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1. Introduction 

 
 The long-run risk model following Bansal and Yaron (2004) has been a phenomenal 

success.  A rapidly expanding literature finds the model useful for the equity premium puzzle, 

size and book-to-market effects, momentum, long-term return reversals in stock prices, risk 

premiums in bond markets, real exchange rate movements and more (see the review by Bansal,  

2007).  However, the evidence to date is based largely on calibration exercises and some in-

sample data fitting.  If long-run risk models are to ultimately be useful for practical applications, 

their performance in an out-of-sample setting is important. This paper provides an empirical 

analysis of the models from this perspective. 

 We study the "out-of-sample" performance of long-run risk models for explaining the 

equity premium puzzle, size and book-to-market effects, momentum, reversals, and bond returns 

of different maturity and credit quality.  Comparing the fit out of sample allows us to evaluate 

features of model performance that are important for practical applications. (As explained below, 

we put "out-of-sample" in quotes to emphasize some qualifying remarks.) We examine both 

stationary and cointegrated versions of the models using annual data for 1931-2009.   

 Our first main result is that the overall performance of a cointegrated version of the long-

run risk model is better than the original, stationary version. Thus, we argue that the out-of-

sample performance justifies a more prominent role for cointegrated models in future research. 

 We find that the long-run risk models perform relatively well in explaining the 

Momentum Effect. At the same time, they perform poorly in explaining the relative returns to 

low-grade corporate and long-term government bonds. These results point to the importance of 

missing factors in the simple, long-run risk models.  

 To evaluate the risk factors that drive the fit of the long-run risk models we examine 
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models that suppress the consumption-related shocks. We find that these models perform poorly, 

indicating that the consumption shocks are important risk factors.  The long-run risk models also 

perform better than the simple consumption-based (CCAPM) model. Thus, both the short-run 

consumption risk factor and the long-run risk factor are important ingredients in the models’ 

performance. 

 We examine the impact of restricting the risk premiums on the long-run risk models’ 

factors to identify structural parameters of the model. Imposing consistency with economically 

reasonable values of risk aversion and intertemporal substitution reduces the degrees of freedom, 

and has the effect of increasing the average out-of-sample pricing errors substantially, while 

sometimes reducing the pricing error variances.  Compared to the classical Capital Asset Pricing 

Model (CAPM, Sharpe, 1964) the restricted model’s overall performance is inferior.  

 We examine the robustness of our findings to the method used to estimate the expected 

risk premiums, to longer holding periods, time aggregation of consumption, to the measures of 

returns, dividend yields and interest rates, to the sample period, to outliers in the data, and to 

biases from lagged stochastic regressors.  Holding the parameters fixed, the long-run risk models 

perform better in the 1951-1990 period than in the decades before or in more recent data, but the 

cointegrated models dominate in every subperiod. 

 The rest of the paper is organized as follows.  Section 2 summarizes the models and 

Section 3 our empirical methods.  Section 4 describes the data.  Section 5 presents our main 

empirical results and Section 6 examines their robustness.  Section 7 concludes.  
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2.  The models 

 We study stationary and cointegrated versions of long-run risk models.   As the long-run 

risk literature has expanded, papers have offered different versions of these models.  Our goal is 

not to test every model.  Instead, we isolate and characterize the key features that appear in most 

of the models.    

 

2.1. Stationary models 

 Our stationary model specification follows Bansal and Yaron (2004): 

 

   Δct = xt-1 + σt-1 εct                                   (1a) 

    xt = μ + ρx xt-1 +  σt-1 εxt                          (1b) 

    σt
2 = σ + ρσ (σt-1

2 - σ) + εσt,                         (1c) 

 

where ct is the natural logarithm of aggregate consumption expenditures,  Δ is the first difference 

and xt-1 is the conditional mean of consumption growth.  The conditional mean is the latent, 

long-run risk variable.  It is assumed to be a stationary but persistent stochastic process, with ρx 

less than but close to 1.0.  For example, in Bansal and Yaron (2004), ρx = 0.98; our average 

estimate is 0.93.  Consumption growth is conditionally heteroskedastic, with conditional 

volatility σt-1, given the information at time t-1.   The shocks {εct, εxt, εσt} are assumed to be 

homoskedastic and independent over time, although they may be correlated. 

 Bansal and Yaron (2004) show that in this model, the innovations in the log of the 

stochastic discount factor are to good approximation linear in the three-vector of shocks ut =  

[σt-1 εct,  σt-1εxt, εσt].  The linear function has constant coefficients.  Because the coefficients in 



4 
 

the stochastic discount factor are constant, unconditional expected returns are approximately 

linear functions of the unconditional covariances of returns with the shocks.1   

 We focus on unconditional expected returns, because many of the empirical regularities 

to which the long-run risk framework has been applied are cast in terms of unconditional 

moments (e.g. the equity premium, the average size and book-to-market effects).  This leaves 

open the possibility that, like the CAPM and CCAPM in sample (e.g., Jagannathan and Wang, 

1996; Lettau and Ludvigson, 2001), the long-run risk approach works better in a conditional 

form. We therefore also evaluate simple conditional versions of the models. 

   

2.2. Cointegrated models 

 The cointegrated model follows Bansal, Dittmar, and Lundblad (2005), Bansal, Gallant, 

and Tauchen (2007), and Bansal, Dittmar, and Kiku (2009), assuming that the natural logarithms 

of aggregate consumption and dividend levels are cointegrated: 

 

   dt = δ0 + δ1 ct + σt-1 εdt                       (2a) 

   Δct = a + γ'st-1 + φc σt-1 εct  xt-1 + φc σt-1 εct                    (2b) 

    σt
2 = σ + ρσ (σt-1

2 - σ) + εσt,                      (2c) 

    

where dt is the natural logarithm of the aggregate dividend level and st is a vector of state 

variables at time t.  Bansal, Dittmar, and Kiku (2009) allow for time trends in the levels of 

                                                 
1 Writing the log stochastic discount factor as mt+1 = Et(mt+1) - ut+1, the conditional expected excess returns are 
approximately proportional to Covt{rt+1,mt+1} = Et{rt+1,ut+1}, where Et(.) is the conditional expectation and Covt{.,.} is 
the conditional covariance.  Unconditional expected returns are therefore approximately proportional to 
E[Et{rt+1,ut+1}]=Cov(rt+1,ut+1).  Since ut+1 has constant coefficients on the shocks, the coefficients may be brought 
outside of the covariance operator. 
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dividends and consumption, but find that they don't have much effect, and we find a similar 

result. 

 We allow for the possibility that the volatility shock is a priced risk, as in the stationary 

model. Constantinides and Ghosh (2012) show that in this version of the model, the innovations 

in the log stochastic discount factor are approximately linear in the heteroskedastic shocks to 

consumption growth, the state variables st and the cointegrating residual, σt-1 εdt.  The 

coefficients in this linear relation are constant over time.  Therefore, unconditional expected 

excess returns are approximately linear in the covariances of return with these shocks. 

 

3. Empirical methods 

 The finance literature uses three main approaches to evaluate asset pricing models: 

calibration, in-sample estimation and out-of-sample fit. These approaches are not mutually 

exclusive. Long-run risks models have been extensively calibrated with great success. With 

calibration, values for the parameters of the model are chosen, and the model is solved at these 

parameter values for the prices of financial assets. The model-generated series of prices and 

returns are examined to see if their moments match key moments of actual asset prices and 

returns.  

