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Real estate price indices, loan-to-value ratios (LTVs), and trade and foreclosure be-

havior are important measures of economic activity. Yet, these measures are difficult to

estimate, and the literature contains surprisingly little formal analysis of the resulting infer-

ence problems. To our knowledge, this paper contains the first formal econometric analysis

of the problem of estimating LTV distributions. Additionally, it addresses open issues in

the closely related inference problems for price indices and trade and foreclosure behavior.

The difficulty of estimating LTV distributions arises because a property’s price (the

denominator in the LTV ratio) is only observed when the property trades, and trades are

endogenous. Two existing approaches to this problem are surveys and imputed prices,

both with serious limitations. LTV estimates from surveys (e.g., the Survey of Consumer

Finances (SCF) and the American Housing Survey (AHS)) are limited by the scope and

timing of the surveys. More importantly, home owners may neither be fully informed nor

entirely objective when valuing their home hypothetically for a survey, creating method-

ological concerns and substantial disparities between overlapping surveys (e.g., Melzer,

2011). LTV estimates from imputed prices (e.g., from CoreLogic and Zillow) start from

the price or LTV that is observed when a property is traded or refinanced and then impute an

updated price using a local price index or hedonic pricing model (see Bhutta et al. (2010),

Landier et al. (2011), Laufer (2011), and Okah and Orr (2010) among others). Imputing

prices implicitly assumes that properties appreciate exactly as predicted by the model, i.e.,

that there is no idiosyncratic volatility. With idiosyncratic volatility, this approach under-

estimates the dispersion in prices and LTVs, resulting in downward biased estimates of the

fraction of underwater properties. To illustrate, if a local price index shows an average

appreciation of 5%, it matters whether this represents exactly 5% appreciation for each

individual property, or whether it represents, say, a 15% increase for one half, and a 5%

decline for the other half. By assuming the former, the imputation approach mechanically

underestimates the dispersion. Additionally, idiosyncratic volatility introduces a dynamic

sample-selection bias, as described below.

We present a new econometric model of house prices, LTV ratios, and trade and fore-

closure behavior, and we estimate this model using data from Alameda County, California,

spanning 1988 to 2008. Our results suggest that selection biases are substantial. We es-

2



timate an idiosyncratic annual volatility in individual home prices of 28%. Towards the

end of our sample period, a naïve imputation of property prices using a repeat-sales index

leads to an estimate of the fraction of underwater properties of 20%. Accounting purely

for the idiosyncratic volatility and the resulting increase in the dispersion of prices (but

not dynamic selection) increases this estimate to 30%. Different specifications of the dy-

namic selection effect result in final estimates of the fraction of underwater properties in

the 28%–37% range.

For an external validation of our estimates, we investigate the index revision problem.

This is a well-known sample-selection problem in which the current estimates of the most

recent index value are systematically revised (typically downwards) when subsequent data

become available. In our baseline specification, this revision problem is reduced by about

45% (average long-term downward revisions are reduced from 13% to 7%), confirming that

our model captures a substantial amount of the dynamic selection of traded and foreclosed

properties.

The difficulties of estimating LTVs lead to other inference problems. Trade and fore-

closure decisions are endogenous and depend on current prices and LTVs (e.g., Case, Pol-

lakowski, and Wachter, 1997). This creates a selection problem when estimating prices

and price indices.1 Correcting such price estimates requires a selection model, such as a

probit or hazard model of trade and foreclosure behavior. This selection model, however,

requires current LTVs or prices as explanatory variables. We resolve this circularity by

jointly estimating the price index and the trade and foreclosure model.

Our approach extends the standard repeat-sales model by Bailey, Muth, and Nourse

(1963) and Case and Shiller (1987) by modeling the entire price path for each individual
1This problem is aptly described by Calnea (Calnea Analytics (2010), p. 14), who calculates the United

Kingdom’s land-registry house-price index using a repeat-sales regression (RSR): “The RSR index is nat-
urally more reflective of properties that transact more frequently. In so far as a differential in price ap-
preciation exists between properties based on the relative frequency of transactions, the RSR measure will
be naturally weighted towards the more frequently transacting subset of properties. There are a variety of
reasons why the holding duration of properties might be unevenly distributed. The increase in transaction
costs for more expensive properties due to stamp duty may result in a decreased turnover of more expensive
homes. “Life-cycle” theories on property holding period posit that less expensive properties are traded more
frequently—when people move up the property “ladder” they tend to move home less often. In addition the
Buy-to-Let market is more active in the lower price brackets. Policy-makers need to be aware of the price
appreciation differentials between sub markets, especially when there is systematic variation in the frequency
of transactions between these sub markets.”
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property, even when it is not traded, and by explicitly modeling trade and foreclosure de-

cisions for each property at each point in time. Simultaneously estimating prices, LTVs,

and trade and foreclosure behavior has several advantages. First, econometrically, the trade

process is a dynamic extension of the selection equation in the standard sample-selection

model (Heckman, 1979, 1990), and simultaneously estimating the price and trade processes

corrects for selection bias. (For this reason we sometimes refer to the trade process as the

selection or trade-selection process.) Second, the parameters in the trade process reflect

trading behavior. Separating regular sales from foreclosure sales and allowing coefficients

to vary over time, we find large and unprecedented changes in recent behavior. Third,

the approach estimates the full cross-sectional and time-series distributions of the LTVs.

Finally, our procedure consistently incorporates price information revealed by untraded

properties. To illustrate, when appreciating properties are more likely to trade, a period

with few trades suggests declining prices. (Conversely, when depreciating properties are

more likely to trade, possibly in foreclosure sales, periods with few trades suggest appre-

ciating prices; our model captures both cases.) Hence, trading volume is informative about

prices and should be included in the estimator. This is fundamentally different from the

standard Heckman (1979) cross-sectional sample-selection model. In this standard model,

observations with unobserved outcomes are only informative about the first stage, not the

second one.2 In our dynamic extension, prices are serially correlated, and the fact that

a property is not traded is informative about its current price, which is informative about

its previous and subsequent prices due to the serial correlation. Hence, observations with

unobserved outcomes must be included in the second stage as well.3

Our Bayesian estimator has several advantages as well.4 First, modeling price dynam-

ics for individual properties is numerically intensive, rendering standard maximum likeli-
2In the standard selection model, unobserved outcomes are independent and can be integrated out of the

likelihood function for the second stage, conditional on the estimates of the first stage. With serial correlation,
unobserved outcomes are no longer independent and cannot be integrated out.

3Some studies construct corrected real-estate indices using a standard Heckman selection model (e.g., Jud
and Seaks, 1994; Munneke and Slade, 2000; and Hwang and Quigley, 2004). The standard Heckman model,
however, does not allow serial correlations in unobserved outcomes, and the price information revealed by
untraded properties is not incorporated, raising concerns about whether these model are correctly specified
and whether the resulting estimators are consistent.

4Our procedure is substantially different from the Bayesian estimators of the repeat-sales model described
and compared by Goetzmann (1992), which do not exploit these advantages to the same extent.
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hood (ML) estimation infeasible. Bayesian estimation, however, remains computationally

feasible with robust convergence properties, as explained below. Second, the estimation

procedure is a numerical Monte Carlo procedure that simulates unobserved prices as part

of the estimation. This makes it straightforward to construct posterior distributions of the

estimated parameters and non-linear transformations of these, such as price indices, LTVs,

and foreclosure and trade intensities. In contrast, standard statistical inference (e.g., cal-

culating standard errors) is difficult for such transformations, especially involving variance

parameters, which are not asymptotically normal. Finally, the Bayesian estimator produces

accurate small-sample inference. Although our sample contains around 70,000 properties,

the number of estimated parameters and prices is also large, and it is difficult to assess

whether asymptotic approximations would be appropriate.

As a final comment, our model extends the empirical finance literature about illiquid

assets with unobserved prices, such as private equity and venture capital investments in pri-

vately held companies (Cochrane, 2005; and Korteweg and Sorensen, 2010). The empirical

issues are closely related,5 and our approach may be useful for understanding prices and

trading behavior of other illiquid or asynchronously-traded assets (e.g., corporate bonds,

small-cap stocks, and index arbitrage). More generally, the empirical approach exploits re-

cent advances in Bayesian computational procedures—specifically, Markov Chain Monte

Carlo (MCMC), Gibbs Sampling, and forward filtering backwards sampling (FFBS)—

that permit estimation of models with infrequently observed behavior of individual agents,

which may be useful for other applications.

In Section I, we present the empirical model and discuss the estimation procedure and

identification. Section II presents the data. In Section III, we compare price indices esti-

mated with and without correcting for sample selection. Section IV presents estimates of

the LTV distribution. In Section V, we analyze trade and foreclosure behavior. Section VI

contains concluding remarks. Details about the estimation procedure are in the Appendix.
5Bloomberg (August 17, 2011) reported that there is “a record number of private-equity firms raising real

estate funds,” suggesting deeper economic relationships between real estate and private equity.
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I Model of Prices and Trades

To fix ideas and notation for our empirical model, it is useful to derive the discrete-time

price dynamics from continuous-time fundamentals. Let µ(t) be a common exogenous

determinant of price appreciation (a price index), and let the price of property i follow the

Brownian motion:
dPi(t)
Pi(t)

= µ(t)dt +sidBi(t). (1)

Define the log-price pi(t) = ln(Pi(t)) and let di(t) =
´ t

t�1 µ(t)dt� 1
2s

2
i . Using Ito’s lemma,

the change in the log-price from time t to t 0 is:

pi(t 0) = pi(t)+

"
t 0

Â

t=t+1
di(t)

#
+ ei(t, t 0), (2)

with ei(t, t 0)⇠ N
�
0,(t 0 � t)s2

i
�
.

The standard repeat-sales regression (RSR) is estimated from this equation using prop-

erties that trade (at least) twice by regressing the change in the observed log prices on

indicator variables for the intermediate periods between the trades, represented by the di(t)

terms in the equation. This regression is typically implemented using generalized least

squares (GLS) to correct for heteroscedasticity by weighing each observation by the in-

verse of the square root of the time between trades. With a sufficient number of partially

overlapping trades, all d(t) coefficients are identified (assuming no heterogeneity in si).

