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1 Introduction

Dynamic problems in economics (and many other disciplines) are characterized by large state spaces

that routinely make the model difficult or impossible to compute. Faced with these challenges,

researchers proceed in a number of different ways including analyzing a static version of the problem,

simplifying the dynamic problem to a setting where the state space is manageable, or employing a

number of techniques for approximating the value and policy functions that characterize the solution

to the problem. The problems analyzed in many broad literatures in economics ranging from models

of market equilibrium (which are almost always treated in a static framework) to strategic or social

interactions in networks (static or myopic dynamics) to dynamic games (typically characterized

by a small number of players and states) to matching problems (almost always analyzed as static

problems) remain limited by this large state space problem.

In recent years, techniques for approximating value functions in large state space problems

have been developed using simulation and interpolation (Keane and Wolpin (1994)) or parametric

policy iteration (PPI) (Rust (2000) and Bénitez-Silva, Hall, Hitsch, Pauletto, and Rust (2000)).

The main idea behind these methods is to approximate the value function using flexible functions

of the relevant state variables. Simulation and interpolation has been applied by Keane and Wolpin

(1997) and Crawford and Shum (2005) among many others. PPI has been applied to a single agent

setting in Hendel and Nevo (2006) and to a dynamic game in Sweeting (2011). While the potential

application of these methods is great, the literature contains very few formal results regarding

the quality of the approximation and, therefore, provides little formal or practical foundation for

researchers to use as they apply these methods (see Powell (2008) for a summary of the related

literature and a discussion of the lack of formal results).

In this paper, we consider an alternative, but related, method for approximating value functions

that we refer to as sieve value function iteration (SVFI).1 We develop the method in the context of a

generic single agent dynamic programming problem that can have either a finite or infinite horizon.

The SVFI method involves approximating the integrated value function with a nonparametric sieve

function. For any sieve function (i.e., for a particular choice of parameters), one can evaluate the

Bellman equation and compute a notion of distance between the approximation and its contraction,

and thus characterize how close the Bellman equation comes to holding. We approximate the value

function by choosing the parameters of the sieve function that come as close as possible to making

the Bellman equation hold exactly. Since the sieve space is a simple space, this minimization

problem is relatively easy to solve. Moreover, as the sequence of sieve spaces becomes a better and

better approximation of the original functional space F , our approximation converges to the true

value function.

In order to analyze the formal properties of the SVFI method, we assume that the complexity

of the sieve space, n, increases to infinity. In this sense our SVFI approximation technique becomes

non-parametric and we establish a number of results:

1For an excellent review of the method of sieves see Chen (2007).
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1. Consistency: we show that the sieve approximation converges to the true value function as

the richness of the sieve space increases.

2. Rates of convergence: we provide the first results in the literature for the rate at which the

approximating function converges to the true value function.

3. Iteration of Bellman operator: we characterize how rates of convergence are affected by

iterating the Bellman operator, pointing out for the first time that this has the potential to

improve performance in certain applications.

4. Bound on the error of approximation: following arguments in Rust (2000), we provide an

upper bound to the error of approximation to the unknown true value function that is feasible

to compute.

To the best of our knowledge, this is the first paper to formally establish the first three points for the

SVFI approximation. While the consistency of the SVFI might be an expected result, establishing

the rate of convergence of the SVFI approximation and understanding the effects of increasing

the number of iterations on the quality of the approximation are two useful formal contributions

to this literature. The fourth result, already present in Rust (2000), is included for the sake of

completeness. This is an incredibly valuable feature of SVFI because it ensures that one can bound

the extent of approximation error relative to the true value function even when the true value

function cannot be computed, i.e., the case of relevance in very large state space problems. This

also serves as a natural guide to researchers as they implement the SVFI, providing a clear sense

of whether the approximation is reasonable for any given specification of the sieve function. Taken

together, these results provide a formal foundation for the use of SVFI methods for approximating

large state space problems.

The SVFI approach is quite straightforward to understand and implement and, thus, has the

potential to be widely applied in economics and other disciplines. The framework can also be flexibly

implemented. It is possible, for example, to estimate the parameters of the sieve approximation

function by minimizing the distance in the Bellman operator for only a large subset of the states

in the state space. This is attractive for problems with large finite or infinite state spaces.

The method can be applied equally well to infinite and finite horizon problems. For finite

horizon problems, we develop two strategies for approximating value function. First, we show

how SVFI can be used to approximate the value functions at each time period using a traditional

backwards recursion solution method. More interestingly, by including the time to the horizon as

another state variable in the sieve function, we show how it is possible to approximate a single

sieve function that provides an approximation of the value function at each point in time without

solving the problem backwards. The particular features of the application in question will generally

determine which of these approaches is computationally lighter or easier to implement.

Having developed this general method for approximating value functions, we then formally

show how SVFI can be used to estimate the structural parameters of large state space dynamic
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problems in empirical applications. Conceptually it is easy to see that for any particular guess of

the model’s structural parameters, SVFI can be used to approximate the solution to the dynamic

problem and thus compute the approximate value and policy functions as well as conditional choice

probabilities. By comparing these objects to their empirical counterparts in the data it is possible

to compute a wide variety of objective functions that would be appropriate for estimating the

structural parameters. We show that it is possible to consistently estimate the model’s structural

parameters by embedding SVFI within the estimation algorithm.

We close the paper by demonstrating the performance of SVFI in a particular Monte Carlo

application, inspired by the famous bus-engine replacement problem of Rust (1987), in which a

firm must dynamically manage its entire fleet of buses. We begin by analyzing an infinite horizon

problem with a state space that is finite and relatively large but manageable, i.e., for which it

is still possible to compute the value function exactly at each state. We demonstrate that SVFI

approximates value functions for this problem very closely in a tiny fraction of the time that it

takes to compute the exact solution to the problem. We show that an accurate approximation can

be obtained even when the Bellman operator is evaluated at a small, randomly, drawn subset of

the full set of states and compare the speed and accuracy of alternative methods for minimizing

this distance, including non-linear least squares, an iterative least squares method, and methods

that iterate the Bellman operator. We extend this problem to an infinite state space by adding a

continuous state variable, again demonstrating that it is possible to approximate the solution ex-

ceptionally well in a reasonably short amount of computation time. We then analyze an analogous

finite horizon problem, comparing the speed and accuracy of SVFI approximations using (i) the

traditional backwards recursion solution method in which we compute a separate sieve approxima-

tion function at each point in time and (ii) an approach that treats time to the horizon as a state

variable, yielding a single time-interacted sieve approximation function.

We complete the Monte Carlo section of the paper, by evaluating the performance of SVFI

approximation within the context of the estimation of the structural parameters of the model.

Returning to the infinite horizon problem, we demonstrate that SVFI accurately estimates with

only a minimal impact on the effective standard errors while being much faster to compute. In

particular, we propose estimating the sieve parameters outside of the estimation of the structural

parameters in a manner similar to Aguirregabiria and Mira (2002) swapping of the nested fixed

point algorithm. Further, it is straightforward to examine how the estimated structural parameters

are affected by the dimension of the sieve and, therefore, to ensure that the sieve is sufficiently rich

such that its impact on the estimated structural parameters is minimal.

The rest of the paper proceeds as follows. In section 2 we describe the optimization problem.

Sections 3 and 4 develop formal results for infinite horizon problems and finite horizon problems,

respectively. In particular, we establish properties of the approximation including consistency and

rates of convergence. In section 5, we show how to use SVFI in estimation as well as properties of the

estimator. Section 6 investigates the small sample properties of our approximations, establishing

both the speed and reliability of our methods. Section 7 concludes.
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2 The dynamic decision problem

In this paper, we are interested in approximating the value function of a single agent solving a

dynamic decision problem. We begin by introducing the general problem. In every period t ∈ N,

the agent observes the current value of a state (xt, εt) and chooses an action at in a finite choice

set A(xt). The first component xt is observed by the researcher whereas the second component

εt ≡ {εt(a) : a ∈ A(xt)} is not. We assume that xt ∈ X and εt ∈ E. Conditional on this

information, the agent solves the following optimization problem:

Vt(xt, εt) = sup
Πt

E


T∑
j=t

βj−t[u(xj , aj) + εj(aj)]

∣∣∣∣∣∣xt, εt
 , (2.1)

where Πt = {{aj}∞j=t : at = A(xt)} and u(xt, at) + εt(at) denotes the period utility of making

decision at in state (xt, εt), u(xt, at) representing the structural part (possibly known up to a finite

dimensional parameter) and εt(at) representing the residual part, unobserved by the researcher.

The objective of this paper is to provide a computationally feasible approximation to the value

functions (i.e. {Vt(·)}Tt=1) and study its properties. In general, we might be interested in approxi-

mating these function because we want to do welfare analysis (i.e. which can be conducted directly

using these functions) or because we are interested in any other feature of the problem that can be

computed from these functions (i.e. optimal decision rules, conditional choice probabilities (CCPs),

etc.).

The formulation in Equation (2.1) encompasses both finite horizon problems (i.e. T = ∞)

and infinite horizon problems (i.e. T < ∞). Following the dynamic programming literature, our

strategy to approximate the value function in Equation (2.1) is to show that it is the unique solution

to a (functional) Bellman equation, and construct an approximation based on this representation.

Given that the Bellman equation representation of the finite and infinite horizon problems are

fundamentally different, it is convenient to divide the rest of the discussion into these two cases.

3 Approximation in infinite horizon problems

This section describes the application of non-parametric sieve methods to approximate the value

functions in Equation (2.1) when the dynamic problem has an infinite horizon (i.e. T = ∞).

The distinctive feature of the infinite horizon problem is that the value function of the problem

is stationary (i.e. Vt(·) = V (·), ∀t ∈ N), provided that we impose mild additional assumptions

to the problem. In particular, we follow Rust (1987) and Rust (1988) and assume that the joint

stochastic process {xt, εt, at} is a controlled Markov process that satisfies the following conditional
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independence (CI) assumption:

dP (xt+1, εt+1|xt, εt, at, xt−1, εt−1, at−1, . . . ) = dP (xt+1, εt+1|xt, εt, at), (Markov) (3.1)

= dP (εt+1|xt+1, xt, εt, at)dP (xt+1|xt, εt, at),(3.2)

= dP (εt+1|xt+1)dP (xt+1|xt, at). (CI) (3.3)

Under these assumptions, the literature provides several ways of formulating the value function in

Equation (2.1) as the recursive solution of a Bellman equation. In particular, these include: (a) the

social surplus function formulation discussed in Rust (1987) and Rust (1988), (b) the conditional

value function formulation of Rust (1987), and (c) the choice-specific value function formulation of

Rust (1988). Rather than describing each of these formulations in the main text, we now introduce

a single unified formulation that encompasses all of these formulations.2

According to our unified formulation, the value functions in Equation (2.1) are stationary and

solve the following Bellman equation:

V (s) = max
a∈A(s)

{u(s, a) + βE(F (V, s′)|s, a)},∀s ∈ S, (3.4)

where s is the current value of the state, s′ is the future value of the state, S is the state space,

a represents the action chosen by the agent, A(s) is the set of actions available to the agent when

the state is s, and F is a known functional of the value function V (·) and the future state s′ that

satisfies certain known properties.3

3.1 Approximating the value function

In order to discuss the approximation of V , we must first define the space to which this function

belongs. In particular, assume that V belongs to a functional space, denoted F . For example, we

can take F to be the space of measurable, bounded, real-valued functions from S to R. We define

a metric d in this space, making (F , d) a normed vector space. If we do not indicate otherwise, the

metric is the sup-norm metric, i.e., for any f1, f2 ∈ F :

d(f1, f2) = sup
s∈S
|f1(s)− f2(s)|. (3.5)

Furthermore, we assume that this metric space is complete, i.e., it is a Banach space. Consider the

following (functional) operator Γ : F → F :

(Γθ)(s) = max
a∈A(s)

{u(s, a) + βE(F (θ, s′)|s, a)},∀s ∈ S. (3.6)

2Section B of the appendix describes each of these formulations and shows that all of them are special cases of
our unified formulation.

3Among other properties, F : F×S satisfies: (a) monotonicity: for functions f1, f2 with f1(s) ≤ f2(s) for all s ∈ S,
then F (f1, s

′) ≤ F (f2, s
′) and (b) discounting: for any function f and any α ∈ R, βF (f + α, s′) = βF (f, s′) + βα.
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According to the definition in Equation (3.4), the value function is the fixed point of this operator.

