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1 Introduction

According to the profession’s most popular theoretical models, optimal tax rates on capital

should be equal to zero in the long run–including from the viewpoint of those individuals or

dynasties who own no capital at all. Taken literally, the policy implication of those theoretical

results would be to eliminate all inheritance taxes, property taxes, corporate profits taxes,

and individual taxes on capital income and recoup the resulting tax revenue loss with higher

labor income or consumption or lump-sum taxes. Strikingly, even individuals with no capital

or inheritance would benefit from such a change. E.g. according to these models it is in the

interest of propertyless individuals to set property taxes to zero and replace them by poll taxes.

Few economists however seem to endorse such a radical policy agenda. Presumably this

reflects a lack of faith in the standard models and the zero-capital tax results - which are indeed

well known to rely upon strong assumptions.1 As a matter of fact, all advanced economies

impose substantial capital taxes. For example, the European Union currently raises 9% of GDP

in capital taxes (out of a total of 39% of GDP in total tax revenues) and the US raises about

8% of GDP in capital taxes (out of a total of about 27% of GDP in total tax revenues).2

However, in the absence of an alternative tractable model, the zero capital tax result remains

an important reference point in economics teaching and in policy discussions.3 For instance,

a number of economists and policy-makers support tax competition as a way to impose zero

optimal capital taxes to reluctant governments.4 We view the large gap between optimal capital

tax theory and practice as one of the most important failures of modern public economics.

The objective of this paper is to develop a realistic, tractable, and robust theory of socially

optimal capital taxation. By realistic, we mean a theory providing optimal tax conclusions

that are not fully off-the-mark with respect to the real world (i.e., positive and significant

capital tax rates–at least for some parameter values). By realistic, we also mean a theory

offering such conclusions for reasons that are consistent with the reasons that are at play in the

real world which–we feel–are related to the large concentration of inherited capital ownership.

1In particular, Atkinson and Stiglitz (1976; 1980, pp. 442-451) themselves have repeatedly stressed that
their famous zero capital tax result relies upon unplausibly strong assumptions (most notably the absence of
inheritance and the separability of preferences), and has little relevance for practical policy discussions. See also
Atkinson and Sandmo (1980) and Stiglitz (1985).

2See European Commission (2011), p.282 (total taxes) and p.336 (capital taxes), for GDP-weighted EU 27
averages, and OECD (2011) for the United States.

3Lucas (1990, p.313) celebrates the zero-capital-tax result of Chamley-Judd as “the largest genuinely free
lunch I have seen in 25 years in this business.”

4See Cai and Treisman (2005) and Edwards and Mitchell (2008) for references.
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By tractable, we mean that optimal tax formulas should be expressed in terms of estimable

parameters and should quantify the various trade-offs in a simple and plausible way. By robust,

we mean that our results should not be too sensitive to the exact primitives of the model nor

depend on strong homogeneity assumptions for individual preferences. Ideally, formulas should

be expressed in terms of estimable “sufficient statistics” such as distributional parameters and

behavioral elasticities and hence be robust to changes in the underlying primitives of the model.5

In our view, the two key ingredients for a proper theory of capital taxation are, first, the

large aggregate magnitude and the high concentration of inheritance, and, next, the imperfection

of capital markets. In models with no inheritance (as in the Aktinson-Stiglitz model where all

wealth is due to life-cycle savings or as in Chamley-Judd where life is infinite) or with egalitarian

inheritance (representative agent model), and with perfect capital markets (i.e. if agents can

transfer resources across periods at a fixed and riskless interest rate r), then the logic for the zero

optimal capital taxation result is compelling–as in the standard Atkinson-Stiglitz or Chamley-

Judd models. Hence, our paper proceeds in two steps.

First, we develop a theory of optimal capital taxation with perfect capital markets. We

present a dynamic model of savings and bequests with heterogeneous random tastes for bequests

to children and for wealth accumulation per se. The key feature of our model is that inequality

permanently arises from two dimensions: differences in labor income due to differences in ability,

and differences in inheritances due to differences in parental tastes for bequests and parental

resources. Importantly, top labor earners and top successors are never exactly the same people,

implying a non-degenerate trade-off between the taxation of labor income and the taxation of

capitalized inheritance. In that context, in contrast to the famous Atkinson-Stiglitz result, the

tax system that maximizes social welfare includes positive taxes on bequests even with optimal

labor taxation because, with inheritances, labor income is no longer the unique determinant

of life-time resources. In sum, two-dimensional inequality requires two-dimensional tax policy

tools.

We derive formulas for optimal tax rates τB on capitalized inheritance expressed in terms

of estimable parameters and social preferences. The long run optimal tax rate τB increases

with the aggregate steady-state flow of bequests to output by, decreases with the elasticity of

bequests with respect to the net-of-tax rate eB, and decreases with the strength of preferences

5Such an approach has yielded fruitful results in the analysis of optimal labor income taxation (see Piketty
and Saez, 2012 for a recent survey).

2



for bequests sb0. Under the assumptions of our model, for realistic parameters, the optimal

linear tax rate on capitalized inheritance would be as high as 50%− 60% under a meritocratic

social objective preferences (i.e., those with little inheritance have high welfare weight in the

social objective function). Because real world inherited wealth is highly concentrated–half of

the population receives close to zero bequest, our results are robust to reasonable changes in

the social welfare objective. For example, the optimal tax policy from the viewpoint of those

receiving zero bequest is very close to the welfare optimum for bottom 50% bequest receivers.

Interestingly, the optimal tax rate τB imposed on top wealth holders can be even larger (say,

70%− 80%), especially if bequest flows are large, and if the probability of bottom receivers to

leave a large bequest is small. Therefore our model can generate optimal tax rates as large as the

top bequest tax rates observed in most advanced economies during the past 100 years, especially

in Anglo-Saxon countries from the 1930s to the 1980s (see Figure 1). To our knowledge, this

is the first time that a model of optimal inheritance taxation delivers tractable and estimable

formulas that can be used to analyze such real world tax policies.

Our model also illustrates the importance of perceptions and beliefs systems about wealth

inequality and mobility (i.e. individual most preferred tax rates are very sensitive to expectations

about bequests received and left), and about the magnitude of aggregate bequest flows. When

bequest flows are small, (e.g., 5% of national income, as was the case in Continental Europe

during the 1950s-1970s), then optimal bequest taxes in our model would be moderate. When

they are large (e.g., 15% of national income as in France currently or over 20% as in the 19th

century France), then optimal bequest taxes in our model would be large–so as to reduce the

tax burden falling on labor earners.6

Second, we show that if we introduce capital market imperfections and uninsurable idiosyn-

cratic shocks to rates of return into our setting, then we can study the optimal tax mix between

one-off inheritance taxation and lifetime capital taxation. With perfect and riskless capital mar-

kets, bequest taxes and capital income taxes are equivalent in our framework. However, with

heterogeneous rates of returns, capital income taxation can provide insurance against return

risk more powerfully than inheritance taxation. If the uninsurable uncertainty about future

returns is large, and the moral hazard responses of the rate of return to capital income tax

rates are moderate, the resulting optimal lifetime capital tax rate τK can be very high–typically

6The historical evolution and theoretical determinants of the aggregate bequest flow by were recently studied
by Piketty (2010, 2011). Figures 4-5 summarize his results. We extend his model to study optimal tax policy.
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higher than the optimal bequest tax rate τ̃B, and labor tax rate τL. This is consistent with

the fact that in modern tax systems the bulk of aggregate capital tax revenues comes from

lifetime capital taxes (rather than from inheritance taxes). It is also interesting to note that

the countries which experienced the highest top inheritance tax rates also applied the largest

tax rates on top incomes, and particularly so on tax capital incomes (see Figures 2-3). To our

knowledge this is the first time that a model of optimal capital taxation can provide a rational

for why these various policy tools can indeed be complementary.

The paper is organized as follows. Section 2 relates our results to the existing literature. Sec-

tion 3 presents our dynamic model and its steady-state properties. Section 4 presents our basic

formula for the optimal tax rate on capitalized inheritance. Section 5 introduces informational

and capital market imperfections to analyze the optimal mix between inheritance taxation and

lifetime capital taxation. Section 6 extends our results in a number of directions, including

elastic labor supply, homogenous tastes, consumption tax, closed economy, life-cycle saving,

population growth, dynamic efficiency, and tax competition. Section 7 offers some concluding

comments. Most proofs and complete details about extensions are gathered in the appendix.

2 Relation to Existing Literature

There are two main results in the literature in support of zero capital income taxation: Atkinson-

Stiglitz and Chamley-Judd. We discuss each in turn and then discuss the more recent literature.

Atkinson-Stiglitz. Atkinson and Stiglitz (1976) show that there is no need to supplement the

optimal non-linear labor income tax with a capital income tax in a life-cycle model if leisure

choice is (weakly) separable from consumption choices and preferences for consumption are

homogeneous. In that model, the only source of lifetime income inequality is labor skill and

hence there is no reason to redistribute from high savers to low savers (i.e. tax capital income)

conditional on labor earnings.7 This key assumption of the Atkinson-Stiglitz model breaks down

in a model with inheritances where inequality in lifetime income comes from both differences in

labor income and differences in inheritances received. In that context and conditional on labor

earnings, a high level of bequests left is a signal of a high level of inheritances received, which

7Saez (2002) shows that this result extends to heterogeneous preferences as long as time preferences are
orthogonal to labor skills. If time preferences are correlated with labor skills, then the optimal tax on saving
is positive as it is an indirect way to tax ability. Golosov et al. (2011) calibrate a model where higher skills
individuals have higher saving taste and show that the resulting optimal capital income tax rate depends signif-
icantly on the inter-temporal elasticity of substitution but that the implied welfare gains are relatively small in
all cases.
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provides a rationale for taxing bequests. To see this, consider a model with inelastic and uniform

labor income but with differences in inheritances due to parental differences in preferences

for bequests. In such a model, labor income taxation is useless for redistribution but taxing

inheritances generates redistribution. This important point has been made by Cremer, Pestieau,

and Rochet (2003) in a stylized partial equilibrium model with unobservable inherited wealth

where the optimal tax on capital income becomes positive. Our model allows the government

to directly observe (and hence tax) inherited wealth.

Farhi and Werning (2010) consider a model from the perspective of the first generation of

donors who do not start with any inheritance (so that inheritance and labor income inequality

are perfectly correlated). In this context, bequests would actually be subsidized as they would be

untaxed by Aktinson-Stiglitz (ignoring inheritors) and hence would be subsidized when taking

into account inheritors.8 As we shall see, this result is not robust, in the following sense. In

our model, where people both receive and leave bequests, bequest subsidies can also be socially

optimal, but this will arise only for specific–and unrealistic–parameters (e.g. if there is very

little inequality of inheritance or social welfare weights are concentrated on large inheritors).

For plausible parameter values, however, optimal bequest rates will be positive and large.

Chamley-Judd. Chamley (1986) and Judd (1985) show that the optimal capital income tax

would be zero in the long-run. This zero long-run result holds for two reasons.

First, and as originally emphasized by Judd (1985), the zero rate results happens because

social welfare is measured exclusively from the initial period (or dynasty). In that context, a

constant tax rate on capital income creates a tax distortion growing exponentially overtime–

which cannot be optimal (see Judd 1999 for a clear intuitive explanation). Such a welfare

criterion can only make sense in a context with homogeneous discount rates. In the context

of inheritance taxation where each period is a generation and where preferences for bequests

are heterogeneous across the population, this does not seem like a valid social welfare objective

as children of parents with no tastes for bequests would not be counted in the social welfare

function. We will adopt instead a definition of social welfare based on long-run equilibrium

steady-state utility.9 We show in appendix C how the within generation and across generation

8Kaplow (2001) made similar points informally. Farhi and Werning (2010) also extend their model to many
periods and connect their results to the new dynamic public finance literature (see below).

9In models with dynamic uncertainty, using the initial period social welfare criteria leads to optimal policies
where inequality grows without bounds (see e.g. Atkeson and Lucas 1992). Obtaining “immiseration” as an
optimal redistributive tax policy is not realistic and can be interpreted as a failure of the initial period social
welfare criterion. Importantly, Farhi and Werning (2007) show that considering instead the long-run steady-state
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redistribution problems can be disconnected using public debt so that there is essentially no

loss of generality in focusing on steady state welfare.

Second, even adopting a long-run steady-state utility perspective, the optimal capital income

tax rate is still zero in the standard Chamley-Judd model. This is because the supply side

elasticity of capital with respect to the net-of-tax return is infinite in the standard infinite

horizon dynastic model with constant discount rate.10 The textbook model predicts enormous

responses of aggregate capital accumulation to changes in capital tax rates, which just do not

seem to be there in historical data. Capital-output ratios are relatively stable in the long run,

in spite of large variations in tax rates (see e.g. Piketty, 2010, p.52). Our theory leaves this

key elasticity as a free parameter to be estimated empirically. Our model naturally recovers the

zero capital tax result of Chamley-Judd when the elasticity is infinite.

New Dynamic Public Finance. The recent and fast growing literature on new dynamic

public finance shows that dynamic labor productivity risk leads to non-zero capital income

taxes (see Golosov, Tsyvinski, Werning, 2006 and Kocherlakota 2010 for recent comprehensive

surveys). The underlying logic is the following. When leisure is a normal good, more savings,

ceteris paribus, will tend to reduce work later on. Thus, discouraging savings through capital

income taxation enhances the ability to provide insurance against future poor labor market

possibilities. Quantitatively however, the welfare gains from distorting savings optimally are

very small in general equilibrium (Farhi and Werning, 2011).11 Our model does not include

future earnings uncertainty because individuals care only about the bequests they leave, inde-

pendently of the labor income ability of their children. This simplification is justified in the

case of bequest decisions as empirical analysis shows that bequests respond only very weakly

to children earnings opportunities (see e.g., Wilhelm, 1996). In contrast to the new dynamic

public finance, we find quantitatively large welfare gains from capital taxation in our model.

Hence, our contribution is independent and complementary to the new dynamic public finance.

Methodologically, the new dynamic public finance solves for the fully optimal mechanism

and hence obtains optimal tax systems that can be complex and history dependent, in contrast

to actual practice. We instead limit ourselves to very simple (and more realistic) tax structures.

equilibrium as we do in this paper eliminates the immiseration results.
10This follows from the fact that the net-of-tax rate of return needs to be equal to the (modified) discount

rate in steady-state.
11Golosov, Troshkin, and Tsyvinski (2011) also calibrate such a model and show that the size of the optimal

implicit capital income tax wedge is quantitatively fairly modest on average (Figure 2, p. 25).
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This allows us to consider richer heterogeneity in preferences which we believe is important in

the case of bequests.12 Therefore, we also view our methodological approach as complementary

to this literature (Diamond and Saez, 2011 for a longer discussion of this methodological debate).

Capital market imperfections. A number of papers have shown that the optimal tax on

capital income can become positive when capital market imperfections are introduced, even in

models with no inheritance. Typically, the optimal capital income tax is positive because it is

a way to redistribute from those with no credit constraints (the owners of capital) toward those

with credit constraints (non-owners of capital). Aiyagari (1995) and Chamley (2001) make this

point formally in a model with borrowing constrained infinitely lived agents facing labor income

risk. They show that optimal capital income taxation is positive when consumption is positively

correlated with savings13 but do not attempt to compute numerical values for optimal capital

tax rates. Farhi and Werning (2011) (cited above) also propose a quantitative calibration of an

infinite horizon model with borrowing constraints but they find small welfare gains from capital

taxation. In contrast, Conesa, Kitao, and Krueger (2009) calibrate an optimal tax OLG life-

cycle model with uninsurable idiosyncratic labor productivity shocks and borrowing constraints,

and find τK = 36% and τL = 23% in their preferred specification. The main effect seems to be

that capital income tax is an indirect way to tax more the old and to tax less the young, so

as to alleviate their borrowing constraints. While this is an interesting mechanism, we do not

believe that this is the most important explanation for τK > 0. There are other more direct

ways to address the issue of taxing the young vs. the old (e.g. age-varying income taxes; some

policies, e.g. pension schemes, do depend on age).14 In contrast, the theory of capital taxation

offered in the present paper is centered upon the interaction between inheritance and capital

market imperfections.15

Government time-inconsistency and lack of commitment. Yet another way to explain

real-world, positive capital taxes is to assume time inconsistency and lack of commitment.16

Zero capital tax results are always long run results. In the short run, capital is on the table, and

12As mentioned above, Farhi and Werning (2010) do combine inheritance with new dynamic public finance.
They consider more general tax structures than we do but impose more structure on preferences.

13This correlation is always positive in the Aiyagari (1995) model with independent and identically distributed
labor income, but Chamley (2001) shows that the correlation can be negative in some cases.

14On age-dependent taxes, see Weinzierl (2011).
15Cagetti and DeNardi (2009) provide very interesting simulations of estate taxation in a model with borrowing

constraints and show that shifting part of the labor tax to the estate tax benefits low income workers. They do
not try however to derive optimal tax formulas as we do here.

16See e.g. Farhi, Sleet, Werning and Yeltekin (2011) for a recent model along these lines.
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it is always tempting for short-sighted governments to have τK > 0, even though the optimal

long run τK is equal to 0%. More generally, if governments cannot commit to long run policies,

they will always be tempted to renege on their past commitments and to implement high capital

tax rates, even though this is detrimental to long run welfare.

We doubt that this is the main reason explaining why we observe positive capital taxes in the

real world. Governments and public opinions seem to view positive and substantial inheritance

tax rates (such as those implemented over the past 100 years in advanced economies, see Figure

1 above) as part of a fair and efficient permanent tax system–not as a consequence of short-

sightedness and lack of commitment. Naturally political actors are not always long-sighted but

they often find ways to commit to long run policies, e.g. by appealing to moral principles–such

as equal opportunity and meritocratic values–that apply to all generations and not only to the

current electorate, or by writing down their favored policies in party platforms. Governments

could also find ways to implement the zero-tax long run optimum by delegating capital tax

decisions to an independent authority with a zero-tax mandate (in the same way as the zero-

inflation mandate of independent central banks), or by promoting international tax competition

and bank secrecy laws. In models where positive capital taxes arise solely because of lack of

commitment, such institutional arrangements would indeed be optimal.17

In contrast, we choose in this paper to assume away time inconsistency issues. Hence, we

analyze solely the true long run optimal tax policies–assuming full commitment–and we take

up the most difficult task of explaining positive capital tax rates in such environments.

3 The Model

3.1 Notations and Definitions

We consider a small open economy facing an exogenous, instantaneous rate of return on capital

r ≥ 0. To keep notations minimal, we focus upon a simple model with a discrete set of genera-

tions 0, 1, .., t, .. Each generation has measure one, lives one period (which can be interpreted as

H-year-long, where H = generation length, realistically around 30 years), then dies and is re-

placed by the next generation. Total population is stationary and equal to Nt = 1, so aggregate

variables Yt, Kt,Lt, Bt, and per capita variables yt, kt, lt, bt, are identical (we use the latter).

Generation t receives average inheritance (pre-tax) bt from generation t− 1 at the beginning

17In the real world, believers in zero capital tax policies do support tax competition for this very reason. See
e.g. Edwards and Mitchell (2008). We return to the issue of tax competition in conclusion.
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of period t. Inheritances go into the capital stock and are invested either domestically or abroad

for a “generational” rate of return 1+R = erH . Production in generation t combines labor from

generation t and capital to produce a single output good. The output produced by generation

t is either consumed by generation t or left as bequest to generation t + 1. We denote by yLt

the average labor income received by generation t. We denote by ct the average consumption of

generation t and bt+1 the average bequest left by generation t to generation t + 1. We assume

that output, labor income, and capital income are realized at the end of period. Consumption

ct and bequest left bt+1 also take place at the end of the period. This condensed timing greatly

simplifies the notations and exposition of the model but is unnecessary for our results.18

Individual i in generation t maximizes utility:

maxVti = Vi(cti, wti, b̄t+1i) s.t. cti + wti ≤ ỹti = (1− τB)btie
rH + (1− τL)yLti

With: ỹti = (1−τB)btie
rH +(1−τL)yLti = total after-tax lifetime income combining after-tax

capitalized bequest (1− τB)btie
rH and after-tax labor income (1− τL)yLti

btie
rH = bti(1 +R) = capitalized bequest received = raw bequest bti + return Rbti

cti = consumption

wti = end-of-life wealth = bt+1i = pre-tax raw bequest left to next generation

b̄t+1i = (1− τB)bt+1ie
rH = after-tax capitalized bequest left to next generation

τB ≥ 0 is the tax rate on capitalized bequest, τL ≥ 0 is the tax rate on labor income

Vti is the utility function assumed to be homogeneous of degree one to allow for balanced

growth (and possibly heterogeneous across individuals).

In order to fix ideas, consider the special Cobb-Douglas (or log-log) case:

Vi(c, w, b̄) = c1−siwswi b̄sbi (swi ≥ 0, sbi ≥ 0, si = swi + sbi ≤ 1)

This simple form implies that individual i devotes a fraction si of his lifetime resources to end-

of-life wealth, and a fraction 1 − si to consumption. The parameters swi and sbi measure the

tastes for wealth per se and for bequest (more on this below).

In the general case with Vi(c, w, b̄) homogeneous of degree one, the fraction si of lifetime

resources saved depends on (1 − τB)erH , i.e., the relative price of bequests. Using the first

order condition of the individual Vic = Viw + (1 − τB)erHVib̄, we can then define sbi = si · (1 −
18All results and optimal tax formulas can be extended to a full-fledged, multi-period, continuous-time model

with overlapping generations and life-cycle savings. See section 6 below.
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τB)erHVib̄/Vic and swi = si · Viw/Vic. Hence, si, swi, and sbi are functions of (1− τB)erH instead

of being constant as with Cobb-Douglas where income and substitution effects cancel out.

We use a standard wealth accumulation model with exogenous growth. Per capita output in

generation t is given by a constant return to scale production function yt = F (kt, lt), where kt is

the per capita physical (non-human) capital input and lt is the per capita human capital input

(efficient labor supply). Though this is unnecessary for our results, we assume a Cobb-Douglas

production function: yt = kαt l
1−α
t to simplify the notations .

Per capita human capital lt is the sum over all individuals of raw labor supply lti times

labor productivity hti : lt =
∫
i∈Nt ltihtidi. Average productivity ht is assumed to grow at some

exogenous rate 1 + G = egH per generation (with g ≥ 0): ht = h0e
gHt. With inelastic labor

supply (lti = 1), we simply have: lt = ht = h0e
gHt.

Taking as given the generational rate of return R = erH−1, profit maximization implies that

the domestic capital input kt is chosen so that FK = R, i.e. kt = β
1

1−α lt (with β =
kt
yt

=
α

R
=

domestic generational capital-output ratio).19 It is important to keep in mind that yt is domestic

output. In the open economy case we consider, yt might differ from national income if the

domestic capital stock kt (used for domestic production) differs from the national wealth bt.

It follows that output yt = β
α

1−α lt = β
α

1−αh0e
gHt also grows at rate 1 + G = egH per

generation. So does aggregate labor income yLt = (1 − α)yt. The aggregate economy is on a

steady-state growth path where everything grows at rate 1 +G = egH per generation.

E.g. with g = 1− 2% per year and H = 30 years, 1 +G = egH ' 1.5− 2. With r = 3%− 5%

per year and H = 30 years, 1 +R = erH ' 3− 4.

3.2 Steady-state Inheritance Flows and Distributions

The individual-level transition equation for bequest is the following:

bt+1i = sti · [(1− τL)yLti + (1− τB)btie
rH ] (1)

In our model, there are three independent factors explaining why different individuals receive

different bequests bt+1i within generation t + 1: their parents received different bequests bti,

earned different labor income yLti, or had different tastes for savings sti = swti + sbti.
20

19The annual capital-output ratio is βa = H · β = α(H/R) = αH/(erH − 1) ' α/r if r is small.
20A fourth important factor in the real world is the existence of idiosyncratic shocks to rates of return rti

(see section 5). Pure demographic shocks (such as shocks to the age at parenthood, age at death of parents and
children, number of children, rank of birth, etc.) also play an important role.
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Savings Tastes. Importantly, taste parameters vary across individuals and over time in our

model. E.g. some individuals might have zero taste for wealth and bequest (swti = sbti = 0), in

which case they save solely for life-cycle purposes and die with zero wealth (“life-cycle savers”).

Others might have taste for wealth but not for bequest (swti > 0, sbti = 0) (“wealth-lovers”),

while others might have no direct taste for wealth but taste for bequest (swti = 0, sbti > 0)

(“bequest-lovers”). The taste for wealth could reflect direct utility for the prestige or social

status conferred by wealth. In presence of uninsurable productivity shocks, it could also measure

the security brought by wealth, i.e. its insurance value (so this modeling can be viewed as a

reduced form for precautionary saving). The only difference between wealth- and bequest-lovers

is that the former do not care about bequest taxes while the latter do.

In the real world, most individuals are at the same time life-cycle savers, wealth-lovers

and bequest-lovers. But the exact magnitude of these various saving motives does vary a lot

across individuals and over generations, just like other tastes.21 We allow for any exogenous

distribution for taste parameters g(swi, sbi). For notational simplicity, we assume that tastes are

drawn i.i.d. at each generation from the distribution g(swi, sbi). Hence they are independent

across individuals within a generation and independent across generations within a dynasty. In

the Cobb-Douglas case, the parameters swi, sbi are fixed independently of τB. In the general

homogeneous of degree one case, the parameters swi, sbi depend upon (1− τB)erH and hence are

not strictly parameters. We adopt this slight abuse of notation for presentational simplicity.22

Assumption 1 Taste parameters (swi, sbi) are drawn i.i.d. at each generation from an exoge-

nous distribution g(swi, sbi) defined over a set of possible tastes S ⊂ S (where S is the set of all

possible tastes: S = {(swi, sbi) s.t. swi, sbi ≥ 0 and si = swi + sbi ≤ 1}).

S and g(·) can be discrete or continuous. We denote by s0 = min {si = swi + sbi ∈ S}, s1

= max {si = swi + sbi ∈ S}, with 0 ≤ s0 ≤ s1 ≤ 1, and s = E(si) the average taste.

We assume that S includes zero saving tastes and at least one other taste: s0 = 0, s1 > 0.

Assumption 1 implies that in each generation there are “zero bequest receivers” (i.e. individ-

uals who receive zero bequest, because their parents had zero taste for wealth and bequest).23

Productivity Shocks. Labor productivity shocks are specified as follows. Individual i in

generation t has a within-cohort normalized productivity parameter θti = hti/ht. By definition,

21Kopczuk and Lupton (2007) and Kopczuk (2009, 2012) present evidence on heterogeneity in bequest motives.
22Rigorously, we would need to parametrize utility functions so that sbi = sb(σbi, (1 − τB)erH), swi =

sw(σwi, (1− τB)erH) with (σbi, σwi) i.i.d parameters and sb(.) and sw(.) fixed functions.
23This could result from other types of shocks (see example below).
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we have: yLti = θtiyLt (with E(θti) = 1). Productivity differentials θti could come from innate

abilities, acquired skills, individual occupational choices, or sheer luck–and most likely from a

complex combination between the four. We assume that productivity shocks are drawn i.i.d.

from the same distribution h(θi) at each generation and independently of savings tastes.

Assumption 2 Productivity parameters θi are drawn i.i.d. at each generation from an exoge-

nous distribution h(θi) over some productivity set Θ ⊂ [0,+∞[ independently of savings tastes.

The set Θ and the distribution h(·) can be discrete or continuous. We note: θ0 = min {θi ∈ Θ}

and θ1 = max {θi ∈ Θ}, with 0 ≤ θ0 ≤ 1 ≤ θ1 ≤ +∞. By construction: E(θi) = 1.

All our results can readily be extended to a setting with some intergenerational persistence

of savings tastes and productivities. In that case, to ensure the existence of a unique ergodic

steady-state joint distribution of inherited wealth and productivities, one would simply need to

assume that the random process for tastes satisfies a simple ergodicity property. Any individual

has a positive probability of having any savings taste×productivity no matter what his or her

parental savings taste×productivity were (see appendix A1).

Steady State Distributions. Under assumptions 1-2, the individual transition equation (1)

can be aggregated into:

bt+1 = s · [(1− τL)yLt + (1− τB)bte
rH ] (2)

Let us denote the aggregate capitalized bequest flow-domestic output ratio by byt =
erHbt
yt

.

Dividing both sides of equation (2) by per capita domestic output yt and noting that bt+1/yt =

byt+1e
−(r−g)H , we obtain the following transition equation for byt:

byt+1 = s(1− τL)(1− α)e(r−g)H + s(1− τB)e(r−g)Hbyt (3)

To ensure convergence towards a non-explosive steady-state, we must assume that the average

taste for wealth and bequest is not too strong:

Assumption 3 s · e(r−g)H < 1

If assumption 3 is violated, the economy can accumulate infinite wealth relative to domestic

output, and will cease to be a small open economy at some point so that the world rate of

return will have to fall to restore assumption 3. If assumption 3 is satisfied, then, as τB ≥ 0,

byt → by =
s(1− τL)(1− α)e(r−g)H

1− s(1− τB)e(r−g)H as t → +∞. I.e. the aggregate inheritance-output ratio

converges towards a finite value, and in steady-state, bequests grow at the same rate as output.

12



Finally, we denote by zti = bti/bt the within-cohort normalized bequest, and φt(z) the

distribution of normalized bequest within cohort t. Given some initial distribution φ0(z), the

random processes for tastes and productivity g(·) and h(·) and the individual transition equation

(1) entirely determine the low of motion for the distribution of inheritance φt(z) and the joint

distribution of inheritance and labor productivity, which we denote by ψt(z, θ) = φt(z) · h(θ).

Proposition 1 (a) Under assumptions 1-3, there is a unique steady-state for the aggregate in-

heritance flow-output ratio by, the inheritance distribution φ(z), the joint inheritance-productivity

distribution ψ(z, θ). For any initial conditions, as t→∞, byt → by, φt(·)→ φ and ψt → ψ.

(b) We have: by =
s(1− τL)(1− α)e(r−g)H

1− s(1− τB)e(r−g)H .

(c) The joint inheritance-productivity distribution ψ(z, θ) = φ(z) · h(θ) is two-dimensional.

At any productivity level, the distribution involves zero-bequest receivers and is non-degenerate.

I.e. z0 = min {z s.t. φ(z) > 0} = 0 < z1 = max {z s.t. φ(z) > 0} ≤ ∞

Proof. The result follows from standard ergodic convergence theorems (Appendix A1). QED

Two points are worth noting. First, the aggregate magnitude of inheritance flows relative

to output by grows with r − g. With high returns and low growth, wealth coming from the

past is being capitalized at a faster rate than national income. Successors simply need to save

a small fraction of their asset returns to ensure that their inherited wealth grows at least as

fast as output. The multiplicative factor associated to intergenerational wealth transmission

is large and leads to high inheritance flows. Conversely, with low returns and high growth,

inheritance is dominated by new wealth, and the steady-state aggregate inheritance flow is

a small fraction of output. As shown in Piketty (2011), this simple r-vs-g model is able to

reproduce remarkably well the observed evolution of aggregate inheritance flows over the past

two centuries. In particular, it can explain why inheritance flows were so large in the 19th and

early 20th centuries (20%-25% of national income in 1820-1910), so low in the mid-20th century

(less than 5% around 1950-1960), and why they are becoming large again in the late 20th and

early 21st centuries (about 15% in 2010 in France) (see Figures 4-5). With r = 4% − 5% and

g = 1%− 2%, simple calibrations of the above formula show that the annual inheritance flow by

can indeed be as large as 20%− 25% of national income.24 Available evidence suggests that the

24E.g. with r − g = 3%, H = 30, α = 30%, s = 10%, τB = τL = 0%, then by = 23%. With r − g = 2%,
then by = 16%. With r − g = 3% and τ = 30%, then by = 13%, but by/(1 − τ) = 19%. The by formula given
above relates to the generational, (capitalized bequest)/output ratio, while the empirical estimates depicted
on Figures 4-5 refer to the cross-sectional, non-capitalized ratio. But one can show that both ratios are very
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French pattern also applies to Continental European countries that were hit by similar growth

and capital shocks. The long-run U-shaped pattern of aggregate inheritance flows was possibly

somewhat less pronounced in the United States or United Kingdom (Piketty, 2010, 2011).