The estimated d(t) coefficients are consistent when e is independent of the indicator vari-

ables (i.e., when the expected value of e is independent of whether or not the property

trades). This independence fails, however, when the decision to trade is not independent

of the price appreciation, ei(t). In this case, the error term is correlated with the indica-

tor variables, creating the sample-selection problem and potentially biasing the estimated

coefficients.

Setting t = t 0 �1, the one-period transition equation is:

pi(t) = pi(t �1)+d(t)+ ei(t), (3)
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with ei(t)⇠ N(0,s2
i ). Since most prices are unobserved, this equation cannot be estimated

directly. Treating the price as an unobserved state variable, however, our estimation pro-

cedure uses this equation to filter out the unobserved prices between trades. Following the

finance terminology, we also refer to d(t) as systematic variation and ei(t) as idiosyncratic

volatility.6

The estimated d(t) coefficients can be transformed into price indices. Normalizing by

the price level at time t0, it is natural to define an index as the population average of current

prices relative to time-t0 prices (in levels, not logs) as:

I(t) = E


Pi(t)
Pi(t0)

�
= E

"
exp

 "
t

Â

t=t0+1
d(t)

#
+ ei(t0, t)

!#
=

t

’

t=t0+1
exp
�
d(t)+ 1

2s

2� . (4)

The one-period change in this index is I(t)/I(t �1) = exp
�
d(t)+ 1

2s

2�. Note that typical

repeat-sales indices, such as those from S&P/Case-Shiller, CoreLogic, and FHFA (formerly

OFHEO), are defined without the 1
2s

2 adjustment term. Below, we compare indices with

and without this adjustment. Goetzmann (1992) discusses this adjustment in more detail,

and denotes indices with and without it as arithmetic and geometric indices, respectively.

A Trade and Foreclosure Processes

To model sales, it is convenient to define the latent discrete time process wi(t), such that

property i trades between time t �1 and t, and hence pi(t) is observed, when

wi(t)� 0. (5)

This trade process is parametrized as:

wi(t) =W 0
i (t)a0 + pi(t)ap +hi(t), (6)

6One can imagine estimating more flexible price processes, such as auto-regressive processes or processes
that depend on property characteristics or whether properties trade in foreclosure sales. This raises issues
about the identification of the model, left for future research. A main advantage of the simple specification
used here is that it is equivalent to the standard repeat-sales model, making the results directly comparable.
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where hi(t) is i.i.d. N(0,1). This specification is equivalent to a binary probit model,

and the parameters are only identified up to scale. Without loss of generality, the scale

is normalized by fixing the error term’s variance to one. The term pi(t) is the log price.

Property characteristics and prevailing mortgage rates (and a constant term) are in Wi(t),

along with the log loan amount with a coefficient fixed to -ap, implying that ap is the

negative of the coefficient on log LTV.

The resulting model is a dynamic extension of the standard cross-sectional sample-

selection model from Heckman (1979, 1990) with the trade process as the selection process.

Under standard conditions, jointly estimating these processes corrects for the selection bias

that may arise when the price dynamics of properties with observed prices are not represen-

tative of the price dynamics in the population overall. Note that the trade process depends

on the contemporaneous LTV ratio. This is a natural specification, yet it has been difficult

to implement in existing studies, because contemporaneous LTVs are unobserved. Our

model circumvents this problem by jointly estimating the latent price and trade processes.

In our data, normal sales are distinguished from foreclosure sales, and one might sus-

pect, as we find empirically, that these sales follow different processes. Appreciating prop-

erties are more likely to trade in normal sales, whereas depreciating properties are more

likely to end in foreclosures. Hence, we also estimate specifications with separate trade

and foreclosure processes. In these specifications, we include an additional foreclosure

process such that a foreclosure sale (but not necessarily a normal sale) occurs between time

t �1 and t when

zi(t)� 0. (7)

This process is parametrized as:

zi(t) = Z0
i(t)g0 + pi(t)gp +xi(t). (8)

As above, x is i.i.d. N(0,1), and Zi(t) contains observed variables that affect the probability

of foreclosure sales, including log LTV, property characteristics, and mortgage rates. In our

empirical specifications, we always have Z =W .
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B Empirical Implementation

To summarize, the baseline model specifies the price and trade processes:

pi(t) = pi(t �1)+d(t)+ ei(t), (9)

wi(t) =W 0
i (t)a0 + pi(t)ap +hi(t), (10)

wi(t)� 0 , pi(t) is observed. (11)

The price process, pi(t), is mostly unobserved, except when wi(t) � 0. The trade (or

selection) process, wi(t), is entirely unobserved. The vector Wi(t) is observed data. The

error terms are i.i.d. with ei(t) ⇠ N(0,s2) and hi(t) ⇠ N(0,1). The estimated parameters

of interest are a, s

2, and d(t).7

This model defines a likelihood function. ML estimation is complicated, however, by

the large number of latent variables, since evaluating the likelihood requires integrating

over them jointly. We specify the model at the quarterly level over a 20-year period, re-

sulting in 160 (= 2⇥4⇥20) latent variables per property. With around 70,000 properties,

each evaluation of the likelihood requires numerically evaluating 70,000 160-dimensional

integrals, rendering ML estimation numerically intractable. As a feasible alternative, we

develop a Bayesian procedure, using an MCMC method known as Gibbs sampling, to

substantially reduce the computational burden. We provide an overview of this procedure

below, and more details are in the Appendix (see also Korteweg and Sorensen, 2010).

The model is constructed such that its variables can be divided into three blocks. The

first block contains the parameters, a, s

2, and d(t); the second one contains the variables

in the trade processes, wi(t); and the third block contains the price processes, pi(t). The

Gibbs sampler simulates the (augmented) posterior distribution by iteratively drawing the

variables in each block conditional on the previous draw of the variables in the other blocks

(for a formal treatment see Geman and Geman (1984), Tanner and Wong (1987), Gelfand
7Although not pursued here, these assumptions can be relaxed somewhat. It is possible to estimate specifi-

cations with property-specific coefficients using hierarchical priors, and the normality assumptions generalize
to mixtures of normals without losing tractability of the Bayesian procedure. The log-price must enter the
trade process linearly, however, to maintain a linear Kalman filter, since generalizing the log-linear specifica-
tion introduces substantial numerical complexity. See Korteweg and Sorensen (2010) for details.
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and Smith (1990), Johannes and Polson (2006), and Korteweg (2012)).

In the first block, conditional on the previous draw of the price and trade processes, the

parameters a, s

2, and d(t) are given by the linear equations (9) and (10), and they are drawn

from a standard Bayesian linear regression.8 Drawing the trade process in the second block

is similarly straightforward. Conditional on the parameters and prices, the distribution of

wi(t) follows a truncated normal distribution that is constrained to be negative when there

is no trade and positive when a trade is observed, as specified by equation (11). These first

two blocks are analogous to Bayesian estimation of probit models (see Albert and Chib,

1993). The key to the model is the third block, where the entire path of unobserved prices is

drawn using the FFBS procedure (Carter and Kohn, 1994; and Fruhwirth-Schnatter, 1994).

Conditional on the parameters and trade process, the price process can be viewed as being

defined by a linear state space or Kalman filter. Under this view, pi(t) is the unobserved

state variable; the transition rule is the one-period price equation (9); the index d(t) is an

“observed” control acting on the state; and, conditional on wi(t), the trade process is an

observation equation, providing noisy “observations” of the state. Given this setup, the

FFBS procedure draws from the conditional posterior distribution of the entire price path,

as required in the third block of the Gibbs sampler.9

This Gibbs sampling procedure iteratively draws from the joint posterior distribution of

the parameters and the individual price paths for the properties. Using these draws, the pos-

terior distributions of the price index and LTV distributions are straightforward to construct.

For the price index, fixing t, in each iteration, we calculate I(t) =
’

t
t0+1 exp

�
d(t)+ 1

2s

2�

using the current draws of d(t) and s

2. Across iterations, the resulting distribution is the

posterior distribution of I(t).10 Repeating this calculation for all t generates the posterior

distribution of the entire index.

The construction is slightly more complicated conceptually for the LTV distribution,
8Technically, this is implemented as draws from several blocks, as explained in detail in the Appendix.
9While it is convenient to describe the blocks in this order, the actual sampling procedure has better

numerical properties when starting with the prices in the third block. By setting the initial value of ap = 0,
the first iteration can draw the prices without specifying initial values of the trade process, which speeds up
convergence.

10Note that it would be difficult to perform standard classical asymptotic inference on this index, such as
calculating its standard error, since I(t) is a nonlinear function of the estimated parameters and the asymptotic
distribution of s

2 is not normal.
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since its posterior is a distribution of distributions (or, more precisely, a time series of

the distribution of distributions). In each iteration, the LTVi(t) = Principali(t)/Pi(t) is

calculated using the outstanding principal (described below) and the current draws of the

price processes. Collecting these values across properties produces one draw from the

posterior distribution of the cross-sectional distribution of LTVs. Collecting these cross-

sectional distributions across iterations and time produces the time series of their posterior

distributions. From these distributions it is straightforward to calculate, for example, the

time series of the estimated fraction of underwater properties, i.e., properties with LTVs

exceeding one.

C Identification

Heckman (1990) shows that semi-parametric identification of the standard selection model

requires exogenous or predetermined variation in the selection equation. We include the

time since the previous trade (Time) as such variation. Following the logic of the standard

model, there are two requirements for Time to be a valid. First, the exclusion restriction

requires that Time is independent of the error term in the price process. When the price

process follows a martingale, which is a common assumption for price processes, this ex-

clusion restriction holds mechanically. Second, Time must be directly related to the proba-

bility of a sale. Due to transaction costs, it is reasonable to think that a new owner does not

intend to resell a property immediately after buying it. Hence, immediately after a trade,

the trade intensity declines and then gradually increases independently of the idiosyncratic

term in the price process. This behavior is consistent with the well-known phenomenon

of “seasoning” of mortgage-backed securities, where new loans prepay slower than older

loans, and our empirical results confirm this pattern. With these two requirements, Time

provides valid exogenous variation for the identification of the model. Note, however, that

the empirical results are very similar for specifications with and without Time, suggesting

that the model is reasonably well identified from distributional assumptions alone.

