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1 Introduction

Many researchers (e.g., Glaeser et al., 2005a, Saiz, 2010) blame land-use restrictions for
declining housing affordability. Summers (2014) comments that one of “the two most im-
portant steps that public policy can take with respect to wealth inequality” is “an easing of
land-use restrictions.” Yet such restrictions are also argued to increase local housing de-
mand by improving local quality of life and the provision of public goods (Hamilton, 1975,
Brueckner, 1981, Fischel, 1987). Consequently, land-use restrictions could raise house
prices either by increasing housing demand or reducing housing supply. That ambiguity
makes the restrictions’ effects on social welfare difficult to assess.

We resolve this ambiguity using a two-step process. First, we estimate a cost function
for housing across metro areas using the prices of land and construction inputs, along with
measures of regulatory and geographic restrictions. We call the gap between an area’s ac-
tual housing prices and the prices predicted by input costs an area’s “housing productivity,”
in the spirit of a Solow (1957) residual. Our results indicate that regulatory land-use re-
strictions (Gyourko et al., 2008) and geographical constraints (Saiz, 2010) raise the cost of
housing relative to input prices, meaning that they lower housing productivity.

Second, we estimate whether land-use restrictions predict high housing prices rela-
tive to local wages. Such an effect on residents’ “willingness-to-pay” to live in an area
would suggest that land-use restrictions improve their quality of life (Roback, 1982). We
find, however, that after accounting for the tendency of areas with more desirable natural
amenities to be more regulated, willingness-to-pay is no higher in regulated areas than in
unregulated ones.

Together, our results imply that the typical land-use restriction reduces social welfare.
Observed land-use restrictions raise housing costs by 15 percentage points on average,
reducing average welfare by 2.3 percent of income on net.1

Our cost function estimates are particularly novel in that they employ variation in land
and construction price across cities. Conditioning on local land prices is central in isolat-
ing the supply-side effects of land-use restrictions housing prices from the demand-side
effects. Our main results hold whether we estimate the housing cost function parameters
using ordinary least squares (OLS) or instrumental variable (IV) methods. The estimates
imply that land typically accounts for one-third of housing costs and that the elasticity of

1We calculate those magnitudes by comparing the increase in housing costs implied by moving from the
fifth percentile of costs imposed by land-use regulation to the average level (15 percent), and scaling the
implied increase in costs by housing’s share of the average expenditure bundle of 16 percent.
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substitution between inputs is below one. Our results regarding land-use restrictions also
hold over a wide range of parameter values for the housing cost function.2

Our new measure of metropolitan housing productivity supplements other metropolitan
indices of economic value, namely productivity indices for firms in the traded sector—as
in Beeson and Eberts (1989), Gabriel and Rosenthal (2004), Shapiro (2006), and Albouy
(2016)—and indices of quality of life—as in Roback (1982), Gyourko and Tracy (1991),
Albouy (2008), and others. Estimated housing productivity levels vary widely, with a stan-
dard deviation equal to 23 percent of total housing costs. Contrary to common assumptions
(e.g., Rappaport, 2008) that productivity levels in traded and housing sectors are equal, we
find the two are negatively correlated across metro areas.

We consolidate the predicted efficiency loss of observed land-use regulations into a
“Regulatory Cost Index,” or RCI. The RCI measures the extent to which observed regula-
tions reduce housing productivity. It has a cardinal economic interpretation given by the
efficiency costs imposed by a variety of regulations. The RCI explains two-fifths of the
variance between input costs and output prices, and rises along with city population and
density. This last result suggests that endogenous local politics may impose a diseconomy
of urban scale.

There are important antecedents to our work on housing productivity. Rose (1992)
finds that geographic restrictions in Japan raise land and housing values in 27 cities. Ih-
lanfeldt (2007) documents that land-use regulations predict higher housing prices but lower
land values using assessment data from 25 Florida counties. Glaeser and Gyourko (2003,
2005) document that housing and land values differ most in cities where rezoning requests
take the longest using data from 20 U.S. cities. They also argue that regulations push the
unit prices in tall Manhattan buildings above their marginal construction costs. These ex-
tra costs do not offset the estimated benefits of preserved views. Our study builds upon
these approaches by providing a unified framework for measuring the net welfare effects
of land-use regulation across a wide range of U.S. metro areas. Waights (2015) builds on
our approach using panel data and finds similar results for England, including low factor
substitution and negative welfare consequences of land-use restrictions.

2An expanded model with factor bias suggests land-use restrictions lower the relative value of productivity
of land. When we examine the separate effects of 11 sub-indices provided by the Wharton Residential Land-
Use Restriction Index, we find state political and court involvement predict the largest increases in costs.
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2 A Model of Housing Costs and Price Determination

Our econometric model embeds a cost function for housing within a general-equilibrium
model of urban areas, similar to Roback (1982) and Albouy (2016). The national economy
contains many cities indexed by j, which produce a numeraire good, X , which is traded
across cities, and housing, Y , which is not traded across cities, and has a local price pj .3

2.1 Housing Costs, Productivity, and Supply

Firms produce housing, Y , with land, L, and structural inputs, M . While we refer to the
latter loosely as “construction,” inputs, they include time and capital costs of maintenance,
renovation, and building. The production function for housing obeys the relationship:

Yj = AY F (L,M ;BY
j ) (1)

where F Y is concave and exhibits constant returns to scale at the firm level.4 Housing
productivity, AY

j , is a city-specific characteristic that may vary with characteristics such
as population or regulatory environment. BY

j captures factor bias in city j, or the relative
productivity of land to construction inputs.5

We assume that input and output markets are perfectly competitive.6 Land earns a
city-specific price, rj , while construction inputs cost vj per unit. Marginal and aver-

3To simplify, we assume away federal taxes and land in the traded sector.
4The production model is meant to apply to all housing, not only to new construction. The use of a single

function to model the production of a heterogeneous housing stock was first established by Muth (1969). In
the words of Epple et al. (2010, p. 906), “The production function for housing entails a powerful abstraction.
Houses are viewed as differing only in the quantity of services they provide, with housing services being ho-
mogeneous and divisible. Thus, a grand house and a modest house differ only in the number of homogeneous
service units they contain.” This abstraction also implies that a highly capital-intensive form of housing,
e.g., an apartment building, can substitute in consumption for a highly land-intensive form of housing, e.g.,
single-story detached houses. Our analysis uses data from owner-occupied properties, accounting for 67% of
homes, of which 82% are single-family and detached.

5In our primary model we ignore variation in BY
j , but we include it in an extended model. Briefly,

suppose housing productivity is factor-specific, so that the production function for housing is Yj =
F (L,M ;AY

j , B
Y
j ) = F (AY L

j L,AYM
j M ; 1). Then the factor bias BY

j in equation 1 is captured by the
ratio BY

j = AY L
j /AYM

j . Appendix A shows that ÂY
j = φÂY L

j + (1− φ)ÂYM
j and B̂Y

j = ÂY L − ÂYM .
6Many studies support the hypothesis that the construction sector is competitive. Glaeser et al. (2005b)

report that “...all the available evidence suggests that the housing production industry is highly competitive.”
Basu et al. (2006) calculate returns to scale in the construction industry as unity, indicating firms in construc-
tion have no market power. On the output side, competition seems sensible as new homes must compete
with the stock of existing homes. Nevertheless, if markets are imperfectly competitive, then AY

j will vary
inversely with the mark-up on price above cost.
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age costs are given by the unit cost function c(rj, vj;BY
j )/AY

j ≡ minL,M{rjL + vjM :

AY
j F (L,M ;BY

j ) = 1}. The equilibrium condition for housing output is that in every city
j that has positive production, housing prices should equal unit costs:7

pj = c(rj, vj;B
Y
j )/AY

j . (2)

A first-order log-linear approximation of equation (2) expresses how housing prices
vary with input prices and productivity: p̂j = φr̂j + (1− φ)v̂j − ÂY

j , where ẑj represents,
for any variable z, city j’s log deviation from the national average, z̄: ẑj = ln zj − ln z. φ
is the cost share of land for the typical city. Thus, p̂j , r̂j , and v̂j represent housing-price,
land-value, construction-price differentials, or “indices,” for each city j. AY

j is normalized
so that a one-point increase in ÂY

j corresponds to a one-point reduction in log costs.
A second-order approximation of equation (2) reveals two more parameters, the elas-

ticity of substitution, σ, and differences in factor bias, Bj:

p̂j = φr̂j + (1− φ)v̂j +
1

2
φ(1− φ)(1− σ)(r̂j − v̂j − B̂Y

j )2 − ÂY
j , (3)

The data will indicate that σ < 1 if output prices increase in the square of the factor-price
differences, (r̂j−v̂j)2. Factor biases against land,−B̂Y

j , have a similar effect. When σ 6= 0,
the cost-share of land in a particular city j, φj , can deviate from the typical share, φ. This
deviation depends on input prices and factor bias according to the approximation:

φj = φ+ φ(1− φ)(1− σ)(r̂j − v̂j − B̂Y
j ). (4)

When σ < 1, the local land share rises with the price of land relative to construction inputs,
r̂j − v̂j , and falls with land’s factor bias, B̂Y

j .
Local housing supply differences across cities are approximated by:

Ŷj = L̂j + σ
1− φj

φj

(p̂j − v̂j) +

(
1 + σ

1− φj

φj

)
ÂY

j + (1− φj) (1− σ) B̂Y
j (5a)

= L̂j + ηj (p̂j − v̂j) + (1 + ηj) Â
Y
j + (1− φj − φjηj) B̂

Y
j (5b)

where ηj ≡ σ (1− φj) /φj is the local partial-equilibrium own-price elasticity of housing
supply, which falls in the cost share of land, φj . More generally, equation (5a) expresses

7In previous drafts, we considered when this condition could be slack. Low-growth markets exhibited
slackness in a manner consistent with Glaeser and Gyourko (2005), but this had little effect on other results.
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several channels that may affect housing supply. Those concerning overall land supply, L̂j ,
are not addressed here. Housing productivity increases housing supply by lowering factor
costs, raising output by ηjÂY

j , which then frees up land to supply additional housing by an
amount ÂY

j . If σ < 1, land-biased productivity also increases supply directly. Furthermore,
the price elasticity ηj is higher in places where the local cost share of land, φj , is lower.8

2.2 Simultaneous Determination of Housing and Land Prices

This section considers how input and output prices are jointly determined in an equilibrium
model of a system of open cities. In addition to housing productivity, AY

j , cities j vary in
trade productivity, AX

j , and quality of life, Qj . Each production sector has its own type of
worker, k = X, Y , where type-Y workers produce housing. Preferences are represented by
U(x, y;Qk

j ), where x and y are personal consumption of the traded good and housing, and
Qk

j varies by worker type. Each worker supplies a single unit of labor and earns wage wk
j ,

along with non-labor income, Ik, which does not vary across metros.
Consider the case in which workers are perfectly mobile and preferences are homoge-

neous. In equilibrium, this requires that workers receive the same utility in all cities, ūk, for
each type. Define sY as the expenditure share on housing and t as labor’s share of income,
assumed equal across sectors. Appendix A shows that this mobility condition implies that
the local quality-of-life index is proportional to residents’ willingness-to-pay determined
by housing prices and wages:

Q̂k
j = sY p̂j − tŵk

j , k = X, Y, (6)

i.e., higher quality of life must offset high prices or low after-tax wages.9 The aggregate
quality of life index is Q̂j ≡ λQ̂X

j + (1 − λ)Q̂Y
j , where λ is the share of labor income in

the traded sector. Likewise, the aggregate wage index is ŵ ≡ λŵX
j + (1− λ)ŵY

j .
Traded output has a uniform price of one across all cities. It is produced with Cobb-

Douglas technology, with AX
j being factor neutral. The trade-productivity index is then

proportional to the wage index:
ÂX

j = θŵX
j , (7)

8This constitutes a local approximation. When σ = 1, differences in price elasticities ηj cannot depend
on prices or factor bias, which affect φj endogenously through (4). Thy must instead be related to exogenous
differences in φj or in land supply elasticities, through L̂j .

9 Qk
j is normalized such that Q̂k

j of 0.01 is equivalent in utility to a one-percent rise in total consumption.
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where θ is the cost share of labor. Mobile capital, with a uniform price across cities, ac-
counts for remaining costs in the traded sector.

Construction inputs are produced with local labor and traded capital according to the
production function Mj = (NY )a(KY )1−a, implying that v̂j = aŵY

j . This permits us to
write an alternative housing productivity measure that uses wages, weighted by the labor’s
cost share in housing, a (1− φ):

ÂY
j = φr̂j + a (1− φ) ŵY

j − p̂j. (8)

The total-productivity index of a city, is ÂTOT
j ≡ sY ÂY

j + sXÂX
j ,

Combining equations (6), (7), and (8) gives the following system of equations:

tŵX
j =λ−1sXÂX

j (9a)

sY p̂j =Q̂X
j + λ−1sXÂX

j (9b)

tŵY
j =Q̂X

j − Q̂Y
j + λ−1sXÂX

j (9c)

sY φr̂j =λQ̂X
j + (1− λ)Q̂Y

j + sXÂX
j + sY ÂY

j = Q̂j + ÂTOT
j (9d)

where sY φ is land’s share of income. Housing prices are determined by the traded sector’s
productivity and the amenities valued by its workers. Wages in the housing sector keep up
with those in the traded sector, but are lower insofar as workers in the housing sector prefer
the local amenities. Land values capitalize the full value of all amenities; unlike housing
prices, these values include housing productivity and quality of life for housing workers. As
noted by Aura and Davidoff (2008), improvements in local housing productivity need not
reduce the unconditional price of housing. In this model, they raise land values instead.10

3 Empirical Approach

Here, we adapt a translog functional form for the housing cost function and propose spec-
ification tests for it. We also discuss identification from the perspective of our theoretical

10Two amendments to the model can create a negative relationship between housing productivity and hous-
ing prices. The first is to introduce land into the non-traded sector (Roback, 1982). The second is to introduce
heterogeneity in location preference, which is similar to introducing moving costs. The mathematics in these
two richer cases are complicated, but are described and simulated in Albouy and Farahani (2017) when
Q̂X

j = Q̂Y
j . As heterogeneity in preferences increase, the city becomes closed, and estimation issues related

to simultaneity diminish. At the same time, it becomes more difficult to examine the quality-of-life benefits
of land-use restrictions.
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model and compare our parametric estimation approach to non-parametric approaches that
treat housing quantities as a latent variable.

3.1 Adapting and Testing the Translog Cost Function

Assume city j’s housing productivity and factor bias are determined in part by a vector
of observable restrictions, Zj , which is partitioned into regulatory and geographic com-
ponents: Zj = [ZR

j , Z
G
j ]. Productivity and bias are also determined by unobserved city-

specific components, ξj = [ξAj, ξBj], such that:

ÂY
j = −ZjδA − ξAj (10a)

B̂Y
j = −ZjδB − ξBj. (10b)

A positive δA indicates that a restriction reduces productivity; a positive δB indicates that a
restriction is biased against land. Substituting equations (10a) and (10b) into (3) gives the
following reduced-form equation:

p̂j − v̂j = β1(r̂j − v̂j) + β3(r̂j − v̂j)2 + γ1Zj + γ2Zj(r̂j − v̂j) + ζj + εj. (11)

The error in this regression comprises two components. The first, ζj , is driven mainly by
unobservable determinants of productivity and bias:

ζj = ξAj + ξBjφ(1− φ)(1− σ)
[
ZjδB + r̂j − v̂j + ξBj/2 + (ZjδB)2/2

]
. (12)

The second component, εj , may capture sampling, specification, and measurement error.11

Appendix A provides more detail.
Relaxing the homogeneity assumption gives a more general form of equation (11):

p̂j = β1r̂j + β2v̂j + β3(r̂j)
2 + β4(v̂j)

2 + β5(r̂j v̂j) + γ1Zj + γ2Zj r̂j + γ3Zj v̂j + ε′j. (13)

The first five terms correspond to the general translog cost function (Christensen et al.,
1973) with land and construction prices. The last three terms augment it with Zj and
its interactions. The translog is equivalent to the second-order approximation of the cost
function (see, e.g., Binswanger, 1974, Fuss and McFadden, 1978) under the homogeneity

11This could result from market power or disequilibrium forces causing prices to deviate from costs.
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constraints:

β1 = 1− β2 (14a)

β3 = β4 = −β5/2 (14b)

The extended model, with δB 6= 0, also imposes the restriction that γ2 = −γ3.12 The econo-
metric model allows us to test for Cobb-Douglas technology, which imposes the restriction
σ = 1 in (3) or, in equation (13):

β3 = β4 = β5 = 0. (15)

The reduced-form coefficients of equation (11) correspond to the following structural
parameters:

β1 = φ (16a)

β3 = (1/2)φ(1− φ)(1− σ) (16b)

γ1 = δA (16c)

γ2 = φ(1− φ)(1− σ)δB = 2β3δB. (16d)

Inverting the equations to solve for the structural parameters shows that β1 identifies the
distribution parameter, φ, and together with β3 it identifies the substitution parameter σ. γ1
identifies how much measures in Z raise costs (or conversely, lower productivity). γ2 and
β3 identify how measures in Z bias productivity against land when γ2β3 > 0.

3.2 Identification, Simultaneity, and Instrumental Variables

The econometric specification in equation (13) regresses housing costs p̂j on land values
r̂j , construction prices v̂j , and restrictions, Ẑj . With no factor bias (B̂Y

j = 0), the residual
represents either unobserved housing productivity, ζj , or the more general error term, εj .
This specification isolates supply factors in AY

j , which pull the price of housing away from
land, from the demand factors in Qj and AX

j , which move housing and land prices in the
same direction. OLS estimates of the housing-cost parameters will be consistent if ζj = 0

12While the model assumes constant returns to scale at the firm level, it does not rule out non-constant
returns at the city level. Urban (agglomeration) economies of scale will be reflected in AY

j , as addressed in
section 6.2.
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and εj is orthogonal to the regressors.
A simultaneity problem arises if there are unobserved cost determinants ζj 6= 0 not

absorbed by the controls, Zj; see Appendix B for technical details. In an open city, high
housing productivity raises land values without changing housing prices, as seen in (9b) and
(9d). This variation attenuates the estimate of land’s share, φ̂, towards zero. Correlation
between ζj and other cost-function elements may also introduce omitted variable bias.

One solution to these potential problems is to find instrumental variables (IVs) for land
values and structural input prices. The model implies that variables that predict quality of
life Qj or trade productivity AX

j will be relevant in that they will raise land values. To
satisfy the exclusion restriction, these variables must be uncorrelated with ζj .

