

Our paper presents identification results for two classes of models that we show are formally

equivalent. For clarity, we discuss the two models separately in the introduction.

1.1 Discrete Choice Games

We study identification of static, binary choice games of complete information with two or

more players. Such models include games of product adoption with social interactions, entry

games, and labor force participation games, among many others.1 In these models the inter-

action effects capture the strategic interdependence among the decisions of players and are

therefore a fundamental target of estimation. Interaction effects are often hard to distinguish

from unobserved preferences that are correlated across players, as these two sources of in-

terdependence have similar observable implications. For example, similar smoking behavior

among friends may be due to peer effects or to correlated tastes for smoking. Likewise, firms

may tend to enter into geographic markets in clusters because the competitive effects of entry

are small or because certain markets are profitable for unobservable reasons. Though it is

well known that not taking the correlation of unobservables into account can lead to a serious

bias in the estimates, much of the empirical literature assumes some kind of independence

or conditional independence. We introduce the class of potential games to model strategic

interactions and propose an identification approach that allows for correlated unobservables

across players.

A game is said to be a potential game if it admits a so-called exact potential function,

which is a real-valued function defined on the space of pure strategy profiles such that the

change in any player’s payoffs from a unilateral deviation equals the change in the associated

potential. In an influential paper, Monderer and Shapley (1996) show that any maximizer

of the potential function is a Nash equilibrium of the associated game (for exact potential

games) and that this function is uniquely defined up to an additive constant. Thus, the set of

maximizers does not depend on the specific potential function that we use and the potential

offers an equilibrium refinement. Under mild conditions, in our model the maximizer is

1See, e.g., Heckman (1978), Bjorn and Vuong (1984), Bresnahan and Reiss (1991), Berry (1992), Mazzeo
(2002), Ciliberto and Tamer (2009), Hartmann (2009), Bajari et al. (2010) and Card and Giuliano (2012).
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unique with probability 1. As we will discuss in more detail below, one necessary requirement

for a game to admit a potential function is that interaction effects, but not standalone utilities

from actions, be groupwise symmetric.

Recent theoretical and experimental work has provided economic justification to the

potential function refinement. Most importantly for our approach, Ui (2001) shows that if

a unique Nash equilibria maximizes the potential function, then that equilibrium is robust

in the sense of Kajii and Morris (1997a, 1997b), particularly the 1997b paper. Roughly

speaking, a Nash equilibrium of a complete information game is robust if every incomplete

information game with payoffs almost always given by the complete information game has an

equilibrium that generates behavior close to the original equilibrium. Ui does not show that

all robust equilibria maximize a potential function in a potential game, but, at a minimum,

the maximizer of the potential selects one such robust equilibrium. There is also experimental

evidence remarkably consistent with this equilibrium selection rule in the minimum effort

(stag hunt) game (Van Huyck et al. 1990, Goeree and Holt 2005, and Chen and Chen 2011).

An advantage of using any equilibrium selection rule is that the model can make unique

counterfactual predictions. As structural analysis is often motivated by a desire to estimate

policy counterfactuals, some selection rule will increase the precision (and ease of replication)

of certain conclusions in a typical empirical paper estimating a game theoretic model.

This paper explores the power of the potential function selection mechanism from an

econometric perspective.2 As we explain below, the equilibrium selection rule based on

potential maximizers not only completes the model, but it also links observed choices to

a single maximization problem that has an alternative economic interpretation: under this

refinement the game is observationally equivalent to a single agent discrete choice model for

bundles of goods.

The identification strategy that we pursue relies on exclusion restrictions at the level

of each player. These restrictions yield observed regressors that affect the payoff of one

player but not the others and enter payoffs additively separably. These exclusion restrictions

have been called special regressors in, for example, the literature on discrete choice (Lewbel

1998, 2000, Matzkin 2007, Berry and Haile 2010, Fox and Gandhi 2012). Our identification

2Deb (2009) uses potential game to provide testable implications of a model of consumption with exter-
nalities.
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strategy also requires a condition under which the inequalities implied by choice data can

be inverted in the unobservables. This condition calls for a vector of choices such that

whenever individual deviations are not profitable, then that vector of choices maximizes the

potential function associated to the game. We prove that this restriction is always satisfied

when there are two players, when the interaction effects are negative (i.e., games of strategic

substitutes), and when the interaction terms have arbitrary signs but are not too large in

absolute value (i.e., concave games in the sense of Ui 2008). Our restrictions are enough to

nonparametrically identify the entire structure of the game: players’ subutilities of choosing

each action as a function of the regressors and the actions of other players as well as the

distribution of potentially correlated unobservables.

The parametric identification and estimation of static, discrete choice games of complete

information has been recently studied by Bajari et al. (2010), Beresteanu et al. (2011),

Ciliberto and Tamer (2009), and Galichon and Henry (2010). Our paper departs from this

literature in that it is nonparametric and demonstrates point rather than set identification.

Given the trade-offs, our approach is more restrictive in other respects: we focus on the

binary actions case (enter or not, smoke or not) and assume a specific equilibrium selection

rule. Unlike some work on identification for complete information games, our proofs do not

rely on identification at infinity. We do require large support on regressors to identify the

joint distribution of the unobservables in the tails, just as in the binary and multinomial

choice literature (e.g., Manski 1988, Thompson 1989, Matzkin 1993, Lewbel 2000). Binary

games of incomplete information have received a lot of attention (e.g., Brock and Durlauf

2001, 2007, De Paula and Tang 2011, and Lewbel and Tang 2011). As Bajari et al. (2010)

explain, the challenges involved in complete information games are quite different.

For the special case of two players, we offer an alternative proof of identification that

does not rely on equilibrium selection and the symmetry restriction on the interaction effects

needed for the game to admit a potential function. Building on Tamer (2003), Berry and

Tamer (2006, Result 4) study identification in two-player, submodular games where the key

special regressors enter multiplicatively instead of additively. Both results, theirs and ours,

require knowledge of the signs of the interactions terms. The advantage of our identification

argument with respect to these two papers is that we do not rely on identification at infinity

to recover the interaction terms.
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1.2 Discrete Demand for Bundles

Under the equilibrium selection rule based on potential maximizers, we show that the binary

game is formally equivalent to a multinomial choice demand model where a consumer can

elect to purchase any bundle of products. Therefore, our paper also investigates identification

in multinomial choice models for bundles of goods. When applied to these models, we

identify the stand-alone payoff of each choice, the terms representing complementarities or

substitutabilities among products, and the joint distribution of the unobservables for the

individual goods. Here again, we allow for correlated tastes for alternative goods, a distinct

explanation for purchasing bundles of goods from true interdependences in consumption.

For example, consumers could be seen to often purchase both cable television service and

large-screen televisions because there are complementarities in the consumption of these

two goods or because consumers with a high stand-alone utility for cable television tend to

also have a high stand-alone utility for large-screen televisions. Our identification approach,

relying on regressors that affect the stand-alone utility of one product but not the other, can

distinguish complementarities in utility from correlated unobservable preferences.

Gentzkow (2007a) studies a parametric demand model for interdependent goods. He fo-

cuses on demand for print and online newspapers, allowing the marginal utility of consuming

one good to depend on whether the other good is consumed as well. Athey and Stern (1998)

study a model where firms have the possibility to combine individual activities in order to

achieve their objective, and these activities are complements. To our knowledge, we are

the first to give conditions for nonparametric identification in models such as Gentzkow’s

and Athey and Stern’s. The sufficient conditions we propose to identify the distribution of

the unobservables are economically similar to some of the requirements imposed in tangen-

tially related identification papers. For example, Berry, Gandhi and Haile (2011) provide a

sufficient condition under which a system of demand functions (with continuous outcomes

such as shares) can be inverted in unobservables. Their condition applies to goods that are

(connected) substitutes, and is loosely related to our result on games of strategic substitutes.