For a formal identification argument, consider properties trading at time t0, some of

which trade again one period later, at time t0 + 1. This simple case is equivalent to the

standard Heckman model, and identification follows from Heckman’s (1990) identification
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argument, which requires a variable, s(t0 + 1), that is independent of e(t0 + 1), and that

the probability of a trade at time t0 +1 is a non-degenerate function of s(t0 +1). Our case

is more complex, though, since the predetermined source of variation is the time since

the previous trade, and we cannot only consider trades one period apart. For our case,

compare properties trading at time t0 and again at time t0 + t to properties trading repeat-

edly at times t0, t0 + 1, t0 + 2, ..., t0 + t. The average appreciation for the first properties

is
Â

t0+t

t=t0+1 E [d(t)|s = t] = E
h⇣

Â

t0+t

t=t0+1 d(t)
⌘
|s = t

i
. The average appreciation for the re-

peatedly trading properties is
Â

t0+t

t=t0+1 E [d(t)|s = 1] = E
h⇣

Â

t0+t

t=t0+1 d(t)
⌘
|s = 1

i
. Hence,

comparing the appreciation of properties trading rarely to properties trading frequently

over the same period of time provides observations of the same sum of d(t) under various

degrees of selection. Varying the predetermined variable, s, leads to different amounts of

selection, and the standard identification argument applies.

As a more intuitive illustration, compare property A, trading at times 0 and 2, to prop-

erty B, trading at times 0, 1, and 2 (each time period may span several years). The total

appreciation from time 0 to 2 is observed for both properties and denoted dA and dB.11

Assume that trading one period apart (property B) is unusual and has a lower probability

than trading two periods apart (property A). These probabilities are observed (in the stan-

dard Heckman model, they are estimated in the “first stage”). Given that property B traded

in an unusual way, it may have experienced a price shock that compensated for the low

probability. If dB > dA, property B traded more frequently because it experienced a posi-

tive shock, and we infer that the coefficient ap in the trade-selection equation is positive.

Conversely, if dB < dA, we infer ap < 0. The magnitude of ap can be derived from the

difference dB �dA relative to the difference in the probabilities. Finally, we might observe

dB = dA and infer that trades are independent of price and ap = 0. Given the identification

of ap, the identification of the remaining parameters is straightforward.

11For a more formal identification argument, each of these properties represents a sufficiently large number
of individually trading properties that the law of large numbers applies and individual error terms can be
replaced by their conditional expectations. Specifically, dA and dB are the expected appreciations conditional
on the different trading patterns.
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II Data

We use data from transactions of single-family residences in Alameda County, California.

Alameda County is located in the San Francisco East Bay Area and includes, amongst

others, the cities of Oakland and Berkeley. The data are from CoreLogic (formerly First

American), obtained through the Paul Milstein Center for Real Estate at Columbia Business

School, and they include all transactions in the 20-year period from 1988:Q1 to 2008:Q3.

Unfortunately, the center’s agreement with CoreLogic expired in 2008, and we have been

unable to extend the sample beyond this period. The data contains sales dates and prices,

mortgage amounts, and refinancing information obtained from the deeds records. In ad-

dition, tax records contain information about each property’s characteristics, such as size,

number of bedrooms, single- or multi-family residence, etc.

We restrict the sample to properties that satisfy the following criteria: the property is a

single-family residence; it trades at least twice during our sample period, and both sales are

full sales (not partial sales); the tax records have no missing property characteristics; the

property’s characteristics have not changed between the two sales; it has no more than 10

bedrooms, 5 bathrooms, and 3 stories; and it is located on less than 5 acres with less than

10,000 square feet of living space. The resulting sample contains 164,824 transactions of

68,700 properties. Table I presents summary statistics, and Figure 1 shows the time series

of normal trades and foreclosure sales within the sample.

While the data contain initial mortgage amounts and subsequent refinancings, they con-

tain no information about amortization schedules. We estimate an amortization schedule

assuming a 30-year fixed-rate mortgage at the prevailing rate at the time of the transaction.

Whenever possible we update the outstanding mortgage amounts using refinancing infor-

mation.12 Using these calculated outstanding loan principals, we calculate the LTV, with

the value in the denominator given by the price process specified in the model.

This calculation fails for transactions of properties without mortgages. These properties

have LTVs equal to zero, leaving log LTV undefined. We set their log LTV to �3, corre-

sponding to an LTV ratio of 5%. These cases are infrequent, and the particular number has
12Refinancings typically involve an appraisal of the property’s value. These appraisal values are not used

for estimating the price process.
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a negligible effect on our estimates, as does excluding them altogether. We do not truncate

the upper tail of the LTV distribution, but in unreported estimates, we find that doing so has

a negligible impact on the estimates. The top plot in Figure 3 shows the distribution of the

buyers’ LTV ratios at the time of the transactions. The bottom plot shows the sellers’ dis-

tribution. Both LTVs are observed at the time of a transaction, and these plots only include

those observed ratios, not those estimated by the model.

Foreclosure sales are identified in the data, typically separating the initial seizure of

the property from the subsequent sale of the repossessed property by the bank. We define

the latter of those two transactions as the foreclosure sale. The former transaction, when

a property is seized by the lender, is not an arms-length transaction and does not have a

well-defined price or mortgage, and it is not included in the estimation.

Mortgage rates are collected from FRED, a database maintained by the Federal Reserve

in St. Louis. We use the change in the prevailing mortgage rate since the transaction in the

specifications. When the mortgage rate declines, it becomes more attractive for owners to

sell or refinance their loans.

III Price Dynamics

We first compare the price dynamics without the trade process and selection correction.

Figure 3 plots indices estimated using the standard GLS procedure and our MCMC pro-

cedure (without selection correction, i.e., fixing ap = 0), along with the S&P/Case-Shiller

Home Price Index for the San Francisco metro area.13 Arithmetic indices include the 1
2s

2

adjustment (the annualized GLS estimate of s is 0.2811). Geometric indices are calculated

without this adjustment. All indices are normalized to 100 in 2000:Q1.

Apart from the large differences between arithmetic and geometric indices, the indices

are very similar. The S&P/Case-Shiller Index is similar to the geometric indices calculated

here, although Case-Shiller is about ten points lower at the peak. This ten-point difference

probably arises because the S&P/Case-Shiller Index includes transactions from the entire

San Francisco metropolitan statistical area (MSA), comprising the counties of Alameda,
13Downloaded from the S&P/Case-Shiller website on February 25, 2010.
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Contra Costa, Marin, San Francisco, and San Mateo; our data cover only Alameda County,

which is around one-third of the MSA by population. Additionally, unlike our indices, the

S&P/Case-Shiller Index is smoothed and value-weighted.

In Figure 3, the indices from the GLS and MCMC estimators appear virtually identical.

Econometrically, the GLS estimator is defined in terms of moment conditions and the as-

sumption that the variance of the error term increases linearly with the time between trades.

The Bayesian MCMC estimator also imposes distributional assumptions on the error terms

and priors. The similarity between the resulting indices suggests that, at least absent the

trade process and selection correction, the MCMC estimator’s distributional assumptions

are reasonable.

Figure 4 plots indices corrected for selection using the trade process. Models A to F

refer to the different specifications of this process, given in Table II. The baseline model

is the MCMC estimator without selection correction from Figure 3. Unlike the corrected

indices, the uncorrected index from the baseline model shows a small increase by the end

of the sample period. Figure 5 shows similar indices estimated from specifications with

separate processes for normal trades and foreclosure sales. This leads to slightly larger

effects of the selection correction. Most pessimistic is Model A, producing a final index

around 140. Model F is most optimistic, ending with the index at 170. In contrast, the

baseline index ends at a level around 155.

Indices with and without selection corrections are broadly similar, suggesting that long-

term biases from sample selection in price indices are, perhaps, a smaller concern than

previously thought (e.g., by Calnea Analytics, see footnote 2). Comparing the two in-

dices, the quarter-by-quarter changes can be quite different, but over the sample period, the

levels never diverge substantially. Intuitively, while more rapidly appreciating properties

trade during the price run-up, eventually the more slowly appreciating properties also trade.

When they trade, they bring the index back to the underlying population average, and while

the standard index may show temporary biases due to selection, as long as all properties

eventually trade, the levels of the standard and selection-corrected indices are unlikely to

diverge substantially.
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A Index Revisions

In the short term, selection bias leads to the well-known index revision problem (e.g.,

Clapham et al. (2006)). The index revision problem is the sample-selection problem that

arises when initial transaction data are selected and updated with new trades, resulting in

revisions of the index. In other words, the sample selection problem is important in the

short run, but disappears in the long run. Systematic revisions of the index value for a

given period as more data arrives have, for example, made it difficult to construct financial

derivatives based on the index value.

To test the external validity of our model, we investigate whether our selection-corrected

index is less susceptible to the index revision problem than the standard repeat-sales index.

Since the index revision problem is a sample-selection problem, this provides a natural test

of the model.14 Figure 6 shows index estimates where the sample is extended incremen-

tally by one quarter at a time, and the entire index is re-estimated from the extended sample

(for expositional clarity, the plot only shows every fourth index, corresponding to one-year

extensions of the sample). The top panel contains standard repeat-sales indices, and the bot-

tom panel contains indices estimated with a simple trade-selection process containing just

log LTV (Model A). In both panels, the consistently downward revisions are immediately

apparent. For the selection-corrected indices, however, revisions are substantially smaller.

For each quarter we calculate the standard deviation across the index values calculated for

this quarter using the incrementally extended sample periods. For the standard repeat-sales

index, the average within-quarter standard deviation is 0.060. For our selection-corrected

index, it is 0.036.