3.3 Comparison to Alternative Estimation Techniques

A long literature estimates housing production and cost functions: see, for instance, Mc-
Donald (1981) and Thorsnes (1997). Here, we compare our methodology to the related
and influential approaches of Epple et al. (2010) and Combes et al. (2017). Those stud-
ies estimate the housing production function using developers’ optimality conditions for
combining land and structure, treating housing quantities as latent variables.

An important advantage of this other approach is that it relies on a direct measure of
housing value (price times quantity) per acre. In contrast — as noted by Combes et al.
(2017) — our approach requires estimating a cross-sectional housing-price index, which
we impute imperfectly using hedonic methods. Additionally, both Epple et al. (2010) and
Combes et al. (2017) estimate the housing production function non-parametrically, rather
than with a translog form.13

The approach taken here has somde advantages. Most importantly, it easily accom-
modates observable productivity shifters such as regulatory and geographic constraints. If
correctly specified, the parametric form efficiently estimates cost shares and elasticities of
substitution, which are heavily researched and easy to interpret. By focusing exclusively
on prices, the method also avoids problems that arise with measured quantities, such as op-
timization errors, which can attenuate estimates. Finally, the cost function approach can be
embedded in an equilibrium system of cities and used to assess the welfare consequences
of land-use regulations. Given the approaches’ different sets of strengths, we hope that they
will be seen as complements rather than substitutes in future research.

13Combes et al. (2017) also allows for non-constant-returns-to-scale, in contrast to our approach and that
of Epple et al. (2010).
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4 Data and Metropolitan Indicators

The residential land-value index used to estimate the housing cost function is adapted from
Albouy et al. (2018), who describe it in detail. It is based on market transactions from the
CoStar group and uses a regression framework that controls for some parcel characteristics.
It applies a shrinkage technique to correct for measurement error due to sampling variation,
which is important given sample sizes in smaller metros. It provides flexible land-value
gradients, estimated separately for each city using an empirical Bayes-type technique that
“borrows” information from other cities with a similar land area. The residential index
used in this paper differs from the index in Albouy et al. (2018) in that it: i) weights census
tracts according to the density of residential housing units, rather than by simple land area;
ii) uses fitted values for residential plots, rather than for all uses; and iii) encompasses all
metropolitan land, not only land that is technically urban.

4.1 Housing Price, Wages, and Construction Price Indices

Housing-price and wage indices for each metro area, j, and year, t, from 2005 to 2010,
are based on 1% samples from the American Community Survey (ACS).14 As Appendix
C describes in more detail, we regress the logarithm of individual housing prices ln pijt on
a set of controls Xijt, and indicator variables for each year-metro interaction, ψijt, in the
equation ln pijt = X′ijtβ + ψijt + eijt. The indicator variables ψijt provide the metro-level
indices (or differentials), denoted p̂j .15

Metropolitan wage indices are calculated similarly, controlling for worker skills and
characteristics, for two samples: workers in the construction industry only, to estimate ŵY

j ,
and workers outside the construction industry, to estimate ŵX

j . Appendix figure A shows
that the two wage measures are highly correlated, but that wages in the construction sector
are more dispersed across metros.

Our main price index for structural inputs, v̂j , comes from the Building Construction
Cost data from the RS Means company (Waier et al., 2009). The index covers the costs
of installation and materials for several types of structures and is common in the literature,
e.g., Davis and Palumbo (2008), and Glaeser et al. (2005a). It is provided at the 3-digit zip-

14The time period is restricted to those years because prior to 2005, the ACS is too coarse geographically,
and our land transaction data end in 2010. We use MSA definitions for the year 2000.

15Alternative methods using price differences such as letting the coefficient β vary across cities produce
similar indicators (Albouy et al., 2016a). We aggregate the inter-metropolitan index of housing prices, p̂jt,
across years for display; it is normalized to have mean zero nationally.
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code level. When a metro contains multiple 3-digit zipcodes, we weight each by the share
of the metro’s housing units in each zipcode. Appendix figure B shows that construction
wages ŵX

j and construction prices v̂j are highly correlated.
Columns 2 through 5 of table 1 present the housing-price, land-value, construction-

cost, and construction-wage indices for a subset of metro areas. They tend to be positively
correlated with each other and with metro population, reported in column 1.16

4.2 Regulatory and Geographic Restrictions

Our index of regulatory restrictions comes from the Wharton Residential Land Use Regu-
latory Index (WRLURI) described in Gyourko et al. (2008). The index reflects the survey
responses of municipal planning officials regarding the regulatory process. The responses
form the basis of 11 subindices, coded so that higher scores correspond to greater reg-
ulatory stringency.17 Gyourko et al. (2008) construct a single aggregate Wharton index
through factor analysis. Our analysis use both their aggregate index and the subindices.
The base data for the Wharton index is for the municipal level; we recalculate the index
and its subindices at the metro level by weighting the individual municipal values using
sampling weights provided by the authors, multiplied by each municipality’s population
proportion within its metro. We renormalize all of these as z−scores, with a mean of
zero and standard deviation one, weighting metros by the number of housing units. The
subindices are typically, but not uniformly, positively correlated with one another.

Our index of geographic restrictions is provided by Saiz (2010), who uses satellite
imagery to calculate land scarcity in metropolitan areas. The resulting “unavailability”
index measures the fraction of undevelopable land within a 50 km radius of the city center,
where land is considered undevelopable if it is: i) covered by water or wetlands, or ii) has
a slope of 15 degrees or steeper. We consider both Saiz’s aggregate index and his separate
indices based on solid and flat land, each of which we re-normalize as a z−score.

16We mark metros in the lowest decile of population growth between 1980 and 2010 with a “*” in case the
equilibrium condition (2) does not apply well to these areas.

17The subindices comprise the approval delay index (ADI), the local political pressure index (LPPI), the
state political involvement index (SPII), the open space index (OSI), the exactions index (EI), the local project
approval index (LPAI), the local assembly index (LAI), the density restrictions index (DRI), the supply re-
striction index (SRI), the state court involvement index (SCII), and the local zoning approval index (LZAI).
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4.3 Instrumental Variable Measures

Guided by the model, we consider two instruments for land values. The first is the inverse
of the distance to the nearest saltwater coast, a predictor of Q̂j and ÂX

j . The second is an
adaptation of the U.S. Department of Agriculture’s “Natural Amenities Scale” (McGrana-
han et al., 1999), which ought to correlate with Q̂j .18

While it is straightforward to show that these instruments are relevant, it is difficult to
test the exclusion restriction. That said, we believe the instruments’ excludability is plau-
sible given our methods and controls. A priori, the inverse distance to the coast should
be uncorrelated with housing productivity conditional on geographical constraints to de-
velopment. At first, the documented correlation between weather and construction activity
(e.g., Fergus, 1999) may seem to be problematic for the natural amenities instrument. Re-
call, however, that we include a measure of construction costs directly in equation (3), so
any potential violation of the exclusion restriction must operate through correlation of the
weather with unobserved elements of housing productivity, not construction costs per se.

A separate concern regarding identification is that regulatory restrictions may be en-
dogenously correlated with unobserved supply factors. We follow Saiz (2010) in consider-
ing two instruments for regulatory restrictions. The first is the proportion of Christians in
each metro area in 1971 who were adherents of “nontraditional” denominations (Johnson
et al., 1974). The second is the share of local government revenues devoted to protective in-
spections according to the 1982 Census of Governments (of the Census, 1982). Saiz shows
that these instruments predict land-use regulations in his data, as do we in ours.

To be valid instruments for land-use restrictions, these variables must also be exclud-
able. A potential concern is the finding in Davidoff (2016) that the nontraditional Christian
share is correlated with measures of housing demand growth. It is important to recall,
though, that our regressions include a direct measure of metro-level land values, which
ought to capitalize demand shifts. The exclusion restriction in our context is therefore that
the instruments must be uncorrelated only with supply determinants in the housing sector,
after controlling for construction costs. This restriction is weaker than the requirement that
the instruments be uncorrelated with house prices unconditionally.

18The natural amenities index in McGranahan et al. (1999) is the sum of six components: mean January
temperature, mean January hours of sunlight, mean July temperature, mean relative July humidity, a mea-
sure of land topography, and the percent of land area covered in water. We omit the last two components
in constructing the IV because they are similar to the components of the Saiz (2010) index of geographic
restrictions to development. The adapted index is the sum of the first four components averaged from the
county to metro level.
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We run standard over-identification tests as a formal check on the validity of our instru-
mental variables, which we discuss in section 5.3. One limitation of these tests is that they
require assuming at least one of the instruments is valid. Additionally, the results can be
sensitive to many factors, such as the clustering of standard errors. We encourage readers
to keep these limitations in mind when interpreting our results. We do believe, though, that
the presence of land values and construction costs in equation 13 significantly strengthens
the plausibility of the exclusion restrictions in our context.

5 Cost-Function Estimates

In this section, we estimate the cost function in section 3.1 using the data described in
section 4 to examine how costs are influenced by geography and regulation. We restrict
our analysis to metros with at least 10 land-sale observations, and years with at least 5.
For our main estimates, the metros must also have available regulatory, geographic, and
construction-price indices, leaving 230 metros and 1,103 metro-years. Regressions are
weighted by the number of housing units in each metro.

5.1 Base OLS Estimates and Tests of the Housing Cost Model

Figure 1 plots the housing-price index, p̂j , against the land-value index, r̂j . Assuming
Cobb-Douglas production and no other input cost or productivity differences, the simple
regression line’s slope of 0.53 would correspond to the cost share of land, φ. The convex
gradient in the quadratic regression implies that the average cost-share of land increases
with land values, yielding an imprecise estimate of σ = 0.47. The vertical distance be-
tween each metro marker and the estimated regression line forms the basis of our estimate
of housing productivity. As such, figure 1 suggests San Francisco has low housing produc-
tivity and Las Vegas has high housing productivity.

Next we consider the construction-price index, v̂j , which is plotted against land values
in figure 2. Although the two are strongly correlated, land values vary much more, and thus
account for most of the variation in the land-to-construction price index r̂j − v̂j .19

19Figure 2 also plots estimated input cost level curves for the surface in 3. From equation (3), these curves
satisfy φr̂j + (1− φ) v̂j + φ (1− φ) (1 − σ)(r̂j − v̂j)2 = c for a constant c. With the log-linearization, the
slope of the level curve equals the negative ratio of the land cost share to the structural share, −φj/ (1− φj).
The curve in the lower-left corresponds to a low fixed sum of housing price and productivity; the curve in the
upper-right corresponds to a higher sum. The curves are concave because the estimated σ is less than one, so
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Table 2 presents cost-function estimates with the aggregate geographic and regulatory
indices. Columns 1 through 3 impose Cobb-Douglas production, σ = 1, as in (15); columns
1 and 2 also impose the homogeneity constraint in (14a). Column 1 is the simplest regres-
sion specification, as it excludes the restriction measures, Zj . Including the construction
index in column 1 lowers the cost share of land to 47 percent from 53 percent in the sim-
ple regression in figure 1. When the geographic and regulatory restriction measures are
included in column 2, the estimated cost share of land falls to 36 percent.

Both regulatory and geographic restrictions are estimated to raise housing costs, a find-
ing that persists throughout our analysis. The homogeneity constraint is rejected at the 5%,
but not the 1%, significance level in both columns 1 and 2. The same is true of the Cobb-
Douglas constraint from (15) in column 2. Column 3 relaxes the homogeneity constraint,
which this raises the coefficient on the construction price but has little effect on the other
estimates.

Columns 4 through 6 present parallel specifications to columns 1 through 3, but using
the translog formulations (11) and (13) that allow for σ 6= 1. The cost surface shown in
figure 3 uses the estimates without Zj . The estimated σ there and in both columns 4 and
5 is below one-half. Importantly, the homogeneity constraints in (14a) and (14b) pass at
the 5% confidence level in both columns, meaning the translog specification passes our
formal statistical tests. Thus, the restricted model in column 5 provides a theoretically and
empirically reasonable account of housing costs. It explains 86 percent of the variation
across metro areas using only four variables.

Finally, the results in column 7 present estimates from the extended model with factor
bias. This allows γ2 to be non-zero in equation (11) by interacting the land-to-construction
price index r̂j − v̂j with the restrictions Zj . The estimate of γ2 = 0.057 > 0 for the
regulatory interaction suggests that land-use regulations are biased against land. It implies a
one standard deviation increase in regulation raises the cost share of land by 5.7 percentage
points. Combining the value of γ2 with the estimate that β3 equals 0.044, equation (16d)
implies δB = 0.65, meaning this increase reduces the relative productivity of land by almost
50 percent. While suggestive, this specification fails the additional test imposed on the
reduced form equation (13) that γ2 = −γ3.

land’s cost-share increases with its value.
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5.2 Estimate Variability and Stability

Table 3 reports several exercises to gauge how the estimates change when using different
data and sub-samples. All of the specifications use the constrained translog form from
equation (11) with γ2 = 0, corresponding to column 5 of table 2. That specification is
reproduced in column 1 of table 3 for convenience.

Column 2 uses construction wages instead of the RS means index. The results are
similar, but the homogeneity restriction is rejected. We interpret this result as suggesting
that the RS Means index is a more appropriate construction-price measure, likely because
it also incorporates the price of non-labor inputs (i.e., materials).20

Columns 3 and 4 use two alternative land-value indices: i) for all land uses (not just
residential), and ii) weighting land by area, not by the number of residential units. Using
land for all uses in column 3 results in a smaller φ and a higher σ. Appendix figure C
shows that land values for all uses vary considerably more than values for residential uses
only, biasing the slope and curvature of the estimated housing cost function downwards.
The results in column 4 show that weighting all land equally, ignoring where homes are
located, produces similar biases.

Column 5 uses an alternative housing-price index that makes no hedonic correction for
housing characteristics. The results are largely similar, if noisier. If unobserved differences
in housing quality resemble observed differences, these results suggest that unobserved
differences should not overturn our main conclusions.

In columns 6 and 7, we split the sample into two periods: a “housing-boom” period,
from 2005 to 2007, and a “housing-bust” period, from 2008 to 2010. The results are not
statistically different from those in the pooled sample. The former period shows stronger
effects from the restrictions, providing suggestive evidence that restrictions are more bind-
ing when housing demand is stronger.21

Overall, the estimates in tables 2 and 3 support our key hypotheses: regulatory and geo-
graphic restrictions raise housing costs by 5 to 12 percent for a standard deviation increase

20We also estimated a three input equation that separates the structural inputs into actual materials and
installation (labor) costs. Material costs vary little across space relative to these installation costs, making
them difficult to use reliably. That lack of variation provides weak justification for the assumption that
material costs are constant, justifying equation (8). Nevertheless, the Cobb-Douglas formulation produced a
very similar estimate of φ = 0.35 and an estimate for labor of a (1− φ) = 0.39. Interestingly, if we regress
the construction wage measure on the RS means measure, we estimate a = 0.58, which implies a similar
value for a (1− φ).

21Minor differences may also arise from measurement error in the housing price index resulting from ACS
respondents’ imperfect awareness of current market conditions (Ehrlich, 2014).
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in either measure. The translog model also passes tests of the homogeneity restriction in
(14a) and (14b). The estimated housing cost function parameters are quite plausible, with
the typical φ ranging from 0.32–0.36. The estimated σ is noisier and less stable, in the
range of 0.3–0.6, tentatively rejecting the Cobb-Douglas hypothesis in (15).

5.3 Instrumental Variables Estimates

Table 4 presents IV estimates of the base Cobb-Douglas and translog specifications in table
2.22 Columns 1 and 2 present IV versions of the estimates in column 2 of table 2.23 Column
1 uses inverse distance from the sea and the USDA amenity score as instruments for the
land-to-construction price index (r̂− v̂). Column 2 adds the nontraditional Christian share
and protective inspections share as instruments, treating both the land-value and regulatory
indices as endogenous.

The estimated land share in column 1 is higher than in the OLS estimates at 0.5, and a
Hausman-style test rejects the null hypothesis of exogenous land values at the 5% signif-
icance level. In column 2, which instruments for both indices, the estimated land share is
approximately one-third, similar to the OLS results. Instrumented increases in regulatory
stringency result in substantially higher, although less precise, estimates for their efficiency
costs.

Translog IV estimates in columns 3 through 5 correspond to the OLS estimates in col-
umn 5 of table 2. Column 3 treats only land values as potentially endogenous, using the
levels, squares, and interaction of the USDA amenities score and inverse distance to the sea
as instruments for the (r̂ − v̂) index, and its square, (r̂ − v̂)2. Column 4 additionally treats
the regulatory index as endogenous, using the nontraditional Christian share, the protec-
tive inspections share, and their interactions with the first two instruments as instruments.
The estimated cost shares of land are again higher than in the OLS estimates in table 2,
but are also less precise. The IV estimates of the cost of land-use restrictions in column
4 are 14 log points per standard deviation, larger than in the OLS but smaller than in the
IV Cobb-Douglas case. Column 5 uses a more limited set of instruments, using squares
and interactions of the predicted land-to-construction price and regulatory indices from the
first-stage regressions. The estimated cost share of land is closer to the OLS estimates,
while the cost of regulations is higher.

22Appendix tables A1 and A2 present first-stage estimates for all regressions in this section.
23Because there is no time variation in the instrumental variables, we must restrict ourselves to cross-

sectional estimates in these specifications.
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In column 6, we push the IV strategy further to test for factor bias. This model does
somewhat better at passing the over-identifying restrictions test, but at the risk of be-
ing under-identified, as evidenced by the Kleibergen-Paap statistic (Kleibergen and Paap
2006).24 The results are qualitatively similar to those in column 8 of Table 3, suggesting
that regulatory restrictions are biased against land. The estimated magnitude of the bias, as
well as φ̂ and σ̂, are even higher than in the OLS specification.

The IV estimates suggest a somewhat higher cost share of land and larger impacts of
regulatory restrictions than the OLS estimates, but the IV estimates are less precise. The
two bottom rows of table 4 report the Wooldridge (1995) test of regressor endogeneity and
Hansen’s over-identification J-test of test of instrument exogeneity (Hansen 1982). All
of the specifications formally reject the null hypothesis of regressor exogeneity, despite
the substantive differences being small in several specifications. Half of the specifications
reject the over-identification test of instrument exogeneity, although notably not the limited
instrument specification in column 5, which features a strong first stage and results close to
the OLS estimates.

The IV results largely reassure us of our OLS results. Their similar magnitudes suggest
that the unobserved productivity differences, ξj , are relatively small after conditioning on
the regulatory and geographic indices, minimizing the simultaneity and omitted-variable
concerns raised in section 3.2. As the IV specification tests are sensitive to various imple-
mentation choices, their results should be taken as suggestive, not definitive. In light of
these issues and the imprecision of the IV estimates, we prefer the OLS estimates.