Matzkin (2007) studies the inversion of simultaneous equations in models with continuous

outcomes, imposing quasi-concavity. As we explained earlier, we suggest a discrete version

of her requirement.
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1.3 Estimation

We do not formally explore estimation because the estimation problem is relatively straight-

forward conceptually once identification is established. One could apply simulated maximum

likelihood with sieve-based approaches for modeling the distribution of the unobservables and

the also infinite-dimensional standalone utilities and interaction effects (Chen 2007).

The rest of the paper is as follows. Section 2 describes the game. Section 3 defines

potential games, provides a precise condition under which the games we study admit a

potential function, and sheds light on the mechanism by which the potential selects among

multiple equilibria. Section 4 provides the identification results for potential games. Section

5 shows identification in two player games without relying on an equilibrium selection rule

or on symmetry in interaction effects. Section 6 presents identification results for models of

discrete demand for bundles of goods. Section 7 concludes. All proofs are collected in an

appendix.

2 The General Game

We consider a simultaneous discrete choice game with complete information. The set of

players is N = {1, ..., n} . Each player i ∈ N chooses an action ai from two possible alter-

natives {0, 1} . We denote by X ∈ X ⊆ Rk a vector of observable state variables (with x

the realization of the random variable) and let ε ≡ (εi)i≤n ∈ Rn indicate a vector of random

terms that are observed by the players but not by the econometrician. The random vector

ε is distributed according to the cumulative distribution function (CDF) Fε|x. We allow the

unobservables to be correlated even after conditioning on the observable state variables. The

payoff of player i from choosing action 1 is

U1i (a−i, x, εi) ≡ ui (x) + vi (a−i, x) + εi, (1)

while the return from action 0, U0i (a−i, x, εi), is normalized to 0. The first element of (1),

ui (x), is the stand-alone value of action 1, and vi (a−i, x) captures the effect that the choices

6



of other players have on player i. We denote this game by Γ (x, ε) .3

A vector of decisions a∗ ≡ (a∗i )i≤n is a pure strategy Nash equilibrium if, for all i ∈ N ,

a∗i =


1, if ui (x) + vi

(
a∗−i, x

)
+ εi > 0

0, if ui (x) + vi
(
a∗−i, x

)
+ εi < 0

1 or 0, otherwise.

We write D (x, ε) for the equilibrium set (in pure strategies) of Γ (x, ε). The same conditions

that will facilitate identification of the game guarantee that D (x, ε) is non-empty.

The purpose of our analysis is to recover the structure of the game from available data

on choices and covariates. Before formalizing our objective, we introduce potential games.

3 Potential Games

In game theory, a potential function—or, more precisely, an exact potential—is a real-valued

function defined on the space of pure strategy profiles such that the change in any player’s

payoffs from a unilateral deviation is equal to the gain in the potential function. When a

game admits such a function it is called a potential game.4 This concept was first used in

economics as a way to prove existence of Nash equilibrium in pure strategies.5 The reason is

that the set of maximizers of the potential function corresponds to a subset of equilibria of the

related game. In finite games, the potential function has a finite set of values and always has a

maximizer. It follows that the equilibrium set (in pure strategies) of any finite potential game

is guaranteed to be non-empty. We will argue below that the distribution of unobservables,

ε, in our model implies that a unique pure strategy equilibrium will maximize the potential

3The additive separability of ui (x) and vi (a−i, x) in U1i (a−i, x, εi) does not impose any restriction on
the model; it is just a convenient way to write the payoffs. On the other hand, the additive separability of εi
in U1i (a−i, x, εi) is a restriction in the sense that it eliminates the possibility of interaction effects between
the unobservables of player i and the choices of other players in the game.

4Monderer and Shapley (1996) also define ordinal and weighted potential games. We study identification
for exact potential games. Thus, throughout, when we say potential, we mean exact potential. This follows
the recent theoretical literature on equilibrium refinements, which focuses on exact potentials (e.g., Ui 2000,
2001).

5According to Monderer and Shapley (1996), this concept appeared for the first time in Rosenthal (1973)
to prove equilibrium existence in congestion games.
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function with probability 1 (over ε). Therefore, a potential maximizing equilibrium always

exists and is unique with probability 1.

Monderer and Shapley (1996) show that when a game admits an exact potential function,

this function is uniquely defined up to an additive constant. Thus, the set of maximizers

does not depend on the specific potential function we use and the potential offers an equi-

librium refinement. Important work has been done to address whether this selection rule

is economically meaningful. Ui (2001) shows that if a unique Nash equilibrium maximizes

the potential function, then that equilibrium is generically robust in the sense of Kajii and

Morris (1997a, 1997b), particularly the definition in the 1997b paper. Roughly speaking, a

Nash equilibrium of a complete information game is said to be robust if every incomplete

information game with payoffs almost always given by the complete information game has

an equilibrium that generates behavior close to the original equilibrium. See Ui for a for-

mal definition. All robust equilibria do not necessarily maximize a potential function in a

potential game, but, at a minimum, the maximizer of the potential selects one such robust

equilibrium. Ui writes that “It is an open question when robust equilibria are unique, if they

exist.”6

In lab experiments studying the so-called minimum effort game, observed choice data

were shown to be consistent with the maximization of objects close to the potential function

associated to the game (Van Huyck et al. 1990, Goeree and Holt 2005, and Chen and Chen

2011). For example, Van Huyck et al. find that subjects converge to high and low effort

levels according to the prediction of the potential maximizer refinement.7 While we do not

restrict ourselves to only minimum effort games, it is interesting that the potential maximizer

refinement can explain the subtle experimental evidence in this literature.

From an econometric perspective, finite potential games are attractive for at least two

6In a certain two-player, exact potential game, Blume (1993) states that a log-linear strategy revision
process selects potential maximizers. See also Morris and Ui (2005) for a discussion of so-called generalized
potential functions and robust sets of equilibria. Weinstein and Yildiz (2007) present a deep critique of all
refinements of rationalizability, including Nash equilibrium. They write about the robustness definition in
Kajii and Morris (1997a): “Then the key difference between our notions of perturbation is that they focus on
small changes to prior beliefs without regard to the size of changes to interim beliefs, while our focus is the
reverse. Their approach is appropriate when there is an ex ante stage along with well understood inference
rules and we know the prior to some degree.”

7See Monderer and Shapley (1996, Section 5) for the original discussion of how Van Huyck et al.’s
experimental evidence relates to potential games.
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reasons. First, by offering a meaningful equilibrium selection rule, the potential function

completes the model. Second, this function links observed choices to a single maximization

problem that relates to other relevant economic problems (such as demand for bundles) and

aids identification.

We next specify the definition of a potential function and then provide a necessary and

sufficient condition for Γ (x, ε) to be a potential game. In what follows, Ui (ai, a−i, x, εi) ≡
U0i (a−i, x, εi) 1 (ai = 0) + U1i (a−i, x, εi) 1 (ai = 1) .

Potential: A function V : {0, 1}n × X × Rn → R is a potential function for Γ if, for all

i ≤ n, all ai, a
′
i ∈ {0, 1} , and all a−i ∈ {0, 1}n−1 ,

V (ai, a−i, x, ε)− V (a′i, a−i, x, ε) = Ui (ai, a−i, x, εi)− Ui (a′i, a−i, x, εi) .

Γ is called a potential game if it admits a potential function.

Monderer and Shapley (1996) show that Γ is a potential game if (and only if) cross

effects on payoffs are symmetric for every pair of players. Ui (2000) provides an alternative

characterization of this class of games, which has the additional advantage of describing the

potential function. The next result derives from Ui (2000, Theorem 3). We write S(a) ⊂ N
for the set of players who select action 1 in a,

S (a) = {S ⊆ S (a) | |S| ≥ 2} , andS (a, i) = {S ⊆ S (a) | |S| ≥ 2, i ∈ S} .