Furthermore, under Blackwell (1965) sufficient conditions (see, e.g., Stokey and Lucas (1989),

Theorem 3.3), the operator Γ can be shown to be a contraction mapping. Thus, as a consequence

of the contraction mapping theorem (see, e.g., Stokey and Lucas (1989), Theorem 3.2), it follows

that the value function is the unique fixed point of the contraction mapping. In particular, if we

consider F to be a space of functions that map S → R and we consider any metric d : F ×F → R,

then, the value function is the unique solution to the following minimization problem:

inf
θ∈F

d(θ,Γθ) (3.7)

As a consequence, if it is possible to solve the minimization problem in Equation (3.7), then

the solution has to be unique and equal to the value function. Unfortunately, there are several

situations of practical relevance in which this minimization problem is computationally infeasible.

In this paper we focus on the difficulties that arise when the state space is too large, i.e., the

cardinality of the set S is either infinity or finite but too large to permit the use of traditional

methods.

The approximation method we propose is inspired by the sieves non-parametric estimation

method. Instead of solving the original minimization problem (Equation (3.7)), we replace the

original (possibly infinite dimensional) parameter space F with a sequence of simpler (often finite

dimensional) parameter spaces, called sieves. Throughout this paper, the sequence of sieve spaces

will be denoted by {Θn}n≥1, where n ∈ N is an index that represents the computation power of the

problems that we can handle. In order for this replacement to produce an accurate approximation

of the unknown value function, it will be required that the sieve space sequence {Θn}n≥1 to become

increasingly more complex (i.e. for any n ∈ N, Θn ⊂ Θn+1 ⊆ F) and dense in F as n→∞.

For a given computational power (i.e. for a given sieve space Θn), our method produces an

approximation, denoted θ̂n. In essence, we replace the complex parameter space F by the sieve

parameter space Θn and, loosely speaking, our approximation will be given as:

θ̂n ≈ argmin
θ∈Θn

d(θ,Γθ). (3.8)

That is, we will seek to choose the parameters of the sieve to get as close to a fixed point of the

Bellman operator as possible. Naturally, the quality of the approximation will be determined by

the sieve space Θn used to approximate the original parameter space F .

We introduce a definition of consistency of the approximation and rate of convergence of the

approximation.

Definition 3.1 (Consistency). θ̂n is a consistent approximation to V if and only if:

d(θ̂n, V ) = op(1), as n→∞. (3.9)

To be precise, this is an approximation problem and not an estimation problem. In other words,
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there are no data and, hence, no random sampling error4.

Definition 3.2 (Rate of Convergence). θ̂n converges to V at a rate of γ−1
n if and only if:

d(θ̂n, V ) ≤ Op(γn), (3.10)

where γn = o(1) as n→∞.

3.2 Assumptions

We now provide a list of the assumptions used in this section. As we show in Example 3.1, all of

these assumptions are satisfied in dynamic decision problems that have a very large but finite state

space.

Assumption 3.1. (F , d) is a complete metric space of functions that map S onto R and Γ : F → F
is a contraction mapping with modulus β ∈ (0, 1).

Assumption 3.2. For any n ∈ N, dn is a pseudo-metric in (F , d) such that ∃K1,K2 > 0,

K1dn(f1, f2)− η1,n ≤ d(f1, f2) ≤ K2dn(f1, f2) + η1,n, (3.11)

where η1,n = Op(γ1,n) and γ1,n = o(1), uniformly in f1, f2 ∈ F .

Assumption 3.3. For any n ∈ N and some k ∈ N there is enough computational power such that:

a. (Computation of the CM) For some k ∈ N and any θ ∈ Θn, we can compute Γkθ, where

Γθ is given by:

(Γθ)(s) = sup
a∈A(s)

{
u(s, a) + βE(F (θ, s′)|s, a)

}
, ∀s ∈ S. (3.12)

b. (Approximate minimization) We can find θn ∈ Θn that satisfies:

dn(θn,Γ
kθn) ≤ inf

θ∈Θn

dn(θ,Γkθ) + η2,n. (3.13)

where η2,n = Op(γ2,n) and γ2,n = o(1).

Assumption 3.4. For any f ∈ F :

inf
θ∈Θn

d(θ, f) = η3,n(f), (3.14)

where η3,n(f) = Op(γ3,n(f)) and γ3,n(f) = o(1).

4The only reason why we use op(1) notation instead of o(1) notation is that, in general, we allow for randomness
in the approximation. The randomness might occur, e.g., in: (a) the choice of the sieve space or (b) the solution to
the approximation problem.
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We now briefly comment on each of the assumptions. Even though Assumption 3.1 might look

innocuous, it is not. The definition of a contraction mapping is associated to a metric space (F , d).

In particular, note that the definition is associated to the particular metric d. In other words, if

(F , d1) and (F , d2) are two metric spaces, it is possible that a mapping Γ : F → F is a contraction

mapping with respect to d1 but not with respect to d2. This is the relevant case in the context

of single agent dynamic decision problems. According to Blackwell (1965) sufficient conditions,

the mapping Γ in Equation (3.6) can be shown to be a contraction mapping with respect to the

sup-norm metric. Unfortunately, it is not possible to show that the same mapping is a contraction

mapping with respect to other metrics, such as the lp-metric (for some p > 0)5.

In cases in which the state space S is too large, it might not be computationally possible to

work with the metric d directly, but we might be able to compute an associated pseudo-metric dn.

In order for this replacement to produce interesting results, we need to assume that the difference

between the metric d and the pseudo-metric dn vanishes at a certain rate. This is what Assumption

3.2 accomplishes.

If we had the computational capability to solve the minimization problem in Equation (3.7),

then the solution to that problem would be the object of interest. The motivation for this paper,

however, is to consider cases in which the size of the state space S makes solving the minimization

problem in Equation (3.7) impossible. Assumption 3.3 describes precisely which operations are

within our computational possibilities. Let n denote the capability of our computing power, which

by assumption is limited. For any n ∈ N, we choose a space of functions (sieve), denoted Θn so

that certain mathematical operations can be approximately solved. In particular, we assume that

we can: (a) compute the kth iteration of the Bellman equation mapping for any function in the

sieve space Θn and (b) minimize an objective function within the sieve space Θn, possibly up to a

small error denoted by η2,n. In case the original objective function can be exactly minimized, then

we can always take η2,n = 0 in Assumption 3.3.

The strategy to approximate the fixed point is to replace the original parameter space F with a

sequence of approximating sieve spaces {Θn}n≥1. In order to guarantee that this replacement does

not affect the asymptotic properties, Assumption 3.4 requires that any function v that belongs to

the original parameter space F can be approximated by an element in the sieve space, possibly

up to a small error denoted by η3,n(f). In order to guarantee that this error is, in fact, small,

it is convenient to understand the properties of the original parameter space F . The better we

understand this space, the better we can choose the sieve space Θn to approximate it. One way to

understand the parameter space F is to be able to restrict it as much as possible. For a very useful

result to achieve this goal, see Corollary 1 in page 52 of Stokey and Lucas (1989).

In order to illustrate these assumptions, we consider the following example.

Example 3.1 (Large but finite state space). Suppose that the agent solves the value function

in Equation (3.4) where the state-space S is finite but large, i.e., #S = N < ∞. By means of

Corollary 1, page 52 in Stokey and Lucas (1989) we can show that the value function belongs to

5This is true for all formulations of the problem.
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B(S), i.e., the space of bounded functions that map S onto [−B,B] ∈ R, for some B < ∞. This

implies that we can take the relevant metric space to be (F , d), with F = B(S) and d equal to the

sup-norm metric, i.e.,

d(f1, f2) = sup
s∈S
|f1(s)− f2(s)| = max

i=1,...,N
|f1(si)− f2(si)|, for all f1, f2 ∈ F . (3.15)

We now verify all of the assumptions. We begin with Assumption 3.1. By arguments in Stokey

and Lucas (1989), page 47, (F , d) is a complete metric space of functions that map S onto R. By

the Blackwell (1965) sufficient conditions, it is easy to see that Γ : F → F is a contraction mapping

with modulus β ∈ (0, 1).

Given that #S = N is a large number, we might not be able to compute d exactly. Instead, for

any n ∈ N with n < N , we might be able to compute:

dn(f1, f2) = max
i=1,...,n

|f1(si)− f2(si)|, for all f1, f2 ∈ F . (3.16)

This is a pseudo-norm in (F , d). Notice that for any f1, f2 ∈ F :

|dn(f1, f2)− d(f1, f2)| = η1,n, (3.17)

with η1,n = maxi=n+1,...,N |f1(si) − f2(si)| ≤ max {N − n, 0}B, and so η1,n = Op(γ1,n) and γ1,n =

o(1). This verifies Assumption 3.2 with K1 = K2 = 1.

Another possibility is to make the sieve space Θn depend only on a finite number n ∈ N of points

with n < N and work directly with the original metric d. In this case, dn = d and consequently,

η1,n = 0. A third possibility is to use an alternative pseudo-metric given by:

dn(f1, f2) =

 ∑
i=1,...,n

|f1(si)− f2(si)|p
1/p

, for all f1, f2 ∈ F , (3.18)

for some p > 0 and n ∈ N. In order to verify Assumption 3.2 we notice that:

dn(f1, f2) ≤ max
i=1,...,n

|f1(si)− f2(si)| ≤ N1/pdn(f1, f2), (3.19)

and, therefore:

dn(f1, f2) + η1,n ≤ d(f1, f2) ≤ N1/pdn(f1, f2) + η1,n, (3.20)

with η1,n = maxi=n+1,...,N |f1(si)−f2(si)| ≤ max {N − n, 0}B, and so it follows that η1,n = Op(γ1,n)

and γ1,n = o(1). This verifies Assumption 3.2 with K1 = 1 and K2 = N1/p.

Assumption 3.3 can be assumed to hold. Part a is a very mild assumption. Part b is a much

stronger assumption as it assumes that we can (approximately) solve a minimization problem with

respect to the sup-norm pseudo-metric. It becomes a milder assumption if we use the l2 pseudo-

metric.
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Finally, Assumption 3.4 requires that the sieve space Θn can approximate the original space F .

This is a relatively mild assumption. Then, for any n ∈ N, we take Θn to be the set of polynomial

functions defined in S of degree n. Then, Weierstrass Theorem (see, e.g., Royden (1988), page 128,

proposition 8) implies that:

inf
θ∈Θn

d(θ, v) = o(1), ∀v ∈ F , (3.21)

as required by Assumption 3.4. Results on the rate of convergence of the o(1) term are available

from Chen (2007), and references therein (e.g. Lorentz (1966) and Powell (1981), Chapters 15-16.)

3.3 An iterative procedure to implement the minimization

We close this section by discussing a final practical computational issue: solving the approximate

minimization problem described in Equation (3.13). For some problems the solution to Equation

(3.13) might to be too computationally difficult to solve directly. In order to compute a solution

in these circumstances, we now introduce an iterative procedure to implement this minimization

problem.

Let {η1,n}n∈N be as in Assumption 3.2 and let k ∈ N and {η2,n}n∈N be as in Assumption 3.3.

Furthermore, assume that γ1,n = O(γ2,n), where γ1,n and γ2,n are as in Assumptions 3.2 and 3.3.

For an arbitrary f ∈ Θn, consider the following iterative procedure:

1. Choose a function θn ∈ Θn such that:

dn(θn,Γ
kf) = inf

θ∈Θn

dn(θ,Γkf). (3.22)

2. If max{dn(θn,Γ
kf), dn(θn, f)} ≤ η2,n, then stop the algorithm. Otherwise, set f = θn and

repeat the previous step.

If the algorithm stops, then it is easy to see that θn ∈ Θn satisfies Equation (3.13). To see why,

consider the following argument:

dn(θn,Γ
kθn) ≤ dn(θn,Γ

kf) + dn(Γkf,Γkθn) (3.23)

≤ dn(θn,Γ
kf) +K−1

1 d(Γkf,Γkθn) +K−1
1 η1,n (3.24)

≤ dn(θn,Γ
kf) +K−1

1 βkd(f, θn) +K−1
1 η1,n (3.25)

≤ dn(θn,Γ
kf) +K−1

1 βkK2dn(f, θn) +K−1
1 βkK2η1,n +K−1

1 η1,n (3.26)

≤ η2,n(1 +K−1
1 βkK2) + (K−1

1 βkK2 +K−1
1 )η1,n (3.27)

= η′2,n ≤ inf
θ∈Θn

dn(θ,Γkθ) + η′2,n, (3.28)

where η′2,n ≡ η2,n(1 + K−1
1 βkK2) + (K−1

1 βkK2 + K−1
1 )η1,n and, thus, under our assumptions,

η′2,n = Op(γ2,n) and γ2,n = o(1). The first inequality follows from the triangular inequality (applied

to the pseudo-metric dn), the second and fourth inequalities follow from Assumption 3.2, the third

11



inequality follows from the fact that Γ is a contraction mapping with modulus β, the fifth inequality

follows from the stopping rule in the algorithm, the following equality follows by definition of η′2,n,

and the final inequality follows from the fact that the pseudo-metric dn is positive. The result is

completed by noticing that, under our assumptions, η′2,n = O(η2,n).