5.4 Calibrating Alternative Cost Parameters

The literature on the housing cost function has offered a wide range of values for φ and
σ. Because our main focus is on housing productivity and the costs imposed by land-use
regulations, we also estimate δA using a wide range of cost parameters. This involves
setting, or “calibrating,” different values of φ and σ and estimating:

p̂j − φr̂j − (1− φ)v̂j − φ(1− φ)(1− σ)(r̂j − v̂j)2 = ZjδA + ζj + εj

Figure 4 shows the estimated effects using a range of φ from 0 to 0.5 and σY from
0 to 1.2. The effects of regulation decline as φ rises, and the effect of geography rises

24The null hypothesis in the Kleibergen-Paap test is that the model is under-identified, so failing to reject
the null hypothesis is potential evidence of weak instruments.
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slightly with σ. The point estimates suggest that both types of restrictions reduce housing
productivity over the entire range of calibrated parameters, although they are not quite
statistically significant at the 5% level for cost share near 0.5. Nevertheless, the finding
that regulatory and geographic restrictions reduce housing productivity is generally robust
to the exact shape of the housing cost function.25

5.5 Disaggregate Indices and the Regulatory Cost Index

We next consider which types of land-use restrictions do the most to increase housing costs.
The Wharton index aggregates 11 subindices, while the unavailability index aggregates
two. Column 1 of table 5 presents descriptive coefficient estimates from a regression of the
aggregate WRLURI z−score on the z−scores for the subindices. Column 2 presents sim-
ilar estimates for the Saiz subindices, which are negative because the subindices indicate
land that may be available for development.

The key estimates in this table are in column 3, which features the disaggregated reg-
ulatory and geographic subindices in our favored restricted translog specification. The
estimates of φ = 0.332 and σ = 0.51 are close to our estimates in column 5 from ta-
ble 2. These small changes from moving to a richer model suggest that the biases from
unobserved housing-productivity determinants ζj are likely to be minor.

The disaggregated results indicate that one-standard deviation increases in state polit-
ical and state court involvement reduce metro-level productivity by 6 and 4 percentage
points, while local supply restrictions raise costs by 1.5 percentage points. Those estimates
are significant at the 5% level; at the 10% significance level, local political pressure raises
costs by 2.4 percentage points. The one marginally significant negative coefficient is on
exactions (also known as “impact fees”). This result is suggestive because exactions are
thought to be a relatively efficient land-use regulation, especially when they help pay for
infrastructure improvements (Yinger, 1998).

The regression coefficients are positively related to the coefficients in column 1, but
they put relatively more weight on state restrictions than on local ones. This is consistent
with results in Glaeser and Ward (2009) that more local regulations have limited effects on
prices, so long as housing consumers have substitute communities nearby where builders
are not constrained.

25Appendix table A3 presents a similar sensitivity analysis for fewer parameter combinations in the instru-
mental variable context. The same qualitative patterns hold for the IV analysis.
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One caveat to these results is that, in theory, different types of land-use regulations
should have different effects on land and house prices. Brueckner (1999) shows that re-
strictions that reduce the supply of developable land without otherwise affecting the de-
velopment process should increase land prices without shifting the production and cost
functions. Our framework is arguably less well-suited to these sorts of restrictions, which
may be captured by the Open Space and Supply Restrictions subindices. The (insignificant)
negative coefficient on the open space index is consistent with this argument, although the
positive coefficient on the supply restrictions index is less so. Of course, given the diffi-
culties of measuring regulations, as well as the high multicollinearity between the various
subindices, we caution against taking any one estimate too literally.

We use the estimates in column 3 of table 5 to construct a cardinal estimate of the
economic costs of land-use regulations, which we call the “Regulatory Cost Index” (RCI).
Partitioning the coefficient vectors into the regulatory and the geographic, γR and γG, the
RCI is given by the predicted value ZR

j γ̂
R. It is worth noting how the weights on the RCI

in column 3 differ in relative magnitude from those in column 1.
The coefficients on both of the Saiz subindices have statistically and economically sig-

nificant negative point estimates, indicating a one standard-deviation increase in the share
of solid or flat land is associated with a 7- and 8-percent reduction in housing costs, respec-
tively.26

From the cost-share approximation in section 2, the cost share of land ranges from
6 percent in Jamestown, NY to 50 percent in New York City. The partial elasticities of
housing supply, ηj , range from 0.5 at the first percentile to 3.0 at the 99th percentile. Inter-
estingly, a 1-point increase in our estimated elasticity predicts a 1.05-point (s.e. = 0.15) in
the elasticity estimated by Saiz (2010).

6 Housing Productivity across Metropolitan Areas

6.1 Productivity in Housing and Tradeables

Column 1 of table 6 lists our most inclusive measure of housing productivity, including
both observed and unobserved components (i.e., ÂY

j = −Zj γ̂1 − ζ̂j), for both regulations

26In appendix table A4, we also consider how these specific variables may contribute to factor bias. In-
cluding so many variables pushes the data to its limits. The most significant results imply that local project
approval and supply restrictions are biased against land. Meanwhile, flat and solid land both appear to reduce
the bias against land.
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and geography, and assuming no error (εj = 0). Thus, McAllen, TX has the most pro-
ductive housing sector, while Santa Cruz, CA has the least. Among metros with over one
million inhabitants, the top five—excluding our low-growth sample—are Las Vegas, Hous-
ton, Indianapolis, Fort Worth, and Kansas City; the bottom five are San Francisco, San Jose,
Oakland, Orange County, and San Diego.27

Column 2 reports our RCI, which is based only on the productivity loss predicted by
the regulatory subindices, ZR

j γ̂
R
1 . The cities with the highest regulatory costs are in New

England, notably Manchester, NH; Brockton, MA; and Lawrence, MA-NH. The regula-
tions in Boston, which tops the list of most regulated large cities, predict 30 percent higher
costs than in Chicago. The West South Central regions contains the cities with the low-
est RCI: New Orleans, LA; Lake Charles, LA; and Little Rock, AR. Column 3 provides a
comparable measure of trade productivity, following equation (6), using wages outside of
the construction sector and a cost share of θN = 0.85.28

Figure 5 plots housing productivity relative to trade productivity. An interesting result
in the figure is that trade productivity and housing productivity are negatively correlated: a
1-point increase in trade productivity predicts a 1.6-point decrease in housing productivity.
Coastal cities in California have among the highest levels of trade productivity and the
lowest levels of housing productivity. In contrast, cities such as Dallas and Atlanta are
relatively more productive in housing than in tradeables. The figure includes a level curve
for total productivity ÂTOT

j = sXÂX
j + sY ÂY

j , which has a slope of −sX/sY .

6.2 Productivity-Population Gradients in Housing

Part of the negative estimated correlation between trade and housing productivity estimates
is related to city size. As in Rosenthal and Strange (2004), economies of scale in traded
goods increase with city size. Urban economies of scale in housing production, however,
seem to decrease.

This relationship may arise from technical difficulties in producing housing in crowded,
developed areas. Additionally, new construction and renovations impose negative externali-
ties on incumbent residents. Noise, dust, and safety hazards are greater nuisances in denser
environments. Local residents often protest new developments over fears of permanent

27See appendix table A5 for the values of the major indices and measures for all of the metros in our
sample.

28This follows Albouy (2016) except that we exclude a small component from land used by firms in the
traded sector, which we leave for future work.
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negative externalities from greater traffic or blocked views (Glaeser et al., 2005a). These
fears of negative externalities can cause incumbent residents in populous areas to regulate
new development, raising housing costs. Figure 6 illustrates this idea by plotting the RCI
relative to population density. The two are positively correlated.

Table 7 examines the relationship of productivity with population levels, aggregated at
the consolidated metropolitan (CMSA) level, in panel A, and population density, in panel
B. In column 1, the positive elasticities of trade productivity with respect to population and
density of 5.2 and 5.5 percent are consistent with many in the literature (Ciccone and Hall
1996, Melo et al. 2009). When trade productivity ÂX

j is weighted by its expenditure share,
sX = 0.64, in column 4, these elasticities are 3.3 and 3.5 percent.

Column 2 indicates negative elasticities of housing productivity with respect to popu-
lation of 6.3 and 5.4 percent. We weight this using a conservative expenditure share on
housing of sY = 0.16 in column 5, which results in estimated diseconomies of negative 1
percent.29 Added together, the implied total economies of scale in production are reduced
to elasticities of 2–3 percent on net for both population and density.

Column 3 shows elasticities with respect to the negative of the RCI (the negative is used
because a higher RCI reduces housing productivity). The results are smaller but still sub-
stantial: a 10-percent increase in population engenders regulations that raise housing costs
by roughly 0.25 percent. Weighted by the housing expenditure share, regulations lower
the income-population and density gradients for total productivity by about 0.4 percentage
points, eliminating about one-eighth of urban productivity gains.

7 Housing Productivity and Quality of Life

7.1 Do Land-Use Restrictions Increase Housing Demand?

Even if land-use regulations drive up the cost of housing, they may also increase local qual-
ity of life by “recogniz[ing] local externalities, providing amenities that make communities
more attractive” (Quigley and Rosenthal, 2005). In this manner, regulation raises house
prices by increasing demand, rather than by limiting supply. Moreover, so-called “fiscal
zoning” may be used to preserve the local property tax base and deliver public goods more
efficiently, in support of the Tiebout (1956) hypothesis (Hamilton, 1975, Brueckner, 1981).

29That proportion uses a narrow definition of housing and a broad measure of expenditures. In other work,
(Albouy et al., 2016a), we use a broader definition of housing and a more narrow definition of expenditures,
resulting in sY above 0.22.
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To our knowledge, there are only a few estimates of the net welfare benefits of land-use reg-
ulations, e.g., Cheshire and Sheppard (2002), Glaeser et al. (2005a), and Waights (2015),
all of which suggest low benefits.

To examine this hypothesis across U.S. cities, we first estimate how housing productiv-
ity relates to quality of life. The quality of life estimates are based on willingness-to-pay
measures derived from equation (6).30 Figure 7 and panel A of table 8 show the relationship
between quality of life and the RCI without any controls. The simple regression line in the
figure suggests that a one-point increase in housing productivity is associated with a 0.25-
point decrease in quality of life (also shown in column 1). Column 4 of table 8 implies that
a one-point increase in regulatory costs is associated with a 0.46-point increase in quality
of life.31

There are serious problems with interpreting these raw correlations as causal. First, they
ignore the likelihood that areas with higher quality of life may be more prone to regulate.
This problem motivates controlling for observable amenities that predict quality of life.
Second, the correlations suffer from a potential “division bias”: housing productivity is
inferred in part from low prices, while quality of life is inferred in part from high prices.
Therefore, any measurement error will automatically create a negative bias in the estimated
relationship.

To control for observable amenities, we estimate the following equation:

Q̂j ≡ sY p̂j − tŵj = ÂY ∗
j a+

∑
k

qkj bk + ej (17)

where qkj refers to individual amenities. The coefficient a represents the elasticity of house-
holds’ willingness to pay for housing productivity as a fraction of their incomes. To focus
on changes in productivity due to regulations, we replace ÂY ∗ with −RCI∗j .

Controlling for observable amenities changes the estimated relationship dramatically.

30The derivation follows Albouy (2008) with some adjustments. We use an expenditure share of 0.16
for housing, and 0.64 for traded goods. The expenditure share is 0.2 for remaining non-housing non-traded
goods. We use p̂j + ÂY

j as the price of this non-traded good to reflect input costs because we do not estimate
local productivity in that sector. This approach also minimizes problems of division bias. The value of
t = 0.72 we use implies a value of a(1 − φ) = 0.4, which is consistent with the disaggregated analysis
discussed above. To account for federal taxes on labor (Albouy, 2009), wage differences are reduced by a
third; for tax benefits to owner-occupied housing, housing price differences are reduced by one-sixth. We use
only aggregate estimates of Q̂j : Q̂X

j and Q̂Y
j have a correlation of 0.91.

31The coefficients on housing productivity and the RCI in quality-of-life regressions will tend to have
opposite signs because higher values of ÂY

j denote more efficient housing production and higher values of
the RCI indicate more costly regulations.
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Columns 2 and 5 include controls for natural amenities, such as climate, adjacency to the
coast, and the geographic restriction index. These presumably exogenous controls virtually
eliminate the estimated correlations between quality of life and housing productivity or
regulatory costs. For example, we estimate that Boston has a higher quality of life than
Chicago. However, after controlling for natural amenities, willingness-to-pay to live in
Chicago is actually higher than in Boston, despite the fact that Chicago’s land use is much
less regulated.

Columns 3 and 6 add controls for artificial amenities such as the population level, den-
sity, education, crime rates, and number of eating and drinking establishments of each
metro area. Including these controls suggests that land-use restrictions could actually lower
quality of life, albeit insignificantly. Overall, the effect of regulations on housing demand is
confounded by local amenities: while attractive places tend to restrict land use, restricting
land use does not obviously make a place more attractive.32

7.2 Net Effects on Welfare and Land Values

To determine land use restrictions’ net effects on welfare, we again posit a conservative
share of expenditures on housing of sY = 0.16. Thus, the social cost of land-use restric-
tions, expressed as a fraction of total consumption, are to a first-order approximation an
average of 0.16 times the RCI. For quality-of-life benefits to exceed this cost, the elasticity
of quality of life with respect to the RCI, estimated in a, must exceed this share. That is,
the net costs of land-use regulations are equal to sY + a.

If we were naively to accept the simple regression relationship in column 4 of table
8, panel A, as causal, the benefits of regulation would appear to outweigh their costs as
sY + a = −0.09. As discussed above, the regulatory environment is highly correlated with
local amenities that households value. Controlling for amenities in columns 5 and 6 renders

32The quality of life estimates reflect values that are exhibited on the market. Regulations may produce
idiosyncratic values for local residents that are not valued externally by the marginal buyer. For example, a
majority of incumbent residents in a community may prefer a low residential density. If outside buyers, who
represent the majority of the outside market, care nothing for low densities, this will not show up in higher
housing (and land) prices or in willingness-to-pay measures. Idiosyncratic benefits are also related to how
preference heterogeneity impacts the willingness-to-pay used to estimate quality of life benefits. Limiting the
number of residents can raise the willingness to pay of the marginal resident through ωij , without producing
actual benefits in Q̂0j . This issue is most problematic if land-use restrictions reduce the supply of housing
by reducing land supply. With homogeneous preferences, simply removing land from development on this
“extensive” margin should not impact prices in a small open city: land supply does not enter equation (9d).
If preferences are heterogeneous, reducing land supply will lower the number of residents in a community,
raising willingness-to-pay in ωij , similar to the model of Gyourko et al. (2013).
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the positive effects of regulation on quality of life too small economically to outweigh their
costs. The estimates in columns 5 and 6 imply an elasticity of social welfare with respect
to the RCI of negative 0.1–0.2, meaning regulations that lower housing productivity also
reduce social welfare.

Welfare-reducing regulations may persist through inefficient local politics due to insider-
outsider dynamics. Suppose that voters in a community consist mainly of property owners
or renters subject to rent control. These community “insiders” are not harmed by regu-
lations that raise housing costs as long as they do not wish to move locally. Those costs
are borne instead by potential residents, community “outsiders,” who must purchase a new
house or rent at the market rate. These outsiders cannot vote in the communities they would
like to move to beforehand. If land-use restrictions produce quality-of-life benefits, how-
ever small or idiosyncratic, they may be supported by local voters.33 As our results are at
the metropolitan level, they could point to a Coasean failure. Potential residents or devel-
opers may lack the coordination to buy out incumbents, leading to aggregate inefficiency.

We conclude in panel B of table 8 by considering the overall effects of productivity and
regulations on local land values. This involves running a regression of the form (17), except
with r̂j , instead of Q̂j , as the dependent variable. The net welfare loss from regulations
implies that they should lower land values despite increasing house prices.34

The simple regressions in columns 1 and 4 reveal that land values are negatively related
to housing productivity and even more strongly positively related to the RCI. Again, this
correlation may be confounded by local amenities. In addition, as we saw earlier, places
with lower housing productivity have higher trade productivity, which also raises land val-
ues. As such, higher housing productivity or a lower RCI do not appear to raise land values
after controlling for natural amenities. Adding controls for artificial amenities in columns
3 and 6 provides some provisional evidence of that land-use restrictions may reduce land
values.

33See Lindbeck and Snower (2017) for a model of insider-outsider dynamics. Levine (2005) examines
how U.S. courts consider have ignored costs placed on outsiders from land-use restrictions.

34This prediction is subject to the caveat noted in Brueckner (1999) that policies that limit the extensive
margin of land supply can actually raise the price of developable land, by limiting population and raising the
willingness to pay of the marginal resident.
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8 Conclusion

Our approach takes advantage of the large inter-metropolitan variation in land values, con-
struction prices, and regulatory and geographic restrictions to estimate a cost function for
housing in the United States. By separating input and output prices for housing, our ap-
proach isolates how land-use restrictions affect housing prices through supply and demand
channels. Despite our disparate data sources, the estimated cost function fits the data well,
and the estimates have credible economic magnitudes.

The evidence supports the hypothesis that regulatory and geographic restrictions cre-
ate a wedge between the prices of housing and its inputs. Sensitivity checks, instrumental
variable methods, and calibration exercises support this conclusion. Disaggregated mea-
sures suggest that state political and court involvement are associated with large increases
in housing costs. Our new Regulatory Cost Index quantifies the economic cost of housing
regulations, purged of demand factors, which we hope will be useful to other researchers.

The observed price gradients imply an average cost share of land in housing is near
one-third and that substitution between land and non-land inputs is inelastic, although our
estimates regarding regulatory and geographic restrictions appear to hold over a wide range
of housing-cost parameters, During our study period, land’s cost share ranged from 6 to 50
percent across metro areas. These varying cost shares provide an intuitive explanation for
why the price elasticities of housing supply differ across cities.

A key result is that large cities tend to be less productive in the housing sector, while
more productive in traded sectors. These two productivities seem to be subject to opposite
economies of urban scale. Much of the urban scale diseconomy in housing is attributable
to larger cities being more regulated.