 With estimation, the model parameters are chosen to fit a panel of economic series and 

asset returns, to minimize a statistical criterion. Standard errors for the parameter estimates 

quantify their precision. Statistical hypothesis tests about the parameters may be conducted and 

the residuals of the model are examined to assess the fit to the sample. Estimation typically 

challenges a model in more dimensions at once than calibration. For example, a calibrated 

parameter value may not be the value that maximizes the likelihood, indicating that more is 
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going on in the data than was captured by the calibration. Estimation sacrifices the clarity of a 

calibration experiment for this kind of information. Long-run risk models are estimated by 

Bansal, Kiku, and Yaron (2010) and Constantinides and Ghosh (2012), among others.  

 The practical utility of an asset pricing model ultimately depends on its ability to fit out-

of-sample returns, as most practical applications are, in some sense, out of sample. For example, 

firms want to estimate costs of capital for future projects, portfolio and risk managers want to 

know the expected compensation for future risks, and academic researchers will want to make 

risk adjustments to expected returns in future data. Many of these applications rely on out-of-

sample estimates for the required or ex ante expected return, where the model parameters must 

be chosen on the basis of available data.  

 This perspective leads naturally to the mean squared pricing error (MSE) criterion for 

model evaluation. A model that delivers the correct (conditional) mean of the future return 

minimizes the (conditional) MSE. That is, δ minimizes Et{(rt+1- δ)2} when δ=Et(rt+1), where Et(·) 

is the conditional expectation at time t. We use the out-of-sample MSE to compare the models’ 

performance. 

 We are also interested in the two components of the MSE, the expected pricing error or 

bias and the error variance. Let 111 )(   tttt rEr  , where εt+1 is independent of time-t 

information, and let  (̂ ) be the prediction of a model at the estimated parameters ̂ , where   

are the true parameters of the model. The out-of-sample pricing error is: 
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The expected error E(vt+1) reflects a model’s average error at its true parameter values (the 

second term above) plus parameter estimation error (the third term). For the nonlinear models 
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examined here, the third term in Eq. (3) will not average to zero, even if  )ˆ(E , and the 

average pricing errors are affected by both model error and parameter estimation errors.  

 The variance of the pricing errors, 1tv , may be used to focus on the relative effects of 

parameter estimation error when comparing models. Using Eq. (3), the variance of the pricing 

error is: 
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where 2
  is the variance of the unexpected return, .1t  The 2

  term is likely to be dominant in 

Eq. (4) when applied to stock returns. Thus, the prediction error variance may be a low power 

statistic. However, comparing two models on the same return we examine the difference between 

two Eq. (4)s, and the first two terms drop out of the comparison. Thus, the largest source of noise 

may be avoided by comparing two models’ variances on the same asset. 

 Our out-of-sample analysis is further motivated by a central feature of long-run-risk 

models: a small, highly persistent component in consumption and/or dividends – the long-run 

risk component.  This persistent component is modeled either as stationary or as cointegrated. 

Latent components in stock returns that are stationary but persistent exacerbate problems with 

spurious regression and data snooping (Ferson, Sarkissian, and Simin, 2003) and may induce 

lagged stochastic regressor bias (Stambaugh, 1999). These issues may also arise in long-run risk 

models, in which case the in-sample fit may appear overly optimistic.  An out-of-sample analysis 

can alert us to these issues.  

 To evaluate out-of-sample fit, we use a traditional “rolling” estimation. We estimate the 

model parameters over an initial period and predict returns for the next year. The estimation 

period is rolled forward by one year and the process is repeated. Because the long-run risk 
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models may need long samples to estimate the parameters with precision, we also examine the 

in-sample fit, using the full sample of data.2  

 

3.1. The reliability and power of the methods 

 It is crucial for the interpretation of the results that the empirical methods are reliable 

enough to distinguish between models in the face of finite samples and data issues such as time 

aggregation and noise.  We approach this concern from several angles.  In the robustness section 

we examine variations on the approach to address time aggregation, autocorrelation, the length 

of the asset holding period, finite sample biases, the number of test assets, the method for 

identifying the stochastic volatility in the model, the measures of the price/dividend ratio and 

risk-free rate. 

 We also use simulations to evaluate the methods.  A referee simulates data assuming that 

the stationary long-run risk model is the true model.  We compare the results from simulations 

that assume that the CAPM is the true model.  The distributions of the average pricing errors 

shift by significant amounts between the two cases, suggesting that our approach has statistical 

power.  For example, when the LRRS model generates the data the average pricing errors we 

observe for the CAPM in the actual data are far out in the tail of the empirical distribution and 

would therefore reject the CAPM.  In contrast, when the CAPM generates the data the average 

pricing errors we observe for the CAPM in the actual data are not statistically significant.  The 

pricing error MSE differences between the CAPM and LRRS model present very tight empirical 

distributions in the simulations, further indicating statistical power. 

                                                 
2 In earlier versions of the paper we used an alternative, “step around” approach where we estimate the models’ 
parameters using all of the available data outside of the evaluation period.  The results are broadly similar to the full 
sample estimation reported here, and are available by request to the authors. 
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 A formal evaluation of power requires a series of simulations under both the null and 

alternatives, and is beyond the scope of this paper. However, we conduct simulations where the 

null hypothesis is that the population value of a t-test for the difference between the prediction 

errors for two models is zero. An advantage of this approach is that the t-statistic is pivotal, 

which improves the performance of the bootstrap. We generate the empirical distributions for the 

difference statistics under the null by resampling from the mean-centered sample statistics. We 

generate samples with the same sizes as those used in the actual tests.  While these simulations 

do not explicitly model time aggregation or other sources of noise, they implicitly capture the 

variance that such factors generate in the test statistics. 

 Using empirical p-values from these simulations, our test statistics have the power to 

discriminate between the various models.  For example, in Table 1 below, we find that the 

average pricing errors of the stationary long run risk model are significantly different from those 

of the CAPM in eleven out of the fourteen cases.  In Table 3 the MSE pricing errors of the 

stationary long run risk model and the CAPM are significantly different in two cases.  In Table 

5, where we examine nested models and the Two-state model is the benchmark, the long-run risk 

models are significantly different (at the 10% level) from the benchmark model in 27 out of the 

42 cases.  All of these are examples with rolling estimation, so our approach has power even 

with the shorter, rolling samples. 

 

3.2. Stationary model estimation 

 For the stationary model we estimate the following equations: 

   u1t = Δct - [a0 + a1 rft-1 + a2 ln(P/D)t-1]                                                     (5a) 

         Δct - xt-1 
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   u2t = u1t
2 - [b0 + b1 rft-1 + b2 ln(P/D)t-1]                                                    (5b) 

         u1t
2 - σt-1

2 

   u3t = xt - d - ρx xt-1                                                                                    (5c) 

   u4t = σt
2 - k - ρσ σt-1

2                                                                                 (5d) 

   u5t = rt - μ - β(u1t,u3t,u4t)                                                                           (5e) 

   u6t = λ - [β'V(r)-1β]-1β'V(r)-1rt,                                                                  (5f) 

where rt is an N-vector of asset returns in excess of a proxy for the risk-free rate and V(r) is the 

covariance matrix of the excess returns.  The system is estimated using the Generalized Method 

of Moments (GMM, see Hansen, 1982).  The moment conditions are E{(u1t,u2t)  (1, rft-1, 

ln(P/D)t-1)}=0, E{u3t (1, xt-1)}=0, E{u4t (1, σt-1
2)}=0,  E{u5t (1,u1t,u3t,u4t)}=0 and E{u6t}=0.  The 

system is exactly identified.3 

 The state vector in the model is the risk-free rate and aggregate price/dividend ratio: st = 

{rft, ln(P/D)t}.  Eqs. (5a) and (5b) reflect the fact, as shown by Bansal, Kiku, and Yaron (2010) 

and Constantinides and Ghosh (2012), that the conditional mean of consumption growth and the 

conditional variance can be identified as affine functions of these state variables.   