Proposition 1. Γ is a potential game if and only if there exists a function

{Φ (S, x) | Φ (S, x) : S → R, S ⊂ N , |S| ≥ 2}

such that, for all a ∈ {0, 1}n and all i ∈ N ,

Ui (a, x, εi) = (ui (x) + εi) 1 (ai = 1) +
∑

S∈S(a,i)
Φ (S, x) .
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A potential function is given by

V (a, x, ε) =
∑

i∈N
(ui (x) + εi) 1 (ai = 1) +

∑
S∈S(a)

Φ (S, x) .

If ε has an atomless support, then the maximizer of the potential function in Proposition

1 is unique with probability 1. By assuming that observed choices correspond to the potential

maximizer, we therefore guarantee there is a unique equilibrium in pure strategies in the data

generating process.8

The next example applies Proposition 1 to the case of two players. It clarifies the condi-

tions under which the game is a potential game and sheds light on the mechanism by which

the potential selects an equilibrium when the model makes multiple predictions.

Example 1. (Two-Player Game) Let N = {1, 2}. The payoff of player i can be written

as

(ui (x) + εi + vi (x) 1 (a−i = 1)) 1 (ai = 1) for i = 1, 2.

There is only one set S to consider, i.e., {1, 2} . Interaction terms are given by

v1 (x) 1 (a1 = 1) 1 (a2 = 1) and v2 (x) 1 (a1 = 1) 1 (a2 = 1) .

Thus, by Proposition 1, Γ is a potential game if (and only if) v1 (x) = v2 (x) = Φ ({1, 2} , x) ,

in which case the potential function can be written as

V (a, x, ε) = (u1 (x) + ε1) 1 (a1 = 1)+(u2 (x) + ε2) 1 (a2 = 1)+Φ ({1, 2} , x) 1 (a1 = 1, a2 = 1) .

Therefore, interaction terms have to be the same for both players for the game to admit a

potential function. We write Φ (x) = Φ ({1, 2} , x) to simplify the exposition.

Because Γ is a finite potential game, it always has at least one equilibrium in pure

strategies. When the equilibrium is unique, it is always a potential maximizer. Under

multiple equilibria, the criterion by which the potential function selects one of them depends

8Monderer and Shapley (1996) also discuss mixed strategy equilibria. We focus on only pure strategies
not because mixed strategies are inconsistent with the potential function, but because mixed strategies
complicate identification by reintroducing multiple equilibria.
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on the sign of the interaction effect, as we explain next. We assume no tie events in the

analysis below.

When Φ (x) ≤ 0 and the game has multiple equilibria, then the equilibrium set is D =

{(0, 1) , (1, 0)}. In this case, (0, 1) maximizes the potential if

u2 (x) + ε2 > u1 (x) + ε1

and the maximizer is (1, 0) otherwise. Thus, the equilibrium selection rule induced by the

potential function predicts that the player choosing action 1 shall be the one with the highest

stand-alone value.

Alternatively, the equilibrium set is D = {(0, 0) , (1, 1)} when Φ (x) ≥ 0 and the game

has multiple equilibria. It can be easily checked that (1, 1) maximizes the potential if

(−u1 (x)− ε1 − v (x)) (−u2 (x)− ε2 − v (x)) > (u1 (x) + ε1) (u2 (x) + ε2) .

The maximizer is (0, 0) otherwise. That is, players coordinate on (1, 1) if the product of

deviation losses from selecting action 0 as compared to action 1 while the other player

selects action 1 are lower than the product of deviation looses from selecting action 1 instead

of action 0 when the other player selects action 0. In this case, the potential maximizer

corresponds to the less risky equilibrium of Harsanyi and Selten (1988). �

Example 2. (Three-Player Game) Let N = {1, 2, 3}. Each player has its own stand-

alone utility. The interaction terms are Φ ({1, 2} , x), Φ ({1, 3} , x), Φ ({2, 3} , x) and Φ ({1, 2, 3} , x).

Then, for example, the utility of choosing action 1 by player 1 is

u1 (x)+ε1+Φ ({1, 2} , x) 1 (a2 = 1)+Φ ({1, 3} , x) 1 (a3 = 1)+Φ ({1, 2, 3} , x) 1 (a2 = 1, a3 = 1) .

�

These two examples shed light on the restrictions embedded in Proposition 1 for a game

to admit a potential function. Each interaction term Φ (S, x) needs to be the same across

all players in S ⊂ N . While interaction terms have to respect this groupwise symmetry, the
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stand-alone values are allowed to deeply differ across individuals. Consider the example of

entry by discount realtors in the United States (e.g., Ellickson et al. 2010, Jia 2008). The

assumption of groupwise symmetry rules out that Walmart’s entry in a geographic market

lowers the profits of Kmart more than Kmart’s entry lowers the profits of Walmart. We do

allow the monopoly profit function of Walmart to vary considerably from that of Kmart, and

we impose no restrictions on the joint distribution of the unobservables entering the profits

of Walmart and Kmart. In the three-player case, the interaction term for both Kmart and

Walmart entering can differ from the interaction term for both Kmart and Target entering,

for example. There is a separate term Φ ({1, 2, 3} , x) for all three players (Kmart, Target,

Walmart) entering.

Many empirical applications impose that the Pareto optimal equilibrium is always se-

lected in coordination games (see, e.g., Gowrisankaran and Stavins 2004, and Hartmann

2009). Under positive spillovers, this amounts to selecting the largest equilibrium (which

always exists in this set-up). The criterion based on the potential maximizer makes predic-

tions that are more in line with the promoters of coordination failures (see, e.g., Cooper and

John 1988). Which selection device is more appropriate depends on the specific application

we are dealing with; more research needs to be done to address this question. We should

remark here that our results in Section 5 on the special case of two players offer a natural

environment for performing a nonparametric test of equilibrium selection.

4 Identification in Potential Games

4.1 Assumptions and Main Result

For our identification purpose, we will assume that Γ admits a potential function and that

observed actions correspond to a potential maximizer. Indeed, we consider games where

observed choice behavior derives from the maximization problem

maxa

{
V (a, x, ε) ≡

∑
i∈N

(ui (x) + εi) 1 (ai = 1) +
∑

S∈S(a)
Φ (S, x) | a ∈ {0, 1}n

}
. (2)
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We assume the econometrician observes the vector of covariates and choices,
(
x, (ai)i≤n

)
,

for a cross section of independent n-player games that share the same structure Π =(
(ui)i≤n ,Φ, Fε|x

)
. These independent games can be different markets or different groups

of friends, according to the particular application. The objective of the analysis is to com-

bine initial assumptions with data to learn about Π.

We define

W (a, x) ≡
∑

i∈N
ui (x) 1 (ai = 1) +

∑
S∈S(a)

Φ (S, x) .

By our initial normalization, W (a = (0, 0, ..., 0) , x) = 0. For expositional ease, we order

the elements of {0, 1}n in terms of the lexicographic order so that a1 = (0, 0, ..., 0), a2 =

(1, 0, ..., 0), ..., and a2n = (1, 1, ..., 1).

We indicate by 4W (a′, x) and 4ε (a′) the (2n − 1)−dimensional vectors

(W (aj , x)−W (a′, x))j≤2n,aj 6=a′ and
(∑

i∈N
εi1 (a′i = 1)−

∑
i∈N

εi1
(
aji = 1

))
j≤2n,aj 6=a′

respectively. Thus, for each a′,

P
(
4W (a′, x) | x;Fε|x

)
≡ Pr (4ε (a′) ≤ 4W (a′, x) | x)

captures the probability of observing choice vector a′ conditional on X = x, or in simpler

notation, Pr (a′ | x).9 The researcher can identify Pr (a′ | x) directly from the data.

We now introduce our assumptions and then discuss how these restrictions are satisfied

in alternative environments.