In practice, the minimization problem in Equation (3.22) can be relatively easy to solve and, in

particular, much easier than the approximate minimization problem in Equation (3.13). For exam-

ple, when dn is the l2-metric (i.e. sum of squared differences) and Θn is the space of polynomials

then the minimization problem in Equation (3.22) is a least-squares problem.

Having defined the dynamic decision problem and laid out basic definitions and assumptions,

we now introduce our method for approximating the value function and prove a series of results

regarding the properties of this approximation. We begin by analyzing infinite horizon problems,

taking up finite horizon problems in the following section of the paper.

3.4 Definition of the approximation

Under Assumption 3.1, the Contraction Mapping Theorem (see, e.g., Stokey and Lucas (1989),

Theorem 3.2, page 50) indicates that the contraction mapping Γ defined by Equation (3.6) has

a unique fixed point. As we have explained, Equation (3.4) implies this fixed point is the value

function of interest, which we have denoted by V ∈ F . As we have explained, this motivates us

to consider the (unfeasible) optimization problem in Equation (3.7) or, more generally, for some

k ∈ N, the following (equally unfeasible) optimization problem:

inf
θ∈F

d(θ,Γkθ). (3.29)

Even though the objective function can be computed, the sample space of the problem under con-

sideration makes the domain of the optimization, F , too complex to handle. In order to circumvent

this issue, we consider replacing the space F with a sequence of approximating spaces or sieves.

According to Assumption 3.4, the sequence of spaces {Θn}n≥1 becomes a good approximation of F
as our computational possibilities, n, diverge to infinity. In particular, this motives us to consider

the following alternative optimization problem:

inf
θ∈Θn

d(θ,Γkθ). (3.30)

In certain situations, minimizing with respect to the metric d might not be computationally easy

or even possible. In those cases, it is convenient to consider replacing the metric d with a suitable

pseudo-metric dn according to Assumption 3.2. This leads us to consider the following optimization

problem:

inf
θ∈Θn

dn(θ,Γkθ). (3.31)

In certain settings, the above minimization problem might only be feasible up to a certain residual

term that will vanish as n diverges to infinity. This is precisely the case described in Assumption

12



3.3 (part b). This progression naturally leads to the definition of our SVFI approximation.

Definition 3.3 (Sieve Value Function Approximation). Assume Assumption 3.3. Then the SVFI

approximation of V is any θ̂n ∈ Θn that satisfies:

dn(θ̂n,Γ
kθ̂n) ≤ inf

θ∈Θn

dn(θ,Γkθ) + η2,n. (3.32)

where η2,n = Op(γ2,n) and γ2,n = o(1).

Unlike the optimization problems in Equations (3.7) or (3.29), Assumption 3.3 guarantees that

the SVFI approximation is the (approximate) solution to the feasible minimization problem in

Equation (3.32).

3.5 Properties of the approximation

All of the findings of this section are corollaries of the following lemma.

Lemma 3.1. Assume Assumptions 3.1-3.4. Then, the SVFI approximation satisfies:

d(θ̂n, V ) ≤ (1 +K2K
−1
1 )η1,n +K2η2,n +K−1

1 K2(1 + βk)η3,n(V )

1− βk
, (3.33)

where V ∈ F is the unique fixed point of Γ in (F , d).

Lemma 3.1 is the key result to establish the consistency of the SVFI approximation, derive its

rate of convergence, and investigate the finite sample properties of its approximation error. The

following result establishes the consistency and the rate of convergence of the approximation.

Theorem 3.1. Assume Assumptions 3.1-3.4. Then, the SVFI approximation satisfies:

d(θ̂n, V ) = Op(max{γ1,n, γ2,n, γ3,n(V )}), (3.34)

where max{γ1,n, γ2,n, γ3,n(V )} = o(1) as n → ∞, and V ∈ F is the unique fixed point of Γ in

(F , d). This implies that the SVFI approximation:

1. is consistent approximation of V , i.e., d(θ̂n, V ) = op(1), as n→∞.

2. converges to V at a rate of min{γ−1
1,n, γ

−1
2,n, γ

−1
3,n(V )}.

Theorem 3.1 implies that the rate of convergence of the approximation depends on the rate at

which three errors converge to zero. These errors are:

1. The error of approximating the metric d with the approximate pseudo-metric dn according

to Equation (3.11), denoted by η1,n, which converges to zero at a rate of γ−1
1,n.

2. The error of approximation when minimizing the objective function dn(θ,Γkθ) in Equation

(3.32), denoted by η2,n, which converges to zero at a rate of γ−1
2,n.
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Table 1: Value of constants associated to the upper bound on the
error of approximation for different number of iterations.a

Number of iterations: k
1 2 3 4 5 6 7

1/(1− βk) 10 5.26 3.69 2.91 2.44 2.13 1.92

(1 + βk)/(1− βk) 19 9.53 6.38 4.82 3.88 3.27 2.83
a The discount factor β is set to 0.9.

3. The error of approximating the value function V ∈ F with an element in the sieve space Θn,

denoted by η3,n(V ), which converges to zero at a rate of γ−1
3,n(V ).

The slowest of these three rates determines the rate of convergence of the approximation. The

motivation for introducing sieve approximations was the fact that working with the original space F
was computationally infeasible, i.e., the third source of error η3,n(V ) cannot be avoided. However,

it might be possible to avoid the other sources of error. In other words, it might be possible to use

dn = d, leading to γ1,n = 0, or it might be possible to solve the minimization of dn(θ,Γkθ) exactly,

leading to γ2,n = 0. If so, then, the convergence rate of this source of error is infinity, effectively

disappearing from the expression for the rate of convergence min{γ−1
1,n, γ

−1
2,n, γ

−1
3,n(V )}.

It is interesting to notice that the findings in Theorem 3.1 do not depend on the number of

contraction mapping iterations k in Assumption 3.3 (in particular, they hold even if k = 1). The

choice of k affects several constants associated with the rates of convergence, which are “hidden” in

the Op notation. While these constants are not relevant for the asymptotic results, they can be very

relevant for finite values of the computational power n. The right tool for this analysis is Equation

(3.33) in Lemma 3.1, which provides a concrete upper bound on the error of approximation that can

be used to study the effect of changes in k that is valid for any value of n. This result reveals that

the three sources of error are each associated with a constant that depend on k. In particular, the

error terms η1,n, η2,n, and η3,n are associated to the constants (1 +K2K
−1
1 )/(1− βk), K2/(1− βk),

and K−1
1 K2(1 + βk)/(1− βk), respectively. A corollary of this is that, ceteris paribus, an increase

in the number of value function iterations k reduces the value of the upper bound of the error of

approximation. In particular, Table 1 illustrates that there are significant gains in precision from

raising the value of k when the discount factor is β = 0.9. For example, changing the number

of iterations from k = 1 to k = 2 reduces the (upper bound on the) error of approximation by

approximately 50%.

We illustrate the tradeoffs associated with increasing the number of contraction mapping iter-

ations k in the Monte Carlo analysis in Section 6.
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4 Approximation in finite horizon dynamic problems

This section describes the application of non-parametric sieve methods to approximate the value

functions in Equation (2.1) when the dynamic problem has a finite horizon (i.e. T < ∞). The

distinctive feature of the finite horizon problem is that the value function of the problem is no

longer stationary (i.e. Vt(·) depends on the time index). As time passes and the terminal period T

approaches, the agent’s value function changes.

Using backward induction, the value function in any given period can be expressed the opti-

mized choice between instantaneous utility and the discounter value for the immediately proceeding

period. By repeating the arguments used to develop the unified formulation used in the infinite

horizon case, we use s to denote the current value of the state, s′ to denote the future value of the

state, S to denote the state space, a to denote the action chosen by the agent, A(s) to denote the

space of actions available to the agent when the state is s, and F to be a known functional of Vt+1(·)
and s′ that satisfies certain known properties. Based on this notation, in every period t = 1, . . . , T ,

the agent solves an optimization problem characterized by the following value function:

Vt(s) = max
a∈A(s)

{u(s, a) + βE(F (Vt+1, s
′)|s, a)}, ∀s ∈ S, (4.1)

where the variables and functions are defined as in Equation (3.4) and:

VT+1(s) = 0, ∀s ∈ S. (4.2)

Using the notation developed in Equation (3.6), the sequence of value functions {Vt}Tt=1 can be

defined as follows: VT = ΓVT+1 with a zero terminal value, i.e., VT+1(s) = 0, ∀s ∈ S.6

The approximation procedure developed for the infinite horizon problem must be modified to

accommodate several distinct features of the finite horizon setup. First, the finite horizon problem

requires an approximation for the value function at each point in time; the infinite horizon problem

is stationary, i.e., the agent solves the same problem every period, and thus only requires the

approximation of a single value function V . Second, the approximation procedure developed for

the infinite horizon problem required the value function V to be a fixed point in a contraction

mapping. Clearly, this will not be true for the non-stationary finite horizon problem. As time

progresses, the last period of the game approaches and this affects the value of participating in the

game. Thus the value functions of the finite horizon problem are not fixed points to any mapping,

but are instead a finite sequence of functions that are sequentially related.

With enough computational power, the set of functions {Vt}Tt=1 could be computed exactly

using backward induction. Nevertheless, for economic models with large state spaces, the exact

implementation of backward induction might be too computationally challenging or even impossible.

6It should be noted that each of the objects in Equation (4.1), i.e., the set of possible actions A(·), the period
utility function u(·), the expectation operator E(·), and the functional F (·), could be allowed to be time-specific
without affecting any of the theoretical results to follow. We opted to keep these elements time invariant to simplify
the exposition and to relate them easily to elements in Equation (3.4).
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The objective of this section is to propose a sieve value function approximation for such settings.

For a given computational power (i.e. for a given sieve space Θn), our approximation method

produces a sequence of approximations: {θ̂n,t}Tt=1 where, for all t = 1, . . . , T , θ̂n,t is the sieve value

function approximation for Vt.

We consider two approximation procedures. The first is, essentially, the sieve approximation

version of a traditional backward induction. The value function is first approximated for the last

period and this approximate function is used to solve for the (approximate) value function for

the previous period. Continuing to work backwards yields an approximate value function for each

period. Implementing this procedure requires using computational routines that are specifically

tailored for the finite horizon setup.

The second procedure entails expanding the state space to include time as a state variable. To

the best of our knowledge, this procedure is novel to our paper. While this procedure is less intuitive

than backward induction, it has the advantage of being implemented with the same computational

routines developed above for the infinite horizon problem.

4.1 Approximation using backward induction

The computation of the sequence of value functions {Vt}Tt=1 by backward induction is well under-

stood and requires no further discussion. This section proposes an approximation to these value

functions using sieves. The approximation requires the following assumptions. By repeating previ-

ous arguments, it is easy to see that these assumptions are satisfied in dynamic decision problems

that have a very large but finite state space.

Assumption 4.1. (F , d) is a complete metric space of functions that map S onto R, where d is

the sup-norm metric, i.e.,

d(f1, f2) = sup
s∈S
||f1(s)− f2(s)||, ∀f1, f2 ∈ F . (4.3)

Assumption 4.2. For any n ∈ N, dn is a pseudo-metric in (F , d) such that ∃K1,K2 > 0,

K1dn(f1, f2)− λ1,n ≤ d(f1, f2) ≤ K2dn(f1, f2) + λ1,n, (4.4)

where λ1,n = Op(υ1,n) and υ1,n = o(1), uniformly in f1, f2 ∈ F .

Assumption 4.3. For any n ∈ N there is enough computational power such that:

a. (Computation of the CM) For any θ ∈ Θn ∪ VT+1, we can compute Γθ given by:

(Γθ)(s) = sup
a∈A(s)

{
u(s, a) + βE(F (θ, s′)|s, a)

}
, ∀s ∈ S. (4.5)
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b. (Approximate minimization) For any f ∈ F , we can find θn ∈ Θn that satisfies:

dn(θn, f) ≤ inf
θ∈Θn

dn(θ, f) + λ2,n. (4.6)

where λ2,n = Op(υ2,n) and υ2,n = o(1), uniformly in f ∈ F .

Assumption 4.4. For any f ∈ F :

inf
θ∈Θn

d(θ, f) = λ3,n, (4.7)

where λ3,n = Op(υ3,n) and υ3,n = o(1), uniformly in f ∈ F .