 From the system (5) we identify the priced heteroskedastic shocks that drive the 

stochastic discount factor.  Comparing systems (1) and (5), we have: 

 

   u1t = σt-1 εct,  u3t = φ σt-1 εxt,  u4t = εσt.                       (6) 

 

In Eq. (5e), β is an N x 3 matrix of the betas of the N excess returns in rt with the priced shocks, 

                                                 
3 This implies, inter alia, that the point estimates of the fitted expected returns are the same when the covariance matrix 
of the excess returns, V(r), is estimated, as we do, in a separate step or estimated simultaneously in the system.  The 
standard errors of the coefficients would not be the same, but we don't use them in our analysis. 
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{u1t, u3t, u4t}.4   

 Eq. (5f) identifies the three unconditional risk premiums, λ.  These are the expected 

excess returns on the minimum variance, orthogonal, mimicking portfolios for the shocks to the 

state variables (see Huberman, Kandel, and Stambaugh, 1987, or Balduzzi and Robotti, 2008).  

We refer to these risk premium estimates as the GLS risk premiums.  We also present results for 

simpler OLS risk premiums, where we set V(r) equal to the identity matrix5.  The OLS risk 

premiums are not as efficient, asymptotically, as the GLS risk premiums.  However, they might 

be more reliable in small samples6.   

 For a given evaluation period the fitted expected excess return is the estimate of β 

multiplied by the estimate of λ, where the estimates use data for the nonoverlapping estimation 

period. We denote the model in system (5) as the LRRS model in the tables below. 

 

3.3. A restricted, stationary model 

 The reduced forms in system (5) are sufficient to generate out-of-sample return 

predictions. However, the coefficients are functions of the deeper structural parameters of the 

model. Restricting the coefficients allows us to recover estimates of these parameters, and by 

reducing the number of parameters to be estimated, may improve the efficiency of estimation 

and the out-of-sample performance. On the other hand, if the restrictions are inconsistent with 

                                                 
4 We recover the stochastic volatility from the squared consumption innovations in Eq. (5b).  In the model the 
volatility shocks also drive the volatility of the expected growth shocks, u3t.  We also conduct experiments, 
discussed below, where we recover the volatility from these residuals. 
 
5 The covariance matrix of the residuals from regressing the excess returns on the factors could alternatively be used 
here, but the risk premium estimates would be numerically identical to those using the covariance matrix of the 
returns. 

 
6 Since we form the mimicking portfolios using only the seven excess returns, they are not the maximum correlation 
portfolios in a broader asset universe.  This means that the risk premium estimates might "overfit" the test asset returns. 
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the data they could hurt the out-of-sample performance. 

 Constantinides and Ghosh (2012) find rejections of long-run risk models when the deeper 

structure is imposed. They use the unconditional means, variances, autocovariances and higher 

moments of consumption and dividend growth to identify the structural parameters. 

 Our restricted models focus on the risk premiums and the predicted required returns. In 

particular, we leave Eqs. (5a - 5d) unchanged, append one more moment condition to identify 

1 , and replace (5e) and (5f) with: 

    2
1

22
35 ttt uuu                                                                  (7e) 

    },{ 443316 tttttt uuurru                                         (7f)           

                                          where: 

     is the coefficient of risk aversion, 

    ,)1(}
)1(

])()[(5.0
{)1( 21
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2
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


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    }],/ln(exp{1/[)}/ln(exp{1 DPEDPE   

    




1

1

1




 , and  

      is the elasticity of intertemporal substitution. 

The new moment restrictions are 0)()( 65  tt uEuE . Since the error terms tu1 , tu3 , and tu4  are 

mean zero, Eq. (7f) specifies the expected risk premiums as 

 ),cov()( 1urrE  ),cov(),cov( 4433 urur   .  Note that with N=7 assets in (7f), the moment 

                                                                                                                                                             
We explore this issue by varying the number of test assets below. 
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condition (7e) and the three parameters },,{   the system is now overidentified with 5 degrees 

of freedom7. With these restrictions we do not compare OLS with GLS estimation of the risk 

premiums.  We refer to this restricted version of the model as RLRRS in the tables below. 

 Fig. 1 presents time-series plots of the estimates of the utility function parameters },{  , 

the risk aversion and the elasticity of intertemporal substitution, from the RLRRS model using 

rolling estimation. In the estimation we penalize the GMM criterion function to force 

economically reasonable values of the parameters, that is  > 0 and   > 1. 8 The figure shows 

that the estimates of the elasticity of substitution stay just above 1.0 and are stable in the rolling 

estimation. The risk aversion parameter fluctuates more, with values between about one and 

three, averaging near two. Thus, the model fits returns with economically reasonable parameter 

values. 

 

3.4.  Cointegrated model estimation 

 The cointegrated models are estimated using the following system of equations: 

   u1t = dt - δ0 - δ1 ct                                                                                     (8a) 

    u2t = Δct - [a0 + a1 rft-1 + a2 ln(P/D)t-1 + a3 u1t-1]                             (8b) 

         Δct - xt-1 

                                                 
7 It would be possible to go further, restricting the coefficients in (5a – 5d) as in Constantinides and Ghosh (2012). 
Since this part of the system is exactly identified, we prefer to leave it in reduced form. This way we do not rely to 
as great an extent on the model-implied predictability and higher moments of consumption and dividend growth, 
which Constantinides and Ghosh find to be mispecified. Our approach focuses more on information about risk 
premiums. 
 
8 The GMM moment conditions may be multiplied by any smooth function of the parameters. We use sums of 
exponential functions, chosen to get large as  approaches zero from above or as   approaches 1.0 from above. 

Using iterated GMM with an optimal weighting matrix, the scaling functions cancel out of the final minimized 
value criterion function. A similar approach is used in Ferson and Constantinides (1991). 
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   u3t = rft - [g0 + g1 rft-1 + g2 ln(P/D)t-1 + g3 u1t-1]                             (8c) 

   u4t = ln(P/D)t - [h0 + h1 rft-1 + h2 ln(P/D)t-1 + h3 u1t-1]                              (8d) 

   u5t = rt - μ - β(u1t,u2t,u3t,u4t)'                                                                     (8e) 

   u6t = λ - [β'V(r)-1β]-1β'V(r)-1rt,                                                                  (8f) 

 

In the cointegrated model there are four priced shocks, as shown by Constantinides and Ghosh 

(2012), as the cointegrating residual becomes a new state variable. Identification and estimation 

are similar to the stationary model. We refer to this version of the model as LRRC in the tables 

below. 

 The GMM estimator of the cointegrating parameter δ1 is superconsistent and has a 

nonstandard limiting distribution, as shown by Stock (1987). This implies that the u1t-1 shock 

estimates used in (8b-8e) may be more precise than standard estimates. This may contribute to 

our finding that the cointegrated model performs better than the stationary model. For example, 

we find that time-series plots of estimated rolling-window cointegration parameters appear 

smoother than rolling-window estimates of the autoregression coefficient for expected 

consumption growth.  

 Both the stationary and cointegrated long-run risk models follow the literature in using a 

risk-free rate and log price/dividend ratio as state variables.  It is natural to ask whether the 

ability of the long-run risk models to fit returns is driven by the choice of these two state 

variables.9 We assess the importance of the state variables for the models' explanatory power by 

                                                 
9 Campbell (1996) uses the innovations in lagged predictor variables, including a dividend yield and interest rates, 
as risk factors in an asset pricing model. Ferson and Harvey (1999) find that regression coefficients on lagged 
conditioning variables, including a risk-free rate and dividend yield, are powerful cross-sectional predictors of stock 
returns.  Petkova (2006) argues that innovations in lagged predictors, including a risk-free rate and dividend yield, 
subsume much of the cross-sectional explanatory power of the size and book-to-market factors of Fama and French 
(1993).   
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suppressing the consumption-related risk factors.  If the risk-free rate and dividend yield are the 

main drivers of the ability of the model to fit returns, then the models without consumption 

should perform well.  Given the smaller number of parameters to estimate, these "2-State-

Variable" models might be expected to perform even better out of sample than the full models. 