Second, one important feature of our model–and of the real world–is that inequality is two-

dimensional. In steady-state, the relative positions in the distributions of inheritance and labor

productivity are never perfectly correlated. This is the key property that we need for our

optimal tax problem to make sense and for our results to hold: Labor income is not a perfect

predictor for inheritance. With i.i.d. taste and productivity shocks, we even get that the two

distributions are independent (ψ(z, θ) = φ(z) · h(θ)). All our results would still hold if we

introduce some intergenerational persistence of tastes and productivities, as long as persistence

is not complete and the two dimensions of shocks are not perfectly correlated. As we shall see

below, this two-dimensionality property is the key feature explaining why the Atkinson-Stiglitz

result does not hold in our model, and why we need a two-dimensional tax policy tool (τB, τL).

3.3 An Example with Binomial Random Tastes

A simple example might be useful in order to better understand the logic of two-dimensional

inequality and the role played by random tastes in our model. Assume that taste shocks take only

two values: si = s0 = 0 with probability 1−p, and si = s1 > 0 with probability p. The aggregate

saving rate is equal to s = E(si) = ps1. Let µ = s(1− τB)e(r−g)H , µ1 = s1(1− τB)e(r−g)H = µ/p.

Assume µ < 1 < µ/p, and no productivity heterogeneity: Θ = {1}. One can easily show that

the steady-state inheritance distribution φ(z) is discrete and looks as follows:

z = z0 = 0 with probability 1− p (children with zero-wealth-taste parents).

z = z1 =
1− µ
p

> 0 with probability (1 − p) · p (children with wealth-loving parents but

zero-wealth-taste grand-parents).

...

z = zk =
1− µ
p

+
µ

p
· zk−1 =

1− µ
µ− p

·

[(
µ

p

)k
− 1

]
with probability (1− p) · pk+1 (children with

wealth-loving ancestors during the past k+1 generations, but zero-wealth-taste k+2-ancestors).

That is, the steady-state distribution φ(z) is unbounded above and has the standard Pareto

asymptotic upper tail found in empirical data and in wealth accumulation models with random

multiplicative shocks (see Appendix A1 and Atkinson, Piketty and Saez (2011)). Inheritances

close when inheritance tends to happen around mid-life (see section 6 below). Piketty (2010, 2011) presents
detailed simulations using a full-fledged, out-of-steady-state version of this model, with life-cycle savings and full
demographic and macroeconomic shocks.
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are obviously uncorrelated with labor income (since there is no inequality of labor income).

Taste shocks could also be interpreted as shocks to rates of return (e.g., p is the probability

that one gets a high return, and 1−p is the probability that one goes bankrupt, thereby leaving

zero estate) or as a demographic shocks (e.g., p is the probability that one dies at a “normal

age” and with “normal” health costs, and 1 − p is the probability that one dies very old or

after large health costs, thereby leaving zero estate; shocks on number of children or rank of

birth could also do). As long as the shocks have a multiplicative structure, the steady-state

distribution of inheritance will have a Pareto upper tail, with a Pareto coefficient reflecting

the relative importance of the various effects (see Appendix A1). In practice all these types

of shocks clearly exist and matter a lot. The key point is that there are many factors - other

than productivity shocks - explaining the large inequality of inherited wealth that we observe

in the real world. The main limitation of models of wealth accumulation based solely upon

productivity shocks is that they massively under-predict wealth concentration.25

If we introduce productivity shocks (say θti = θ0 ≥ 0 with probability 1 − q and θti =

θ1 > 1 > θ0 with probability q), the steady-state joint distribution ψ(z, θ) is simply the product

of the two distributions, i.e. ψ(z, θ) = φ(z) · h(θ). So the joint distribution again involves

zero correlation between the two dimensions. If we further introduce some intergenerational

persistence in the productivity process (say, θt+1i = θ1 with probability q0 if θti = θ0, and

with probability q1 ≥ q0 if θti = θ1), then the steady-state distribution ψ(z, θ) will involve

some positive correlation between the two dimensions. But the correlation will always be less

than one: the entire history of ancestors’ tastes sti, st−1i, etc. and productivity shocks θti, θt−1i,

etc. matters for the determination of the current inheritance position zt+1i, while only parental

productivity θti matters for the current productivity position θt+1i.
26

3.4 The Optimal Tax Problem

We now formally define our optimal tax problem. We assume that the government faces an

exogenous revenue requirement: per capita public good spending must satisfy gt = τyt where

τ ≥ 0 is taken as given and yt is exogenous per capita domestic output. We first assume

that the government has only two tax instruments: a proportional tax on labor income at rate

τL ≥ 0, and a proportional tax on capitalized inheritance at rate τB ≥ 0. We impose a period-

25See discussion on homogeneous tastes in Section 6 below and references given in Piketty (2011, section II.C).
26Our results can also be extended to a model without random tastes, as long as productivity shocks include

a zero lower bound (see Section 6).
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by-period (i.e. generation-by-generation) budget constraint: the government must raise from

labor income yLt and capitalized inheritance bte
rH received by generation t an amount sufficient

to cover government spending τyt for generation t.27 We again assume that everything takes

place at the end of period: output is realized, taxes are paid, government spending and private

consumption occur. Hence, the period t government budget constraint looks as follows:

τLyLt + τBbte
rH = τyt i.e. τL(1− α) + τBby = τ (4)

We assume that τ < 1−α, i.e. the public good spending requirement is not too large and could

be covered by a labor tax alone (in case the government so wishes).

Assumption 4 τ < 1− α

It is worth stressing that all taxes are paid at the end of the period, and that the tax τB

is a tax on capitalized bequest bte
rH = bt(1 + R), not a tax on raw bequest bt. One natural

interpretation of this tax on capitalized bequest is that at the end of the period the government

taxes both raw bequests bt and capital income (returns to bequest) Rbt at the same rate τB. So

the tax τB should really be viewed as a broad based “capital tax” (falling on wealth transmission

as well as as on the returns to wealth) rather than a narrow based bequest tax. Note that as

long as capital markets are perfect and everybody gets the same rate of return (we relax this

assumption in section 5 below), it really does not matter how the government chooses to split

the capital tax burden between one-off inheritance taxation and lifetime capital taxation on the

flow return. In particular, rather than taxing bequests bt and the returns to bequest Rbt at the

same rate τB, it would also be equivalent not to tax bequest bt and instead to have a larger,

single tax on the returns to capital Rbt at rate τK such that:28

(1− τB)(1 +R) = 1 + (1− τK)R i.e. τK =
τB(1 +R)

R
=

τBe
rH

erH − 1

Example. Assume r = 4%, H = 30, so that erH = 1 +R = 3.32, i.e. R = 2.32.

If τB = 20% then τK = 29%. If τB = 40% then τK = 57%. If τB = 60% then τK = 86%.

27We introduce intergenerational redistribution in Section 6 (appendix C provides complete details).
28Here it is critical to assume that the utility function Vti = V (cti, wti, b̄t+1i) is defined over after-tax capitalized

bequest b̄t+1i = [1 − τ̃B + (1 − τK)R]bt+1i. If Vti were defined over after-tax non-capitalized bequest b̄t+1i =
(1− τ̃B)bt+1i, then zero-receivers would strictly prefer capital income taxes over bequest taxes (in effect τK > 0
would allow them to tax positive receivers without reducing their utility from giving a bequest to their own
children). However this would amount to tax illusion, so we rule this out.
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Hence, it is equivalent to tax capitalized bequests at τB = 40% or to tax capital income

flows at τK = 57% (or τK = 43% if the we take the equivalent instantaneous tax rate).29 More

generally, any intermediate combination will do. I.e. for any tax mix (τ̃B, τK), τ̃B is a tax on raw

bequest and τK is an extra tax on the return to bequest, one can define τB = τ̃B + τK
R

1 +R
.30

Intuitively, τB is the adjusted total tax rate on capitalized bequest. For now, we focus on the

broad capital tax interpretation (τB = τ̃B, i.e. no extra tax on return: τK = 0). In section 5 we

introduce capital market imperfections to analyze the optimal tax mix between τ̃B and τK .

The question that we now ask is the following: what is the tax policy (τL, τB) maximizing

long-run, steady-state social welfare? That is, we assume that the government can commit

for ever to a tax policy (τLt = τL, τBt = τB)t≥0 and cares only about the long-run steady-

state distribution of welfare Vti. Under assumptions 1-4, for any tax policy there exists a unique

steady-state ratio by and distribution ψ(z, θ). The government chooses (τL, τB) so as to maximize

the following, steady-state social welfare function:31

SWF =

∫∫
z≥0,θ≥0

ωpzpθ
V 1−Γ
zθ

1− Γ
dzdθ (5)

With: Vzθ = E(Vi | zi = z, θi = θ) = average steady-state utility level Vi attained by individuals

i with normalized inheritance zi = z and productivity θi = θ.

ωpzpθ = social welfare weights as a function of the percentile ranks pz, pθ in the steady-state

distribution of normalized inheritance z and productivity θ.32

Γ = concavity of the social welfare function (Γ ≥ 0).33

A key parameter to answer this question is the long-run elasticity eB of aggregate inheritance

ratio by with respect to the net-of-bequest-tax rate 1 − τB (letting τL adjust to keep budget

29In the above equation we model the capital income tax τK as taxing the full generational returnRbt all at once
at the end of the period. Alternatively one could define τK as the equivalent annual capital income tax rate during

the H-year period, in which case the equivalence equation would be: 1 − τB = e−τKrH , i.e. τK = − log(1−τB)
rH .

Both formulas perfectly coincide for small tax rates and small returns, but differ otherwise. E.g. in the above
example, we would have annual τK = 19%, 43%, 76% (instead of generational τK = 29%, 57%, 86%). Note that it
would also be equivalent to have an annual wealth tax or property tax at rate τW = rτK (with a fixed, exogenous
rate of return, annual taxes on capital income flows and capital stocks are equivalent).

30The tax on raw bequest τ̃Bbt is paid at the end of the period, and the tax payment is assumed to be
τ̃Bbt(1 +R), so in effect τK can be interpreted as an extra tax on the return to bequest.

31This steady-state maximization problem can also be formulated as the asymptotic solution of an inter-
temporal social welfare maximization problem. See Appendix C, Proposition C1.

32Here we implicitly assume that the welfare weights ωi are the same for all individuals i with the same ranks
pz, pθ in the distribution of normalized inheritance and productivity. Our optimal tax formulas can easily be
extended to the general case where social welfare weights ωi also depend upon taste parameters swi and sbi -
which can be justified for utility normalization purposes. See the discussion in Appendix A2.

33If Γ = 1, then SWF =
∫∫
z≥0,θ≥0

ωpzpθ log(Vzθ)dΨ(z, θ).
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balance, see equation (4)):

eB =
1− τB
by

dby
d(1− τB)

(6)

In general, one might expect eB > 0: with a higher net-of-tax rate 1− τB, agents may choose to

devote a larger fraction of their resources to inheritance, in which case the aggregate, steady-

state inheritance ratio will be bigger. But this could also go the other way, because eB is defined

along a budget balanced steady-state frontier: lower bequest taxes imply higher labor taxes,

which in turn make it more difficult for high labor earners to accumulate large bequests.

Substituting τL(1− α) = τ − τBby into the steady-state formula for by, we obtain:

by =
s(1− α− τ)e(r−g)H

1− se(r−g)H (7)

Recall that s does not depend on τB in the Cobb-Douglas case with i.i.d shocks. Therefore,

by depends on τ but not on the tax mix τL, τB and eB = 0 in that case. For general utility

functions and/or random processes, s depends on τB and eB could really take any value (> 0 or

< 0). We view eB as a free parameter to be estimated empirically. There is no reason to expect

eB to be infinitely large, unlike in the infinite-horizon dynastic model of Chamley-Judd.

4 Basic Optimal Capital Tax Formula

4.1 The Zero-Bequest-Receiver Social Optimum

Throughout this paper we are particularly interested in the zero-bequest-receiver social opti-

mum, i.e. the optimal tax policy from the viewpoint of those who receive zero bequest, and

who must rely entirely on their labor income. This corresponds to the case with a linear social

welfare function (Γ = 0) and the following welfare weights: ωpzpθ = 1 if pz = 0 (i.e. z = 0)

and ωpzpθ = 0 if pz > 0. Since the Vi() are homogenous of degree one, Γ = 0 implies that the

government does not want to redistribute income from high productivity to low productivity

individuals–perhaps because individuals are viewed as (partly) responsible for their productiv-

ity parameter θ. In contrast, individuals cannot be responsible for their bequest parameter z.

Therefore trying to reduce as much as possible the inequality of lifetime welfare opportunities

along the inheritance dimension seems normatively appealing.34 So we start by characterizing

this zero-bequest-receiver optimum, which we call the “meritocratic Rawlsian optimum”:

34Perhaps surprisingly, the normative literature on equal opportunity and responsibility has devoted little
attention to the issue of inheritance taxation. E.g. Roemer et al. (2003) and Fleurbaey and Maniquet (2006)
focus on labor income taxation. See however the interesting discussion in Fleurbaey (2008, pp.146-148).
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Proposition 2 (zero-bequest-receiver optimum). Under assumptions 1-4, linear social

welfare (Γ = 0), and the welfare weights: ωpzpθ = 1 if pz = 0, and ωpzpθ = 0 if pz > 0, then:

τB =
1− (1− α− τ)sb0/by

1 + eB + sb0
and τL =

τ − τBby
1− α

with sb0 = E(sbi | zi = 0) = average bequest taste of zero bequest receivers (weighted by marginal

utility×labor income).

Proof. Take a given tax policy (τL, τB). Consider a small increase in the bequest tax rate

dτB > 0. Differentiating the government budget constraint, τL(1−α)+τBby = τ , in steady-state

dτB > 0 allows the government to cut the labor tax rate by:

dτL = −bydτB
1− α

(
1− eBτB

1− τB

)
(< 0 as long as τB <

1

1 + eB
)

Note that dτL is proportional to the aggregate inheritance-output ratio by. With a larger

inheritance flow, a given increase in the bequest tax rate can finance a larger labor tax cut.

An individual i who receives no inheritance (bti = 0) chooses bt+1i to maximize

Vi(cti, wti, bt+1i) = Vi((1− τL)yLti − bt+1i, bt+1i, (1− τB)(1 +R)bt+1i).

The first order condition in bt+1i is Vci = Vwi + (1 − τB)(1 + R)Vbi This leads to bt+1i =

si(1− τL)yLti (with 0 ≤ si ≤ 1). Recall that sbi = si · (1− τB)(1 +R)Vbi/Vci.
35

Using the envelope theorem as bt+1i maximizes utility, the utility change dVi created by a

budget balance tax reform dτB, dτL can be written as follows:

dVi = −VciyLtidτL − Vbi(1 +R)bt+1idτB

I.e.: dVi = VciθiyLtdτB

[(
1− eBτB

1− τB

)
by

1− α
− 1− τL

1− τB
sbi

]
The first term in the square brackets is the utility gain due to the reduction in the labor

income tax (proportional to by as noted above), while the second term is the utility loss due to

reduced net-of-tax bequest left (naturally proportional to the bequest taste sbi).

By using the fact that 1 − τL = (1 − α − τ + τBby)/(1 − α) (from the government budget

constraint), this can be re-arranged into:

dVi = VciθiyLtdτB
1− τL
1− τB

[
1− (1 + eB)τB

1− α− τ + τBby
by − sbi

]
.

35In the Cobb-Douglas utility case, sbi is simply the fixed exponent in the utility function. In the general
homogeneous utility case, sbi may depend on τB and 1 +R.
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Summing up over all zero-bequest-receivers, we get:

dSWF ∼ dτB

[
1− (1 + eB)τB

1− α− τ + τBby
by − sb0

]
with sb0 =

E(Vciθisbi | zi = 0)

E(Vciθi | zi = 0)
.

Setting dSWF = 0, we get the formula: τB =
1− (1− α− τ)sb0/by

1 + eB + sb0
. QED.

Note 1. This proof works with any utility function that is homogenous of degree one (and not

only in the Cobb-Douglas case) and with any ergodic random process for taste and productivity

shocks (and not only with i.i.d. shocks). In the case with Cobb-Douglas utility functions, the

proof can be further simplified. See Appendix A2.

Note 2. In the general case, sb0 is the average of bequest tastes sbi over all zero-bequest-

receivers, weighted by the product of their marginal utility Vci and of their productivity θi. In

case sbi⊥Vciθi, then sb0 is the simple average of sbi over all zero-bequest-receivers: sb0 = E(sbi |

zi = 0). In the case with i.i.d. shocks and adequate utility normalization, then sb0 is the same

as the average bequest taste for the entire population: sb0 = sb = E(sbi). See Appendix A2.

Note 3. We also show in the appendix how to extend the optimal tax formula to the case

Γ > 0. One simply needs to replace sb0 by: sb0 =
E(VciθiV

−Γ
i sbi | zi = 0)

E(VciθiV
−Γ
i | zi = 0)

. I.e. the formula for

sb0 needs to be reweighted in order to take into account the lower marginal social utility V −Γ
i

of zero-receivers with high utility Vi (i.e. zero-receivers with high productivity θi).

When the social welfare function is infinitely concave (Γ→ +∞), in effect the planner puts

infinite weight on the least productive, zero-bequest receivers. This is equivalent to assuming

welfare weights ωpzpθ = 1 iff pz = 0 and pθ = 0. Therefore sb0 is simply the average bequest taste

within this group: sb0 = E(sbi | zi = 0, θi = θ0). This could be called the “radical Rawlsian

optimum”. This might be too radical, however, because individuals are - partly - responsible

for their productivity, e.g. through their choice of occupation. From an ethical perspective,

the most appealing social welfare optimum probably lies in between the meritocratic and the

radical Rawlsian optima, depending on how much one considers individuals are responsible for

their productivity (i.e. how much productivity parameters reflect individual choices rather than

innate abilities or sheer luck) - an issue which we do not model explicitly in the present paper.36

Note 4. Using formula (7) for by, we also have τB =
1 + sb0 − (sb0/s)e

−(r−g)H

1 + sb0 + eB
. This alternative

formula shows more directly how the optimal rate varies with primitives s, sb0, r− g but is more

difficult to calibrate than our formula in Proposition 2 (since we typically have data on by).

36See Piketty and Saez (2012) for a more elaborate normative discussion.
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4.2 Numerical calibrations

The optimal tax formula τB =
1− (1− α− τ)sb0/by

1 + eB + sb0
is simple, intuitive, and can easily be

calibrated using empirical estimates.

The optimal tax rate τB decreases with the elasticity of bequests to the net-of-tax rate eB,

increases with the aggregate steady-state flow of inheritances to output by, and decreases with

the strength of preferences for leaving bequests sb0. A higher bequest elasticity eB unsurprisingly

implies a lower τB. As eB → +∞, τB → 0%. I.e. one would never tax an infinitely elastic tax

base as in the dynastic model of Chamley-Judd.

More interestingly, a higher bequest flow ratio by implies a higher τB. This is a very large

effect, as the example below illustrates.

Example 1. Assume τ = 30%, α = 30%, sb0 = 10%, eB = 0.

If by = 20%, then τB = 73% and τL = 22%.

If by = 15%, then τB = 67% and τL = 29%.

If by = 10%, then τB = 55% and τL = 35%.

If by = 5%, then τB = 18% and τL = 42%.

That is, with high bequest flow by = 20%, zero receivers want to tax inherited wealth

at a higher rate than labor income (73% vs. 22%); with low bequest flow by = 5%, they

want the opposite (18% vs. 42%). The intuition is the following. In societies with low by

(typically because of high g), there is not much tax revenue to gain from taxing bequests. So

even zero-receivers do not like bequest taxes too much: it hurts their children without bringing

much benefit in exchange. High growth societies care about the future, not about the past.

Conversely, in societies with high by (typically because of low g), it is worth taxing bequests, so

as to reduce labor taxation and improve the welfare of those receiving no inheritance.

In our theory there is really no general reason why capitalized inheritance would be taxed

more or less than labor income. Any situation can be optimal, depending on parameters. With

the low by ratios observed in the 1950s-1960s, it is probably optimal to tax inheritance less than

labor. But with the high by ratios observed in the 1900s-1910s or the 2000s-2010s, it is probably

optimal to tax inheritance more than labor (see Figures 4-5).

It is worth noting that the impact of by is quantitatively more important than the impact of

eB. That is, behavioral responses matter but not hugely as long as the elasticity is reasonable.

Example 2.Assume τ = 30%, α = 30%, sb0 = 10%, by = 15%.
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If eB = 0, then τB = 67% and τL = 29%.

If eB = 0.2, then τB = 56% and τL = 31%.

If eB = 0.5, then τB = 46% and τL = 33%.

If eB = 1, then τB = 35% and τL = 35%.

This is probably the most important lesson of this paper: once one allows the elasticity of

capital supply to be a free parameter and to take moderate (non-infinite) values, then one can

naturally obtain fairly large levels for socially optimal capital tax rates. That is, if we take

by = 15% (current French level), then we find that as long as the elasticity eB is less than one

the optimal inheritance tax rate is higher than the optimal labor tax rate. With a realistic value

eB = 0.2, we find τB = 56% and τL = 31%.37 In practice, this bequest elasticity effect eB is

also mitigated by the existence of a positive labor supply elasticity effect eL , which makes low

labor taxation and therefore high bequest taxation even more valuable (see section 6).

Finally, a higher bequest taste sb0 implies a lower τB. The key trade-off captured by our

theory is that everybody is both a receiver and a giver of bequest (at least potentially). This

is why zero receivers generally do not want to tax bequests at 100%. Of course if sb0 = 0 (zero

receivers have no taste at all for leaving bequests), then we obtain τB = 1/(1 + eB) as a special

case: we are back to the classical revenue maximizing rule, and τB → 100% as eB → 0. But as

long as sb0 > 0, we have interior solutions for τB, even if eB = 0.

In fact, for very high values of sb0, and very low values of by, one can even get a negative τB,

i.e. a bequest subsidy. Intuitively, if by is sufficiently small (e.g. if g is sufficiently large), then

the benefits of taxing bequests - in terms of tax revenue - become smaller than the utility costs

(as measured by sb0), so that even those who receive no bequest do not want to tax bequests.

For plausible parameter values, however, the optimal bequest tax rate τB from the viewpoint of

zero receivers is positive (we discuss bequest subsidies in detail in Appendix A2).

4.3 Alternative Social Welfare Weights

The main limitation of Proposition 2 is that it puts all the weight on the individuals who receive

exactly zero bequest (possibly a very small group, depending upon the distributions of shocks).

However because real world inheritance is highly concentrated (half of the population receives

37We leave a proper estimation of eB to future research. Preliminary computations using time and cross
section variations in French inheritance tax rates (e.g. in the French system childless individuals pay a lot more
bequest taxes than individuals with children) suggest that eB is relatively small (at most eB = 0.1− 0.2). Using
U.S. time and cross-section variations, Kopczuk and Slemrod (2001) also find elasticities eB around 0.1− 0.2.
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negligible bequests), our optimal tax results are actually very robust to reasonable changes

in the social welfare objective. We show this in two steps. First, the above formula can be

extended to compute the optimal tax rate from the viewpoint of those individuals belonging to

the percentile pz of the distribution of inheritance:

Proposition 3 (pz-bequest-receiver optimum). Under assumptions 1-4 , linear social wel-

fare (Γ = 0), and the following welfare weights: ωpzpθ = 1 for a given pz ≥ 0, and ωp′zpθ = 0 if

p′z 6= pz (z = normalized inheritance of pz-receivers), then:

(a) τB =
1− (1− α− τ)sbz/by − (1 + eB + sbz)z/θz

(1 + eB + sbz)(1− z/θz)
and τL =

τ − τBby
1− α

,

with sbz = E(sbi | pzi = pz) = average bequest taste of pz-receivers, θz = E(θi | pzi = pz) = av-

erage productivity of pz-receivers (weighted by marginal utility×labor income), (with i.i.d shocks

θz = 1).

(b) There exists pz∗ ≥ 0 (i.e. z∗ > 0) such that τB > 0 iff pz < pz∗ (i.e. z < z∗).

The cut-off z∗ is below average inheritance: z∗ < 1. That is, average-bequest receivers prefer

bequest subsidies.

In case φ(z) is fully egalitarian, then pz∗ → 0: nobody wants bequest taxation.

In case φ(z) is infinitely concentrated, then pz∗ → 1: everybody wants bequest taxation.

Proof and notes. The proof is essentially the same as for Proposition 2 - and works again

with any utility function that is homogenous of degree one and any ergodic random process for

shocks. With i.i.d. productivity shocks, then θz = 1. The formula can again be extended to

the case Γ > 0, and to any combination of welfare weights (ωpzpθ): one simply needs to replace

sbz, z and θz by the properly weighted averages sb, z, and θ. In case Γ → +∞, then for any

combination of positive welfare weights (ωpzpθ) (in particular for uniform utilitarian weights:

ωpzpθ = 1 for all pz, pθ), we have: sb → sb0 = E(sbi|zi = 0, θi = θ0) and z/θ → 0, i.e. we are

back to the radical Rawlsian optimum. See Appendix A3. QED.

Unsurprisingly, the optimal tax rate τB is a decreasing function of z. I.e. individuals who

receive higher inheritance prefer lower bequest taxes. People above percentile pz∗ (i.e. above

normalized inheritance z∗) do not want any bequest tax at all. If one cares mostly about

the welfare of high receivers, then obviously one would not tax inheritance. Conversely, for

individuals with very low z, the formula delivers optimal tax rates that are very close to the

meritocratic Rawlsian optimum. Interestingly, z∗ < 1, i.e. agents with average bequest prefer
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bequest subsidies (if z = 1, then τB < 0).38 The intuition is the following. In terms of after-

tax total resources, agents receiving average bequest have nothing to gain by (linearly) taxing

successors from their own cohort. So since taxing bequests reduces the utility from leaving

wealth to the next generation, there is really no point having a positive τB.

This also implies that there is no room for bequest taxation in the representative-agent ver-

sion of this model. I.e. with uniform tastes and productivities and a fully egalitarian inheritance

distribution φ(z), the tax optimum always involves a bequest subsidy τB < 0 (financed by a

labor tax τL > 0 ), so as to induce agents to internalize the joy-of-giving externality (as in

Kaplow, 2001). With full wealth equality, there is no point in taxing bequests in our model.

Conversely, with infinite wealth inequality (almost everybody has zero wealth, and a vanish-

ingly small fraction has all of it), then pz∗ → 1: almost everybody wants the same bequest tax

rate as zero receivers. More generally, for a given social welfare objective, the more unequal

the distribution of inherited wealth, the higher the optimal tax rate. E.g. if one cares only

about the welfare of the median successor (pz = 0.5), then the optimal tax rate is higher if the

median-to-average inheritance ratio z is lower.

The exact cut-off values z∗ and pz∗ depend not only on the inequality of the inheritance

distribution φ(z), but also on the aggregate level of inheritance by (for a given degree of inequal-

ity, a higher by implies a higher τB, in the same way as for zero receivers), as well as on the

correlation between z and θz. That is, if the ranks z and θz in the inheritance and productivity

distributions are almost perfectly correlated, then there little point taxing bequests: this brings

limited additional redistributive power than labor taxes, and extra disutility costs. The point,

however, is that real-world inherited wealth is a lot more concentrated than labor income.

One simple–yet plausible–way to calibrate the formula is the following. Assume that we are

trying to maximize the average welfare of bottom 50% bequest receivers (pz ≤ 0.5). In every

country for which we have data, the bottom 50% share in aggregate inherited wealth is typically

about 5% or less (see Piketty, 2011, p.1076), which means that their average z is about 10%.

The average labor productivity θz within this group is below 100% (bottom 50% inheritors also

earn less than average), but generally not that much below, say at least 50% (which would imply

that they are all fairly close to the minimum wage, i.e. that they almost perfectly coincide with

the bottom 50% labor earners) and more realistically around 70%. As one can see, given that

38Strictly speaking, if z ≥ θz (e.g. if z = 1 and θz = 1), then τB is no longer well defined (the government
would want an infinite subsidy to bequest to generate more “free utility”, see discussion below), unless one
constraints τL to be less than one.
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z/θz is very small anyway, this θz effect has a limited impact on optimal tax rates. I.e. in the

benchmark case with by = 15%, eB = 0.2, z = 10%, the optimal bequest tax rate is equal to

τB = 49% with θz = 70%, vs. τB = 46% with θz = 50%, (vs. τB = 56% if z = 0%). That

is, inheritance is so concentrated that bottom 50% bequest receivers and zero bequest receivers

have welfare maximizing bequest tax rates which are in any case relatively close.

Example 3.Assume τ = 30%, α = 30%, by = 15%, eB = 0.2, sbz = 10%.

If z = 0%, then τB = 56% and τL = 31%.

If z = 10% and θz = 70%, then τB = 49% and τL = 32%.

If z = 10% and θz = 50%, then τB = 46% and τL = 33%.

Our optimal tax formulas show the importance of distributional parameters for the analysis of

socially efficient capital taxation. They also illuminate the potentially crucial role of perceptions

about distributions. If individuals have wrong perceptions about their position in the various

distributions, this can have large impacts on their most preferred tax rate. E.g. with full

information all individuals with inheritance percentile below pz∗ would prefer a positive bequest

tax. In actual fact, the distribution is so skewed that less than 20% of the population has

inherited wealth above average (i.e. the true pz∗ is typically above 0.8).39 But to the extent

that many more people believe to be above average, either in terms of received or left bequest,

this might explain why (proportional) bequest taxes can have majorities against them.

In order to further illustrate the role played by distributional parameters, one can also rewrite

the optimal tax formula entirely in terms of relative distributive positions:

Corollary 1 (pz-bequest-receiver optimum). Under assumptions 1-4, linear social welfare

(Γ = 0), and the following welfare weights: ωpzpθ = 1 for a given pz ≥ 0, and ωp′zpθ = 0 if

p′z 6= pz, then:

(a) τB =
1− e−(r−g)Hνzxz/θz − (1 + eB)z/θz

(1 + eB)(1− z/θz)
and τL =

τ − τBby
1− α

,

with xz = E(zt+1i|zti = z) = average normalized bequest left by pz-receivers

νz = sbz/sz = share of pz-receivers wealth accumulation due to bequest motive

z = normalized inheritance of pz-receivers.

(b) If xz → 0 as z → 0, then τB → 1/(1 + eB) as z → 0 (revenue maximizing tax rate)

39We leave to future research a detailed calibration using cross-country data. Here we refer to rough estimates
using the French data sources on inheritance presented in Piketty (2010, 2011).

25



Proof. One simply needs to substitute (1−α− τ)sbz/by by e−(r−g)Hνzxz/θz − sbz[τB + (1−

τB)z/θz] in the original formula. See Appendix A3. QED.

By construction, both formulas are equivalent. Whether one should use one or the other

depends on which empirical parameters are available. The original formula uses the aggregate

inheritance flow by (a parameter that is relatively easy to estimate, since it relies mostly on

aggregate data) and the bequest taste sbz (a preference parameter that is relatively difficult to

estimate).40 The alternative formula is based almost entirely on distributional parameters which

in principle can be estimated empirically - but require comprehensive microeconomic data (such

as wealth data spanning over two generations).41 Its main advantage is that it illuminates the

key role played by distribution for optimal capital taxation.

In particular, one can see that the optimal tax rate τB depends both on z (i.e. the distribution

of bequests received) and on xz (i.e. the distribution of bequests left). In case both distributions

are infinitely concentrated, e.g. in case the share of bottom 50% successors in received and given

bequests is vanishingly small, then the tax rate maximizing the welfare of this group converges

towards the revenue maximizing tax rate τB = 1/(1 + eB). This is an obvious but important

point: if capital is infinitely concentrated, then from the viewpoint of those who own nothing

at all, the only limit to capital taxation is the elasticity effect. If the elasticity eB is close to 0,

then it is in the interest of the poor to tax the rich at a rate τB that is close to 100%.