Assumption 4.5. For all f1, f2 ∈ F , a ∈ A(s), and s ∈ S:

E[F (f1, s
′)− F (f2, s

′)|s, a] ≤ d(f1, f2). (4.8)

We now briefly comment on each of the assumptions with focus on the differences with Assump-

tions 3.1-3.4. With respect to Assumption 3.1, Assumption 4.1 eliminates the contraction mapping

requirement with the requirement that d is the sup-norm metric. As we have already explained,

these two assumptions are not that different, as the mapping Γ in Equation (3.6) can be shown

to be a contraction mapping with respect to the sup-norm metric but not with respect to other

metrics. Assumption 4.2 is identical to Assumption 3.2. Assumption 4.3 is very similar to Assump-

tion 3.3. The differences between the two are the following. First, Assumption 3.3(a) assumed

that one could compute the kth iteration of the Bellman equation mapping for any function in the

sieve space Θn, whereas Assumption 4.3(a) explicitly requires this to be true for k = 1. Second,

Assumption 3.3(b) assumed that one could (approximately) minimize a specific objective function

within the sieve space Θn, whereas Assumption 4.3(b) assumes that one can (approximately) find

the best approximation within the sieve space Θn for any function in F . The difference between

Assumption 3.3(b) and Assumption 4.3(b) is that the error of minimization has to converge to zero

(in probability) uniformly in f ∈ F . Assumption 4.4 strengthens Assumption 3.4 as it requires

that infθ∈Θn d(θ, f) converges to zero (in probability) uniformly in f ∈ F . In other words, instead

of requiring a vanishing error of approximation of any particular function, we require that the a

vanishing error of approximation for the worst function in the class of functions F . For references

on these stronger results see, e.g., chapter 8 in Lorentz (1966). Finally, Assumption 4.5 is a mild

assumption about the properties of the mapping F . In particular, Lemma A.1 verifies that this

assumption holds for all possible the formulations of the problem.

The approximation considered in this section is defined as follows:

Definition 4.1 (Sieve Value Function Approximation). Assume Assumption 4.3. Then the ap-

proximation of {Vt}Tt=1 is {θ̂n,t}Tt=1 constructed in the following iterative manner. For z = 1, . . . , T ,

let t = T + 1− z and complete the following steps:
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1. Define θ̂∗t,n : S → R as follows:

θ̂∗t,n(s) = (Γθ̂t+1,n)(s) = max
a∈A(s)

{u(s, a) + βE(F (θ̂t+1,n, s
′)|s, a)}, ∀s ∈ S, (4.9)

where either: t = T and θ̂t+1,n(s) = VT+1(s) = 0 ∀s ∈ S, or t < T and θ̂t+1,n has been defined

in a previous iteration of the algorithm.

2. Define θ̂t,n : S → R to be any θ̂t,n ∈ Θn that satisfies:

dn(θ̂t,n, θ̂
∗
t,n) ≤ inf

θ∈Θn

dn(θ, θ̂∗t,n) + λ2,n, (4.10)

where λ2,n = Op(υ2,n) and υ2,n = o(1).

It is evident from the description of the procedure that this method implements the traditional

backward induction procedure using sieve approximations, i.e., it performs an approximation of

the value function of the terminal period and uses the approximation of the value function in a

given period to conduct an approximation for the value function in the immediately preceding

period. Under Assumption 4.3, this approximation is feasible and is completed by solving T se-

quential approximation problems. The following theorem establishes the asymptotic properties of

the approximation.

Theorem 4.1. Assume Assumptions 4.1-4.5. Then, the approximation satisfies:

max
t=1,...,T

d(θ̂t,n, Vt) = Op(max{υ1,n, υ2,n, υ3,n}), (4.11)

where max{υ1,n, υ2,n, υ3,n} = o(1) as n→∞. This implies that for all t = 1, . . . , T , the sieve value

function approximation θ̂t,n:

1. is a consistent approximation of Vt, i.e., d(θ̂t,n, Vt) = op(1), as n→∞.

2. converges to Vt at a rate of min{υ−1
1,n, υ

−1
2,n, υ

−1
3,n}.

As in Theorem 3.1, Theorem 4.1 indicates that the rate of convergence of the approximation

depends on the rate at which three errors converge to zero. The slowest of these three rates

determines the rate of convergence of the approximation.

4.2 Approximation using time as a state variable

The approximation considered in this section entails considering the time dimension as part of the

state of the problem. In some sense, it may seem counterintuitive to “increase” the state space for a

problem in which the size of space was already deemed to large to compute directly. However, as we

demonstrate in this section, the approximation is computationally feasible and can be implemented

using the exact same computational tools as in the infinite horizon case.
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Consider the state space that results from the cartesian product of the (time invariant) state

space S with the time dimension {1, . . . , T + 1}, i.e., S̃ = S × {1, . . . , T + 1}. Throughout this

section, we superscript with the symbol ∼ to denote objects in the new state space that includes

the time dimension. For example, the new metric space is denoted by (F̃ , d̃), where F̃ denotes a

set functions from S̃ onto R and d̃ denotes the corresponding norm in this space. In this enlarged

state space, the sequence of value functions {Vt}T+1
t=1 defined by Equations (4.1) and (4.2) can be

equivalently re-written as follows:

V (s, t) ≡ Vt(s). (4.12)

In order to conduct the approximation in the state space S̃, we use a sequence of sieve spaces,

denoted by {Θ̃n}n≥1, where each Θ̃n is a space of (simple) functions that map S̃ onto R. We

consider the following assumptions.

Assumption 4.6. (F̃ , d̃) is a complete metric space of functions that map S̃ onto R, where d̃ is

the sup-norm metric, i.e.,

d̃(f1, f2) = sup
(s,t)∈S̃

||f1(s, t)− f2(s, t)||, ∀f1, f2 ∈ F̃ . (4.13)

Assumption 4.7. For any n ∈ N, d̃n is a pseudo-metric in (F̃ , d̃) such that ∃K1,K2 > 0,

K1d̃n(f1, f2)− λ1,n ≤ d̃(f1, f2) ≤ K2d̃n(f1, f2) + λ1,n, (4.14)

where λ1,n = Op(υ1,n) and υ1,n = o(1), uniformly in f1, f2 ∈ F̃ .

Assumption 4.8. For any n ∈ N and some k ∈ N there is enough computational power such that:

a. (Computation of the CM) For some k ∈ N and any θ ∈ Θn, we can compute Λkθ, where

Λθ is given by:

(Λθ)(s, t) = sup
a∈A(s)

{
u(s, a) + βE(F (θ, (s′, t+ 1)|(s, t), a)

}
× 1[t < T + 1]. (4.15)

b. (Approximate minimization) For any f ∈ F̃ , we can find θn ∈ Θ̃n that satisfies:

d̃n(θn,Λθn) ≤ inf
θ∈Θ̃n

d̃n(θ,Λθ) + λ2,n. (4.16)

where λ2,n = Op(υ2,n) and υ2,n = o(1).

Assumption 4.9. For any f ∈ F̃ :

inf
θ∈Θ̃n

d̃(θ, f) = λ3,n(f), (4.17)

where λ3,n(f) = Op(υ3,n(f)) and υ3,n(f) = o(1).
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Assumption 4.10. For all f1, f2 ∈ F̃ , a ∈ A(s), and (s, t) ∈ S̃:

E[F (f1, (s
′, t+ 1))− F (f2, (s

′, t+ 1))|(s, t), a] ≤ d(f1, f2). (4.18)

With the exception of the fact that the state space has been enriched with the time index,

Assumptions 4.6-4.10 are analogous to assumptions that have already been discussed in the paper.

On the one hand, Assumptions 4.6, 4.7, and 4.10 are analogous to Assumptions 4.1, 4.2, and

4.5 used to consider the sieve approximation to the backward induction solution in finite horizon

problems. On the other hand, Assumptions 4.8 and 4.9 are analogous to Assumptions 3.3 and 3.4

used to consider the SVFI approximation in infinite horizon problems.

In the context of the SVFI approximation in infinite horizon problems, we described an iterative

procedure for (approximately) minimizing the objective function. A similar iterative procedure can

be developed for finite horizon problems. In particular, let {λ1,n}n∈N be as in Assumption 4.7 and

let k ∈ N and {λ2,n}n∈N be as in Assumption 4.8. Furthermore, assume that υ1,n = O(υ2,n), where

υ1,n and υ2,n are as in Assumptions 4.7 and 4.8.

For an arbitrary f ∈ Θ̃n, consider the following iterative procedure:

1. Choose a function θn ∈ Θ̃n such that:

d̃n(θn,Λ
kf) = inf

θ∈Θ̃n

d̃n(θ,Λkf). (4.19)

2. If max{d̃n(θn,Λ
kf), d̃n(θn, f)} ≤ λ2,n, then stop the algorithm. Otherwise, set f = θn and

repeat the previous step.

If the algorithm stops, then it implies that θn ∈ Θ̃n satisfies Equation (4.16). To show this,

we can repeat the argument used in Section 3.3. In practice, the minimization problem in Equa-

tion (4.19) can be relatively easy to solve and, in particular, much easier than the approximate

minimization problem in Equation (4.16).

The following result is the key to the asymptotic findings of this section.

Lemma 4.1. Assume Assumptions 4.6 and 4.10. Let Λ be the mapping in Assumption 4.8 and let

V ∈ F̃ be the function defined by: V (t, s) ≡ Vt(s) for all S × {1, . . . , T + 1}. Then:

1. Λ is a contraction mapping with modulus β on (F̃ , d̃).

2. V is the unique fixed point of the contraction mapping Λ, i.e., ΛV = V .

In the context of infinite horizon problems, Assumption 3.1 indicated that the value function

was the unique fixed point of a certain contraction mapping. This result was the key to proposing

the SVFI approximation method. Lemma 4.1 indicates that an analogous result holds for in the

context of finite horizon problem. In fact, if we combine this result with the remaining assumptions,

the current setup satisfies all of the conditions required for the SVFI approximation. As a conse-

quence, an analogous approximation to the the SVFI approximation will have the same asymptotic

properties, i.e, consistency and rates of convergence. This analogous approximation is defined next.
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Definition 4.2 (Sieve Value Function Approximation). Assume Assumption 4.8. Then the sieve

approximation of {Vt}Tt=1 is {θ̂t,n}Tt=1 where, for every (s, t) ∈ S ×{1, . . . , T}, θ̂t,n(s) ≡ θ̂n(s, t) and

θ̂n ∈ Θ̃n is any function that satisfies:

d̃n(θ̂n,Λ
kθ̂n) ≤ inf

θ∈Θ̃n

d̃n(θ,Λkθ) + λ2,n. (4.20)

where λ2,n = Op(υ2,n) and υ2,n = o(1).

Based on the previous discussion, the following result is a simple corollary of Theorem 3.1 and

Lemma 4.1.

Theorem 4.2. Assume Assumptions 4.6-4.10. Then, the function θ̂n ∈ Θ̃n in Definition 4.2

satisfies:

d̃(θ̂n, V ) = Op(max{υ1,n, υ2,n, υ3,n(V )}), (4.21)

where max{υ1,n, υ2,n, υ3,n(V )} = o(1) as n → ∞ and V ∈ F̃ is the function defined by: V (t, s) ≡
Vt(s) for all S×{1, . . . , T + 1}. This implies that for all t = 1, . . . , T , the sieve approximation θ̂t,n:

1. is a consistent approximation of Vt, i.e., sups∈S |θ̂t,n(s)− Vt(s)| = op(1), as n→∞.

2. converges to Vt at a rate of min{υ−1
1,n, υ

−1
2,n, υ

−1
3,n(V )}.

As in Theorems 3.1 and 4.1, Theorem 4.2 indicates that the rate of convergence of the approx-

imation depends on the rate at which three errors converge to zero. Again, the slowest of these

three rates determines the rate of convergence of the approximation.

5 Estimation

The results to this point in the paper characterize the (approximate) computation of the value

function (and associated object of interests) for a known vector parameters π that characterize the

agent’s dynamic decision problem. In this section, we now consider the problem of estimating π

in a parameter space Π when the researcher has data on dynamic decisions and, again, the state

space is too large to permit the direct computation of V for a given value of π.7 As before, the

associated value function V incorporates all the information that is relevant to the decision problem

and depends on the parameter π, i.e., V (·|π). In this setup, the approximation problem of previous

sections entails the approximation of the value function V for a particular value of the parameter

π ∈ Π. Let π∗ denote the true parameter value, i.e., V (·) ≡ V (·|π∗).
For concreteness, consider an agent solving the value function in Equation (3.4) with:

AS ≡ {(a, s) : a ∈ A(s) and ∀s ∈ S}, (5.1)

7Throughout this section, we pretend that the dynamic problem we refer to is the infinite horizon single agent
decision problem. Nevertheless, by making slight notational changes, the results of this section can also be applied
to a finite horizon problem.
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instantaneous utility function given by:

u(s, a) = u(s, a|π1), ∀(a, s) ∈ AS, (5.2)

transition probabilities given by:

dP (ε′, x′|x, a) = dP (ε′, x′|x, a, π2), ∀(a, s) ∈ AS, (5.3)

and a discount factor β = π3. Set π ≡ (π1, π2, π3) ∈ Π. For each parameter value π ∈ Π, the

corresponding value function is denoted V (·|π).