Assumption 1: Let X ≡
(
X ′, X̃

)
with X̃ ≡

(
X̃i

)
i≤n

. We assume ui (x) ≡ ui (x
′) + x̃i,

9More formally, let us define

4jε (a′) ≡
∑

i∈N
εi1 (a′i = 1)−

∑
i∈N

εi1
(
aji = 1

)
and 4jW (a′, x) ≡W (aj , x)−W (a′, x) .

Thus 4ε (a′) is the vector
(
4jε (a′)

)
j≤2n,aj 6=a′ , which has a distribution dF4ε(a′)|x′ . Then,

P
(
4W (a′, x) | x;Fε|x

)
≡
ˆ

...

ˆ
1
(
41ε (a′) ≤ 41W (a′, x)

)
...1
(
42nε (a′) ≤ 42nW (a′, x)

)
dF4ε(a′)|x.
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and Φ (S, x) ≡ Φ (S, x′) for all S ⊂ N such that |S| ≥ 2.

Assumption 2: The conditional distribution of each player’s X̃i given the other covariates

has support on all of R.

Assumption 3: (i) ε is independent of X̃ and we write Fε|x′ as a consequence; and (ii)

E(ε | x′) = E(ε) = 0.

Assumption 4: ε has an everywhere positive Lebesgue density (on all Rn) conditional on

x′.

Assumption 5: For each x̂′ there exists a known vector â ∈ {0, 1}n with the following

properties. For all x̃, where x̂ = (x̂′, x̃), and for all ε, V (a, x̂, ε) is maximized at â if

V (âi, â−i, x̂, ε) ≥ V (ai, â−i, x̂, ε) for all i ∈ N , where ai = 1− âi.

Assumption 1 requires exclusion restrictions at the level of each player, meaning we have

n excluded regressors. It assumes X ≡
(
X ′, X̃

)
includes a subvector X̃ of player-specific

factors that enter payoffs in an additively fashion. These are the special regressors familiar

from the literature on binary and multinomial choice models without bundles (e.g., Manksi

1988 and Lewbel 2000). Exclusion restrictions are key to identifying Fε|x′ separately from

the interaction effects. The intuition is simple: X̃i only affects player j’s action through

interaction effects. So interaction effects must be present if changes in the realization x̃i

correspond to changes in the marginal probability of player j’s action.

Assumption 2 is a standard large support restriction on the special regressors. Without

such a restriction, one cannot identify the tails of the distribution of Fε|x′ , just as in the liter-

ature on binary and multinomial choice. This use of large support is not what is informally

called in the literature identification at infinity, which in our model would involve using only

covariate values x̃ that set the probability of all but one agent taking the binary action to be

1 or 0. This in effect turns a multi-player game into a single-agent choice model. Identifica-

tion at infinity would never allow the identification of the joint distribution of the vector ε,

which is key to our separate identification of correlated unobservables and interaction effects.

Tamer (2003) did use an identification at infinity argument to establish parametric identi-

fication of the interaction effects in two-player games. Berry and Tamer (2006, Result 4)

also looked at two-player games where special regressors enter multiplicatively and identified

the distribution of unobservables without identification at infinity but used identification at
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infinity to identify the other parameters. The lack of a player-specific coefficient on x̃i is just

a scale normalization: utility is measured in the units of x̃i for each player.10

Assumption 3(i) is necessary to recover the distribution of unobservables ε from variation

in the special regressors x̃. Assumption 3(ii) provides a location normalization. For any x′,

the mean of ε is not separately identified from ui (x
′), which subsumes the role of any

intercept.11

Assumption 4 gives probability zero to tie events. It also insures that P
(
4W (a′, x) | x;Fε|x′

)
is continuous and strictly monotone in some of its arguments in the vector 4W (a′, x) (e.g.,

Matzkin 1993, Assumptions 2.5 and 2.6). We revisit the qualification “some of” below.

Assumption 5 is a key economic restriction that is new to our paper. It requires that

there exists a vector of choices (known by the econometrician) that maximizes the potential

function when individual deviations are non-profitable. In the next subsection, we provide

three sufficient conditions for Assumption 5 to hold.

The structure Π =
(
(ui)i≤n ,Φ, Fε|x′

)
is said to be identified whenever for two values, Π1

and Π2, there exist values a and x where Pr (a | x; Π1) 6= Pr (a | x; Π2). Here Pr (a | x; Π) is

the probability of observing the actions a given covariates x when the true structure is Π.

By Assumptions 1–4, establishing identification for one point x will extend identification to

a set of x with positive measure. Our main identification result follows.

Theorem 1. Under Assumptions 1–5, Π =
(
(ui)i≤n ,Φ, Fε|x′

)
is identified.

The proof of the theorem is the direct consequence of two lemmas, which we state sepa-

rately in order to give some intuition for the steps of the identification argument.

Lemma 1. If Assumptions 1–3 and 5 are satisfied, then Fε|x′ is identified.

In this lemma’s proof, we leverage Assumption 5 and the special regressors X̃ to trace the

distribution Fε|x′ . Given Assumption 5, this step is inspired by arguments in the literature

on binary and multinomial choice without bundles.

10We have written x̃i as entering additively. By changing its units (multiplying by -1), the true underlying
regressor could enter negatively as well.

11In the context of binary choice, Magnac and Maurin (2007) show that identification under the mean
independence assumption is sensitive to the large support assumption. They suggest alternative assumptions,
which we could presumably adapt here. More generally, many advances from the binary and multinomial
choice literatures could be used in the discrete games setting.
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Lemma 2. If Assumptions 1–3 and 4 are satisfied and if Fε|x′ is identified, then the stand-

alone utility functions and interaction terms
(
(ui)i≤n ,Φ

)
are also identified.

The vector4W (a′, x) affects the value of equilibrium probabilities P
(
4W (a′, x) | x;Fε|x′

)
.

The second lemma argues that different parameter values give different 4W (a′, x) and, by

Assumption 4, different probabilities Pr (a | x). On its surface, this lemma is also analo-

gous to arguments in the literature on binary and multinomial choice without bundles (e.g.,

Matzkin 1993). However, the arguments in the case of discrete games (and later, multinomial

choice over bundles) are more complex for one key reason. In multinomial choice without

bundles, under Assumption 4, the equivalent to P
(
4W (a′, x) | x;Fε|x′

)
is strictly monotone

in each element of the equivalent to the vector 4W (a′, x). In our setting, this does not

necessarily hold, which can be seen best by example.

Example 3. Consider the two-player game from the previous example. Let Φ (x′) < 0 for

all x′. Say we are calculating the probability of the outcome a′ = (0, 0). This occurs when

the following inequalities hold

u1 (x′) + x̃1 + ε1 < 0

u2 (x′) + x̃2 + ε2 < 0

u1 (x′) + x̃1 + ε1 + u2 (x′) + x̃2 + ε2 + Φ (x′) < 0.

Because Φ (x′) < 0, when the first two inequalities hold then the last one is always true.

Therefore, the probability of the outcome a = (0, 0) will not be strictly monotone in one of

the elements of4W ((0, 0) , x) , i.e., u1 (x′)+x̃1+ε1+u2 (x′)+x̃2+ε2+Φ (x′)−0. In this case,

the empirical moments Pr ((0, 0) | x) for all x will not identify the interaction effects. The

proof of Theorem 1 states that some other action profile a can be found such that Pr (a | x)

identifies the interaction effects. �

By Assumption 4, P
(
4W (a′, x) | x;Fε|x′

)
is strictly monotone in the set of inequalities

that are not implied by other inequalities. Our identification proof exploits the fact that

this set of inequalities depends only on the values of the interaction effects Φ (x′), not on the

realization of the unobservables.
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This paper does not explore estimation. However, P
(
4W (a′, x) | x;Fε|x′

)
is the key

ingredient into the likelihood as a function of the infinite-dimensional objects in the structure

Π =
(
(ui)i≤n ,Φ, Fε|x′

)
. In likelihood-based estimation, sieve approximations would likely

be necessary for each of the infinite-dimensional objects (Chen 2007). More practically,

given a limited sample size a researcher might use a flexible functional form for only the

important unknown functions in the model. The most important unknown functions could

be the interaction effects and the distribution of unobservables, if distinguishing these two

explanations for correlated actions in the data is a key empirical objective.