Revisions are not only smaller, they also converge faster. To illustrate, Figure 7 plots

the relative change in the index as the sample period is extended. The top plot contains

revisions of the standard repeat-sales indices, and the bottom plot contains revisions of the

selection-corrected ones. In both cases, the median revision when including a single ad-
14We considered two other external validity tests: (1) whether our model predicts prices of future out-of-

sample transactions and (2) whether it predicts the timing of future out-of-sample trades and foreclosures.
These tests are less useful, however. First, sample selection models do not attempt to predict observed
outcomes (OLS is the best linear unbiased estimator), rather they estimate whether observed outcomes are
representative of outcomes in the overall (unobserved) population. Second, our data contain no time-varying
property-specific characteristics, making it difficult to predict the timing of individual trades and foreclosures.
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ditional quarter of data is around -5%, although the magnitude of the revision is slightly

smaller and the probability of a smaller revision is higher for the selection-corrected in-

dices. In the limit, however, after 12 quarters of additional data are included, the median re-

vision is around -13% for the standard repeat-sales index and around -8% for the selection-

corrected index. In fact, this -8% median revision for the selection-corrected index is close

to the “best case” revision (5th percentile) of -7% for the standard index. For the selection-

corrected index, the best case revision is just -3%. Conversely, the “worst case” revision

(95th percentile) for the standard index is as large as -21%. For the selection-corrected

index, it is “only” -13%. Finally, Figure 7 illustrates the faster convergence of selection-

corrected indices. These indices stabilize after 4 quarters of additional data, whereas the

downward revisions of the standard repeat-sales index are present for the entire 12 quarters

of additional data.

The reduced magnitude of the index-revision problem provides external validation of

the model’s ability to accurately capture the dynamic selection of traded properties. While

the simple specification of the trade-selection process (Model A) does not fully eliminate

the revisions, richer specifications of the selection processes may further reduce this prob-

lem. Due to the high computational cost of repeatedly estimating more complex specifica-

tions of the selection processes, we do not pursue this extension here.

IV LTV Distributions

The data contain the LTV ratio at the time of each trade. The top panel in Figure 2 plots the

LTV ratio of the new owner’s mortgage, and the bottom panel plots the seller’s mortgage,

constructed from amortizing the existing mortgages as described above. In Figure 8, the

top panel plots the median seller’s LTV over the sample period and the fraction of the

housing stock sold in each quarter. The plots show an increase in median LTVs towards

the end of the sample paired with a drop in trading volume. This increase in the median

seller’s LTV appears modest, essentially restoring the median LTV to its level before the

housing boom during the mid-2000s. In contrast, the second Panel in Figure 8 reveals a

substantial increase in the fraction of sales that are foreclosure sales. The bottom Panel
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in Figure 8 shows an even greater increase in the fraction of properties sold with an LTV

ratio above one, i.e., sales of underwater properties. This suggests that not only is the

median LTV deteriorating, but the cross-sectional distribution of LTVs is also becoming

more dispersed, with an increasing fraction of properties with very negative equity. These

plots are made from the observed LTVs at the time of the transactions.

Turning to LTVs estimated by the model, Figures 9 to 11 plot historical LTV distri-

butions in the population. Figure 9 shows the percentiles of the LTV distribution resulting

from the various specifications, and Figures 10 and 11 show the fractions of properties with

LTVs greater than 1, 1.25, and 1.5. In all cases, the LTV distribution appears to deteriorate

substantially during the last years of our sample.

We compare the LTV distributions estimated using the model to those that would be

obtained by imputing prices from a local house price index. In Figures 10 and 11 the

plots denoted RSR represent LTV estimates constructed by imputing property prices us-

ing the standard repeat-sales index. For each property, the loan and price are recorded at

the time when the property transacts, and updated prices are then calculated and imputed

using the GLS index in Figure 3. The fraction of underwater properties according to this

RSR calculation is substantially below both the fraction plotted for the baseline MCMC

estimates—calculated without selection correction, but including the dispersion in prices

arising from the idiosyncratic volatility of individual prices—and the two plots correcting

for selection (using Models A and F). Compared to the RSR estimates, the baseline MCMC

estimates show a substantial increase in the dispersion in LTVs, and consequently a greater

fraction of underwater properties.

Figures 10 and 11 also show that moving from the baseline MCMC model to Models

A and F leads to substantial changes in the estimated LTV distribution, which may be

more surprising. This is due to a more subtle dynamic selection effect. When properties

trade or are refinanced, their LTV is typically set to 80%. Appreciating properties have

better (lower) LTVs but are also more likely to be refinanced and have their LTVs reset to

80%. Depreciating properties have worse (higher) LTVs but those are less likely to be reset.

Hence, even when prices are constant, the average LTV may deteriorate due to this dynamic
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selection effect.15 This effect explains the increase in the fraction of underwater properties

moving from the baseline model to Model A. Model F further allows the LTV coefficient

to vary by period, and the coefficient changes sign in the last period, reversing the direction

of the dynamic selection and resulting in a lower fraction of underwater properties than the

baseline model. This selection of trades and refinancings, as a function on LTVs, is thus

important for estimating the cross-sectional dispersion of prices and LTVs, particularly the

fraction of underwater properties. In all cases, however, the RSR estimates using imputed

prices underestimate this fraction.

V Trade and Foreclosure Behavior

Decisions to trade, prepay, and default are particularly important when pricing mortgage-

backed securities. The literature models these decisions in two ways. First, decisions to

trade and prepay can be viewed as exercising real options, and behavior can be derived

from models of optimal exercise of options (e.g., Stanton (1995) and Longstaff (2005)).

This structural approach, however, has been less successful empirically, either because

homeowners’ decisions are not optimal or because the models are too stylized to capture

the nuances of these decisions. Alternatively, trade and prepayment intensities can be es-

timated from the observed hazard rates in pools of mortgages (e.g., Schwartz and Torous

(1989, 1992)). One limitation of this reduced-form approach is that the trade and prepay-

ment decisions are modeled as functions of only a limited set of explanatory variables.

Importantly, these models do not permit these decisions to depend on contemporaneous

price or LTV. As a consequence, hazard rates obtained this way tend to shift across vin-

tages, suggesting that the parameters are not constant, structural parameters of the model,

raising concerns about using these hazard rates to forecast future behavior and to price

mortgage-backed securities.

Our model provides a new approach to estimating trade and foreclosure intensities. This

is a reduced form approach where decisions to sell are captured by the trade-selection pro-

cess, but this process is estimated at the individual property level (not from pools), allowing
15Jensen’s inequality may produce an additional effect when calculating average LTVs by imputing average

prices, because the LTV ratio is a convex function of the price, and E [L/P|d]� L/E [P|d].
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an arbitrary number of property-specific explanatory variables, including contemporaneous

price or LTV.

A Trade Behavior

Table II presents the different specifications of the trade process. All models include log

LTV as an explanatory variable, and Models B to E add additional variables. Model F

allows the log-LTV coefficient to vary over the sample period to investigate changes in

trade behavior.

In Model A in Table II, the estimated log-LTV coefficient is negative and statistically

significant.16 Since a lower LTV corresponds to a higher price, the negative coefficient

suggests that properties with higher prices trade at higher intensities, consistent with Case,

Pollakowski, and Wachter (1997), who also find that appreciating properties trade faster.

Moreover, Figure 4 shows that the selection correction attenuates the size of the price bub-

ble relative to the baseline model. With a negative log-LTV coefficient, this attenuation is

intuitive: When prices generally appreciate, properties with more rapid price appreciation

are traded more frequently, and their prices are observed more frequently, causing standard

indices to exaggerate the price appreciation.

Model B in Table II, includes the time in years since the previous sale (Time). The

coefficients for Time are positive and those for Time-Squared are negative, showing that

the trade intensity follows an inverse U shape as a function of Time. When a property has

just traded, the probability of another trade immediately drops and then gradually increases,

peaking after about nine years, holding LTV constant.17 As discussed, including Time also

improves the statistical identification of the model, although Table II and Figure 4 suggest

that this has a negligible effect on the estimated parameters and indices.

In Model C in Table II there is a negative and significant coefficient on the change in

mortgage rate since loan inception, indicating that properties for which the mortgage rate

has increased are less likely to trade, which is not surprising. Including this variable has

little effect on the LTV coefficient, however, and Figure 4 shows almost no change in the
16Although a slight abuse of standard terminology for Bayesian statistics, we call a coefficient statistically

significant at a given level when the corresponding credible interval does not contain zero.
17In Model B, the maximum intensity occurs after 9.1 years (9.1 =�0.0381/(2⇥�0.0021)).
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index.

Model D in Table II includes the size and age of the property, and shows that larger

and older houses trade less frequently. In Model E, these house characteristics are also

interacted with the log-LTV ratio. The positive significant coefficient on the interaction of

size and log LTV shows that for larger properties the trades are less sensitive to LTVs than

they are for smaller houses. The interaction of age and log LTV shows a very small effect.

Finally, in Model F, the sample is divided into four sub-periods with separate inter-

cepts and log-LTV coefficients. This specification is motivated by the sharp increase in

foreclosures toward the end of the sample, which raises concerns about a structural break

in trade and foreclosure behavior. Interestingly, the coefficient on LTV increases mono-

tonically over the sample period (its absolute magnitude declines). The other coefficients

are largely unchanged. The gradual increase in the LTV coefficients reflects a gradual

shift in the market, where sales are becoming less sensitive to LTVs. In fact, over the

last period the log-LTV coefficient changes sign, suggesting that recently, properties with

higher LTVs have traded more frequently. One explanation for this change is the increase

in foreclosure sales of underwater properties. Indeed, Figure 4 shows that the price index

estimated with the specification of the trade process given by Model F declines by about

10–15 index points less during 2007 and 2008 than the other indices. Moreover, since the

index from Model F peaks at a higher level, the proportional decline is even smaller. We

investigate this shift in more detail below, when we estimate separate processes for normal

trades and foreclosure sales. Another explanation for the change in trading behavior would

be a change in economic conditions, resulting in a change in the demand for inexpensive,

high-LTV housing. We re-estimate (but do not report) our model with data for Maricopa

County, Arizona (Phoenix and Scottsdale metro areas) and Clark County, Nevada (Greater

Las Vegas area), and find qualitatively similar results. Specifically the dramatic deterio-

ration of the LTV distributions and the gradual increase in the LTV coefficients over the

sample period appear to be robust across these geographical locations. If the changes in

the trading behavior are due to economic conditions, these economic conditions appear to

be widely shared.