The SVFI approximation procedure described in Definition 3.3 provides a method for approxi-

mating the value function for any given set of primitives (i.e. choice set, utility function, discount

factor, and transition probabilities). In this setting, these primitives are functions of the unknown

parameter value π. To be consistent with this interpretation, we denote: θn ≡ θn(·|π).

If the value function (or some function derived from it) were observed for an arbitrary set of

values, then the SVFI approximation procedure could be used to approximate it. Furthermore, the

consistency result in Theorem 3.1 suggests that the parameter π could be estimated as follows:

π̂n = arg min
π∈Π

Q(θn(·|π)), (5.4)

where Q(θn(·|π)) is an appropriately chosen function that measures the distance between θn(·|π)

and the value function V . For instance, Q could be the following function:

Q(θn(·|π)) =

∫
(V (s)− θn(s|π))2 dµ(s), (5.5)

where µ is any arbitrary positive measure over S. In practice, however, the estimator in Equation

(5.4) is unfeasible because the value function is not observed by the researcher and, consequently,

Q is unknown.

In practice, the value function, or some feature derived from it (e.g., CCPs), can be estimated

from the data. With some abuse of notation, let VI denote the estimated value function using a

sample of size I (observations are indexed i = 1, . . . , I) and let QI denote the function that measures

the distance between θn(·|π) and VI . Our previous discussion suggests that the parameter π could

be estimated according to the following definition.

Definition 5.1 (Estimator based on the Sieve Value Function Approximation). Let QI : Π→ R+

be the function of the data that measures the distance between VI and θn(·|π) for any π ∈ Π and

let n = n(I). The estimator of the true parameter value π∗, denoted π̂I , satisfies:

QI(θ̂n(·|π̂I)) ≤ inf
π∈Π

QI(θ̂n(·|π)) + op(1), as I →∞. (5.6)

In order to clarify the structure of the problem, we consider an illustrative example.
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Example 5.1. In this case, we estimate the CCPs from a sample of I observed choices. In

particular, if the set S is finite, then the following estimator:

P̂I = {P̂I(a|s), ∀(a, s) ∈ AS}, (5.7)

where:

P̂I(a|s) =
I∑
i=1

1[ai = a, si = s]/
I∑
i=1

1[si = s], (5.8)

is a
√
I-consistent estimator of the CCPs.

By definition, the CCPs can be derived from the value function. Let J(·|π) : F → [0, 1]#AS be

the mapping between the value function and the CCPs, i.e.,

J(V |π) = {P (a|s), ∀(a, s) ∈ AS}, (5.9)

where the conditioning on π indicates that the mapping itself could depend on the parameter value.8

This discussion suggests the estimation of π with π̂I as in Equation (5.6), where the measure µ is

set to be the empirical measure, i.e.,

QI(θn(·|π)) =

∫
(P̂I − J(θn(π)|π))2dP̂I , (5.10)

= I−1
I∑
i=1

1[(ai, si) = (a, s)](P̂I(a|s)− J(a,s)(V |, π))2. (5.11)

In other words, we choose the parameter value that minimizes the integrated squared distance

between the observed CCPs and the approximated CCPs, where the empirical measure is used as

the measure of integration.

The objective of the rest of the section is to provide conditions under which π̂I is consistent.

To this end, we now provide a list of the assumptions that are exclusively used in this section.

Assumption 5.1. (F1, d1) and (F2, d2) are metric spaces. The true value function V = V (·|π∗) ∈
F1 and the true parameter value π∗ ∈ Π ⊆ F2.

Assumption 5.2. The SVFI approximation satisfies:

sup
π∈Π

d1(θ̂n(·|π), V (·|π)) = op(1), as n→∞. (5.12)

Assumption 5.3. There is a function Q(·) : F1 → R such that:

a. ĉ(n, I) = op(δ(n, I)) where ĉ(n, I) ≡ supf∈Θn
|QI(f)−Q(f)|.

8The function J will depend on the specific formulation of the dynamic decision problem. See Appendix B for a
description of each of the formulations and the definition of the function J in each case.
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b. Q is uniformly continuous in F1 under d1, i.e., for any δ > 0, there exists ε > 0 such that

f1, f2 ∈ F1 with d1(f1, f2) < ε implies Q(f1)−Q(f2) ≤ δ.

c. The function Q(V (·|π)) : Π→ R is uniquely minimized at π = π∗.

Assumption 5.4. For every I ∈ N, n = n(I) with n(I)→∞ and δ(n(I), I)→ 0 as I →∞.

We now briefly comment on each of the assumptions. Assumption 5.1 provides a label to

relevant spaces, functions, and parameters. Assumption 5.2 is a high level assumption which

indicates that θ̂n(·|π) is a consistent approximation of V (·|π), uniform over π ∈ Π. By repeating

the arguments in Theorem 3.1, it is not hard to see that Assumption 5.2 holds as a result of using

the SVFI approximation procedure described in Definition 3.3 under Assumptions 3.1-3.4, with the

exception that Assumption 3.4 is strengthened to hold uniformly in f ∈ F (i.e. as in Assumption

4.4). Assumption 5.3 are similar to assumptions used in the literature on extremum estimators

(see, e.g., Theorem 3.1 in Chen (2007) for conditions pertaining to sieve estimators, and Theorem

4.1.1 in Amemiya (1985) or Theorem 2.1 in McFadden and Newey (1994) for finite dimensional

estimators). Finally, Assumption 5.4 describes conditions that restrict the relationship between the

data sample size and the complexity of the sieve.

Theorem 5.1. Assume Assumptions 5.1-5.4. Then, the estimator in Equation (5.4) is consistent,

i.e.,

d2(π̂I , π
∗) = op(1), as I →∞. (5.13)

In this way, under Assumptions 5.1-5.4, it is possible to obtain consistent estimates of the

parameters of large state space dynamic decision problems by embedding SVFI methods in the

estimation algorithm.

6 Monte Carlo simulations

In this section we illustrate the small sample properties of the sieve value function approximation

in a dynamic single agent setting for both finite and infinite horizon problems. We explore multiple

aspects of the approximation, which will hopefully provide researchers guidance in custom tailoring

the sieve value function approximation to their individual environment. After discussing the results

of the Monte Carlo approximation exercises, we turn to the estimation of the structural parameters

of the model.

The Monte Carlo experiments are conducted in an adaptation of the Rust bus engine problem.

The important modification of the problem is that, rather than making the engine replacement

decision of a single bus, the manager is now endogenizing the purchasing and replacement decision

over an entire fleet of buses. This alteration substantially increases the state space of the problem,

making it an ideal application to study the finite sample properties of the approximation method.
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6.1 The model: bus fleet replacement

A single agent makes purchasing and replacement decisions over a fleet of buses to meet rider

demand. Buses are assumed to last L periods, after which they are retired. The manager’s problem

is to decide when to make purchasing decisions of new buses to optimally replace the upcoming

set of retiring buses. The manager’s discrete decision in each period t is indicated by at ∈ {0, 1},
where at = 0 represents not buying a bus in period t, and at = 1 represents buying an additional

bus in period t.

Since buses survive L periods, the entire age composition of the bus fleet, B, can be described

by the purchasing decisions of the previous L periods. Formally, we can define the state of the bus

fleet in period t as:

Bt = [at−1 , at−2 , . . . , at−L] .

This representation reflects the fact that only one bus can be purchased in a single period, and

thus there can be at most one bus of any particular age in the fleet.

Buses in the fleet are perfect substitutes across ages and are usable immediately when they are

purchased. The total number of usable buses in period t is:

b(Bt, at) = at +
L∑
i=1

Bt(i),

where Bt(i) represents the ith element of vector Bt.

Demand for buses (ridership) is stochastic across time, meaning that when the agent is making

purchasing decisions today, they take into account current ridership as well as expected future

ridership. We assume ridership, rt, evolves according to the following normal AR(1) process:

rt+1 = ψ0 + ψ1rt + νt,

where νt ∼ N (0, σ2
ν) and ψ1 ∈ (0, 1).

The agent’s objective is to possess enough buses in the fleet to accommodate demand in each

period. Per-period profits, ut ≡ u(Bt, rt, at), are a function of the current period demand, rt, and

the number of available buses, b(Bt, at), defined as: 9

u(Bt, rt, at) = α1 (b(Bt, at)rt)− α2

(
b(Bt, at)

2 + r2
t

)
, (6.1)

The per-period pay-off function, conditional on choice at, is characterized by: u(xt, at) + εt(at),

where the state variable xt = {Bt, rt} and εt(at) is an additive pay-off shock, i.i.d. across choices

and time.

The agent’s problem is to make an optimal sequence of purchasing decisions to maximize the

expected discounted flow of future per-period pay-offs. With discount factor, β, we can formulate

9In the Monte Carlo’s we set α1 = 0.2 and α2 = 0.1, implying that profits are maximized when the number of
buses equals the number of riders, and the agent is penalized if they have too many buses or too few buses.
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the value function using using the recursive Bellman representation:

V (xt, εt) = max
at∈{0,1}

{u(xt, at) + εt(at) + βE[V (xt+1, εt+1)|xt, at]} (6.2)

In this formulation of the dynamic problem, it is convenient to write the choice specific value

functions (excluding the shocks) for choice a ∈ {0, 1} as follows:

v(xt, a) = u(xt, a) + βE[V (xt+1, εt+1)|xt, a]. (6.3)

The agent’s optimal decision in period t is then to choose a∗t such that:

a∗t = argmax
a∈{0,1}

{v(xt, a) + εt(a)}.

Given choice at, the bus fleet Bt evolves deterministically to Bt+1 as follows:

Bt+1 = [at , Bt(1 : L− 1)] ,

where Bt(1 : L− 1) represents the 1st to (L− 1)th elements of the vector Bt. Since the endogenous

state variable Bt evolves deterministically, the expectation in Equation (6.2) is taken over next

periods ridership rt+1 and next periods pay-off shock εt+1.

This represents a large state space problem for two reasons. First, ridership, rt, is a continuous

state variable. Second, although the contemporaneous profit function is invariant to the exact age

composition of the buses (only the total number of buses matter), the dynamics of the problem

imply that the fleet composition matters in the decision process. Therefore, the state space contains

the total number of potential age combinations of the bus fleet. This results in a very large state

space problem driven by L, the life span of a bus. Since there can be at most one bus of any given

age, the number of possible bus fleet combinations is given by #{B} = 2L. As a consequence, the

size of the state space is growing exponentially in L.

6.2 Sieve value function approximation

Letting θn denote the sieve approximation, our approximation is of the ex-ante value function or

social surplus function θn(xt) ≈ E[maxa∈{0,1}(v(xt, a) + εt(a))|xt] where the expectation is over the

random pay-off shock ε. Assuming these shocks are distributed type-I extreme value, we have a

known closed form representation of the expectation as:

E[V (xt, εt)|xt] = ln

(∑
a∈{0,1}

exp(v(xt, a))

)
+ γ, (6.4)

where γ is Euler’s constant. This setup correspond to the social surplus formulation of the dynamic

decision problem.

Therefore, for a chosen sieve space Θn, we seek an approximation of the expression in Equation
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(6.4), θn ∈ Θn, such that:

θn(xt) ≈ ln

(∑
a∈{0,1}

exp(v(xt, a))

)
+ γ

= ln

(∑
a∈{0,1}

exp (u(xt, a) + βE [V (xt+1, εt+1)|xt, a])

)
+ γ

≈ ln

(∑
a∈{0,1}

exp (u(xt, a) + βE [θn(xt+1)|xt, a])

)
+ γ. (6.5)

The right hand side of Equation (6.5) represents one contraction on the approximation, θn, de-

fined as Γ1θn(xt). Section 3.5 demonstrates that we can actually reduce the upper-bound of the

approximation error by increasing the number of iterations of the contraction operator on the ap-

proximation. Rather than immediately plugging the approximation on the right hand side into

the expected future value term, we could alternatively write this term using Equation (6.4) as a

function of next periods contemporaneous profit functions and a two-period away expected future

value term. If we substitute the approximation into the two-period away expected future value

function this corresponds to two iterations of the contraction (k = 2). We could continue in this

way for k > 2, though the computational burden increases exponentially with k.

We construct the sieve approximation of size n using polynomials of the states and their inter-

actions. The relevant state variables are contained in x and include the complete age composition

of the bus fleet as well as current period demand:

xt = [rt , at−1 , at−2 , . . . , at−L] = [x(1) , x(2) , x(3) , . . . , x(s)].

To form our n terms, we first take the state variables themselves. We then add in all pair-wise

interactions, then all three-way interactions, etc. until n is reached. Should n exceed the number of,

say, three-way interactions, the three-way interactions are randomly drawn such that the number

of terms is n. Denote wj(x) as the jth term in the polynomial. The sieve approximation is then:

θn(x) = ρ(1)w1(x) + · · ·+ ρ(n)wn(x) = ρnWn(x).