In some cases, players will be anonymous, meaning that player indices i have no common

meaning across markets. In a study of smoking peer effects, we might have five friends in

each group of such friends. In an entry application without a focus on chains, we might

have two potential entrants. In these cases, it is reasonable to impose that the function

ui (x
′) actually does not vary by the index of the agent i. Further, the interaction effects

Φ (S, x) should depend only on the number of players taking the action, not the identity of

the other players. Finally, the random vector ε should be exchangeable, conditional on x′,

in the indices of the players. All these restrictions are special cases of the general result in

Theorem 1.

In a similar model (demand for bundles), Gentzkow (2007b, Proposition 2) exploits the

linearity of utilities in the special regressors in order to analyze the counterfactual com-

parative statics of action probabilities in covariates. The same approach to comparative

statics can be used here upon identification of the structure Π. The next section proceeds

in the opposite direction: we use monotone comparative statics to facilitate identification.

More precisely, in the two-player case we use how action probabilities vary with the special

regressors to learn the sign of the interaction effect.

4.2 Sufficient Conditions for Assumption 5

4.2.1 Two-Player Games

The next lemma states that Assumption 5 always holds in two-player games.

Lemma 3. If Assumptions 1–4 are satisfied and N = {1, 2}, then (i) the sign of Φ (x′) is
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identified at all x′; and (ii) Assumption 5 holds with â = (1, 0) or â = (0, 1) when Φ (x̂′) ≥ 0

and â = (0, 0) or â = (1, 1) when Φ (x̂′) ≤ 0.

The proof of Lemma 3 in the appendix involves two steps. We first show (using monotone

comparative statics techniques) that the sign of Φ (x′) is identified from data. We then prove

that this information is sufficient for Assumption 5 to hold. To shed light on this idea, recall

that by Example 1, if Γ is a two-player game we can write its potential function as

V (a, x, ε) = (u1 (x) + ε1) 1 (a1 = 1) + (u2 (x) + ε2) 1 (a2 = 1) + Φ (x′) 1 (a1 = 1, a2 = 1) .

If Φ (x) ≥ 0, then V is supermodular in (a1, a2). Under Assumption 1, V has increasing

differences in both (a1, x̃1) and (a2, x̃1). Then, by Topkis’ theorem (see the appendix),

arg max
{
V (a, x, ε) | a ∈ {0, 1}2

}
increases in x̃1 (with respect to the strong set order). By Assumption 3(i), ε is independent

of x̃1. It follows that Pr (a1, a2 | x′, x̃1, x̃2) increases with respect to stochastic dominance in

x̃1. In turn, this means that Pr (a1 = 1 | x′, x̃1, x̃2) and Pr (a2 = 1 | x′, x̃1, x̃2) increase in x̃1.

The same holds with respect to x̃2.

Alternatively, if Φ (x′) ≤ 0, then V is supermodular in (a1,−a2) and (under Assumption

1) it has increasing differences in both (a1, x̃1) and (−a2, x̃1) . Using the previous argument,

we get that Pr (a1 = 1 | x′, x̃1, x̃2) and Pr (a2 = 1 | x′, x̃1, x̃2) increase and decrease in x̃1,

respectively. In this case, the opposite holds regarding x̃2.

The last two results show that x̃1 affects Pr (a2 = 1 | x′, x̃1, x̃2) in opposite directions

depending on the sign of Φ (x′). Thus, the sign of the interaction term can be identified from

data. With this information, it is easy to check that Assumption 5 holds with â = (1, 0) or

â = (0, 1) when Φ (x′) ≥ 0, and â = (0, 0) or â = (1, 1) when Φ (x′) ≤ 0.

4.2.2 Negative Interaction Effects

The second sufficient condition we propose relies on strategic substitutabilities among play-

ers. The next lemma shows that Assumption 5 holds if V (a, x, ε) has the negative single-

crossing property in (ai; a−i) for all i ∈ N .
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Lemma 4. Assume V (a, x, ε) has the negative single-crossing property in (ai; a−i) for all

i ∈ N , i.e., for all a′i > ai and all a′−i > a−i (in the coordinatewise order) we have

V (a′i, a−i, x, ε)− V (ai, a−i, x, ε) ≤ (<) 0 =⇒ V
(
a′i, a

′
−i, x, ε

)
− V

(
ai, a

′
−i, x, ε

)
≤ (<) 0.

Then Assumption 5 holds with â = (0, 0, ..., 0) for all x̂′.

In this case, identification of Fε|x′ will use data on the fraction of markets or groups

where all agents take action 0, i.e., Pr ((0, 0, ..., 0) | x). The single-crossing condition in

Lemma 4 would be satisfied if, for instance, Γ were a game with negative interactions, i.e.,

a submodular game. This restriction is often assumed in the entry games often estimated in

industrial organization.

4.2.3 Concavity for Discrete Domains

Potential games that admit a concave potential function have been widely studied in eco-

nomics. The reason is that when the potential function has this property, then the set of

maximizers coincides with the equilibrium set of the underlying game. Ui (2008) introduces

the concept of discrete concavity for potential games with discrete strategy spaces. His con-

dition guarantees that local optimality of a vector of choices implies global optimality. The

next lemma is based on Ui (2008, Proposition 1).

Lemma 5. Assume that, for all a, a′ ∈ {0, 1}n with ‖a− a′‖ = 2,

max
a′′:‖a−a′′‖=‖a′−a′′‖=1

V (a′′, x, ε)

{
> min {V (a, x, ε) , V (a′, x, ε)} if V (a, x, ε) 6= V (a′, x, ε)

≥ V (a, x, ε) = V (a′, x, ε) otherwise
.

Then Assumption 5 holds with any â ∈ {0, 1}n for all x̂′.

Concavity imposes non-trivial restrictions on the cross effects of multivariate functions

and, in our model, the support of unobservables and regressors. In particular, if the unob-

servables and regressors are allowed to take values on the entire real line, then the interaction

effects need to be identically zero for concavity to hold globally. Thus, this approach is non-

trivial only if the large support portions of Assumptions 2 and 4 are simultaneously relaxed.

19



For this reason, we cannot recommend basing identification off of concavity explicitly. How-

ever, one can view Assumption 5 as a weaker (local) version of concavity that is compatible

with our other restrictions.

5 Two-Player Games Without Selection Rules

The potential equilibrium selection rule for point identification in binary action games is

particularly relevant to the case of three or more players. Here we provide a proof of identi-

fication in two-player games that does not impose any equilibrium selection rule. As Bajari

et al. (2010) point out, the data generating process is now a mixture over equilibria in the

regions of ε under which there is more than one equilibrium. As the literature (Tamer 2003,

etc.) has exploited for the parametric case, our identification result will rely on the fact that

some outcomes only occur as unique equilibria in the two player case.

As we do not impose the potential selection rule, we do not require that interaction

effects have the pairwise symmetry property described above. We allow the interaction effect

for husbands’ actions on wives’ utilities to differ from that of wives’ actions on husbands’

utilities. Berry and Tamer (2006, Result 4), following Tamer (2003), study identification in

two-player, submodular games where the key special regressors enter multiplicatively instead

of additively. The advantage of our approach is that it does not rely on identification at

infinity to recover the payoff terms. As it was earlier defined, we let vi (x
′) be the interaction

effect of the other player’s action on i’s utility.

Theorem 2. In the two-player game, assume that players follow a pure-strategy equilibrium

(but not necessarily a potential function maximizer) and that the game is either supermodular

or submodular. Under Assumptions 1–4, Π =
(
(ui, vi)i≤2 , Fε|x′

)
is identified.