So far, the estimates only include properties that trade (at least) twice to make the
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analysis comparable to the standard repeat-sales analysis. One may be concerned this

sub-sample is selected, although this is probably a smaller concern given the long sam-

ple period. Unlike the traditional repeat-sales regression, our model can be estimated using

all properties in the data, including those that trade only once, assuming they follow the

same trade process as those properties that trade more than once. Including these proper-

ties roughly doubles the sample size to over 140,000 properties, which may improve the

estimates of the price and trade processes (mechanically, the level of the estimated trade

intensity is reduced). Table III compares the coefficient on LTV in the trade equation across

the samples. In the extended sample, the coefficient is closer to zero, but still significant.

Another concern is that foreclosure sales may not be arms-length sales and that the resulting

prices may not reflect the true market values. We re-estimate our model after eliminating

foreclosure sales from the sample to investigate this concern, but Table III shows that the

LTV coefficient remains largely unchanged.

B Foreclosure Behavior

Table IV presents coefficients for specifications with separate processes for foreclosure

sales and normal trades. Panel A contains the trade process, and Panel B contains the

foreclosure process. The coefficients in Panel A are largely similar to those from Table II,

which combines normal trades and foreclosure sales in the estimation. This follows from

the relatively low number of foreclosures over most of the sample. Hence, normal trades

dominate the sample and estimates using just normal trades appear very similar to estimates

that combine the normal trades with the (relatively few) foreclosures sales.

Comparing Panels A and B in Table IV, the greatest difference between the trade and

foreclosure processes is the LTV coefficient for the last sub-period in Model F. In Model F

in Panel A, the coefficient on LTV in the last sub-period is smaller compared to Table II.

Much of this increase appears to be caused by foreclosures of high-LTV properties. This

is confirmed in Panel B in Table IV, where Model F has a large positive coefficient on

LTVs in the last period, showing that these foreclosure sales were predominantly driven by

properties with high LTVs. The negative coefficients during the previous periods are less

intuitive, but these are periods with fewer foreclosure sales, so the estimate may be a result
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of more atypical transactions.

Comparing Panels A and B in Table IV more broadly, the trade and foreclosure pro-

cesses appear largely similar. In addition to the differences for log LTV, the two processes

appear to respond slightly differently to property age, with older properties more likely to

foreclose and less likely to trade in normal trades. Nevertheless, Figures 4 and 5 show that

the indices are largely unchanged after including these processes separately, despite their

differences.

C Equivalent Constant Intensity

To interpret the economic magnitudes of the coefficients in the trade equation, we define

the equivalent constant intensities as follows. Assuming that trades follow a Poisson arrival

process with constant intensity li, the number of trades of property i up to time t, denoted

di(t), is distributed as:

P[di(t)�di(t �1) = n] =
l

n
i exp[�li]

n!
for n � 0. (12)

The probability of no trade between time t �1 and t is:

P[di(t)�di(t �1) = 0] = exp[�li]. (13)

Using the estimated coefficients in the trade process, the probability of no trade is:

P[wi(t)< 0] = F[�W 0
i (t)a0 � pi(t)ap], (14)

where F is the c.d.f. of the standard normal distribution. Equating these probabilities,

exp[�li] = F[�W 0
i (t)a0 � pi(t)ap], (15)

implying:

li =� ln
⇥
F[�W 0

i (t)a0 � pi(t)ap]
⇤
, (16)
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with partial derivative:
dli

dWi
= a0

f[�W 0
i (t)a0 � pi(t)ap]

F[�W 0
i (t)a0 � pi(t)ap]

. (17)

We call li the equivalent constant intensity. This intensity is the constant Poisson intensity

that gives rise to the same probability of a trade as the estimated coefficients in the trade

process, and its partial derivatives are more readily interpretable as economic magnitudes

than the estimated coefficients. This is closely analogous to marginal effects for probit

models; in fact, the mathematical expressions are quite similar. The posterior distributions

of li and the partial derivatives are simple to calculate from the posterior distribution of a.

Note that li is only used to interpret the economic magnitude of the coefficients in the trade

process. It is not a structural part of the model. Explicitly modeling the trade intensity as a

continuous-time process depending on the LTV (or price) turns it into a doubly stochastic

Poisson process or Cox process (see Cox, 1955), which is beyond the present scope.

Figure 12 plots the time series of li for Models A and F, evaluated at the median LTV

and the 25th and 75th percentiles across properties. The top panels are from the specifi-

cations with only a trade process, and the bottom panels are from the specifications with

separate trade and foreclosure processes. The top plots show slightly higher intensities,

because they plot the combined intensities of either normal trades or foreclosure sales. The

bottom panels are just the intensities of normal trades. Moving from Model A in the left

panels to Model F on the right, the intensity process becomes much more volatile. Model

F allows the LTV coefficient to vary over the sample period, and it includes a greater

number of explanatory variables, including mortgage rates and quarterly indicators to cap-

ture seasonality in the trade process, overall capturing more time variation in the process.

Specifically, the seasonal adjustments produces the “spiky” movements in the intensity.

To interpret the economic magnitude of the estimated LTV coefficients, the thin gray

lines in Figure 12 plot the intensities evaluated at the bottom and top quartiles of the LTV

distribution. In Model A, the LTV coefficient combined with the widening of the LTV

distribution shows that early in the sample period, the trade intensities for relatively high-

and low-LTV properties were quite similar, around 2.4%. Later in the sample period, the

intensities diverge, with a quarterly trade intensity of low-LTV properties around 2.25% and

high-LTV around 2.75%, representing about a 20% difference. In Model F, the additional
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explanatory variables lead to a less clear picture. Not surprisingly, we find that the trade

intensity for normal trades increases in the early 2000s, and decline rapidly towards the end

of the sample period.

Turning to foreclosure intensities, Figure 13 reveals the substantial increase in these

intensities in recent years, along with a quiet period during the price run-up in the early

2000s preceded by substantial activity during the previous housing crisis in the mid 1990s.

Table V reports the partial derivatives of the equivalent constant intensity. Panel A

shows the effect on the trade intensity. From Figure 12 we know that the average quarterly

intensity is around 2.5%, and the mean estimate of -0.49% shows that a one-standard devi-

ation increase in LTV reduces the trade intensity from around 2.5% to around 2% (around

a 20% decline), which confirms that the economic magnitude of the effect of LTV on trade

intensity is substantial. The corresponding figures for foreclosures are in Panel B. The first

figure of 0.04% shows that a one-standard deviation increase in LTV is associated with an

increase in foreclosure intensity from around 0.1% (from Figure 13) to 0.14%, a substantial

increase. Finally, note that these figures mechanically overestimate the baseline intensities,

because only properties that trade twice (or more) are included in the sample.

VI Conclusion

While price indices, LTV distributions, and trade and foreclosure behavior are common

indicators of economic activity, they are surprisingly difficult to estimate, because property

prices are only observed when the properties trade, and trades are endogenous. We present

a new econometric model to address this problem. Our approach filters out the entire

price path of each property in our data, even when the property is non-traded and its price

is unobserved. This filtering is numerically intensive, but exploiting recent advances in

computational Bayesian estimation —specifically, MCMC, Gibbs sampling, and FFBS—

produces a tractable estimation procedure with robust convergence properties.

The model estimates property prices jointly with the trade and foreclosure processes,

which allows those decisions to depend directly on price or LTV. It uses the trade and fore-

closure processes as dynamic extensions of the standard cross-sectional Heckman sample-
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selection equation to correct the estimates for selection arising when the price dynamics for

the traded properties (for which prices are observed) are not representative of the overall

population.

For price indices, there have been concerns that the recent increase in the fraction of

foreclosure sales biases standard repeat sales indices. We find that the magnitude of this

bias is more modest than expected, at least in the long term. Even when rapidly appre-

ciating properties were more likely to trade during the bubble years, and this created an

upward bias in the traditional repeat-sales index, this bias appears to be somewhat modest

in magnitude and temporary as well. When the more slowly appreciating properties even-

tually trade, they bring the index back in line with the average price level in the underlying

population.

In the short term, however, selection leads to the index revision problem where cur-

rent index estimates are subsequently revised (typically downwards) as trade data become

available for the estimation. These revisions are substantial, but our baseline specifica-

tion reduces the magnitudes of the revisions by about 45% (the absolute magnitude of the

median revision declines from 13% to 7%).

We find large effects for home price dispersions, compared to an estimator of LTV

distributions that imputes prices from a repeat-sales index on the untraded properties for

which the price is unobserved. This standard approach substantially underestimates the

dispersion of prices, and hence the dispersion of LTVs, leading to estimates of the fraction

of underwater properties substantially below those produced by our approach.

Finally, we calculate the equivalent continuous-time Poisson intensities. These are po-

tentially useful for models pricing mortgage-backed securities and derivatives on home

price indices. Moreover, these intensity estimates suggest large recent changes in trade and

foreclosure behavior. While we cannot isolate the specific cause of this change, it appears

to be wide spread, and some caution is required when using historical data to predict future

prepayment and defaults

To our knowledge, this study contains the first formal econometric analysis of the prob-

lem of estimating LTV distributions, given the illiquidity of the real estate market. More

research is needed, however. Our sample ends in 2008, and while we have been unable
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to extend the sample beyond this period, the deterioration of the real estate markets has

continued. In April, 2010, Fiserv (the publisher of the S&P/Case-Shiller Indices) stated

that “the housing market has experienced significant turmoil and the last two-to-three years

have seen large increases in foreclosures as well as other market dislocations” and followed

this statement by a recommendation against using the standard seasonality adjustments, as

they appear to no longer work correctly. More recently, the June 2011 home sales figures

from Las Vegas show that volume is up 8% year-over-year but that almost 70% of sales

were distressed sales (47.2% were bank-owned properties and 21.6% were short sales),

underscoring the importance of understanding distressed markets for illiquid assets.
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Appendix: Estimation Procedure

For each property i, the natural logarithm of price, pi(t), follows the process:

pi(t) = pi(t �1)+d(t)+ ei(t), (18)

with ei(t) ⇠ N(0,s2) and i.i.d. across firms, i = 1 . . .N, and across time, t = 1 . . .T . Note

that d(t) is the index return between time t �1 and t, so d(t) ranges from d(2) to d(T ). The

price is observed whenever wi(t)� 0, where wi(t) is given by the selection equation:

wi(t) =W 0
i (t)a0 + pi(t)ap +hi(t). (19)

The vector of covariates Wi(t) is observed. In some models, we separate foreclosure sales

from normal trades by including an additional selection equation in which a foreclosure

occurs when zi(t)� 0, where z(t) is:

zi(t) = Z0
i(t)g0 + pi(t)gp +xi(t). (20)

The error terms h and x are distributed i.i.d. normal with variance equal to one, and are

uncorrelated with each other at all leads and lags (including contemporaneously).

