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1 Introduction

Political borders can have a signi�cant impact on relative prices. The degree of price segmen-

tation caused by such boundaries was empirically documented in a seminal paper by Engel

and Rogers (1996), who showed with CPI data that the US�Canadian border had an e�ect

on price dispersion equivalent to adding a distance of at least 1,780 miles between locations

(approximately the distance between Miami and Quebec). Their work spurred a large lit-

erature that found similarly large �border e�ects� across countries, states, and even cities.1

These results have been heavily debated over the years. Some papers have argued that (i)

the distances have been mis-measured (see Head and Mayer (2002)), (ii) the regressions

su�er from aggregation bias (see Evans (2003) and Broda and Weinstein (2008)), (iii) the

gravity equation implied in the standard speci�cation has been misspeci�ed (see Anderson

and van Wincoop (2003) and Hillberry and Hummels (2003)), and that (iv) the regressions

do not have a proper benchmark due to the fact that country distributions of prices are very

di�erent across countries (see Gorodnichenko and Tesar (2009)). Despite all this work, the

magnitude and reasons behind the segmentation introduced by political borders is still an

open question in the literature.

In this paper we propose a simple method to estimate the size of the �border e�ect� based

on Samuelson's iceberg cost model. This methodology imply that largest price di�erences

observed between locations are relevant for transport cost estimation. We �rst argue that the

standard regression is based on an arbitrage inequality constraint, and that using all price

observations creates a selection bias that a�ects both the distance and border coe�cients (and

therefore the estimates of the �border e�ect�). We propose an alternative approach based on

quantile regressions that corrects for the selection bias while simultaneously controlling for

1For example, see Parsley and Wei (2001) for results between the US and Japan and Ceglowski (2003)
for the e�ects of provincial borders in Canada.
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potential measurement errors.

Our method can be explained using a very simple framework along the lines of Engel and

Rogers (1996). Consider the problem of a �rm that sets a price bounded by the existence of

an arbitrage constraint. If the arbitrage cost between two establishments (i and j) is τ , and

p denotes the log price in each location, then the arbitrage constraint can be expressed as a

simple inequality:

|pi − pj| ≤ τ (1)

where τ is a function of distance, political boundaries, and other regional and product

characteristics. The literature typically estimates τ and the border e�ects by running the

following regression on price dispersion:2

|pi,t − pj,t| = α + βDi,j + γBi,j + δXi,j,t + εi,j,t (2)

where pi,t − pj,t is the log price di�erence between locations i and j at time t. The locations

can be countries, provinces, cities or establishments. Di,j is the distance between the two

locations, Bi,j is a dummy that takes value 1 if a border exists between locations i and j, and

Xi,j,t is a series of additional controls. In this context, the �border e�ect� is the equivalent

number of miles that would produce the same dispersion as the estimated border dummy

coe�cient γ. In its simplest form, it is the ratio γ/β, which means that a bias in either (or

both) of these coe�cients will have an impact on the estimate of the border e�ect.

We argue that τ and its determinants cannot be estimated through a simple OLS re-

gression because prices in the two locations are an optimal choice subject to an inequality

2A common alternative speci�cation used by papers such as Engel and Rogers (1996) has the standard
deviation σ (pi,t − pj,t) instead. In both cases, the objective is to measure the e�ect of the righ-hand side
variables on price dispersion, which can be done either through the mean of the absolute value or the standard
deviation of the price di�erences. Our results do not change if we use the standard deviation. See Broda
and Weinstein (2008) for an overview of the papers that use these two regressions in the literature.
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constraint that is not necessarily binding. If the optimal prices of the two stores lie within

the constraint, then their di�erence is smaller than τ and these observations are not rele-

vant to estimate the arbitrage costs. To illustrate this, consider two markets that are highly

segmented but have identical supply and demand characteristics. Goods will have the same

price across the two locations, but this price gap tells us nothing about the arbitrage costs

or the degree of segmentation between the markets. In fact, all observations within the no-

arbitrage range su�er from selection bias, and estimates that use the mean or the standard

deviation of |p1 − p2| will be biased downward as well.

The arbitrage cost τ is better estimated when we use only the largest observed price

di�erences between locations. Those are the observations that provide information about

the limit that arbitrage imposes of the magnitude of price dispersion.3 Ideally we would

like to use the maximum observed price gap between locations, but it is potentially sensitive

to measurement errors.4 Instead, we estimate a series of binned-quantile regressions that

allow us to measure the sensitivity of our estimates to the errors-in-variables. We start

with the mean price gap between locations (equivalent to the method typically used in the

literature), and then use only the observations in the 80th, 90th, 95th, 99th percentiles, and

the maximum observed price di�erence.

We apply this method to study the impact of city borders on price dispersion in Uruguay.

We use a novel good-level dataset composed by daily prices from 202 UPC-level products

sold in 333 supermarkets across 47 cities collected between 2007 and 2010. When we �rst

estimate the border e�ect using standard methods, we �nd that the city border between two

3The estimation problem is analogous to estimating using inequality moments as opposed to equality mo-
ments. This area has received signi�cant attention recently. See for example Andrews, Berry, and Jia (2004),
Andrews and Guggenberger (2009), Andrews and Soares (2010), Andrews and Shi (2014), Ponomareva and
Tamer (2011), and Rosen (2008).

4A related idea in the context of trade can be found in Eaton and Kortum (2002) who propose estimating
trade friction using the maximum price di�erence. Simonovska and Waugh (2014) criticizes the use of the
maximum price di�erence in the estimating strategies, based on the possibility of bias of the estimator on
�nite samples.
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stores separated by 10 kilometers is larger than 20 kilometers wide, and statistically di�erent

from zero. This implies that the border triples the distance of stores across the city borders.

However when we re-estimate using distance-binned quantile regressions, the border declines

until it is not signi�cantly di�erent from zero. As expected from our discussion both the

distance and border dummy coe�cients are downward biased in the standard regression, but

the bias is largest on the distance parameter.5 As a result, the net impact is that the implied

border e�ect (in kilometers) falls.

We perform robustness tests to correct for outliers, product mix, and we change the spec-

i�cation to include non-linearity and interaction terms. In all of them, the city-border e�ect

measured in kilometers tends to disappear when higher percentiles are used. Furthermore,

the results are similar at the 99th, 99.5th, 99.9th percentile, and the maximum, suggesting

that the estimates are not signi�cantly a�ected by potential errors in the data.

We further illustrate our methodology to study the dispersion between online and o�ine

prices. We use daily prices collected from the website of the largest grocery retailer in

Montevideo, and compare them to the prices in all o�ine locations of the same retailer. The

o�ine store's data provide an estimate of the impact of distance on price dispersion across

locations. The �online border� is simply the distance that would generate the same e�ect on

online-o�ine price dispersion observed in the data. When the standard procedure is used,

online and o�ine markets appear to be very closely integrated, with a border e�ect of just

1.6 kilometers. However, when we use the 95th percentile of the price gap distribution, the

online border e�ect becomes 8.8 kilometers, a number close to the actual average physical

distance between the online warehouse (where the online goods are delivered from) and each

of the o�ine stores in the city.6

5The reason is that price gaps within the arbitrage constraint are less common for observations across
cities, and therefore the border coe�cient is less a�ected by the selection bias. Within cities, by contrast,
small price gaps are very frequent and can greatly bias the distance coe�cient.

6The retailer's website indicates that the online prices match those of the store where the orders are
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Our approach and the nature of the data address four additional sources of concerns that

have been raised since the original Engel-Rogers regressions. First, we use product-level data

with identical goods across all locations. As suggested by Goldberg and Knetter (1997),

product-level data is crucial to understand deviations from the Law of One Price (LOP).

Indeed, Evans (2003) and Broda and Weinstein (2008) argue that a signi�cant problem in

the border e�ect literature is the aggregation bias induced by price indexes. Second, we use

retail prices. Hillberry and Hummels (2003) have argued that business-to-business data tends

to overestimate trade �ows and to underestimate price di�erences within countries. Third,

we know the exact location of each store. As pointed out by Head and Mayer (2002), using

approximate distances (such as from one country capital to another) can greatly overestimate

the border e�ect. Finally, all the stores in our sample sell the same set of products. As Evans

(2003) points out, the mix of products sold across borders can lead to a bias in the standard

regressions.