The full proof is in the appendix. Here we provide a sketch of the proof for the super-

modular case. When vi ≥ 0 for i = 1, 2, then (1, 0) and (0, 1) are unique equilibria. The

probability that the first player chooses action 1 and the other one action 0 (given x) is given

by

Pr ((1, 0) | x) = Pr (−ε1 − u1 (x′) ≤ x̃1, ε2 + u2 (x′) + v2 (x′) ≤ −x̃2 | x) .
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Given that ε has a zero mean, we can use variation in x̃ to identify F−ε1,ε2|x′ . The subutilities

u1 (x′) and u2 (x′)+v2 (x′) can then be identified via conditional expectations using variation

in x′. Similarly, we can use Pr ((0, 1) | x) to recover u2 (x′) and u1 (x′) + v1 (x′). Therefore

(ui, vi)i≤2 is identified. The distribution of unobservables can be recovered from F−ε1,ε2|x′ . A

similar argument follows when the interactions are negative.

The nonparametric identification result in Theorem 2 relies on knowing the signs of the

interaction terms, but is independent of the equilibrium selection rule that guides players

choices. Thus, the two-player game offers a very natural environment to empirically test

competing theories about equilibrium selection, e.g., risk dominance versus payoff dominance.

6 Demand for Bundles

Our model for potential games is formally equivalent to a multinomial choice demand model

where consumers can pick bundles of individual alternatives. We draw out the equivalence

here and therefore present new identification results for multinomial choice models where

consumers can purchase bundles of goods.

Think of N as the set of available products for a consumer, and let us denote by x̃ ≡
(x̃i)i≤n the vector of (negative) prices. Prices will play the role of our special regressors in

Assumption 1. We need prices to vary across consumers in the sample. This could occur

from observing consumers in different markets or at different points in time. We could use

other special regressors than prices. For example, if a consumer is choosing between a set

of medical offices (say a hospital and an out-patient clinic), each x̃i could be the distance

between the consumer’s home and provider i. If the consumer’s utility function is quasilinear

in income, his or her maximization problem can be written as

max

V (a, x, ε) =
∑

i∈N
(ui (x

′) + x̃i + εi) +
∑
S∈S(a)

Φ (S, x′) | a ∈ {0, 1}n
 . (3)

This is a special case of (2). Here ui (x
′)+ x̃i+εi is the stand-alone utility the consumer gets

from acquiring good i and Φ (S, x′) is an interaction term that captures complementarities or

substitutabilities among the subset of goods S. The model restricts unobserved heterogeneity
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to happen at the goods level; we do not allow unobservables in the Φ (S, x′) terms. Because

this is a special case of the potential game studied earlier, the following corollary to Theorem

1 holds.

Corollary 1. Let there be two goods and let Assumptions 1–4 hold. Then Π =
(
(ui)i≤2 ,Φ, Fε|x′

)
is identified.

Let there be three or more goods and let Assumptions 1–5 hold. Then Π =
(
(ui)i≤n ,Φ, Fε|x′

)
is identified.

The various sufficient conditions for Assumption 5 can be straightforwardly adapted to

the demand problem; we emphasize the two goods case in the statement of the corollary. The

other possible sufficient conditions are that all goods are substitutes or that utility is discrete

concave. There is no need to refer to Theorem 2 here because equilibrium selection is not

relevant in consumer choice. Note also that there is no need to generalize the model to allow,

for say the two good case, v1 (x′) 6= v2 (x′). There are no asymmetric complementarities in

the demand model. We do not discuss price endogeneity here, although this is important

in many empirical applications. Various techniques in the literature can be used to resolve

price endogeneity in multinomial choice models (e.g., Berry and Haile 2010, Fox and Gandhi

2012).

Gentzkow (2007a) studies a demand model for print and online newspapers with bivariate

normal unobservables. We offer a nonparametric version of his result. Importantly, like his

paper we allow for correlation in the unobservable tastes for the two goods. We can therefore

distinguish complementarities in utility from correlated preferences for products.

Similar conditions to our sufficient conditions for Assumption 5 have been used in tan-

gentially related identification papers. For example, Berry, Gandhi and Haile (2011) provide

a sufficient condition under which a system of demand functions (representing, say, aggre-

gate demand) can be inverted in unobservables. Their condition applies to goods that are

(connected) substitutes and is loosely related to our result. Matzkin (2007) studies the

inversion of simultaneous equations (again representing, say, aggregate demand), imposing

(quasi-)concavity as we do in Section 4.2.3.

For another example, we can think of N as the set of available practices a firm can

use. The problem of the firm is to select the subset of activities that maximize its objective
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function (3), where ui (x
′) + x̃i + εi captures the marginal contribution of each activity and

Φ (S, x′) is the extra output the firm gets by using the activities in the subset S together.

Athey and Stern (1998) provide a framework for testing theories about complementarity in

organizational practices within a cross section of firms. They address identification for two

specifications of the model that differ regarding the type of heterogeneity across firms: the

Random Systems Model (RSM) and the Random Practice Model (RPM). The RSM allows

unobserved heterogeneity across firms for both the marginal contribution of each activity

and the interaction terms. The specification of the RPM is similar to (3). Our approach to

identification and specification of the utility function differs from theirs in that we impose

more conditions on payoffs but rely on fewer exclusion restrictions. One way to achieve

identification in a model where a consumer can pick bundles of choices is to redefine the

alternatives by incorporating in the choice set all combinations of individual options. Doing

this, Athey and Stern provide an identification argument that relies on exclusion restrictions

for each bundle of choices (i.e., the enlarged choice set). In the demand setting, this would

require bundle-specific prices that flexibly vary across consumers or markets. Doing this,

one can appeal to nonparametric identification results from the literature on multinomial

choice by treating each bundle as a separate good. It is only because we do not rely on

bundle-specific exclusion restrictions that our identification results are new.

7 Conclusion

We explore identification in binary choice games of complete information. We derive condi-

tions under which a binary choice game is a potential game and impose as the equilibrium

selection rule that the selected equilibrium maximizes the resulting potential function. This

makes our game formally equivalent to a multinomial choice demand model where a consumer

can elect to purchase any bundle of products.

We show that the model is identified. We recover from data the subutility function of

each player, the interaction effects among each group of players, and the joint distribution

of potentially correlated, player-specific unobservables. We state some alternative key as-

sumptions: two players, a submodular game, and concavity of the game. These conditions

also have analogs for demand for bundles. For the two-player case, we present a separate
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identification result that does not rely on equilibrium selection.

It is likely our results will lead to nonparametric identification outcomes in other classes

of potential games. For example, Monderer and Shapley (1996) and Qin (1996) discuss

the connection between noncooperative potential games and cooperative games. It follows

from their results that many cooperative solution concepts can be expressed as in (2), and

therefore our previous results can be applied to these types of interactions.

A Proofs

A.1 Proof of Theorem 1

We divide the proof in the next two Lemmas.

A.1.1 Proof of Lemma 1 (Identification of Fε|x′)

By Assumption 5, for each x′, there exists a known vector â ∈ {0, 1}n for which for any

x = (x′, x̃) and ε, V (a, x, ε) is maximized at â if V (âi, â−i, x, ε) ≥ V (a′i, â−i, x, ε) for all

i ∈ N and a′i = 1− âi. Under Assumption 1, this condition holds if, for all i ∈ N ,

(1 (âi = 1)− 1 (âi = 0)) εi ≥ (4)∑
S∈S(a′)

Φ (S, x′)−
∑

S∈S(â)
Φ (S, x′)− (1 (âi = 1)− 1 (âi = 0)) (ui (x

′) + x̃i) ,

where a′ is obtained from â by changing only âi. By Assumptions 2 and 3, we will show that

we can recover Fε|x′ from variation in x̃ using Pr (â | x′, x̃). Applying Assumption 5 shows

that

Pr (â | x′, x̃) = Pr ((4) holds for all i ∈ N | x′, x̃) .