It is convenient to stack the selection equations into a 2x1 vector:

si(t) = S0i(t)f0 + pi(t)fp +zi(t), (21)

where si(t) =

2

4 wi(t)

zi(t)

3

5, S0i(t) =

2

4 W 0
i (t) 0

0 Z0
i(t)

3

5, f0 =

2

4 a0

g0

3

5, fp =

2

4 ap

gp

3

5, and

zi(t) =

2

4 hi(t)

xi(t)

3

5. The covariance matrix of zi(t) is the identity matrix. For the models

in which we only use one selection equation, si(t) = wi(t) and equation (21) is identical to

(19).

The set of parameters to be estimated is q =
�
d(2) . . .d(T ),s2,a0,ap,g0,gp

�
. We aug-

ment the parameter set with the latent variables and use a Bayesian estimation algorithm
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that simulates the posterior distribution, f (q,{pi(t),si(t)}|data), using a Gibbs sampler

(Gelfand and Smith, 1990). By the Hammersley-Clifford theorem, we can break up the

posterior into three complete conditionals:

1. Latent prices: f ({pi(t)}|{si(t)} ,q,data)

2. Selection variables: f ({si(t)}|{pi(t)} ,q,data)

3. Parameters: f (q|{pi(t),si(t)} ,data)

We sample from each distribution 1-3 in turn, after which we return back to step 1 and

repeat. The resulting sequence of parameter draws forms a Markov chain, the stationary

distribution of which is exactly the posterior distribution. Given a sample of draws of

the posterior distribution, it is then straightforward to numerically integrate out the latent

variables and obtain the marginal posterior of parameters, f (q|data), or the unobserved

prices, f ({pi(t)}|data), for example. We now discuss how to draw from each conditional

distribution.

A1 Latent prices

We draw latent prices in the period between property sales using the FFBS algorithm

(Carter and Kohn, 1994; and Fruhwirth-Schnatter, 1994), which provides an efficient way

to sample a path of state variables defined by a linear state space model. Since the error

terms are assumed i.i.d. across properties, we can sample pi(t) separately for each propety.

For expositional simplicity, we describe the algorithm for a particular property, suppressing

the dependence on i.

Interpreting the econometric model as a linear state space model, p(t) is the state vari-

able, and equation (18) is the transition rule. Conditional on the parameters, d(t) is an

“observed” control acting on the state, and conditional on s(t), the collection of selection

equations given by equation (21) are noisy observations equation for the state. This setup

allows us to calculate the filtered distribution of p(1) . . . p(T ), using the Kalman filter.

The Kalman filter produces the distribution of p(t) conditional on s(1) . . .s(t), for any

time t. However, p(t) needs to be sampled conditional on the entire time series s(1) . . .s(T ).
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This is achieved by a backward smoother, which effectively runs a Kalman filter backwards,

starting at time T . The conditional distribution of the state vector of latent valuations is

given by the following identity, which follows from Lemma 2.1 in Carter and Kohn (1994):

f
�

p(1) . . . p(T )|sT�= f
�

p(T )|sT�T�1

’

t=1
f
�

p(t)|st , p(t +1)
�
, (22)

where st = {s(1) . . .s(t)} contains the selection variables up to time t. Next we describe

the forward filtering and backward sampling steps in detail.

Define m(t| j) = E
⇥
p(t)|s j⇤ and v(t| j) =Var

⇥
p(t)|s j⇤ as the mean and variance of p(t)

conditional on the selection variables up to time j. Note that all conditional distributions

are normal and hence fully characterized by their means and variances (Kalman, 1960; and

Anderson and Moore, 1979).

For the forward filtering step, for t = 1 . . .T , we calculate m(t|t) and v(t|t) by iterating

on the forward filter, through a forecasting and an updating part. The forecasting part

involves the two equations:

m(t|t �1) = m(t �1|t �1)+d(t), (23)

and

v(t|t �1) = v(t �1|t �1)+s

2. (24)

For the updating part, as long as p(t) remains unobserved, we update:

m(t|t) = m(t|t �1)+K0 ·
⇥
s(t)�S0(t)f0 �m(t|t �1)fp

⇤
, (25)

where the Kalman gain K is given by:

K =
⇥
I +fpv(t|t �1)f0p

⇤�1 · v(t|t �1)fp, (26)

and I is the 2x2 identity matrix (in the case of one selection equation, this is simply a

scalar unity). When K is large, more weight is placed on the information from the selection

equation. This happens when either fp or v(t|t � 1) is large, i.e., when either the selec-
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tion equations are more informative about the valuations or when the valuations are more

uncertain. Further,

v(t|t) = v(t|t �1) ·
�
1�K0 ·fp

�
. (27)

We force fp = 0 when estimating the model without correcting for selection. Then, m(t|t)=

m(t|t � 1) and v(t|t) = v(t|t � 1), and no information is used in periods where p(t) is un-

observed. In periods where p(t) is observed, m(t|t) = pOBS
t and v(t|t) = 0.

For the backward sampling part, p(T ) is first simulated from the normal distribution

with mean m(T |T ) and variance v(T |T ), as given by the Kalman filter. For t = T �1 . . .1,

we draw p(t) from the conditional distribution p(t)|st , p(t + 1). This distribution can be

derived from a filtering problem where the draw of p(t + 1) provides an additional obser-

vation of p(t). The distribution is:

p(t)|st , p(t +1)⇠ N (r,q) , (28)

where:

r = m(t|t)+G · [p(t +1)�m(t +1|t)] , (29)

q = v(t|t) · (1�G), (30)

with:

G =
v(t|t)

v(t|t)+s

2 . (31)

From equation (31), G can be interpreted as a Kalman gain similar to K in equation (26). As

such, the backwards sampler weighs the information from the filtered distribution p(t)|st

and the information in p(t + 1)|sT to obtain a draw of p(t)|sT , with the weight depending

on the relative variance of the filtered estimate, v(t|t), and the variance of a one-period price

change. If the filtered estimate m(t|t) is very precise relative to the variance of the valuation

change from one period to the next, then G is close to zero, and most of the weight is put

on the distribution of p(t) from the Kalman filter. The more imprecise the Kalman filter

distribution relative to how much the valuation can possibly change (as captured by sigma),

the more weight is put on the “observed” p(t +1).
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A2 Selection variables

The selection variables are sampled conditional on the valuations, parameters, and whether

or not the valuation is observed. Simulating this block is similar to simulating the (aug-

mented) posterior distribution of a probit model (Albert and Chib, 1993). Under the as-

sumption that h and x are independent, we may draw the selection variables, w and z, sep-

arately. In addition, by the i.i.d. assumption we may draw each property-quarter variable

separately.

When property i is sold, the price is observed and the posterior distribution of the first

selection variable, wi(t), is:

wi(t)|{pi(t)} ,q,data ⇠ NL
�
W 0

i (t)a0 + pi(t)ap,1
�
. (32)

When home price is unobserved, the distribution is:

wi(t)|{pi(t)} ,q,data ⇠ NU
�
W 0

i (t)a0 + pi(t)ap,1
�
. (33)

Here, NL
�
µ,s2� denotes a normal distribution with mean µ and variance s

2 that is trun-

cated below at zero. Similarly, NU
�
µ,s2� is the upper-truncated distribution, truncated

above at zero.

Drawing zi(t) is analogous but using foreclosures instead of regular home sales for

observations.

A3 Parameters

Conditional on {pi(t)}, {Wi(t)}, and {Zi(t)}, the distributions of a, g, {d(t)}, and s

2 are

given by the three Bayesian linear regressions (18), (19), and (20). Since e, h, and x are

independent by assumption, we may estimate the three equations separately.

In the valuation equation, d = [d(2) . . .d(T )]0 and s

2 are defined by the regression of Yp

on Xp, where the vector Yp stacks the one-period returns, pi(t)� pi(t �1), across all prop-

erties and time periods. Let N(t) be the number of companies for which p(t)� p(t � 1)

exists, so Yp is a
Â

T
t=2 N(t) by 1 vector. The matrix Xp is a

Â

T
t=2 N(t) by T � 1 matrix of
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zeros and ones. Each row of Xp contains T �2 zeros and a one in column t�1, correspond-

ing to the timing of the return in Yp (such that a one in the first column of Xp indicates a

return from time 1 to time 2).

The standard conjugate normal inverse gamma prior with prior parameters a0,b0, µ0,

and S0 is:

s

2 ⇠ IG(a0,b0) , (34)

d|s2 ⇠ N
⇣

µ0,s
2
S

�1
0

⌘
. (35)

The posterior distributions for the parameters in the valuation equation are then (e.g., Rossi,

Allenby, and McCulloch, 2005):

s

2|Yp,Xp ⇠ IG(a,b) , (36)

d|s2,Yp,Xp ⇠ N
�
µ,s2� , (37)

with parameters:

a = a0 +
T

Â

t=2
N(t), (38)

b = b0 + e0e+(µ�µ0)
0
S0 (µ�µ0) , (39)

S = S0 +X 0
pXp, (40)

µ = S

�1 �
S0µ0 +X 0

pYp
�
. (41)

The vector e = Yp �Xpµ contains the stacked error terms.