For k = 1 the objective function is now given by:

ρ̂n = argmax
ρn

∑
x∈X

[
ρnWn(x)− ln

(∑
a∈{0,1}

exp
(
u(x, a) + βE

[
ρnWn(x′)|x, a

]))
+ γ

]2

. (6.6)

A key convenience of using polynomials to construct the sieve is that the approximation is linear

in parameters. Consequently, although Equation (6.6) contains an expectation over next periods

ridership (a continuous state variable), the expectation passes through to the elements of the

polynomial, i.e., E[ρnWn(x′)|x, a] = ρnE[Wn(x′)|x, a]. Since we know the distribution of the state

transitions, evaluating this expectation is simply a matter of calculating the relevant moment

conditions. For discrete variables this is easily done by hand and continuous variables often have
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closed forms. We can then replace the expectation by its associated expected value transforming

the objective function to:

ρ̂n = argmax
ρn

∑
x∈X

[
ρnWn(x)− ln

(∑
a∈{0,1}

exp
(
u(x, a) + βρnE[Wn(x′|x, a)]

))
+ γ

]2

, (6.7)

The important insight is that both functions Wn(x) and E[Wn(x′|x, a)], which may be very com-

plex, are calculated outside of the maximization routine. For k = 1, this implies that the computa-

tional burden of solving the objective function is no greater for models with no stochastic variables

than they are for models with many stochastic variables. To emphasize this point, with full solu-

tion methods, researchers are often forced to make undesirable simplifications to the problem (like

discretizing state variables) for tractability reasons, but sieve value functions can accommodate

continuous state variables with no additional computational complexity when k = 1.10

6.3 Results: infinite horizon problem

In practice, these approximation methods will be used in situations where a full solution method

is computationally infeasible. However for the purposes of benchmarking the performance of the

approximation, we first consider a model that is feasible (although slow) to solve using value

function iteration over the entire state space. To do so, we discretize the continuous state variable,

ridership, r, to nine points. We set the maximum bus age of L = 25, which implies a state space of

9 × 225 = 301, 989, 888. The approximations are based off of a random draw of 20,000 points and

is held constant for each approximation.

The objective functions in Equation (6.7) represents a standard non-linear least squares problem

that could be solved using direct minimization. However, solving the nonlinear minimization may

not be practical when the number of terms in the sieve is large. We therefore consider an alternative

iterative approach to solving for θn. Letting θmn be the sieve approximation at the mth iteration,

we update the approximation at m+ 1 by:

θm+1
n = argmax

θn∈Θ

∑
x∈X

[θn(x)− Γkθmn (x)]2, (6.8)

and then continually update the parameters until convergence.

The Monte Carlo results for the infinite horizon bus fleet replacement problem are summarized in

Table 2. Each column corresponds to a different approach to the sieve value function approximation,

considering different methods for minimizing the objective function or for different values of k. For

each approach, we conduct the approximation for different sieve sizes, ranging from 500 points to

3,000 points. Finally the table is broken into three panels: Panel A reports the mean squared error

of the approximation against the true values for the points in the sample. In practice, the truth

10This is not true for k > 1 because we are required to evaluate all possible evolutions of the state variables in the
next period.
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is unknown. Hence, Panel B reports the mean squared error of the approximation. This measure

is easily computable in practice and will be the main insight researchers use to inform then as to

how well the approximation is preforming. The key theoretical result is that as we know the values

of panel B are going to 0, then this implies the values in panel A are going to 0. Finally, Panel C

reports the computational time.

Column (i) considers an infeasible estimator for the approximation, which is to regress the state

variables on the true expected future value terms. Panel A of the table shows that our constructed

sieve preforms very well at approximating the true social surplus function and does exceedingly

well as we increase the richness of the sieve space n. Column (ii) displays the results for the sieve

value function iteration when k = 1 and we use direct minimization for the approximation. The

table also shows that as the sieve space becomes richer, we achieve a substantial reduction in the

objective of the minimization (panel B) and, more importantly, in the mean squared distance to

the true value function (panel A).

Column (iii) reports the results for the sieve approximation when k = 1 using the iterative

method. Although this method shares a similar objective function to the direct minimization

approach, the results in Panel B show it is unable to achieve as small of a within model fit for a

given n. However, as the sieve size increases to n = 3, 000 the fit is nearly identical. The benefit to

this method is that the computational times are about four times faster than direct minimization.

Column (iv) shows the results with k = 2, i.e., applying the contraction operator twice in

order to construct the approximation. Because we need to evaluate the sieve at a significantly

larger number of points, the approximation becomes more computationally intensive as k increases.

However, as outlined by the theory, using k = 2 results in about a 50% better fit of the value function

compared to using k = 1 for the same level of richness of the sieve space (panel A).

Finally, column (v) shows the results for the sieve approximation for the continuous state version

of the problem. Comparing the results for the continuous state variable model with the discrete

version in column (iii), highlights the approximation method’s ability to accommodate an infinite

dimensional state variable with an identical model fit and computational time.

6.4 Results: finite horizon problem

We now adapt the approximation method to a finite horizon setting. The bus fleet replacement

problem now ends at date T , where the conditional value functions are defined by:

vt(xt, a) =

{
u(xt, a) + βE [V (xt+1, εt+1, t+ 1)|xt, at] , for t = 1, . . . , T − 1,

u(xT , a), for t = T.

The non-stationarity of the value functions introduced by presence of a finite horizon implies that

there are T value functions that need to be approximated. The theoretical results of the sieve value
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Table 2: Ininite horizon approximationa

Discrete state
Continuous

stateb

Baselinec
Direct

minimization
(k = 1)

Iterative
minimization

(k = 1)

Iterative
minimization

(k = 2)

Iterative
minimization

(k = 1)

(i) (ii) (iii) (iv) (v)

Panel A: Mean squared difference between EV and θ̂n

n = 500 0.3149 9.9359 3.7226 1.2402 –
n = 1, 000 0.2450 5.5071 2.2300 0.8497 –
n = 2, 000 0.1168 1.5910 0.9944 0.4225 –
n = 3, 000 0.0073 0.0714 0.0711 0.0414 –

Panel B: Mean squared difference between Γkθ̂n and θ̂n

n = 500 – 0.0518 0.0641 0.1674 0.0641
n = 1, 000 – 0.0379 0.0556 0.1399 0.0548
n = 2, 000 – 0.0173 0.0583 0.0992 0.0576
n = 3, 000 – 0.0017 0.0018 0.0043 0.0016

Panel C: Computation time (in minutes)

n = 500 – 16 4 24 3
n = 1, 000 – 50 10 41 9
n = 2, 000 – 125 27 83 28
n = 3, 000 – 194 50 124 54
a The full model consists of 301,989,888 state points, with L = 25 and 9 ridership points. The full solution

takes 316 minutes. The approximation is done on a single random draw of 20,000 states.
b Since we cannot solve for the true value functions with continuous state variables, we cannot compare the

approximation to the truth.
c The baseline is the estimate when we regress the sieve on the truth.
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Table 3: Finite horizon approximationa

T = 15 T = 20 T = 25

Panel A: Backwards Recursionb

Mean sq. diff. between EVt and θ̂n,t 0.2119 0.3714 0.5025

Mean sq. diff. between EV1 and θ̂n,1 0.6417 0.9596 1.0485

Panel B: Time Interacted (2nd order)c

Mean sq. diff. between EVt and θ̂n,t 1.6201 3.4197 5.4476

Mean sq. diff. between EV1 and θ̂n,1 0.6883 1.1380 1.6291

Panel C: Time Interacted (3rd order)d

Mean sq. diff. between EVt and θ̂n,t 0.3063 0.6266 0.9886

Mean sq. diff. between EV1 and θ̂n,1 0.6613 0.8653 0.9762
a In these Monte Carlos the size of the sieve over the bus and demand state is fixed to 1,000 parameters.
b Computation times for backwards recursion are small and amount to conducting T least squares

minimization routines on the n = 1, 000 parameters.
c Second order polynomial of time interacted with original 1,000 parameters, so n = 2, 000. Computation

times are comparable to those reported in Table 2 with similar total size n.
d Third order polynomial of time interacted with original 1,000 parameters, so n = 3, 000.

function approximation require us to minimize the following objective function:

{θ̂n,t}Tt=1 = argmax
{θn,t}Tt=1

T−1∑
j=1

∑
x∈X

[
θn,j(x)− Γkθn,j+1(x)

]2
. (6.9)

Direct minimization of Equation (6.9) is computationally difficult because there are n×T unknown

parameters, where the infinite horizon problem only had n unknown parameters. In previous

sections, we considered two methods to conduct the approximation: (1) backwards recursion and

(2) including time as part of the state space.

The first method is backwards recursion, where setting θ̂n,T+1 = θn,T+1 = 0, we work our way

to t = 1, by recursively approximating the function θn,t using:

θ̂n,t = argmax
θn,t

∑
x∈X

[θn,t(x)− Γkθ̂n,t+1(x)]2. (6.10)

The benefit of solving it recursively is that it is extremely fast, only requiring the solution to T

OLS regressions, and it still converges to the true value functions as n→∞.

The alternative approach exploits the fact that we can re-write the T individual approximat-

ing functions, θn,t as one large non-parametric function θn×T . A third order polynomial of time

interacted with the ridership and bus states, n, reduces the number of parameters to a potentially

feasible n× 3. By bringing time into the approximating function, we obtain an objective function

31



which is similar to Equation (6.9),

{θ̂n,t}Tt=1 = argmax
{θn,t}Tt=1

T−1∑
j=1

∑
x∈X

[θn,j(x)− Γkθn,j+1(x)]2. (6.11)

Table 3 shows the Monte Carlo results for approximating the finite horizon problem. Through-

out the table, we fix the size of the sieve over the bus and demand state to n = 1, 000 and compare

the results to the different approaches to approximating the value functions. Panel A shows the

results of backwards recursion for three different models, T = 15, T = 20, and T = 25. The two

rows correspond to the mean squared error of the true values and the approximation across all time

periods and the mean squared error at t = 1. As seen in Panel A, for backwards recursion the error

at t = 1 is two to three times larger than the average approximation error, due to backwards re-

cursion not taking into account the effects of period j’s sieve on periods previous to j when solving

for θn(j).

Panels B and C show the time interacted approach by interacting the sieve with a second and

third order polynomial of time, respectively. Since we keep the sieve for bus composition and

ridership fixed at 1,000, this approximation corresponds to a search over 2,000 or 3,000 parameters.

This method is more computationally intensive than backwards recursion but results in similar

approximation errors in earlier time periods as in later time periods.

6.5 Sieve value function approximation and estimation

We now apply sieve value function approximation to estimate dynamic models, where we simultane-

ously solve for the structural parameters and the associated sieve value function approximation that

maximizes the likelihood of some observed choice data. Data is generated by simulating choices

from the true choice probabilities from 20 markets for 15 periods each. The initial states (fleet

composition and ridership) are drawn at random. The fact that the data is generated from the op-

timal policy function will be relevant for our approximation. Rather than randomly drawing from

the state space for the approximation, we can improve our approximation (and thus our structural

parameter estimates) by focusing on the state space near the generated data. Although our data

only has 300 observations, we are free to draw as many state variables as we would like for the

approximation. For these exercises we will draw 20,000 random points which will be perturbations

around the data points.11

Our model contains two unknown structural parameters, α1 and α2, which are described in

Equation (6.1). Rather than engage in a massive search over all structural parameters and sieve

approximation, estimation is easily implemented by modifying the iterative algorithm used for

approximation described in Section 3.3. The parameter of interest is denoted by π ≡ (α1, α2).

11To do this, note the state variables consists of 26 variables, one ridership state and 25 potential bus ages. Our
method is to randomly draw states from the 300 data points and for each draw, randomly change 3 of the 25 bus
variables by changing them from 1 to 0 or 0 to 1. We then do this 20,000 times.
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Table 4: Estimation resultsa

Computation timeb Estimate of α1
c Estimate of α2

c

(in minutes) (α1 = 0.2) (α2 = −0.1)

n = 500 3 0.1745 (0.0397) -0.0848 (0.0198)
n = 1, 000 8 0.1894 (0.0473) -0.0924 (0.0237)
n = 2, 000 22 0.1922 (0.0443) -0.0945 (0.0223)
n = 3, 000 41 0.1992 (0.0416) -0.0993 (0.0214)
a Results from 1,800 replications, each with 300 observations. Initial values of

structural parameters and sieve approximation were set to zero.
b Numbers reported correspond to median computation time.
c Numbers reported correspond to average over simulations (standard errors in

parenthesis).

Let the observations be indexed by i = 1, . . . , I, where I denotes the sample size, ai denotes the

observed choice for observation i, and xi denotes the observed state for observation i.