Compared to recent papers in the literature, our results are consistent with Gorod-

nichenko and Tesar (2009), who argue that with �cross-country heterogeneity in the dis-

tribution of within-country price di�erentials there is no clear benchmark from which to

gauge the e�ect of the border�. We agree with this statement, but we show that even in the

absence of a structural model it is still possible to obtain a simple and reliable estimate for

the magnitude of the border e�ect using quantile regressions. Our paper is also complemen-

tary to the work of Gopinath, Gourinchas, Hsieh, and Li (2011) who estimate the border

e�ect by studying the response of average prices in one market to cost shocks in another

market. An advantage of our approach is that it does not require any cost data.

sent from, but it does not provide details on what speci�c store it is. In order to identify the most likely
candidate, we compared daily online prices for all products with each o�ine store in the city and found a
location where prices were identical 97.3 percent of the time. That location has an average distance of 7.2
kilometers to all the other stores.
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2 Methodology

In this section we present a simple model of price-setting across locations that provides the

inequality we use to estimate arbitrage costs and the border e�ect. In particular, we propose

a model where the �rms' pricing decision is constrained by the ability of the consumer

to arbitrage the price gap between two locations. Standard OLS regressions used in the

literature consider all pairs of prices, including those that lie within the arbitrage constraint,

which introduces a bias in the estimates of factors that a�ect the cost to arbitrage, such as

distance and political borders. We propose an alternative methodology that focuses on the

largest observed price di�erences between locations using binned-quantile regressions.

2.1 A simple model of price-setting with arbitrage

2.1.1 Consumers

Consider an economy with a mass of consumers uniformly distributed along a line. This

line encompasses two cities (A, B) of equal distance. There are J stores in the economy, JA

stores in city A and JB stores in city B. There is also a �border� between A and B, in the

sense that consumers pay a cost whenever they cross to another city. This border cost may

arise due to di�erences in taxes, convenience in shopping hours, and other characteristics

associated with the city but not driven by distance. A consumer located on point ` and

buying in store i has an indirect utility function represented by

u` (i) = v − θpi − β̃ | `− `i | −γ̃bi − δ̃Ii (3)

where v is the reservation price of the consumer, and θ captures how sensitive the consumer

is to prices. The rest of the parameters measure transaction costs: β̃ measures unit trans-
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portation costs, multiplied by the distance between the consumer location (`) and the store

position (`i) (including information costs about the store, such as knowing the distance to

the store or its prices); bi is a dummy that takes value 1 if the consumer and the store are

in di�erent cities; and Ii measures additional store-speci�c costs not related with distance,

such as learning the layout and sale events of a given store.

Since the consumer buys the one item that maximizes his utility, we can compare the

price each consumer pays across all possible pairs of stores.7 The consumer ` weakly prefers

store i to store j if u` (i) ≥ u` (j), for each i, j ∈ J = (JA + JB), i 6= j. For simplicity assume

the price elasticity and the transportation cost are symmetric in all locations. This implies

that:

v − θpi − β̃ | `− `i | −γ̃bi − δ̃Ii ≥ v − θpj − β̃ | `− `j | −γ̃bj − δ̃Ij (4)

Rearranging terms we obtain:

pi − pj ≤
β̃

θ
(| `− `j | − | `− `i |) +

γ̃

θ
M bi,j +

δ̃

θ
M Ii,j (5)

where M bij is equal to 1 if both stores are located in di�erent cities and 0 otherwise, and

M Ii,j measures the incremental information cost incurred by changing the store. Thus for

each pair of stores the consumption decision can be expressed as the result of inequality (6).

The value of the distance terms depends on which store is further away from the consumer.

If the di�erence between | ` − `j | − | ` − `i | is negative, the price di�erence could simply

be de�ned as (pj − pi). Therefore, the expression is simpli�ed to the absolute di�erence of

the location between stores:

| pi − pj |≤
β̃

θ
|`i − `j|+

γ̃

θ
M bi,j +

δ̃

θ
M Ii,j (6)

7We require that v is large enough so that is u` (i) is positive in at least one store.
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Comparing across di�erent pairs, if the distance increases, a border exists between the

stores, or there is a positive cost of switching stores, the level of price dispersion rises. The

opposite occurs if consumers are more sensitive to prices. It can be shown that the price space

is not empty and that the inequality constraint is only binding for the marginal consumer.8

Where the marginal consumer is traditionally de�ned as indi�erent between buying in two

di�erent stores. This implies that the rest of the consumers are not indi�erent between two

stores and always prefer to buy on a particular one. In the end, the marginal consumer is

the one for which the inequality is binding, and de�nes the demand for each store.

2.1.2 Producers

Assume there are JA and JB identical producers (or stores) in each city that sell an identical

good at price pj, where j ∈ J = (JA + JB). Each producer maximizes pro�ts, given the prices

of the other stores and subject to the participation constraint of the consumers. Suppose

all producers, except for j, are in equilibrium. Then �rm j sets its price subject to the

participation constraint of consumer `:

max
pj

∏
j

(pj/p−j)

st pj ∈ <+

and to the other J − 1 consumer constraints

| pi − pj |≤
β̃

θ
|`i − `j|+

γ̃

θ
M bij +

δ̃

θ
M Ii,j, ∀i ∈ J, i 6= j

where this condition applies to all the J �rms in the sample.

8See the proof in Appendix A.1
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Firms maximize pro�ts when setting the maximum price for the marginal consumer, as

shown in Appendix A.1. This in turn implies that the inequality will not be binding for the

rest of the consumers. Therefore comparing pairs of prices for all stores to estimate equation

6 will not result in the correct measure of the consumers' parameters, as only those where

the restriction is binding are valid.

2.2 Binned-Quantile Regressions

This model of inequality constraints provides an equation that can be estimated as any other

regression in the literature of border e�ects.9 In this case, the speci�cation can be de�ned

as follows

| pi,t − pj,t |≤ βDi,j + γBi,j + δXi,j,t + εi,j,t (7)

where βDi,j ≡ β̃
θ
|`i − `j|, γBi,j ≡ γ̃

θ
Mbi,j, and δXi,j,t ≡ δ̃

θ
MIi,j.

Notice that this inequality implies that all the residuals (εi,j,t) in equation 7 are either

zero or negative, in which case E [εi,j,t] ≤ 0. When this happens the estimation by OLS

is expected to produce biased estimates due to the failure of the orthogonality conditions,

where the bias is downward. There is only one case in which the estimates remain unbiased,

and is if the price deviations are exactly equal to the arbitrage cost �i.e. the constraint is

always binding. The residuals are identical to zero and OLS produces unbiased estimates.

Intuitively prices are assumed free of errors-in-variables, so that the extreme in the distri-

bution of price di�erences is the closest estimator to the arbitrage costs. It is important

to mention that if all prices are optimally chosen to lie within the no-arbitrage region then

even the estimation using the extreme of the price distribution will produce downward bi-

ased estimates. However by construction the biases will be smaller. Formally, the expected

9The results from our model are also related to Samuelson (1954). See Appendix A.2.
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value of the errors at the medium are more negative than the errors at the 95th quantile:

E [εi,j,t|50th] ≤ E [εi,j,t|95th] ≤ 0. Nevertheless, as pointed out by Simonovska and Waugh

(2014) the maximum price di�erence could introduce additional biases, so we use instead the

upper quintiles for our estimation.10

Figure 1 illustrates how the observed price dispersion may not be informative of the

arbitrage cost. Panel (a) in Figure 1 shows hypothetical prices over time of one product in

two locations. If the no-arbitrage condition is binding, then as the arbitrage cost τ decreases,

so does the price dispersion. However if the condition is not binding, as shown in Panel (b),

distributional statistics such as the mean or the standard deviation will not be associated

with the estimate of τ . In both cases, however, we would be able to obtain good estimates

of τ by using only the maximum observed price di�erence.