The above regression pools the entire panel data set and quickly leads to memory issues

and slow computation speeds. For example, in a data set with 100,000 properties observed

for 80 quarters, the Xp matrix is 8 million by 79. The solution to these problems is to

exploit the unique structure of Xp. In particular, X 0
pXp is a diagonal T �1 by T �1 matrix

that contains the number of trades on the diagonal. With a diagonal prior S0, the inverse

S

�1 is also a diagonal matrix with the inverse of each element of S on the diagonal. The

T � 1 by 1 vector X 0
pYp contains the sum of returns for each period. These quantities can
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be efficiently computed and used in equations (38)-(41).

The selection equations are considerably simpler. To obtain a draw of a =

2

4 a0

ap

3

5,

we regress Yw on Xw, where Yw is a vector that stacks wi(t) over all properties and time

periods. Similarly, Xw stacks
h

W 0
i (t) pi(t)

i
over all properties and periods. Recall that

we normalize the variance of the error term to one in order to identify the scale of the

parameters, and we can consequently treat the inference problem as a standard Bayesian

regression with known variance. The prior distribution is:

a ⇠ N
⇣

q0,W
�1
0

⌘
, (42)

and the posterior becomes:

a|Yw,Xw ⇠ N
�
q,W�1� , (43)

with:

W = W0 +X 0
wXw, (44)

and:

q = W

�1 �
W0q0 +X 0

wYw
�
. (45)

Drawing g works analogously to drawing a.

A4 Priors and Starting Values

Our Gibbs sampler uses 1,000 iterations for the initial burn-in, followed by 500 iterations to

simulate the posterior distribution. During the burn-in, the simulations converge quickly.

We use diffuse priors for the parameters. The prior distribution of sv2 is inverse gamma

with parameters a0 = 2.1 and b0 = 1/100, implying that E[sv] = 8.5% per quarter, and sv is

between 3.6% and 28.6% (quarterly) with 99% probability.

We set prior means for a and d to zero (q0 = 0 and µ = 0). We set W

�1
0 = I/100, where

I is the identity matrix, so that the a are between -20 and +20 with 95% probability. We

assume that S

�1
0 = I/100. Together with the prior on s

2, this implies that our prior on the

one-quarter log change in price index is between -170% and +170% with 95% probability.
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We start the algorithm with a and d equal to zero, and s = 25%. We do not need

starting values for the missing house prices or the selection variables, since the missing

house prices are the first variable we simulate, and do not depend on w because we start

with a = 0.

When we use two selection equations (separating regular transactions from and fore-

closure sales), we assume the same prior distribution and starting values for the coefficients

of the two selection equations.

We implement this algorithm in C++, using the GNU Scientific Library (GSL). On a

desktop 2.66 GHz Pentium 4 quad-core processor, it takes anywhere from less than one

hour for the simpler models to about five hours for the most complex model to simulate

1,500 draws of the Markov Chain (using only a single core).
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Figure 1: Descriptive Statistics of Home Transactions. The figure shows the distribution of trades for Alameda 
County, California. Panel A presents the total number of trades, separating normal transactions and foreclosure 
sales. Panel B presents foreclosures as a fraction of all sales. Panels C and D present regular transactions and 
foreclosure sales as a fraction of the total number of properties in the data. 
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Figure 2: Distribution of LTV. The figure shows the distribution of buyers and sellers’ LTVs at the time of sales. 
The top plot shows the histogram of LTVs where the loan amount represents the buyer’s mortgage amount. The 
bottom plot uses the seller’s remaining mortgage balance (computed as described in the text) to calculate LTVs. 
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Figure 3: Price Indices without Trade-Selection Process. The figure shows estimated price indices for Alameda 
County, California, without adjusting for sample selection. The indices are normalized to 100 in the first quarter of 
2000. The GLS index is estimated using repeat-sales regressions with weights proportional to the square root of the 
time between sales. MCMC indices are estimated using the Bayesian procedure described in the text, without 
including the sales or foreclosure process. Arithmetic indices are calculated with the 1/2 σ2 adjustment described in 
the text. 
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Figure 4: Price Indices with Trade-Selection Process. The figure shows estimated price indices for Alameda 
County, CA. The indices are normalized to 100 in the first quarter of 2000. All indices are estimated using the 
Bayesian procedure described in the paper. The baseline index is calculated without adjusting for sample selection. 
The remaining indices are calculated using four different specifications of the trade process. The bottom plot 
presents arithmetic indices, calculated with the 1/2 σ2 adjustment discussed in the text. The top graph presents 
indices without this adjustment. 
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Figure 5: Price Indices with Separate Trade and Foreclosure Processes. The figure shows estimated price 
indices for Alameda County, CA. The indices are normalized to 100 in the first quarter of 2000. All indices are 
estimated using the Bayesian procedure described in the paper. The baseline index is calculated without adjusting 
for sample selection. The remaining indices are calculated using four different specifications of the trade process. 
The bottom plot presents arithmetic indices, calculated with the 1/2 σ2 adjustment discussed in the text. The top 
graph presents indices without this adjustment. 
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Figure 6: Index Revisions in Calendar Time. Each line represents a quarterly index estimated over a given sample 
period. All sample periods begin in 1988 and the ending period varies in one-year increments. The top panel 
presents standard repeat-sales indices. The bottom panel presents MCMC indices estimated with a trade-selection 
process specified as Model (A). Indices are normalized to one in the first quarter of 1988. 
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Figure 7: Cumulative Index Revisions in Relative Time. The figures present revisions to the initial index estimate 
as the sample period is extended beyond the initial period. The horizontal axis gives the number of additional 
quarters of data used to estimate the index value. The vertical axis is the change in the log index when additional 
quarters are included relative to the initial index estimate. The solid line gives the median revision, and the dotted 
lines indicate the 5th and 95th percentiles in the distribution of revisions.  
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Figure 8: Sellers’ LTVs, Foreclosures, and Fractions of Underwater Properties. The figures report the time 
series of the median of the sellers’ LTV at the time of sale (left-hand side scale in each plot), and the fraction of the 
housing stock that sold (top plot, right-hand scale), foreclosures as a fraction of total sales (middle plot, right-hand 
scale), and the fraction of properties sold that were underwater at the time of sale (bottom plot, right-hand side). 
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Figure 9: Estimated LTV Percentiles. The plots show estimated time series of the median LTV ratio for the 
standard repeat-sales (RSR, top-left), the baseline model without selection correction (top-right), and Models A and 
F of the trade process (see Tables II and IV for model specifications). The light-shaded bands show (5%, 95%) 
ranges of LTV distributions, and the dark-shaded bands show (25%, 75%) ranges. 
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Figure 10: Fraction of Underwater Properties. The figure show time-series plots of the fraction of underwater 
properties estimated using the standard repeat-sales model (RSR), the baseline model without selection correction, 
and Models A and F of the trade process (as described in Table II).  
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Figure 11: Fraction of Underwater Properties The figure show time-series plots of the fraction of underwater 
properties estimated using the standard repeat-sales model (RSR), the baseline model without selection correction, 
and Models A and F of the trade and foreclosure processes (as described in Table IV). 
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Figure 12: Trade Intensities. The figures show the time series of the constant equivalent trade quarterly intensities 
(computed as described in the text) at the median LTV ratio and the 25th and 75th percentiles of LTV. The two top 
plots refer to Models A and F in Table II. The bottom two plots refer to Models A and F in Table IV with separate 
trade and foreclosure processes.  
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Figure 13: Equivalent Constant Foreclosure Intensities. The figures show the time series of the constant 
equivalent foreclosure quarterly intensities (computed as described in the text) at the median LTV ratio and the 25th 
and 75th percentiles of LTV. The two plots refer to Models A and F in Table IV with separate trade and foreclosure 
processes.  
 
 
Model A (trade and foreclosure     Model F (trade and foreclosure  selection 

equation):     selection equation): 
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Table I: Summary Statistics. The sample contains single-family residences in Alameda County, California, over 
the period 1988:Q1 – 2008:Q3. The LTV ratio for the buyer is computed at the time of sale using the buyer’s 
mortgage and the sale price of the home. The seller’s LTV uses the outstanding principal of the seller’s mortgage, 
computed as described in the text. Foreclosure rate is the number of foreclosures as a percentage of all properties in 
the sample. 
 
 
Panel A: Trade Data 
  Mean Std. Dev. Min Q10 Q50 Q90 Max 
Number of prop. 68,700       
Number of trades 164,824       
  per property 2.40 0.85 1 2 2 3 10 
Loan-to-value ratio 
  buyer 0.71 0.26 0.00 0.24 0.80 0.95 1.00 
  seller 0.58 0.48 0.00 0.05 0.65 0.90 68.79 
Sale-to-sale return (%)       
  arithmetic 64.44 79.34 -86.40 -4.90 42.26 167.52 500.00 
  log 40.01 44.38 -199.51 -4.65 35.54 98.25 179.18 
Time between sales 
(years) 

5.15 3.71 0.25 1.00 4.25 10.50 20.50 

Foreclosure rate (%) 0.13             
 
 
Panel B: Property Characteristics 
  Mean Std. Dev. Min Q10 Q50 Q90 Max 
Acres 1.34 0.68 0.03 0.62 1.24 2.12 5.00 
Space (000s sqft.) 1.66 0.64 0.34 1.00 1.52 2.52 7.53 
Bedrooms (#) 3.15 0.88 1 2 3 4 9 
Bathrooms (#) 2.17 0.85 1 1 2 3 5 
Total rooms (#) 6.50 1.58 2 5 6 9 15 
Basement 0.03       
Garage  0.90       
Fireplace 0.33       
Pool 0.06       
Stories 1.31 0.39 1 1 1 2 3 
Construction year 1962.95 25.89 1901 1924 1965 1996 2006 
 



Table II: Trade-Selection Process: LTV is the natural logarithm of the LTV ratio. Time indicates time 
since the previous sale (in years). ΔMortgage rate is the change in the 30-year mortgage rate since the 
inception of the loan. Square footage is the property’s size in thousands of square feet. Sigma is the 
annualized standard deviation of the error term in the observation (price index) equation. Posterior standard 
deviations are in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, 
respectively. 
 