Let the new random variable µi for each i ∈ N be

µi = (1 (âi = 1)− 1 (âi = 0)) εi

−
(∑

S∈S(a′)
Φ (S, x̂′)−

∑
S∈S(â)

Φ (S, x̂′)

)
+ (1 (âi = 1)− 1 (âi = 0)) (ui (x

′)) .
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Let µ = (µ1, . . . , µn), which is independent of x̃ conditional on x′. Therefore,

Pr (â | x′, x̃) = Pr (µi ≥ (1 (âi = 1)− 1 (âi = 0)) (x̃i) for all i ∈ N | x′, x̃) .

Therefore, we identify the upper probabilities of the vector µ, conditional on x′, at all points

((1 (â1 = 1)− 1 (â1 = 0)) (x̃1) , . . . , (1 (ân = 1)− 1 (ân = 0)) (x̃n)) .

By Assumption 2 and the fact that (1 (ân = 1)− 1 (ân = 0)) is at most a sign change,(
(1 (â1 = 1)− 1 (â1 = 0))

(
X̃1

)
, . . . , (1 (ân = 1)− 1 (ân = 0))

(
X̃n

))
has support on all of Rn. Therefore, we learn the upper tail probabilities of µ conditional on

x′ for all points of evaluation µ∗. Upper tail probabilities completely determine a random

vector’s distribution, so we also identify the lower tail probabilities of µ conditional on x′,

also known as the joint CDF of µ conditional on x′. Note that εi is the only random variable

in µi, conditional on x′. By Assumption 3(ii), E(ε | x′) = 0. Therefore, up to the possible

sign change in (1 (âi = 1)− 1 (âi = 0)), the distribution of ε conditional on x′ is obtained

from the distribution of µ− E (µ | x′) conditional on x′. �

A.1.2 Proof of Lemma 2 (Identification of
(
(ui)i≤n ,Φ

)
Under Assumption 1

V (a, x, ε) ≡
∑

i∈N
(ui (x

′) + x̃i + εi) 1 (ai = 1) +
∑

S∈S(a)
Φ (S, x′) .

To facilitate the exposition, recall that

4jε (a′) ≡
∑

i∈N
εi1 (a′i = 1)−

∑
i∈N

εi1
(
aji = 1

)
and 4jW (a′, x) ≡ W (aj , x)−W (a′, x) .
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Thus 4ε (a′) is the vector (4jε (a′))j≤2n,aj 6=a′ , which has a distribution dF4ε(a′)|x′ . Then,

P
(
4W (a′, x) | x;Fε|x′

)
≡
ˆ
...

ˆ
1
(
41ε (a′) ≤ 41W (a′, x)

)
...1
(
42nε (a′) ≤ 42nW (a′, x)

)
dF4ε(a′)|x′ .

Each
(
(ui)i≤n ,Φ

)
clearly leads to a different vector of functions W (a, x). Therefore,

consider W̃ 6= W. We first pick an x where the subvector x̃ will satisfy certain properties

that we delay discussion of until the end of the proof. Let

C ≡ arg maxa

{(
W (a, x)− W̃ (a, x)

)
| a ∈ {0, 1}n

}
and suppose maxa

(
W (a, x)− W̃ (a, x)

)
> 0 (the other case follows by a similar argument).

Define D ≡ {a /∈ C | a ∈ {0, 1}n}. We know C 6= ∅. The fact that D 6= ∅ follows as

W (a = (0, 0, ..., 0) , x) = W̃ (a = (0, 0, ..., 0) , x) = 0.

Fix some a′ ∈ C. We know that W (a′, x) − W̃ (a′, x) = W (a, x) − W̃ (a, x) for all a ∈ C,

and W (a′, x)− W̃ (a′, x) > W (a, x)− W̃ (a, x) for all a ∈ D. Rearranging terms,

W (a′, x)−W (a, x) = W̃ (a′, x)− W̃ (a, x) for all a ∈ C, and

W (a′, x)−W (a, x) > W̃ (a′, x)− W̃ (a, x) for all a ∈ D.

Assume there exists some a′′ ∈ D for which W (a′, x) ≥ W (a′′, x) does not necessarily

hold whenever W (a′, x) ≥ W (a, x) for all a 6= a′, a′′ (see Example 3). Saying differently,

knowing that a′ maximizes W (a, x) over all a 6= a′, a′′ is not enough to conclude that

W (a′, x) ≥ W (a′′, x). We show this always holds below. Then, by Assumption 4

ˆ
...

ˆ
1
(
41ε (a′) ≤ 41W (a′, x)

)
...1
(
42nε (a′) ≤ 42nW (a′, x)

)
dF4ε(a′)|x′

>

ˆ
...

ˆ
1
(
41ε (a′) ≤ 41W̃ (a′, x)

)
...1
(
42nε (a′) ≤ 42nW̃ (a′, x)

)
dF4ε(a′)|x′
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i.e., P
(
4W (a′, x) | x;Fε|x′

)
> P

(
4W̃ (a′, x) | x;Fε|x′

)
. ThusW identified, and

(
(ui)i≤n ,Φ

)
can be recovered directly from these action probabilities.

We now prove that there exists some a′ ∈ C and a′′ ∈ D for which W (a′, x) ≥ W (a′′, x)

is not implied by W (a′, x) ≥ W (a, x) for all a 6= a′, a′′. By contradiction, we will show that if

this were not true then (0, 0, ..., 0) ∈ C, which is not possible as maxa

(
W (a, x)− W̃ (a, x)

)
>

0.

For each a′ ∈ C there are (at least) n inequalities that are not implied by the others.

These inequalities correspond to vectors of actions that differ from a′ regarding the action

of one single player. To shed light on this point, let a′′ be equal to a′ except for some player

i who selects action 1 at a′ and action 0 at a′′. Then W (a′, x) ≥ W (a′′, x) if and only if

ui (x
′) + x̃i +

∑
S∈S(a′)

Φ (S, x′) ≥
∑

S∈S(a′′)
Φ (S, x′) .

All other inequalities, W (a′, x) ≥ W (a, x) with a 6= a′, a′′, will involve at least one other

special regressor x̃j with (j 6= i). Thus, we can always find a vector (x̃i)i≤n such that

W (a′, x) ≥ W (a, x) with a 6= a′, a′′ and yet W (a′, x) < W (a′′, x). Thus assume a′′ ∈ C.

By repeating this process ‖a′‖ times, we will need to assume (0, 0, ..., 0) ∈ C. But this is not

possible as we explained before. �

A.2 Proof of Lemma 3

The proof of Lemma 3 relies on Topkis’ theorem (see, e.g., Topkis (1998)) and the concept

of stochastic dominance. We include a simple version of these concepts next.

Proposition 2. Topkis’ theorem: Let f (a1, a2, x) : A1×A2×R→ R, where A1 and A2

are finite ordered sets. Assume that f (a1, a2, x) (i) is supermodular in (a1, a2) ; and (ii) has

increasing differences in (a1, x) and (a2, x) . Then, arg max {f (a1, a2, x) | (a1, a2) ∈ A1 ×A2}
increases in x with respect to the strong set order.12 (According to this order, we write A ≥S B
if for every a ∈ A and b ∈ B, we have that a ∨ b ∈ A and a ∧ b ∈ B.)

12For any two elements a, a′ ∈ A1 ×A2 we write a ∨ a′ (a ∧ a′) for the least upper bound (greatest lower
bound). We say f (a1, a2, x) is supermodular in (a1, a2) if, for all a, a′ ∈ A1 ×A2,

f (a ∨ a′, x) + f (a ∧ a′, x) ≥ f (a, x) + f (a′, x) .
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The concept of first order (or standard) stochastic dominance (FOSD), is based on upper

sets. Let us consider (Ω,≥), where Ω is a set and ≥ defines a partial order on it. A subset

U ⊂ Ω is an upper set if and only if x ∈ U and x′ ≥ x imply x′ ∈ U.