While some land-use restrictions may enhance welfare, overall the regulations mea-
sured here have little positive impact on local quality of life after controlling for standard
observable amenities. For example, potential residents do not find Chicago less desirable
than Boston because it is less regulated, but they do benefit from Chicago’s higher housing
productivity. Thus, land-use regulations appear to raise housing costs more by restricting
supply than by increasing demand. On net, the typical land-use regulation in the United
States reduces well-being by making housing production less efficient and housing con-
sumption less affordable.
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Table 1: Indices for Selected Metropolitan Areas, Ranked by Housing-Price Index:
2005-2010

Name of Area Population

Hous-
ing

Price
Land
Value

Const.
Price

Wages
(Const.
Only)

Wharton
Regula-

tory
(z-score)

Geo
Unavail.
(z-score)

(1) (2) (3) (4) (5) (6) (7)

Metropolitan Areas:
San Francisco, CA 1,785,097 1.35 1.74 0.24 0.22 1.72 2.14

Santa Cruz-Watsonville, CA 256,218 1.19 0.69 0.14 0.23 0.82 2.07
San Jose, CA 1,784,642 1.13 1.47 0.19 0.22 -0.05 1.68

Stamford-Norwalk, CT 361,024 1.02 1.07 0.14 0.23 -0.56 0.55
Orange County, CA 3,026,786 0.98 1.32 0.06 0.12 0.08 1.14

Santa Barbara-Santa Maria-Lompoc, CA 407,057 0.97 0.71 0.08 -0.04 0.59 2.76
Los Angeles-Long Beach, CA 9,848,011 0.92 1.31 0.08 0.12 0.88 1.14

New York, NY 9,747,281 0.91 1.99 0.29 0.26 -0.17 0.55

Boston, MA-NH 3,552,421 0.64 0.73 0.18 0.10 1.30 0.24
Washington, DC-MD-VA-WV 5,650,154 0.41 1.07 -0.03 0.19 0.89 -0.73
Riverside-San Bernardino, CA 4,143,113 0.26 0.12 0.06 0.12 0.64 0.43

Chicago, IL 8,710,824 0.19 0.61 0.18 0.07 -0.54 0.53
Philadelphia, PA-NJ 5,332,822 0.07 0.25 0.16 0.05 0.69 -0.91

Phoenix-Mesa, AZ 4,364,094 0.00 0.41 -0.10 0.00 1.00 -0.73
Atlanta, GA 5,315,841 -0.29 -0.05 -0.08 0.04 0.08 -1.21
Detroit, MI* 4,373,040 -0.28 -0.33 0.04 -0.02 -0.25 -0.22

Dallas, TX 4,399,895 -0.43 -0.40 -0.17 0.01 -0.67 -0.96
Houston, TX 5,219,317 -0.50 -0.30 -0.14 0.04 -0.07 -1.00

Rochester, NY* 1,093,434 -0.53 -1.43 0.03 -0.05 -0.55 0.07
Utica-Rome, NY* 293,280 -0.66 -1.95 -0.03 -0.32 -1.42 -0.55

Saginaw-Bay City-Midland, MI* 390,032 -0.59 -2.05 -0.01 -0.14 -0.18 -0.61

Metropolitan Population:
Less than 500,000 31,264,023 -0.23 -0.66 -0.36 -0.09 -0.06 -0.04

500,000 to 1,500,000 55,777,644 -0.19 -0.43 -0.29 -0.06 -0.16 -0.05
1,500,000 to 5,000,000 89,173,333 0.10 0.20 0.15 0.02 0.14 0.01

5,000,000+ 49,824,250 0.36 0.87 0.22 0.12 0.01 0.09

Standard Deviations (pop. wtd.) 0.52 0.86 0.13 0.17 0.96 1.01
Correlation with Land Values (pop. wtd.) 0.90 1.00 0.64 0.71 0.48 0.56

Land-value index adapted from Albouy et al. (2018) from CoStar COMPS database for years 2005 to 2010. Wage and housing-price data from
2005 to 2010 American Community Survey 1-percent samples. Wage indices based on the average logarithm of hourly wages. Housing-price in-
dices based on the average logarithm of prices of owner-occupied units. Regulation Index is the Wharton Residential Land Use Regulatory Index
(WRLURI) from Gyourko et al. (2008) Geographic Availability Index is the Land Unavailability Index from Saiz (2010). Construction-price In-
dex from R.S. Means. MSAs with asterisks after their names are in the weighted bottom 10% of our sample in population growth from 1980-2010.
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Table 2: Housing Cost Function Estimates using Aggregate Regulatory and Geographic Indices

Dependent Variable: Housing-Price Index
Biased Prod.

Constrained Constrained Unconstrained Constrained Constrained Unconstrained Constrained
Specification Cobb-Douglas Cobb-Douglas Cobb-Douglas Translog Translog Translog Translog

(1) (2) (3) (4) (5) (6) (7)

Land-Value Index φ 0.470 0.355 0.335 0.463 0.346 0.320 0.353
(0.039) (0.032) (0.038) (0.035) (0.032) (0.041) (0.025)

Construction-Price Index 0.530 0.645 1.038 0.537 0.654 0.946 0.647
(0.039) (0.032) (0.197) (0.035) (0.032) (0.200) (0.025)

Land-Value Index Squared 0.069 0.075 0.044 0.044
(0.049) (0.031) (0.030) (0.025)

Construction-Price Index Squared 0.069 0.075 -1.506 0.044
(0.049) (0.031) (1.975) (0.025)

Land-Value X Construction-Price Index -0.138 -0.150 0.337 -0.088
(0.098) (0.062) (0.371) (0.050)

Wharton Regulatory Index: z-score 0.069 0.065 0.081 0.083 0.088
(0.016) (0.018) (0.018) (0.018) (0.017)

Geographic Unavailability Index: z-score 0.100 0.093 0.093 0.090 0.087
(0.023) (0.021) (0.023) (0.020) (0.020)

Reg. Index X Land-to-Construction Price Index 0.057
(0.021)

Geo. Index X Land-to-Construction Price Index 0.019
(0.034)

Elasticity of Substitution σ 1.000 1.000 1.000 0.444 0.333 0.616
(0.391) (0.263) (0.214)

Adjusted R-squared 0.808 0.853 0.859 0.818 0.864 0.870 0.870
Number of Observations 1103 1103 1103 1103 1103 1103 1103

Number of MSAs 230 230 230 230 230 230 230

p-value for Homogeneity Constraints 0.010 0.041 0.083 0.286 0.153
p-value for CD Constraints 0.160 0.017 0.412
p-value for All Constraints 0.002 0.007

All regressions are estimated by ordinary least squares. Dependent variable in all regressions is the housing price index. Robust standard errors, clustered by CMSA,
reported in parentheses. Data sources are described in Table 1. Restricted model specifications require that the production function exhibits homogeneity of degree
one. Cobb-Douglas (CD) restrictions impose that the squared and interacted index coefficients equal zero (the elasticity of substitution between factors equals 1). All
regressions include a constant term.
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Table 3: Constrained Housing Cost Function Estimates: Sensitivity Analyses

Dependent Variable: Housing-Price Index
All-Use Unwtd. Raw 2005-2007 2008-2010

Constr. Land Land House Boom Bust
Specification Baseline Wages Values Values Prices Sample Sample

(1) (2) (3) (4) (5) (6) (7)

Land-to-Construction Price (Wage) Index φ 0.346 0.341 0.213 0.249 0.381 0.353 0.338
(0.032) (0.028) (0.024) (0.026) (0.040) (0.034) (0.032)

Land-to-Construction Price (Wage) Index Squared 0.075 0.062 0.012 0.030 0.036 0.063 0.088
(0.031) (0.028) (0.017) (0.017) (0.036) (0.034) (0.032)

Wharton Regulatory Index: z-score 0.081 0.058 0.105 0.116 0.094 0.091 0.071
(0.018) (0.016) (0.018) (0.015) (0.02) (0.018) (0.019)

Geographic Unavailability Index: z-score 0.093 0.108 0.115 0.093 0.048 0.106 0.080
(0.023) (0.024) (0.025) (0.028) (0.029) (0.025) (0.022)

Elasticity of Substitution σ 0.333 0.452 0.859 0.678 0.691 0.452 0.214
(0.263) (0.237) (0.211) (0.181) (0.294) (0.284) (0.264)

Adjusted R-squared 0.864 0.844 0.835 0.841 0.831 0.864 0.868

Robust standard errors, clustered by CMSA, reported in parentheses. Regressions correspond to the restricted specification in column
4 of Table 2. Column 2 replaces the construction price with wages in the construction sector. All-use land values allow for prediction
adjustments based on all land uses, as explained in Albouy et al. (2018). Unweighted land values do weight census tracts by land area
rather than the number of housing units. Raw house price does not control for observed housing characteristics. Building permits
information is taken from City and County Data Books.
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Table 4: Constrained Housing Cost Function Estimates: Instrumental Variables

Dependent Variable: Housing-Price Index

Specification
Cobb-

Douglas
Cobb-

Douglas Translog Translog

Translog
- Limited

IVs

Biased
Translog
- Limited

IVs
(1) (2) (3) (4) (5) (6)

Land-to-Construction Price Index φ 0.496 0.357 0.491 0.404 0.317 0.530
(0.094) (0.063) (0.097) (0.076) (0.085) (0.116)

Land-to-Construction Price Index Squared 0.007 0.056 0.093 0.010
(0.086) (0.044) (0.038) (0.106)

Wharton Regulatory Index: z-score 0.030 0.164 0.032 0.135 0.169 0.142
(0.036) (0.077) (0.035) (0.066) (0.075) (0.100)

Geographic Unavailability Index: z-score 0.061 0.080 0.062 0.063 0.085 0.055
(0.037) (0.027) (0.037) (0.028) (0.027) (0.041)

Reg. Index X Land-to-Constr. Price Index 0.549
(0.196)

Geo. Index X Land-to-Constr. Price Index -0.252
(0.140)

Elasticity of Substitution σ 1.000 1.000 0.942 0.535 0.137 0.917
(0.689) (0.365) (0.418) (0.850)

Adjusted R-squared 0.779 0.764 0.783 0.796 0.797 0.273
Number of Observations 229 217 229 217 217 217

Instrument for Land-Value Index? Yes Yes Yes Yes Yes Yes
Instrument for Regulatory Index? No Yes No Yes Yes Yes

p-value for Homogeneity Restrictions 0.680 0.509 0.520 0.729 0.685 0.252
p-value of Kleibergen-Paap Under-ID Test 0.019 0.046 0.035 0.018 0.035 0.079

p-value of Over-ID Test 0.543 0.035 <.001 <.001 0.269 0.569
p-value of OLS Consistency Test 0.005 0.010 0.014 <.001 0.034 <.001

All regressions are estimated by two-stage least squares. Robust standard errors, clustered by CMSA, reported in
parentheses. All specifications are constrained to have constant returns to scale. Columns 1 and 2 correspond to the
OLS specification in Table 2, Column 2. Columns 3 through 5 correspond to the OLS specification in Table 2, Col-
umn 5. Column 6 corresponds to the OLS specification in Table 2, Column 8. In columns 1 and 3, the land-value
index (and index squared) are treated as endogenous, and in the other columns the regulatory constraint index is also
treated as endogenous. The instrumental variables used in columns 1 and 3 are the inverse distance to the sea, USDA
natural amenities score; column 3 includes their squares and interaction. Columns 2 and 4 also include the nontradi-
tional Christian share in 1971 and the share of local expenditures devoted to protective inspections in 1982; column 4
includes relevant interactions. Column 6 uses squares and interactions of the predicted land-value minus construction
cost index and regulatory constraint index from the first-stage regressions as instruments. Tables A2 and A3 display
all first-stage regressions. The null hypothesis of the Kleibergen-Paap test is that the model is underidentified. The
overidentifying restrictions test is a J-test of the null hypothesis of instrument consistency. Test of OLS consistency
is a Hausman-style test comparing consistent (IV) and efficient (OLS) specifications.
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Table 5: Estimates using Disaggregate Regulatory and Geographic Indices

Dependent Variable Reg. Index Geog. Index Hous. Price
Wharton Geographic Constrained

Regulatory Unavail. Translog
Index on Index on using

Specification Subindices Subindices Subindices
(1) (2) (3)

Land-to-Construction Price Index φ 0.332
(0.029)

Land-to-Construction Price Index Squared 0.054
(0.025)

Approval Delay: z-score 0.399 0.018
- (0.013)

Local Political Pressure: z-score 0.332 0.024
- (0.013)

State Political Involvement: z-score 0.398 0.058
- (0.018)

Open Space: z-score 0.164 -0.014
- (0.013)

Exactions: z-score 0.023 -0.022
- (0.014)

Local Project Approval: z-score 0.167 0.018
- (0.014)

Local Assembly: z-score 0.124 0.014
- (0.008)

Density Restrictions: z-score 0.194 0.018
- (0.015)

Supply Restrictions: z-score 0.087 0.015
- (0.007)

State Court Involvement: z-score -0.059 0.042
- (0.019)

Local Zoning Approval: z-score -0.036 -0.009
- (0.011)

Flat Land Share: z-score -0.491 -0.084
(0.034) (0.022)

Solid Land Share: z-score -0.790 -0.068
(0.054) (0.023)

Number of Observations 1103 1103 1103
Adjusted R-squared 1.000 0.846 0.895

Elasticity of Substitution σ 0.509
(0.214)

Robust standard errors, clustered by CMSA, reported in parentheses. Regressions include
constant term. Data sources are described in table 1; constituent components of Wharton
Residential Land Use Regulatory Index (WRLURI) are from Gyourko et al (2008). Con-
stituent components of geographical index are from Saiz (2010).
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Table 6: Housing and Trade Productivity, and Regulatory Cost Indices for Selected
Metropolitan Areas, 2005-2010

Trade
Housing Regulatory Productivity

Productivity Cost Index (Wage Index)
(1) (2) (3)

Metropolitan Areas:
Santa Cruz-Watsonville, CA -0.902 0.095 0.177

San Francisco, CA -0.527 0.187 0.182
San Jose, CA -0.455 0.037 0.182

Orange County, CA -0.437 0.060 0.080
Bergen-Passaic, NJ -0.376 0.024 0.136

Los Angeles-Long Beach, CA -0.385 0.121 0.080
Boston, MA-NH -0.284 0.213 0.086

Washington, DC-MD-VA-WV -0.035 0.047 0.119
Phoenix-Mesa, AZ 0.041 0.128 -0.002

New York, NY 0.076 0.006 0.136
Philadelphia, PA-NJ 0.088 -0.007 0.059

Chicago, IL 0.114 -0.092 0.053
Dallas, TX 0.144 -0.094 -0.002

Atlanta, GA 0.184 -0.011 -0.002
Detroit, MI* 0.165 0.031 0.002
Houston, TX 0.272 -0.071 0.017

Las Vegas, NV-AZ 0.320 -0.122 0.061
McAllen-Edinburg-Mission, TX 0.645 -0.118 -0.186

Metropolitan Population:
Less than 500,000 -0.006 -0.014 -0.055

500,000 to 1,500,000 0.020 -0.020 -0.042
1,500,000 to 5,000,000 -0.034 0.020 0.016

5,000,000+ 0.012 0.005 0.073

United States 0.226 0.094 0.088
standard deviations (population weighted)

MSAs are ranked by inferred housing productivity. Housing productivity in col-
umn 1 is calculated from the specification in column 4 of table 5, as the negative
of the sum of the regression residual plus the housing price predicted by the WR-
LURI and Saiz subindices. The Regulatory Cost Index is based upon the pro-
jection of housing prices on the WRLURI subindices, and is expressed such that
higher numbers indicate lower productivity. Trade productivity is calculated as
0.8 times the overall wage index.
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Table 7: Urban Economies And Diseconomies of Scale

Productivities Weighted by Income Share
Minus Total: Trade

Trade Housing Regulatory Total: Trade and Housing
Dependent Variable Productivity Productivity Cost Index Trade Only Housing Only and Housing (RCI Only)

(1) (2) (3) (4) (5) (6) (7)

Panel A: Population

Log of Population 0.052 -0.063 -0.025 0.033 -0.011 0.023 0.029
(0.004) (0.021) (0.007) (0.003) (0.004) (0.004) (0.003)

Adjusted R-squared 0.653 0.145 0.116 0.653 0.145 0.502 0.618

Panel B: Population Density

Weighted Log Pop. Density 0.055 -0.054 -0.026 0.035 -0.010 0.027 0.031
(0.004) (0.026) (0.009) (0.003) (0.005) (0.004) (0.002)

Adjusted R-squared 0.386 0.053 0.066 0.386 0.053 0.349 0.366
Number of Observations 230 230 230 230 230 230 230

Robust standard errors, clustered by CMSA, reported in parentheses. Trade and housing productivity indices and regulatory cost index are
calculated as in table 6. Weighted productivities in columns (4) and (5) are weighted by the housing share, 0.16, and the traded share, 0.64,
respectively. Total productivity in column (6) is calculated as 0.16 times housing productivity plus 0.64 times trade productivity. Weighted
density index is calculated as the population density at the census-tract level, weighted by population. Total productivity (RCI Only) in col-
umn 7 is defined as the traded goods share, 0.64, times trade productivity minus the housing share, 0.16, times the Regulatory Cost Index.
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Table 8: The Welfare Consequences of Land-Use Regulation

Nat. Nat.
Amenity Controls None Nat. & Art. None Nat. & Art.

(1) (2) (3) (4) (5) (6)

Panel A Dependent Variable: Quality of Life

Total Housing Productivity -0.25 0.01 0.04
(0.04) (0.03) (0.04)

Minus Regulatory Cost Index (RCI) -0.46 -0.04 0.05
(0.10) (0.04) (0.04)

Adjusted R-squared 0.36 0.75 0.85 0.22 0.75 0.85

Housing Share of Consumption (Direct Benefit) 0.16 0.16 0.16 0.16 0.16 0.16
Elasticity of Social Welfare with respect to

Increasing Housing Productivity/Reducing RCI -0.09 0.17 0.20 -0.30 0.12 0.21

Panel B Dependent Variable: Land Value

Total Housing Productivity -1.72 0.29 0.62
(0.33) (0.25) (0.28)

Minus Regulatory Cost Index (RCI) -3.74 -0.86 0.26
(0.89) (0.48) (0.41)

Adjusted R-squared 0.23 0.60 0.83 0.20 0.61 0.83

Controls for Natural Amenities X X X X
Controls for Artificial Amenities X X

Number of Observations 230 225 216 230 225 216

Robust standard errors, clustered by CMSA, in parentheses. Regulatory cost index presented in table
6. Natural controls: quadratics in heating and cooling degree days, July humidity, annual sunshine, an-
nual precipitation, adjacency to sea or lake, log inverse distance to sea, geographic constraint index, and
average slope. Artificial controls include eating and drinking establishments and employment, violent
crime rate, non-violent crime rate, median air quality index, teacher-student ratio, and fractions with
a college degree, some college, and high-school degree. Both sets of controls are from Albouy et al.
(2016b) and Albouy (2016). Elasticity of Social Welfare is calculated as expenditure share of housing,
0.18, plus elasticity of Willingness-to-Pay with respect to Housing Productivity or minus RCI.
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Figure 1: House Prices and Land Values across Metropolitan Areas, 2006-10
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Figure 2: Construction Prices and Land Values, 2006-10
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Figure 3: Housing Cost Surface with φ = 0.47 and σ = 0.45
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Figure 4: Estimated Effects of Restrictions on Housing Productivity using a Calibrated
Cost Function

Note: Solid surfaces show estimated effects of regulatory and geographic restrictions on housing costs for
various cost shares of land and elasticities of substitution. Translucent surfaces show estimated two standard
error bands. Black triangles show OLS estimates of effects of restrictions at estimated cost share and elasticity
of substitution using constrained translog cost function in column 2 of table 5.
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Figure 5: Productivity in the Traded and Housing Sectors
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Figure 6: The Regulatory Cost Index and Population Density
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Figure 7: The Uni-variate Relationship of Quality of Life and Housing Productivity
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Appendix

A Housing Productivity and Factor Bias
Consider the case in which housing productivity is factor specific. Suppressing the super-
script Y , the production function for housing is Yj = F (L,M ;Aj, Bj) = F (AL

j L,A
M
j M ; 1).