[Figure 1 here]

Figure 2 makes a similar point with real data. We plot the distribution of price di�erences

for all goods between two locations of a given retailer, and compare the results for stores

located at 1 km, 10 km (same city), 10 km (di�erent cities), and 20 km (di�erent cities) of

each other. As expected, as the distance increases the share of price gaps at 0% falls (see

table), and the mass between 1% and 20% increases. Interestingly, when we compare the

two pairs of stores located at 10 km from each other (one of which is for stores in di�erent

cities), we �nd that crossing the city border has an e�ect on the mean and 90th percentile.

The two pairs, however, have exactly the same gaps at the 99th and 99.9th percentiles of the

distribution. This last result is consistent with the idea that city borders should not a�ect

the cost to arbitrage across locations. Using the mean and lower percentiles of the price gaps

10Note that Simonovska and Waugh (2014) argues that the estimation of the transport costs can be
downward biased if the maximum price di�erence is used, but we �nd a monotonic increase in this parameter
as we use move from lower quintiles to the maximum price di�erence.
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that lie within the arbitrage constraint can therefore lead to biased results.

[Figure 2 here]

In order to address this selection bias, we propose a new method to estimate border e�ects

using distance-binned quantile regressions. The methodology can be described as follows:

First, compute the absolute price di�erence for all possible location (stores) pairs. Repeat

this exercise across time and all goods, and pool all observations.

Second, de�ne distance-border-bins according to a discrete spacing criteria that depends

on the unit of observation (city vs countries) and the availability of enough observations

within each bin. In the case of the city e�ect, stores are assigned to bins of a few miles

apart. If the unit of analysis is countries, bins should be larger to contain stores that are

separated by larger distances. The distance in each bin does not have to be set in linear

increments. For simplicity denote each bin as n, where n = {1, . . . , N}, and N is the number

of bins. Each bin is de�ned by a distance Dn, a dummy Bn = 1 if there is a border between

the two stores, and additional controls Xn. In our case, Xn includes a chain dummy and an

interaction term between distance and city dummy.

Third, compute the relevant quantile statistic of the absolute price di�erences for each

bin. Denote the statistic as Qn (|pi,t − pj,t|, q) for the qth percentile of bin n.

Finally, estimate the following equation:

Qn (|pi,t − pj,t|, q) = α + βDn + γBn + δXn + εn (8)

In Figure 3 we depict the impact of the bias and the intuition behind our methodology.

The horizontal axis shows the bins for a range of distances, and the vertical axis is the
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absolute price di�erence. The dots mark the absolute di�erences in the data for each of the

selected �bins�. The thick black line re�ects the price di�erence implied by the no-arbitrage

constraint. Because all the observed price di�erences are less than or equal to the thick line,

the estimation in the standard regression �which implicitly uses the mean within each bin�

is downward biased as denoted by the red line. In small samples, the true maximum per

bin might not be observed, and therefore estimating via the sample maximum will also be

downward biased. Still, in this case the bias is smaller than using the mean. In other words,

it is possible that there is no realization on the black line, but using the maximum within

each bin gets closer to the �true� line. This explains why we interpret our results as a lower

bound estimate of the degree of segmentation.

[Figure 3 here]

2.3 Dealing with errors-in-variables

One of the reasons we use quantile regressions to estimate arbitrage costs, instead of only

the maximum, is to relax the assumption of no errors-in-variables (EIV). In particular, the

maximum of the price di�erence distribution within each bin can be signi�cantly a�ected if

prices are mis-measured. These errors can arise either because prices are observed and/or

reported with errors, or because stores make mistakes and post prices outside the no-arbitrage

range. When we describe our data in Section 3 it will become clear that the errors from

misreporting are very small, because of the way the data is collected. However, there is still

the possibility that the prices are incorrectly reported, and thus concentrating the estimates

on the maximum within each bin would exacerbate the impact of any errors-in-variables.

This case is depicted in Figure 4. The black thick line is still the �true� upper bound

of the no-arbitrage band, that is the true degree of segmentation. However due to EIV,

13



some price di�erences might even be above the no-arbitrage range. In this case, using the

maximum within each bin also produces a bias in the estimation.

[Figure 4 here]

We address errors-in-variables in two ways. One is to eliminate outliers from the distri-

bution. As we discuss below, the type of errors that are likely to be present in our data are

misplacement of the decimal point or �ipping digits, both of which are likely to produce large

price changes at the item level that we can identify. This approach, however, does not pro-

vide a de�nite answer. For example, if the estimates change little then it is not clear whether

the EIV had a small impact, or not enough observations were eliminated to remove the bias.

The alternative we propose it to estimate the regression using di�erent quantiles. Within

each bin we compute several quantiles �the median, 80th, 90th, 95th, and 99th percentiles.11

The 50th and 80th percentiles are clearly less a�ected by the EIV than the maximum, but

those estimates will be a�ected by the sample selection of prices within the no-arbitrage

range. As we move towards higher percentiles, the estimates are less a�ected by the sample

selection, and more a�ected by the EIV. If the EIV is small, it should be the case that the

estimates are monotonically increasing. We evaluate the robustness and sensitivity of our

estimates in Section 4.1.

3 Data

We use a good-level dataset of daily prices compiled by The General Directorate of Commerce

(DGC) which comprises grocery stores all over the country.12 The DGC is the authority

11We also evaluate the robustness of our estimates to the elimination of price change outliers.
12The same dataset is used in Borraz and Zipitria (2012).
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responsible for the enforcement of the Consumer Protection Law at the Ministry of Economy

and Finance.

In 2006 a new tax law was passed by the Uruguayan legislature which changed the tax

base and rates of the value added tax (VAT). The Ministry of Economy and Finance was

concerned about incomplete pass-through from tax reductions to consumer prices, and hence

decided to collect and publish a dataset of prices in di�erent grocery stores and supermarkets

across the country. The DGC issued Resolution Number 061/006 which mandates grocery

stores and supermarkets to report its daily prices for a list of products if they meet the

following two conditions: i) they sell more than 70% of the products listed, and ii) either

have more than four grocery stores under the same name, or have more than three cashiers

in a store. The information sent by each retailer is a sworn statement, and they are subject

to penalties in case of misreporting. The objective of the DGC is to ensure that prices

posted re�ect real posted prices by stores. In this regard, stores are free to set the prices

they optimally choose, but they face a penalty only if they try to misreport them

The data includes daily prices from April 1st of 2007 to December 31th of 2010 for 202

items corresponding to 61 product categories, where each item is de�ned by its universal

product code (UPC).13 The three highest-selling brands are reported for each product cate-

gory. Most items had to be homogenized in order to be comparable, and each supermarket

must always report the same item. For example, sparkling water of the �Salus" brand is

reported in its 2.25 liter variety by all stores. If this speci�c variety is not available at a

store, then no price is reported. Whenever prices are 50% greater (or less) than the average

price, the retailer is contacted to con�rm whether the submitted price is correct. The data

are then used in a public web site that allows consumers to check prices in di�erent stores

13The only exceptions are meat, eggs, ham, some types of cheese, and bread. However, as we later show,
the exclusion of these goods which could potentially be a�ected by an imperfect matching, does not modify
the results.
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or cities and to compute the cost of di�erent baskets of goods across locations.14

After the exclusion of observations labeled as �preliminary� as well as wrongly categorized

or unidenti�ed data (e.g. products that share the same UPC), our �nal dataset is composed

by 202 products at the UPC level in 333 grocery stores from 47 cities. Table 1 describes the

summary statistics of the coverage in the data, and Appendix A.4 provides a detailed list

of the products. In addition, see Figure 5 for a map with the cities covered in the dataset.

These cities represent more than 80% of the total population of Uruguay. Montevideo, with

45% of the population, accounts for 58% of the supermarkets in the sample. The maximum

distance between two supermarkets is 526 kilometers.15

We consider two datasets separately to account for outliers that may have a greater

impact on the largest price di�erences between one good. A baseline case with the complete

sample, and a second case in which we exclude those prices higher than 3 times (or less than

a third) of the median daily price. However, deleted prices only account for a small 0.034%

of the whole database.

In order to compute the linear distance between each pair of stores in our sample, we use

information on the exact geographical location of each supermarket as provided by Ciudata,

an industry organization. We then construct distance bins using a geometric sequence start-

ing from 0.1 kilometers, and incrementing by ((526/0.1)1/N)%. Our baseline estimation uses

N=500 bins, but we re-estimated our results using 50, 100, and 1,000 bins as well. We then

calculate the distance between all supermarkets in the sample (333) and assign each pair of

supermarkets (55,278) to its proper bin according to their distance range.