The estimator of π is denoted by π̂I and is computed according to the following procedure.

First, we choose arbitrary initial values of (π̂0
I , θ̂

0
n) ∈ Π × Θ̃n. Then, we set m = 1 and use the

following iterative algorithm:

1. Choose π̂mI to maximize the (approximate) likelihood:

π̂mI = arg max
π∈Π

I∑
i=1

ln(Pr(ai|π, xi, θ̂m−1
n ).

2. Choose θ̂mn according to a one-step sieve value function approximation, implemented by the

following least squares minimization:

θ̂mn = argmax
θn∈Θ

∑
x∈X

[
θn(x)− ln

(∑
a∈{0,1}

exp
(
u(x, a, π̂mI ) + βE[θ̂m−1

n (x′|x, a)]
))

+ γ

]2

.

3. If ||π̂mI − π̂
m−1
I || < 10−6, then stop the algorithm and set π̂I = π̂mI . Otherwise, set m = m+ 1

and return to the first step.

This algorithm parallels Aguirregabiria and Mira (2002) in the sense that it swaps the calculation of

the value function to outside of the maximization of the likelihood over the structural parameters.

Results of the estimation exercise for different values of size of the sieve space are presented in

Table 4. The results show that for even a very small sieve space (n = 500) the estimates are within

one standard deviation of the true parameter values, although they appear to be significantly biased

downwards. As we increase the size of the sieve to n = 3, 000 this bias virtually disappears. In

addition, as the sieve size increases we are also able to achieve mild improvements in the standard

errors of the estimated value, meaning that the efficiency of the approximation brings some stability

to the parameter estimates.
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7 Conclusion

This paper proposes a methodology to approximate the value function in single agent dynamic

problems where a large state space makes value function iteration unfeasible. Our method is based

on non-parametric sieve estimation, and we refer to it as Sieve Value Function Iteration (SVFI).

We provide a formal framework to analyze the approximation error. In particular, we show that

the SVFI approximation converges to the value function as the complexity of the sieve increases,

and we characterize the rate of this convergence. Furthermore, we provide a concrete upper bound

on the error of approximation which can be used to analyze its contributing factors.

A Monte Carlo analysis reveals that the SVFI approximation is very successful in estimating

the value function. These results suggest that our approximation can successfully be used to solve

models that would otherwise be computationally infeasible, implying that these techniques may

substantially broaden the class of models that can be solved and estimated.

Given the standard challenges with large state space problems, we expect SVFI to open up a

wide variety of avenues of theoretical and empirical exploration of complex dynamic single agent and

equilibrium problems. For example, in Arcidiacono, Bayer, Bugni, and James (2011), we consider

sequential move dynamic games. Estimation of these games can be done via standard two-step

procedures. Through the use of sieves, it is possible to calculate the conditional choice probabilities

of the finite horizon game which has a unique equilibrium, the limit of which is also an equilibrium

in the infinite horizon game. It is then possible to compare the conditional choice probabilities from

the finite horizon equilibrium to those observed in the data, testing to see whether this equilibrium

was played.
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A Technical appendix

Proof of Lemma 3.1. We begin by showing that or any θ ∈ F and m ∈ N:

d(θ, V ) ≤ d(θ,Γmθ)/(1− βm), (A.1)

To see this, consider the following derivation:

d(θ, V ) ≤ d(θ,Γmθ) + d(Γmθ,ΓmV ) + d(ΓmV, V ), (A.2)

= d(θ,Γmθ) + d(Γmθ,ΓmV ), (A.3)

≤ d(θ,Γmθ) + βmd(θ, V ), (A.4)

where the first inequality follows from the Triangle Inequality, the next equality follows from the fact that

V is a fixed point, and the final inequality follows from the fact that Γ is a contraction mapping. Equation

(A.1) is a straight-forward consequence of this result.

Let θ̂n ∈ Θn ⊆ F be the SVFI approximation in Definition 3.3. On the one hand, consider the following

derivation:

d(θ̂n, V )(1− βk) ≤ d(θ̂n,Γ
kθ̂n), (A.5)

≤ K2dn(θ̂n,Γ
kθ̂n) + η1,n, (A.6)

≤ K2 inf
θ∈Θn

dn(θ,Γkθ) + η1,n +K2η2,n, (A.7)

≤ K−1
1 K2 inf

θ∈Θn

d(θ,Γkθ) + (1 +K2K
−1
1 )η1,n +K2η2,n, (A.8)

where the first inequality follows from Equation (A.1), the second and fourth inequalities follow from Equation

(3.11), and the third inequality follows from Equation (3.32).

On the other hand, for any θ ∈ F , consider the following derivation:

d(θ,Γkθ) ≤ d(θ, V ) + d(V,ΓkV ) + d(ΓkV,Γkθ), (A.9)

= d(θ, V ) + d(ΓkV,Γkθ), (A.10)

≤ (1 + βk)d(θ, V ), (A.11)

where the first inequality follows from the triangle inequality, the next equality follows from the fact that V

is a fixed point, and the final inequality follows from the fact that Γ is a contraction mapping in (d,Γ). If

we take infimum of θ ∈ Θn ⊆ F on both sides:

inf
θ∈Θn

d(θ,Γkθ) ≤ (1 + βk) inf
θ∈Θn

d(θ, V ) = (1 + βk)η3,n(V ). (A.12)

The result follows directly from combining the previous results.

Proof of Theorem 3.1. By combining Lemma 3.1 with Assumption 3.4, it follows that:

d(θ̂n, V ) ≤
{
K−1

1 K2(1 + βk)η3,n(V ) + (1 +K2K
−1
1 )η1,n +K2η2,n

}
(1− βk)−1, (A.13)

= Op(max{γ1,n, γ2,n, γ3,n(V )}), (A.14)

where max{γ1,n, γ2,n, γ3,n(V )} = o(1) as n → ∞. Using elementary arguments, this result implies
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that: (1) d(θ̂n, V ) = op(1) as n → ∞ and (2) d(θ̂n, V ) converges in probability to zero at a rate of

max{γ1,n, γ2,n, γ3,n(V )}−1 = min{γ−1
1,n, γ

−1
2,n, γ3,n(V )−1}.

Lemma A.1. Under Assumption 4.1, Assumption 4.5 is satisfied for all the formulations of the dynamic

decision problem described in Appendix B.

Proof. We verify the result for each formulation described in Appendix B. We begin with the conditional

value function formulation. In this case: s = (x, ε) and F (V, s′) = V (s′). Then:

E[F (f1, s
′)− F (f2, s

′)|s, a] = E(f1(s′)− f2(s′)|s, a) ≤ d(f1, f2), (A.15)

where the equality holds by definition of F and the inequality holds because d is the sup-norm metric.

We now consider the social surplus function formulation. In this case: s = (x, a), F (V, s′) = G(V (x′)|x′),
and A(s) = {a}. Then:

E[F (f1, s
′)− F (f2, s

′)|s, a] = E[G(f1(s′)|s′)−G(f2(s′)|s′)|s, a], (A.16)

= E[E[maxa′∈A(x′)(f1(x′, a′) + ε(a′))−maxa′∈A(x′)(f2(x′, a′) + ε(a′))|x′]|x, a], (A.17)

≤ E[|E[maxa′∈A(x′)(f1(x′, a′) + ε(a′))−maxa′∈A(x′)(f2(x′, a′) + ε(a′))|x′]||x, a], (A.18)

≤ E[maxa′∈A(x′)|f1(x′, a′)− f2(x′, a′)||x, a] ≤ d(f1, f2), (A.19)

where the first equality holds by definition of F , the second equality holds by definition of G, the first and

second inequalities hold by elementary arguments, and the final inequality holds because d is the sup-norm

metric.

We conclude with the choice-specific value function formulation. In this case: s = (x, a), F (V, s′) =

G(β−1u(x′) + V (x′)|x′), and A(s) = {a}. Using the same arguments as in the social surplus function

formulation, it is not hard to verify the result.

Proof of Theorem 4.1. This proof proceeds by induction. Set t = 1. By definition, θ̂T+2−t,n = VT+1

and, thus, d(VT+2−t, θ̂T+2−t,n) = 0. We now prove the inductive step. Suppose that for some t ≥ 1,

d(VT+2−t, θ̂T+2−t,n) = Op(max{υ1,n, υ2,n, υ3,n}). We now show that: d(VT+1−t, θ̂T+1−t,n) = op(1), as n →
∞. By the triangular inequality:

d(VT+1−t, θ̂T+1−t,n) = d(VT+1−t, θ̂
∗
T+1−t,n) + d(θ̂∗T+1−t,n, θ̂T+1−t,n). (A.20)

We now analyze each of the terms on the right hand side satisfies the result in Equation (4.11).

We begin with d(VT+1−t, θ̂
∗
T+1−t,n). Fix s ∈ S arbitrarily. Let a1,n(s) ∈ A(s) be such that:

θ̂∗T+1−t,n(s) = u(s, a1,n(s)) + βE(F (θ̂T+2−t,n, s
′)|s, a1,n(s)), (A.21)

i.e., a1,n(s) is the maximizer, which exists due to the fact that A(s) is a finite set. Then, consider the

following derivation:

θ̂∗T+1−t,n(s) = u(s, a1,n(s)) + βE(F (θ̂T+2−t,n, s
′)|s, a1,n(s)), (A.22)

≤ u(s, a1,n(s)) + βE(F (VT+2−t, s
′)|s, a1,n(s)) + βd(θ̂T+2−t,n, VT+2−t), (A.23)

≤ VT+1−t(s) + βd(θ̂T+2−t,n, VT+2−t), (A.24)
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where the first equality holds by Equation (A.21), the next inequality holds by Assumption 4.5, and the final

inequality holds by Equation (4.1). As a consequence, it follows that: sups∈S(θ̂∗T+1−t,n(s) − VT+1−t(s)) ≤
βd(θ̂T+2−t,n, VT+2−t). By a similar argument, one can show that sups∈S(VT+1−t(s) − θ̂∗T+1−t,n (s)) ≤
βd(θ̂T+2−t,n, VT+2−t). By combining both inequalities with Assumption 4.1, it follows that:

d(θ̂∗T+1−t,n, VT+1−t) = sup
s∈S
|θ̂∗T+1−t,n(s)− VT+1−t(s)| ≤ βd(θ̂T+2−t,n, VT+2−t). (A.25)

By the inductive assumption, it follows that: d(θ̂∗T+1−t,n, VT+1−t) = Op(max{υ1,n, υ2,n, υ3,n}).
We continue with d(θ̂∗T+1−t,n, θ̂T+1−t,n). Consider the following derivation:

d(θ̂∗T+1−t,n, θ̂T+1−t,n) ≤ K2dn(θ̂∗T+1−t,n, θ̂T+1−t,n) + λ1,n, (A.26)

≤ K2 inf
θ∈Θn

dn(θ, θ̂∗T+1−t,n) + λ1,n + λ2,n(θ̂∗T+1−t,n), (A.27)

≤ K−1
1 K2 inf

θ∈Θn

d(θ, θ̂∗T+1−t,n) + λ1,n(1 +K−1
1 ) + λ2,n, (A.28)

≤ K−1
1 K2 sup

f∈F
λ3,n(f) + λ1,n(1 +K−1

1 ) + λ2,n (A.29)

where the first and third inequalities hold by Assumption 4.2, the second inequality holds by Assumption

4.3, and the final inequality holds by Assumption 4.4. By the properties of λ1,n, λ2,n, and λ3,n, it follows

that d(θ̂∗T+1−t,n, θ̂T+1−t,n) = Op(max{υ1,n, υ2,n, υ3,n}).

Proof of Lemma 4.1. Part 1. Consider a pair of functions f1, f2 ∈ F̃ . First, consider t = T+1. By definition,

Λf1(s, t) = Λf2(s, t) = 0 ∀s ∈ S, which implies that: sups∈S |Λf1(s, T+1)−Λf2(s, T+1)| = 0. Next, consider

t = 1, . . . , T . For any arbitrary s ∈ S:

|Λf1(s, t)− Λf2(s, t)| (A.30)

=

{
supa∈A(s) {u(s, a) + βE(F (f1, (s

′, t+ 1))|(s, t), a)}
− supa∈A(s) {u(s, a) + βE(F (f2, (s

′, t+ 1))|(s, t), a)}

}
(A.31)

≤ β sup
a∈A(s)

E(F (f1, (s
′, t+ 1))− F (f2, (s

′, t+ 1))|(s, t), a) (A.32)

= β sup
a∈A(s)

E(F (f1,t+1, s
′)− F (f2,t+1, s

′)|s, a) (A.33)

≤ β sup
a∈A(s)

E(f1,t+1(s′)− f2,t+1(s′)|s, a) (A.34)

≤ β sup
s∈S
|f1,t+1(s)− f2,t+1(s)| = β sup

s∈S
|f1(s, t+ 1)− f2(s, t+ 1)|, (A.35)

where for any f ∈ F̃ and (s, t) ∈ S × {1, . . . , T + 1}, we use ft(s) ≡ f(s, t). Notice that we are also using

the fact that conditional expectations are time invariant, but that is assumed for simplicity of notation, i.e.,

the assumption can be eliminated by indexing expectations with a time index. By reversing the roles of f1

and f2, we deduce that: ∀t = 1, . . . , T :

sup
s∈S
|Λf1(s, t)− Λf2(s, t)| ≤ β sup

s∈S
|f1(s, t+ 1)− f2(s, t+ 1)|. (A.36)

By combining information from all values of t = 1, . . . , T + 1, it follows that:

d̃(Λf1,Λf2) = max
t=1,...,T+1

sup
s∈S
|Λf1(s, t)− Λf2(s, t)| ≤ β max

t=1,...,T+1
sup
s∈S
|f1(s, t)− f2(s, t)| = d̃(f1, f2). (A.37)
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Part 2. By the Contraction Mapping Theorem (see, e.g., page 50 in Stokey and Lucas (1989)) the

mapping Λ has a unique fixed point in F̃ . It suffices to show that V is such fixed point, i.e., d̃(V,ΛV ) = 0.