Further consider the case of Hicks-neutral (total factor) productivity so that AL
j = AM

j =
Aj . The biases are captured by the ratio BY

j = AL
j /A

M
j . It is convenient to express these in

the log-linear case as Âj ≡ φÂL
j + (1− φ)ÂM

j and B̂j ≡ ÂL
j − ÂM

j .
For exposition, consider efficiency units of land and materials, L∗ ≡ AL

j L,M
∗ ≡

AM
j M . The prices of these efficiency units are r̃ ≡ r/AL, v∗ = v/AM . Further, drop the

subscripts on the prices. Because rL + vM = r∗L∗ + v∗M∗, an equivalent cost function
can be written as

C∗ (r∗, v∗, Y ) ≡ min
L∗,M∗

{r∗L∗ + v∗M∗ : F (L∗,M∗) = Y } (A.1)

Because of constant returns to scale, the unit cost function is then

c∗ (r∗, v∗) ≡ min
l∗,m∗
{r∗l∗ + v∗m∗ : F (l∗,m∗) = 1} (A.2)

where l ≡ L/Y and m ≡ M/Y are input-output ratios. According to Shepard’s Lemma,
the first derivatives of the cost function with respect to the first and second arguments are
written

c∗r ≡
∂c∗

∂r∗
= l∗ =

L∗

Y
, c∗v ≡

∂c∗

∂v∗
= m∗ =

M∗

Y
(A.3)

Taking the logarithm of the cost function, and then the first derivatives:

∂ ln c∗

∂ ln r∗
=
c∗rr
∗

c∗
=
rL

cY
= φ,

∂ ln c∗

∂ ln v∗
=
c∗vv
∗

c∗
=
vM

cY
= 1− φ (A.4)

where the last line follows from factor exhaustion. Assuming the equilibrium condition
ln p = ln c = ln c∗ holds, then we have the first-order approximation:

p̂j = φr̂∗ + (1− φ) v̂∗ = φr̂j + (1− φ) v̂j −φÂL
j − (1− φ) ÂM

j︸ ︷︷ ︸
−ÂY

j

(A.5)

The first-order approximation is Cobb-Douglas, and does not allow us to disentangle factor
bias as both ÂL

j and ÂM
j are only in the residual. To consider factor bias, we need the
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second derivatives. Because of Young’s Theorem, only a single mixed derivative is needed

∂2 ln c∗

∂ ln r∗∂ ln v∗
=
c∗rr
∗

c∗

(
vcrv
c∗r
− vc∗v

c

)
= −φ (1− φ) (1− σ) (A.6)

The mixed derivative is the negative of the second-order pure derivatives, which are equal
due to symmetry:

∂2 ln c∗

∂2 ln r∗
=
c∗rr
∗

c∗

(
1− c∗rr

∗

c∗
− c∗rrr

∗

c∗r

)
= φ (1− φ) (1− σ) =

∂2 ln c∗

∂2 ln v∗
. (A.7)

The second-order pure derivatives are the first-order derivatives of the function describing
the cost shares. How the cost-share, φj , should vary over cities, can be derived directly by
taking a first-order Taylor expansion of it in its arguments r∗ and v∗.35 This yields:

φj = φ+ φ (1− φ) (1− σ) (r̂j − v̂j + ÂM
j − ÂL

j︸ ︷︷ ︸
−B̂j

) (A.8)

which is equation (4) in the main text. When σ = 1, the cost share is constant across cities.
If σ < 1, the cost share of land rises with the relative price of land and falls with its relative
productivity. Thus, a factor bias against land raises its cost share.

The symmetry between the pure and mixed partial derivatives leads to the following
second-order log-linear approximation of the cost function:

ĉj = φ(r̂j − ÂL
j ) + (1− φ)(v̂j − ÂL

j )

+ (1/2)φ(1− φ)(1− σ)(r̂j − v̂j − ÂL
j + ÂM

j )2

= φr̂j + (1− φ)v̂j + (1/2)φ(1− φ)(1− σ)(r̂j − v̂j − B̂j)
2 + Âj,

which provides the formulation in equation (3) in the main text.
Productivity and bias are not observed directly, but must be inferred. We write overall

productivity and factor bias as linear functions of a vector of restrictions Z:

Âj = −ZjδA − ξAj (A.9a)

B̂j = −ZjδB − ξBj (A.9b)

The linear terms in Zjδ account for the (linear) observed components of total productivity
and factor biases; the ξj terms account for the unobserved components or non-linearities.

Substituting in these expressions, multiplying out the quadratic term, and subtracting

35This first-order approximation follows from how equations (A.4), (A.6), and (A.7) imply

∂φ

∂ ln r∗
=
∂2 ln c∗

∂2 ln r∗
= − ∂2 ln c∗

∂ ln r∗∂ ln v∗
= − ∂φ

∂ ln v∗
= φ (1− φ) (1− σ)
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the construction price index, creates the series of terms:

p̂j − v̂j = φ(r̂j − v̂j) (A.10a)
+ (1/2)φ(1− φ)(1− σ)(r̂j − v̂j)2 (A.10b)
+ ZjδA (A.10c)
+ ξAj (A.10d)
+ φ(1− φ)(1− σ)(r̂j − v̂j)ZjδB (A.10e)
+ (1/2)φ(1− φ)(1− σ)(ZjδB)2 (A.10f)
+ ξBjφ(1− φ)(1− σ)(ZjδB + r̂j − v̂j + ξBj/2) (A.10g)

The first four lines describe the main productivity model. The term on line (A.10a) iden-
tifies the cost-share terms from log-linear price differences. The term on the second line,
(A.10b), identifies the elasticity of substitution from the square of log-linear price differ-
ences. The third term, (A.10c) gives the observed productivity effect, while the fourth,
(A.10d) gives the unobserved component.

The last three lines account for factor bias. The term (A.10e) estimates factor bias in
δB through the interaction of the observable shifters Zj , and the price difference, r̂j − v̂j .
The term (A.10f) provides an alternative method of estimating factor bias that relies on the
linearity imposed in (A.9a) and (A.9b). However, it is unlikely that the relationships are
truly linear. Moreover, Z lacks the cardinal properties of the price indices, r̂j and v̂j . Thus,
we group it and the remaining terms in an error term along with (A.10g).

Based on the above discussion, we collect the coefficients as

β1 = φ

β3 = (1/2)φ(1− φ)(1− σ)

γ1 = δA

γ2 = φ(1− φ)(1− σ)δB = 2β3δB

to create a reduced-form equation that contains all of the structural constraints:

p̂j − v̂j = β1(r̂j − v̂j) + β3(r̂j − v̂j)2 + γ1Zj + γ2Zj(r̂j − v̂j) + ζj + εj (A.11)

where the error term consist of two components: the first component is driven mainly by
unobservable determinants of productivity and bias,

ζj = ξAj + ξBjφ(1− φ)(1− σ)(ZjδB + r̂j − v̂j + ξBj/2 + (ZjδB)2/2). (A.12)

The second component, εj , captures sampling, specification, and measurement error in the
price index. The ζj component must be heteroskedastic unless δB = ξBj = 0, in which
case ζj = ξAj .

The constrained reduced-form equation is embedded inside of a more general uncon-
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strained equation:

p̂j = β1r̂j + β2v̂j + β3(r̂j)
2 + β4(v̂j)

2 + β5(r̂j v̂j) + γ1Zj + γ2Zj r̂j + γ3Zj v̂j + ε′j (A.13)

The constrained model then imposes the following four testable constraints on the coeffi-
cients in (A.13):

β1 = 1− β2 (A.14a)
β3 = β4 (A.14b)

β3 = −β5/2 (A.14c)
γ2 = −γ3 (A.14d)

The first three constraints apply to the standard cost function, while the fourth applies only
to factor bias.36

The elasticity of housing supply is derived from Shepard’s Lemma for land (A.3) by
taking the differential:

L̂+ ÂL − Ŷ = d ln c∗r (A.15)

= −σ (1− φ)
(
r̂j − ÂL

j − v̂j + ÂM
j

)
(A.16)

where the last line obtains from a first-order approximation. Now, from the first-order
equilibrium condition for housing costs, (A.5), it follows that:

r̂j − v̂j =
p̂j − v̂j
φ

+ ÂL
j +

1− φ
φ

ÂM
j .

Combining the last two equations to eliminate r̂j and rearranging, we are left with a general
supply equation:

Ŷ = L̂+ ÂL + σ
1− φ
φ

(
p̂j − v̂j + ÂM

j

)
(A.17)

The formula in (5a) comes from substituting in ÂL = Â + (1− φ) B̂ and ÂM = Â − φB̂
and rearranging.

The derivation of the estimate of trade productivity in equation (7) is parallel to the
first-order derivation above. The mobility condition for workers requires differentiating the
log expenditure function for workers ln

[
e(pj;Q

k
j , ū

k)
]

= ln
(
wk

j + Ik
)
. The expression in

36It is possible to test if the elasticity of substitution varies with Zj by adding the term (r̂j − v̂j)2 Zjγ3.
However, we do not find interactions for the quadratic interaction to be significant and thus have left a het-
erogeneous elasticity of substitution out of the formulation.
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(6) follows from:

∂ ln(w + I)

∂ lnw
=

w

w + I
≡ t

∂ ln e

∂ ln p
=
py

e
≡ s

∂ ln e

∂ lnQ
=
Q

e

∂e

∂Q
= 1

where the last line follows from the normalization of Q described in section 2.2.

B Simultaneity and Omitted Variable Bias Formulas

First consider a simplified Cobb-Douglas case without factor bias (σ = 1 and B̂Y
j = 0),

using wages as in (8), imposing Q̂X
j = Q̂Y

j , and where trade productivity is orthogonal to
quality of life and housing productivity. Then the expectation of the OLS estimator of φ in
(11), φ∗, is:

E[φ̂∗] = φ

{
1− sY s

Y var(ζj) + cov(Q̂j, ζj + εj)

var(Q̂j + sζj)

}
. (A.18)

The term svar(ζj) determines the downward simultaneity bias if not all housing productiv-
ity shifts are accounted for. High housing productivity raises land values but not housing
prices, attenuating the cost-share estimate. Indeed, if variation in land prices were driven
entirely by unobserved housing productivity, then φ̂∗ would be zero.

The term cov(Q̂j, ζj + εj) determines a standard omitted variable bias. If, as indeed
we find, metro areas with high quality of life tend to have low housing productivity, this
bias will be upwards. The net effects depend largely on how ζj varies relative to Q̂j . Better
measures of Z should lower variation in ζj , reducing the bias in φ∗, which is properly
identified from variation in Q̂j .

To consider the role of trade productivity, the full formula is given by:

E[φ̂∗] = φ

1−
cov(Q̂+ ÂY ′

, Â
Y ′)var(ÂX′)− cov(Q̂+ ÂY ′, ÂX′)cov(ÂY ′, ÂX′)

var(Q̂+ ÂY ′)var(ÂX′)−
[
cov(Q̂+ ÂY ′, ÂX)

]2


(A.19)
where Âk′ = skÂk, k ∈ {X, Y }.
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C Wage and Housing Price Indices
The wage and housing price indices are estimated from the 2005 to 2010 American Com-
munity Survey, which samples 1% of the United States population every year. The indices
are estimated with separate regressions for each year. For the wage regressions, we include
all workers who live in an MSA, were employed in the last year, and reported positive wage
and salary income. We calculate hours worked as average weekly hours times the midpoint
of one of six bins for weeks worked in the past year. We then divide wage and salary
income for the year by our calculated hours worked variable to estimate an hourly wage.
We regress the log hourly wage on a set of MSA dummies and a number of individual
covariates, each of which is interacted with gender:

• 16 indicators of educational attainment;

• a quartic in potential experience and potential experience interacted with years of
education;

• 9 indicators of industry at the one-digit level (1950 classification);

• 9 indicators of employment at the one-digit level (1950 classification);

• 5 indicators of marital status (married with spouse present, married with spouse ab-
sent, divorced, widowed, separated);

• an indicator for veteran status, and veteran status interacted with age;

• 5 indicators of minority status (Black, Hispanic, Asian, Native American, and other);

• an indicator of immigrant status, years since immigration, and immigrant status in-
teracted with black, Hispanic, Asian, and other;

• 2 indicators for English proficiency (none or poor).

This regression is first run using census-person weights. From this regression, a pre-
dicted wage is calculated using individual characteristics alone, controlling for MSA, to
form a new weight equal to the predicted wage times the census-person weight. These
new income-adjusted weights allow us to weight workers by their income shares. The new
weights are then used in a second regression, which is used to calculate the city-wage in-
dices from the MSA indicator variables, renormalized to have a national average of zero
each year. In practice, this weighting procedure has only a small effect. The wage regres-
sions are at the CMSA, rather than PMSA, level to reflect the ability of workers to commute
to jobs throughout a CMSA.
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The traded sector wage index is calculated excluding workers with occupations in the
construction trades. To calculate the construction wage index, we drop all non-construction
workers and follow the same procedure as above. We define the construction sector as
occupation codes 620 through 676 in the ACS occupation codes. In our sample, 4.5% of
all workers are in the construction sector.

As noted in section 4.1, the construction price index is taken from RS Means company.
For each city in the sample, RS Means reports construction costs for a composite of nine
common structure types. The index reflects the costs of labor, materials, and equipment
rental, but not cost variations from regulatory restrictions, restrictive union practices, or
regional differences in building codes. We renormalize this index as a z−score with an
average value of zero and a standard deviation of one across cities.37

The housing price index of an MSA is calculated in a manner similar to the wage index,
by regressing housing prices for owner-occupied units on a set of covariates. The covariates
used in the housing-price regression are:

• 10 indicators of building size;

• 9 indicators for the number of rooms, 5 indicators for the number of bedrooms, and
number of rooms interacted with number of bedrooms;

• 2 indicators for lot size;

• 9 indicators for when the building was built;

• 2 indicators for complete plumbing and kitchen facilities;

• an indicator for commercial use;

• an indicator for condominium status.

A regression of housing values on housing characteristics and MSA indicator variables
is first run weighting by census-housing weights. A new value-adjusted weight is calculated
by multiplying the census-housing weights by the predicted value from this first regression
using housing characteristics alone, controlling for MSA. A second regression is run using
these new weights on the housing characteristics, along with the MSA indicators. The
housing-price indices are taken from the MSA indicator variables in this second regression,
renormalized to have a national average of zero each year. As with the wage index, this
adjusted weighting method has only a small impact. In contrast to the wage regressions,
the housing price regressions were run at the PMSA level to achieve a better geographic
match between the housing stock and the underlying land.