14See http://www.precios.uy/servicios/ciudadanos.html.
15See Borraz and Zipitria (2012) for a detailed description of the database and an analysis on its price

stickiness.
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Finally, we de�ne the following speci�cation:

Qn (|pi,t − pj,t|, q) = α + βDn + γBn + δ1Bn ×Dn + δ2Firmn + εn (9)

where Qn (|pi,t − pj,t|, q) is the qth quantile of the absolute price di�erences for all store pairs i

and j whose distance belongs to bin n; Dn measures the distance between stores that belong

to bin n; Bn is a dummy that takes the value 1 if the supermarkets are in di�erent cities;

Firmn is a dummy variable that takes the value 1 if the price di�erence in bin n comes from

the same supermarket chain. We also add an interaction dummy between distance and the

city border dummy, and �xed e�ects for each good.

Notice that this regression requires that we have both observations within and across

cities that overlap in distance bins. Figure 6 shows the distribution of observations for each

of the 500 bins for the same city pairs and the di�erent city pairs. The horizontal axis is the

log distance starting at 100 meters to a maximum of 526 km. The black line is the number

of observations per bin for the stores within the same city boundaries, while the gray line

are the observations for the stores in di�erent cities. There is a non-trivial range in which

stores are separated exactly by the same distance within cities and across cities �although

almost all of them between 5 to 15 kilometers. This is the source of the variation where the

city-border e�ect is actually estimated.

[Figure 6 here]

4 Results

As described in Section 2.2, we pool all the prices into each corresponding bin and estimate

the distribution of price di�erences. We select the mean, median, 80, 85, 90, 95, 97.5, 99, 99.5

17



and 99.9th percentiles. For each of these we estimate equation (9) by weighted least squares

to account for di�erences in the number of observations inside each bin. Price di�erences

are expressed in percentage terms, while distance is measured in hundreds of kilometers.

[Table 2 about here]

The results are presented in Table 2. The �rst coe�cient is the segmentation generated

by distance. The second and third estimate the e�ect of the city boundaries (border dummy)

and the interaction term (how the e�ect of distance changes once the stores are in di�erent

cities), respectively. The fourth coe�cient is the impact of both stores belonging to the same

retailer, and the last one is the constant term. Each column re�ects a di�erent regression.

The �rst one uses the mean within each bin, which replicates the standard regressions in

the literature. After that we present the results for the quantiles moving from the 50th until

99.9th percentiles and �nally the maximum.

Notice that as we increase the percentile, all individual coe�cients increase �in line with

the intuition we discussed before. This pattern can be easily appreciated in Figures 7 and

8, which show the coe�cient on distance and city dummy, respectively, as a function of the

percentile.

[Figure 7 and Figure 8 here]

There are two alternatives to compute the border e�ect. One way is to base the e�ect

upon a speci�c distance. First, we calculate the degree of price dispersion when the two

stores are located in di�erent cities. Then we solve for the distance that would be needed for

two stores within the same city to have the same degree of price dispersion. The following
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example clari�es the analysis.16 Using the results in the �rst column (average) in Table 2,

we compute the price dispersion of two cities across the border that are 10 km apart. The

price dispersion is 5.081 + 4.188 ∗ 0.1 + 1.260− 4.049 ∗ 0.1 = 6.355. Two stores in the same

city exhibit a segmentation equal to 5.081 + 4.188 ∗ X. Solving for X to make the within

city segmentation equal to 6.355 yields 30.5 km. Therefore the border adds 20 kilometers

to two stores 10 kilometers apart �that is, the city border triples the distance. Although

the literature simply uses the ratio of the two coe�cients to compute the border e�ect, our

speci�cation also allows for non-linearities. Therefore the implied border e�ect needs to be

estimated conditional to a given distance.

In Panel (a) of Figure 9 we compute this implied additional distance for two stores 10

km apart for each of the quantiles. The border e�ect, as measured in kilometers, collapses

towards zero around the 99.5th percentile. Interestingly, the e�ect is even found negative

at the highest percentiles. In addition, notice the (almost) monotonic decrease in the esti-

mates. This is encouraging from an errors-in-variables point of view. If the maximum of

the distribution were the result of large errors-in-variables, there is no reason to expect the

estimates and the impact of the border e�ect to remain similar to the upper percentiles.

[Figure 9 here]

The second way to compute the border e�ect is to focus on the relative price dispersion for

a given distance. In other words, we compute how large is the implied degree of segmentation

for a pair of stores 10 km apart across two cities, relative to another pair of stores 10 km

apart within the same city. In both cases we consider all stores that do not belong to the

same retailer. For instance, in the average case (column 1 in Table 2) the price dispersion

16We show the results for 10 kilometers but results remain qualitatively the same for stores 15 and 20
kilometers apart. Given the characteristics of our data, it makes no sense to go beyond that distance because
in the city of Montevideo there are very few observations with stores more than 20 kilometers apart.
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for Dn = 0.1 and Bn = 1 is, as before, 5.081 + 4.188 ∗ 0.1 + 1.260 − 4.049 ∗ 0.1 = 6.355.

The price dispersion when Bn = 0 is 5.081 + 4.188 ∗ 0.1 = 5.499. Thus the border implies

a 15.57 percent higher degree of segmentation. However, this relative e�ect becomes small

and insigni�cant using higher quantiles. In Panel (b) in Figure 9 we present the decreasing

pattern in the relative degree of segmentation, together with its 95th con�dence band.

Panels (a) and (b) show that the degree of segmentation is overestimated �and the impact

of distance is underestimated� when the average price deviations are used. By contrast, the

e�ect of the border becomes not signi�cantly di�erent from zero when the upper quantiles

of the distribution within each bin are used. Notice that the reduction in the border e�ect

is not a mechanical consequence of the methodology. The estimation using upper quantiles

should in fact increase the absolute value of all coe�cients �simply because there is less

sample selection. The decrease in the �nal border e�ect, however, comes from the fact that

the bias in the distance coe�cient is larger than in the border coe�cient.

4.1 Robustness

In this section we test the sensibility of the baseline estimates to changing the speci�cation

of the regression, to di�erent subsamples of product mix, elimination of outliers, and to

di�erent number of bins. In all cases we �nd that the results are qualitatively similar. That

is, the traditional regression (average price dispersion) estimates a large and signi�cant city

border e�ect, whereas quantile regressions show that the city border becomes insigni�cant

using upper quantiles of the distribution. Furthermore, the results are similar at the highest

percentiles and the maximum, suggesting that the estimates are not signi�cantly a�ected by

measurement errors.
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First, we modify the equation to the following non-linear speci�cation:

Qn (|pi,t − pj,t|, q) = α + βDn + γBn + δ1Bn ×Dn + δ2D
2
n + δ3D

3
n

+δ4Bn ×D2
n + δ5Bn ×D3

n + δ6Firmn + εn (10)

where the variables are de�ned as in equation 9.

The results, presented in Table 3, yield the same patterns we described above for the base-

line estimation. In absolute value, all point estimates increase as the estimation is performed

over the higher quantiles. Furthermore, if one computes the implied additional distance, the

results remain qualitatively the same as those in Panel (a) in Figure 9. The border e�ect, as

measured in kilometers, is close to 25 km using the traditional regression (average). However

it decreases with higher percentiles, until it becomes small and insigni�cant at the 97.5th

percentile.

In addition, we perform three robustness tests using di�erent subsamples. Results are

presented in Appendix A.3, for both the linear and non-linear speci�cations. First, we

eliminate products in which the matching across stores is not perfect. In particular, we

exclude meat, bread, among other categories. Quantile regressions yield identical patterns

as when using the complete dataset. Second, we use all products but eliminate the outliers,

de�ned here as those whose price is above three times (or a third below) the median price.

This approach is more conservative that the one typically used in the literature. For example,

Gopinath and Rigobon (2008) and Klenow and Kryvtsov (2008) eliminate prices that are

more than 10 times higher or less that a tenth of the median price. Still, our rule only

excludes 11.2 thousand in 32.8 million, or just 0.034% of the observations. Once again, the

patterns are almost identical to the ones obtained using the complete number of observations.