We leave a proper empirical calibration of our optimal tax formula to future research. Here

we simply illustrate the crucial role played by the distribution of xz. If xz = 10%, i.e. if the

children of bottom 50% successors receive as little as what their parents received (relative to

the average), then the optimal bequest tax rate is τB = 77% for an elasticity eB = 0.2 (it would

be 95% with a zero elasticity). But if xz = 100%, i.e. if on average they receive as much as

other children, then the optimal bequest tax rate is only τB = 45%. Presumably the real world

is in between, say around xz = 50%, in which case τB = 61%.

40Due to the relatively low quality of available fiscal inheritance data in most countries, it is actually not that
simple to properly estimate by. The best way to proceed is to use national wealth estimates, mortality tables,
age-wealth profiles and aggregate data on gifts. This is demanding, but this does not require micro data on
wealth distributions. See Piketty (2011).

41High quality micro data on wealth spanning two generations is rarely available–and when it is available it
usually does not include high quality data on labor income (see e.g. the micro data collected in Paris inheritance
archives by Piketty et al. (2006, 2011), which can be used to compute xz, but not θz). One can however
obtain approximate estimates of the distributions xz and θz using available wealth survey data. Note that the
alternative formula also uses the preference parameter νz, which to some extent can be evaluated in surveys
asking explicit questions about saving motives (and/or by comparing saving behavior of individuals with and
without children). One can also set νz equal to one in order to get lower bounds for the optimal tax rate.
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Example 4. Assume τ = 30%, α = 30%, by = 15%, eB = 0.2, z = 10%, θz = 70%, νz =

50%, r = 4%, g = 2%, H = 30, so that e(r−g)H = 1.82

If xz = 10%, then τB = 77% and τL = 26%.

If xz = 50%, then τB = 61% and τL = 30%.

If xz = 100%, then τB = 42% and τL = 34%.

Note that our framework implicitly double counts welfare arising from bequest planning as

bequests enter the utility of donors and enter the budget constraint of donees. As discussed in

the literature (e.g., Cremer and Pestieau, 2004, Diamond, 2006 and Kaplow, 2001 and 2008),

double counting raises issues as it can generate “free utility” devices by subsidizing giving and

taxing back proceeds. This issue arises in our setting when social welfare weights are heavily

tilted toward high z% receivers. Indeed, if z ≥ θz, then τB is no longer well defined as the

government would want an infinite subsidy to bequest: it is always desirable for very high

bequest receivers to decrease τB and increase τL.

In our view, double counting does shape the debate on the proper level of estate taxation:

bequest taxes are opposed by both those receiving bequests and those planning to leave bequests,

and the views of those voters will in part shape the social welfare objective of the government.

In principle, for reasonable welfare criteria that do not put too much weight on high receivers,

this issue should not arise. But there is so much uncertainty about the true parameters (not

to mention the existence of self-serving beliefs) that it would be naive to expect a consensus

to emerge about the proper level of inheritance taxation. Our formulas can help focusing the

public debate and future empirical research upon the most important parameters.

Lumpsum Demogrants. Our basic model has ruled out the use of demogrants. If we assume

that the inheritance taxe funds a demogrant (and that τL is fixed), we obtain exactly the same

formulas as in Propositions 2-3 and Corollary 1 with the only difference that θz has to be

replaced by one (because the increase dτB funds an equal additional demogrant to all instead

of a labor tax cut proportional to θi).

4.4 Nonlinear Bequest Taxes

Our basic optimal tax formula can also be extended to deal with non-linear bequest taxes. We

now assume that the tax rate τB applies only above an exemption b∗t > 0. Most estate or

inheritance tax systems adopt such exemptions. The exemption is sometimes very high relative

to average in countries such as the United States where less than 1% of estates are taxable,
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or lower as in France where a significant fraction of estates are taxable (typically 10%-20%).42

Naturally b∗t = b∗egHt grows at rate g to ensure a steady state equilibrium. Denoting by B∗t

aggregate taxable bequests (i.e., the sum of bt−b∗t across all bequests above b∗t ), the government

budget constraint becomes

τL(1− α) + τBb
∗
y = τ, (8)

where b∗y = erHB∗t /yt is capitalized taxable bequests over domestic product.

Let us denote by bmt the average bequest above b∗t . That defines the Pareto parameter

a = bmt /(b
m
t − b∗t ) of the upper tail of the bequest distribution. Let us assume that in steady-

state a fraction p∗t = p∗ of individuals leave a bequest above b∗t . We have B∗t = p∗ · b∗t · a/(a− 1).

As above, we can define the elasticity e∗B of taxable bequests with respect to 1− τB

e∗B =
db∗y

d(1− τB)

1− τB
b∗y

= a · eB (9)

where eB is the average elasticity (weighted by bequest size) of individual bequests bti above

b∗t . Empirical studies can in principle estimate eB and a is directly observable from tabulated

statistics by estate size (typically a ' 1.5 for empirical estate distributions).

With this nonlinear inheritance tax, we will also have a unique ergodic steady-state. The

optimal non linear inheritance tax (for given threshold b∗, and from the viewpoint of zero bequest

receivers) can be characterized as follows.

Proposition 4 (nonlinear zero-bequest-receiver optimum). Under adapted assumptions

1-4, and the following welfare weights: ωpzpθ = 1 if pz = 0, and ωpzpθ = 0 if pz > 0, then:

τB =
1− (1− α− τ)s∗b0/b

∗
y

1 + e∗B + s∗b0
and τL =

τ − τBb∗y
1− α

,

with s∗b0 = E[(sbi/si)(bt+1i − b∗t+1)+|zi = 0]/E(ỹti|zi = 0] = strength and likelihood that non-

receivers will leave taxable bequests (weighted by marginal utility×labor income).

Proof. The proof is similar to Proposition 2 and can be easily extended to the case of

pz-bequests-receivers. See Appendix A4. QED.

Four points are worth noting. First, if zero-receivers never accumulate a bequest large

enough to be taxable, then s∗b0 = 0, and the formula reverts to the revenue maximizing tax rate

42In any case the fraction of the population paying bequest taxes is generally much less than 50% - a fact that
must naturally be related to the high concentration of inherited wealth: bottom 50% successors always receive
barely 5% of aggregate inheritance (while the top 10% receives over 60% in Europe and over 70% in the U.S.),
so there is little point taxing them. See e.g. Piketty (2011, p.1076).
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τB = 1/(1+e∗B) = 1/(1+a ·eB).43 More generally, if zero-receivers have a very small probability

to leave a taxable bequest (say, if b∗ is sufficiently large), then s∗b0 is close to 0, and τB is close the

revenue maximizing tax rate. This can be easily generalized to small pz-receivers (say, bottom

50% receivers). If the elasticity is moderate (say, e∗B = 0.2), then this implies the socially

optimal inheritance tax rate on large bequests will be extremely high (say, τB = 70%− 80%).

This model can help explain why very large top inheritance tax rates were applied in countries

like the U.S. and the U.K. between the 1930s and the 1980s (typically around 70%-80%; see

Figure 1 above). In particular, the fact that the rise of top inheritance tax rates was less

dramatic in Continental Europe (French and German top rates generally did not exceed 30%-

40%) seems qualitatively consistent with the fact these countries probably suffered a larger loss

in aggregate inheritance flow ratios by and b∗y following the world wars capital shocks.44

Second, as b∗ grows, there are two options: either s∗b0/b
∗
y converges to zero or converges to a

positive level. The first case corresponds to an aristocratic society where top bequests always

come from past inheritances and never solely from self-made wealth. In that case again, the

optimum τB would be the revenue maximizing rate. The second case corresponds to a partly

meritocratic society where some of the top fortunes are self-made. In that case, even for very

large b∗, non-receivers want a tax rate on bequests strictly lower than the revenue maximizing

rate. In reality, it is probable that s∗b0/b
∗
y declines with b∗ as the fraction of self-made wealth

likely declines with the size of wealth accumulated. If the elasticity eB and a are constant,

then this suggests that the optimum τB increases with b∗. The countervailing force is that

aristocratic wealth is more elastic as the bequest tax hits those fortunes several times across

several generations, implying that eB might actually grow with b∗.45

Third, one can also ask the question of what is the optimal b∗ from the point of view of

zero-receivers. Solving for the optimal b∗ is difficult mathematically. If the optimal τB is zero

when b∗ = 0 (because zero-receivers care a lot of leaving bequests), then it is likely that τB will

become positive when b∗ grows (if society is relatively aristocratic). Then a combination τB > 0

and b∗ > 0 will be better that τB = 0 and b∗ = 0. The trade-off is the following: increasing b∗

43The formula takes the same form as in standard optimal labor income tax theory (see Saez 2001).
44The German top rate reached 60% in 1946-1948 when it was set by the Allied Control Council, and was

soon reduced to 38% in 1949 when the Federal Republic of Germany regained sovereignty over its tax policy.
One often stated argument in the German public debate was the need to favor reconstruction and new capital
accumulation. See e.g. Beckert (2008). In contrast, according to the ”war mobilization” theory (see Scheve and
Stasavadge 2011), inheritance taxes would have increased at least as much in Germany and France as in the UK
and the US.

45This is easily seen in the model with binomial random tastes.
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reduces the tax base b∗y and hence estate tax revenue so this is a negative. The positive is that

it reduces s∗b0 (probably at a faster rate than b∗y, allowing for a greater optimal τB.

Finally and more generally, real world estate tax systems generally have several progressive

rates, and ideally one would like to solve for the full non-linear optimum. Unfortunately there

is no simple formula for the optimal nonlinear bequest tax schedule. The key difficulty is that

a change in the tax rate in any bracket will end up having effects throughout the distribution

of bequests in the long-run ergodic equilibrium. This difficulty does not arise in the simple case

where there is a single taxable bracket. One needs to use numerical methods to solve for the

full optimum. We leave further exploration of full non linear optima to future research.

5 Inheritance Taxation vs. Lifetime Capital Taxation

So far we have focused upon optimal taxation of capitalized inheritance and derived optimal tax

formulas that can justify relatively large tax rates when the aggregate inheritance flow is large.

With inheritance flows by around 10%-15% of national income (as observed in today’s developed

economies, with a gradual upward trend), our formulas suggest that socially optimal tax rates

τB in our model would be around 40%-60%, or even higher, thereby raising as much as 5%-8%

of national income in annual tax revenues. As mentioned in introduction, actual tax revenues

from capital taxes are even slightly higher, around 8-9% in the European Union and the United

States. However only a small part comes from inheritance taxes–generally less than 1% of GDP

as bequest tax rates are usually relatively small, except for very top (taxable) estates. Most

revenue comes from ”lifetime capital taxes”, falling either on the capital stock (annual property

and wealth taxes, typically about 1-2% of GDP) or on the capital income flow (annual taxes on

corporate profits, rental income, interest, dividend and capital gains, typically about 4%-5% of

GDP).46 Why do we observe small inheritance taxes and large lifetime capital taxes? Our basic

model cannot tackle this question, since all forms of capital taxes are equivalent (Section 3).

Clearly the conclusion would be different in a full-fledged, multi-period model with life-cycle

savings.47 Positive capital income taxes τK > 0 would then impose additional distortions on

inter-temporal consumption decisions within a given lifetime. Following the Atkinson-Stiglitz

logic, it would generally be preferable to have τK = 0 and to raise 100% of the capital tax

46The simulations presented by Piketty (2011) also show that lifetime capital taxes have had a much larger
historical impact than bequest taxes on the magnitude and evolution of aggregate inheritance flows.

47See Section 6 below for such an extension.
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revenue via a bequest tax τB > 0. Naturally, if the inter-temporal elasticity of substitution

is fairly small, then this extra distortion would also be small, and both tax policies would be

relatively close to one another. In the real world however we do observe a collective preference

in favor of lifetime capital taxes (either stock-based or flow-based) over one-off bequest taxes,

so there must be some substantial reasons for this fact. What can account for this?

In this section, we explore two mechanisms explaining why lifetime capital taxes are more

heavily used than one-off inheritance taxes: the existence of a fuzzy frontier between capital

income and labor income flows; and the existence of uninsurable idiosyncratic shocks to rates

of return. Each mechanism allows us to explore different aspects of the optimal capital tax

mix. We certainly do not pretend that these are the only important factors. For example,

individuals may be subject to various forms of tax illusion whereby smaller annual capital

taxes are less visible than one big bequest tax per generation.48 Other forms of capital market

imperfections, such as borrowing constraints, might also play an important role. For example,

large inheritances taxes may force successors to quickly and inefficient sell their property.49

5.1 Fuzzy Frontier Between Capital and Labor Income Flows

The simplest rationale for taxing capital income is the existence of a fuzzy frontier between

capital and labor income flows. Any gap between the labor income tax rate τL and the capital

income tax rate τK may induce tax avoidance. E.g., self-employed individuals can largely decide

which part of their total compensation takes the form of wage income, and which part takes

the form of dividends or capital gains. Opportunities for income shifting also exist for a large

number of top executives (e.g. via stock options and capital gains). There is extensive empirical

evidence that income shifting is a significant issue, and accounts for a large fraction of observed

behavioral responses to tax changes.50 At some level, this fuzzy-frontier problem can be viewed

as the consequence of capital markets imperfections. With first-best markets, full financial

intermediation and complete separation of ownership and control, distinguishing the returns to

capital services from the returns to labor services would be easily feasible.

For simplicity, we assume “full fuziness”. Individuals can shift their labor income flows into

48This could contribute to explain why most individuals seem to prefer to pay an annual property tax equal
to 1% of their property value (or 25% of their 4% annual return) during 30 years rather than to pay 30% of the
property value all at once at the time they inherit the asset.

49Anecdotal evidence suggests that this is an important reason why people dislike inheritance taxes (see Graetz
and Shapiro, 2005).

50See the recent survey by Saez, Slemrod, and Giertz (2012) for US evidence and Pirttila and Selin (2011) for
an analysis of the dual income tax system introduced in Finland in 1993.
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capital income flows (and conversely) at no cost. Hence, both income flows are undistinguishable

for the tax administration, and tax rates have to be the same: τL = τK = τY , where τY ≥ 0

is the comprehensive income tax rate. Under this assumption, our basic optimal tax formula

(Proposition 2) can be easily extended, and the new fiscal optimum is such that:

Proposition 5 (comprehensive income tax cum inheritance tax). Under the full-

fuziness assumption, the zero-bequest-receivers optimum has a bequest tax τ̃B and a compre-

hensive income tax τL = τK = τY such that:

τ̃B = τB − τK
R

1 +R
and τL = τK = τY =

τ − τBby
1− α

, with τB =
1− (1− α− τ)sb0/by

1 + eB + sb0
.

Proof. The proof is the same as Proposition 2. The new government budget constraint

is τL(1 − α) + τ̃Bby + τKby
R

1 +R
= τ . Define τB = τ̃B + τK

R

1 +R
the adjusted tax rate on

capitalized bequest (including the tax on bequest and the extra tax on the return to bequest;

see section 3) so that τL =
τ − τBby

1− α
. We obtain the same formula for τB as in Proposition 2.

The formula for τ̃B then follows directly from the tax enforcement constraint τK = τL. QED

The optimal tax combines a comprehensive income tax and an inheritance tax, as in the

standard Haig-Simons-Vickrey ideal tax system.51 Most importantly, our simple optimal tax

formulas allow us to quantify the trade-offs involved with this combination.

Example 6. Assume τ = 30%, α = 30%, sb0 = 10%, eB = 0, and r = 4%, H = 30, so that

erH = 1 +R = 3.32

If by = 20%, then τB = 73% , so that τL = τK = τY = 22% and τ̃B = 58%

If by = 15%, then τB = 67% , so that τL = τK = τY = 29% and τ̃B = 47%

If by = 10%, then τB = 55% , so that τL = τK = τY = 35% and τ̃B = 31%

If by = 5%, then τB = 18% , so that τL = τK = τY = 42% and τ̃B = −11%

For large bequest flows by ' 10 − 20%, a comprehensive income tax system only reduces

slightly the need for inheritance taxation. In contrast, for bequest flows by ' 5%, the reduction

can be very large. This might explain the large number of exemptions for capital income that

were created during the reconstruction period, particularly in countries like France or Germany.

In practice, only a fraction of the population can easily shift capital into labor income (and

conversely). This has to be weighted against costs of capital taxation in a model with life-cycle

51In our basic model, we tax all cumulated resources at the end of the lifetime. One way to implement this is to
tax cumulated average income and inheritance flows, as advocated by Vickrey (1947) in his classic reformulation
of the Haig-Simons comprehensive income tax proposal.
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savings. Therefore the resulting optimal tax gap ∆τ = τL− τK ≥ 0 would depend negatively on

the fraction of income shifters and positively on the intertemporal elasticity of substitution.52

5.2 Uninsurable Idiosyncratic Shocks to Rates of Return

Let us assume away the fuzzy-frontier problem and consider the implications of uninsurable

idiosyncratic shocks to rates of return for the optimal tax mix. The basic intuition is straight-

forward. From a welfare viewpoint, as well as from an optimal tax viewpoint, what matters

is capitalized bequest b̃ti = btie
rtiH , not raw bequest bti. The problem of a bequest tax is that

it depends only on bti, not on the idiosyncratic variations in ertiH . So it makes more sense to

charge part of the tax burden via bequest taxation τ̃B, and part of the tax burden via lifetime

capital taxation τK–possibly a much larger part–in case the uncertainty about future returns is

very large. In practice there is also a difference in timing. At the time of setting the bequest

tax rate τB, the future rate of return ertiH on a given asset over one generation is unknown.

Rates of return are notoriously difficult to predict, and they vary enormously over assets and

across individuals. In that context, it is preferable to impose a moderate bequest tax at time

of receipt combined with an annual capital income tax on the returns.53

Formally, let us assume that individual life-time rates of returns Rti = ertiH − 1 vary across

individuals. Let us denote by R the aggregate rate of return across all individuals. We assume

that shocks Rti are idiosyncratic so that there is no risk in aggregate.

If Rti is exogenous to the behavior of individuals, then it is clearly optimal for the govern-

ment to set τK = 100% to insure individuals against risky returns. In effect, the government

is replacing risky individual returns Rti by the aggregate return R , thereby providing social

insurance. Standard financial models assume that individuals can insure themselves by diver-

sifying their portfolios but in practice self-insurance is far from complete, implying that taxes

have a role to play in order to reduce uncertainty.54

52Alternatively if one assumes a finite elasticity of income shifting with respect to the gap in tax rates, then
the optimal tax gap will depend negatively on this elasticity (see Piketty, Saez, Stantcheva (2011)). Here
we implicitly assumed an infinite elasticity, so that tax rates have to be exactly equal. Note also that the
administrative capability to distinguish between capital and labor income flows and to impose separate tax rates
is to some extent endogenous. E.g. it is easier if for the tax administration to observe or estimate capital income
if taxpayers file annual wealth declarations in addition to annual income declarations.

53E.g. take someone who inherited a Paris apartment worth 100,000e (in today euros) in 1972 when nobody
could have guessed that this asset would worth one or two millions e by 2012. So instead of charging a very
large bequest tax rate at the time of asset transmission, it is more efficient to charge a moderate bequest tax in
1972, and then tax the asset continuously between 1972 and 2012, via property and/or rental income taxes.

54Gordon (1985) quantifies this argument in the context of the corporate tax and argues that the efficiency
gains associated with the reduction in uncertainty offsets the losses due to the reduction in average return.
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If Rti depends in part on unobservable individual effort (such as looking for new investment

opportunities, monitoring one’s financial intermediaries, etc.), then taxing returns can poten-

tially discourage effort and hence reduce rates of return. We present such a formal model in

appendix A5 using a simple reduced form cost of individual effort. In that model, we derive

optimal tax rates on capital τK and bequests τ̃B as a function of our previous parameters and

the elasticity eR of aggregate return R with respect to the net-of-tax rate 1− τK that captures

the moral hazard effect of capital income taxation on returns. Optimal tax rates have two key

properties. First, if eR is sufficiently small then τK > τL. Second, if eR is large enough, then τK

is zero and τ̃B is given by our standard formula.

In the appendix we also provide examples with numerical values. These simulations rely on

simplifying assumptions, and are only illustrative and exploratory. In particular, we know very

little about the elasticity eR of the aggregate rate of return R. Available macroeconomic evidence

shows that aggregate rates of return, factor shares and wealth-income ratios are relatively stable

over time and across countries, which–given large variations in taxes–would tend to suggest

relatively low elasticities eR (perhaps around 0.1− 0.2).55 This would seem to imply that the

optimal capital income tax rate is much larger than the optimal labor income tax rate. E.g. if

eR = 0.1 then in our simulations we obtain τK = 78% and τL = 35%. However the simulations

also show that the results are very sensitive to the exact value of eR . E.g. if eR = 0.5 then

capital income would be taxed much less than labor income: τK = 17%, and τL = 37%. This

is because in the model a lower return R not only reduces the capital income tax base but also

has a negative impact on the aggregate steady-state bequest flow by.
56

Interestingly, countries which implemented high top inheritance tax rates (particularly the

U.S. and in the U.K. between the 1930s and 1980s; see Figure 1 above) also experienced very

large top capital income tax rates (see Figures 2-3) In particular, during the 1970s, both

the U.S. and the U.K. applied higher top rates on ordinary unearned income (such as capital

income) than on earned income (i.e. labor income). One plausible way to account for this fact

is to assume that policy makers had in mind a model very close to ours, with a relatively low

elasticity of rates of return eR with respect to effort, and with meritocratic social preferences.

55Conceivably, higher individual effort eti translates into higher individual return Rti mostly at the expense of
others (e.g., traders obtaining advance information about when to sell a given financial asset), i.e. the aggregate
R is very little affected. In the extreme case where this is a pure zero-sum game (R fixed), then the relevant
elasticity is eR = 0, and the optimal tax rate is τK = 100%. For an optimal tax model based upon pure
rent-seeking elasticities, see Piketty, Saez and Stantcheva (2011).

56In addition, these simulations do not take into account the distortionary impact of τK on inter-temporal
consumption allocation along the life-cycle.
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More generally, τK > τL was actually the norm in most income tax systems when the latter

were instituted in the early 20th century (generally around 1910-1920). At that time income

tax systems typically involved a progressive surtax on all forms of labor and capital income

(including imputed rent), and a set of schedular taxes taxing wage income less heavily than

capital income. It has now become more common to have τK < τL, via special tax exemptions

for various categories of capital income. But we feel that this mostly reflects a rising concern

for international tax competition and tax evasion and the persistent lack of tax coordination,57

rather than considerations about the global welfare optimum.

6 Extensions

In this section, we consider various extensions of the basic model. Those extensions are sum-

marized here and presented in detail in appendices B and C.

Elastic Labor Supply. We can introduce elastic labor supply along the balanced growth path

by considering utility functions of the form Ui = Vie
−hi(l) or equivalently Ui = log Vi − hi(l).

In that case, the small budget neutral reform dτB, dτL generates behavioral responses not only

along the savings margin but also along the labor supply margin. Denoting by eL the elasticity

of aggregate earnings with respect to 1− τL (when τB adjusts to keep budget balance), we show

that the optimal tax formula of Proposition 2 takes the form:

τB =
1− (1− α− τ · (1 + eL))sb0/by

1 + eB + sb0 · (1 + eL)
and τL =

τ − τBby
1− α

,

This formula is similar to the inelastic case except that eL appears both in the numerator and

denominator. τB increases with eL if τ(1 + eB) + sb0(1− α) ≥ by which is satisfied empirically.

Hence, a higher eL implies a higher τB and a lower τL. Intuitively, a higher labor supply elasticity

makes high labor taxation less desirable and tilts the optimal tax mix tilt more towards bequest

taxes. Numerical examples presented in appendix show that, for realistic parameters, very large

bequest elasticities and very small labor supply elasticities are needed to obtain τB < τL.

Closed Economy. Our optimal tax results can easily be extended to the closed economy case

where the capital stock Kt is equal to domestic inheritance (i.e. Kt = Bt). The factor prices

(wage rate and rate of return) are now endogenous and given by the marginal product of labor

57The view is that it is easier to reallocate one’s financial portfolio abroad than one’s labor income, and that
it is harder to apply the residence principle of taxation for capital income; or at least this is a view that became
very influential in a number of small open economies, typically in Nordic countries.
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and capital. As in standard optimal tax theory (Diamond and Mirrlees, 1971), optimal tax

formulas are independent of the production side and hence remain the same with endogenous

factor prices. The important point is that the elasticity eB (and eL with elastic labor supply)

entering the formula is the pure supply elasticity, i.e. keeping factor prices constant.

Population Growth. With exogenous population growth (at rate 1+N = enH per generation),

all formulas carry over by simply replacing g by g+n. This affects by as high population growth

reduces the bequest flow. The optimal tax formula from Proposition 2 is unchanged as the

effect of n goes through by. In our model, optimal capital taxes are lower in countries with high

population growth, because capital accumulation is less inheritance-based and more labor-based

and forward looking.

Dynamic Efficiency and Intergenerational Redistribution. Our basic model imposes a

generation-by-generation government budget constraint. Hence, the government cannot accu-

mulate assets nor liabilities. Hence, the government cannot directly affect the aggregate level of

capital accumulation in the economy and hence cannot address “dynamic efficiency” issues. In

Appendix C, we show that our results go through even when we relax these assumptions and

allow the government to accumulate assets or liabilities. Therefore and importantly, there is

decoupling of optimal capital accumulation vs. optimal labor/capital income tax mix.58

More precisely, we prove the following. In the closed economy case, the government will

accumulate sufficient assets or liabilities to ensure that the Modified Golden Rule holds whereby

r = r∗ = δ + Γg with δ = social rate of time preference and Γ = concavity of social welfare

function.59 The government will then apply the same optimal bequest and labor tax rates as in

the case with a period-by-period budget constraint with two minor modifications (appendix C,

proposition C3). First, sb0 is replaced by sb0e
δ′H in the optimal τB formula with δ′ = δ+(Γ−1)g.

This correction appears because τBt hurts bequests leavers from generation t− 1 while revenue

accrues in generation t. Note that with no social discounting δ = 0 and log-utility Γ = 1,

there is no correction. Second, the formula for τL has to be adjusted for the interest receipt or

payment term if the government has assets or debts at the optimum.

Consumption Taxes. Whether a consumption tax at rate τC can usefully supplement the

labor and inheritances taxes τL, τB depends on which tax structures are allowed and how one

58The same decoupling results arise in the overlapping generation model with only life-cycle savings with linear
Ramsey taxation and a representative agent per generation (King, 1980 and Atkinson and Sandmo, 1980).

59In the small open economy case, unrestricted accumulation or borrowing by the government naturally leads
to corner solutions, infinite accumulation if r > r∗ and maximum debt if r < r∗.
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models the impact of a consumption tax on private utility and government finances.

If it is completely impossible to enforce a capitalized bequest tax τB–so that we are con-

strained to have τB = 0–then it is in general optimal to have some positive level of consumption

tax τC in addition to the labor income tax τL, since this is the only way to charge some of

the tax burden to successors rather than to labor earners.60 E.g. with no revenue requirement

(τ = 0), a positive consumption tax τC > 0 allows to finance a labor subsidy τL < 0 -and hence

to transfer some resources from successors to workers. This is a rather indirect way to proceed,

however, since the consumption tax is also imposed on workers.

If both τL and τB can be used, then, under simple assumptions, any tax mix (τC , τB, τL) is

equivalent to a tax mix with zero consumption tax (τC = 0, τB, τL), with corrected tax rates

τB, τL given by: 1− τB = (1− τC)(1− τB) and 1− τL = (1− τC)(1− τL). Hence, consumption

taxes do not expand the tax toolset and hence are not necessary to implement the optimum.

Homogenous Tastes. In contrast to existing models, our basic model assumed heterogene-

ity in savings tastes. If we assume homogeneity in savings tastes (si ≡ s uniform) and i.i.d

productivity shocks θit, then our results continue to apply but the distribution zit of relative

bequests will be more equal than the distribution of productivities (as relative bequests are just

a weighted average of ancestors’ productivities). Hence such a model cannot generate the very

high concentration of wealth observed empirically and hence cannot be realistically calibrated.

If we further assume perfect correlation of productivity shocks across generations (θit = θi0

for all t), we lose our key ergodicity assumption. In the long run, the distribution of inheritance

φ(z) would then be perfectly correlated with the distribution of labor productivity h(θ). Hence,

the labor income tax τL and the bequest tax τB would have the same distributional impact.

Since the latter imposes an extra utility cost - via the usual joy-of-giving externality -, there is

no point having a positive τB.61 But as long as inequality is two-dimensional there is room for

a two-dimensional tax policy tool.

Overlapping Generations and Life-cycle Savings. Our results and optimal tax formulas

can also be extended to a full-fledged continuous time model with overlapping generations and

life-cycle savings. We keep the same closed-form formulas for optimal inheritance tax rates.

60This simple point (i.e. with ill functionning capital taxes one can use consumption taxes to tax successors)
was first made by Kaldor (1955). See Appendix B for a more detailed discussion.

61With elastic labor supply, as shown by Kopczuk (2001), whether one wants to tax or subsidize bequests
in the steady-state of a model with perfect correlation of abilities across generations and homogenous tastes
actually hinges on the extent of the bequest externality (bequests received are a signal of ability so in some
specifications one might want to tax them).
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Regarding optimal lifetime capital taxation, we keep the same general, qualitative intuitions,

but numerical methods are needed to compute the full optimum.

In that model, byt is now defined as the cross-sectional, macroeconomic ratio between the

aggregate inheritance flow Bt transmitted at a given time t and domestic output Yt produced

at this same time t (as plotted on Figures 4-5). If inheritances are received around mid-life

(relative to earnings), then the cross-sectional macroeconomic ratio is close to the share of

capitalized inheritance in total lifetime resources of the cohort inheriting at time t of our basic

model (there is small correction factor in the by formula, see Appendix B). In any case, the

optimal tax formulas of Proposition 2 continue to apply in this model.

For optimal lifetime capital taxation, life-cycle savings now generate an extra distortion.

That is, positive tax rates on capital income τK > 0 distort the intertemporal allocation of

consumption within a lifetime. The magnitude of the associated welfare cost depends on the

intertemporal elasticity of substitution σ = 1/γ (which might well vary across individuals). As

long σ is relatively small, the impact on our optimal capital tax results is moderate.

7 Conclusion

This paper has developed a tractable theory of optimal capital taxation. The results coming out

of our model challenge the conventional zero capital tax results, which in our view rely on ad

hoc modeling assumptions which are often left implicit. If one assumes from the beginning that

there is little or egalitarian inheritance, then it is perhaps not too surprising if one concludes

that inheritance taxation is a secondary issue. If one assumes from the beginning that the long

run elasticity of saving and capital supply is infinite, then it is maybe not too surprising if one

concludes that the optimal capital income tax is zero in the long run. Our model relaxes these

assumptions, and shows that the optimal tax mix between labor and capital depends on the

various elasticities at play and on critical distributional parameters. We hope our results will

contribute to the emergence of more pragmatic debates about capital taxation, based more upon

relevant empirical parameters than abstract theoretical results relying on strong assumptions.

At a deeper level, one of our main conclusions is that the profession’s emphasis on the rate

of return 1 + r as a relative price is perhaps excessive. We do not deny that capital taxation

can entail distortions in the inter-temporal allocation of consumption. But as long as the inter-

temporal elasticity of substitution is moderate, this effect is likely to be second order relative

to distributional issues. In our view, rates of return have two important properties. First, they
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tend to be large, i.e. the average rate of return r is typically much larger than the growth

rate g, which implies that inheritance flows are large and that society can become dominated

by rentiers. Under the assumptions of our model, this implies that inherited wealth would

optimally be taxed at least as much as labor income. Next, rates of return are highly volatile

and unpredictable. Under our modeling assumptions, this implies that capital income taxes

would be an important component of the optimal tax on capitalized inheritance.