37The RS Means index covers cities as defined by three-digit zip code locations, and as such there is not
necessarily a one-to-one correspondence between metropolitan areas and RS Means cities. In cases in which
there is more than one three-digit zip code with a construction cost listed for an MSA, we weight the zip
codes by the number of housing units in each zip code in the year 2000. We use the 2010 edition of the RS
Means index.
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Table A.1: Instrumental Variables Estimates, First-Stage Regressions

Land Rent Land Rent Land Rent Land Rent Land Rent Land Rent
minus minus Regulatory minus minus minus minus Regulatory

Construction Construction Index: Construction Construction Construction Construction Index:
Dependent Variable Price Price z-score Price Price Squared Price Price Squared z-score

(1) (2) (3) (4) (5) (6) (7) (8)

Geographic Constraint Index: z-score 0.091 0.038 -0.072 0.108 -0.052 0.115 -0.026 -0.030
(0.084) (0.080) (0.097) (0.098) (0.074) (0.089) (0.071) (0.094)

Regulatory Constraint Index: z-score 0.187 0.184 -0.139
(0.064) (0.053) (0.057)

Inverse of Mean Distance from Sea: z-score 0.309 0.314 0.120 0.262 0.019 0.212 -0.049 0.227
(0.072) (0.068) (0.078) (0.167) (0.125) (0.160) (0.149) (0.136)

USDA Amenities Score: z-score 0.074 0.097 0.172 0.048 -0.048 0.068 -0.065 0.247
(0.031) (0.029) (0.033) (0.034) (0.031) (0.033) (0.029) (0.046)

Non-traditional Christian Share (1971): z-score -0.116 -0.333 -0.189 -0.025 -0.540
(0.050) (0.077) (0.054) (0.062) (0.109)

Protective Inspections Share (1980): z-score 0.118 -0.056 0.187 -0.101 -0.021
(0.048) (0.096) (0.054) (0.063) (0.075)

Inverse of MeanDistance from sea: z-score
squared 0.012 0.124 -0.034 0.136 -0.155

(0.047) (0.039) (0.048) (0.051) (0.051)
USDA Amenities Score: z-score squared 0.014 0.038 0.009 0.032 -0.029

(0.006) (0.009) (0.006) (0.011) (0.013)
Inverse of Mean Distance from Sea: z-score times

USDA Amenities Score: z-score -0.044 0.003 -0.032 -0.010 0.009
(0.010) (0.010) (0.013) (0.016) (0.024)

Inverse of Mean Distance from Sea: z-score times
Non-traditional Christian Share (1971): z-score -0.218 -0.011 -0.325

(0.081) (0.081) (0.141)
USDA Amenities Score: z-score times

Non-traditional Christian Share (1971): z-score -0.030 -0.043 0.028
(0.027) (0.034) (0.052)

Inverse of Mean Distance from Sea: z-score times
Protective Inspections Share (1980): z-score 0.013 0.078 0.083

(0.063) (0.088) (0.099)
USDA Amenities Score: z-score times Protective

Inspections Share (1980): z-score -0.054 0.036 -0.071
(0.021) (0.025) (0.035)

Number of Observations 229 217 217 229 229 217 217 217
Adjusted R-squared 0.558 0.548 0.264 0.578 0.364 0.609 0.370 0.342

F-statistic of Excluded Instruments 9.4 14.8 18.0 25.8 29.9 44.1 55.0 14.4
First Stage Regression for the these specifications in

Table 5: Column 1 Column 2 Column 2 Column 3 Column 3 Column 4 Column 4 Column 4

Robust standard errors, clustered by CMSA, reported in parentheses. See Table 4 for variable descriptions and data sources. All regressions are first stages for second-stage regres-
sions reported in columns 1 through 4 of Table 4.
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Table A.2: Instrumental Variables Estimates, First-Stage Regressions - Limited Instruments

Land Rent
minus Land Rent

Construction minus
Land Rent Land Rent Land Rent Land Rent Price times Construction

minus minus minus minus Geographic Price times
Construction Construction Regulatory Construction Construction Regulatory Constraint Regulatory

Dependent Variable Price Price Squared Index: z-score Price Price Squared Index: z-score Index Index
(1) (2) (3) (4) (5) (6) (7) (8)

Geographic Constraint Index: z-score 0.042 -0.049 -0.058 0.007 -0.076 -0.047 -0.030 0.007
(0.080) (0.070) (0.089) (0.073) (0.073) (0.093) (0.066) (0.062)

Inverse of Mean Distance from Sea: z-score 0.366 0.044 0.298 0.440 0.021 0.371 -0.087 -0.030
(0.084) (0.078) (0.085) (0.091) (0.090) (0.091) (0.064) (0.078)

USDA Amenities Score: z-score 0.101 0.003 0.186 0.076 0.004 0.165 0.015 -0.032
(0.030) (0.032) (0.031) (0.028) (0.027) (0.040) (0.025) (0.028)

Non-traditional Christian Share (1971): z-score -0.118 -0.074 -0.342 -0.140 -0.135 -0.307 -0.089 0.012
(0.051) (0.052) (0.074) (0.049) (0.059) (0.075) (0.048) (0.058)

Protective Inspections Share (1980): z-score 0.113 -0.119 -0.076 0.169 -0.106 -0.072 -0.004 -0.106
(0.047) (0.069) (0.094) (0.050) (0.060) (0.095) (0.043) (0.076)

Predicted Land Rent minus Construction Price Squared -0.179 0.799 -0.613 -0.708 1.095 -1.312 0.017 -0.578
(0.132) (0.310) (0.363) (0.499) (0.775) (0.511) (0.335) (0.316)

Predicted Land Rent minus Construction
Price times Predicted Regulatory Constraint Index 1.042 -0.013 0.512 0.643 0.851

(0.362) (0.627) (0.489) (0.293) (0.305)
Predicted Land Rent minus Construction
Price times Geographic Constraint Index -0.194 -0.178 0.223 0.579 0.461

(0.148) (0.186) (0.199) (0.139) (0.126)
Number of Observations 217 217 217 217 217 217 217 217

Adjusted R-squared 0.552 0.288 0.295 0.594 0.312 0.304 0.590 0.157
F-statistic of Excluded Instruments 12.2 7.7 14.6 14.3 8.1 11.5 20.8 10.0

First Stage Regression for the these specifications in
Table 5: Column 5 Column 5 Column 5 Column 6 Column 6 Column 6 Column 6 Column 6

Robust standard errors, clustered by CMSA, reported in parentheses. See Table 4 for variable descriptions and data sources. All regressions are first stages for second-stage regressions reported in
coulmns 5 and 6 of Table 4.
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Table A.3: Calibrated IV Cost Function Estimates

Calibrated Calibrated Calibrated Calibrated
Specification 2SLS 2SLS 2SLS 2SLS

House House House House
Dependent Variable Price Price Price Price

(1) (2) (3) (4)

Regulatory Index: z-score 0.121 0.121 0.071 0.072
(0.028) (0.033) (0.021) (0.027)

Geographic Index: z-score 0.161 0.192 0.037 0.079
(0.056) (0.068) (0.047) (0.059)

Adjusted R-squared 0.685 0.667 0.690 0.706

Land-Value Minus Construction
Price Index 0.233 0.233 0.433 0.433

Elasticity of Substitution 0.000 1.000 0.000 1.000

Robust standard errors, clustered by CMSA, reported in parentheses. All regression
specifications correspond to the constrained specification in column 4 of Table 4, and
instrument for the Wharton Residential Land Use Regulatory Index using the nontradi-
tional Christian share in 1971 and the share of local expenditures devoted to protective
inspections in 1982.
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Table A.4: Housing Cost Function Estimates with Disaggregated Regulatory and
Geographic Restriction Indices and Non-Neutral Productivity Interactions

Interacted with
Land-Value Diff.

Specification Base Coefficients House minus Cons.
Prices Price Diff.

Dependent Variable (1)

Land-Value Minus Construction Price Index 0.329
(0.025)

Land-Value Minus Construction Price Index Squared 0.049
(0.019)

Approval Delay: z-score 0.026 -0.018
(0.015) (0.021)

Local Political Pressure: z-score 0.008 -0.020
(0.010) (0.022)

State Political Involvement: z-score 0.056 0.027
(0.018) (0.025)

Open Space: z-score -0.022 -0.032
(0.017) (0.026)

Exactions: z-score -0.015 0.017
(0.014) (0.017)

Local Project Approval: z-score 0.038 0.066
(0.016) (0.023)

Local Assembly: z-score 0.012 -0.004
(0.010) (0.019)

Density Restrictions: z-score 0.033 0.018
(0.017) (0.019)

Supply Restrictions: z-score 0.024 0.027
(0.007) (0.012)

State Court Involvement: z-score 0.018 -0.024
(0.021) (0.027)

Local Zoning Approval: z-score -0.013 0.000
(0.014) (0.017)

Flat Land Share: z-score -0.081 -0.065
(0.023) (0.024)

Solid Land Share: z-score -0.069 -0.049
(0.020) (0.020)

Number of Observations 1,103
Adjusted R-squared 0.910

Elasticity of Substitution 0.558
(0.169)

Robust standard errors, clustered by CMSA, reported in parentheses. Regressions include constant term.
Data sources are described in table 1; constituent components of Wharton Residential Land Use Regula-
tory Index (WRLURI) are from Gyourko et al (2008). Constituent components of geographical index are
from Saiz (2010).
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Table A.5: All Metropolitan Indices Ranked By Housing Price Index, 2005-2010

Adjusted Indices Raw Indices Productivity

Full Name
Popula-

tion

Cen-
sus
Di-
vi-
sion

Land
Value

Land
Value
(All

Uses)

Land
Value
(Un-
wtd.)

Hous-
ing

Price
Wages
(All)

Wages
(Const.
Only)

Reg.
Index

(z-
score)

Geo
Un-

avail.
Index

(z-
score)

Const.
Price
Index

Hous-
ing

Trade-
ables

Regula-
tory
Cost
Index

Hous-
ing

Price
Rank

Metropolitan Areas:

San Francisco, CA PMSA 1,785,097 9 1.740 2.613 1.904 1.353 0.216 0.223 1.716 2.137 0.236 -0.527 0.182 0.187 1
Santa Cruz-Watsonville, CA PMSA 256,218 9 0.693 0.951 0.975 1.193 0.213 0.233 0.820 2.072 0.143 -0.902 0.177 0.095 2

San Jose, CA PMSA 1,784,642 9 1.468 1.565 1.854 1.129 0.216 0.222 -0.054 1.684 0.191 -0.455 0.182 0.037 3
Stamford-Norwalk, CT PMSA 361,024 1 1.069 1.405 1.727 1.020 0.175 0.229 -0.564 0.551 0.136 -0.546 0.136 0.002 4

Orange County, CA PMSA 3,026,786 9 1.318 1.612 2.245 0.977 0.100 0.122 0.078 1.135 0.064 -0.437 0.080 0.060 5
Santa Barbara-Santa Maria-Lompoc, CA MSA 407,057 9 0.709 1.042 0.856 0.966 0.053 -0.037 0.588 2.761 0.079 -0.670 0.066 0.071 6

Los Angeles-Long Beach, CA PMSA 9,848,011 9 1.306 1.825 1.614 0.921 0.100 0.123 0.883 1.135 0.081 -0.385 0.080 0.121 7
New York, NY PMSA 9,747,281 2 1.987 3.358 2.714 0.906 0.180 0.256 -0.166 0.551 0.290 0.076 0.136 0.006 8

Oakland, CA PMSA 2,532,756 9 0.983 1.186 1.374 0.887 0.216 0.222 0.589 1.581 0.153 -0.451 0.182 0.064 9
Santa Rosa, CA PMSA 472,102 9 0.585 0.140 0.428 0.861 0.216 0.222 1.322 1.646 0.159 -0.576 0.182 0.226 10

Ventura, CA PMSA 802,983 9 0.742 0.328 0.810 0.849 0.100 0.123 1.701 2.452 0.093 -0.546 0.080 0.143 11
Salinas, CA MSA 410,370 9 0.077 0.097 0.219 0.823 -0.004 -0.292 -0.021 1.797 0.118 -0.746 0.061 0.076 12

San Luis Obispo-Atascadero-Paso Robles, CA MSA 266,971 9 0.413 0.750 1.291 0.814 -0.007 -0.031 1.435 1.783 0.059 -0.668 -0.001 0.192 13
San Diego, CA MSA 3,053,793 9 0.966 1.075 0.431 0.782 0.079 0.099 0.987 1.666 0.086 -0.385 0.063 0.113 14

Bergen-Passaic, NJ PMSA 1,387,028 2 0.849 1.270 1.550 0.753 0.180 0.256 0.366 0.551 0.146 -0.376 0.136 0.024 15
Nassau-Suffolk, NY PMSA 2,875,904 2 0.736 0.587 1.300 0.729 0.180 0.256 0.854 0.551 0.240 -0.341 0.136 -0.010 16

Jersey City, NJ PMSA 597,924 2 1.506 2.009 2.580 0.672 0.181 0.263 -0.534 0.231 0.147 0.007 0.136 -0.009 17
Boston, MA-NH PMSA 3,552,421 1 0.734 0.908 0.662 0.641 0.101 0.101 1.301 0.236 0.178 -0.284 0.086 0.213 18

Newark, NJ PMSA 2,045,344 2 0.592 0.993 0.485 0.577 0.181 0.263 0.057 0.071 0.147 -0.296 0.135 0.026 19
Vallejo-Fairfield-Napa, CA PMSA 541,884 9 0.424 0.114 0.389 0.573 0.216 0.222 0.895 0.975 0.137 -0.361 0.182 0.112 20

Middlesex-Somerset-Hunterdon, NJ PMSA 1,247,641 2 0.315 -0.020 0.453 0.497 0.180 0.256 2.208 0.551 0.139 -0.320 0.136 0.085 21
Naples, FL MSA 318,537 5 0.648 0.441 0.500 0.482 -0.037 -0.201 0.176 2.257 -0.098 -0.342 0.006 -0.043 22

Seattle-Bellevue-Everett, WA PMSA 2,692,066 9 0.983 1.271 0.779 0.457 0.056 0.039 1.675 0.707 0.078 -0.059 0.052 0.153 23
Danbury, CT PMSA 223,095 1 -0.036 -0.108 0.153 0.444 0.177 0.249 -0.527 0.551 0.125 -0.421 0.134 0.137 24

Bridgeport, CT PMSA 470,094 1 -0.190 0.232 0.583 0.437 0.178 0.249 0.353 0.551 0.120 -0.438 0.136 0.029 25
Monmouth-Ocean, NJ PMSA 1,217,783 2 0.061 -0.140 0.212 0.418 0.180 0.255 2.095 0.551 0.128 -0.349 0.136 0.098 26

Lowell, MA-NH PMSA 310,264 1 0.240 0.119 0.498 0.412 0.106 0.098 2.001 0.236 0.152 -0.253 0.092 0.316 27
Washington, DC-MD-VA-WV PMSA 5,650,154 5 1.071 1.599 0.662 0.410 0.150 0.187 0.892 -0.731 -0.030 -0.035 0.119 0.047 28

Trenton, NJ PMSA 366,222 2 0.121 -0.160 0.281 0.347 0.181 0.263 1.744 -0.836 0.134 -0.239 0.136 0.068 29
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Table A.5: All Metropolitan Indices Ranked By Housing Price Index, 2005-2010

Adjusted Indices Raw Indices Productivity
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Miami, FL PMSA 2,500,625 5 1.075 1.344 1.115 0.347 -0.053 -0.070 0.707 2.306 -0.055 -0.001 -0.042 -0.007 30
Dutchess County, NY PMSA 293,562 2 -0.412 -0.856 -0.990 0.346 0.183 0.247 0.220 0.551 0.183 -0.372 0.141 -0.029 31

Brockton, MA PMSA 268,092 1 -0.251 -0.723 -0.367 0.343 0.097 0.077 2.852 0.236 0.141 -0.355 0.087 0.394 32
Lawrence, MA-NH PMSA 413,626 1 -0.012 -0.072 0.090 0.343 0.107 0.115 1.842 0.236 0.134 -0.273 0.089 0.337 33

New Haven-Meriden, CT PMSA 558,692 1 -0.010 0.095 0.279 0.312 0.180 0.256 -0.576 0.774 0.121 -0.262 0.136 -0.003 34
Stockton-Lodi, CA MSA 674,860 9 0.127 -0.216 0.449 0.266 0.094 0.174 0.150 -0.823 0.100 -0.187 0.062 0.130 35

Boulder-Longmont, CO PMSA 311,786 8 0.021 -0.260 0.157 0.261 -0.004 0.012 4.038 0.684 -0.054 -0.314 -0.007 0.290 36
Medford-Ashland, OR MSA 201,286 9 -0.494 -0.606 -0.438 0.260 -0.168 -0.188 0.917 1.973 0.025 -0.422 -0.138 0.049 37

Riverside-San Bernardino, CA PMSA 4,143,113 9 0.124 -0.489 -0.283 0.256 0.100 0.122 0.644 0.429 0.059 -0.215 0.080 0.104 38
West Palm Beach-Boca Raton, FL MSA 1,279,950 5 0.867 1.034 1.144 0.247 0.014 0.058 0.358 1.695 -0.105 -0.006 0.002 -0.023 39

Atlantic-Cape May, NJ PMSA 367,803 2 -0.148 -0.009 -0.058 0.242 0.068 0.060 0.333 1.751 0.122 -0.231 0.060 0.027 40
Fort Lauderdale, FL PMSA 1,766,476 5 0.913 0.999 1.297 0.222 -0.053 -0.071 0.932 2.262 -0.068 0.050 -0.041 0.019 41

Baltimore, MD PMSA 2,690,886 5 0.238 0.092 0.305 0.215 0.150 0.187 -0.601 -0.347 -0.045 -0.186 0.119 0.065 42
Reno, NV MSA 414,820 8 0.149 0.056 -0.737 0.213 -0.028 -0.138 -0.428 1.308 -0.002 -0.186 0.001 -0.047 43

Hartford, CT MSA 1,231,125 1 -0.684 -0.826 -0.572 0.201 0.097 0.099 0.342 -0.279 0.119 -0.341 0.082 0.048 44
Chicago, IL PMSA 8,710,824 3 0.615 1.114 0.407 0.190 0.063 0.069 -0.543 0.532 0.180 0.114 0.053 -0.092 45

Worcester, MA-CT PMSA 547,274 1 -0.194 -0.303 -0.386 0.185 0.101 0.102 2.430 0.236 0.131 -0.181 0.086 0.268 46
Bremerton, WA PMSA 240,862 9 -0.183 -0.245 0.208 0.180 0.046 0.009 0.078 1.107 0.065 -0.231 0.048 0.069 47

Portsmouth-Rochester, NH-ME PMSA 262,128 1 -0.610 -0.501 -0.040 0.179 0.104 0.119 1.035 0.236 -0.028 -0.405 0.085 0.251 48
Portland-Vancouver, OR-WA PMSA 2,230,947 9 0.447 0.408 0.063 0.176 -0.043 -0.062 0.015 0.412 0.033 -0.029 -0.032 -0.014 49

Sarasota-Bradenton, FL MSA 688,126 5 0.424 0.001 0.278 0.163 -0.088 -0.053 1.563 1.822 -0.074 -0.090 -0.082 0.076 50
Manchester, NH PMSA 212,326 1 -0.417 -0.509 -0.287 0.162 0.111 0.146 2.637 0.236 -0.018 -0.332 0.087 0.406 51

Modesto, CA MSA 510,385 9 0.008 -0.260 0.059 0.161 0.048 0.049 -0.156 -0.715 0.100 -0.123 0.041 0.017 52
Fresno, CA MSA 1,063,899 9 -0.100 -0.640 -0.565 0.129 -0.009 -0.024 1.219 -0.783 0.102 -0.132 -0.004 0.173 53

Tacoma, WA PMSA 796,836 9 0.393 0.146 0.034 0.122 0.056 0.037 -0.158 0.371 0.063 0.030 0.052 0.116 54
Portland, ME MSA 256,178 1 -0.422 -0.345 -0.236 0.120 -0.077 -0.025 0.888 0.989 -0.062 -0.325 -0.077 0.179 55

Eugene-Springfield, OR MSA 351,109 9 -0.388 -0.627 -0.866 0.085 -0.166 -0.206 0.202 1.622 0.021 -0.207 -0.132 -0.029 56
Olympia, WA PMSA 250,979 9 0.098 -0.437 -0.160 0.081 0.057 0.040 0.671 0.458 0.052 -0.036 0.052 0.106 57

Philadelphia, PA-NJ PMSA 5,332,822 2 0.249 0.381 0.028 0.074 0.066 0.053 0.689 -0.915 0.158 0.088 0.059 -0.007 58
Grand Junction, CO MSA 146,093 8 -0.108 -0.501 -0.266 0.073 -0.221 -0.383 0.504 0.690 -0.070 -0.176 -0.151 -0.022 59
Newburgh, NY-PA PMSA 444,061 2 -0.296 -1.043 -0.713 0.071 0.183 0.255 -0.479 0.045 0.138 -0.097 0.139 -0.111 60
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Yuba City, CA MSA 165,539 9 -0.707 -0.671 -0.963 0.071 -0.006 -0.023 -0.707 -0.734 0.098 -0.248 -0.002 0.057 61
Springfield, MA MSA 609,993 1 -0.321 -0.283 0.034 0.056 -0.031 -0.048 0.108 -0.095 0.072 -0.134 -0.023 0.127 62