The only minor di�erence is that, for a given percentile, the border e�ects are smaller in
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absolute terms. In other words, the estimated implied distances are smaller than those in

Panel (a) in Figure 9. Third, we further combine the two cases above and estimate quantile

regressions excluding goods with imperfect matching as well as those de�ned as outliers. The

results do not yield signi�cant di�erences with respect to our baseline estimation.

Lastly, we tested the linear and non-linear speci�cations to the sensibility of the number

of distance bins. Instead of 500 bins, we re-estimated using 50, 100, and 1,000 bins. Notice

the trade-o� in the selection of bins. The advantage of a larger number of bins is that each

pair of stores is allocated to a very speci�c distance bin and the distance representing the

bin is closer to the real distance across the stores. The disadvantage is that the number of

observations within each bin decreases. In the limit, if the bins are so narrow that each store

pair belongs to a single bin, then the problem is that the estimation at the 99.9 percentile

becomes very noisy.17 The results are qualitatively the same to the baseline estimation. The

city-border e�ect measured in kilometers falls and becomes insigni�cant when the upper

quantiles are used in the estimation.

5 The Online Border E�ect

We now use online and o�ine prices from a retailer in Uruguay to estimate an �online border�

e�ect. The degree of segmentation between online and o�ine markets is an interesting topic

by itself, but has received little attention because of the data limitations. Selling online

allows a retailer to price discriminate among consumers who have time to travel to a store

and those who prefer the convenience of online shopping. By deciding to buy online, the

17Future research should formally address the optimal bandwidth selection. For the moment we compare
the results across di�erent speci�cations, and do not explore the issue further because the results remain
essentially identical. It is possible that if the estimation is done using less frequent data such as month by
month, or using a much smaller dataset, then the issue of bandwidth selection becomes more important.
This was not the case in our application.

22



consumer may therefore be paying a cost in terms of price dispersion (in addition to any

delivery charges).

We use data collected by the Billion Prices Project at MIT (BPP) using a method that

scans the HyperText Markup Language (HTML) code of public retailers' website, identifying

and storing all relevant price and product information on a daily basis.18 The largest grocery

retailer in Uruguay sells products in dozens of o�ine locations, as well as online, in the city

of Montevideo. We compared the daily prices of all goods in the DGC o�ine data with

their corresponding online price on the same date. Both datasets contain daily prices for the

period between October 1st 2007 and December 31th 2010.

Figure 10 provides an example of the prices posted in the di�erent stores (including the

online store) for a given product over time. On most dates, the online price is within the

range of prices observed in o�ine stores. This feature is observed in most goods in the

sample.

[ Figure 10 here ]

Suppose a consumer decides to buy a good from the retailer's website instead of walking

to an o�ine location. What is the e�ect of crossing this �online border� on prices? We

can calculate an online border e�ect by simply estimating the implied distance that would

produce the same degree of online-o�ine price dispersion observed in the data. We calculate

this e�ect in two steps. First, we estimate the following regression for each quantile q using

only data from the o�ine stores:

Qn (|pi,t − pj,t|, q) = λ+ βDn + εn (11)

18See Cavallo (2010) for additional details on the online data scraping methodology.
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Notice this is equal to equation 9 with Bn = 0 (same city), Firmn = 1 (same retailer),

and λ = α + γ. The coe�cient β therefore provides an estimate of the e�ect of distance

on the dispersion of prices across locations. Finally, to calculate the implied online border

e�ect we simply compute the average online-o�ine price dispersion (between all pairs of

online-o�ine stores), subtract the constant λ and divide by β.

[Table 4 here]

We estimated regression 11 using both the traditional and the binned-quantile methods,

and computed the online border in both cases. Table 4 shows that using the traditional OLS

regression provides an implied distance of 1.6 kilometers. By contrast, if we use the 95th

percentile we obtain an implied distance of 8.78 kilometers.

How do we know which estimate is better? We can compare the results in both methods

to the actual �distance� of the online store. Although the warehouse of the online store is

not known, the website of this retailer states that the online prices are identical to those

available in an o�ine store that �lls the orders. It fails to name it explicitly, but we can

compute a simple �matching probability� between the online prices and each of the o�ine

stores to identify it. This matching probability is just the average probability that the online

price is identical to the price in an o�ine store on any given day. We calculate it at the store

level in two steps. First, for each product, we compute the share of days that the online

price is identical to the o�ine price. And second, we get the mean (or median) across all

products in that store.

[Table 5 here]

Table 5 shows that online prices most closely resemble those of o�ine store number

22. The last column in the table shows the physical distance between store 22 and each

24



of the other o�ine stores. The average distance is 7.22 kilometers (and a median of 8.04

km). This number is very close to the estimate we obtained by using the 95th percentile in

the regression. In this case, the traditional regression greatly underestimates the degree of

online-o�ine market segmentation.

This example illustrates why our method will not mechanically cause a reduction in

border e�ects every time. By using the largest observed price di�erences, we know that

all coe�cients and constant in 9 will increase, because the standard OLS method creates a

downward bias in all of them. But whether the border e�ect rises or falls depends on the

magnitude of those changes. In the case of the online border in equation 11, the distance

coe�cient β rises less than the constant, as shown in Table 4. This is because we are only

looking at stores within the city of Montevideo, where the share of identical prices is very

large. When the traditional OLS regression is used, the average price dispersion captured by

λ is extremely small. When those identical prices are ignored, as we do with our methodology,

λ rises signi�cantly more than the β coe�cient on distance, and the �border e�ect" increases.

6 Conclusions

The extensive literature on the degree of segmentation resulting from political borders has

reported extremely large transaction costs introduced by country, province, and even city

borders. In this paper we argue that some of those estimates have been overstated because

the empirical strategy has not taken into account the selection problem in posted prices:

when a �rm faces the possibility of arbitrage due to the existence of a transaction cost,

the �rm sets prices subject to a no-arbitrage constraint. However, if the optimal price falls

within the no-arbitrage range, the dispersion in prices is not informative of the tightness of

the constraint. A �rm may set the same price in two locations, but it does not mean that
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the arbitrage cost for the consumer is zero. This implies that the estimation using average

absolute price di�erences or standard deviations of price di�erences will not capture the size

of the trade or arbitrage cost.

This paper builds on the existing literature with two main contributions. In the �rst place,

it o�ers an alternative methodology to estimate transactions costs �which not only can be

applied in international trade, but also in other areas as in empirical �nance, measurement

of liquidity, or the cost of regulatory restrictions. In the second place, we show that city

borders matter little for price dispersion within a country. Although the border e�ect of a

city should be small from an intuitive point of view, the traditional methods still estimated

a very wide border e�ect (20 additional kilometers to two stores separated 10 km apart,

that is, the border triples the distance). This is particularly large in a country where the

largest city is less than 40 kilometers wide and there are no signi�cant di�erences between

cities in terms of taxes, language and the like. By contrast, the border becomes insigni�cant

once we estimate using our method of distance-binned quantile regressions. We illustrate our

method to measure border e�ects for the online-o�ine border in Montevideo, and showed

that we can correctly approximate the true average distance between the o�ine stores and

the location where online purchases are sourced by simply using price gap data.

Finally, we believe further research should advance in at least two dimensions. From a

methodological point of view, it is important to further examine the de�nition of optimal

bandwidths. Although in our paper we used di�erent bin sizes and results remained consis-

tent across all speci�cations, this may not be the case in other applications in economics.

And second, similar micro-level data needs to be collected across several countries to shed

light on the actual width of international borders.
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7 Figures and Tables

Figure 1: Price dispersion and the arbitrage cost

(a) Binding no-arbitrage condition

(b) Non binding no-arbitrage condition

Note: Panel (a) shows cases where the no-arbitrage condition constrains the price dispersion. Panel (b) cases

where the price dispersion is not correlated with the arbitrage cost.