Four avenues for future research are worth noting. First, it would be useful to provide

more realistic numerical simulations for more complex optimal tax structures such as nonlinear

inheritance taxes and nonlinear labor taxes. Second, one could introduce credit constraints and

endogenous growth in the model to generate interesting two-way interactions between growth

and inheritance. The main difficulty would be the empirical calibration of such effects. Third,

our model with idiosyncratic shocks to returns has assumed away aggregate uncertainty in

returns that is large and pervasive in reality. With aggregate uncertainty, there is no longer a

stable steady-state for the bequest to output ratio and we conjecture that, in such a model, the

optimal inheritance tax would increase with the bequest to output ratio and the optimal capital

income tax rate would increase with the aggregate return. Fourth, we have abstracted from

tax competition and tax coordination across countries. Tax competition does put significant

downward pressure on actual capital income taxes from a one country perspective. While such

tax competition is valuable to discipline governments in a model where optimal capital income

taxes are zero, it can decrease social welfare in our model where optimal capital income taxes are

positive. For example, for realistic parameters in our model, bottom 50% successors lose around

20% of net income when capital taxes are constrained to be zero. With meritocratic welfare

weights, the loss in aggregate social welfare has a similar magnitude. Hence, tax coordination

is quantitatively very valuable under the assumptions of our model.
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Figure 1: Top Inheritance Tax Rates 1900-2011 
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Figure 2: Top Income Tax Rates 1900-2011 
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Figure 3: Top Income Tax Rates: Earned (Labor) vs Unearned (Capital) 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

U.S. (earned income)

U.S. (unearned income)

U.K. (earned income)

U.K. (unearned income)



Figure 4: Annual inheritance flow as a fraction of national 
income, France 1820-2008 
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Figure 5: Annual inheritance flow as a fraction of 
disposable income, France 1820-2008 
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Appendix (not for publication)

This appendix is organized as follows. Appendix A presents all the proofs of the formal

Propositions in the main text. Appendix B presents the extensions mentioned in the text

in Sections 6 and Conclusion, to the exception of dynamic efficiency and inter-generational

redistribution that is presented in the long and self-contained Appendix C.

A Proofs of Main Text Propositions

A.1 Proof of Proposition 1 (convergence result) (section 3)

A.1.1 Main Proof

The four-dimensional, discrete-time stochastic process Xti = (zti, swti, sbti, θti) is a Markovian

process with a state variable byt =
erHbt
yt

. In the special case with i.i.d. taste and productivity

shocks, (swti, sbti) and θti are given by the stationary distributions g(swi, sbi) and h(θi), and we

can concentrate upon the convergence of the Markovian process for zti.

We have the following endogenous transition equation for inheritance bti:

bt+1i = sti[(1− τL)yLti + (1− τB)btie
rH ] (10)

This can be rewritten as a transition equation for normlized inheritance zti =
bti
bt

:

zt+1i =
sti[(1− τL)(1− α)e(r−g)Hθti + (1− τB)byte

(r−g)Hzti]

byt+1

(11)

The law of motion for the state variable byt is given by:

byt+1 = s(1− τL)(1− α)e(r−g)H + s(1− τB)e(r−g)Hbyt

where s = E(si) is the average saving taste. If we rule out explosive paths (assumption 3:

s · e(r−g)H < 1), then whatever the initial conditions the state variable byt converges towards a

unique given by as t→ +∞, where by is given by:

by =
s(1− τL)(1− α)e(r−g)H

1− s(1− τB)e(r−g)H

As t→ +∞, the transition equation for zti can therefore be rewritten as follows (by replacing

byt, byt+1 by by in the above transition equation, and by noting µ = s(1− τB)e(r−g)H < 1):

zt+1i =
sti
s

[(1− µ) · θti + µ · zti] (12)

In the long-run, the minimal normalized inheritance level z0 is given by: z0 =
s0(1− µ)θ0

s− s0µ
<

1. This is what an individual would get if his ancestors permanently receive the lowest possible
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taste and productivity shocks (i.e. sti = s0 and θti = θ0). In case s0 = 0 (assumption 1), then

z0 = 0., i.e. there are zero bequest receivers in the long run.62

In case
s1

s
µ < 1, then the long-run maximal normalized inheritance level z1 is given by:

z1 =
s1(1− µ)θ1

s− s1µ
> 1. This is what an individual would get if his ancestors permanently receive

the highest possible taste and productivity shocks (i.e. sti = s1 and θti = θ1). In case
s1

s
µ > 1,

then z1 = +∞, i.e. the long-run distribution of normalized inheritance is unbounded above (see

example below).

In any case, thanks to assumptions 1 and 2, one can see that the Markovian process for zti

verifies the following “concavity property” over the interval [z0, z1]: for any relative inheritance

positions z0 ≤ z < z′ < z′′ ≤ z1, there exists T ≥ 1 and ε > 0 such that proba(zit+T > z′ | zit =

z) > ε and proba(zit+T < z′ | zit = z′′) > ε. (consider a sufficiently long sequence of positive

shocks in the first case, and of bad shocks in the second case). In addition, the transitions are

monotonic (i.e. zt+1i(zti) dominates zt+1i(z
′
ti) in the first-order stochastic sense if zti > z

′
ti).

Therefore we can apply standard ergodic convergence theorems to derive the existence of a

unique stationary distribution φ(z) towards which φt(z) converges, independently of the initial

distribution φ0(z) (see Hopenhayn and Prescott (1992, Theorem 2, p.1397) and Piketty (1997,

Proposition 1, p.186)). QED.

A.1.2 Extension to general random processes

For notational simplicity, we choose to concentrate throughout the paper upon the special case

with i.i.d. taste and productivity shocks. Under additional assumptions, all our results and

optimal tax formulas can be extended to the case with general random processes regarding

taste and productivity shocks. E.g. assume exogenous transition functions g(swt+1i, sbt+1i |
swti, sbti) and h(θt+1i | θti).63 In order to ensure global convergence of the Markovian process

Xti = (zti, swti, sbti, θti), one must make ergodicity assumptions about these transition functions.

That is, one must modify assumptions 1 and 2) and assume that the transition functions are

monotonic (in the sense of first order stochastic dominance; see above) and have full support,

in the sense that starting from any parental taste or productivity there is always a positive

probability to attain any other taste or productivity:

∀(swti, sbti) ∈ S, (swt+1i, sbt+1i) ∈ S, g(swt+1i, sbt+1i | swti, sbti) > 0

(with : swti, sbti = parental tastes, swt+1i, sbt+1i = children tastes)

And:

62Note that the same conclusion z0 = 0 would hold in case s0 > 0 and θ0 = 0.
63One could also assume more general forms (with taste or productivity memory over more than one generation,

or with joint processes), as long as one makes adequate ergodicity assumptions.
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∀θti ∈ Θ, θt+1i ∈ Θ, h(θt+1i | θti) > 0

(with : θti = parental productivity, θt+1i = children productivity)

Under these assumptions, standard ergodic convergence theorems ensure that for any initial

distribution of tastes and productivities, the distributions gt(swi, sbi) and ht(θi) converge towards

unique stationary distributions g(swi, sbi) and h(θi).

The law of motion for the state variable byt can now be written:

byt+1 = s(1− τL)(1− α)e(r−g)H + stz(1− τB)e(r−g)Hbyt

where s = E(si) is the average saving taste and stz = E(stizti) is the average saving taste

weighted by normalized inheritance.

In the no-taste-memory special case (tastes are drawn i.i.d. at each generation), then sti ⊥
zti, so we have: ∀t, stz = s.

In the general case with taste memory, sti and zti might be correlated (they are both de-

termined - partly - by parental tastes st−1i), so stz might differ from s. Typically children of

high-saving-taste parents might have both higher saving taste and higher inheritance, so that

stz ≥ s.64

Assume that the state variable byt converges towards a given by as t → +∞. This implies

that stz has converged towards some given sz (which can differ from s in the case with state

memory) and that by satisfies:

by =
s(1− τL)(1− α)e(r−g)H

1− sz(1− τB)e(r−g)H

As t→ +∞, the transition equation for zti can therefore be rewritten as follows (again by

replacing byt, byt+1 by by in the above transition equation, and by noting µ = s(1 − τB)e(r−g)H

and µz = sz(1− τB)e(r−g)H):

zt+1i =
sti
s

[(1− µz) · θti + µ · zti] (13)

The long run minimal and maximal normalized inheritance level z0 and z1 are now given

by: z0 =
s0(1− µz)θ0

s− s0µ
and z1 =

s1(1− µz)θ1

s− s1µ
(assuming

s1

s
µ < 1; otherwise z1 = +∞, i.e. the

long-run inheritance distribution is unbounded above).

In any case, one can see that the Markovian process for zti again verifies the concavity

and monotonicity properties over the interval [z0, z1]. So we can again apply standard ergodic

64Note that sti ⊥ θti (whether or not there is productivity memory), so that: ∀t, stθ = E(stiθti) = s. This

is because we assumed the taste and productivity processes to be uncorrelated. This could easily be relaxed,

providing that we make the appropriate full support assumption on the joint random process (so as to ensure

ergodicity). One would then simply need to replace s by stθ = E(stiθti) in the law of motion for byt.
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convergence theorems to derive the existence of a unique stationary distribution φ(z) towards

which φt(z) converges, independently of the initial distribution φ0(z).

The only difference with the case with i.i.d. shocks is that there might now exist multiple

steady-states for the byt process. First, in order to rule out explosive paths, we need to generalize

assumption 3 and assume the following:

s · e(r−g)H < 1, with: s = E(st+1i | sti = s1)

This assumption ensures that for any initial condition, byt converges towards some finite by,

and then - given by - the distributions φt(z) and Ψt(z, θ) converges towards unique stationary,

ergodic distributions φ(z) and Ψ(z, θ). However this assumption is not sufficient to rule out

the possibility of multiple steady-states. That is, one can construct examples where there are

multiple steady-state pairs (by,Ψ(z, θ)). Intuitively, a higher steady-state by (i.e. a higher

steady-state sz and µz) can be self-fulfilling because it implies higher steady-state inequality of

inheritance, via the transition equation for zti: higher µz and sz = E(stizti) imply a smaller labor

income term (i.e. a smaller equalizing effect) relatively to the multiplicative inheritance effect

(i.e. relatively to the un-equalizing effect), which also tends to generate higher steady-state

correlation between normalized inheritance zi and saving taste si. This in turn can validate a

higher steady-state sz and by. Each steady-state is ergodic, but there is more inequality and

less mobility in the high by steady-state. This ergodic steady-state multiplicity is similar to

that studied by Piketty (1997) (but with by instead of r in the role of the state variable). This

possibility can be ruled out in simple examples with binomial random tastes and taste memory

(see below). But in order to rule it out in the general case, one would need stronger assumptions,

e.g. one would need to assume that there is not too much taste persistence (in the sense that

s→ s(s) = E(st+1i | sti = s) is not too steeply increasing over the interval [s0, s1]). In any case,

note that this is a relatively secondary issue for our purposes in this paper. I.e. even if there

were multiple steady-state values for by , then our optimal tax formulas would still be locally

valid as long the tax change does not shift the economy towards another by steady-state.

A.1.3 Example with binomial random tastes

With i.i.d. binomial random taste shocks sti = s0 = 0 with probability 1− p, and sti = s1 > 0

with probability p, we have: s = sz = ps1, µ = µz = s(1−τB)e(r−g)H . We assume: µ < 1 < µ/p.

With no productivity heterogeneity, the transition equation for zti looks as follows:

zt+1i =
sti
s

[(1− µ) + µ · zti]
That is:

zt+1i = 0 with probability 1− p
zt+1i =

1− µ
p

+
µ

p
· zti

It follows that the long-run distribution of normalized inheritance ϕ(z) looks as follows:65

65In case µ/p < 1, then zk =
1− µ
p− µ

· [1 − (
µ

p
)k] has a finite upper bound z1 =

1− µ
p− µ

. Note that we do not
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z = zk =
1− µ
µ− p

· [(µ
p

)k − 1] with probability (1− p) · pk

As k → +∞, zk ≈
1− µ
µ− p

· (
µ

p
)k.

The cumulated distribution is given by: 1− Φ(zk) = proba(z ≥ zk) =
∑
k′≥k

(1− p) · pk′ = pk.

It follows that as z → +∞, log[1 − Φ(z)] ≈ a · [log(ω) − log(z)], i.e. 1 − Φ(z) ≈
(ω
z

)a
,

with a constant term ω =
1− µ
µ− p

, a Pareto coefficient a =
log(1/p)

log(µ/p)
> 1 and an inverted Pareto

coefficient b =
a

a− 1
=

log(1/p)

log(1/µ)
> 1.

As µ → 1− (for given p < µ), a → 1+ and b → +∞ (infinite inequality). Intuitively, the

multiplicative inheritance effect becomes infinite as compared to the equalizing labor income

effect. The same occurs as p → 0+ (for given µ > p): an infinitely small group gets infinitely

large random shocks.66

Note 1. All theoretical wealth accumulation models with multiplicative random shocks give

rise to distributions with Pareto upper tails, whether the shocks are binomial or multinomial,

and whether they come from taste shocks or other kind of multiplicative shocks (such as shocks

on rates of returns or demographic shocks on numbers of children, rank of birth or age at

parenthood or age at death). Empirically, upper tails of wealth distribution follow Pareto

laws, as well as upper tails of income distribution, in particular due to top capital incomes

(labor incomes tend to dampen inequality and reduce inverted Pareto coefficient). Low income

inequality typically corresponds to b ' 1.5; high income inequality to b ' 2.5 − 3. For wealth

distributions, inverted Pareto coefficients often exceed b ' 3− 3.5. For references to theoretical

models and historical series on Pareto coefficients, see Atkinson, Piketty, Saez (2011, pp.13-14

and 50-58).

Note 2. One can easily introduce intergenerational taste persistence into this setting. E.g.

assume a binomial random taste process with s0 = 0, s1 > 0 and with taste memory, say

st+1i = s1 with probability p0 if sti = 0, and with probability p1 ≥ p0 if sti = s1. The steady-

state taste distribution involves a fraction 1− p of the population with zero wealth taste and p

with positive wealth taste, with: p · (1− p1) = (1− p) · p0, i.e. p =
p0

1 + p0 − p1

∈ [p0, p1]. The

average steady-state taste s is given by: s = p · s1. The steady-state distribution of normalized

inheritance ϕ(z) looks as follows:

z = z0 = 0 with probability 1− p (children with zero-wealth-taste parents)

z = z1 =
1− µz
p

> 0 with probability (1 − p) · p0 (children with wealth-loving parents but

need to specify the decomposition between wealth and bequest tastes (s1 = s1w + s1b): this matters for welfare,

but has no impact on the transition equations and steady-state distributions.
66In the binomial model, one can directly compute the “empirical” inverted Pareto coefficient b′ =

E(z | z ≥ zk)

zk
→ 1− p

1− µ
as k → +∞. Note that b′ ' b if p, µ ' 1 but that the two coefficients generally

differ because the true distribution is discrete, while the Pareto law approximation is continuous.
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zero-wealth-taste grand-parents)

...

z = zk+1 =
1− µz
p

+
µ

p
· zk. > zk with probability (1− p) · p0 · pk1 (children with wealth-loving

ancestors during the past k + 1 generations)

That is: zk =
1− µz
µ− p

· [(µ
p

)k − 1] with probability (1− p) · p0 · pk−1
1 if k ≥ 1

One can easily see that: sz = E(sizi) =
p1

p
s = p1s1 > s. It follows that there again exists a

unique steady-state by.

Note that it is less straightforward to guarantee steady-state uniqueness in the case of a

binomial random taste process with 0 < s0 < s1 and with taste memory. First note that

with s0 > 0 there exists a positive lower bound z0 for the steady-state distribution ϕ(z), with

z0 =

s0

s
(1− µz)

1− s0

s
µ

> 0 (s is given by s = (1 − p)s0 + ps1). If
s1

s
µ > 1, there is no finite upper

bound (i.e. z1 = +∞), and the steady-state distribution is a continuous Pareto distribution

over [z0; +∞[: 1− Φ(z) =
(z0

z

)a
, with : (1− p) · µa0 + p · µa1 = 1.67 If s0 = s1 = s, then z0 = 1

and a = +∞ (perfect equality). Conversely as the variance rises, z0 → 0 and a → 1 (infinite

inequality). If we now introduce taste persistence p0 < p < p1, the steady-state distribution

takes a more complicated form. We now have a declining fraction p(z) of high-taste individuals

as a function of z ∈ [z0; +∞[. The long run distribution ϕ(z) has no reason to be Pareto any

longer, because the distribution of the multiplicative shock is not the same for all z. One can

construct numerical examples where p0 is sufficiently low and p1 sufficiently large so that there

is steady-state multiplicity in by of the form described above.

A.2 Proof of Proposition 2 (basic optimal tax formula) (section 4)

The proof of Proposition 2 is given in the main text of the paper (section 4). Here we discuss

and clarify the following points.

A.2.1 Simplified proof with Cobb-Douglas utility

The proof given in section 4 works with any utility function that is homogenous of degree one,

and with any random process for tastes and productivity shocks. With Cobb-Douglas utility

functions, there exists a simpler proof, since we have:

Vti = maxVi(cti, wti, b̄ti) = c1−si
ti wswiti b̄

sbi
ti s.t. cti + wti ≤ ỹti = (1− τB)ztibte

rH + (1− τL)θtiyLt

→ cti = (1− si) · ỹti, wti = si · ỹti, b̄ti = (1− τB)erH · si · ỹti
I.e. Vti = vi · ỹti, with vi = (1− si)1−sissii [(1− τB)erH ]sbi , and Vci = vi

67The formula works with any multinomial or continuous distribution of multiplicative shocks, not just with

binomial shocks. See Nirei (2009, Proposition 1, p.9). See also Stiglitz (1969).
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With zti = 0, we have ỹti = (1− τL)θiyLt. So: maxτB ,τL Vti ⇐⇒ maxτB ,τL (1− τB)sbi(1− τL).

Since 1 − τL = (1 − α − τ + τBby)/(1 − α) (from the government budget constraint), this is

equivalent to:

max
τB

(1− τB)sbi(1− α− τ + τBby)

In case sbi = 0 (zero bequest taste), this is equivalent to bequest tax revenue maximization:

maxτB τBby ⇐⇒ τB =
1

1 + eB
.

More generally, in case sbi ≥ 0, the first order condition in τB immediately leads to: τB =
1− (1− α− τ)sbi/by

1 + eB + sbi
Now, assume that we maximize the social welfare function SWF = E(Vti | zi = 0) =

v · (1− τL)yLt, with v = E(vi · θi | zi = 0).

The first-order condition in τB leads to: τB =
1− (1− α− τ)sb0/by

1 + eB + sb0
, with sb0 =

E(vi · θi · sbi | zi = 0)

E(vi · θi | zi = 0)
.

Note that since Vci = vi in the Cobb-Douglas utility case, this is equivalent to the definition

of sb0 obtained in the general case.

With i.i.d. productivity and taste shocks, then θi⊥sbivi, so we have: v = E(vi) and sb0 =
E(vi · sbi)
E(vi)

. That is, v and sb0 are entirely determined by the exogenous distribution of taste

parameters g(swi, sbi). Note however that vi and sbi are not orthogonal, so that in general

sb0 6= sb = E(sbi). This is due to the absence of utility normalization (see discussion below).

A.2.2 Utility normalization and social welfare

In section 3, we define social welfare by summing up heterogenous utility functions without im-

posing any utility normalization. That is, we define: SWF =
∫∫
z≥0,θ0≤θ≤θ1 ωpzpθ

V 1−Γ
zθ

1− Γ
dΨ(z, θ),

with Vzθ = E(Vi | zi = z, θi = θ) (see section 3). I.e. Vzθ is defined as average steady-state utility

level Vi attained by individuals i with the same normalized inheritance zi = z and productivity

θi = θ (i.e. the same after-tax total income ỹti = ỹtzθ = (1 − τB)zbte
rH + (1 − τL)θyLt) but

with different taste parameters swi, sbi. In effect, we are implicitly assuming that the welfare

weights ωi are the same for all individuals i with the same ranks pz, pθ in the distribution of

normalized inheritance and productivity, i.e. are the same for all taste parameters swi and sbi.

The absence of utility normalization implies that in effect we put more weight on agents with

utility functions delivering higher marginal utility for consumption (which is relatively arbitrary

from a normative viewpoint). So for instance in the case with Cobb-Douglas utility functions

and i.i.d. shocks, we have: Vzθ = v · ỹtzθ, with v = E(vi); and τB =
1− (1− α− τ)sb0/by

1 + eB + sb0
, with

sb0 =
E(vi · sbi)
E(vi)

. So in effect the average bequest taste sb0 that matters for the optimal tax

policy is different from the raw average bequest taste sb = E(sbi), because we put more weight

on individuals with higher marginal utility Vci = vi = (1 − si)1−sissii [(1 − τB)erH ]sbi (which is
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not particularly appealing).68

E.g. in the binomial random taste example with si = 0 with probability 1 − p, and si =

sw1 +sb1 = s1 > 0 with probability p, we have: sb0 =
p · v1 · sb1

1− p+ p · v1

(with v1 = ss11 (1−s1)1−s1 [(1−

τB)erH ]sb1). That is, depending whether v1 > 1 or v1 < 1,then sb0 > sb or sb0 < sb (where

sb = p · sb1 = E(sbi)).

All our results can easily be extended to allow social welfare weights ωi to depend on taste

parameters, for instance for utility normalization purposes. For instance assume we define

Vzθ = E(ωi · Vi | zi = z, θi = θ), with ωi = 1/vi (so as to normalize marginal utilities), and

the same SWF definition as before. The zero-receiver tax optimum would then be: τB =
1− (1− α− τ)sb0/by

1 + eB + sb0
with sb0 =

E(ωi · vi · sbi)
E(ωi · vi)

= E(sbi) = sb. Note however that the weights

ωi = 1/vi would have to be endogenous, in the sense that they need to be defined at the level

of the optimal τB (so that marginal utilities are normalized right at the optimum).69

In the special Cobb-Douglas case, an alternative equivalent formulation would be the fol-

lowing log form: define Vzθ = exp(E(log(Vi) | zi = z, θi = θ)), again with the same SWF

definition as before. We would then have: Vzθ = v′ · [(1 − τB)erH ]sb · ỹtzθ, with sb = E(sbi)

and v′ = exp[E(log((1 − si)
1−sissii )]. The first order condition in τB leads directly to: τB =

1− (1− α− τ)sb0/by
1 + eB + sb0

, with sb0 = sb.

A.2.3 Conditions under which τB > 0.

Finally, we discuss and clarify the conditions under which τB =
1− (1− α− τ)sb0/by

1 + eB + sb0
> 0.

We have: τB > 0 iff by > sb0(1−α−τ). Intuitively, if we start from τB = 0 and τL = τ/(1−α),

then sb0(1 − α − τ) = sb0(1 − α)(1 − τL) is the bequest-motive-driven fraction of income that

zero-receivers are going to leave to their children; this measures how much τB is going to hurt

them. On the other hand by measures how much fiscal resources the bequest tax is going to

bring them in terms of reduced labor tax. So they want to introduce bequest taxation (τB > 0)

if and only if the latter effect is larger than the former. Conversely, if by < sb0(1− α− τ), then

zero-receivers prefer bequest subsidies (τB < 0). Although this is a theoretical possibility, this

requires pretty extreme parameters.

E.g. consider the case with Cobb-Douglas utility, i.i.d. taste and productivity shocks, and ad-

equate utility normalization, so that sb0 = sb = E(sbi). By substituting by =
s(1− τ − α)e(r−g)H

1− se(r−g)H

into the τB formula, we obtain: τB =
1 + sb − (sb/s)e

−(r−g)H

1 + eB + sb
. We get the following condition

68For a given [(1− τB)erH ]sbi term, vi is higher for more extreme preferences (i.e. individuals with si close to

0 or close to 1 generate higher utility than middle-of-the-road individuals). For a given (1− si)1−sissii term, vi

is higher for bequest lovers iff (1− τB)erH > 1 (i.e. bequest lovers generate higher utility if τB small).
69Saez and Stantcheva (2012) propose a new theory of optimal taxation using systematically such endogenous

social welfare weights instead of standard social welfare maximization and show that they can be useful in a

number of contexts.
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for τB > 0:

τB > 0 if and only if

(
s+

s

sb

)
e(r−g)H > 1

In the case where saving motives entirely come from utility for bequests (i.e. sb/s = 1), the

condition becomes (1 + s)e(r−g)H > 1. In particular, if r − g > 0, as is generally the case in the

real world, then we always have τB > 0 In theory, in case g is sufficiently large as compared to

r, then zero receivers would prefer a bequest subsidy. Intuitively, infinite growth corresponds

to an infinitely small by, i.e. to an infinitely low benefit in terms of tax revenue. Note however

that r − g < 0 would violate the transversality condition, i.e. an infinite horizon social planner

(assuming such planners exist) would react by borrowing indefinitely against the resources of

future generations. That is, with r − g < 0, our steady-state maximization problem could no

longer be defined as the limit solution to an intertemporal maximization problem (see Appendix

B).

A.3 Proof of Proposition 3 (alternative welfare weights) (section 4).

The proof is the same as for Proposition 2 (see section 3), except that we now consider an

individual i who receives positive bequest bti = zibt, and with total after-tax lifetime income

ỹti = (1−τB)(1+R)bti+(1−τL)yLti . Individual i chooses cti = ỹti−bt+1i and bt+1i to maximize

Vi(ỹti − bt+1i, bt+1i, (1− τB)(1 +R)bt+1i).

The first order condition is again Vci = Vwi + (1 − τB)(1 + R)Vbi This leads to bt+1i = siỹti

(with 0 ≤ si ≤ 1) We can again define νi = (1− τB)(1 + R)Vbi/Vci the share of bequest left for

bequest loving reasons, 1−νi the share left for wealth loving reasons, and sbi = νisi the strength

of the overall bequest taste.

We again consider a budget balanced tax reform dτB > 0, dτL < 0, with: dτL = −bydτB
1− α

(
1− eBτB

1− τB

)
.

The difference with the zero-receiver case is that the utility change dVi created by the tax

reform dτB, dτL now includes a third term:

dVi = −VciyLtidτL − Vbi(1 +R)bt+1idτB − Vci(1 +R)bti(1 + eB)dτB

The third term corresponds to the extra tax paid on received bequest bti. This term includes

a multiplicative factor 1 + eB, because steady-state received bequest bti = zibt is reduced by

dbti = −eBzibtdτB/(1− τB) (for a given normalized inheritance level zi).

Using the fact that (1 +R)bti = zibyyt, this can re-arranged into:

dVi = VciyLtdτB

[(
1− eBτB

1− τB

)
θiby

1− α
−
(

1− τL
1− τB

θi +
ziby

(1− α)

)
sbi − (1 + eB)

ziby
(1− α)

]
The first term in the square brackets is the utility gain due to the reduction in the labor income

tax, the second term is the utility loss due to reduced net-of-tax bequest left, and the third
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term is the utility loss due to reduced net-of-tax bequest received. By using the fact that

1− τL = (1− α− τ + τBby)/(1− α) (from the government budget constraint), this can further

be re-arranged into:

dVi =
VciyLtdτB

(1− τB)(1− α)
[(1− (1 + eB)τB) byθi − (1− α− τ + τBby)sbiθi − (1 + eB + sbi)(1− τB)ziby]

Summing up dVi over all pz-bequest-receivers, we get:

dSWF =
yLtdτB

∫
zi=z

Vciθi

(1− τB)(1− α)

[
(1− (1 + eB)τB) by − (1− α− τ + τBby)sbz −

(1 + eB + sbz)(1− τB)zby
θz

]

with sbz =
E(Vciθisbi | zi = z)

E(Vciθi | zi = z)
, and θz =

E(Vci(1 + eB + sbi)θi | zi = z)

E(Vci(1 + eB + sbi)| zi = z)

Setting dSWF = 0, we get the formula:

τB =
1− (1− α− τ)sbz/by − (1 + eB + sbz)z/θz

(1 + eB + sbz)(1− z/θz)

Note 1. This proof is a direct generalization of the proof of proposition 2 and also works

with any utility function that is homogenous of degree one (and not only in the Cobb-Douglas

case) and with any ergodic random process for taste and productivity shocks (and not only with

i.i.d. shocks). In the case with Cobb-Douglas utility functions, there exists a simpler proof. See

Appendix A2.

Note 2. In the general case, sbz is the average of sbi over all pz-bequest-receivers, weighted by

the product of their marginal utility Vci and of their labor productivity θi, and θz is the average

of θi over all pz-bequest receivers, weighted by the product of their marginal utility Vci and of

their bequest taste sbi In case sbi⊥Vciθi, then sbz is the simple average of sbi over all pz-bequest-

receivers, and θz is the simple average of θi over all pz-bequest receivers : sbz = E(sbi|zi = z)

and θz = E(θi|zi = z). In the case with i.i.d. productivity shocks, then θz = 1. In the case with

i.i.d. productivity and taste shocks and adequate utility normalization (see Appendix A2), then

sbz is the same as the average bequest taste for the entire population: sbz = sb = E(sbi).

Note 3. If θz = 1 and sbz = sb, the by substituting by =
s(1− τ − α)e(r−g)H

1− se(r−g)H into the

τB formula, we obtain: τB =
1− e−(r−g)H(1− se(r−g)H)sb/s− (1 + eB + sb)z

(1 + eB + sb)(1− z)
. It follows that

τB > 0 iff z < z∗ with:

z∗ =
1− e−(r−g)H(1− se(r−g)H)sb/s

1 + eB + sb
< 1

Note 4. The derivation of τB presented above implicitly neglects the fact that the normalized

inheritance z of pz-receivers might change as a consequence of the marginal tax change, because

of the induced changes in the steady-state distribution Ψ(z, θ). E.g. assume pz = 0.1, i.e. we

are trying to maximize the steady-state welfare of individuals standing at the 10th percentile of
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the inheritance distribution. It could be that a marginal tax change dτB > 0, dτL < 0 induces

a marginal reduction in the inequality of inheritance, so that the normalized inheritance z at

the 10th percentile rises by dz > 0. Define epz the elasticity of the pz percentile normalized

inheritance z with respect to τB (along a budget balanced path): epz = [dz/z]/[dτB/(1 − τB)].

Note that because z averages to one in the population, the (z-weighted) average of epz in the

population is zero.

It is reasonable to expect epz to be positive for low pz and negative for high pz: higher

bequest taxes (and hence lower labor taxes) are likely to reduce steady-state inequality, i.e. to

raise z for low pz and reduce z for high pz. One can see that this dz effect introduces an extra

term in dSWF . Namely one needs to add Vcz(1− τB)(1 +R)btdz = epzVczzbyytdτB in the above

equation for dSWF . In effect, one simply needs to replace (1 + eB + sbz) by (1 + eB − epz + sbz)

in the third term in the square bracket above. So the corrected optimal tax formula is the

following:

τB =
1− (1− α− τ)sbz/by − (1 + eB + sbz)z/θz + epzz/θz

(1 + eB + sbz)(1− z/θz) + epzz/θz

If epz > 0, then this dz effect raises τB (and conversely if epz < 0), which is intuitive: a positive

dz effect makes bequest taxation even more desirable (and conversely).

In practice, this dz effect seems unlikely to be large. First, note that epz = 0 for pz = 0.

That is, there is always a positive density of zero receivers (thanks to assumption 1), so for

pz = 0 we always have z = 0, independently of the tax policy. So this dz effect can be entirely

ignored when we are interested in the zero-receiver optimum (Proposition 2). More generally,

empirical evidence suggests that endogenous distribution effects are relatively small - at least

for the bottom segments of the distribution that are relevant for social welfare computations.

I.e. the bottom 50% share in inherited wealth appears to be less than 5%-10% in every country

and time period for which we have data, irrespective of the wide variations in bequest tax rates.

Take for instance the model with binomial random taste. The steady-state distribution ϕ(z)

looks as follows:

z = zk =
1− µ
µ− p

·

[(
µ

p

)k
− 1

]
with probability (1− p) · pk (with µ = s(1− τB)e(r−g)H)

So if pz ≤ 1− p, then epz = 0 .

E.g. if 1 − p = 0.5 (i.e. the bottom 50% successors always receive zero bequests), then as

long as we care only about the bottom 50% the dz effect can be ignored.

If 1 − p < pz ≤ (1 − p)(1 + p), then epz =
dz1/z1

dτB/(1− τB)
=

µ

1− µ
> 0 . I.e. the dz effect

raises the optimal tax rate.