Denver, CO PMSA 2,445,781 8 0.119 0.320 -0.227 0.050 -0.004 0.012 1.335 -0.597 -0.021 -0.050 -0.007 0.058 63
Fort Collins-Loveland, CO MSA 298,382 8 -0.344 -0.672 -0.262 0.036 -0.134 -0.226 0.873 0.107 -0.065 -0.216 -0.093 -0.007 64

Merced, CA MSA 245,321 9 -0.144 -0.557 -0.342 0.026 0.062 0.290 0.649 -0.915 0.100 -0.036 0.001 0.090 65
Wilmington-Newark, DE-MD PMSA 635,430 5 0.040 -0.502 -0.199 0.018 0.066 0.054 0.750 -0.697 0.045 -0.003 0.059 0.119 66

Norfolk-Virginia Beach-Newport News, VA- MSA 1,667,410 5 -0.123 -0.417 -0.237 0.006 -0.062 -0.032 -0.167 1.489 -0.104 -0.138 -0.059 0.054 67
Las Vegas, NV-AZ MSA 2,141,893 8 0.869 0.579 0.222 -0.002 0.046 -0.049 -1.453 0.147 0.080 0.320 0.061 -0.122 68
Hagerstown, MD PMSA 145,910 5 -0.315 -0.827 -1.106 -0.003 0.148 0.176 0.188 -0.499 -0.077 -0.196 0.119 0.027 69
Phoenix-Mesa, AZ MSA 4,364,094 8 0.414 -0.082 -0.626 -0.004 -0.002 0.000 1.003 -0.731 -0.104 0.041 -0.002 0.128 70

Fort Myers-Cape Coral, FL MSA 586,908 5 0.183 -0.082 0.583 -0.005 -0.078 -0.070 -0.494 1.168 -0.098 -0.043 -0.068 -0.094 71
Milwaukee-Waukesha, WI PMSA 1,559,667 3 -0.398 -0.695 -0.472 -0.014 -0.021 -0.008 -0.455 0.618 0.066 -0.090 -0.021 0.039 72

Madison, WI MSA 491,357 3 0.105 0.031 -0.340 -0.023 -0.092 -0.171 0.374 -0.858 0.013 0.048 -0.061 0.060 73
Minneapolis-St. Paul, MN-WI MSA 3,269,814 4 0.101 0.102 -0.201 -0.031 0.028 0.000 0.155 -0.475 0.139 0.130 0.030 -0.013 74
Visalia-Tulare-Porterville, CA MSA 429,668 9 -0.327 -0.409 -0.568 -0.032 -0.017 -0.033 0.371 -0.465 0.087 -0.011 -0.011 0.073 75

Tucson, AZ MSA 1,020,200 8 -0.256 -0.534 -0.664 -0.035 -0.126 -0.166 0.250 -0.289 -0.113 -0.153 -0.098 0.122 76
Asheville, NC MSA 251,894 5 -0.460 -0.842 -0.483 -0.047 -0.196 -0.263 0.149 1.863 -0.243 -0.291 -0.151 -0.014 77

Salem, OR PMSA 396,103 9 -0.272 -0.427 -0.308 -0.049 -0.043 -0.063 0.626 0.195 0.026 -0.044 -0.032 0.019 78
Fort Pierce-Port St. Lucie, FL MSA 406,296 5 0.025 -0.215 0.096 -0.053 -0.096 -0.166 0.347 1.739 -0.105 -0.050 -0.066 -0.039 79

Bakersfield, CA MSA 807,407 9 -0.508 -0.640 -1.106 -0.061 0.004 -0.108 -0.316 -0.234 0.077 -0.063 0.029 0.024 80
Fort Walton Beach, FL MSA 178,473 5 -0.152 -0.001 0.463 -0.066 -0.146 -0.213 -0.465 1.435 -0.116 -0.110 -0.109 -0.035 81

Tampa-St. Petersburg-Clearwater, FL MSA 2,747,272 5 0.287 0.074 0.047 -0.076 -0.095 -0.136 0.003 0.611 -0.072 0.096 -0.071 0.016 82
Orlando, FL MSA 2,082,421 5 0.369 -0.077 -0.056 -0.082 -0.087 -0.110 0.131 0.344 -0.071 0.135 -0.069 0.005 83

Kenosha, WI PMSA 165,382 3 -0.215 -0.977 -0.653 -0.100 0.063 0.069 1.863 0.914 0.038 0.028 0.053 0.093 84
Allentown-Bethlehem-Easton, PA MSA 706,374 2 -0.111 -0.813 -0.571 -0.108 -0.015 0.083 0.459 -0.396 0.071 0.092 -0.035 -0.068 85

Richmond-Petersburg, VA MSA 1,119,459 5 -0.508 -0.906 -0.595 -0.114 -0.025 -0.069 -0.796 -0.980 -0.104 -0.139 -0.011 -0.022 86
Charleston-North Charleston, SC MSA 659,191 5 -0.235 -0.066 -0.450 -0.120 -0.094 -0.077 -1.187 1.522 -0.167 -0.098 -0.084 -0.091 87

Melbourne-Titusville-Palm Bay, FL MSA 536,357 5 0.131 -0.534 0.019 -0.135 -0.096 -0.058 0.400 1.707 -0.056 0.105 -0.090 0.001 88
Racine, WI PMSA 200,601 3 -0.723 -1.196 -0.916 -0.149 -0.019 0.022 -1.269 1.215 0.037 -0.060 -0.025 0.040 89

Salt Lake City-Ogden, UT MSA 1,567,650 8 0.091 0.075 0.729 -0.152 -0.105 -0.158 -0.451 2.082 -0.108 0.085 -0.078 0.044 90

ix



Table A.5: All Metropolitan Indices Ranked By Housing Price Index, 2005-2010

Adjusted Indices Raw Indices Productivity

Full Name
Popula-

tion

Cen-
sus
Di-
vi-
sion

Land
Value

Land
Value
(All

Uses)

Land
Value
(Un-
wtd.)

Hous-
ing

Price
Wages
(All)

Wages
(Const.
Only)

Reg.
Index

(z-
score)

Geo
Un-

avail.
Index

(z-
score)

Const.
Price
Index

Hous-
ing

Trade-
ables

Regula-
tory
Cost
Index

Hous-
ing

Price
Rank

Jacksonville, FL MSA 1,301,808 5 0.054 -0.513 -0.045 -0.161 -0.079 -0.118 0.746 0.886 -0.133 0.060 -0.058 0.087 91
Daytona Beach, FL MSA 587,512 5 -0.148 -0.432 -0.018 -0.162 -0.152 -0.181 -0.783 1.526 -0.082 0.039 -0.123 -0.076 92

Gainesville, FL MSA 243,574 5 -0.607 -0.655 -0.607 -0.166 -0.146 -0.157 -0.181 -0.661 -0.108 -0.120 -0.122 -0.054 93
Albuquerque, NM MSA 841,428 8 -0.085 -0.167 -0.169 -0.167 -0.113 -0.185 0.998 -0.843 -0.078 0.067 -0.080 0.033 94

Colorado Springs, CO MSA 604,542 8 -0.226 -0.247 -0.049 -0.188 -0.122 -0.133 0.289 -0.328 -0.048 0.061 -0.102 -0.025 95
Lancaster, PA MSA 507,766 2 -0.489 -0.859 -0.660 -0.199 -0.121 -0.263 0.082 -0.830 -0.036 0.007 -0.070 -0.109 96

Ann Arbor, MI PMSA* 630,518 3 -0.491 -0.855 -1.109 -0.205 -0.003 -0.023 1.273 -0.937 0.026 0.038 0.001 0.078 97
Raleigh-Durham-Chapel Hill, NC MSA 1,589,388 5 -0.222 -0.663 -0.427 -0.208 -0.042 -0.035 1.146 -1.014 -0.210 -0.029 -0.038 0.012 98

Spokane, WA MSA 468,684 9 -0.655 -0.379 -0.436 -0.219 -0.123 -0.128 0.799 -0.083 -0.032 -0.011 -0.103 0.051 99
Myrtle Beach, SC MSA 263,868 5 -0.588 -0.634 -0.576 -0.220 -0.169 -0.097 -0.940 1.590 -0.228 -0.147 -0.159 0.037 100

New Orleans, LA MSA* 1,211,035 7 -0.360 -0.105 -0.307 -0.231 -0.090 -0.167 -2.352 2.222 -0.102 0.029 -0.059 -0.254 101
Albany-Schenectady-Troy, NY MSA 906,208 2 -1.219 -1.195 -1.566 -0.233 -0.035 -0.074 -0.186 -0.277 0.011 -0.114 -0.021 -0.082 102

York, PA MSA 428,937 2 -0.502 -0.920 -0.420 -0.254 -0.055 -0.098 0.879 -0.821 0.001 0.079 -0.038 -0.020 103
Provo-Orem, UT MSA 545,307 8 0.256 0.149 0.449 -0.254 -0.132 -0.168 -0.513 1.480 -0.112 0.244 -0.123 0.054 104

Boise City, ID MSA 571,271 8 -0.327 -0.387 0.126 -0.257 -0.154 -0.192 -1.029 0.354 -0.090 0.060 -0.122 -0.074 105
Nashville, TN MSA 1,495,419 6 -0.333 -0.535 -0.176 -0.264 -0.074 -0.094 -1.066 -0.785 -0.097 0.067 -0.058 -0.007 106

Yuma, AZ MSA 196,972 8 -1.081 -1.239 -1.615 -0.266 -0.134 -0.203 -0.458 -1.078 -0.079 -0.121 -0.098 0.061 107
Greeley, CO PMSA 254,759 8 -0.457 -0.841 -0.744 -0.267 -0.004 0.010 -0.635 -0.919 -0.117 0.020 -0.007 -0.054 108

Savannah, GA MSA 343,092 5 -0.418 -0.958 -0.655 -0.278 -0.101 -0.147 -0.224 1.506 -0.158 0.024 -0.076 0.024 109
Detroit, MI PMSA* 4,373,040 3 -0.332 -0.504 -0.344 -0.285 -0.003 -0.024 -0.253 -0.219 0.040 0.165 0.002 0.031 110

Austin-San Marcos, TX MSA 1,705,075 7 -0.173 -0.515 -0.466 -0.285 -0.042 -0.057 1.075 -1.225 -0.189 0.079 -0.032 0.081 111
Atlanta, GA MSA 5,315,841 5 -0.046 -0.546 -0.373 -0.290 0.007 0.042 0.080 -1.209 -0.080 0.184 -0.002 -0.011 112
Reading, PA MSA 407,125 2 -0.022 -0.344 0.015 -0.295 -0.057 -0.043 0.703 -0.609 0.036 0.308 -0.051 -0.051 113

St. Louis, MO-IL MSA 2,733,694 4 -0.687 -0.954 -0.527 -0.295 -0.058 -0.128 -1.564 -0.870 0.046 0.092 -0.034 -0.081 114
Vineland-Millville-Bridgeton, NJ PMSA 157,745 2 -0.626 -0.922 -0.624 -0.297 0.075 0.098 1.595 0.326 0.120 0.180 0.058 0.031 115

Roanoke, VA MSA 243,506 5 -0.820 -0.915 -0.723 -0.306 -0.113 -0.111 -1.266 0.504 -0.138 -0.061 -0.097 -0.009 116
Billings, MT MSA 144,797 8 -0.585 -0.797 -0.701 -0.316 -0.171 -0.298 -0.556 -0.857 -0.073 0.058 -0.162 -0.119 117

Harrisburg-Lebanon-Carlisle, PA MSA 667,425 2 -0.423 -0.594 -0.585 -0.323 -0.059 -0.015 0.643 -0.243 0.009 0.171 -0.061 -0.034 118
Lakeland-Winter Haven, FL MSA 583,403 5 -0.219 -1.106 -0.707 -0.324 -0.145 -0.197 0.385 0.152 -0.049 0.191 -0.112 -0.016 119

Glens Falls, NY MSA 128,774 2 -2.107 -2.775 -2.776 -0.328 -0.139 -0.142 -2.552 0.574 -0.047 -0.199 -0.118 -0.102 120
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Green Bay, WI MSA 247,319 3 -0.658 -0.589 -0.460 -0.328 -0.084 -0.068 -0.419 -0.279 -0.008 0.098 -0.075 -0.012 121
Baton Rouge, LA MSA 685,419 7 -0.605 -0.794 -0.347 -0.344 -0.065 -0.042 -1.511 0.217 -0.129 0.041 -0.061 -0.225 122

Columbus, OH MSA 1,718,303 3 -0.368 -0.792 -0.708 -0.348 -0.046 -0.024 0.216 -1.286 -0.024 0.181 -0.044 -0.146 123
Cleveland-Lorain-Elyria, OH PMSA* 2,192,053 3 -0.306 -0.650 -0.445 -0.349 -0.083 -0.105 -0.704 0.555 0.016 0.228 -0.065 -0.134 124

Cincinnati, OH-KY-IN PMSA 1,776,911 3 -0.309 -0.490 -0.619 -0.350 -0.040 -0.036 -1.026 -0.908 -0.046 0.191 -0.035 -0.120 125
Pensacola, FL MSA 455,102 5 -1.076 -0.895 -1.073 -0.356 -0.193 -0.255 -1.495 1.141 -0.116 -0.045 -0.151 -0.165 126

Appleton-Oshkosh-Neenah, WI MSA 385,264 3 -1.473 -1.824 -1.522 -0.359 -0.092 -0.081 -0.376 -0.538 -0.035 -0.064 -0.081 -0.010 127
Louisville, KY-IN MSA 1,099,588 6 -0.654 -0.798 -0.475 -0.363 -0.114 -0.141 -1.126 -0.792 -0.070 0.094 -0.090 -0.137 128

Fayetteville-Springdale-Rogers, AR MSA 425,685 7 -0.483 -0.775 -0.385 -0.374 -0.130 -0.157 -0.627 -0.005 -0.250 0.012 -0.105 -0.205 129
Richland-Kennewick-Pasco, WA MSA 245,649 9 -0.556 -0.581 -0.553 -0.375 0.026 0.120 0.832 -0.813 -0.016 0.172 0.001 0.081 130

Charlotte-Gastonia-Rock Hill, NC-SC MSA 1,937,309 5 -1.233 -2.105 -1.748 -0.377 -0.056 -0.059 -1.288 -1.180 -0.223 -0.156 -0.047 -0.009 131
Akron, OH PMSA* 699,935 3 -0.709 -1.242 -0.627 -0.379 -0.083 -0.105 -0.026 -1.095 -0.005 0.134 -0.065 -0.087 132

St. Cloud, MN MSA 189,148 4 -0.977 -1.231 -1.125 -0.380 -0.130 -0.268 -0.404 -0.409 0.125 0.172 -0.079 -0.034 133
Des Moines, IA MSA 536,664 4 -1.074 -1.224 -1.103 -0.388 -0.063 -0.006 -1.475 -1.108 -0.090 0.000 -0.066 -0.131 134

Benton Harbor, MI MSA* 160,472 3 -1.438 -1.518 -0.967 -0.398 -0.132 -0.088 -1.088 1.024 -0.035 -0.023 -0.122 -0.009 135
Greensboro–Winston Salem–High Point, NC MSA 1,416,374 5 -0.708 -1.109 -0.614 -0.400 -0.137 -0.185 -0.752 -1.256 -0.221 0.009 -0.105 0.023 136

Champaign-Urbana, IL MSA 195,671 3 -0.517 -0.789 -0.991 -0.403 -0.153 -0.228 -0.836 -1.337 0.067 0.284 -0.113 -0.161 137
Gary, IN PMSA 657,809 3 -0.225 -0.210 -0.098 -0.403 0.063 0.069 -1.399 0.121 0.056 0.337 0.053 -0.056 138

Kansas City, MO-KS MSA 2,005,888 4 -0.718 -0.976 -0.774 -0.411 -0.062 -0.083 -1.382 -1.125 0.045 0.208 -0.048 -0.112 139
Birmingham, AL MSA 997,770 6 -0.907 -1.052 -0.598 -0.412 -0.061 -0.050 -0.417 -0.712 -0.093 0.043 -0.054 -0.037 140

Knoxville, TN MSA 785,490 6 -0.788 -1.069 -0.442 -0.412 -0.143 -0.148 -0.864 0.460 -0.180 0.021 -0.120 -0.021 141
Lansing-East Lansing, MI MSA 453,603 3 -1.273 -1.415 -1.535 -0.414 -0.099 -0.049 -0.553 -1.075 0.009 0.062 -0.096 0.048 142

Hamilton-Middletown, OH PMSA 363,184 3 -0.360 -1.020 -0.089 -0.418 -0.040 -0.037 -0.580 -1.069 -0.067 0.223 -0.035 -0.204 143
La Crosse, WI-MN MSA 132,923 3 -0.576 -0.493 -0.421 -0.418 -0.185 -0.262 -0.406 0.327 -0.014 0.198 -0.140 0.056 144

Dallas, TX PMSA 4,399,895 7 -0.405 -0.556 -0.275 -0.429 -0.001 0.008 -0.666 -0.963 -0.173 0.144 -0.002 -0.094 145
Grand Rapids-Muskegon-Holland, MI MSA 1,157,672 3 -1.174 -1.083 -0.966 -0.435 -0.110 -0.129 -0.463 -0.958 -0.089 0.018 -0.089 -0.017 146

Columbia, SC MSA 627,630 5 -0.907 -0.977 -0.876 -0.436 -0.144 -0.182 -1.110 -0.669 -0.214 -0.005 -0.114 -0.007 147
Hickory-Morganton-Lenoir, NC MSA 365,364 5 -0.878 -1.483 -1.004 -0.437 -0.203 -0.188 -0.915 -0.391 -0.281 -0.052 -0.175 -0.072 148

Lynchburg, VA MSA 232,895 5 -1.155 -1.399 -0.891 -0.441 -0.170 -0.197 -0.919 -0.325 -0.131 -0.006 -0.139 -0.002 149
Chattanooga, TN-GA MSA 510,388 6 -0.500 -0.612 -0.628 -0.446 -0.149 -0.218 -1.326 -0.156 -0.137 0.178 -0.111 -0.027 150
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Huntsville, AL MSA 406,316 6 -0.324 -0.809 -0.335 -0.446 -0.085 -0.186 -2.306 -0.228 -0.133 0.225 -0.049 -0.039 151
State College, PA MSA 146,212 2 -1.283 -1.550 -1.504 -0.447 -0.191 -0.219 1.122 -0.808 -0.030 0.040 -0.156 -0.007 152