30



Figure 2: Example of Price Gaps in Di�erent Store Pairs

Distance Same City Share at 0% Price Gaps (in %)

(Km) (in %) Mean 90th 99th 99.9th

1 yes 96.5 0.3 0 11.1 20.5

10 yes 76.6 1.9 8.64 16.9 25.1

10 no 73.6 2.0 9.46 16.9 25.1

20 no 69.3 2.6 10.6 26.9 39.3

Note: We calculate the price gaps (in absolute value) for all goods sold in a single retailer across two locations.

We picked a random store from the largest retailer in the country and compared its prices to those of other

stores from the same retailer located at 1 km, 10 km (same city), 10 km (di�erent city), and 20 km (di�erent

city). Where �DC� denotes pairs in di�erent cities. The graph excludes the mass at 0% to facilitate the

comparison of positive gaps. The table shows the distributional statistics for all price gaps, including those

at 0% (identical prices).
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Figure 3: Bias in Standard Regressions

Note: This �gure illustrates the source of the selection bias. The horizontal axis shows the bins for a range

of distances. The vertical axis is the absolute price di�erence across locations. For each bin, all the absolute

di�erences from the data are shown as the black dots. The thick black line re�ects the price di�erence

implied by the no-arbitrage constraint. Because all the observed price di�erences are less or equal to the

thick line, the estimation in the standard regression which implicitly uses the mean within each bin (red

line) is downward biased.
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Figure 4: Bias in Standard Regression in the presence of EIV

Note: The black thick line is still the �true� upper bound of the no-arbitrage band, i.e. the true degree of

segmentation. However due to EIV, some price di�erences might even be above the no-arbitrage range. In

this case, using the maximum within each bin also produces a bias in the estimation. For this reason we use

a series of quantile regressions instead.
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Figure 5: Cities covered in the sample

Note: Each dot represents a store location across the 19 Uruguayan departments.

Figure 6: Distribution of observations for 500 bins in the same city and between cities
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Note: The black line shows the distribution of bilateral observations for each of the 500 bins within cities,

while the grey line (extending to the right, with multiple peaks) shows the distribution across cities. Lines

are smoothed for better visualization.
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Figure 7: Estimation of the distance coe�cient by quantile

0
20

40
60

80
10

0
D

is
pe

rs
io

n

Mean 80 85 90 95 97.5 99 99.5 99.9 Max
Percentile

Note: Estimated distance coe�cient when di�erent quantiles are used for the baseline regression.

Figure 8: Estimation of the city coe�cient by quantile

1
2

3
4

5
D

is
pe

rs
io

n

Mean 80 85 90 95 97.5 99 99.5 99.9 Max
Percentile

Note: Estimated city dummy coe�cient when di�erent quantiles are used for the baseline regression.
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Figure 9: Estimation of the city border e�ect using all data

(a) Implied Kilometers

Additional Km implied by City Border E�ect for Stores 10 Km Apart
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(b) Relative Increase in Price Dispersion

of City Borders for Stores 10 Km Apart.

Note: Panel (a) shows the implied additional km for the linear speci�cation using all data and 500 bins.

Panel (b) shows the relative increase in the degree of segmentation for the baseline linear speci�cation, with

its 95th percent con�dence band.
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Figure 10: Example of Online and O�ine Prices: Cocoa - 0.5Kg
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Note: This is an example of the typical time series pattern of online prices compared to o�ine prices in the

same city of Montevideo. Each line is a di�erent store. The online price is marked with a dotted line, and

tends to lie in-between the prices of the o�ine stores.
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Table 1: Product, time, and regional coverage in the data

All Stores

(i) Retailers 136

(ii) Stores 333

(iii) Products 202

(iv) Categories 61

(v) Country Uruguay

(vi) Cities 47

(vii) Departments 19

(viii) Time Period April 1st 2007 to
December 31st 2010

(ix) Days 1,154

(x) Observations
(bins)

179,215

(xi) Observations
(pairs)

32,159,865

Note: Summary statistics of the data compiled by The
General Directorate of Commerce (DGC).
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Table 4: The Online-O�ine Border

Price Di�erence

(1) (2)

Variables Mean 95th Percentile

Log Distance 0.100*** 0.156***

(-0.005) (-0.010)

Constant 0.439*** 3.177***

(-0.174) (-0.362)

Observations 2300 2300

Di�erence Online-O�ine (%) 0.60 4.55

Implied Distance (Km) 1.60 8.78

Note: *** signi�cant at 1%. Robust standard errors in parenthesis. We
measure the online border e�ect, de�ned as the implied �distance� between
the o�ine stores and the online stores. If the usual procedure is used,
online and o�ine markets appear to be very closely integrated, with an
equivalent border of 1.6 kilometers. When the 95th percentile of the price
gap distribution is used, the online border e�ect becomes 8.8 kilometers.
This is very close to the actual physical average distance between the online
warehouse (store 22, where the online goods appear to be delivered from)
and each of the o�ine stores in the city.
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Table 5: Online vs O�ine stores

Store City Online Match Probability Distance to Store 22

22 Montevideo 97.34 0.00

31 Montevideo 96.59 1.28

39 Montevideo 96.59 1.88

41 Montevideo 96.83 2.32

21 Montevideo 96.83 2.72

38 Montevideo 96.58 3.32

33 Montevideo 81.85 5.66

34 Montevideo 96.96 6.50

35 Montevideo 96.70 8.04

32 Montevideo 81.702 8.84

43 Montevideo 81.18 8.96

28 Montevideo 81.68 9.23

30 Montevideo 96.54 10.58

27 Montevideo 81.73 11.81

23 Montevideo 81.57 12.87

36 Montevideo 81.56 13.29

42 Montevideo 81.37 15.42

Mean 89.62 7.22

Median 96.54 8.04

Note: The �Online Match Probability� shows the percentage of days in which the
online price is identical to the price observed o�ine in a particular store. Distance
from store 22 to the other o�ine stores is measured in kilometers.
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A Appendix

A.1 Proofs to the model of price-setting with arbitrage

A.1.1 Consumers

Lemma 1. The price space is non empty.

Proof. Given prices pi and pj the right hand side of the inequality is non negative for the

consumer located on store `i. In this case, equation 6 is | pi − pj |≤ β̃
θ
|`− `j| + γ̃

θ
bj +

δ̃
θ
Ij,

as ` = `i. This implies that there must exist at least one price in order for the consumer to

compare its bundles. Thus both the right and left hand side of the inequality are positive.

Lemma 2. The inequality constraint is binding only for the marginal consumer.

Proof. The marginal consumer can be de�ned as the one obtaining the same utility from

buying in both stores, that is u` (i) = u` (j). This in turn implies that v − θpi − β̃ |`− `i| −

γ̃bi − δ̃Ii = v − θpj − β̃ | `− `j | −γ̃bj − δ̃Ij. Rearranging terms we obtain that | pi − pj |=
β̃
θ
|`j − `i|+ γ̃

θ
M bi,j +

δ̃
θ
M Ii,j.

A.1.2 Producers

Lemma 3. Firms maximize pro�ts by setting the price that binds the participation constraint

for consumer i.

Proof. Given the prices of all stores except for j, and given the right hand side of the

equation in terms of pj, Kuhn Tucker conditions determine that the price di�erence should

be maximal. That is, when the consumer restriction is binding. At the same time, notice

that the marginal consumer for �rm j determines the demand for its products.
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Proposition 4. The consumer that maximizes pro�ts is the marginal consumer.

Proof. From Lemma 2 and Lemma 3, the �rm sets the maximum price for the marginal

consumer.

Proposition 5. For any given two stores (locations), the parameters can only be estimated

for the marginal consumer, i.e. where the inequality is binding.

Proof. From Lemma 2 and Proposition 4, the �rm sets its price for the marginal consumer

such that equation 6 is binding. Therefore the price di�erences will be maximum given the

store location and other exogenous variables for the consumer.

Lemma 6. If transportation costs increase (beta) or a border exists between two stores, or if

the sensitivity of the consumer to price changes decrease, then the price dispersion increase.

Proof. Take partial derivatives of each coe�cient on the last equation of Lemma 2.