 

3.5. A restricted cointegrated model 

 Our restricted version of the cointegrated long-run risk model (denoted RLRRC) follows 

a similar approach as the RLRRS model. The Eqs. (8a – 8d) are left unchanged.  A moment 

condition to identify 1  is included. The variance Eq. (5b) is included in the system but this now 

includes the lagged cointegrating residual with coefficient b3, this is used along with (7e) and 

5(c) to identify φ in Eq. (6). The coefficients {a1, a2, a3} from (8b) and {b1, b2, b3} from (5b) are 

embedded in the restrictions on the risk premiums, as derived by Constantinides and Ghosh 

(2012). We replace Eqs. (8e) and (8f) with:  

                                          },{ 15443326 ttttttt ucucucurru                                  (9) 

                                                  where ],[)1( 121113 bAaAc    

                                                  ],[)1( 222114 bAaAc   and 

                                                  ].[)1( 323115 bAaAc    

The equations above (9) in the system are exactly identified, and the final equation provides N=7 

moment conditions to identify the parameters },{ 1  , leaving 5 degrees of freedom. 

   

3.6. Estimating the CAPM  

 The classical CAPM is compared to the long-run risk models and we estimate it in a 
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similar way for comparability. We use Eq. (5a), where the excess return of the market portfolio 

replaces the consumption growth rate to define the shocks, u1t. Eq. (5e), with only these shocks, 

delivers the market betas and a simplified Eq. (5f) delivers the market risk premium as the cross-

sectional regression slope of excess returns on market betas. Under GLS, a cross-sectional 

regression recognizes the market excess return as the efficient risk premium estimator (Shanken, 

1992), so we use the average of the market excess return over the estimation period to estimate λ 

in the GLS case.  

 

3.7. Econometric issues 

 Our evidence is subject to a data snooping bias, to the extent that the variables in the 

model have been identified in the previous literature through an unknown number of searches 

using essentially the same data.  As the number of potential searches is unknown, this bias 

cannot be quantified.  To the extent that such a bias is important, the models would be expected 

to perform worse in actual practice than our evidence suggests.  Furthermore, we use revised 

data that would not be available in real time. These issues explain the qualification in the 

introduction and the title.  An ideal out of sample exercise would in our view use fresh data. 

 The estimation is subject to finite sample biases.  The risk-free rate and dividend yield 

state variables are modeled as autoregressions and the variables are highly persistent. Stambaugh 

(1999) shows that the finite sample bias in regressions using such variables can be substantial.  

We address finite sample bias by applying a correction developed by Amihud, Hurvich, and 

Wang (2009). These results are discussed below and our implementation is described in an 

Appendix, available by request to the authors. 

 Ferson, Sarkissian, and Simin (2003) find that predictive regressions using persistent but 
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stationary regressors are susceptible to spurious regression bias that can be magnified in the 

presence of data snooping.  The spurious regression bias affects the standard errors and t-ratios 

of predictive regressions, but not the point estimates of the coefficients.  Since our focus is the 

out-of-sample performance based on the point estimates, spurious regression bias should not 

affect our estimates of the models' predictions.  However, it could complicate the statistical 

evaluation of the pricing errors, because the standard errors may be inconsistent in the presence 

of the autocorrelation. We address autocorrelation in the pricing errors using a block bootstrap 

approach as described below. 

 Consumption data are time-aggregated, meaning that the reported figures are the 

averages of the levels during the period.  Time aggregation in consumption causes (1) a spurious 

moving average structure in the time-series of the measured consumption growth (Working, 

1960); (2) biased estimates of consumption betas (Breeden, Gibbons, and Litzenberger, 1989) 

and (3) biased estimates of the shocks in the long-run risk model. Bansal, Kiku, and Yaron 

(2010) show that under time aggregation of a "true" monthly model, if the risk-free rate and 

dividend yield state variables are measured at the end of December, for example, regressions like 

(5a) and (5b) can still identify the true conditional mean, xt-1, and conditional volatility, σt-1.  

However, the error terms do not reveal the true consumption shocks.   

 The moving average structure may be addressed by the choice of weighting matrices used 

in estimation, and the use of block bootstrap methods in evaluating the test statistics. We conduct 

experiments with quarterly data, as described below, to assess biased consumption shocks. The 

bias in consumption betas, as derived by Breeden, Gibbons, and Litzenberger, is proportional 

across assets and therefore our risk premium estimates will be biased in the inverse proportion.  

For return attribution we examine the products of the betas and the risk premiums.  The two 
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effects should cancel out, leaving the predicted expected returns unaffected. 

 

3.8. Statistical tests 

 We study the models' pricing errors, focusing on their time-series averages and the mean 

squared pricing errors (We also have examined the mean absolute deviations, which lead to 

similar inferences as the MSEs).  To evaluate the statistical significance of the differences 

between the pricing errors for the different models, we use two approaches.  The first approach 

follows Diebold and Mariano (1995).  Let et be a vector of pricing errors for period-t returns, 

stacked up across K-1 models and let e0t be the pricing error of the reference model.  Let dt = 

g(et) - g(e0t)1, where 1 is a K-1 vector of ones and g(.) is a loss function defined on the pricing 

errors.  For example, g(.) can be the mean squared error.  Let d = Σtdt / T be the sample mean of 

the difference.  Diebold and Mariano (1995) show that ))(( tdEdT   converges in distribution 

to a normal random variable with mean zero and covariance, Σ, that may be consistently 

estimated by the usual HAC estimator:  T-1 Σt Στ w(τ) (dt - d)(dt-τ - d).'  The appropriate 

weighting function w(τ) and number of lags depend on the context.      

 Because the asymptotic distributions may be inaccurate we present bootstrapped p-values 

for the tests.  Here we resample from the sample values of the mean-centered dt vector with 

replacement (or sample a block with replacement) and construct artificial samples with the same 

number of observations as the original.  Constructing the test statistic on each of 10,000 artificial 

samples, the empirical p-value is the fraction of the artificial samples that produce a test statistic 

as large or larger than the one we find in the actual data. 
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4. Data 

We focus on annual data for several reasons.  First, much of the evidence on long-run risk 

models uses annual consumption data.  Second and related, annual consumption data are less 

affected by problems with seasonality (Ferson and Harvey, 1992) and other measurement errors. 

The annual consumption data are real nondurables plus real services expenditures from the 

National Income and Product Accounts, divided by the total U.S. population10. We also use not 

seasonally-adjusted quarterly consumption data, sampled annually, in experiments11.   

 The asset return data in this study are standard.  We use the returns of common stocks 

sorted according to market capitalization and book-to-market ratios to study the size and value-

growth effects.  These are the extreme value-weighted decile portfolios provided on Ken 

French's web site.  We also use the extreme value-weighted deciles for momentum winners and 

losers and for long-term reversal losers and winners, also from French.  The market portfolio 

proxy is the CRSP value-weighted stock return index.   

 When returns are measured in excess of a risk-free rate (the equity and term premium), 

we use a one-month Treasury bill return as the risk-free rate. We also use a risk-free rate as a 

state variable. To avoid using the same data on both sides of a regression, we use the lagged 

three-month Treasury yield as the state variable. In theory, we should use an ex ante real risk-

free rate. We conduct experiments, described below, with an alternative proxy that involves 

inflation data. Inflation is measured using the U.S. Consumer Price Index from NIPA table 2.3.4.  