For t = T+1, the definition of ΛV is: (ΛV )(s, T+1) = 0 = V (T+1, s) ≡ VT+1(s). For any other t = 1, . . . , T ,

it follows that:

(ΛV )(s, t) = sup
a∈A(s)

{u(s, a) + βE(F (V, (s′, t+ 1))|(s, t), a)} (A.38)

= sup
a∈A(s)

{u(s, a) + βE(F (Vt+1, s
′))|s, a)} = Vt(s) = V (s, t). (A.39)

This completes the proof.

Proof of Theorem 4.2. By Lemma 4.1, the analogue of Assumptions 3.2-3.4 hold for the state space S̃. Under

these assumptions, the result is a corollary of Theorem 3.1.

Proof of Theorem 5.1. Fix ε > 0 arbitrarily. Then, ∃δ > 0 such that ∀π ∈ Π: d2(π, π∗) > ε⇒ Q(V (·|π))−
Q(V (·|π∗)) > δ. This implies that ∃δ > 0 such that:

P (d2(π̂I , π
∗) ≤ ε) ≥ P (Q(V (·|π̂I))−Q(V (·|π∗)) ≤ δ). (A.40)

The strategy of the proof is to show that the RHS converges to one as I →∞. To this end, for a fixed δ > 0,

consider the following argument:

P (Q(V (·|π̂I))−Q(V (·|π∗) ≤ δ) (A.41)

= P

(
Q(V (·|π̂I))−Q(θ̂n(·|π̂I)) +Q(θ̂n(·|π̂I))−QI(θ̂n(·|π̂I))

+QI(θ̂n(·|π̂I))−Q(V (·|π∗)) ≤ δ

)
, (A.42)

≥ P

(
{Q(V (·|π̂I))−Q(θ̂n(·|π̂I)) ≤ δ/3} ∩ {Q(θ̂n(·|π̂I))−QI(θ̂n(·|π̂I)) ≤ δ/3}

∩{QI(θ̂n(·|π̂I))−Q(V (·|π∗)) ≤ δ/3}

)
, (A.43)

≥

{
P (Q(V (·|π̂I))−Q(θ̂n(·|π̂I)) ≤ δ/3) + P (Q(θ̂n(·|π̂I))−QI(θ̂n(·|π̂I)) ≤ δ/3)

+P (QI(θ̂n(·|π̂I))−Q(V (·|π∗)) ≤ δ/3)− 2

}
. (A.44)

The last expression on the RHS includes three probability expressions. The proof is completed by showing

that these expressions converge to one as I →∞.

Consider the first expression. By the uniform continuity of Q, there is η > 0 such that:

sup
π∈Π

d1(θ̂n(·|π), V (·|π)) < η ⇒ d1(θ̂n(·|π̂I), V (·|π̂I)) < η ⇒ Q(θ̂n(·|π̂I))−Q(V (·|π̂I)) ≤ δ/3. (A.45)

It follows then that:

P (Q(θ̂n(·|π̂I))−Q(V (·|π̂I)) ≤ δ/3)→ 1, as n→∞, (A.46)

or, equivalently, as I →∞ because n(I)→∞ as I →∞.

Consider the second expression. Notice that:

Q(θ̂n(·|π̂I))−QI(θ̂n(·|π̂I)) ≤ sup
f∈Θn

|QI(f)−Q(f)| = ĉ(n, I), (A.47)
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and since ĉ(n, I) = op(δ(n(I), I)) = op(1) as I →∞, it follows that:

P (Q(θ̂n(·|π̂I))−QI(θ̂n(·|π̂I)) ≤ δ/3)→ 1, as I →∞. (A.48)

Finally, consider the third expression. By definition of the estimation:

QI(θ̂n(·|π̂I)) ≤ inf
π∈Π

QI(θn(·|π)) + op(1) ≤ QI(θn(·|π∗)) + op(1), (A.49)

as I →∞. This implies that:

QI(θ̂n(·|π̂I))−Q(V (·|π∗)) ≤ QI(θ̂n(·|π∗))−Q(V (·|π∗)) + op(1), (A.50)

= QI(θ̂n(·|π∗))−Q(θ̂n(·|π∗)) +Q(θ̂n(·|π∗))−Q(V (·|π∗)) + op(1), (A.51)

≤ sup
f∈Θn

|QI(f)−Q(f)|+Q(θ̂n(·|π∗))−Q(V (·|π∗)) + op(1). (A.52)

Repeating arguments used in previous expressions, it follows that:

P (QI(θ̂n(·|π̂I))−Q(V (·|π∗)) ≤ δ/3)→ 1, as I →∞. (A.53)

This completes the proof.

B Alternative formulations of dynamic decision problem

As described in the main text of Section 2, there are three possible ways to formulate the dynamic decision

problem of Equation (2.1) as a recursive problem. The objective of this section is to describe each of these

formulations and show that each of them is a special case of the unified formulation described in the main

text.

B.1 Value function formulation

This formulation of the dynamic decision problem is the most obvious one but, as we will argue, the most

computationally demanding in terms of the size of the state space. It is easy to verify that Equation (2.1)

can be represented as follows:

V (x, ε) = max
a∈A(x)

{u(x, a) + ε(a) + β

∫
V (x′, ε′)dP (x′, ε′|x, ε, a)}, (B.1)

= max
a∈A(x)

{u(x, a) + ε(a) + βE[V (x′, ε′)|x, ε, a]}. (B.2)

If we let s ≡ (x, ε) and S ≡ X × E, V : S → R is the fixed point of the following mapping:

(Γ1m)(x, ε) = max
a∈A(x)

{u(x, a) + ε(a) + βE[m(x′, ε′)|x, ε, a]}, ∀(x, ε) ∈ S. (B.3)

This corresponds to the conditional value function formulation of the problem (Equation (4.4) in Rust

(1987)). Notice that our derivations so far did not require the Conditional Independence (CI) Assumption.

It is straight-forward to verify that it is a contraction mapping (in the sup-norm) by using the Blackwell

(1965) sufficient conditions for a contraction (see Stokey and Lucas (1989), Theorem 3.3). This is an obvious
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object of interest, as it allows us to deduce optimal decision rules in the following way:

f(x, ε) = arg max
a∈A(x)

{u(x, a) + ε(a) + βE[V (x′, ε′)|x, ε, a]}, (B.4)

with a related conditional choice probability (CCP):

P (a = ā|x) =

∫
ε

(
arg max
a∈A(x)

{u(x, a) + ε(a) + βE[V (x′, ε′)|x, ε, a]} = ā

)
dP (ε|x). (B.5)

We now verify that this formulation is a particular case of the unified formulation. This is shown in

Table 5, which explains how the objects in the unified notation are defined in terms of the primitive objects

in Equation (2.1). According to the table, F is defined as follows: F (V, s′) = V (s′). It is straightforward to

verify that this function satisfies all of the properties required for F .

Primitive object V (x, ε) X × E A(x) a u(x, a) + ε(a) V (s′)
Unified formulation V s S A(s) a u(s, a) F (V, s′)

Table 5: Representation of the primitive object of the conditional value function formulation in terms of
the unified formulation.

Notice that the state space in this formulation is given by s = (x, ε), which is relatively large as it

includes ε = {ε(a) : a ∈ A(x)} (i.e. has the cardinality of A(x)). By the nature of the type of problems

under consideration it is reasonable to consider alternative formulations of the problem, where ε is not part

of the state space.

B.2 Social surplus function formulation

This formulation of the problem is developed in Rust (1988). In order to explain the formulation, it is

necessary to define certain objects. Given a vector v(x) = {v(x, a) : a ∈ A(x)}, define the social surplus

function as follows:

G(v(x)|x) ≡
∫
ε

max
a∈A(x)

{v(x, a) + ε(a)}dP (ε|x) = E

(
max
a∈A(x)

{v(x, a) + ε(a)}
∣∣∣∣x) . (B.6)

If we let s ≡ (x, a) and S ≡ {(x, a) : a ∈ A(x), x ∈ X}, Theorem 3.2 in Rust (1988) indicates that:

V (x, ε) = max
a∈A(x)

[v(x, a) + ε(a)], (B.7)

where v : S → R is the unique fixed point of the following contraction mapping:

(Γ2m)(x, a) = u(x, a) + βE[G(m(x′)|x′)|x, a],∀(x, a) ∈ S. (B.8)

Notice that, in the formula, m(x′) is shorthand for the vector {m(x′, i′) : i′ ∈ A(x′)}. Our assumptions

imply that the mapping is a contraction mapping (in the sup-norm) by using the Blackwell (1965) sufficient

conditions for a contraction (in this case, it is important to establish that G satisfies the properties in

Theorem 3.2 in Rust (1988)). Notice that the fixed point v is the object of interest because it allows us to

recover the original value function V (using Equation (B.7)) and, with it, we can then construct the rest of

the objects of interest such as optimal decision rules and CCPs.
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The advantage of working with this formulation of the dynamic decision problem is that the state space

is (x, a), whose dimension is smaller than for the condition value function formulation. Another advantage

is that the CCPs can be written simply as (see Theorem 3.4 in Rust (1988)):

P (a = ā|x) = Gā(v(x)|x), (B.9)

where Gā denotes the derivative of the social surplus function (i.e. Equation (B.6)) with respect to v(x, ā).

We now verify that this formulation is a particular case of the unified formulation. This is shown in

Table 6, which explains how the objects in the unified notation are defined in terms of the primitive objects

in Equation (2.1). According to the table, F is defined as follows: F (V, s′) = G(V (x′)|x′), where G is the

social surplus function (i.e. Equation (B.6)) with its own choice set A(x′). Theorem 3.1 in Rust (1988)

shows that the function G satisfies all of the desired properties.

Unified formulation v s S A(s) a u(s, a) F (V, s′)
Primitive object V (x, a) {(x, a) : a ∈ A(x), x ∈ X} {a} a u(x, a) G(V (x′)|x′)

Table 6: Representation of the primitive object of the social surplus function formulation formulation in
terms of the unified formulation.

B.3 Choice-specific value function formulation

This formulation is related to the social surplus function formulation and is explained in Rust (1988), page

1014. As in the previous formulation, let s ≡ (x, a) and S ≡ {(x, a) : a ∈ A(x), x ∈ X}. Under our

assumptions, Rust (1988) indicates that:

v(x, a) = u(x, a) + βEV (x, a), (B.10)

where v : S → R is the function in Equation (B.7) and EV : S → R is the fixed point in the following

contraction mapping:

(Γ3m)(x, a) = E[G(u(x′) + βm(x′)|(x′))|x, a], ∀(x, a) ∈ S. (B.11)

This formulation is intimately related to the social surplus function formulation and shares all its advantages

relative to the conditional value function formulation, i.e., the state space is (x, a), which have a relatively

smaller dimension, and the CCPs are relatively easy to compute using Equation (B.9).

We now verify that this formulation is a particular case of the unified formulation. This is shown in

Table 7, which explains how the objects in the unified notation are defined in terms of the primitive objects

in Equation (2.1). According to the table, F is defined as follows: F (V, s′) = G(β−1u(x′) +V (x′)|x′), where

G is the social surplus function (i.e. Equation (B.6)) with its own action set A(x′). Theorem 3.1 in Rust

(1988) shows that the function G satisfies all of the desired properties.

Unified formulation V s S A(s) a u(s, i) F (V, s′)
Primitive object EV (x, a) {(x, a) : i ∈ A(x), x ∈ X} {a} a 0 G(β−1u(x′) + V (x′)|x′)

Table 7: Representation of the primitive object of the choice-specific value function formulation formulation
in terms of the unified formulation.
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