A.1.3 Consumer heterogeneity: Discussion

So far we have assumed that consumers only di�er in their location on the line. However

consumers can also di�er in their valuation of the good. This feature can be introduced to the

original model in either two ways. First, consumers can di�er in their maximum valuation

of the good, in which case v ∈ [v, v]. In this case, previous results are easily maintained

as well, although now satisfying two conditions for the marginal consumer: indi�erence in

distance and in valuation. Recall that previous results are for the medium consumer. Second,

consumers can di�er in their disposition to pay for the good, i.e. θ ∈
[
θ, θ
]
. Similarly

as before, there are two constraints to estimate the demand for each store: the distance

constraint and the valuation constraint.
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Therefore adding heterogeneity to consumers' taste does not change the estimation pro-

cedure. In order to estimate the demand for each store, we must still solve the model for

the marginal consumer. As previously shown, the price inequality should only be binding

for this consumer, and slack for non-marginal consumers.

A.2 Samuelson's Iceberg Costs

The results from our model of product arbitrage is also related to the no-arbitrage pricing

region generated in Samuelson's Iceberg costs.19 Assume that there is an arbitrage cost

between two locations that can be described as follows:

τi,j,t = α + βDi,j + γBi,j + δXi,j,t (12)

where the variables are de�ned as before. This arbitrage cost τ represents the proportion of

the item that is lost when a customer transports one unit from i to j.20 Under this form of

arbitrage costs, prices need to lie within the range |pi − pj| ≤ τi,j,t to avoid the possibility

that a customer arbitrates across locations. In particular, assume that pi is set. The second

store, when deciding its price, maximizes pro�ts subject to the no-arbitrage constraint. If

the optimal price is such that the di�erence between pi and pj is smaller than τ then the

constraint is not binding and the price di�erence is a biased estimate of τ . But if the

di�erence is larger, then the store sets the price at the corner solution and the constraint

is binding. This simple behavior implies that the absolute di�erence of log prices satis�es

inequality 1, which can be rewritten as |pi − pj| ≤ τi,j,t = α + βDi,j + γB + δXi,j,t.

19See Samuelson (1954).
20For simplicity in the exposition it is assumed that the arbitrageur is the customer itself. Thus the

arbitrage cost can be interpreted not only as the loss of physical items, but also the loss in terms of utility
that the customer would experience if were forced to travel from one location to another.
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A.3 Alternative Speci�cations

Figure 11: Estimation of the city border e�ect excluding meat and bread

(a) Implied Kilometers

Additional Km implied by City Border E�ect for Stores 10 Km Apart

−
10

0
10

20
30

K
m

Mean 80 85 90 95 97.5 99 99.5 99.9 Max
Percentile

(b) Relative Increase in Price Dispersion

of City Borders for Stores 10 Km Apart

Note: Panel (a) shows the additional km implied by the city border e�ect for the linear speci�cation, excluding

meat and bread, and using 500 bins. Panel (b) shows the relative increase in the degree of segmentation,

with its 95th percent con�dence band, for the same speci�cation.
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Figure 12: Estimation of the city border e�ect using all data and excluding outliers

(a) Implied Kilometers

Additional Km implied by City Border E�ect for Stores 10 Km Apart

0
5

10
15

20
25

K
m

Mean 80 85 90 95 97.5 99 99.5 99.9 Max
Percentile

(b) Relative Increase in Price Dispersion

of City Borders for Stores 10 Km Apart

Note: Panel (a) shows the additional km implied by the city border e�ect for the linear speci�cation,

excluding outliers, and using 500 bins. Panel (b) shows the relative increase in the degree of segmentation,

with its 95th percent con�dence band, for the same speci�cation.
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Figure 13: Estimation of the city border e�ect excluding meat, bread, and outliers

(a) Implied Kilometers

Additional Km implied by City Border E�ect for Stores 10 Km Apart

−
10

0
10

20
K

m

Mean 80 85 90 95 97.5 99 99.5 99.9 Max
Percentile

(b) Relative Increase in Price Dispersion

of City Borders for Stores 10 Km Apart

Note: Panel (a) shows the additional km implied by the city border e�ect for the linear speci�cation,

excluding meat, bread, as well as outliers, using 500 bins. Panel (b) shows the relative increase in the degree

of segmentation, with its 95th percent con�dence band, for the same speci�cation.
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A.4 Data Details

Table 9: Description of products in the database and share in CPI.