 A B C D E F 
LTV -0.0598*** -0.0401*** -0.0448*** -0.0426*** -0.0406***  
 (0.0012) (0.0017) (0.0015) (0.0014) (0.0051)  
LTV 1988-1993      -0.0789*** 

     (0.0041) 
LTV 1994-1999      -0.0504*** 

     (0.0026) 
LTV 2000-2005      -0.0457*** 

     (0.0020) 
LTV 2006-2008      0.0389*** 
      (0.0033) 
LTV x      0.0130***  
   Square Footage     (0.0024)  
LTV x      -0.0006***  
   Age (years)     (0.0001)  
Time (years)  0.0505*** 0.0381*** 0.0511*** 0.0519*** 0.0413*** 
  (0.0010) (0.0013) (0.0011) (0.0011) (0.0012) 
Time Squared  -0.0022*** -0.0021*** -0.0022*** -0.0023*** -0.0020*** 

 (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 
ΔMortgage rate   -5.4128***   -3.6849*** 

  (0.1463)   (0.1939) 
Square footage    -0.0902*** -0.0671*** -0.0809*** 
    (0.0040) (0.0061) (0.0047) 
Age (years)    -0.0008*** -0.0013*** -0.0006*** 
    (0.0001) (0.0001) (0.0001) 
       
Intercept -2.0073*** -2.1199*** -2.1132*** -2.0573*** -2.0471***  
 (0.0017) (0.0034) (0.0046) (0.0055) (0.0062)  
Intercept 1988-93      -2.1061*** 
      (0.0075) 
Intercept 1994-99      -2.0671*** 
      (0.0065) 
Intercept 2000-05      -2.0036*** 
      (0.0059) 
Intercept 2006-08      -2.0664*** 
      (0.0079) 
Seasonal 
Dummies No Yes Yes Yes Yes Yes 

Sigma 0.2814*** 0.2816*** 0.2813*** 0.2812*** 0.2815*** 0.2810*** 
 (0.0004) (0.0005) (0.0004) (0.0005) (0.0005) (0.0005) 
 
  



Table III: LTV Coefficient Across Samples. The repeat-sales sample is the sample that is described in 
Table I and that is used in all other tables and figures. The single-sales sample includes all properties that 
had at least one trade during the sample period. The no foreclosures sample is the repeat-sales sample 
without properties that experienced a foreclosure during the sample period. LTV is the natural logarithm of 
the LTV. Time indicates the time since the previous sale (in years). Sigma is the annualized standard 
deviation of the error term in the observation (price index) equation. Posterior standard deviations are in 
parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 
 
 Repeat Sales Single Sales No Foreclosures 
LTV -0.0598*** -0.0203*** -0.0620*** 
 (0.0012) (0.0014) (0.0017) 
Intercept -2.0073*** -2.2122*** -2.0125*** 
 (0.0017) (0.0017) (0.0021) 
Seasonal 
Dummies No No No 

Sigma 0.2814*** 0.2812*** 0.2695*** 
 (0.0004) (0.0005) (0.0005) 
# Properties 68,700 142,794 41,983 
 



Table IV: Trade and Foreclosure Processes: LTV is the natural logarithm of the LTV ratio. Time 
indicates time since the previous sale (in years). ΔMortgage rate is the change in the 30-year mortgage rate 
since the inception of the loan. Square footage is the property’s size in thousands of square feet. Sigma is 
the annualized standard deviation of the error term in the observation (price index) equation. Posterior 
standard deviations are in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 
10% levels, respectively. 
 
Panel A: Trade Selection Process 
 A B C D E F 
LTV -0.0656*** -0.0455*** -0.0513*** -0.0486*** -0.0443***  
 (0.0017) (0.0018) (0.0017) (0.0019) (0.0053)  
LTV 1988-1993      -0.0810*** 

     (0.0043) 
LTV 1994-1999      -0.0500*** 

     (0.0024) 
LTV 2000-2005      -0.0425*** 

     (0.0027) 
LTV 2006-2008      0.0122*** 
      (0.0041) 
LTV *      0.0148***  
   Square Footage     (0.0026)  
LTV *      -0.0007***  
   Age (years)     (0.0001)  
Time (years)  0.0482*** 0.0358*** 0.0487*** 0.0493*** 0.0402*** 
  (0.0012) (0.0011) (0.0012) (0.0012) (0.0012) 
Time Squared  -0.0020*** -0.0020*** -0.0020*** -0.0020*** -0.0018*** 

 (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 
ΔMortgage rate   -5.3842***   -3.1686*** 

  (0.1537)   (0.1919) 
Square footage    -0.0835*** -0.0558*** -0.0706*** 
    (0.0047) (0.0068) (0.0046) 
Age (years)    -0.0010*** -0.0016*** -0.0008*** 
    (0.0001) (0.0001) (0.0001) 
       
Intercept -2.0298*** -2.1325*** -2.1278*** -2.0666*** -2.0522***  
 (0.0025) (0.0043) (0.0040) (0.0059) (0.0067)  
Intercept 1988-93      -2.1075*** 
      (0.0073) 
Intercept 1994-99      -2.0839*** 
      (0.0061) 
Intercept 2000-05      -1.9943*** 
      (0.0062) 
Intercept 2006-08      -2.1233*** 
      (0.0081) 
Seasonal 
Dummies No Yes Yes Yes Yes Yes 

Sigma 0.2815*** 0.2816*** 0.2816*** 0.2813*** 0.2815*** 0.2806*** 
 (0.0004) (0.0004) (0.0004) (0.0007) (0.0004) (0.0004) 



Panel B: Foreclosure Selection Process 
 A B C D E F 
LTV 0.0728*** 0.0800*** 0.0788*** 0.0714*** 0.0176  
 (0.0038) (0.0040) (0.0038) (0.0031) (0.0145)  
LTV 1988-1993      0.0019 

     (0.0150) 
LTV 1994-1999      -0.0283*** 

     (0.0067) 
LTV 2000-2005      -0.1292*** 

     (0.0041) 
LTV 2006-2008      0.4018*** 
      (0.0084) 
LTV *      0.0155*  
   Square Footage     (0.0065)  
LTV *      0.0008***  
   Age (years)     (0.0002)  
Time (years)  0.0877*** 0.0750*** 0.0877*** 0.0844*** 0.0516*** 
  (0.0038) (0.0038) (0.0038) (0.0064) (0.0026) 
Time Squared  -0.0061*** -0.0057*** -0.0063*** -0.0061*** -0.0050*** 

 (0.0003) (0.0002) (0.0003) (0.0004) (0.0002) 
ΔMortgage rate   -3.5461***   -8.7778*** 

  (0.3114)   (0.5034) 
Square footage    -0.1863*** -0.1841*** -0.1805*** 
    (0.0131) (0.0181) (0.0120) 
Age (years)    0.0029*** 0.0036*** 0.0028*** 
    (0.0002) (0.0002) (0.0001) 
       
Intercept -3.0504*** -3.3177*** -3.2843*** -3.3598*** -3.3867***  
 (0.0055) (0.0140) (0.0162) (0.0232) (0.0193)  
Intercept 1988-93      -3.4580*** 
      (0.0219) 
Intercept 1994-99      -3.2079*** 
      (0.0094) 
Intercept 2000-05      -3.8252*** 
      (0.0112) 
Intercept 2006-08      -2.9094*** 
      (0.0155) 
Seasonal 
Dummies No Yes Yes Yes Yes Yes 

 
  



Table V: Marginal Intensities: Panel A shows the change in the equivalent constant sale intensity from a 
one-standard deviation increase in LTV, time since the last sale and its squared value, 30-year mortgage 
rates, house square footage, and age. Panel B contains corresponding figures for the foreclosure intensity. 
Results are based on the models in Table IV. Posterior standard deviations are in parentheses. ***, **, and 
* indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 
 
Panel A: Change in Trade Intensity (x10-3) 
 A B C D E F 
LTV -4.8697*** -3.8320*** -4.4917*** -3.3861*** -3.4406***  
 (0.1143) (0.1471) (0.1365) (0.1316) (0.1253)  
LTV 1988-1993      -5.6159*** 

     (0.2933) 
LTV 1994-1999      -3.4669*** 

     (0.1663) 
LTV 2000-2005      -2.9507*** 

     (0.1874) 
LTV 2006-2008      0.8453*** 
      (0.2849) 
Time (years)  7.0008*** 4.4847*** 5.8855*** 6.3980*** 4.6663*** 
  (0.1400) (0.1553) (0.1300) (0.1602) (0.1535) 
ΔMortgage rate   -6.1567***   -2.8592*** 

  (0.1865)   (0.1594) 
Square footage    -2.6833*** -2.0364*** -2.2606*** 
    (0.1269) (0.1900) (0.1281) 
Age (years)    -1.2399*** -2.0688*** -1.0443*** 
    (0.0737) (0.1080) (0.0697) 
       
 
 
Panel B: Change in Foreclosure Intensity (x10-3) 
 A B C D E F 
LTV 0.3658*** 0.3949*** 0.4280*** 0.1708*** 0.1599***  
 (0.0230) (0.0156) (0.0338) (0.0091) (0.0173)  
LTV 1988-1993      0.0047 

     (0.0265) 
LTV 1994-1999      -0.0481*** 

     (0.0099) 
LTV 2000-2005      -0.2218*** 

     (0.0171) 
LTV 2006-2008      0.6901*** 
      (0.0531) 
Time (years)  0.4789*** 0.3916*** 0.2176*** 0.2046*** 0.0411*** 
  (0.0284) (0.0345) (0.0139) (0.0235) (0.0093) 
ΔMortgage rate   -0.2514***   -0.1963*** 

  (0.0273)   (0.0116) 
Square footage    -0.2053*** -0.2016*** -0.1427*** 
    (0.0108) (0.0052) (0.0092) 
Age (years)    0.1277*** 0.1503*** 0.0895*** 
    (0.0108) (0.0176) (0.0100) 
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