If (1− p)(1 + ..+ pk−1) < pz ≤ (1− p)(1 + ...+ pk), then epz =
dzk/zk

dτB/(1− τB)
One can easily see that epz > 0 for k small enough (pz small enough) and epz < 0 for k large

enough (pz large enough). I.e. the dz effect raises the optimal tax rate as long as we care about

bottom receivers, and reduces it if we care about top receivers.
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Note 5. The optimal tax formula can be extended to the case Γ > 0 , and to any welfare

weights combination (ωpzpθ). I.e. summing up dVi over the entire distribution Ψ(z, θ), we have:

dSWF =
yLtdτB

∫
VciθiV

−Γ
i

(1− τB)(1− α)

[
(1− (1 + eB)τB) by − (1− α− τ + τBby)sb −

(1 + eB + sb)(1− τB)zby

θ

]
with: sb =

E(ωpzpθVciθisbiV
−Γ
i | zi ≥ 0, θ0 ≤ θi ≤ θ1)

E(ωpzpθVciθiV
−Γ
i | zi ≥ 0, θ0 ≤ θi ≤ θ1)

,

θ =
E(ωpzpθVciθi(1 + eB + sbi)V

−Γ
i | zi ≥ 0, θ0 ≤ θi ≤ θ1)

E(ωpzpθVci(1 + eB + sbi)V
−Γ
i | zi ≥ 0, θ0 ≤ θi ≤ θ1)

,

z =
E(ωpzpθVcizi(1 + eB + sbi)V

−Γ
i | zi ≥ 0, θ0 ≤ θi ≤ θ1)

E(ωpzpθVci(1 + eB + sbi)V
−Γ
i | zi ≥ 0, θ0 ≤ θi ≤ θ1)

.

Setting dSWF = 0, we get the formula:

τB =
1− (1− α− τ)sb/by − (1 + eB + sb)z/θ

(1 + eB + sb)(1− z/θ)
Note that for any combination of positive welfare weights (ωpzpθ) (in particular for uniform

utilitarian weights: ∀pz, pθ, ωpzpθ = 1), then as Γ→ +∞, we have: sb → sb0 = E(sbi|zi = 0, θi =

θ0) and z/θ → 0, i.e. we are back to the radical Rawlsian optimum.

A.4 Proof of Corollary 1 (Section 4)

The distributional formula can be derived in two alternative ways.

(i) First, starting from the original formula (Proposition 3), one can simply substitute

(1 − α − τ)sbz/by by e−(r−g)Hνzxz/θz − sbz[τB + (1 − τB)z/θz]. and obtain immediately the

distributional formula:

τB =
1− e−(r−g)Hνzxz/θz − (1 + eB)z/θz

(1 + eB)(1− z/θz)
This substitution comes from the following algebra. I.e. consider an individual i receiving

bequest bti = zibt, and leaving bequest bt+1i = xibt+1. So we have:

bt+1i = si[(1− τL)θiyLt + (1− τB)zibte
rH ] = xibt+1

In steady-state we have bt+1 = egHbt = e−(r−g)Hbyyt. Therefore the equation can be re-

arranged into:

sbi[(1− τL)(1− α)θi + (1− τB)ziby] = e−(r−g)Hνixiby

Substituting (1− τL)(1−α) = 1−α− τ + τBby, multiplying both sides by Vci and summing

up over all individuals with zi = z , this gives:

(1− α− τ)sbz/by = e−(r−g)Hνzxz/θz − sbz[τB + (1− τB)z/θz]

with: sbz =
E(Vciθisbi | zi = z)

E(Vciθi | zi = z)
, θz =

E(Vcisbiθi | zi = z)

E(Vcisbi| zi = z)
,

νzxz =
E(Vciνixi | zi = z)

E(Vciθi| zi = z)
· E(Vciθisbi| zi = z)

E(Vcisbi| zi = z)
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(ii) Alternatively, one can return to the equation dVi = −VciyLtidτL − Vbi(1 + R)bt+1idτB −
Vci(1 + R)bti(1 + eB)dτB. By substituting bt+1i = xibt+1 = xie

gHbt and yLtdτL = −bterH(1 −
eBτB

1− τB
)dτB, we get:

dVi = Vcibte
rHdτB

[(
1− eBτB

1− τB

)
θi − e−(r−g)H νixi

1− τB
− (1 + eB)zi

]
Summing up over all individuals with zi = z , this gives:

dSWF = Vczbte
rHdτB

[(
1− eBτB

1− τB

)
θz − e−(r−g)H νzxz

1− τB
− (1 + eB)z

]
i.e. τB =

1− e−(r−g)Hνzxz/θz − (1 + eB)z/θz
(1 + eB)(1− z/θz)

(iii) Finally, note that depending on the available parameters, one might prefer to express the

optimal tax formula in yet another equivalent way. Namely, in the original formula (Proposition

3) one can replace sbz by sbz = s ·xz ·νz/πz.70 In words, the fraction of total resources specifically

left for bequest motives sbz by z%-inheritance receivers is equal to the product of fraction of

total aggregate resources left (s), average bequest left by z-receivers/average bequest left (xz),

the share of z-receivers wealth accumulation due to bequest motive (νz), and divided by average

total resources of z-receivers/average total resources (πz).
71 We then get the following formula:

τB =

1− s · xz · νz
πzby

(1− α− τ)− (1 + eB +
s · xz · νz

πz
)z/θz

(1 + eB +
s · xz · νz

πz
)(1− z/θz)

By construction, all these formulas are fully equivalent.

A.5 Proof of Proposition 4 (non-linear taxes) (section 4).

The proof is similar to the proof of Proposition 2.

Consider a small increase in the bequest tax rate dτB > 0 above b∗. In steady-state this

allows the government to cut the labor tax rate by:

dτL = −
b∗ydτB

1− α

(
1− e∗BτB

1− τB

)
(< 0 as long as τB < 1/(1 + e∗B)).

70With: πz = E(ỹti|zi = z)/ỹt = average total resources of z-receivers/average total resources; and: s ==

bt+1/ỹt = aggregate steady-state saving rate (bequests/lifetime resources).
71s = bt+1/ỹt = aggregate steady-state saving rate (bequests/lifetime resources). In the no-taste-memory

special case, πz = E(πi|zi = z) (with πi = ỹti/ỹt) = average total resources of z-receivers/average total resources.

In the general case, πz =

∫
zi=z

VciθiπidΨ∫
zi=z

VciθidΨ
= average of πi weighted by the product Vciθi.

60



Consider an agent i with zero received bequest (bti = 0) and with total resources ỹti =

(1− τL)ỹLti. We have:

dỹti = −ỹLtidτL = ỹLti
b∗y[1− (1 + e∗B)τB]

1− α
dτB

1− τB
.

Replacing 1− τL by (1− α− τ + τBb
∗
y)/(1− α), we have:

dỹti = ỹti
b∗y[1− (1 + e∗B)τB]

1− α− τ + τBb∗y

dτB
1− τB

(> 0 as long as τB < 1/(1 + e∗B)).

Agent i divides his lifetime resources ỹti into lifetime consumption c̃ti and end-of-life wealth

wti = bt+1i by maximizing Vti = V (cti, wti, (1+R)(bt+1i− τB(bt+1i− b∗t+1)+)). Using the envelope

theorem, a change in dτB keeping ỹti constant leads to a utility loss equal to −(1 +R)Vb̄i(bt+1i−
b∗t+1)+dτB. The utility loss naturally is zero if the individual does not leave a bequest greater

than b∗t+1. The utility loss coming from dỹti is Vcidỹti.

For individuals leaving bequests above b∗t+1, the first-order condition is Vci = Vwi+(1−τB)(1+

R)Vb̄i, and one can again define si = bt+1i/ỹti the fraction of life-time resources individual

i devotes to wealth accumulation. Then, we can define: define swi = siVwi/Vci and sbi =

si(1− τB)(1 +R)Vb̄i/Vci. Hence, we have:

dVi = Vcidỹti − (1 +R)Vb̄i(bt+1i − b∗t+1)+dτB = Vci

[
dỹti −

sbi
si

(bt+1i − b∗t+1)+ dτB
1− τB

]
,

dVi = Vci
dτB

1− τB

[
ỹti
b∗y[1− (1 + e∗B)τB]

1− α− τ + τBb∗y
− sbi
si

(bt+1i − b∗t+1)+

]
.

Summing up over all zero-bequest-receivers, we get:

dSWF =
dτB

1− τB

[
b∗y[1− (1 + e∗B)τB]

1− α− τ + τBb∗y
E(Vciỹti| zi = 0)− E(Vci

sbi
si

(bt+1i − b∗t+1)+| zi = 0)

]
,

Introducing

s∗b0 =
E(Vci

sbi
si

(bt+1i − b∗t+1)+| zi = 0)

E(Vciỹti| zi = 0)
,

We have:

dSWF =
dτB

1− τB
E(Vciỹti| zi = 0)

[
b∗y[1− (1 + e∗B)τB]

1− α− τ + τBb∗y
− s∗b0

]
,

Setting dSWF = 0, we get:

τB =
1− (1− α− τ)(s∗b0/b

∗
y)

1 + e∗B + s∗b0
and τL =

τ − τBb∗y
1− α

.

Note. With a nonlinear estate tax, there is no closed form solution for bt+1i as a function of

lifetime resources and si. In particular, s∗b0 is no longer a weighted average of the individual sbi.

Numerical simulations would be required to provide a calibration in that context that we leave

for future research.
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A.6 Idiosyncratic Returns with Moral Hazard (Section 5.3)

In order to make the problem non trivial (and more realistic), we introduce moral hazard in

the model with idiosyncratic returns, i.e. we assume that the individual random return Rti(eti).

depends on some individual, unobservable effort input eti. Importantly, we assume that the

return conditional on effort remains stochastic so that the government cannot infer individual

effort eti from observing individual capital income and the individual stock of wealth. Without

loss of generality, assume a simple linear relationship between the probability Rti to and effort

eti:

Rti = ξeti + εti,

where εti is a purely random iid component with mean R0 ≥ 0. Hence the expected return R

is just equal to the product of effort productivity parameter ξ and effort eti. One can think of

eti as the effort that one puts into portfolio management: how much time one spends check-

ing stock market prices, looking for new investment opportunities, monitoring one’s financial

intermediaries and finding more performing intermediaries, etc.

These efforts should be viewed as informal financial services that are directly supplied and

consumed by households. Unlike the formal financial services supplied by financial corporations,

these informal financial services are ignored by national accounts - which implies that pure

capital income tends to be over-estimated.72

The parameter ξ measures the extent to which rates of return are responsive to such efforts.

When ξ is close to 0, Rti is almost a pure noise: returns are determined by luck. Conversely

when ξ is large (as compared to the mean and variance of εti), Rti is determined mostly by

effort.

We assume that the effort disutility cost C(eti) is proportional to portfolio size, so that in

effect individuals with different levels of inherited wealth end up with the same distribution of

returns (and in particular the same average return). That is, we assume C(eti) = (1−τ̃B)btic(eti),

where (1− τ̃B)bti is portfolio size (net-of-tax bequest) and c(eti) is a convex, increasing function

of effort.73

72In order to compute the value of these services (and deduct it from conventionally measured capital income),

one could try to estimate the amount of time that households spend in portfolio management and put a price on

this time. Note that this is unlikely to reduce drastically the conventionaly measured capital share (say, 25%-30%

of national income, see e.g. Piketty (2010, Table A8)). For instance, the share of the formal financial sector has

been fluctuating around 5%-7% of national income historically (see e.g. Philippon (2011, figure 1)). It is hard to

imagine how unmeasured, informal financial services supplied by households represent more than a fraction of

the formal finance industry - say 2%-3% of national income at the very most. Even if the overall volume of such

services is limited, it could be however that they respond a lot to incentives, i.e. that the elasticity is significant.

See discussion below.
73It would be interesting to introduce scale economies in portfolio management (i.e. by assuming that cost

rises less than proportionally with portfolio size), so as to generate the realistic prediction that higher portfolios

tend to get higher returns (at least over some range; e.g. very large capital endowments held by universities

tend to generate higher net returns than smaller endowments). We leave this important issue to future research.
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To simplify further the derivations, we assume that C(eti) enters the utility function as a

monetary cost, so that the individual maximization programme and budget constraint look as

follows:

maxVti = V (cti, wti, b̄t+1i) s.t. cti+wti ≤ ỹti = (1−τ̃B)[1+(1−τK)Rti]bti+(1−τL)yLti−(1−τ̃B)btic(eti)

It follows that optimal effort eti = e is the same for all individuals and is given by:

eti = e s.t. c′(e) = ξ(1− τK)

From this, we can define eR the elasticity of the aggregate rate of return R = ξe with respect

to the net-of-tax rate 1 − τK .74 We view eR as a free parameter, which can really take any

value, and which in principle can be estimated empirically. So for instance if ξ is sufficiently

small, i.e. if luck matters a lot more than effort in order to get a high return, then eR can be

arbitrarily close to zero. Conversely if ξ is sufficiently large, i.e. if returns are highly responsive

to effort, then eR can be arbitrarily large.75

Unsurprisingly, the optimal capital income tax rate τK depends negatively upon the elasticity

eR. If eR is close to zero, then providing full insurance by taxing capital income at rate τK =

100% is optimal in our model. Conversely, if eR is sufficiently large, then the disincentive effects

of taxing capital income are so large that one zero capital income tax (τK = 0%) becomes

optimal. Unfortunately, there exists no simple closed-form formula for the intermediate case,

so one needs to use numerical solutions methods in order to calibrate the optimal tax rate.

Proposition 6 (optimal capital income tax). With uninsurable idiosyncratic shocks to

rates of return, then the zero-bequest-receivers tax optimum involves a bequest tax τ̃B, a capital

income tax τK and a labor income tax τL such that:

(a) If eR → 0, then τK → 100%, τ̃B → τ̃B0 = τB −
R

1 +R
< τB and τL →

τ − τBby
1− α

(with

τB =
1− (1− α− τ)sb0/by

1 + eB + sb0
)

(b) If eR is sufficiently small, then τK > τL; if eR is sufficiently large, then τK < τL

(c) There exists eR > 0 s.t. if eR → eR, then τK → 0%, τ̃B → τB and τL →
τ − τBby

1− α
> τK

Proof. The proof follows immediately from a simple continuity result. I.e. with eR = 0,

then for any positive risk aversion level it is optimal to have full insurance (τK = 100%). So for

eR arbitrarily close to 0, then τK is arbitrarily close to 100%. The same continuity reasoning

74Alternatively, one could assume non-monetary disutility cost C(eti), so that individuals maximize Uti =

Vti − C(eti). If Vti = V (cti, wti, b̄t+1i) is homogeneous of degree one, we have V i = κi · ỹti, so that optimal

effort eti is given by: c′(eti) = κiξ(1 − τK). So eti varies with individual taste parameters (and also with risk

aversion, which needs to be introduced-otherwise idiosyncratic returns shocks do not matter). This complicates

the analysis and brings little additional insight.
75The elasticity eR also depends on the curvature of the effort cost function. E.g. if c(e) = e1+η/(1 + η), then

e = [ξ(1− τK)]1/η, and R = R0 + ξ1+1/η(1− τK)1/η.
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applies to eR = eR and τK = 0%. Note that eR is finite because a lower return R not only reduces

the capital income tax base but also has a negative impact on the aggregate steady-state bequest

flow by.

In order to solve the model numerically in the intermediate case, we need to specify the form

of risk aversion. Of course risky returns are detrimental only if individuals are risk averse. A

simple, albeit extreme, way to capture risk aversion is to posit that bequests leavers consider

the worst possible scenario case where their heir will receive the worst possible return. Let us

assume that the worst possible negative shock for εit is equal to −ε0 < 0. We assume ε0 to be

exogenous and finite so that net capitalized bequests left are always positive even in the worst

case scenario. For simplicity we also assume R0 = 0 and ξ = 1 .

Hence individual i choose bt+1i to maximize

V i[(1−τB)[1+(εti+R)(1−τK)−c(R)]bti+(1−τL)yLti−bt+1i, bt+1i, (1−τB)bt+1i(1+(R−ε0)(1−τK)−c(R))]

Recall that R is such that c′(R) = 1−τK . We naturally assume that εti is already realized when

choosing bt+1i. Assuming the worst possible return R − ε0 is a useful short-cut to capture risk

aversion for risky returns. In general, one could have used a concave utility and expectations

and we could have defined R − ε0 as the certainty equivalent rate of return. However, in that

general case, ε0 would depend on the complete structure of the model (including all tax rates),

making the formulas much less tractable.

The first order condition for bt+1i is such that

V i
c = V i

w+V i
b̄ (1−τB)(1+(R−ε0)(1−τK)−c(R)) hence νi = V i

b̄ (1−τB)(1+(R−ε0)(1−τK)−c(R))/V i
c

We also make the Cobb-Douglas utility assumption and assume that si is orthogonal to θi

and zi (no memory case). In that case, the first order condition in bt+1i defines:

bt+1i = si · [(1− τB)(1 + (1− τK)(εti +R)− c(R))bti + (1− τL)yLti]

which aggregates to

bt+1 = s · [(1− τB)(1 + (1− τK)R− c(R))bt + (1− τL)yLt]

The government budget constraint is

τLyLt + τBbt · [1 + (1− τK)R− c(R)] + τKbtR = τYt

where Yt is defined such that (1 − α)Yt = yLt. Here, we assume that the bequest tax is raised

on capitalized bequests net of capital income taxes and net of costs to earn return R. As we

shall see, this is the natural assumption to obtain a simple expression for bt as it implies:

bt+1 = s · [(1 +R− c(R))bt + yLt − τYt] and bt =
s(1− α− τ)Yt

1 +G− s(1 +R− c(R))
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which shows that bt does not depend on τB (for fixed τ) so that eB = 0 and depends upon τK

only through R. We denote eRB the elasticity of bt with respect to R. In the general case (not

Cobb-Douglas and with potential memory, we still have R a function of τK only but bt now

depends in a complex way on both τK and τB (for a given τ), which complicates the formulas.

We derive the optimum for zero receivers. For zero receivers, the utility is:

V i[(1− τL)θiyLt − bt+1i, bt+1i, (1− τB)bt+1i(1 + (R− ε0)(1− τK)− c(R))]

Optimum τB. Consider a small reform dτB, dτL that leaves the government budget con-

straint unchanged. As eB = 0 and R depends solely on τK , we have dbt = dR = 0 and hence

−dτLyLt = dτBbt · [1 + (1− τK)R− c(R)]

For zero receivers, the effect on utility is

dV i = −dτLyLtθiV i
c − dτBxibt+1(1 + (R− ε0)(1− τK)− c(R))V i

b̄

Using the definition of νi = V i
b̄
(1− τB)(1 + (R− ε0)(1− τK)− c(R))/V i

c , we have

dV i = dτBbt · [1 + (1− τK)R− c(R)]V i
c

[
θi −

νixi
1− τB

1 +G

1 + (1− τK)R− c(R)

]
Therefore, the optimum τB for zero-receivers is such that:

τB = 1− ν̄x

θ̄

1 +G

1 + (1− τK)R− c(R)

This formula is the same as the standard formula in Proposition 2 with eB = 0 but with the

rate of return R replaced with the net-rate of return (1− τK)R− c(R). Naturally, with τK > 0

and costs of getting return R, the net-return is less than the gross return R and hence τB is

smaller relative to proposition 2.

Optimum τK. Consider a small reform dτK , dτL that leaves the government budget con-

straint unchanged. We have (as c′(R) = 1− τK):

−dτLyLt = τBdbt · [1 + (1− τK)R− c(R)] + τKdbtR + dτKbt(1− τB)R + τKbtdR

As bt depends on τK only through R, we have

1− τK
bt

dbt
d(1− τK)

= eRB · eR with eRB =
R

bt

dbt
dR

which implies that

−dτLyLt = dτKbtR

[
1− τB −

τK
1− τK

eR(1 + eRB)− τBeRe
R
B

(1− τK)R
[1 + (1− τK)R− c(R)]

]
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For zero receivers, the effect on utility is

dV i = −V i
c dτLyLtθi − dτK(1− τB)xibt+1(R− ε0)V i

b̄

dV i = −V i
c dτLyLtθi − dτKV i

c

1 +G

1 + (R− ε0)(1− τK)− c(R)
(R− ε0)νixibt

dV i

V i
c θidτKbtR

= 1−τB−
τKeR(1 + eRB)

1− τK
−τBeRe

R
B[1 + (1− τK)R− c(R)]

(1− τK)R
−

νixi
θi

(1 +G)R−ε0
R

1 + (R− ε0)(1− τK)− c(R)

which leads to the fairly complex optimal tax formula for τK :

τK
1− τK

eR(1 + eRB) = 1− τB
[
1 + eRe

R
B

1 + (1− τK)R− c(R)

(1− τK)R

]
−

ν̄x
θ̄

(1 +G)R−ε0
R

1 + (R− ε0)(1− τK)− c(R)

If eR = 0, then τK = 100% and τB = 1− ν̄x

θ̄
(1 +G)

If eR > 0, then τK < 100% and τB decreases. Q.E.D.

These formulas can be solved numerically using MATLAB. In the simulation results pre-

sented in the example below we assume: ε0 = 0.6 ·R(τK = 0).

Example.Assume τ = 30%, α = 30%, s = 10%, eB = 0, z = 0%, θz = 100%, νzxz =

50%, r(τK = 0%) = 4%, g = 2%, H = 30, so that e(r−g)H = 1.82.

Those simulations are done with MATLAB assuming R0 = 0, ξ = 1 and iso-elastic cost of

effort c(R) = R · (R/R)1+1/eR/(1 + 1/eR). See appendix for details.

If eR = 0.0 then τK = 100%, τB = 9%, and τL = 34%.

If eR = 0.1 then τK = 78%, τB = 35%, and τL = 35%.

If eR = 0.3 then τK = 40%, τB = 53%, and τL = 36%.

If eR = 0.5 then τK = 17%, τB = 56%, and τL = 37%.

If eR = 1 then τK = 0%, τB = 58%, and τL = 38%.

B Extensions

B.1 Elastic Labor Supply

So far we assumed inelastic labor supply. We now show how the optimal labor and bequest tax

rates would be set simultaneously in a model with elastic labor supply.

To ensure balanced growth path (and to avoid exploding labor supply), we need to assume

a specific functional form for the disutility of labor:

Ui = Vie
−hi(l) or equivalently Ui = log Vi − hi(l)

where l is labor supply and hi(.) is increasing and convex (and could differ across individuals).
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Individual i labor income is yLti = vtθili where θi is individual productivity (with mean one

across the population) and vt = voe
gHt is the average wage rate of generation t.76 We denote

by vti = (1− τL)vtθi the net-of-tax wage of individual i.

Individual i chooses bt+1i and li to maximize:

log Vi(vtili + (1− τB)(1 +R)bti − bt+1i, bt+1i, (1 +R)bt+1i(1− τB))− h(li)

Because Vi is homogeneous of degree one, we have Vi = κ · ỹti and hence

log V i − h(li) = cte+ log(vtili + bti)− h(li),

where bti = (1 − τB)(1 + R)bti is net-of-tax capitalized bequest (i.e. non-labor income). The

first order condition for li is:

h′(li) =
vti

vtili + bti

Hence (uncompensated) labor supply li = l(vti, bti) is a function of the net-wage and non-

labor income and is homogeneous of degree zero. Hence, uniform growth in the wage rate and

non-labor income leaves labor supply unchanged. Therefore, we can have a balanced growth

path. l(vti, bti) naturally increases with vti and decreases with bti.

The government budget constraint defines τL as a function of τB as we had before. Consider

a small reform dτB and let dτL be the required labor tax rate adjustment needed to maintain

budget balance. Differentiating the government budget constraint, we have:

dτLyLt + τLdyLt + dτBbte
rH + τBe

rHdbt = 0,

which can be rewritten as:

dτLyLt

[
1− τL

1− τL
eL

]
= −dτBbterH

[
1− τB

1− τB
eB

]
,

where

eB =
1− τB
bt

dbt
d(1− τB)

and eL =
1− τL
yLt

dyLt
d(1− τL)

,

are the elasticities of bequests and labor income with respect to their net-of-tax rates. Im-

portantly, note that those elasticities are general equilibrium elasticities where both τL and

τB change together to keep budget balance. dτL > 0 and dτB < 0 discourages labor supply

through a reduction in the wage rate and through income effects as inheritances received are

larger (Carnegie effect). dτB > 0 and dτL < 0 discourages bequests through the price effect but

indirectly encourages bequests as individuals keep a larger fraction of their labor income.

Proposition 7 (zero-bequest-receiver optimum with elastic labor supply). Under

adapted assumptions 1-4, and welfare weights: ωpzpθ = 1 if pz = 0, and ωpzpθ = 0 if pz > 0:

τB =
1− (1− α− τ · (1 + eL))sb0/by

1 + eB + sb0 · (1 + eL)
and τL =

τ − τBby
1− α

,

76As discussed above vt = FL = v0(1 +G)t grows at rate 1 +G per generation.

67



with sb0 = E(sbi|zi = 0) = the average bequest taste of zero bequest receivers (weighted by

marginal utility×labor income).

τB increases with eL iff τ(1 + eB) + sb0(1− α) ≥ by

If eL → +∞ (infinitely elastic labor supply), then τB → τ/by and τL → 0

If eB → +∞ (infinitely elastic bequest flow), then τB → 0 and τL → τ/(1− α)

If sb0 = 0 (zero-receivers have no taste for bequests), then τB = 1/(1 + eB).

Proof: With elastic labor supply, the most natural formulation for the government budget

constraint is

τLyLt + τBbte
rH = τ̄ Ȳt,

where Ȳt is an exogenous reference income (which grows at rate 1+G and independent of τB, τL).

Otherwise the revenue requirements would vary with labor supply, which seems strange.77

It is also useful to introduce τ = τ̄ Ȳt/Yt, the tax to output ratio (which is now endogenous)

to rewrite the government budget constraint as:

τL(1− α) + τBby = τ,

We have:

U i = log V i[(1− τL)θivtli − bt+1i, bt+1i, (1 +R)bt+1i(1− τB)]− h(li)

Hence, using the envelope theorem as li and bt+1i are optimized, we have:

dU i =
V i
c

V i
[−dτLyLti]−

(1 +R)V i
b̄

V i
bt+1idτB,

Using that (1 +R)V i
b̄

= (sbi/si)V
i
c /(1− τB), and bt+1i = siỹti we have:

dU i =
V i
c

V i(1− τB)
[−dτLyLti(1− τB)− ỹtisbidτB] ,

dU i =
V i
c dτB

V i(1− τB)

[
−dτL
dτB

1− τB
1− τL

yLti(1− τL)− ỹtisbi
]
,

Using the link between dτL and dτB: yLtdτL(1− τL(1 + eL))/(1− τL) = −bterHdτB(1− τB(1 +

eB))/(1− τB), we have:

dU i =
V i
c dτB

V i(1− τB)

[
bte

rH

yLt

1− (1 + eB)τB
1− (1 + eL)τL

yLti(1− τL)− ỹtisbi
]
,

We can use by = bte
rH/Yt = bt(1− α)/yLt and (1− α)τL = τ − τBby to get:

dU i =
V i
c dτB

V i(1− τB)

[
by[1− (1 + eB)τB]

1− α− (1 + eL)(τ − τBby)
yLti(1− τL)− ỹtisbi

]
,

77With inelastic labor supply, we could use actual domestic output Yt which was independent of taxes.
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For zero receivers, we have bti = 0, ỹti = yLti(1− τL) and hence:

dU i =
(1− τL)yLtiV

i
c dτB

V i(1− τB)

[
by[1− (1 + eB)τB]

1− α− (1 + eL)(τ − τBby)
− sbi

]
,

Setting dSWF = 0 for zero receivers, and defining

sb0 =
E[(V i

c /V
i)yLtisbi | zi = 0]

E[(V i
c /V

i)yLti | zi = 0]
,

we obtain:

0 =
by[1− (1 + eB)τB]

1− α− (1 + eL)(τ − τBby)
− sb0.

Rearranging, we obtain the formula in the proposition. The second part is straightforward.QED

This formula is similar to the inelastic case except that eL appears both in the numerator

and denominator. The inequality τ(1 + eB) + sb0(1− α) ≥ by is very likely to be satisfied. E.g.

if τ = 30% and by = 15%, it is satisfied even for eB = 0 and sb0 = 0. That is, a higher labor

supply elasticity eL generally implies a higher bequest tax rate τB.

Intuitively, a higher labor supply elasticity makes high labor taxation less efficient, which

for given aggregate revenue requirements makes the optimal tax mix tilt more towards bequest

taxes (and more generally towards capital taxes in presence of capital market imperfections,

which we do not model here in order to illuminate the pure labor supply effect). If sb0 = 0, then

we obtain again the revenue maximizing rate simple formula τB = 1/(1 + eB). The reason is

the following: at τB = 1/(1 + eB), we have dτL = 0 for any small dτB. Hence, the labor supply

response becomes irrelevant.78

The following examples illustrate the quantitative impact of eL. When both bequests and

labor supply are elastic, the planner faces a race between two elasticities. If labor is more elastic

than bequests, then behavioral responses reinforce the case for taxing labor income less than

bequests. With by = 15% (current French level), for reasonable elasticity values τL < τB. Very

large bequest elasticities–above one–and very small labor supply elasticities–close to zero–are

needed to reverse this conclusion.

Example 7. Assume τ = 30%, α = 30%, sb0 = 10%, by = 15%

If eB = 0 and eL = 0, then τB = 67% and τL = 29%.

If eB = 0 and eL = 0.2, then τB = 69% and τL = 28%.

If eB = 0 and eL = 1, then τB = 78% and τL = 26%.

If eB = 0.2 and eL = 0, then τB = 56% and τL = 31%.

If eB = 0.2 and eL = 0.2, then τB = 59% and τL = 30%.

If eB = 0.2 and eL = 1, then τB = 67% and τL = 29%.

If eB = 1 and eL = 0, then τB = 35% and τL = 35%.

If eB = 1 and eL = 0.2, then τB = 37% and τL = 34%.

If eB = 1 and eL = 1, then τB = 43% and τL = 33%.

78This is analogous to the fact that 1/(1 + eL) is the revenue maximizing rate in optimal linear labor income

taxation even if there are income effects.
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B.2 Closed Economy

So far we focused upon the small open economy case. I.e. we took as given the world instan-

taneous rate of return r ≥ 0 (and the corresponding generational return 1 + R = erH). Our

optimal tax results can easily be extended to the closed economy case.

In a closed economy, the domestic capital stock Kt is equal to domestic inheritance (i.e.

Kt = Bt), and the generational rate of return 1 + Rt = ertH is endogenously determined by

the marginal product of domestic capital Rt = FK =
α

βt
with βt =

Kt

Yt
= byte

−rtH= domestic

capital-output ratio.

This can be rewritten:
Rt

1 +Rt

=
α

byt
. I.e. closed economies with larger levels of capital

accumulation and inheritance flows have lower rates of return.

The rest of the model is unchanged. Under assumptions 1-4, then for any given tax policy

(τB, τL), we again have a unique long run steady-state: byt → by, Rt → R, Ψt → Ψ (Proposition

1). This follows from the fact in the open economy case the long run by is an increasing function

of the exogenous rate of return R (i.e. long run capital supply is upward sloping). Since the

demand for capital is downward sloping, there exists a unique long run rate of return R clearing

the capital market:
R

1 +R
=
α

by
.

The only difference with the open economy case is that a small tax change dτB > 0 now

triggers long run changes dR > 0 and dv < 0 (where v = FL is the wage rate). I.e. higher

bequest taxes lead to lower capital accumulation (assuming eB > 0), which raises the marginal

product of capital and reduces the marginal product of labor. However the envelope theorem

implies that these two effects exactly offset each other at the margin, so that the optimality

conditions for τB, τL are wholly unaffected as in the standard optimal tax theory of Diamond and

Mirrlees (1971), i.e. we keep the same optimal formulas as before (Proposition 2 and subsequent

propositions). The important point is that the elasticity eB entering the formula is the pure

supply elasticity (i.e. not taking into account the general equilibrium effect), and similarly for

the elasticity eL in the case with elastic labor supply.

B.3 Population Growth

So far we assumed that all individuals had exactly one kid, so that population was stationary:

Nt = 1. All results can be easily extended to a model with population growth.