Product Brand Speci�cation Share in CPI (%)
Beer Pilsen 0.96 L 0.38
Beer Patricia 0.96 L 0.38
Beer Zillertal 1 L 0.38
Bleach Agua Jane 1 L n/i
Bleach Solucion Cristal 1 L n/i
Bleach Sello Rojo 1 L n/i
Bovine Beef "Aguja" No Brand - Cow 1 Kg 0.23
Bovine Beef "Aguja" No Brand 1 Kg 0.23
Bovine Beef "Aguja" With Bone - No Brand 1 Kg 0.23
Bovine Beef "Aguja" Boneless - No Brand 1 Kg 0.23
Bovine Beef "Aguja" With Bone - No Brand - Cow 1 Kg 0.23
Bovine Beef "Aguja" Boneless - No Brand 1 Kg 0.23
Bovine Beef "Nalga" No Brand - Novillo 1 Kg 0.32
Bovine Beef "Nalga" With Bone - No Brand 1 Kg 0.32
Bovine Beef "Nalga" Boneless - No Brand 1 Kg 0.32
Bovine Beef "Nalga" Boneless - No Brand - Cow 1 Kg 0.32
Bovine Beef "Nalga" With Bone - No Brand - Cow 1 Kg 0.32
Bovine Beef "Paleta" With Bone - No Brand - Cow 1 Kg 0.20
Bovine Beef "Paleta" Boneless - No Brand 1 Kg 0.20
Bovine Beef "Paleta" With Bone - No Brand 1 Kg 0.20
Bovine Beef "Peceto" No Brand 1 Kg 0.16
Bovine Beef "Peceto" No Brand - Cow 1 Kg 0.16
Bovine Beef "Rueda" With Bone - No Brand 1 Kg 0.17
Bovine Beef "Rueda" With Bone - No Brand - Cow 1 Kg 0.17
Bread Bimbo 0.33 Kg 0.06
Bread Los Sorchantes 0.33 Kg 0.06
Bread Pan Catalan 0.33 Kg 0.06
Bread No Brand 1 Unit Aprox. 0.215 Kg 1.14
Brown Eggs El Ecologito 1/2 Dozen 0.46
Brown Eggs El Jefe 1/2 Dozen 0.46
Brown Eggs Prodhin 1/2 Dozen 0.46
Brown Eggs Super huevo 1/2 Dozen 0.46
Brown Eggs El Ecologito 1 Dozen 0.46
Brown Eggs El Jefe 1 Dozen 0.46
Brown Eggs Prodhin 1 Dozen 0.46
Burgers Burgy 3 Units 0.17
Burgers Schneck 2 Units 0.17
Burgers Paty 2 Units 0.17
Butter LacterÃa 0.2 Kg 0.23
Butter Conaprole sin sal 0.2 Kg 0.23
Butter Calcar 0.2 Kg 0.23
Butter Kasdorf 0.2 Kg 0.23
Cacao Copacabana 0.5 Kg 0.08
Cacao Aguila 0.5 Kg 0.08
Cacao Vascolet 0.5 Kg 0.08
Cacao Saint 0.5 Kg 0.08
Cheese Cerros del Este 1 Kg 0.21
Cheese Dispnat 1 Kg 0.21
Chicken Avesur 1 Kg 0.83
Chicken Tenent 1 Kg 0.83
Chicken Avicola del Oeste 1 Kg 0.83
Chicken Melilla 1 Kg 0.83
Chicken Tres Arroyos 1 Kg 0.83
Co�ee Aguila 0.25 Kg 0.09
Co�ee Chana 0.25 Kg 0.09
Co�ee Saint 0.25 Kg 0.09
Co�ee Tropical 0.2 Kg 0.09
Cola Coca Cola 1.5 L 1.23
Cola Pepsi 1.5 L 1.23
Cola Nix 1.5 L 1.23
Cola Coca Cola 2.25 L 1.23
Cola Pepsi 2 L 1.23
Corn oil Delicia 0.9 L n/i
Continue in next page.
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Table 9 � continued from previous page
Product Brand Speci�cation Share in CPI (%)
Corn oil Rio de la Plata 0.9 L n/i
Corn oil Salad 1 Kg n/i
Cornmeal Gourmet 0.45 Kg n/i
Cornmeal Presto Pronta Arcor 0.5 Kg n/i
Cornmeal Puritas 0.45 Kg n/i
Crakers Famosa 0.14 Kg 0.28
Crakers Maestro Cubano 0.12 Kg 0.28
Crakers El Trigal 0.15 Kg 0.28
Deodorant Axe Musk 0.113 Kg 0.34
Deodorant Dove Original 0.1 Kg 0.34
Deodorant Rexona Active Emotion 0.105 Kg 0.34
Diswashing detergent Hurra Nevex Limon 1.25 L 0.13
Diswashing detergent Deterjane 1.25 L 0.13
Diswashing detergent Protergente limon 1 L 0.13
Dulce de leche Conaprole 1 Kg 0.14
Dulce de leche Manjar 1 Kg 0.14
Dulce de leche Los Nietitos 1 Kg 0.14
Fish No Brand 1 Kg 0.43
Flour Cololo 1 Kg 0.21
Flour Canuelas 1 Kg 0.21
Flour Cololo 1 Kg 0.21
Flour Puritas 1 Kg 0.21
Frankfurters Cattivelli 8 Units - Aprox. 0.340 Kg 0.23
Frankfurters Ottonello 8 Units - Aprox. 0.330 Kg 0.23
Frankfurters Schneck 8 Units - Aprox. 0.330 Kg 0.23
Frankfurters Centenario 8 Units - Aprox. 0.33 Kg 0.23
Frankfurters Sarubbi 8 Units 0.23
Frozen �sh No Brand 1 Kg n/i
Grated Cheese Conaprole 0.08 Kg 0.16
Grated Cheese El Trebol 0.08 Kg 0.16
Grated Cheese Milky 0.08 Kg 0.16
Grated Cheese Artesano 0.08 Kg 0.16
Grit Noodles Adria 0.5 Kg 0.43
Grit Noodles Las Acacias 0.5 Kg 0.43
Grit Noodles Puritas 0.5 Kg 0.43
Ground Beef No Brand - Cow 1 Kg 0.98
Ground Beef No Brand 1 Kg 0.98
Ground Beef Up to 20% Fat 1 Kg 0.98
Ground Beef Up to 5% Fat 1 Kg 0.14
Ham La Constancia 1 Kg 0.16
Ham Schneck 1 Kg 0.16
Ham Centenario 1 Kg 0.16
Ice cream Cru� 1 L 0.22
Ice cream Conaprole 1 L 0.22
Ice cream Gebetto 1 L 0.22
Laundry Soap Nevex 0.8 Kg 0.45
Laundry Soap Drive 0.8 Kg 0.45
Laundry Soap Skip - Paquete azul 0.8 Kg 0.45
Laundry Soap in Bar Bull Dog 0.3 Kg - 1 Unit n/i
Laundry Soap in Bar Nevex 0.2 Kg - 1 Unit n/i
Margarine Doriana nueva 0.25 Kg n/i
Margarine Primor 0.25 Kg n/i
Margarine Danica dorada 0.2 Kg n/i
Margarine Flor 0.25 Kg n/i
Mayonnaise Hellmans 0.5 Kg 0.21
Mayonnaise Natura 0.5 Kg 0.21
Mayonnaise Fanacoa 0.5 Kg 0.21
Mayonnaise Uruguay 0.5 Kg 0.21
Noodles Cololo 0.5 Kg 0.43
Peach Jam Los Nietitos 0.5 Kg n/i
Peach Jam Dulciora 0.5 Kg n/i
Peach Jam Limay 0.5 Kg n/i
Peach jam El Hogar 0.5 Kg n/i
Peas Arcor 0.35 Kg 0.09
Peas El Hogar 0.35 Kg 0.09
Peas Trofeo 0.35 K 0.09
Peas Campero 0.3 Kg 0.09
Peas Cololo 0.38 Kg 0.09
Peas Nidemar 0.3 Kg 0.09
Continue in next page.
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Table 9 � continued from previous page
Product Brand Speci�cation Share in CPI (%)
Quince jam Los Nietitos 0.4 Kg 0.13
Quince jam Limay 0.4 Kg 0.13
Rice Green Chef 1 Kg 0.38
Rice Blue Patna 1 Kg 0.38
Rice Aruba tipo Patna 1 Kg 0.38
Rice Pony 1 Kg 0.38
Rice Vidarroz 1 Kg 0.38
Rice Saman Blanco 1 Kg 0.38
Salt Sek 0.5 Kg 0.09
Salt Urusal 0.5 Kg 0.09
Salt Torrevieja 0.5 Kg 0.09
Sausage Cattivelli - Extra 1 Kg 0.37
Sausage La Familia - Hilo amarillo 1 Kg 0.37
Sausage Centenario - Extra 1 Kg 0.37
Semolina Noodles Adria 0.5 Kg 0.43
Semolina Noodles Las Acacias - franja celeste 0.5 Kg 0.43
Shampoo Sedal 0.35 L 0.36
Shampoo Suave 0.93 L 0.36
Shampoo Fructis 0.35 L 0.36
Soap Astral 0.125 Kg 0.16
Soap Palmolive 0.125 Kg 0.16
Soap Suave 0.125 Kg 0.16
Soap Astral plata 0.125 Kg 0.16
Soap Rexona 0.125 Kg 0.16
Soap Primor 0.3 Kg n/i
Soybean Oil Condesa 0.9 L 0.11
Soybean oil Rio de la Plata 0.9 L 0.11
Soybean oil Salad 0.9 L 0.11
Sparkling Water Salus 2.25 L 0.82
Sparkling Water Matutina 2 L 0.82
Sparkling Water Nativa 2 L 0.82
Sugar Azucarlito 1 Kg 0.35
Sugar Bella Union 1 Kg 0.35
Sun�ower oil Optimo 0.9 L 0.37
Sun�ower oil Uruguay 0.9 L 0.37
Sun�ower oil Rio de la Plata 0.9 L 0.37
Tea Hornimans Box 10 Units 0.07
Tea La Virginia Box 10 Units 0.07
Tea Lipton Box 10 Units 0.07
Tea President 10 Units 0.07
Toilet paper Higienol Export 4 Unit - 25 M each 0.24
Toilet paper Sin Fin 4 Unit - 25 M each 0.24
Toilet paper Personal 4 Unit - 25 M each 0.24
Toilet paper Elite 4 Units - 30 M each 0.24
Tomate pulp Gourmet 1 Kg 0.16
Tomato Paste Qualitas 1 L 0.16
Tomato Paste Conaprole 1 L 0.16
Tomato Paste De Ley 1 L 0.16
Toothpaste Colgate Total 0.09 Kg 0.19
Toothpaste Kolynos 0.09 Kg 0.19
Toothpaste Colgate Herbal Blanqueador 0.09 Kg 0.19
Toothpaste Closeup Triple 0.09 Kg 0.19
Toothpaste Kolynos Triple accion 0.09 Kg 0.19
Toothpaste Pico Jenner Plus 0.09 Kg 0.19
Wheat Flour Canuelas 1 Kg 0.21
Wheat Flour Primor 1 Kg 0.21
Wine Santa Teresa Clasico 1 L 0.79
Wine Tango 1 L 0.79
Wine Roses 1 L 0.79
Wine Faisan 1 L 0.79
Yerba Canarias 1 Kg 0.64
Yerba Sara 1 Kg 0.64
Yerba Envase Del Cebador 1 Kg 0.64
Yerba Del Cebador 1 Kg 0.64
Yerba Baldo 1 Kg 0.64
Yogurt Conaprole 0.5 Kg 0.13
Yogurt Parmalat (Skim) 0.5 Kg 0.14
Yogurt Calcar 1 L 0.14
Yogurt Conaprole BIO TOP 1.2 L 0.14
Continue in next page.
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Table 9 � continued from previous page
Product Brand Speci�cation Share in CPI (%)
Yogurt Parmalat BIO YOGUR 1 L 0.14

Note: n/i means not included in the CPI, Kg. kilograms, L. liters and M. meters.
Source: Own elaboration from data of the Uruguayan Ministry of Economy and Finance.
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