Mobile, AL MSA 591,599 6 -1.192 -1.409 -1.200 -0.457 -0.173 -0.269 -2.682 0.013 -0.133 0.002 -0.126 -0.085 153
Lincoln, NE MSA 281,531 4 -0.496 -0.755 -0.706 -0.461 -0.200 -0.172 0.793 -1.330 -0.095 0.225 -0.176 0.052 154

Janesville-Beloit, WI MSA 160,155 3 -0.418 -0.808 -0.615 -0.467 -0.114 -0.128 -0.703 -1.175 0.003 0.321 -0.093 -0.003 155
Bryan-College Station, TX MSA 179,992 7 -1.240 -1.519 -1.346 -0.478 -0.262 -0.522 0.363 -1.096 -0.175 -0.003 -0.165 0.013 156

Little Rock-North Little Rock, AR MSA 657,416 7 -0.866 -0.988 -0.530 -0.480 -0.124 -0.144 -1.819 -0.743 -0.136 0.105 -0.101 -0.240 157
Indianapolis, IN MSA 1,823,690 3 -0.574 -0.992 -0.635 -0.483 -0.073 -0.107 -1.730 -1.337 -0.044 0.245 -0.054 -0.100 158

Greenville-Spartanburg-Anderson, SC MSA 1,096,009 5 -1.021 -1.397 -0.854 -0.485 -0.124 -0.152 -1.574 -0.784 -0.231 -0.002 -0.099 -0.062 159
Dayton-Springfield, OH MSA* 933,312 3 -0.737 -0.940 -0.506 -0.485 -0.127 -0.162 -1.482 -1.357 -0.069 0.198 -0.100 -0.220 160

Duluth-Superior, MN-WI MSA* 242,041 4 -0.820 -1.200 -1.324 -0.485 -0.184 -0.399 -0.860 0.261 0.077 0.280 -0.108 -0.061 161
Lexington, KY MSA 554,107 6 -0.441 -0.482 -0.180 -0.490 -0.116 -0.051 -0.098 -1.121 -0.098 0.255 -0.113 -0.038 162

Toledo, OH MSA* 631,275 3 -1.465 -1.721 -1.434 -0.493 -0.113 -0.192 -2.216 -0.488 0.011 0.104 -0.078 -0.203 163
Cedar Rapids, IA MSA 209,226 4 -1.111 -1.310 -0.924 -0.500 -0.112 -0.093 -1.365 -1.236 -0.067 0.111 -0.100 -0.083 164

Kalamazoo-Battle Creek, MI MSA 462,250 3 -1.334 -1.475 -1.178 -0.502 -0.118 -0.136 -0.929 -0.929 -0.029 0.104 -0.097 0.033 165
Houston, TX PMSA 5,219,317 7 -0.305 -0.523 -0.579 -0.503 0.025 0.044 -0.070 -1.000 -0.142 0.272 0.017 -0.071 166

Wausau, WI MSA 131,612 3 -1.368 -1.787 -1.441 -0.504 -0.121 -0.150 -0.669 -0.833 -0.038 0.092 -0.097 -0.015 167
Canton-Massillon, OH MSA* 408,005 3 -0.874 -1.186 -0.855 -0.510 -0.116 -0.031 -1.105 -0.798 -0.044 0.196 -0.118 -0.175 168

Omaha, NE-IA MSA 799,130 4 -0.683 -0.736 -0.617 -0.512 -0.102 -0.051 -0.433 -1.245 -0.076 0.228 -0.098 -0.033 169
Waterloo-Cedar Falls, IA MSA* 129,276 4 -0.920 -0.946 -0.556 -0.514 -0.306 -0.821 -1.470 -1.256 -0.186 0.091 -0.144 -0.120 170

Pittsburgh, PA MSA* 2,287,106 2 -0.809 -0.941 -1.124 -0.516 -0.098 -0.102 -0.077 0.048 0.029 0.279 -0.083 -0.063 171
Peoria-Pekin, IL MSA* 357,144 3 -1.519 -1.816 -1.708 -0.519 -0.075 -0.101 -0.528 -1.166 0.065 0.168 -0.058 -0.073 172

Biloxi-Gulfport-Pascagoula, MS MSA 355,075 6 -0.870 -1.109 -0.962 -0.526 -0.145 -0.159 -1.131 1.116 -0.156 0.124 -0.120 -0.099 173
Rockford, IL MSA 409,058 3 -0.812 -1.557 -1.440 -0.526 -0.059 -0.002 -1.038 -1.301 0.124 0.360 -0.063 -0.188 174

Augusta-Aiken, GA-SC MSA 516,357 5 -1.136 -1.257 -0.832 -0.528 -0.066 0.031 -1.614 -0.902 -0.136 0.091 -0.078 -0.069 175
Sioux Falls, SD MSA 224,266 4 -0.445 -0.710 -0.628 -0.529 -0.122 -0.194 -1.415 -1.244 -0.167 0.252 -0.134 -0.004 176

Scranton–Wilkes-Barre–Hazleton, PA MSA* 614,565 2 -1.039 -1.473 -1.272 -0.529 -0.165 -0.206 -0.436 -0.012 0.013 0.210 -0.131 -0.087 177
Memphis, TN-AR-MS MSA 1,230,253 6 -0.921 -1.180 -0.443 -0.529 -0.048 -0.071 1.525 -0.817 -0.126 0.147 -0.036 0.109 178

Davenport-Moline-Rock Island, IA-IL MSA* 362,790 4 -1.180 -1.377 -1.275 -0.531 -0.088 0.022 -1.818 -1.185 -0.006 0.183 -0.100 -0.116 179
Galveston-Texas City, TX PMSA 286,814 7 -0.706 -0.738 -0.176 -0.531 0.022 0.046 0.398 2.232 -0.120 0.212 0.013 -0.042 180
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Rochester, NY MSA 1,093,434 2 -1.425 -1.452 -2.287 -0.533 -0.079 -0.051 -0.554 0.069 0.029 0.174 -0.073 -0.020 181
Fort Worth-Arlington, TX PMSA 2,113,278 7 -0.598 -0.759 -0.487 -0.535 -0.001 0.008 -0.420 -1.169 -0.153 0.219 -0.002 -0.094 182

Jackson, MS MSA 483,852 6 -1.024 -1.276 -1.297 -0.540 -0.115 -0.126 -2.260 -0.858 -0.131 0.134 -0.096 -0.132 183
Montgomery, AL MSA 354,108 6 -1.247 -1.347 -1.102 -0.542 -0.142 -0.150 -1.685 -0.886 -0.182 0.043 -0.119 -0.047 184

Tulsa, OK MSA 873,304 7 -0.763 -0.877 -1.117 -0.547 -0.105 -0.051 -1.664 -1.102 -0.201 0.171 -0.101 -0.154 185
Bloomington-Normal, IL MSA 167,699 3 -0.800 -0.947 -1.017 -0.550 -0.050 0.093 -0.586 -1.339 0.051 0.320 -0.075 -0.136 186

Oklahoma City, OK MSA 1,213,704 7 -1.027 -1.238 -1.160 -0.555 -0.173 -0.275 -1.067 -1.288 -0.157 0.130 -0.125 -0.074 187
Lafayette, IN MSA 202,331 3 -0.701 -1.185 -0.747 -0.557 -0.171 -0.204 -0.951 -0.146 -0.069 0.274 -0.138 -0.002 188

Tyler, TX MSA 204,665 7 -1.172 -1.532 -1.329 -0.558 -0.156 -0.226 -0.062 -0.918 -0.183 0.065 -0.117 0.113 189
Springfield, MO MSA 383,637 4 -0.859 -1.047 -1.097 -0.567 -0.225 -0.275 -1.324 -1.086 -0.077 0.245 -0.180 -0.029 190

Johnson City-Kingsport-Bristol, TN-VA MSA 503,010 6 -0.900 -1.248 -0.764 -0.567 -0.207 -0.267 -1.498 1.272 -0.197 0.144 -0.163 -0.024 191
Brazoria, TX PMSA 309,208 7 -1.018 -1.529 -1.020 -0.567 0.032 0.057 -0.808 -1.000 -0.135 0.160 0.021 -0.125 192

Buffalo-Niagara Falls, NY MSA* 1,123,804 2 -0.994 -0.949 -0.978 -0.576 -0.076 -0.066 -1.147 -0.484 0.053 0.308 -0.066 -0.088 193
Sumter, SC MSA 104,495 5 -1.239 -1.752 -1.207 -0.576 -0.325 -0.629 -1.557 -0.298 -0.214 0.057 -0.207 -0.017 194

Elkhart-Goshen, IN MSA 200,502 3 -1.159 -1.558 -1.020 -0.581 -0.098 -0.079 -1.460 -1.086 -0.059 0.202 -0.124 -0.140 195
Flint, MI PMSA* 424,043 3 -1.032 -1.440 -1.031 -0.588 -0.003 -0.024 -0.469 -0.943 0.011 0.276 0.002 0.051 196

Amarillo, TX MSA 238,299 7 -0.959 -1.212 -0.999 -0.588 -0.204 -0.282 -0.847 -1.237 -0.160 0.176 -0.156 -0.126 197
Saginaw-Bay City-Midland, MI MSA* 390,032 3 -2.051 -2.375 -1.983 -0.590 -0.118 -0.142 -0.181 -0.613 -0.014 0.103 -0.095 -0.033 198

Erie, PA MSA* 280,291 2 -1.416 -1.364 -1.446 -0.596 -0.187 -0.257 -0.916 1.063 -0.021 0.196 -0.143 -0.054 199
Fayetteville, NC MSA 315,207 5 -0.961 -1.057 -0.479 -0.599 -0.183 -0.225 -1.559 -0.655 -0.208 0.148 -0.146 -0.192 200

San Antonio, TX MSA 1,928,154 7 -0.852 -0.965 -0.759 -0.601 -0.121 -0.119 1.739 -1.254 -0.168 0.205 -0.103 0.060 201
South Bend, IN MSA 267,613 3 -0.676 -1.119 -0.748 -0.602 -0.112 0.001 -2.027 -0.896 -0.059 0.332 -0.121 -0.082 202
Syracuse, NY MSA* 725,610 2 -1.189 -1.331 -1.921 -0.610 -0.096 -0.102 -1.709 -0.542 0.004 0.265 -0.080 -0.163 203

Evansville-Henderson, IN-KY MSA 305,455 3 -1.496 -1.485 -1.230 -0.620 -0.159 -0.338 -1.316 -0.987 -0.052 0.171 -0.095 -0.043 204
Macon, GA MSA 356,873 5 -1.264 -1.566 -1.011 -0.626 -0.071 -0.021 -1.660 -1.024 -0.150 0.160 -0.072 -0.123 205

Rocky Mount, NC MSA 146,596 5 -0.759 -1.029 -0.587 -0.632 -0.163 -0.273 -0.857 -0.513 -0.290 0.165 -0.114 -0.144 206
Lafayette, LA MSA 415,592 7 -1.286 -1.442 -1.224 -0.643 -0.131 -0.154 -1.729 -1.310 -0.169 0.141 -0.106 -0.185 207

Lake Charles, LA MSA 187,554 7 -0.888 -0.859 -0.740 -0.646 -0.107 -0.099 -1.928 0.964 -0.142 0.244 -0.093 -0.243 208
Lubbock, TX MSA 270,550 7 -1.386 -1.720 -1.182 -0.646 -0.209 -0.239 -1.539 -1.385 -0.187 0.113 -0.171 -0.028 209
Wichita, KS MSA 589,195 4 -1.101 -1.304 -1.001 -0.648 -0.135 -0.185 -1.911 -1.327 -0.155 0.206 -0.104 -0.082 210
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Table A.5: All Metropolitan Indices Ranked By Housing Price Index, 2005-2010

Adjusted Indices Raw Indices Productivity
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Rank

Fort Wayne, IN MSA 528,408 3 -1.255 -1.590 -1.416 -0.655 -0.141 -0.147 -1.540 -1.283 -0.084 0.246 -0.118 -0.098 211
St. Joseph, MO MSA* 106,908 4 -1.713 -1.808 -1.517 -0.657 -0.205 -0.354 -2.414 -1.104 -0.028 0.199 -0.174 -0.113 212

Utica-Rome, NY MSA* 293,280 2 -1.950 -2.347 -2.233 -0.664 -0.155 -0.322 -1.425 -0.549 -0.026 0.172 -0.094 -0.042 213
Sherman-Denison, TX MSA 120,030 7 -1.606 -2.370 -1.933 -0.670 - - -1.646 -1.076 -0.222 0.068 - -0.107 214

Corpus Christi, TX MSA 391,269 7 -1.196 -1.266 -1.024 -0.674 -0.168 -0.230 -1.155 0.435 -0.209 0.165 -0.129 -0.176 215
Dothan, AL MSA 148,232 6 -1.296 -1.825 -1.451 -0.677 -0.131 -0.001 -1.610 -0.965 -0.217 0.148 -0.140 -0.012 216

Fargo-Moorhead, ND-MN MSA 200,102 4 -0.652 -0.846 -0.869 -0.679 -0.211 -0.456 -2.080 -1.264 -0.097 0.376 -0.125 -0.065 217
Youngstown-Warren, OH MSA* 554,614 3 -1.782 -2.155 -1.652 -0.709 -0.178 -0.208 -0.780 -0.898 -0.020 0.252 -0.145 -0.141 218

Columbus, GA-AL MSA 285,800 5 -0.479 -0.649 -0.481 -0.716 -0.162 -0.175 -1.452 -1.109 -0.151 0.425 -0.135 -0.100 219
El Paso, TX MSA 751,296 7 -0.586 -0.495 -0.086 -0.738 -0.200 -0.133 0.398 -1.159 -0.213 0.377 -0.185 -0.042 220

Killeen-Temple, TX MSA 358,316 7 -1.382 -1.573 -1.133 -0.741 -0.188 -0.214 -1.838 -1.246 -0.239 0.162 -0.155 -0.070 221
Beaumont-Port Arthur, TX MSA* 378,477 7 -1.311 -1.443 -1.389 -0.747 -0.073 -0.104 -1.422 -0.493 -0.155 0.262 -0.055 -0.101 222

Binghamton, NY MSA* 244,694 2 -1.358 -1.592 -1.566 -0.754 -0.127 -0.134 -1.423 0.257 -0.015 0.342 -0.106 -0.122 223
Longview-Marshall, TX MSA 222,489 7 -1.896 -2.429 -2.098 -0.764 -0.201 -0.412 -2.430 -0.891 -0.266 0.081 -0.123 -0.169 224

Fort Smith, AR-OK MSA 225,132 7 -1.633 -1.969 -1.691 -0.784 -0.178 -0.180 -1.764 -0.449 -0.187 0.200 -0.179 -0.163 225
Bismarck, ND MSA 106,286 4 -0.925 -1.267 -1.228 -0.837 - - -0.446 -1.123 -0.149 0.435 - -0.075 226

Sioux City, IA-NE MSA* 123,482 4 -1.768 -1.755 -1.885 -0.840 -0.060 0.038 -1.863 -1.259 -0.120 0.288 -0.169 -0.080 227
Jamestown, NY MSA* 133,503 2 -2.423 -2.738 -2.358 -0.931 -0.241 -0.339 -0.790 0.036 -0.013 0.406 -0.183 -0.110 228

Brownsville-Harlingen-San Benito, TX MSA 396,371 7 -1.130 -1.171 -0.349 -0.982 -0.246 -0.281 -0.749 -0.069 -0.240 0.471 -0.201 -0.108 229
McAllen-Edinburg-Mission, TX MSA 741,152 7 -0.497 -0.735 -0.367 -0.990 -0.230 -0.271 -0.733 -1.362 -0.240 0.645 -0.186 -0.118 230

Census Divisions:

New England 9,276,332 1 0.150 0.216 0.270 0.429 0.101 0.114 0.988 0.235 0.130 -0.302 0.083 0.175 4
Middle Atlantic 36,776,228 2 0.439 0.767 0.593 0.288 0.083 0.121 0.201 0.075 0.155 -0.002 0.063 -0.013 2

East North Central 34,629,706 3 -0.336 -0.415 -0.447 -0.234 -0.031 -0.038 -0.628 -0.301 0.043 0.147 -0.025 -0.068 6
West North Central 12,493,078 4 -0.570 -0.732 -0.644 -0.332 -0.064 -0.101 -0.943 -0.892 0.026 0.160 -0.048 -0.062 7

South Atlantic 44,239,778 5 0.090 -0.100 -0.040 -0.049 -0.027 -0.027 -0.006 0.105 -0.102 0.005 -0.023 0.005 5
East South Central 9,515,207 6 -0.746 -0.961 -0.578 -0.437 -0.108 -0.129 -0.882 -0.423 -0.124 0.104 -0.087 -0.033 9

West South Central 26,109,488 7 -0.616 -0.784 -0.613 -0.520 -0.064 -0.072 -0.467 -0.785 -0.167 0.193 -0.053 -0.085 8
Mountain 15,869,775 8 0.196 -0.006 -0.201 -0.043 -0.043 -0.075 0.335 -0.060 -0.059 0.044 -0.030 0.043 3

Pacific 41,103,383 9 0.795 0.910 0.849 0.652 0.090 0.095 0.713 0.980 0.091 -0.312 0.075 0.099 1
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Table A.5: All Metropolitan Indices Ranked By Housing Price Index, 2005-2010
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Metropolitan Population:

Less than 500,000 31,264,023 -0.661 -0.870 -0.666 -0.228 -0.069 -0.092 -0.359 -0.055 -0.042 -0.006 -0.055 -0.014 4
500,000 to 1,500,000 55,777,644 -0.428 -0.614 -0.398 -0.193 -0.051 -0.058 -0.288 -0.158 -0.045 0.020 -0.042 -0.020 3

1,500,000 to 5,000,000 89,173,333 0.199 0.080 0.097 0.097 0.019 0.017 0.151 0.142 0.008 -0.034 0.016 0.020 2
5,000,000+ 49,824,250 0.866 1.321 0.899 0.363 0.093 0.122 0.223 0.011 0.094 0.012 0.073 0.005 1

See Table 1 and text for explanatory details.
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Figure A: Construction Wages vs. Overall Wages
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Note: Wages are estimated at the CMSA level, but the figure plots PMSAs to be consistent with the other
figures. Concentric circles represent multiple PMSAs of different populations in the same CMSA.
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Figure B: Construction Prices vs. Construction Wages
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Figure C: Residential vs. All-Use Land Values
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