I.e. assume that all individuals have 1 +N kids, so that population grows at rate 1 + N =

enH per generation: Nt = N0e
nHt. E.g. if everybody has on average 1 + N = 1.5 kids (i.e.

2(1 + N) = 3 kids per couple), then total population rises by N = 50% by generation, i.e. by

n = log(1 +N)/H = 1.4% per year (with H = 30).

The rest of the model is unchanged. Average productivity ht is again assumed to grow

at some exogenous rate 1 + G = egH per generation: ht = h0e
gHt. Aggregate human capital

Lt = Ntht = N0h0e
(n+g)Ht grows at rate (1 + G)(1 + N) = e(g+n)H per generation. Taking as
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given the world, generational rate of return R = erH − 1, profit maximization implies that the

domestic capital input Kt is chosen so that FK = R, i.e. Kt = β
1

1−αLt (with β = Kt
Yt

= α
R

).

So output Yt = β
α

1−αLt = β
α

1−αN0h0e
(g+n)Ht also grows at rate (1 + G)(1 + N) = e(g+n)H per

generation. So does aggregate labor income YLt = (1 − α)Yt. Per capita output, capital and

labor income yt, kt, yLt (= Yt, Kt, YLt divided by Nt.) grow at rate 1 +G = egH .

The transition equation for byt =
erHBt

Yt
(where Bt = Nt · bt is the aggregate bequest flow

received by generation t) becomes:

byt+1 = e(r−g−n)H [s(1− τL)(1− α) + s(1− τB)byt] (14)

So that: byt → by =
s(1− τL)(1− α)e(r−g−n)H

1− s(1− τB)e(r−g−n)H

Therefore, one simply needs to replace the productivity growth rate g by the sum of population

and productivity growth rates g + n. In societies with infinitely large population growth (i.e.

where individuals have an infinite number of children), inheritance becomes negligible. Wealth

gets divided so much between generations that one should rely on new output and large saving

rates in order to become rich. The formula and intuition also work for countries with negative

population growth (i.e. with N < 0).

Next, one can see from the proof of Proposition 2 that our basic optimal tax formula, as well

as all subsequent formulas, are wholly unaffected by the introduction of population growth. It

follows that the impact of population growth on socially optimal tax policies is the same as the

impact of productivity growth and goes through entirely via its impact on by. That is, optimal

capital taxes are lower in high population growth countries, because capital accumulation is less

inheritance-based and more labor-based and forward looking.

B.4 Consumption Taxes

So far we ignored we possibility of using a consumption tax τC in addition to the labor income

tax τL and the capitalized bequest tax τB. Whether τC has a useful role to play in our model

depends on which tax structures are allowed and how one models the impact of a consumption

tax on private utility and government finances.

First of all, it is worth recalling that one of the main motivations behind Kaldor (1955)’s

famous consumption tax proposal was to raise the share of the tax burden paid by wealthy

successors. That is, Kaldor repeatedly stresses that there are many ways to avoid paying taxes

on inheritance and especially on capital income (e.g. via trust funds and capital gains). He

is very much concerned with the fact that the highly progressive income taxes applied in the

U.K. in the 1950s might hurt high labor income earners (typically, civil servants and university

professors such as himself) much more heavily than wealthy successors and rentiers. Kaldor

therefore advocates for a steeply progressive tax on large consumption levels, with τC up to

75% for consumption levels over 5,000£ (i.e. living standards over about 10 times the average
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income per tax unit of the time), which he views as easier to enforce administratively than a

tax on large capital incomes or large wealth holdings.79

One simple way to capture Kaldor’s intuition in the context of our model is the following.80

Assume that it is completely impossible to enforce a capitalized bequest tax τB, so that we are

constrained to have τB = 0. Then it is clearly optimal to have some positive level of consumption

tax τC in addition to the labor income tax τL, since this is the only way to charge some of the

tax burden to successors rather than to labor earners. E.g. in case there is no public revenue

requirement (τ = 0), then the only way to redistribute from successors to labor earners is to

have a consumption tax τC > 0 (taxing the consumption of both successors and labor earners),

the proceeds of which are used to finance a wage subsidy τL < 0.

In order to fully solve the model with a consumption tax, we first need to specify how τC

enters in private utility for wealth and bequest. The most natural specification is to assume that

agents care about the consumption value (purchasing power) of wealth and bequest, so that a

consumption tax reduces proportionally the utility for wealth and bequest.81 The individual

maximization program in presence of a consumption tax τC can then be written as follows:

maxVti = Vi(cti, wti, b̄t+1i) s.t.
cti

1− τC
+ wti ≤ ỹti = (1− τB)btie

rH + (1− τL)yLti

With: ỹti = (1− τB)btie
rH + (1− τL)yLti = total after-tax lifetime income

cti = consumption

wti = end-of-life wealth = bt+1i = pre-tax raw bequest left to next generation

wti = (1− τC)wti = purchasing power of end-of-life wealth

b̄t+1i = (1− τC)(1− τB)bt+1ie
rH = purchasing power of after-tax capitalized bequest left to

next generation

τB = capitalized bequest tax rate, τL = labor income tax rate, τC = consumption tax rate

79Kaldor formulates his consumption tax as (1 + τC)cti (rather than cti/(1− τC)), so his proposed top tax

rate is actually τC = 300% (rather than τC = 75%). Note that Kaldor is very much influenced by Morgenthau’s

(failed) attempt to introduce a progressive consumption tax in the U.S. in 1942, and views this new progressive

tax as a complement to existing progressive inheritance and income taxes (not as a substitute). See in particular

Kaldor (1955, pp.11-17, p.224-242). The argument according to which consumption taxes can play a useful role

when capital taxes do not work very well (e.g. when capital income cannot be measured well) can also be found

in Meade (1978) and King (1980).
80Unfortunately Kaldor does not use a formal model, so it is hard to know the exact consumption tax theory

that he has in mind. In addition to his tax enforcement rationale, another reason why he favors consumption

taxes over income taxes seems to be the view that there is insufficient aggregate savings and that savings ought

to be encouraged over consumption (this argument is never made fully explicit, however). We discussed this

argument in the section on dynamic efficiency.
81In a model where agents care about the nominal value of wealth, irrespective of its consumption value (say

because they care about the pure prestige or social status value of wealth), then the consumption tax does not

reduce at all the utility for wealth and bequest, and this is obviously a valuable policy tool (it raises revenue

without reducing utility). This is the same tax illusion issue as that discussed for the capital income tax (see

above).
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One can see immediately that from the individual utility viewpoint, any tax mix with con-

sumption tax (τC , τB, τL) is equivalent to a tax mix with zero consumption tax (τC = 0, τB, τL),

where the corrected tax rates τB, τL are given by: 1 − τB = (1 − τC)(1 − τB) and 1 − τL =

(1−τC)(1−τL). It is also equivalent to a tax mix with zero bequest taxes (τC , τB = 0, τL), where

the corrected tax rates τC , τL are given by: 1−τC = (1−τC)(1−τB) and 1−τL = (1−τL)/(1−τB).

From the government budget constraint viewpoint, these various tax arrangements are equiv-

alent only if the consumption tax is pre-paid by donors, in the sense that it is paid on their

total after-tax income, whether or not they consume it right away or transmit it to the next

generation for future consumption. In this formulation, which we call “broad consumption tax”

and note τC , the budget constraint is the following:

τLyLt + τBbte
rH + τC [(1− τL)yLt + (1− τB)bte

rH ] = τyt

In case the consumption tax is paid only on current consumption, which we call “restricted

consumption tax” and note τ̂C , then the consequences for individual welfare are the same as

with the broad tax, but the government budget constraint now looks as follows:

τLyLt + τBbte
rH + τ̂C(1− s)[(1− τL)yLt + (1− τB)bte

rH ] = τyt

In the broad consumption tax formulation τC , we have a full equivalence result.

E.g. assume τ = 30%, α = 30%, sb0 = s = 10%, eB = 0, by = 15%, so that the zero-bequest-

receiver optimum involves τB = 67% and τL = 29% (see example 1, section 4). An equivalent

tax mix would be τB = 0, τC = 67% and τL = −115%. I.e. instead of taxing bequests at

67% and labor income at 29%, then it is equivalent to tax all consumption expenditures at 67%

(including those originating from labor income) and to subsidize labor income at -115% (so that

labor earners end up with exactly the same after tax resources). This is fully equivalent, both

from the viewpoint of individual welfare and government finances.

This is a fairly indirect way to implement the social optimum, however. In effect, a lot of

money is being taxed and redistributed to the same people. So unless there exists a very strong

tax enforcement argument in favor of consumption taxes over capital taxes (which we do not

find very compelling, especially if one needs to implement progressive consumption taxes), a

direct implementation via capital taxes seems more valuable.82

82Capital taxes do require substantial information, and are to some extent more complex to implement than

proportional consumption taxes. But in order to implement a progressive consumption tax, one would need to

measure individual consumption levels, which requires information on annual wealth holdings and/or capitalized

inheritance, in which case it is easier to directly tax wealth or capitalized inheritance. In our view, the “tax

enforcement” argument in favor of consumption taxes is often closer to a claim about “political feasibility”

(wealth holders certainly do not like capital taxes and tend to strongly resist them) than to a claim about

“administrative feasibility”. E.g. the recent Mirrlees Review (2011) argues that larger inheritance taxes might

be valuable, but would generate substantial political opposition, and therefore chooses not to explore the issue

any further.
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In the restricted consumption tax formulation τ̂C , then in order to maintain budget balance

one needs higher consumption tax rates. E.g. in the numerical example above, then with

s = 10% one needs τ̂C = τB/(1 − s) = 74%. In terms of individual welfare, however, this is

clearly inferior to the broad tax formulation. This is because the restricted tax imposes the

same utility costs as the broad tax, but raises less revenue. In the same way, the difference

between a tax τB on received capitalized bequest bte
rH and a tax τ̂B on left bequests bt+1 is

that the former imposes the same utility costs on zero receivers but raises more tax revenue, so

is superior in terms of welfare.83

To summarize: unless one makes fairly ad hoc assumptions, consumption taxes are not very

useful in the context of our model. In a world with two-dimensional heterogeneity -capitalized

bequest vs labor income- the appropriate tax policy tools are a capitalized bequest tax τB and

a labor income tax τL, not a consumption tax τC .

B.5 Homogenous Tastes

So far we assumed heterogenous random tastes (see section 3, Assumption 1). But strictly

speaking, random tastes - or other types of multiplicative shocks - are not necessary for our

results. I.e. if we assume no-taste-heterogeneity (s0 = s1 = s) and non-degenerate productivity

heterogeneity (θ0 < 1 < θ1), then one can easily see that the steady-state distribution ψ(z, θ)

involves only partial correlation between the two dimensions (the entire history θti, θt−1i, etc.

matters for zt+1i, while θti matters for θt+1i). All our results and tax formulas would go through,

with two caveats. First, in order to ensure the existence of zero-bequest receivers one would

need to assume zero minimal productivity (θ0 = 0), so that an infinitely long sequence of low

productivity shocks leads to zero bequest.

E.g. assume uniform tastes sit = s and i.i.d. productivity shocks θti. We again note

µ = s(1− τB)e(r−g)H , and assume µ < 1. The transition equation is: zt+1i = (1− µ)θti + µzti.
84

This implies that in steady-state, zti is a (geometric) average of all past labor shocks: zti =∑+∞
s=0(1 − µ)µsθt−1−si. Hence, the steady-state inheritance distribution φ(z) is a continuous

distribution over the interval [θ0, θ1].

Next, as one can see from this simple example, one limitation of the pure productivity-shocks

model is that it has little flexibility (the parameters for the distribution of inherited wealth

are entirely determined by the parameters for the distribution of labor income) and tends to

generate too little wealth inequality. The advantage of the model with random tastes (or other

multiplicative shocks) is that it is more realistic and flexible. In particular, it can generate the

right level of wealth concentration that one observes in the data (very low bottom shares, very

83Assuming r > g, then in steady-state we have bte
rH > bt+1 = bte

gH , i.e. τB raises higher tax revenues

than τ̂B . If one nevertheless decides to use the second form of tax, then the obvious conclusion is that the

corresponding optimal tax rate would be lower, i.e. if r > g then τ̂B < τB .
84This can be seen using the individual transition bt+1zt+1i = s · [zti(1 − τB)bte

rH + θti(1 − τL)yLt] and the

macro equation bte
rH = se(r−g)H(1− τL)yLt/(1− s(1− τB)e(r−g)H).
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high top shares) without assuming extreme values for the inequality of labor income. Given

that our primary purpose is to obtain optimal tax formulas that can be calibrated to actual

data, the random tastes model is clearly superior. But strictly speaking our results also apply

to the pure productivity-shocks, uniform-taste model.

The only case where our results would cease to apply is if one assumes uniform taste and

perfect correlation of productivity shocks across generations: i.e some dynasties i have for

ever a low productivity shock (∀t, θti = θ0), while some other dynasties j have for ever a high

productivity shock (∀t, θtj = θ1), thereby violating the ergodicity assumption 2. In the long run,

the distribution of inheritance φ(z) would then be perfectly correlated with the distribution of

labor productivity h(θ). As a consequence, the labor income tax τL and the bequest tax τB

would have the same distributional impact. Since the latter imposes an extra utility cost - via

the usual joy-of-giving externality -, there is no point having a positive τB.85 But as long as

inequality is two-dimensional there is room for a two-dimensional tax policy tool.

B.6 Overlapping Generations and Life-cycle Savings

B.6.1 Model and Key Results

So far we focused upon a simple discrete time model where each generation lives for only one

period (which we interpreted as H-year long, say H = 30). We assume that consumption took

place entirely at the end of the period, so that in effect there was no life-cycle saving.

We now show that our results and optimal tax formulas can be extended to a full-fledged,

continuous time model with overlapping generations and life-cycle savings. As far as optimal

inheritance taxation is concerned, we keep the same closed-form formulas for optimal tax rates.

Regarding optimal lifetime capital taxation, we keep the same general, qualitative intuitions,

but one needs to use numerical methods to compute the full optimum.

We assume the following deterministic, stationary, continuous-time OLG demographic struc-

ture.86 Everybody becomes adult at age a = A, has one kid at age H > A, and dies at age

D > H. So everybody inherits at age a = I = D−H > A. E.g. if A = 20, H = 30 and D = 70,

then I = 40. If D = 80, then I = 50.

For simplicity we assume zero population growth (at any time t, the total adult population

Nt includes a mass one of individuals of age a ∈ [A,D] and is therefore equal to Nt = D−A), and

85As shown by Kopczuk (2001) in the case with elastic labor supply, whether one wants to tax or subsidize

bequests in the steady-state of a model with perfect correlation of abilities across generations and homogenous

tastes actually hinges on the extent of the bequest externality (bequests received are a signal of ability so in

some specifications one might want to tax them). See also Brunner and Pech (2011a, 2011b).
86To obtain meaningful theoretical formulas for inheritance flows (i.e. formulas that can be used with real

numbers), we need a dynamic model with a realistic age structure. Models with infinitely lived agents or

perpetual youth models will not do, and standard two or three-period OLG models will not do either. Here we

follow the continuous-time OLG model introduced by Piketty (2010, sections 5-7; 2011, section 5).
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inelastic labor supply (each adult i supplies one unit of labor lti = 1 each period, so aggregate

raw labor supply Lt = Ntht = (D − A)h0e
gt).

We denote by Ñt the cohort receiving inheritance at time t (born at time t − I). Each

individual i ∈ Ñt solves the following finite-horizon maximization program:

maxVti = V (Uti, wtiD, b̄t+Hi) subject to c̃ti + wtiD ≤ ỹti = (1− τB)b̃ti + (1− τL)ỹLti

With: Uti = utility derived from lifetime consumption flow (ctia)A≤a≤D

wtiD = end-of-life wealth = bt+Hi = pre-tax bequest left to next generation

b̄t+Hi = (1− τB)bt+Hie
rH = after-tax capitalized bequest left next generation

c̃ti =
∫ a=D

a=A
ctiae

r(D−a)da = end-of-life capitalized value of consumption flow ctia

ỹti = end-of-life capitalized value of total lifetime resources

b̃ti = btie
r(D−I) = btie

rH = end-of-life capitalized value of received bequest bti

ỹLti =
∫ a=D

a=A
yLtiae

r(D−a)da = end-of-life capitalized value of labor income flow yLtia

τB = bequest tax rate, τL = labor income tax rate

In the same way as in the discrete-time model, our optimal tax formulas hold for large

classes of utility functions Vti and Uti, using a sufficient-statistics approach. Regarding Uti, we

assume that it is proportional to c̃ti: Uti = µc̃ti. This holds if Uti takes a standard discounted

utility form Uti = [
∫ a=D

a=A
e−δ(a−A)c 1−γ

tia ]
1

1−γ , as well as for less standard (but maybe more realistic)

utility specifications involving for instance consumption habit formation (see technical details

subsection below). Regarding Vti, for notational simplicity we again focus upon the Cobb-

Douglas case:

V (U,w, b̄) = U1−sbi−swiwswi b̄sbi (swi ≥ 0, sbi ≥ 0, si = swi + sbi ≤ 1)

This simple form implies that individual i devotes a fraction si = swi + sbi of his lifetime

resources to end-of-life wealth, and a fraction 1 − si to lifetime consumption. Our results

again hold with CES utility functions, and actually with all utility functions V (U,w, b̄) that are

homogenous of degree one

We also need to specify the lifetime structure of labor productivity shocks. To keep notations

simple, we assume that that at any time t the average productivity ht is the same for all cohorts,

and that each individual i keeps the same within-cohort normalized productivity θia = θi during

his entire lifetime.87 So we have: yLtia = θiyLte
g(a−I). It follows that the end-of-life capitalized

value of labor income flows ỹLti can be rewritten:

ỹLti = θiλ(D − A)yLte
rH with λ =

e(r−g)(I−A) − e−(r−g)(D−I)

(r − g)(D − A)
(15)

87In effect we assume a flat, cross-sectional age-productivity profile at the aggregate level. The λ formula can

easily be extended to non flat profiles (e.g. with replacement rate ρ ≤ 1 above age retirement age R ≤ D) and

to more general demographic structures (e.g. with population growth n ≥ 0).
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Intuitively, λ corrects for differences between the lifetime profiles of labor income flows vs.

inheritance flows (dollars received earlier in life are worth more). When labor income flows acrue

earlier in life than inheritance flows then λ > 1 (and λ < 1 conversely with early inheritance).

In practice, inheritance tends to happen around mid-life, and λ is typically very close to one

(say, if A = 20, H = 30, D = 80, so that I = D −H = 50).88

The individual-level transition equation for bequest is now the following:

bt+Hi = si[(1− τL)ỹLti + (1− τB)btie
rH ] (16)

In the “no memory” case (tastes and productivities are drawn i.i.d. for each cohort), then by

linearity the individual transition equation can be easily be aggregated into:

bt+H = s[(1− τL)λ(D − A)yLte
rH + (1− τB)bte

rH ] (17)

The aggregate bequest flow-domestic output ratio is defined by: byt =
Bt

Yt
=

bt
Ntyt

=
bt

(D − A)yt
.

Dividing both sides of the previous equation by per capita domestic output yt, we obtain the

following transition equation for byt:

byt+H = e(r−g)H [s(1− τL)λ(1− α) + s(1− τB)byt] (18)

In case assumption 3 is satisfied, then byt → by =
s(1− τL)λ(1− α)e(r−g)H

1− s(1− τB)e(r−g)H as t→ +∞. Hence,

we obtain exactly the same steady-state formula as in the discrete-time, one-period model,

except for the correcting factor λ (which in practice is close to one).

Note that byt is now defined as the cross-sectional, macroeconomic ratio between the ag-

gregate inheritance flow Bt transmitted at a given time t and domestic output Yt produced

at this same time t. This is the cross-sectional ratio plotted on Figures 4-5. The interesting

point is that if λ ' 1, then the cross-sectional macroeconomic ratio is very close to the share of

capitalized inheritance in total lifetime resources of the cohort inheriting at time t.

We impose a cross-sectional government budget constraint:

τLYLt + τBBt = τYt i.e. : τL(1− α) + τBby = τ (19)

In the no-memory special case, the steady-state formula for by along a budged-balanced path

can therefore be rewritten as follows:

by =
sλ(1− τ − α)e(r−g)H

1− s[1 + (λ− 1)τB]e(r−g)H (20)

It follows that the long run elasticity eB of by with respect to 1 − τB is positive if λ < 1 (in-

heritance happens earlier in life than labor income receipts, so cutting bequest taxes stimulates

88For detailed empirical calibrations and theoretical extensions of the λ formula, see Piketty (2010, sections

5-7, and appendix E, tables E5-E10).
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wealth accumulation), and negative if λ > 1 . If inheritance happens around mid-life, then

λ ' 1 and eB ' 0. Of course, the Cobb-Douglas form and the no-taste-memory assumption are

restrictive, and in general eB could really take any value, as in the discrete-time model.

Next, we obtain the same optimal bequest tax formula for the continuous-time model with

overlapping generations and life-cycle savings as in the simplified discrete-time model where

each generation leaves only one period. The proof is exactly the same as for Proposition 2,

except that the time subscript t now denotes the time at which cohort Ñt inherits.

Regarding optimal lifetime capital taxation, the key difference is that with life-cycle savings

we now have an extra distortion. That is, positive tax rates on capital income τK > 0 distort

the intertemporal allocation of consumption (ctia)A≤a≤D within a lifetime. The magnitude of

the associated welfare cost depends on the intertemporal elasticity of substitution σ = 1/γ

(which might well vary across individuals). As long as σ is relatively small, the impact on our

optimal capital tax results is moderate. Unfortunately there does not exist any simple closed-

form formula taking these effects into account, so one needs to resort to numerical solutions.

We leave this to future research.

In such a setting, one might also want to tax differently the returns to inherited wealth

and the returns to life-cycle wealth. In a way this is what existing tax systems attempt to do

when they offer preferential tax treatment for particular forms of long term savings (pension

funds). One could also try to generalize this by having individual wealth accounts where we

recompute the updated capitalized value of inheritance each period and charge the correct extra

tax (whether the individual saved or consumed the extra income). But this is fairly complicated,

so it might be easier to tax all actual returns, especially if σ is small. These are important issues

for future research.

B.6.2 Technical Details on overlapping generations, continuous-time model

We simply need to show that Uti = µc̃ti holds for various utility specifications. We consider two

different possible specifications for utility function UCi:

U =

[∫ a=D

a=A

e−δ(a−A)c1−γ
tia

] 1
1−γ

(specification 1),

with δ = rate of time preference.

γ = elasticity of marginal utility of consumption (=coefficient of relative risk aversion)

σ = 1/γ = intertemporal elasticity of substitution

U =

[∫ a=D

a=A

e−δ(a−A)(
ctia
qtia

)1−γ
] 1

1−γ

(specification 2),

with qtia = individual consumption habit stock

Specification 1 corresponds to the standard discounted utility model. Specification 2 is less

standard but in our view more realistic: it incorporates habit formation into the utility function

78



(which one can also interpret as a concern for relative status or relative consumption), in the

spirit of Carroll et al. (2000) (more on this below). Our results can also be extended to more

general utility functions, e.g. a mixture of the two.

Specification 1. Under specification 1, standard first-order conditions imply that individual i

chooses a consumption path ctia = ctiAe
gc(a−A) growing at rate gc = σ(r− δ) during his lifetime.

The utility value U of this consumption path is given by:

U =

[∫ a=D

a=A

e−δ(a−A)c1−γ
tia da

] 1
1−γ

= µcctiA

with µc =

(
1− e−(δ−(1−γ)gc)(D−A)

δ − (1− γ)gc

) 1
1−γ

.

Note that with gc = σ(r − δ), we have δ − (1− γ)gc = r − gc. So µc can also be rewritten:

µc =

(
1− e−(r−gc)(D−A)

r − gc

) 1
1−γ

.

The end-of-life capitalized value of individual i consumption flow c̃ti is given by:

c̃ti =

∫ a=D

a=A

er(D−a)ctiada = µ̃ctiA,

with µ̃ = er(D−A) 1− e−(r−gc)(D−A)

r − gc
.

Therefore we have: U = µc̃ti

with µ =
µc
µ̃

=

(
1− e−(r−gc)(D−A)

r − gc

) γ
1−γ

e−r(D−A) and gc = σ(r − δ)

So in effect the continuous-time maximization program can be re-written as a two-period

maximization program:

maxVti = V (µc̃ti, wtiD, b̄t+Hi)

s.c. c̃ti + wtiD ≤ ỹti = (1− τB)b̃ti + (1− τL)ỹLti.

In the Cobb-Douglas case (V (U,w, b̄) = U1−sbi−swiwswi b̄sbi), the µ term disappears, and we

simply have: c̃ti = (1− si)ỹti and wtiD = bt+Hi = siỹti (with si = swi + sbi).

In the CES case (V (U,w, b̄) = [(1− swi− sbi)U1−γ̄ + swiw
1−γ̄ + sbib̄

1−γ̄]
1

1−γ̄ ), or in the general

case with degree-one-homogeneity (∀Λ ≥ 0, V (ΛU,Λw,Λb̄) = ΛV (U,w, b̄)), the µ term does not

disappear, but the point is that it does not depend on tax rates τB and τL, so in effect it cancels

out from the first-order condition for optimal tax rates.89

89µ depends on r and hence would depend on the annual capital income tax rate τK when τK > 0 making the

analysis of τK more complex.
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Specification 2. One unrealistic feature of specification 1 (making it ill-suited for empirical

calibrations) is that it implies that countries with faster growth have lower optimal savings.

This is because the utility-maximizing consumption growth rate gc = σ(r − δ) is independent

from the economy’s growth rate g, so in effect with high g and high expected lifetime income

ỹti young agents borrow a lot against future growth (i.e. they set ctiA far above their current

earnings yLtiA). In practice consumption seems to track down income much more closely. The

advantage of specification 2 is precisely that the habit formation term qi(a) provides a simple

and plausible way to deliver consumption growth paths more in line with income growth. For

notational simplicity we assume qi(a) = eqa and consider the two following cases:

- case 2a: q = δ+γg−r
1−γ (so that the utility-maximizing consumption growth rate is always

exactly equal to the economy’s growth rate: gc = g)

- case 2b: q = γg
1−γ (so that: gc = g + σ(r − δ))

In case 2a, the economy’s saving rate is fully independent of its growth rate and of the rate

of return, and is solely determined by the taste-for-wealth and taste-for-bequest parameters. In

case 2b, utility maximizing consumption paths do react to changes in r, but in a reasonable

way (i.e. with consumption growth rates around the economy’s growth rate). This provides two

useful benchmark points to which the results obtained under specification 1 can be compared.

Our results could be extended to other intermediate specifications, as well as to more elaborate

models with endogenous habit stock dynamics, such as those developed by Carroll et al. (2000),

which can under adequate assumptions lead to the conclusion that countries with high growth

rates save more (if anything, this seems more in line with observed facts than the opposite

conclusion).

One can see that under both specifications 2a and 2b, U can be written: U = µc̃ti, with

µ =
µc
µ̃

given by the same formulas as before, except that one needs to replace gc = σ(r− δ) by

gc = g (case 2a) or gc = g + σ(r − δ)(case 2b).

B.7 Uninsurable Aggregate Shocks to Rates of Return

So far we assumed no aggregate uncertainty. It would be interesting to extend our results to a

setting with aggregate, uninsurable uncertainty about the future rate of return (by definition,

uncertainty at the level of the world rate of return is uninsurable). E.g. assume that rt can

take only two values rt = r1 ≥ 0 and rt = r2 > r1, keeps the same value for one generation (i.e.

during H years), and follows a Markov random process with a switching probability equal to p

between generations (0 < p < 1). We note: er1H = 1 + R1 < er2H = 1 + R2, The rest of the

model is unchanged.

The first consequence is that instead of converging towards a unique steady-state inheritance

ratio by and joint distribution ψ(z, θ) (Proposition 1), the economy now keeps switching between

a continuum of values for byt and ψt. E.g. if the rate of return rt has been low for an infinitely
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long time (which happens with an infinitely small probability), then byt is infinitely close to by1

(the steady-state associated to stationary rate rt = r1). Similarly, if rt has been high for an

infinitely long time, then byt is infinitely close to by2 > by1. There is a distribution of byt in

between these two values, depending on how much time the economy has spent with r1 and r2

in the recent past.

The second consequence is that socially optimal tax rates τLt, τBt, τKt would now vary over

time, and in particular would depend on byt and Rt. Intuitively, we expect the optimal tax mix

to rely more on bequest taxes when the inheritance flow is large, and to rely more on capital

income taxes when the rate of return is high. So the existence of aggregate returns shocks would

in a way reinforce the results found under idiosyncratic returns shocks (see section 4.3). However

it turns out that a complete analytical solution to this problem is relatively complicated. In

particular one needs to specify whether we again have a generation-by-generation government

budget constraint (τLt(1 − α) + τBtbyt + τKtbyt
Rt

1+Rt
= τ), or whether we allow the government

to accumulate assets when returns are high and debts when they are low (which might seem

natural). We leave this interesting extension to future research.

B.8 Endogenous Growth and Credit Constraints

So far we assumed an exogenous productivity growth rate g ≥ 0, and looked at how g affects

aggregate steady-state bequest flows by and optimal tax rates τB. One might want to plug

in endogenous growth models into this setting. By doing so, one could generate interesting

two-way interactions between growth and inheritance.

E.g. with credit constraints, high inheritance flows can have a negative impact on growth-

inducing investments (high-inheritance low-talent agents cannot easily lend money to low-

inheritance high-talent agents). So high inheritance could lead to lower growth, which itself

tends to reinforce high inheritance, as we see below. This two-way process can naturally gen-

erate multiple growth paths (with a high inheritance, high rate of return, low wealth mobility,

low growth steady-state path, and conversely).90 Tax policy could then have an impact on long

run growth rates, e.g. a higher bequest tax rate might be a way to shift the economy towards

a high mobility, high growth path.

The main difficulty with such a model would be empirical calibration. I.e. it is not too

difficult to write a theoretical model with borrowing constraints and endogenous growth, but it

is hard to find plausible parameters to put in the model. From a theoretical perspective, anything

could happen: depending on how one models endogenous growth and the accumulation of the

growth-inducing production factor, various tax structures putting different emphasis on labor

vs capital vs consumption taxes could be optimal.91 However basic cross-country evidence does

not seem to bring much support to the view according to which tax policies entail systematic

90See Piketty (1997) for a similar steady-state multiplicity.
91See e.g. Milesi-Ferretti and Roubini (1998).
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effects on long run growth rates. I.e. developed countries have had very different inheritance tax

policies - and more generally very different aggregate tax rates and tax mix - over the past 100

years, but long run growth rates have been remarkably similar (as evidenced by convergence in

per capita income and output levels - from Scandinavia to America). This explains why we chose

in this paper to focus upon an exogenous growth model. Maybe a more realistic way to proceed

would be to keep growth exogenous, and to introduce the impact of borrowing constraints and

inheritance on investment, output and income levels. We leave this to future research.

B.9 Tax Competition

So far we assumed away tax competition. I.e. in the small open economy model we implicitly

assumed that capital owners cannot or do not physically move to foreign countries (i.e. they

cannot change their residence), and that each country is able to enforce the residence principle

of taxation (i.e. if they move their assets to foreign countries, they still pay the same taxes).

Both hypotheses are highly questionable and rely on strong assumptions about international

tax coordination. In particular, in order to properly enforce the residence principle of taxation,

one needs extensive cooperation from other countries. E.g. if Germany or France or the U.S.

want to tax their residents on the basis of the assets they own in Switzerland, then they need

extensive, automatic information transmission from the Swiss tax administration, which they

typically do not get. This clearly can put strong constraints on the capital tax rates that a

given country can choose.

If we instead assume full capital mobility and tax competition between small open economies

(zero international cooperation), then in equilibrium there would be no capital tax at all: τB =

τK = 0%. In the context of the Chamley-Judd or Atkinson-Stiglitz models where the optimal

capital income tax is zero even absent tax competition, the presence of tax competition entails no

welfare cost: welfare maximizing governments would want to remove capital taxes anyway. Tax

competition can even be a way to force inefficient governments to implement the optimal policy.

However, in the context of our model where large capital and bequest taxes are valuable, such

an uncoordinated tax competition equilibrium would be suboptimal in terms of social welfare.