                                                 
10 Nondurable goods expenditures are from NIPA Table 2.3.5, line 8 divided by the price deflator in Table 2.3.4, 
line 8.  Services expenditures are from Table 2.3.5, line 13 divided by Table 2.3.4, line 13.  The sum of the two is 
divided by the population in Table 2.1, line 39. 
 
11 We obtain not seasonally-adjusted quarterly consumption data from NIPA table 8.2, available during 1947-2004. 
Nondurable goods expenditures from line 6 of table 8.2 is divided by the price deflator in line 8 of Table 2.3.4.  
Services expenditures from line 13 of Table 8.2 is divided by the price deflator in line 13 of Table 2.3.4.  The sum 
of the two is divided by the population in line 39 of Table 2.1 to get real per capital consumption.  
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 We include bond returns that differ in maturity and credit quality.  The short term bond 

return is the one-month Treasury bill, rolled over each month during the year.  The long-term 

Government bond splices the Ibbotson Associates 20 year US Government bond return series for 

1931-1971, with the CRSP greater than 120 month US Government bond return after 1971.  

High grade corporate bond returns are those of the Lehman US AAA Credit Index after 1973, 

spliced with the Ibbotson Corporate Bond series prior to that date.  High-yield bond returns 

splice the Blume, Keim, and Patel (1991) low grade bond index returns for 1931 to 1990, with 

the Merrill Lynch High Yield US Master Index returns after that date. All of the returns are 

continuously-compounded annual returns, although we conduct experiments with arithmetic 

returns as well. 

 The second state variable is the log price/dividend ratio. In calculating the price/dividend 

ratio, the stock price is the real price of the S&P Composite Stock Price Index, and the dividend 

is the real dividends accruing to the Index. These data are from Robert Shiller’s website. Given 

that stock buybacks represent a significant component of corporate payouts, and that total payout 

(dividends plus repurchases minus issuances) yield beats dividend yield in explaining returns 

(Boudoukh, Michaely, Richardson, and Roberts, 2007), we also use an alternative measure of the 

price/dividend ratio that accounts for share repurchases and equity issuances. We obtain these 

data from Michael Roberts’ website.      

Table 1 presents summary statistics of the basic asset return data.  We focus on the seven 

excess returns summarized in the table, which reflect the equity premium, the firm size effect 

(Small-Big), the book-to-market effect (Value-Growth), the excess returns of momentum 

winners over losers (Win-Lose), the excess returns of long-term reversal losers over winners 
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(Reversal), the excess returns of low over high-grade corporate bonds (Credit Premium) and the 

excess returns of long-term over short-term Treasury bonds (Term Premium).   

 

5. Empirical results 

5.1. Average pricing errors 

 We use traditional rolling estimation with a 36-year rolling window, and the evaluation 

period is the subsequent year. (We also examine 24-year rolling windows to check sensitivity to 

the window length.) We compare the performance of the long-run risk models with three 

alternative models.  The first is the market-portfolio based CAPM of Sharpe (1964).  The second 

is a simple consumption-beta model following Rubinstein (1976) and Breeden, Gibbons, and 

Litzenberger (1989).  The third model is a "2-State-Variable" model in which the consumption-

related shocks of the long-run risk models are turned off.  The two state variables are the risk-

free rate and log price/dividend ratio. We also include the restricted versions of the stationary 

(RLRRS) and cointegrated (RLRRC) long-run risk models described above. 

 Table 1 presents the average excess returns and average pricing errors from the rolling 

step-ahead analysis over the 1967-2009 period, and Table 2 presents the full-sample results for 

1931-2009.  The A panels use OLS risk premiums and the B Panels use GLS (the restricted 

model are presented in the OLS panels).  Tables 1 and 2 include the results of Diebold-Mariano 

(1995) tests for the differences between the average pricing errors of the various models and 

those of the CAPM.  Empirical p-values are presented (in parentheses) for two-sided tests of the 

null hypothesis that the model in question performs no differently than the CAPM.   

 The first important point to make is that the tests for equal average pricing errors have 

power to discriminate between models.  In Table 1 there are 70 cases where a model is compared 
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to the CAPM, and 51 cases produce empirical p-values for the null of equal pricing error that are 

below 5%.   We don’t show the p-values in Table 2, but with the longer sample most of the 

differences are statistically significant. 

 The consumption-beta model (CCAPM) performs about as well as the classical CAPM in 

rolling estimation, with smaller average pricing errors on Momentum, Value-Growth and 

Reversals, but larger errors on the Size Effect and Credit Premium. However, in the full sample 

estimation the CCAPM performs much worse than the CAPM for all of the strategies excepting 

Momentum.  

 The long-run risk models under rolling estimation produce economically and statistically 

significantly smaller average pricing errors than the CAPM in most cases. The cointegrated 

model (LRRC) has the smallest overall errors, improving on the stationary model (LRRS) for the 

Equity Premium, Size Effect and Momentum. Zurek (2007) finds that a stationary long-run risk 

model explains about 70% of the momentum effect, with time-varying betas on the expected 

consumption growth shock. We get smaller percentages here with the unconditional models, but 

still an impressive performance in explaining the Momentum Premium.  

 The average pricing error of the LRRC model on the Credit Premium is relatively large.  

In the full sample both long run risk models overshoot the credit premium by several times its 

raw magnitude. The fit improves somewhat under GLS estimation, because GLS gives more 

weight to fitting the low volatility assets when estimating the risk premiums. However, the cost 

is degraded performance on the Equity Premium and Size Effect under GLS. 

 It should not be surprising that the long-run-risk models examined here leave large 

pricing errors for the Credit Premium.  The original model of Bansal and Yaron (2004) is 

designed to capture a few key features of the equity markets.  Subsequent work has introduced 
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additional factors for credit risks.  Chen (2010) and Chen, Collin-Dufresne, and Goldstein (2008) 

find that when countercyclical default probabilities (induced by time-varying volatility or asset 

values) and recovery rates in default are allowed to interact with countercyclical risk aversion, a 

long-run risk model can be calibrated to match credit spreads.  Endogenizing the leverage choice 

and optimal default boundary, Bharma, Kuehn, and Strebulaev (2010) find that the dynamics of a 

cross-section of firms is important for calibrating to credit spreads. Perhaps the simple models 

examined here fail because they are missing these factors.  

 The poor performance on the Credit Premium and the strong performance on Momentum 

are an interesting combination. Avramov, Chordia, Jostova, and Phillipov (2007) find that the 

Momentum Effect is concentrated among firms with low credit ratings.  This suggests that 

additional empirical work on models elaborated for credit risks may prove fruitful.  

 The long run risk models also fit poorly on the Term Premium under OLS, and similar 

concerns about the simplicity of the basic models arise here.  In particular, inflation risks are 

likely important for bond pricing.  See Eraker (2008), Bansal and Shaliastovich (2010) and 

Hasseltoft (2008) for long run risk models with stochastic inflation. 

 The long-run risk models do not fare as well in full-sample estimation as they do in the 

step-ahead analysis.  Under OLS they still display the smallest overall average pricing errors, 

and the LRRC model does slightly better than the LRRS model. But the low overall averages 

under OLS include the large negative pricing errors for the Credit Premium, and the CAPM 

performs significantly better than the LRRS model for four of the seven assets.  

 It is interesting and perhaps unexpected that the long-run risk models’ performance 

deteriorates under full-sample estimation.  Holding the parameters fixed over a long time period 

could be an important misspecification that rolling estimation avoids. Alternatively, it could be 
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that the long-run risk models perform better in the more recent period that is evaluated under the 

rolling method. We evaluate these alternatives below. 