First Order Stochastic Dominance: Let X ′, X ∈ Rn be two random vectors. We say

X ′ is higher than X with respect to first order stochastic dominance if

Pr (X ′ ∈ U) ≥ Pr (X ∈ U)

for all upper set U ⊂ Rn.

Proof of Lemma 3: (i) By Example 1 and Assumption 1, if Γ is a two-player game, then

V (a, x, ε) = (u1 (x′) + x̃1 + ε1) 1 (a1 = 1)+(u2 (x′) + x̃2 + ε2) 1 (a2 = 1)+Φ (x′) 1 (a1 = 1, a2 = 1) .

If Φ (x′) ≥ 0 then V (a, x, ε) is supermodular in (a1, a2). In addition V (a, x, ε) has increasing

differences in (a1, x̃1) and (a2, x̃1) (here the cross partial derivative is 0). Then, by Topkis’

theorem,

a∗ (x′, x̃1, x̃2, ε) ≡ arg max
{
V (a, x, ε) | (a1, a2) ∈ {0, 1}2

}
increases in x̃1. By Assumption 4, the probability that the argmax is not unique is 0. By

Assumption 3(i), the unobservables are independent of x̃1. Let x̃∗1 > x̃1 and let U be an

upper set in the space of pure-strategy equilibria, then

Pr (a ∈ U | x′, x̃′1, x̃2) = Pr (a∗ (x∗, x̃′1, x̃2, ε) ∈ U | x′, x̃∗1, x̃2)

≥ Pr (a∗ (x′, x̃1, x̃2, ε) ∈ U | x′, x̃1, x̃2) = Pr (a ∈ U | x′, x̃1, x̃2) ,

i.e., Pr (a1, a2 | x′, x̃1, x̃2) increases with respect to first order stochastic dominance in x̃1. Be-

cause first order stochastic dominance is preserved under marginalization, Pr (a2 = 1 | x′, x̃1, x̃2)
increases in x̃1 (see, e.g., M

..
uller and Stoyan 2002, Theorem 3.3.10, p. 94). In a similar way,

We say f (a1, a2, x) has increasing differences in (a1, x) if, for all a′1 > a1 and x′ > x,

f (a′1, a2, x
′)− f (a1, a2, x

′) ≥ f (a′1, a2, x)− f (a1, a2, x) .
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we can show that Pr (a2 = 1 | x′, x̃1, x̃2) increases in x̃2.

On the other hand, V (a, x, ε) is supermodular in (a1,−a2) if Φ (x′) ≤ 0. In addition,

V (a, x, ε) has increasing differences in (a1, x̃1) and (−a2, x̃1) (here the cross partial derivative

is 0). By Assumption 4, the probability that the argmax is not unique is 0. By Assumption

3(i), the unobservables are independent of x̃1. Thus, Pr (a1,−a2 | x′, x̃1, x̃2) increases with

respect to first order stochastic dominance in x̃1. Because first order stochastic dominance

is preserved under marginalization, Pr (−a2 = 0 | x′, x̃1, x̃2) increases in x̃1, and therefore

Pr (a2 = 1 | x′, x̃1, x̃2) decreases in x̃1. In a similar way, Pr (a2 = 1 | x′, x̃1, x̃2) decreases in

x̃2.

By Assumption 4, unless Φ (x′) = 0, neither Pr (a2 = 1 | x′, x̃1, x̃2) nor Pr (a1 = 1 | x′, x̃1, x̃2)
are constant as a function of x̃1 and x̃2, respectively. From the last two paragraphs, the sign

of Φ (x′) is identified from data.

(ii) For Φ (x′) ≥ 0 let â, as defined in Assumption 5, be (â1, â2) = (1, 0). We need to

show that if V ((1, 0) , x, ε) ≥ V ((1, 1) , x, ε) and V ((1, 0) , x, ε) ≥ V ((0, 0) , x, ε) hold, then

V ((1, 0) , x, ε) ≥ V ((0, 1) , x, ε) . The first two conditions are satisfied if and only if

u2 (x′) + x̃2 + ε2 + Φ (x′) ≤ 0 (5)

u1 (x′) + x̃1 + ε1 ≥ 0. (6)

Since Φ (x′) ≥ 0, then (5) implies u2 (x′) + x̃2 + ε2 ≤ 0. By this observation and (6) we get

that u1 (x′)+ x̃1 +ε1 ≥ u2 (x′)+ x̃2 +ε2, i.e., V ((1, 0) , x, ε) ≥ V ((0, 1) , x, ε) . A similar claim

holds if we select (â1, â2) = (0, 1) .

For Φ (x′) ≤ 0, Assumption 5 holds by selecting (â1, â2) = (0, 0) or (â1, â2) = (1, 1) . The

proof is almost identical so we omit it. �

A.3 Proof of Theorem 2

Assume Γ (X, ε) is supermodular, i.e., vi (X) ≥ 0 for i = 1, 2. Under Assumption 4, when

(1, 0) is an equilibrium, it is the only equilibrium with positive probability. Thus, under

Assumptions 1 and 4,

Pr ((1, 0) | x) = Pr (−ε1 − u1 (x′) ≤ x̃1, ε2 + u2 (x′) + v2 (x′) ≤ −x̃2 | x) .
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By Assumption 3(i), ε is independent of X̃. We can identify Fα|x′ with

α = (α1, α2) ≡ (−ε1 − u1 (x′) , ε2 + u2 (x′) + v2 (x′))

from variation in x̃. Using the same logic, we can recover Fβ|x′ with

β = (β1, β2) ≡ (ε1 + u1 (x′) + v1 (x′) ,−ε2 − u2 (x′)) .

By Assumption 3(ii), ε is mean independent of X ′. Thus,

E [(α1, α2) | x′] = (−u1 (x′) , u2 (x′) + v2 (x′))

E [(β1, β2) | x′] = (u1 (x′) + v1 (x′) ,−u2 (x′))

E [(α1, α2) | x′] + E [(β1, β2) | x′] = (v1 (x′) , v2 (x′)) .

Then (ui, vi)i≤2 are identified from variation in x′. By Assumption 3(ii), ε has zero mean

conditional on x′. Thus the previous information allows us to identify Fε|x′ .

We omit the proof for the submodular case, i.e., vi (X) ≤ 0 for i = 1, 2, as it is almost

identical. �

A.4 Proof of Lemma 4

Assume V (a, x, ε) has the negative single-crossing property on (ai; a−i) for all i ∈ N , i.e.,

for all a′i > ai and all a′−i > a−i we have

V (a′i, a−i, x, ε)− V (ai, a−i, x, ε) ≤ (<) 0 =⇒ V
(
a′i, a

′
−i, x, ε

)
− V

(
ai, a

′
−i, x, ε

)
≤ (<) 0. (7)

We next show that Assumption 5 holds with â = (0, 0, ..., 0) .

Assume V (âi = 0, â−i = (0, 0, ..., 0), x, ε) ≥ V (ai = 1, â−i = (0, 0, ..., 0), x, ε) for all i ∈
N . Then, by (7), for all a−i ∈ {0, 1}n−1 , and all i ∈ N ,

V (âi = 0, a−i, x, ε) ≥ V (ai = 1, a−i, x, ε)

Thus, V ((0, .., 0) , x, ε) ≥ V (a, x, ε) for all a ∈ {0, 1}n . �
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A.5 Proof of Lemma 5

Assume the required conditions of the lemma hold. Then, by Ui (2008, Proposition 1),

V (â, X, ε) ≥ V (a,X, ε) for all a ∈ {0, 1}n with ‖â− a‖ ≤ 1 is satisfied if and only if

V (â, X, ε) ≥ V (a,X, ε) for all a ∈ {0, 1}n . Thus, Assumption 5 holds at any â ∈ {0, 1}n . �
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