That is, the social welfare in each country would be larger–and, under plausible parameter

values, substantially larger–under tax coordination.

For instance, in our baseline estimates with τ = 30%, α = 30%, sb0 = 10%, and by = 15%,

the social optimum from the viewpoint of the bottom 50% typically involves a tax rate τB ' 60%

and τL ' 30%.92 With full capital mobility and tax competition, all capital taxes would be

driven to τB = τK = 0%, so labor taxes would have to be τL =
τ

1− α
= 43%. So the

net-of-tax-income of zero bequest receivers would fall by about 20%. Taking into account the

utility gain from the zero bequest tax, and including labor supply and bequest elasticities eL

92See example 4 with xz = 50%, eB = 0.2; note that with eL > 0, τL would be even smaller and τB even

larger; see example 7.
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and eB into the computations, we find total welfare losses for bottom 50% successors around

15%-25% - depending on parameters. These calibrations need to be refined. But they illustrate

that the costs of tax competition in terms of social welfare can be substantial. This stands

in sharp contrast to models where positive capital taxes come solely from lack of government

commitment, in which case tax competition can only bring welfare gains.

C Dynamic Efficiency and Intergenerational Redistribu-

tion

Our optimal tax results can be extended in order to analyze the interaction between optimal

capital taxation and the so-called dynamic efficiency issue (i.e. the issue of optimal aggregate

capital accumulation). The main results and conclusions arising from these extensions are

summarized in the main text of the paper (see section 6). Here we provide the formal statements

and proofs.

Our basic model imposed a period-by-period (i.e. generation-by-generation) government

budget constraint. That is, we assumed that each cohort pays in taxes exactly what they

receive in public spending, so that the government cannot accumulate assets nor liabilities. This

implies in particular that the government cannot directly affect the aggregate level of capital

accumulation in the economy, and hence cannot address the so-called “dynamic efficiency” issue.

In this Appendix C, we show that our results go through even when we relax these assumptions

and allow the government to accumulate assets or liabilities. That is, we show that the issue of

the optimal capital vs. labor tax mix and the issue of dynamic efficiency and optimal aggregate

capital accumulation are to a large extent orthogonal.

More precisely, we prove the following. In the small open economy case, unrestricted accu-

mulation or borrowing by the government naturally leads to corner solutions. If the world rate

of return r is larger than the Golden rule rate of return r∗ = δ+Γg (with δ = social rate of time

preference and Γ = concavity of social welfare function),93 then it is socially optimal to accumu-

late infinite assets in order to have zero taxes or maximal subsidies in the long run. Conversely,

in case r < r∗, it is optimal to borrow indefinitely against future tax revenues. In both cases,

the economy would cease to be a small economy at some point. In the closed economy case, the

government will accumulate sufficient assets or liabilities to ensure that r = r∗, and will then

apply the same optimal bequest and labor tax rates as in the case with a period-by-period bud-

get constraint with two minor modifications (see proposition C3 below). First, sb0 is replaced

by sb0e
δ′H in the optimal τB formula with δ′ = δ + (Γ − 1)g. This correction appears because

τBt hurts bequests leavers from generation t− 1 while revenue accrues in generation t. With no

social discounting δ = 0 and log-utility Γ = 1, there is no correction. Second, the formula for

93With positive population growth, the Golden rule becomes r∗ = δ+ Γg+ Γ′n where 0 < Γ′ < 1 is the extent

to which social welfare takes into account population growth (see below).
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τL has to be adjusted for the interest receipt or payment term if the government has assets or

debts at the optimum.

The decoupling of optimal capital accumulation vs. optimal labor/capital income tax mix

is important, because both issues have sometimes been mixed up. I.e. a standard informal

argument in favor of small or zero capital taxation in the public debate is the view that there is

insufficient saving and capital accumulation at the aggregate level.94 This argument is flawed,

for a number of reasons. First, there is no general presumption that there is too much or too

little aggregate capital accumulation in the real world (it can go both ways, depending upon

the parameters of the social welfare function). Next, even in a definite situation of excessive

or insufficient aggregate capital accumulation, there would exist other and more efficient policy

tools to address the problem than the capital vs. labor tax mix. Namely, the government would

accumulate assets or liabilities (depending on whether there is too little or too much capital

accumulation to start with), with no effect on optimal capital vs. labor tax formulas.95

C.1 Intertemporal social welfare function

We first need to properly specify the intertemporal social welfare function. Throughout the

paper, we study a steady-state social welfare maximization problem. That is, we assume that

the government attempts to maximize the following, steady-state social welfare function (see

section 3):

SWF =

∫ ∫
z≥0,θ≥0

ωpzpθ
V 1−Γ
zθ

1− Γ
dzdθ (21)

With:

Vzθ = E(Vi | zi = z, θi = θ) = average steady-state utility level Vi attained by individuals i

with normalized inheritance zi = z and productivity θi = θ

ωpzpθ = social welfare weights as a function of the percentile ranks pz, pθ in the steady-state

distribution of normalized inheritance z and productivity θ

Γ = concavity of social welfare function (Γ ≥ 0)96

We now consider the following intertemporal, infinite-horizon social welfare function:

SWF =
∑
t≥0

Ṽt
(1 + ∆)t

=
∑
t≥0

Ṽte
−δHt

94See the discussion agove about Kaldor (1955).
95Those issues have been addressed by King (1980) in the standard OLG model. On the equivalence between

the steady-state tax optimum and the full dynamic tax optimum with inter-temporal maximization, see also

Atkinson and Sandmo (1980). In a different context, Stiglitz (1978) also stresses the idea that the government

can use other policy tools (such as debt policy) in order to undo the potentially negative impact of estate

taxation on aggregate capital accumulation. In contrast, Bourguignon (1981) ties in the issues of optimal wealth

distribution and optimal aggregate capital accumulation. But with additional policy tools both issues can be

untied.
96If Γ = 1, then SWF =

∫∫
z≥0,θ≥0

ωzθ log(Vzθ)dΨ(z, θ).
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With: 1 + ∆ = eδH = social rate of time preference (social discount rate)97

Ṽt = social welfare of generation t , which can be written as follows:

Ṽt =

∫ ∫
z≥0,θ≥0

ωtpzpθ
V 1−Γ
tzθ

1− Γ
dzdθ

With: Vtzθ = E(Vti | zti = z, θti = θ) = average utility level attained at time t by individuals

i with normalized inheritance zti = z and productivity θti = θ

And: Vti = maxVi(cti, wti, b̄ti) s.t. cti + wti ≤ ỹti = (1− τBt)ztibterH + (1− τLt)θtiyLt
To keep notations tractable, we focus upon the simple case with Cobb-Douglas utility func-

tions and i.i.d. taste and productivity shocks (so that eB = 0). All results can be extended to

the general case with any family of utility functions that are homogenous of degree one, and

with any ergodic random process for taste and productivity shocks (so that eB can take any

value).98

C.2 Convergence of the intertemporal social welfare function

This intertemporal social welfare function might not be well defined, i.e. the intertemporal sum

SWF =
∑
t≥0

Ṽte
−δHt might be infinite. In order to ensure that the sum converges, we need to

put constraints on parameters.

First, note that for any z, θ, the average utility level Vtzθ grows at the same rate as per capita

output yt as t→ +∞, i.e. at generational rate 1+G = egH . Namely, with Cobb-Douglas utility

Vi(c, w, b̄) = c1−siwswi b̄sbi , and with i.i.d. taste and productivity shocks, we have:

Vtzθ = vt · ỹtzθ

With: vt = E(vti), vti = (1−si)1−sissii [(1−τBt)erH ]sbi , and ỹtzθ = (1−τB)zbte
rH+(1−τL)θyLt.

99

As t→ +∞, under assumptions 1-3, and assuming that the tax policy sequence τBt, τLt con-

verges towards some τB, τL, then vt → v = E(vi), and byt = bte
rH/yt → by =

s(1− τL)(1− α)e(r−g−n)H

1− s(1− τB)e(r−g−n)H
.

It follows that after-tax income ỹtzθ → qzθ ·yt, with qzθ = (1−τB)by ·z+(1−τL)(1−α) ·θ. I.e.

for any z, θ, after-tax income ỹtzθ grows proportionally to per capita output yt = Yt/Nt = y0e
gHt.

It also follows that Vtzθ → v · qzθ · yt grows at instantaneous rate g (i.e. at generational rate

1 +G = egH) in the long-run.

97In the same way as for productivity growth rates 1 +G = egH , population growth rates 1 +N = enH , rates

of return 1 + R = erH , we use capital letters for generational rates and small letters for instantaneous rates:

we note 1 + ∆ = eδH the generational social rate of time preference, and δ the corresponding instantaneous

social rate of time preference. E.g. if δ = 1% and H = 30 years, then ∆ = 35%, i.e. from the social planner’s

viewpoint the welfare of next generation matters 35% less than the welfare of the current generation.
98All results can also be easily extended to the case with utility normalization. See Appendix A2.
99See Appendix A2.
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Since utilities are proportional to incomes, the parameter Γ ≥ 0 can be viewed as a parameter

measuring the concavity of the social planner’s preferences with respect to income (it is also

equal to the constant coefficient of relative risk aversion).

In case Γ = 0, the social planner does not care at all about inequality (linear social welfare),

so redistribution is useless.

In case Γ = 1, the social planner has a moderate concern for inequality (logarithmic social

welfare, i.e. unitary coefficient of relative risk aversion).100

In case Γ > 1, the social planner has a large concern for inequality. With Γ > 1, social

welfare is bounded above, i.e. even infinitely rich agents in a given cohort or infinitely rich

future cohorts generate finite social welfare.

As Γ→ +∞, the social planner becomes infinitely inequality averse, both in the cross-section

(as long as the poor are poorer than the rich, transferring one unit of income from the latter to

the former hugely raises total social welfare - even if a large fraction of the one unit is lost in the

process) and in the long-run (as long as today’s generations are poorer than future generations,

transferring one unit of income from the latter to the former hugely raises total social welfare

- even if a large fraction of one unit is lost in the process). This corresponds to Rawlsian (or

maximin) social welfare.

Next, a natural constraint to put on welfare weights ωtpzpθ is that their sum grows at rate

(1 − Γ′)n, where n is the instantaneous, exogenous population growth rate (i.e. Nt = N0e
nHt,

with n possibly equal to zero), and Γ′ ∈ [0, 1] can be thought of as a parameter measuring

the concavity of the social planner’s preferences with respect to population size.101 That is, we

assume that ωtpzpθ = ωt · ωpzpθ , with:∫ ∫
z≥0,θ≥0

ωpzpθdzdθ = 1 and ωt = N1−Γ′

t = N1−Γ′

0 e(1−Γ′)nHt

In case Γ′ = 0, then this means that the sum of welfare weights grows at the same rate as

population, so that in a sense the planner puts equal weight on each individual - whether they

belong to small or large cohorts. Therefore larger cohorts matter more in terms of social impact.

This is sometime called the “Benthamite” case in the normative economics literature: the

planner cares about the total quantity of welfare, supposedly like Jeremy Bentham. Conversely,

in case Γ′ = 1, the sum of welfare weights is constant over time, i.e. the planner does not

care about population size per se. The planner cares only about average welfare of each cohort

100One limitation of this standard formulation of intertemporal social welfare is that the social planner is bound

to have the same concern for cross-sectional and intertemporal inequality. See discussion below.
101The reason we introduce population growth here is because it plays an important role in the analysis of

dynamic efficiency and socially optimal capital accumulation. Of course everything also holds in the special case

with n = 0 and population normalized to 1 (i.e. Nt = N0 = 1, so that aggregate and per capita variables are the

same: Yt = Nt · yt = yt, Bt = Nt · bt = bt, etc.). For simplicity, population growth is assumed to be exogenous

and to be neutral with respect to saving behavior, i.e. utility for bequest does not depend on the actual number

of children (see the extension introduced in section 6).
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(or on the normalized distribution of welfare within each cohort), and puts equal total weight

on each cohort - irrespective of their size. This is the so-called “non-Benthamite” case. Both

approaches have some merit - and so does the intermediate formulation with Γ′ ∈ [0, 1].102 In

this paper, we do not take a strong stand on this complex ethical issue. Nor do we take a strong

stand about the income concavity parameter Γ ≥ 0.

Our point here is simply that as t → +∞, the social welfare of generation t grows at

instantaneous rate (1− Γ)g + (1− Γ′)n:

Ṽt →
ṽ1−Γ

1− Γ
· y1−Γ

t ·N1−Γ′

t =
ṽ1−Γ

1− Γ
· y1−Γ

0 ·N1−Γ′

0 · e(1−Γ)gHt+(1−Γ′)nHt

With: ṽ =
[∫ ∫

z≥0,θ0≤θ≤θ1 ωpzpθ ·(v · qzθ)
1−Γ · dzdθ

]1/(1−Γ)

It follows that the intertemporal sum SWF =
∑
t≥0

Ṽte
−δHt is well defined (non-infinite) iff

δ > (1− Γ)g + (1− Γ′)n, i.e. if and only if the following condition is satisfied:

Assumption 5 δ′ = δ − (1− Γ)g − (1− Γ′)n > 0

In what follows, we constantly assume that assumption 5 is satisfied (otherwise the intertem-

poral social welfare function would not be well defined). Intuitively, δ′ can be viewed as the

“modified” social discounted rate, i.e. the difference between the “raw” social discount rate δ

and the growth rate of social welfare (1 − Γ)g + (1 − Γ′)n. In case Γ = Γ′ = 0 (linear social

welfare function), then social welfare grows at rate g + n, so that δ′ = δ − g − n, i.e. the

intertemporal welfare sum is well defined iff δ > g + n. In case Γ = Γ′ = 1 (logarithmic social

welfare function), then the sum is well-defined for any δ > 0. In case Γ > 1 (bounded above

social welfare) and Γ′ = 1, then the sum is well defined even with δ = 0.

C.3 Period-by-period government budget constraint

Throughout the paper, we take as given a fixed, exogenous public good requirement Gt = τYt

each period (with τ ≥ 0), and we assume the following period-by-period (i.e. generation-by-

generation) budget constraint:

τLtYLt + τBtBte
rH = τYt i.e. : τLt(1− α) + τBtbyt = τ

with: byt = Bte
rH/Yt

In Proposition 2 (and subsequent propositions), we solve for the stationary tax policy (τLt =

τL, τBt = τB)t≥0 maximizing steady-state social welfare.

102On Benthamite vs. non-Benthamite social welfare functions (Γ′ = 0 vs Γ′ = 1), see e.g. Blanchard and

Fischer (1989, Chapter 2, pp. 39-45, notes 4 and 13). One could also extend the normative framework by

allowing for any Γ′ ≥ 0 (including Γ′ > 1) by assuming ωt =
N1−Γ′

t

1− Γ′
(and ωt = log(Nt) in case Γ′ = 1). Of

course if n is close to zero, the choice of Γ′ makes little difference.
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We now assume that the social planner seeks to maximize the intertemporal sum SWF =∑
t≥0

Ṽte
−δHt. We look for the tax policy sequence (τLt, τBt)t≥0 maximizing this intertemporal

social welfare function, and we are particularly interested in the limit outcomes as t→ +∞.

For simplicity we focus upon the zero-bequest receiver optimum (ωpzpθ = 1 if pz = 0, and

ωpzpθ = 0 if pz > 0) (Proposition 2), but all results can be extended to arbitrary welfare weights

(Proposition 3).

If we maintain the period-by-period budget constraint (i.e. at any time t, τLt =
τ − τBtbyt

1− α
),

we have the following results.

First, if we allow for non-stationary tax policy sequence (τBt, τLt)t≥0, then unsurprisingly it

will generally be desirable to have higher bequest tax rates τBt early on and then to let τBt

decline over time. This simply comes from the fact that the short run elasticity of the bequest

flow is smaller than the long run elasticity. Indeed the elasticity of the initial bequest flow B0

is equal to zero: capital in on the table and can be taxed at no efficiency cost, so the socially

optimal tax policy sequence always involves τB0 = 1 and τL0 =
τ − by0

1− α
. I.e. in the short run

it is always tempting for zero receivers to impose confiscatory bequest taxes so as to subsidize

labor income as much as possible (or to have labor taxes that are as moderate as possible, in

case bequest tax revenues are insufficient to cover public spending, i.e. in case by0 < τ). In

order to avoid time-inconsistency problems, we solve for the full-commitment optimum, i.e. we

assume that the planner can commit to a sequence (τBt, τLt)t≥0 and stick to it for ever. The

optimal sequence τBt, τLt always involves confiscatory (or quasi-confiscatory) bequest tax rates

during the first time periods, and converges towards some long run, stationary tax policy τB, τL

as t→ +∞.

Next, and more interestingly, these asymptotic tax rates converge towards the steady-state

welfare optimum as the modified social discount rate goes to zero.

Proposition 8 C1 (zero-bequest-receiver optimum, period-by-period budget constraint).

Under assumptions 1-5, with a period-by-period government budget constraint, the tax policy se-

quence (τLt, τBt)t≥0 maximizing intertemporal social welfare converges towards the steady-state

welfare optimum as the corrected social discount factor goes to zero:

(1) As t→ +∞, τBt → τB(δ′) =
1− (1− α− τ)sb0e

δ′H/by
1 + sb0eδ

′H
and τLt → τL(δ′) =

τ − τB(δ′)by
1− α

with: δ′ = δ − (1− Γ)g − (1− Γ′)n = modified social discount factor

(2) As δ′ → 0, τB(δ′)→ τ ∗B =
1− (1− α− τ)sb0/by

1 + sb0
and τLt → τ ∗L =

τ − τBby
1− α

Proof. The proof is essentially the same as Propositions 2 and is given in section C8 below.

The intuition behind this result is straightforward. As δ′ → 0, the social planner puts ap-

proximately the same weight on the welfare of all future generations, so in effect the planner

cares almost exclusively about the long run. Therefore the asymptotic, intertemporal welfare op-
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timum becomes arbitrarily close to the the steady-state welfare optimum. E.g. this corresponds

to the case of an infinitely patient, logarithmic planner, i.e. Γ = Γ′ = 1 and δ → 0.

Conversely, if δ′ → +∞, then τB(δ′) → −1− α− τ
by

and τL(δ′) → 1. I.e. if the social

planner puts infinite weight on the current generation, then the asymptotic, intertemporal

welfare optimum involves a maximal bequest subsidy financed by a 100% labor income tax

rate. Intuitively, in the extreme case with δ′ = +∞, i.e. where the planner cares only about

generation t = 0 and does not care at all about generation t = 1, then he/she will choose to

move directly from τB0 = 1,τL0 =
τ − by0

1− α
to τB1 = −1− α− τ

by
,τL1 = 1. That is, from the

viewpoint of the zero-bequest receivers of generation t = 0, it is optimal to tax received bequests

at 100%, but to subsidize left bequests as much as possible. Note that δ′ → +∞ can arise either

because δ → +∞ (the planner is infinitely impatient) or because Γ → +∞ (the planner is

infinitely concave with respect to income growth, i.e. he/she views future zero-bequest receivers

as infinitely rich as compared to current zero-bequest receivers, which in effect makes him/her

infinitely impatient).

C.4 Intertemporal government budget constraint

We now introduce the intertemporal government budget constraint. We start with the open

economy case. The government can freely accumulate assets or liabilities at a given, generational

world rate of return 1 + R = erH We again assume an exogenous public good requirement

Gt = τYt each period (with τ ≥ 0). With no loss in generality, we assume zero initial government

assets (A0 = 0). The intertemporal government budget constraint can be written as follows:

∑
t≥0

(τLtYLt + τBtBte
rH)e−rHt =

∑
t≥0

τYte
−rHt

Denoting by τ t = τLt(1 − α) + τBtbyt the aggregate tax rate imposed on generation t, this

can be rewritten as follows:

∑
t≥0

τ tYte
−rHt =

∑
t≥0

τYte
−rHt

This budget constraint might not be well defined (i.e. the intertemporal sum might be

infinite). For the sum to be well-defined, we must assume the standard transversality condition,

according to which the rate of return r has to be larger than the economy’s growth rate g + n:

Assumption 6 r > g + n

In case this assumption is not satisfied, i.e. in case r < g + n, then the net present value

of future domestic output and tax revenue flows is infinite, so that the government would like

to borrow indefinitely against future resources in order to finance current consumption. In
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principle, this would make the world net asset position decline (i.e. at some point the domestic

economy would borrow so much that it would cease to be small), so that ultimately the world

rate of return (the world marginal product of capital) would rise so as to restore r > g + n.

Given a tax policy sequence (τBt, τLt)t≥0, the net asset position At of the government at time

t is equal to the capitalized value of previous primary surpluses or deficits: At+1 = (1 +R)At +

(τ t − τ)Yt. The ratio between net government assets and domestic output at = At/Yt can be

written as follows:

at+1 = e(r−g−n)Hat + (τ t − τ)e−(g+n)H i.e. at =
∑

s=0,1,..,t

(τ s − τ)e(r−g−n)H(t−s)

Take any tax policy sequence (τBt, τLt)t≥0 satisfying the intertemporal budget constraint and

converging towards some asymptotic tax policy (τB, τL) as t → +∞. Under assumptions 1-6,

byt → by, and τ t → τ = τL(1− α) + τBby. Then two cases can happen:103

(i) Either the government runs a long run primary deficit: τ̄ ≤ τ . This deficit is financed

by the returns to the government assets accumulated through initial primary surpluses: as

t→ +∞, at → a ≥ 0 . I.e. the government has a positive asset position in the long run.

(ii) Or the government runs a long run primary surplus: τ̄ ≥ τ . This surplus is used to

finance the interest payments on the government debt accumulated through initial primary

deficits: as t→ +∞, at → a ≤ 0. I.e. the government has a negative asset position in the long

run.

In both cases, the long run government budget constraint and net government asset position

can be written as follows:

τL(1− α) + τBby + R̄a = τ +Ra = τ

I.e. a =
τ − τ̄
R̄

Where R̄ = erH − e(g+n)H = 1 +R− (1 +G)(1 +N) = R−G−N −GN
Intuitively, R̄ is the rate at which the government can consume its asset returns so as to

make sure that assets keep up with economic growth (or equivalently the rate at which the

government would reimburse its debt so as to avoid exploding debt).104

Finally, note that in the long run private agents accumulate more private wealth when taxes

are lower (i.e. when the government has accumulated higher public wealth) - and conversely.

That is, with Cobb-Douglas utility and i.i.d. taste and productivity shocks, the aggregate

transition equation looks as follows:

byt+1 = s(1− τLt)(1− α)e(r−g−n)H + s(1− τBt)e(r−g−n)Hbyt

i.e. byt+1 = s(1− α− τ t)e(r−g−n)H + s · e(r−g−n)Hbyt

103Here we neglect exploding asset accumulation paths (at → +∞ or at → −∞), which in effect are ruled out

by the assumptions τ t ≥ 0 and τ t ≤ 1 (see below).
104In a continuous time model, this rate would simply be r = r − g − n.
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Therefore as t → +∞, byt → by =
s(1− τL)(1− α)e(r−g−n)H

1− s(1− τB)e(r−g−n)H
=
s(1− α− τ)e(r−g−n)H

1− s · e(r−g−n)H
. I.e.

by is a decreasing function of long run tax rates τB and τL (and of the long run aggregate tax

rate τ). In the case with a period-by-period government budget constraint, the tax rate τ t was

constrained to be equal to τ , so that by was fixed.

C.5 Open economy

The key question is the following: in the long run, will the government choose to accumulate

positive assets or debt (a > 0 or a < 0), and how does this decision interact with the choice of

an optimal tax mix τB, τL?

In the open economy case, the answer depends entirely on whether the world rate of return

r is smaller or larger than the so-called modified Golden rule rate of return r∗ = δ + Γ′n+ Γg.

Proposition 9 C2 (zero-bequest receiver intertemporal optimum, open economy).

Under assumptions 1-6, with an intertemporal government budget constraint and an open econ-

omy, the asset and tax policy sequence (at, τLt, τBt)t≥0 maximizing intertemporal social welfare

depends on whether the world rate of return r is smaller or larger than the modified Golden rule

rate of return r∗ = δ + Γ′n+ Γg:

(1) If r < r∗, then the social planner chooses to postpone tax payments to the long run

(future generations) and to accumulate maximal public debt compatible with the financing of

public good provision. That is, as t → +∞, τLt → 1, τBt → 1, byt → 0, τ t → 1 − α, and

at → a = −1− α− τ
R

< 0.

(2) If r > r∗, then the social planner chooses to have all tax payments in the short run

(current or nearby generations) and to accumulate maximal public assets to finance public good

provision. That is, as t → +∞, τLt → τL, τBt → τB, byt → by, τ t →τ≤ 0, and at → a =
τ−τ
R

> 0.

(3) In the knife-hedge case r = r∗, then any positive or negative government asset position

can be a social optimum (depending on the initial condition and the parameters). For any given

optimum a ≥ 0 or a ≤ 0, then the tax policy sequence (τLt, τBt)t≥0 maximizing intertemporal

social welfare converges towards the steady-state welfare optimum as the corrected social discount

factor goes to zero. That is:

As t→ +∞, τBt → τB(δ′) =
1− (1− α− τ)sb0e

δ′H/by
1 + sb0eδ

′H
and τLt → τL(δ′, a) =

τ − τB(δ′)by −R · a
1− α

(with: δ′ = δ − (1− Γ)g − (1− Γ′)n = modified social discount factor).

As δ′ → 0, τB(δ′)→ τ ∗B =
1− (1− α− τ)sb0/by

1 + sb0
and τLt → τ ∗L =

τ − τ ∗Bby −R · a
1− α

Proof. The proof is given in section C9 below.

The intuition behind this result is the following.
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In case r is sufficiently low, then it is worth borrowing in order to consume more now. More

precisely, in case r < r∗, then the social planner can always raise intertemporal social welfare

by shifting additional resources from future generations to current generations. So he/she will

choose to postpone tax payments indefinitely, by having zero or negative taxes in the short

run and by issuing public debt on international financial markets in order to finance public

expenditures. In the long run, tax rates τLt, τBt will converge towards revenue-maximizing

levels - which, in the simple model with zero labor supply and bequest elasticities, are simply

equal to τL = 1, τB = 1. As a consequence there is no private wealth accumulation in the long

run (byt → 0, i.e. the domestic capital stock is entirely owned by foreigners, just like the public

debt), and the aggregate tax rate converges towards τ = 1 − α (i.e. the labor share is taxed

at 100%). By assumption 4, this is sufficient to cover public spending (i.e. τ = 1 − α > τ),

and extra tax revenue τ − τ allows the government to finance its debt service and stabilize its

(negative) asset position at a= −1− α− τ
R

< 0.

Conversely, in case r is sufficiently large, then it is worth investing in order to consume more

later. More precisely, in case r > r∗, then the social planner can always raise intertemporal

social welfare by shifting additional resources from current generations to future generations. So

he/she will choose to have all tax payments in the short run and to accumulate sufficient public

assets so as to finance public good provision in the long run. Tax rates τLt, τBt will converge

towards their minimal levels τL, τB. If we put some exogenous constraints on these minimal

levels, say τL = τB = 0 (no labor or bequest subsidy) or τL = τB = −1 (subsidy rates cannot

be larger than 100%), then this determines the long run level of private wealth accumulation by

and aggregate tax rate τ . This in turn determines the long run positive asset position a =
τ−τ
R

.

So for instance if τL = τB = τ = 0, then a =
τ

R
.

Note that the only way we can get finite asset accumulation in the case r > r∗ is by

putting some exogenous minimal constraints τL, τB . With no such constraint, the planner

would accumulate infinite assets (at → +∞) so as to be able to distribute infinite subsidies

(τLt → −∞, τBt → −∞). Private wealth accumulation would also follow an exploding path.

That is, as t→ +∞, s(1− τBt)e(r−g−n)H > 1, and therefore byt → +∞. In effect, the economy

accumulates both infinite public assets and infinite private assets, and would soon cease to be

a small open economy any more.

To summarize: if r < r∗, then under the guidance of the social planner our small open

economy will attempt to accumulate as much debt as possible; if r > r∗, then it will attempt

to accumulate as much assets as possible. It is only in the knife-edge case r = r∗ (which is very

unlikely to happen in the open economy case where r is exogenous) that we have a balanced

social optimum with an interior asymptotic tax mix (τB, τL). Note that the optimal tax mix

that we obtain in this knife-edge case is exactly the same as in Proposition C1 - except of course

for the −R · a term now entering into the τL formula.105

105I.e. if a > 0 then τL is smaller than before (positive government assets allow for lower taxes in the long
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C.6 Closed economy

We now turn to the most interesting case, namely the closed economy intertemporal optimum.

In the closed economy case, the domestic capital stock Kt is equal to the sum of private and

government assets, i.e. Kt = Bt + At. At every period t ≥ 0, the generational rate of return

1 + Rt = ertH is equal to the marginal product of capital: Rt = FK . With a Cobb-Douglas

production function F (Kt, Lt) = Kα
t L

1−α
t , we have:

Rt = FK =
α

βt

with: βt =
Kt

Yt
= byte

−rtH + at = domestic capital-output ratio

It is straightforward to show that in the closed economy intertemporal optimum, the social

planner will accumulate assets until the point where the modified Golden Rule condition is

satisfied: as t → +∞, rt → r∗ = δ + Γ′n + Γg. (or, equivalently, 1 + Rt = ertH → 1 + R∗ =

er
∗H = (1 + ∆)(1 + N)Γ′(1 + G)Γ). That is, the government will accumulate assets until the

point where βt → β∗ =
α

R∗
.

To see why, note first that the long run rate of return cannot be below r∗. In case rt →
r < r∗, then from Proposition C2 we know that the social planner will choose to accumulate

maximal public debt (at → a < 0) and there will be no long run private wealth accumulation

(byt → by = 0). I.e. the long run domestic capital-output ratio is scheduled to be negative

(βt → β = a < 0), which is impossible: at some point βt will be infinitely small, i.e. rt will be

infinitely large, thereby contradicting the assumption rt → r < r∗.

Conversely, in case rt → r > r∗, then from Proposition C2 we know that the social planner

will choose to accumulate maximal public assets (at → a > 0) and private assets (byt → by).

With no minimal constraints on τL, τB, then we obtain infinite capital accumulation (βt →
+∞), i.e. rt → 0, which contradicts rt → r > r∗. More generally, with exogenous minimal

constraints on τL, τB, one simply needs to assume that the corresponding capital accumulation

level β = bye
−r∗H + a is larger than β∗:

Assumption 7 β > β∗

Under this assumption, the intertemporal social optimum necessarily involves rt → r∗ and

βt → β∗. Following part (3) of Proposition C2, we then know that the optimal tax policy

sequence converges towards the steady-state welfare optimum goes to zero. Therefore we have

the following characterization of the full intertemporal optimum:

Proposition 10 C3 (zero-bequest-receiver intertemporal optimum, closed economy).

Under assumptions 1-7, with an intertemporal government budget constraint and a closed econ-

omy, the asset and tax policy sequence (at, τLt, τBt)t≥0 maximizing intertemporal social welfare

can be characterized as follows:

run); if a < 0 then τL is larger than before (negative government assets, i.e. public debt, require higher long run

taxes).
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(1) First, the optimal government asset and debt policy is chosen so as to satisfy the mod-

ified Golden rule: rt → r∗ = δ + Γ′n + Γg. The capital-output ratio converges towards the

corresponding level: βt = byte
−rtH + at → β∗ =

α

R∗
=

α

er∗H − 1
.

(ii) Next, the optimal tax policy sequence (τLt, τBt)t≥0 converges towards the steady-state

welfare optimum as the corrected social discount factor goes to zero. That is:

As t→ +∞, τBt → τB(δ′) =
1− (1− α− τ)sb0e

δ′H/by
1 + sb0eδ

′H
and τLt → τL(δ′, a) =

τ − τB(δ′)by −R · a
1− α

(with: δ′ = δ − (1− Γ)g − (1− Γ′)n = modified social discount factor).

As δ′ → 0, τB(δ′)→ τ ∗B =
1− (1− α− τ)sb0/by

1 + sb0
and τLt → τ ∗L =

τ − τBby −R · a
1− α

Proof. The proposition follows directly from the above observations and from part (3) of

Proposition C2. Q.E.D.