 The 2-State-Variable model is examined in column 7 of tables 1 and 2. Under rolling 

estimation its average pricing error performance is the worst among all the preceding models, for 

almost all of the assets, and especially so with GLS risk premiums. In full-sample estimation the 

2-State-Variable model performs slightly better, but is still dominated by the long-run risk 

models. This shows that the strong average pricing error performance of the long-run risk models 

is not solely driven by the two state variables. The consumption risk factors are important for its 

performance. 

 The improved performance of the 2-State-Variable Model in full-sample estimation is 

interesting in view of the degraded performance of the long-run risk models in the full sample. 

This suggests that using more data to estimate the part of the model that uncovers the state 

variable shocks – which involves highly persistent series – may be more of a benefit than 

allowing those coefficients to drift over time with rolling estimation.  

 The results for the restricted versions of the long-run risk models are in the far right 

columns of tables 1 and 2. In terms of average pricing errors the restricted models perform 

markedly worse than their reduced-form counterparts, and worse than the CAPM except on 

Momentum. Their performance is similar in the full sample and rolling estimation. Requiring the 

prices of covariance risk to match economically reasonable values of the utility function 

parameters pulls the risk premiums away from values that fit the average excess returns.12  Of 

course, the poor performance of the restricted models may not be entirely surprising. Given data 

                                                 
12 Tables 1 and 2 use continuously-compounded annual excess returns.  We also run the analysis with simple 
arithmetic excess returns.  None of the conclusions change, and the relative performance of the cointegrated long-
run risk model slightly improves. 
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issues such as time aggregation and the imperfect proxies for objects in the model, like the risk-

free rate and dividend-price ratio, forcing the restrictions on the risk premiums may be expected 

to hurt the fitted models’ performance. We assess the effects on pricing error variances in the 

next section.  

 
5.2. Mean squared pricing errors 

 We are interested in the precision of the models’ predictions as well as the average errors. 

 Tables 3 and 4 present the differences in the mean squared pricing errors (MSE) from those of 

the CAPM.  The MSE errors for each model are presented as a percentage of the MSE errors of 

the CAPM, whose MSEs are shown in the left-most columns of the tables. The empirical p-value 

in parentheses tests the hypothesis that the MSE differences are zero. These are based on two-

sided tests of the null hypothesis. 

 As described above, the MSE may be decomposed as the mean pricing error squared plus 

the error variance.  We find that the error variance is the dominant component in almost every 

instance, excepting Momentum.  When the CAPM confronts Momentum the mean error and the 

error variance contribute nearly equal shares to the MSE. Thus, with this exception we interpret 

the MSE results as indicating mainly the effects of parameter estimation error on the pricing 

accuracy. 

 Table 3 presents results using rolling estimation. In contrast to the tests in Table 1 there 

are fewer significant differences between the MSEs of the CAPM and the other models, but there 

are some significant differences.  The long-run risk models outperform the CAPM in explaining 

Momentum on the basis of MSEs. All of the models, except the 2-State-Variable model under 

OLS, significantly outperform the CAPM on the Momentum effect. The 2-State-Variable model 
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is significantly worse than the CAPM in explaining the Value-Growth premium and, under GLS, 

the Size Effect, Reversals and the Term Premium.  

 The fact that there are fewer significant differences in the MSEs, compared with the 

average pricing errors, is not simply a lack of statistical power. The differences in the MSEs are 

economically small. For example, the MSE differences for Momentum become statistically 

significant when they are about 20% of the CAPM value, which corresponds to an MSE 

difference of about 2% per year.  For the Value-Growth Premium, an MSE difference of only 

0.2% per year is statistically significant.  

 In the full sample estimation of Table 4 more of the MSE differences are statistically 

significant.  All of the models beat the CAPM on the Momentum Effect, but the CAPM 

significantly outperforms the long-run risk models in explaining the Value-Growth effect and 

Reversals, on an MSE basis.  In these cases, while the MSE differences are statistically 

significant they are economically small. 

 The right-hand columns of tables 3 and 4 present the MSE differences for the restricted 

long-run risk models.  With a few exceptions the results are similar to, but slightly worse on 

average, than those for the models without the parameter restrictions.  This reflects the fact the 

while the restrictions increase the bias and the average pricing errors, they improve estimation 

efficiency by reducing the number of parameters, and the error variance benefit shows up in the 

MSEs. In the case of Momentum the bias effect exerts itself again in the MSEs, and the 

restricted versions of the long-run risk models perform substantially worse than their unrestricted 

counterparts on Momentum.  

 It makes sense that the long-run risk models don’t substantially outperform the CAPM on 

a MSE basis, with the exception of Momentum.   With that exception, the MSEs are driven by 
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the effects of the parameter estimation error variance.  With more parameters to estimate than the 

CAPM, the long-run risk models’ MSE performance is more impacted by estimation error.  We 

address this issue with formal tests in the next section. 

 

5.3. Testing nested models 

 The MSE results are relatively more favorable to the restricted long-run risk models and 

to simpler models like the CAPM and the CCAPM than are the average pricing errors.  

However, Clark and West (2007) show that a model with more parameters than a “true” model is 

expected to have larger MSEs out of sample because the noise in estimating the parameters that 

should really be set to zero will contribute to the error variance.  Thus, the mean squared errors 

of the long-run risk models could be inflated relative to the simpler models they nest. Clark and 

West propose an adjustment to the difference between two models' mean squared pricing errors 

to account for this effect.  Let E1t be the predicted value from model 1 which is the more 

parsimonious model and MSE1 is its mean squared pricing error. E2t is the prediction from the 

more complex model 2 and MSE2 is its mean squared pricing error.   The test examines MSE1 - 

[MSE2 - Σt(E1t - E2t)
2/T].  The third term adjusts for the difference in expected MSE under the 

null and a one-sided test is conducted.  The null hypothesis is that the two models have the same 

pricing error and the alternative is that the more complex model has smaller pricing error.  If we 

suppress the adjustment term, we obtain the Diebold-Mariano test as a special case.13  

 Table 5 presents Clark-West tests for the long-run risk models using rolling estimation, 

where the benchmark models are the CCAPM and the 2-State-Variable Model.  (We don’t use 

                                                 
13 Following Clark and West (2007), we implement the tests with the adjustment terms as follows.  Let: Ft = (rt - E1t)

2 - 
[(rt - E2t)

2 - (E1t - E2t)
2], where rt is the return being predicted.  We construct a t-statistic for the null hypothesis that 

E(Ft)=0 and conduct a one-sided test using bootstrap simulation as described above.  
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the restricted long-run risk models as benchmarks, because Table 3 shows that even without the 

adjustment they perform slightly worse than their unrestricted long-run risk counterparts.)  When 

the t-statistics are negative it means that the more complex model performs worse than the 

simpler model, even after the adjustment. When the 2-State-Variable model is the benchmark 

model (the C and D panels) the t-statistics are almost always positive, and the long-run risk 

models significantly outperform the 2-State-Variable model. The unrestricted models perform 

significantly better than the 2-State model on four to six of the seven assets and the restricted 

long-run risk models outperform on five of the seven assets.  This is not a surprising result given 

our previous findings on the poor performance of the 2-State model, but it demonstrates that the 

Clark-West tests have statistical power. 

 In Table 5 panels A and B, the CCAPM is the benchmark model and the unrestricted 

long-run risk models never significantly outperform the CCAPM on an adjusted MSE basis.  

However, the restricted models perform substantially better than the CCAPM for four of the 

seven assets.  Before the adjustment for the larger number of parameters the restricted LRR 

models do not seem to perform better than the CCAPM (Table 3). Thus, we can reject the 

simpler CCAPM in favor of the long-run risk models when we restrict the risk premiums to be 

consistent with reasonable utility function parameters and adjust for the larger number of 

parameters. 

 If we think of the long-run risk models as essentially combining elements of the CCAPM 

and the 2-State model, then Table 5 says that both aspects are significant for the MSE 

performance. The consumption side of the models in particular, is crucial for fitting the asset 

returns, as the long-run risk models substantially outperform the 2-State model that leaves out 

the consumption risk factors.  The restricted versions of the LRR models outperform the 
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CCAPM, showing that the long-run risk factors are also important. 

 

5.4. Comparison of subperiods 

 In the previous sections we find differences in the results using full-sample versus rolling 

estimation. The differences could be related to in-sample versus step-ahead fit, or to the different 

evaluation periods. We run the rolling analysis again, removing data from the pre-World War II 

period and find that the long-run risk models perform even better. Thus, some of the improved 

performance of the long-run risk models in the rolling, step-ahead analysis likely reflects the 

different sample periods. But we would like to know if this is due to parameter estimation or if it 

reflects a better fit in different historical periods at the same parameter values.  In this section we 

hold the model parameters fixed and vary the evaluation period. We use estimation over the full 

sample to obtain the parameters.  This allows the models to base the parameter estimates on a 

long time series; but of course, the predictions would not be feasible in practice. Table 6 presents 

the results.  

 The format of Table 6 is similar to the previous tables, except that we compare four, 

approximately 20 year evaluation periods and show results for an equally-weighted portfolio of 

the test assets.  All of the models perform at their worst in the first subperiod, 1931-50, by any 

measure. All of the models perform best during the two middle periods, 1951-70 and 1971-90, 

and their performance deteriorates again during 1991-2009. Thus, poor performance in the pre-

World War II period is not unique to the long-run risk models, and all the models are challenged 

by recent economic times.  

 Confirming the importance of the subperiods, we conduct another experiment where we 

hold the evaluation period fixed, using the 1967-2009 period as in Table 1 and 3, and change the 
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parameter values. We consider the full-sample parameter estimates, estimates using 1967-2009 

data, and the rolling estimates of table 1 and 3. We find much less variation in the models’ 

performance with the different parameter estimates than across the subperiods in Table 6 (Tables 

of these results are available by request). 

 Under OLS the average pricing error performance of the unrestricted long-run risk model 

in Panel A is dramatically better during the two middle periods.  While the CAPM also performs 

better during these periods, the differences are much less dramatic.  This suggests that the 

improved relative average pricing error performance of the long-run risk models under rolling 

estimation is likely attributable to the different evaluation periods.   

 The restricted long-run risk models are the worst performing models in each subperiod 

and experience a relatively small improvement in average pricing errors during the middle 

periods. We saw above that their relative performance in rolling estimation was not improved, 

compared with full-sample estimation. Imposing the parameter restrictions destroys the long-run 

risk models’ ability to fit the average returns so well during the 1951-1990 period. 

 Panel B summarizes the MSEs under OLS estimation. The MSEs of the CAPM are 

dramatically larger during the first subperiod, 1931-50.  During this period all of the models 

outperform the CAPM on an MSE basis, except for the restricted long-run risk models.  This 

seems different from the previous tables, where except for Momentum the CAPM performs 

about as well as the LRR models on a MSE basis.  While the average pricing error performance 

of all the models deteriorates during the most recent twenty year period, the MSEs present  a 

different pattern. The CAPM MSEs increase slightly compared with the prior 40 year period, but 

the long-run risk models’ MSEs drop to about 60% of those of the CAPM, from larger fractions 

in the previous periods.  
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 The poor MSE performance of the CAPM in Table 6 reflects the impact of Momentum 

on the equally-weighted portfolio. Momentum is a high volatility return, and the average pricing 

error of the CAPM on momentum is very large, as we observed above.  The combined effects 

have a large influence on the MSE of the portfolio.  

 In Panels C and D of Table 6 we summarize the results across the assets using a “GLS 

portfolio.” GLS estimation transforms the TxN data matrix of excess returns, r, using 2/1)( rrV , 

where )(rV is the full sample covariance matrix. This is scaled to a set of seven portfolio weights 

that sum to 1.0.14 The GLS portfolio gives a weight of only 12.3% to the Momentum strategy 

and the results are very different.  

 With the relatively small weight that the GLS portfolio applies to Momentum, and the 

larger weights on the Value-Growth, Credit and Term premiums, the average pricing error 

results appear more favorable to the CAPM.  On an average pricing error basis the CAPM is 

consistently the second best model, underforming only the unrestricted cointegrated model. The 

relative MSE performance across the models is now fairly stable over the subperiods.  

 

5.5 Outliers 

 The poor performance of the models in the first twenty-year subperiod of Table 6 

suggests the influence of outliers during the Great Depression of the 1930s. We examine the 

absolute pricing errors that exceed three standard errors, for each asset-model combination. The 

year 1931 is an outlier for the Equity Premium under four of the models. The year 1933 is an 

outlier for Reversals under all seven models. Momentum and the Credit Premium generate 

                                                 
14 The N-vector of weights is )1)(/1()( 2/12/1  rrVrrV , where 1 is an N-vector of ones and / indicates element-

by-element division. Listed in the same order as the assets in Table 1, the weight vector takes the values (0.014, 
0.002, 0.207, 0.123, 0.269, 0.255, 0.129)’. 
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outliers in those years and in the years 1937, 1973, 2008, and 2009. The year 1982 is an outlier 

for the Term Premium under the CCAPM. Removing these outlier years results in a larger 

average pricing error for all the models during the first subperiod, where the outliers are 

negative.  The MSE for the CAPM is reduced from 2.46% to 1.71%.  The long-run risk model 

MSEs improve, changing from 84-86% of the CAPM’s MSEs to 70-72% when the outliers are 

removed. The restricted versions of the models perform slightly worse than before. 

  There are no outliers in the second subperiod. In the third subperiod removing 

1973 and 1982 lowers the average pricing errors by 30-60 basis points for all of the models, and 

the CAPM’s MSE drops slightly to 0.59%, but the relative MSE performance of the models is 

unchanged.  A similar effect is observed when 2008 and 2009 are removed from the fourth 

subperiod. 

 

5.6. Conditional models 

 Conditional models arguably better reflect the economic structure of long-run risk models.  

For example in the models market yields, expected consumption, consumption variances and other 

quantities are affine functions of the state variables and thus vary over time.  In our estimation using 

equation systems (5) and (7), everything above the last two equations is conditioned on the lagged 

risk-free rate and dividend yield.  In this section we explore conditional versions of the models.  A 

priori, conditional models may empirically perform better or worse than unconditional models.  

While conditional models use more information to generate required returns, Ghysels (1998) and 

Simin (2008) find that conditional beta pricing models do not outperform simpler models in an out-

of-sample context. 

 The conditional models assume that the expected risk premiums are affine functions of the 
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conditioning variables, but the betas are held fixed, consistent with Gibbons and Ferson (1985) and 

Campbell (1987).  Constant betas imply zero covariances between betas and risk premiums, and that 

could be important for capturing a cross section of average portfolio returns sorted according to the 

Size Effect (e.g. Chan and Chen, 1988) or the Value-Growth Effect (e.g. Santos and Veronesi, 

2006).  However, Ferson and Harvey (1991) show that time-varying risk premiums are much more 

important than time-varying betas for capturing variation in expected returns over time.  In rolling 

estimation the betas are allowed to vary over time in an unstructured way. 

 To estimate the conditional models we replace the specification for  in Eqs. (5f) and (7f) 

with affine functions of the state variables: the lagged dividend yield and risk-free rate in (5f) and 

including the lagged cointegrating residual in (7f).  The error terms are orthogonal to a constant and 

the lagged predictors.  The fitted values of the risk premiums are evaluated at the most recently 

available values of the lagged predictors when forming the fitted expected excess returns.  The same 

procedure is used for the CCAPM, the 2-State model and the CAPM.   