C.7 Discussion

Does the intertemporal social optimum involve the accumulation of positive government assets

(at → a > 0) or the accumulation of public debt (at → a < 0) ? Both cases can happen,

depending on parameters. The socially optimal level of capital accumulation and the market

equilibrium level of capital accumulation depend on largely independent parameters, so this can

really go both ways.

On the one hand, the socially optimal level β∗ =
α

R∗
=

α

er∗H − 1
(with r∗ = δ + Γ′n + Γg)

depends on the capital share α and on the parameters of the social welfare function δ,Γ′,Γ .

Typically, a more patient planner (δ → 0) will accumulate more capital, while a more concave

planner (Γ→ +∞) will accumulate less capital. To take an extreme case, an infinitely concave

planner will feel that there is no need to leave any capital to future generations (β∗ → 0 as

Γ → +∞ , as long as g > 0), since they will be richer than us anyway.106 Conversely, in case

106Of course, one problem with this reasoning is that if we leave no capital, then productivity growth itself might

decline, or even disappear (here we assume g to be exogenous, so this problem does not arise). Another major

shortcoming of the standard theoretical framework that we are using is that the same parameter Γ determines

the preference for intra-generational and inter-generational redistribution, which sometimes leads to surprising

disputes. E.g. in the famous Stern (2007) vs. Nordhaus (2007a, 2007b) controversy about the proper social

discount rate r∗, both parties agreed about δ = 0.1% (Stern views this as an upper bound of the probability

of earth crash; Nordhaus is unenthusiastic about what he views as an excessively low and “prescriptive” value,

but does not seriously attempt to put forward ethical argument for a bigger δ) and g = 1.3% (on the basis of

observed per capita growth rates in the long run; both sides take the long run n to be negligible), but strongly

disagreed about Γ: Stern picked Γ = 1, so that r∗ = 1.4%, implying a very large net present value of future

environmental damages and an urgent need for immediate action; Nordhaus picked Γ = 3, so that r∗ = 4.0%,

implying a more laissez-faire attitude. As argued by Sterner and Persson (2008), a surprising feature of this

debate is that from a cross-sectional redistribution perspective, Γ = 1 implies relatively low inequality aversion

and government intervention (probably less than Stern would support), while Γ = 3 implies relatively large

inequality aversion and government intervention (which Nordhaus would probably not support). One way to

make the various positions internally consistent would be to introduce one supplementary parameter, namely
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Γ = Γ′ = 0 (or g = n = 0), then an infinitely patient planner wants to accumulate infinite

quantities of capital: β∗ → +∞ as δ → 0. Note that the socially optimal capital-output ratio

β∗ does not depend at all on the parameters of private preferences, and in particular does not

depend on the average saving taste s = E(si).

On the other hand, the market equilibrium level of capital accumulation depends a lot on

the parameters of private preferences (and not at all on the parameters of the social welfare func-

tion). That is, for a given long run tax policy τL, τB, we have: byt → by =
s(1− τL)(1− α)e(r−g−n)H

1− s(1− τB)e(r−g−n)H
.

Assume at → a = 0. Then βt = byte
−rtH → β̂ and rt → r̂ such that β̂ =

s(1− α− τ)e−(g+n)H

1− s · e(r̂−g−n)H

and R̂ = er̂H − 1 =
α

β̂
. By substituting er̂H = 1 +

α

β̂
into the first equation we obtain:

β̂ =
s(1− τ)

e(g+n)H − s
=

s(1− τ)

1 +G+N +GN − s
This is the capital-output ratio that would be attained by private accumulation alone, in case

the government has a zero asset position in the long run. In the same way as in the standard

Harrod-Domar-Solow formula, private capital accumulation β̂ depends positively on the saving

taste s and negatively on the growth rate g + n. In case s→ 1 and g + n→ 0, then β̂ → +∞.

Conversely, in case s→ 0 then unsurprisingly β̂ → 0.

Note that the formula for β̂ can also be rewritten in the standard Harrod-Domar-Solow form,

i.e. β̂ =
s̃

G+N +GN
, where s̃ = s(1 − τ + β̂) − β̂ is the conventional saving rate as defined

in the macroeconomic literature, i.e. s̃ is equal to new saving as a fraction of new output (as

opposed to s, which includes savings out of bequest received).

In case β̂ > β∗, e.g. if the average saving taste s is large enough as compared to g+ n, then

private agents tend to accumulate too much capital, so in order to satisfy the modified Golden

rule the social planner will need to accumulate public debt: at → a < 0.

Conversely, in case β̂ < β∗, e.g. if the average saving taste s is small enough, then private

agents tend to accumulate too little capital, so in order to satisfy the modified Golden rule the

social planner will need to accumulate public assets: at → a > 0.

In a full fledged life cycle model, pure demographic parameters - and not only saving tastes

- would also matter, following the Modigliani triangle formula. One could again end up with

too large or too small capital accumulation, depending on the specific parameters. The general

point is that there is no reason in general to expect the market equilibrium to deliver more or

less capital accumulation than the social optimum: it can really go both ways.

In practice, the only case where one can be pretty confident that there is excessive private

capital accumulation is in the case where s and β̂ are so large than r̂ < g + n. That is, if one

observes that in the absence of government intervention the rate of return to wealth is less than

the economy’s growth rate, then one can be sure that this is collectively inefficient. An infinite

the long run relative price of the environment in a two-good growth model (see Guesnerie 2004).
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horizon planner could raise intertemporal welfare by borrowing against future resources and

forcing agents to consume more today. Technically, the net present value of future resources in

this case would be infinite, so the planner budget constraint would not even be well defined (i.e.

assumption 6 above would be violated). Intuitively, as long as r < g + n, then a planner can

improve everybody’s welfare by taking some of today’s private savings (with market return r)

and put them into a pay-as-you-go pension system (whose internal return is equal to g + n) -

which is equivalent to issuing public debt, so as to reduce aggregate capital accumulation.107

However available evidence shows that the aggregate rate of return to wealth is generally

much larger than the growth rate, which suggests that real world economies are not in this

situation of extreme dynamic inefficiency.108 Yet another way to see this is to note that r < g+n

is equivalent to α < s̃ (one simply needs to multiply both sides by β). That is, in steady-state

the rate of return is less than the economy’s growth rate if and only if the capital share is less

than the saving rate (defined in the conventional sense). This clearly corresponds to a situation

of excessive capital accumulation: capital brings less extra output than what we need to save

in order to keep capital-output constant. This was the theoretical point made by Allais, Phelps

and other authors in their original derivation of the (non-modified) Golden rule r∗ = g + n:

along a Golden rule path, a society would optimally save for future generations exactly as much

as the product share coming from the capital stock accumulated by past generations (these

authors were implicitly assuming δ = 0 and Γ′ = Γ = 1).109 Empirically, one alternative way

107The central point made by Diamond (1965) was exactly this: in a general OLG model, one could very well

get so much over-accumulation of capital that r < g + n, in which case pay-as-you-go pension systems can be

an efficient way to reduce aggregate capital accumulation.
108In practice the rate of return varies enormously over assets, from very low levels for money and government

bonds (typically less than 1-2%) to intermediate levels for real estate (say 3-5%) to high levels for equity and

other risky financial assets (say 7-8%). One way to proceed is to compute the average macroeconomic rate of

return r = α/β by dividing the capital share by the capital-output ratio. If we do this, we typically find an

average r around 4%-5%, much larger than g + n. E.g. in France the average macroeconomic r has been above

g + n during each single decade of the 1820-2010 period. See Piketty (2010, 2011).
109The application of the term “Golden rule” to the optimal capital accumulation problem is generally at-

tributed to Phelps (1961, 1965), who also proposed the simple “optimal savings rate” derivation described

below. Allais (1947, 1962) first stated explicitly the idea that the optimal return to capital has to be equal

to the growth rate of output in the “capitalistic optimum”, but the modeling used by Allais was much less

transparent. See also von Neumann (1945) and Malinvaud (1953). See Nobel Committee (2006, pp.17-22) for

full references. Phelps’ derivation works as follows. Assume g = 0 and n > 0. In steady-state, the aggre-

gate capital stock Kt grows at the same rate as population. Per capital capital stock kt = Kt/Nt and output

yt = f(kt) are stationary. Phelps asks the following question: what is the saving rate s maximizing steady-state

per capita consumption c = (1− s) · f(k)? In steady-state, we have s · f(k) = n · k, so per capita consumption

can be rewritten c = f(k) − n · k, the maximization of which leads to r∗ = f ′(k∗) = n. In effect, Phelps is

maximizing a social welfare objective with δ = 0 (this is self-evident to Phelps and other authors: the whole

point of the Golden-rule literature was to study whether the basic moral principle “do unto others as you would

have them do unto you” could be applied intergenerationally inside the Solow growth model to arrive at some

form of social optimum; so it would have been strange to put less weight on future generations) and Γ′ = 1

(Phelps cares about maximizing per capita consumption, i.e. uses a non-Benthamite welfare objective; with
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to make sure that we are not in a situation of extreme dynamic inefficiency (i.e. r < g + n) is

simply to check that capital shares are indeed larger than saving rates.110

Aside from this extreme case, i.e. as long as r > g + n, it is relatively difficult to decide

whether r > r∗ or r < r∗ - this really depends on the choice of normative parameters δ,Γ′,Γ,

which as noted above are relatively controversial, and on which we do not take a stand here.111

In any case, whether there is too much or too little aggregate capital accumulation in the

real world, the key point here is that this dynamic efficiency issue is essentially orthogonal to

the issue of optimal tax mix between capital and labor. That is, the optimal long run tax rate

on capitalized bequest τB(δ′) =
1− (1− α− τ)sb0e

δ′H/by
1 + sb0eδ

′H
does not depend at all on whether

a > 0 or a < 0.

C.8 Proof of Proposition C1

C.8.1 Main Proof

Consider a tax policy sequence (τBt, τLt)t≥0, and assume that this is the intertemporal welfare

optimum.

Period-by-period budget balance implies: ∀t ≥ 0, τLt =
τ − τBtbyt

1− α
.

The social welfare Ṽt of generation t-zero bequest receivers is given by:

Ṽt =
ṽ1−Γ
t

1− Γ
· y1−Γ

t ·N1−Γ′

t =
ṽ1−Γ
t

1− Γ
· y1−Γ

0 ·N1−Γ′

0 · e(1−Γ)gHt+(1−Γ′)nHt

With: ṽt = vt · (1− τLt) · (1− α) · θ̃ = vt · (1− α− τ + τBtbyt) · θ̃
vt = [E(v1−Γ

ti )]1/(1−Γ),

vti = (1− si)1−sissii [(1− τBt+1)erH ]sbi

θ̃ = [E(θ1−Γ
i )]1/(1−Γ)

Total intertemporal social welfare is given by: SWF =
∑
t≥0

Ṽte
−δHt

Γ′ = 0, the optimum would always involve infinite capital accumulation: as long as r > 0, one can always

raise total welfare by postponing consumption). With g > 0, the derivation is the same except that one nows

tries to maximize the level of the multiplicative term in the steady-state per capita consumption growth path

ct = (1− s) · f(k̃) · egHt = [f(k̃)− (n+ g) · k̃] · egHt, with k̃t = Kt/Lt = capital per efficiency labor unit, which

yields r∗ = f ′(k̃∗) = n+ g. In effect this is assuming a social welfare function with a logarithmic form (Γ = 1).
110This is the approach followed by Abel et al. (1989). They compare gross profit rates and investment rates

in the non-financial corporate sector in the U.S., the U.K., France, Germany, Italy, Canada and Japan over the

1950-1985 period and find than the former is larger than the latter in every year and in every country (usually

by at least 10 points of GDP: say 20-25% of GDP for gross corporate profits and 10-15% of GDP for gross

corporate investment).
111Note that if the modified social discount rate becomes infinitely small, then in effect the modified Golden

rule becomes infinitely close to the non-modified Golden rule. That is, if δ
′

= δ− (1−Γ)g− (1−Γ′)n→ 0, then

r∗ = δ+ Γg+ Γ′n→ g+n. However this normative framework suffers from a number of limitations (see above).
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It is straightforward that the maximization of SWF leads to τB0 = 1 and τL0 =
τ − by0

1− α
.

This follows from the fact that τB0 only enters -positively- into generation-0 social welfare Ṽ0.

I.e. at time t = 0, capital is on the table and can be taxed as much as possible).

For t > 0, we have a non-generate trade-off, since τBt enters positively into generation-t

social welfare Ṽt and negatively into generation-t − 1 social welfare Ṽt−1. That is, generation-t

zero-bequest receivers benefit from a higher τBt (since this leads to a lower tax rate τLt on their

labor income), while generation-t − 1 zero-bequest receivers lose from a higher τBt (since this

reduces the utility from leaving a bequest to their children).

The marginal changes dṼt and dṼt−1 corresponding to a small change dτBt are given by:

dṼt = dṽt · ṽ−Γ
t · y1−Γ

t ·N1−Γ′

t

dṼt−1 = dṽt−1 · ṽ−Γ
t−1 · y1−Γ

t−1 ·N1−Γ′

t−1

With: dṽt =
1− τBt

1− α− τ + τBtbyt
·byt · ṽt ·

dτBt
1− τBt

dṽt−1 = −sb0t−1 · ṽt−1 ·
dτBt

1− τBt
And: sb0t =

E(v1−Γ
ti · sbi)

E(v1−Γ
ti )

Setting dSWF = eδH(t−1)dṼt−1 + eδHtdṼt = 0, we obtain:

τBt =
1− (1− α− τ)sb0t−1e

δ′H(ṽt−1/ṽt)
1−Γ/byt

1 + sb0t−1eδ
′H(ṽt−1/ṽt)1−Γ

With: δ′ = δ − (1− Γ)g − (1− Γ′)n

Note that with Cobb-Douglas utility functions and period-by-period budget constraint the

aggregate byt path is unaffected by tax changes (so we do not need to take into account a

dbyt term). I.e. starting with any initial by0, we have: byt+1 = s(1 − τLt)(1 − α)e(r−g−n)H +

s(1 − τBt)e
(r−g−n)Hbyt = s(1 − α − τ)e(r−g−n)H + s · e(r−g−n)Hbyt. As t → +∞, byt → by =

s(1− α− τ)e(r−g−n)H

1− s · e(r−g−n)H
. That is, with Cobb-Douglas utility and period-by-period budget con-

straint, the elasticity eB of the aggregate bequest flow with respect to tax changes is equal to

zero, both in the short run and in the long run.

As t→ +∞, we also have ṽt → ṽ = v ·(1−α−τ+τBby) ·(1−α) · θ̃, with v =
[
E(v1−Γ

i )
]1/(1−Γ)

and vi = (1− si)1−sissii [(1− τB)erH ]sbi , and sb0t → sb0 =
E(v1−Γ

i · sbi)
E(v1−Γ

i )
.

We therefore have the following formula for the asymptotic tax rate:

τBt → τB(δ′) =
1− (1− α− τ)sb0e

δ′H/by
1 + sb0eδ

′H

Q.E.D.
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C.8.2 Alternative proof.

The following alternative proof focuses on small long run tax changes and further clarifies the

role played by social discount rates. In addition this alternative proof also applies to the general

case with any long run elasticity eB.

Consider a tax policy sequence (τBt, τLt)t≥0, and assume that this is intertemporal welfare

optimum. Assume that as t→ +∞, τBt → τB, τLt → τL, and byt → by.

Consider a small, permanent change in the bequest tax rate occurring after some time

t0 > 0. I.e. for t ≥ t0, τBt becomes τBt + dτB, with dτB > 0 or dτB < 0. The labor tax

rate needs to adjust to τLt + dτLt, (so as to maintain period-by-period budget balance), and

the aggregate inheritance-output ratio adjusts to byt + dbyt. Period-by-period budget balance

implies: dτLt = −bytdτB + τBtdbyt
1− α

.

By definition of the elasticity eB, as t → +∞, dbyt → dby = −eB · by ·
dτB

1− τB
and dτLt →

dτL = −bydτB
1− α

(
1− eBτB

1− τB

)
.112

The implied change on the welfare of generation t- zero bequest receivers is given by: dṼt =

dṽt · ṽ−Γ
t · y1−Γ

t ·N1−Γ′

t

For t ≥ t0, we have: dṽt = −sb0t · ṽt ·
dτB

1− τBt+1

− ṽt ·
dτLt

1− τLt
With: sb0t =

E(v1−Γ
ti · sbi)

E(v1−Γ
ti )

Using period-by-period budget balance equations, and letting t→ +∞, we have:

dṽt → dṽ = ṽ · dτB
1− τB

·
[

1− (1 + eB)τB
1− α− τ + τBby

by − sb0
]

With: sb0 =
E(v1−Γ

i · sbi)
E(v1−Γ

i )

Define τ ∗B =
1− (1− α− τ)sb0/by

1 + eB + sb0
the steady-state welfare optimum.

We have:.
dṽ

dτB
> 0 iff τB < τ ∗B.

That is, by taking t0 large enough, one can increase the welfare of all generations t ≥ t0 by

raising the long run bequest tax rate τB if it is smaller than τ ∗B, and by reducing the long run

bequest tax rate τB if it is larger than τ ∗B.

This does not imply, however, that the asymptotic optimum tax rate τB has to be equal to

112Strictly speaking, with Cobb-Douglas utility, i.i.d. shocks, and period–by-period budget constraint, eB = 0

(and the terms dbyt are equal to zero all along the adjustment path). Here we write the proof with any positive

(or negative) eB in order to show how it works in the general case. Note that we ignore the fact that eB is not

strictly constant overtime as the elasticity following a permanent reform at time t0 builds up over time. It is

possible to write the proof with a time varying etB in which case the optimal formula depends on the average

elasticity ēB across time periods discounted by time factor e−δ
′Ht. This average elasticity is not strictly equal

to the long-run steady state elasticity eB used in the main text but would be quantitatively very close for small

δ′. When δ′ → 0 then naturally ēB → eB and we recover exactly the same formula as in the main text.

99



τ ∗B, because we also need to take into account the impact of dτB on the welfare of generation

t0 − 1.

I.e.: dSWF = e−δH(t0−1)dṼt0−1 +
∑
t≥t0

dṼte
−δHt

With: dṽt0−1 = −sb0t0−1 · ṽt0−1 ·
dτB

1− τBt0
E.g. if τB < τ ∗B, then raising τBt to τBt + dτB for all t ≥ t0 will increase welfare Ṽt of all

generations t ≥ t0 (for t0 large enough), but will reduce the welfare Ṽt0−1 of generation t0 − 1-

zero bequest receivers (since the latter do not benefit from a reduction in their labor tax rate,

but derive less utility from the bequest left to their children). With a corrected social discount

rate that is arbitrarily close to zero, this negative effect on generation t0 − 1 is negligible, and

the asymptotic optimum tax rate is arbitrarily close to the steady-state optimum τ ∗B. But as

long as the corrected social discount rate is strictly positive, then this negative effect cannot be

neglected, implying that the asymptotic optimum is strictly larger than τ ∗B. To see this, one

can re-arrange dSWF in the following way:

dSWF =
∑
t≥t0

ξt · dτB · e−δ
′Ht· y1−Γ

t0 ·N1−Γ′

t0

With: ξt =
ṽt

1− τBt
·
[

1− (1 + eB)τBt
1− α− τ + τBtbyt

byt − sb0t−1 · (ṽt−1/ṽt) · eδ
′H

]
And: δ′ = δ − (1− Γ)g − (1− Γ′)n

As t→ +∞, ξt → ξ =
ṽ

1− τB
·
[

1− (1 + eB)τB
1− α− τ + τBby

by − sb0 · eδ
′H

]
Define: τB(δ′) =

1− (1− α− τ)sb0e
δ′H/by

1 + sb0eδ
′H + eB

We have:ξ > 0 iff τB < τB(δ′).

Now assume τB < τB(δ′), so that ξ > 0.

Pick any ε > 0,κ > 0 s.t. ε < τB(δ′) − τB and κ < ξ . Then ∃t0 ≥ 0 s.t. ∀t ≥ t0,

τBt < τB(δ′)− ε and ξt > ξ −κ > 0.

One can see that if one picks dτB = ε, then moving from the tax policy sequence τBt, τLt to

the sequence τBt + dτB, τLt − dτLt for t ≥ t0 does raise intertemporal social welfare:

dSWF ≥
∑
t≥t0

(ξ −κ) · ε · e−δ′Ht ·y1−Γ
t0 ·N1−Γ′

t0 = (ξ−κ) · ε · e−δ′Ht ·y1−Γ
t0 ·N1−Γ′

t0 · e−δ
′Ht0

1− e−δ′H
> 0.

This contradicts the fact that the tax policy sequence τBt, τLt maximizes intertemporal social

welfare.

Conversely, if one assume τB > τB(δ′)., one can increase SWF by cutting the long run

bequest tax rate, i.e. one can find t0 ≥ 0 and dτB < 0 s.t. moving from the tax policy sequence

τBt, τLt to the sequence τBt + dτB, τLt − dτLt for t ≥ t0 raises intertemporal social welfare.

Therefore we have shown that the long run bequest tax rate must be equal to τB = τB(δ′).

Note that both proofs work for any δ,Γ, g,Γ′, n , as long as assumption 4 is satisfied, i.e. as

long as δ′ > 0. Q.E.D.
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C.9 Proof of Proposition C2

C.9.1 Part 1: r < r∗

Consider first the case r < r∗ = δ + Γg + Γ′n. Take any tax policy sequence (τBt, τLt)t≥0

satisfying the intertemporal budget constraint and converging towards some asymptotic tax

policy (τB, τL) as t → +∞. Under assumptions 1-6, byt → by =
s(1− τL)(1− α)e(r−g)H

1− s(1− τB)e(r−g)H , and

τ t → τ = τL(1− α) + τBby Assume that τL < 1.

Consider a small, budget balanced tax change whereby the planner reduces the labor tax

rate from τLt0 to τLt0 − dτ at time t0 ≥ 0 (with dτ > 0) and raises the labor tax rate from τLt1
to τLt1 + dτ ′.at some future dates t1 > t0 (with dτ ′ > 0). The bequest tax rate sequence τBt is

unchanged.

Part 1.1 Neglecting for the time being the impact of this labor tax change on the byt path

(and therefore on the stream of bequest tax revenues), intertemporal budget balance requires:

erH(t1−t0)YLt0dτ = YLt1dτ
′ = e(g+n)H(t1−t0)YLt0dτ

′

I.e. dτ ′ = e(r−g−n)H(t1−t0)dτ

The social welfare Ṽt of generation t-zero bequest receivers is given by:

Ṽt =
ṽ1−Γ
t

1− Γ
· y1−Γ

t ·N1−Γ′

t =
ṽ1−Γ
t

1− Γ
· y1−Γ

0 ·N1−Γ′

0 · e(1−Γ)gHt+(1−Γ′)nHt

With: ṽt = vt · (1− τLt) · (1− α) · θ̃
vt = [E(v1−Γ

ti )]1/(1−Γ),

vti = (1− si)1−sissii [(1− τBt+1)erH ]sbi

θ̃ = [E(θ1−Γ
i )]1/(1−Γ)

Following small tax changes we have: dṼt = dṽt·ṽ−Γ
t ·y1−Γ

t ·N1−Γ′

t = − dτLt
1− τLt

·ṽ1−Γ
t ·y1−Γ

t ·N1−Γ′

t

The total change in intertemporal social welfare induced by the labor tax change can there-

fore we written:

dSWF = e−δHt0dṼt0 + e−δHt1dṼt1

i.e. dSWF = e−δHt0 ·
ṽ1−Γ
t0

1− τLt0
· y1−Γ

t0
·N1−Γ′

t0
· [dτ − dτ ′ · ξt0,t1 · e[(1−Γ)g+(1−Γ′)n−δ]H(t1−t0)]

With: ξt0,t1 =
1− τLt0
1− τLt1

·
ṽ1−Γ
t1

ṽ1−Γ
t0

→ 1 as t0, t1 → +∞

Since dτ ′ = e(r−g−n)H(t1−t0)dτ , this can be rewritten:

dSWF = e−δHt · ṽ1−Γ
t

1− τLt
· y1−Γ

t ·N1−Γ′

t · dτ · [1− ξt0,t1 · e[r−r∗]H(t1−t0)]

With : r∗ = δ + Γg + Γ′n.
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If r < r∗ then ∃t∗0 s.t. ∀t1 > t0 ≥ t∗0, ξt0,t1 · e[r−r∗]H(t1−t0) < 1, i.e. dSWF > 0

Therefore one can raise intertemporal social welfare by reducing τLt0 and increasing τLt1 ,

which contradicts the fact that the sequence τBt, τLt maximizes intertemporal welfare. It follows

that the asymptotic labor tax rate must be equal to 1: as t→ +∞, τLt → 1.

Part 1.2 Taking into account the impact of the labor tax change on the byt path complicates

the notations but does not alter the conclusion. The key reason is that both dτ and dτ ′ induce

behavioral changes dbyt that are proportional to the initial mechanical changes dτ and dτ ′ and

the proportion is the same for both dτ and dτ ′. Hence, the welfare consequence does not change.

To see this going from τLt0 to τLt0 − dτ induces changes in byt for all t > t0. Using the

transition equation byt+1 = s(1− τLt)(1− α)e(r−g−n)H + s(1− τBt)e(r−g−n)Hbyt, we have:

dbyt = s(1− α)e(r−g−n)H · dτ if t = t0 + 1 and

dbyt = s(1− α)e(r−g−n)H · dτ ·

( ∏
t0+1≤t′<t

s(1− τBt′)e(r−g−n)H

)
if t > t0 + 1

The net present value at time t0 of the total changes in tax revenues induced by going from

τLt0 to τLt0 − dτ . can be written:

dT = −YLt0 · dτ+
∑
t>t0

e−rH(t−t0) · τBt · Yt · dbyt

I.e. dT = −YLt0 · dτ · [1− κt0 ].

With: κt0 =
∑
t>t0

e−(r−g−n)H(t−t0) · τBt · s · e(r−g−n)H ·

( ∏
t0+1≤t′<t

s(1− τBt′)e(r−g−n)H

)

That is: κt0 =
∑
t>t0

τBt · s ·

( ∏
t0+1≤t′<t

s(1− τBt′)

)
As t→ +∞, τBt → τB Therefore as t0 → +∞, κt0 →

τB · s
1− s · (1− τB)

< 1.

Similarly, going from τLt1 to τLt1 = τLt1 + dτ ′. induces changes in byt for all t > t1, namely:

db′yt = −s(1− α)e(r−g−n)H · dτ ′ if t = t1 + 1 and

db′yt = −s(1− α)e(r−g−n)H · dτ ′ ·

( ∏
t1+1≤t′<t

s(1− τBt′)e(r−g−n)H

)
if t > t1 + 1

The net present value at time t1 of the total changes in tax revenues induced by going from

τLt1 to τLt1 + dτ ′. can be written:

dT ′ = YLt1 · dτ ′+
∑
t>t1

e−rH(t−t1) · τBt · Yt · db′yt
I.e. dT ′ = YLt1 · dτ ′ · [1− κt1 ].

With: κt1 =
∑
t>t1

τBt · s ·

( ∏
t1+1≤t′<t

s(1− τBt′)

)
→ τB · s

1− s · (1− τB)
as t1 → +∞.

The tax change dτ, dτ ′ is budget balance if and and only if dT + e−r(t1−t0)dT ′ = 0, i.e. iff:

dτ ′ =
1− κt0
1− κt1

· e(r−g−n)H(t1−t0) · dτ

The induced change in intertemporal social welfare can again be written:
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dSWF = e−δHt · ṽ1−Γ
t

1− τLt
· y1−Γ

t ·N1−Γ′

t · dτ · [1− ξt0,t1 · e[r−r∗]H(t1−t0)]

With: ξt0,t1 =
1− τLt0
1− τLt1

·
ṽ1−Γ
t1

ṽ1−Γ
t0

· 1− κt0
1− κt1

→ 1 as t0, t1 → +∞

So if r < r∗ we again have: ∃t∗0 s.t. ∀t1 > t0 ≥ t∗0, ξt0,t1 · e[r−r∗]H(t1−t0) < 1, i.e. dSWF > 0 .

Part 1.3 In the same way, one can show that if r < r∗ and τBt → τB < 1, then one can

increase intertemporal social welfare by reducing the bequest tax rate from τBt0 to τBt0 − dτ at

some time t0 ≥ 0 and raising the bequest tax rate from τBt1 to τBt1 + dτ ′ at some future date

t1 > t0 (where the small tax changes dτ, dτ ′ are positive and budget balanced). It follows that

if r < r∗ then we have both τLt → τL = 1 and τBt → τB = 1. Note that since τLt → τL = 1,

byt → by = 0, i.e. in the long run the bequest tax rate does not matter since there is nothing to

tax. Finally, intertemporal budget balance implies that at → a =
τ−τ
R

= −1− α− τ
R

< 0.

C.9.2 Part 2: r > r∗

Conversely, in the case r > r∗, one can show in a similar way that one can increase intertemporal

social welfare by raising the labor tax rate from τLt0 to τLt0 +dτ at some time t0 ≥ 0 and reducing

the labor tax rate from τLt1 to τLt1−dτ ′ at some future date t1 > t0 (where the small tax changes

dτ, dτ ′ are positive and budget balanced), or by raising the bequest tax rate from τBt0 to τBt0 +dτ

at some time t0 ≥ 0 and reducing the bequest tax rate from τBt1 to τBt1 − dτ ′ at some future

date t1 > t0. It follows that if r > r∗, then τLt, τBt must converge towards their minimal values

τL, τB.

C.9.3 Part 3: r = r∗

Finally consider the knife-edge case r = r∗. Depending on the initial conditions and the specific

parameters, the optimal asset and tax policy sequence (at, τBt, τLt)t≥0 might involve positive or

negative government asset position in the long run: at → a > 0 or < 0. Taking as given the

optimal sequence (at)t≥0, one can derive the same proof as in Proposition C1 in order to derive

the asymptotic properties of (τBt, τLt)t≥0. That is, taking (at)t≥0 as given, the intertemporal

budget constraint can be rewritten as a period–by-period budget constraint:

τ t = τLt(1− α) + τBtbyt = τ + at+1e
(g+n)H − aterH

I.e. : τLt =
τ − τBtbyt + at+1e

(g+n)H − aterH

1− α

Note also that for a given (at)t≥0, changes in (τBt, τLt)t≥0 do not affect the byt path, since we

have:

byt+1 = s(1− α− τ t)e(r−g−n)H + s · e(r−g−n)Hbyt
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It follows that if we take (at)t≥0 as given, then any small bequest tax change dτBt must be

compensated by a labor tax change dτLt = −bytdτBt/(1− α).

Using the same formulas for the social welfare Ṽt of generation t-zero bequest receivers, total

social welfare SWF , and marginal welfare changes dṼt and dSWF as those given the proof of

Proposition C1, we obtain the following results.

First, at period t = 0, we have τB0 = 1 and τL0 =
τ − by0 + a1e

(g+n) − a0e
rH

1− α
. This follows

from the fact that τB0 only enters -positively- into generation-0 social welfare Ṽ0. I.e. at time

t = 0, capital is on the table and can again be taxed as much as possible).

For t > 0, we have a non-generate trade-off, since τBt enters positively into generation-t

social welfare Ṽt and negatively into generation-t− 1 social welfare Ṽt−1.

Setting dSWF = eδH(t−1)dṼt−1 + eδHtdṼt = 0, we obtain:

τBt =
1− (1− α− τ)sb0t−1e

δ′H(ṽt−1/ṽt)
1−Γ/byt

1 + sb0t−1eδ
′H(ṽt−1/ṽt)1−Γ

As t→ +∞, we again have:

τBt → τB(δ′) =
1− (1− α− τ)sb0e

δ′H/by
1 + sb0eδ

′H

For the asymptotic labor tax rate, the only difference with the previous formula is that we

now have a −R · a term:

τLt =
τ − τBtbyt + at+1e

(g+n)H − aterH

1− α
→ τL(δ′) =

τ − τB(δ′)by −R · a
1− α

With: R̄ = erH − e(g+n)H = 1 +R− (1 +G)(1 +N) = R−G−N −GN . Q.E.D.
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