             Recall that in the CAPM the GLS risk premium estimate is simply the expected market 

portfolio excess return.  In the GLS case we use the predicted value from a regression of the market 

excess return on the lagged risk-free rate and dividend yield as the market risk premium estimator. 

For the conditional versions of the restricted long-run risk models we impose that the error terms u6t 

in (7f) and (9) are orthogonal to the same lagged variables. This implicitly allows time-varying 

conditional covariances without restricting their functional forms. 

 The average pricing error results for the conditional models are summarized in Table 7.  The 

CCAPM performs better in its conditional form on most of the asset returns and by almost 50 basis 

points overall. For the other models the comparison is mixed across the assets and the overall results 

are similar to the models with unconditional risk premiums. Conditioning affects the pricing errors 
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of the restricted cointegrated long-run risk model more than the stationary model, but the impact 

differs across the assets with no clear pattern.  

 We also examine the MSE pricing errors of the conditional models.  The CAPM performs 

better on Momentum in its conditional form. The comparisons between the other models and the 

CAPM are broadly similar to those for the unconditional models. It should not be surprising that our 

main results are robust to the conditional model extensions. Rolling estimation of the 

“unconditional” models in Table 1 allows ad-hoc time variation in the parameters, and we find that 

the rolling and conditional model risk premium estimates are highly correlated. For example, the 

correlation between the rolling estimates in Table 1 with those in Table 7 for the short-run and long-

run consumption risk premiums are 0.89 and 0.79, respectively. 

 In summary, many of our findings are robust to the use of conditional models. The long-run 

risk models perform better than the CAPM in terms of average pricing errors but not in terms of the 

MSEs. The cointegrated long-run risk model outperforms the stationary version and does especially 

well on Momentum. GLS estimation improves the fit to the low volatility returns at the expense of 

the higher volatility returns. The 2-State-Variable model performs significantly worse than the long-

run risk models, indicating that the long-run risk factors are important ingredients for the models’ 

out-of-sample fit.  

 

5.7 Return Decompositions 

 To gain more insight into the economics behind the model evaluations, we examine the 

results of the rolling estimation in more detail. In particular, we study the rolling betas and risk 

prices associated with the various factors in the models. Previous studies provide similar 
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analyses based on calibrated models and in-sample estimation.15 Our main goal is to study the 

out-of-sample performance, so we do not present the details of these exercises, but summarize 

here the main observations (tables of these results are available by request). 

 In general, we find that both the short and long-run consumption factors carry positive 

risk prices. The equity-based portfolios all feature positive consumption betas, and Momentum 

has a relatively large consumption beta. Both short and long-run consumption risks contribute 

substantial positive amounts to the winner-loser portfolio in the LRRS model, and the sum of the 

consumption-related shocks determines more than 50% of the fitted momentum return in the 

LRRC model. The size effect and Value-Growth portfolios feature positive short and long-run 

consumption betas in the LRRS model and positive short-run consumption risk betas in the 

LRRC model. 

 Cointegration typically appears to improve the model specification, leading to more 

economically appealing decompositions, consistent with Bansal, Dittmar, and Kiku (2009) and 

our out-of-sample results. Comparing the LRRS and LRRC models also leads to an interesting 

characterization of the Small-Big, Value-Growth and Reversal strategies. These are all in some 

sense, “contrarian” strategies. In the LRRS model, volatility risk appears important for their 

determination. However, introducing the cointegrating residual factor in the LRRC model 

reveals that these strategies feature a negative exposure to shocks that raise dividends above their 

cointegrating trend. Such shocks are “good news”, as indicated by a positive estimated risk 

premium. 

 

                                                 
15 See, for example, Bansal, Dittmar, and Lundblad (2005) and Bansal, Dittmar, and Kiku (2009). 
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6. Robustness 

 This section describes a number of experiments to evaluate the robustness of our main 

results.  Additional tables are available in an unpublished appendix, by request to the authors. 

 

6.1. Autocorrelation 

 We conduct experiments to assess the impact of autocorrelation in the pricing errors on 

the statistical tests. The first-order autocorrelations of the pricing errors are similar across the 

models and usually smaller than 10%, except in a couple of cases.  With a sample of 79, the 

approximate standard error of the autocorrelations is about 11%.  Autocorrelated pricing errors 

reflect some persistent misspecification of the models. Time aggregation of the consumption data 

is one likely source of such misspecification. In the case of the size effect, some of the 

autocorrelation (0.41, the largest example) is likely spurious, resulting from stale pricing of the 

smallest firms. 

 We repeat some of the tests in tables 1-4 using a block bootstrap approach with block 

lengths of 2 and 4. A block size of two accommodates an MA(1) error structure, as would be 

implied by time aggregation. We find little effect on the empirical p-values in tables 2 and 4. The 

effect is greater in tables 1 and 3 with the shorter, rolling samples. The p-values for the average 

pricing error differences get larger, and five cases that were significant at the 5% level in Panel 

A (and the same number in Panel B) of Table 1 are no longer significant at the 10% level. The 

restricted cointegrated model seems to be the most affected. In Table 3 the p-values get smaller 

when the block bootstrap is used. Five MSE differences that were not significant at the 10% 

level in this table become significant under the block bootstrap with 4 lags. 
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6.2. Earnings and price momentum 

 Chordia and Shivakumar (2006) attribute much of the Price Momentum Effect that we 

examine above (PMOM) to earnings momentum, which is significantly related to various 

economic risk variables. This raises the possibility that the explanatory power of the long-run 

risk models for PMOM works through earnings momentum (EMOM). Following their approach 

we sort stocks into EMOM portfolios on the basis of the most recently-reported standardized 

unexpected earnings (SUEs). They use SUE deciles but don’t cross-sort on PMOM; we cross-

sort on PMOM and EMOM. 

 Like Chordia and Shivakumar (2006) we find that the average EMOM premium is larger 

than the PMOM premium. EMOM largely subsumes PMOM, but EMOM is not subsumed by 

PMOM in the two-way sorts, which also reveal that EMOM is stronger among momentum 

winners than among momentum losers.  

 If a model works primarily through EMOM, we would expect that it would perform well 

on EMOM, but not as well on any remaining PMOM effect when EMOM is controlled for. We 

focus on the LRRC model and find that this does not appear to be the case. The average pricing 

errors are larger fractions of the original effects for PMOM, within an EMOM sort, than they are 

for EMOM. Thus, we find no evidence that the explanatory power of the LRRC model for 

Momentum is driven by earnings momentum. 

   

6.3. Time aggregation 

 The consumption data are time aggregated, which leads to a spurious moving average 

component in consumption growth, biased consumption betas and biased shocks in the 

consumption-related risk factors.  The latter issue is the most difficult to address.  We obtain 
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some information on the impact of time aggregation by using higher frequency data, sampled at 

the end of each year.  Jagannathan and Wang (2007) find that consumption-based models work 

better on data sampled from the last quarter of each year.  We use quarterly, not seasonally 

adjusted data for 1948-2004.  By sampling the not seasonally adjusted data in the last quarter of 

each year we avoid the strong seasonality in consumption expenditures and the smoothing biases 

in data that are seasonally adjusted by the Commerce Department (see Ferson and Harvey, 

1992). 

 In terms of average pricing errors, the performance of the consumption beta model is 

improved by the use of the higher-frequency consumption data.  The relative performance of the 

classical CAPM and the long-run risk models is similar to what we observed before, in terms of 

average pricing errors.  The MSEs show the CAPM and the cointegrated long-run risk model 

delivering the best and similar performances. Thus, the main findings are robust to the 

alternative consumption data. 

 

6.4. Longer-horizon returns  

 Previous studies find that consumption-based asset pricing models do a better job fitting 

longer-horizon returns (e.g. Daniel and Marshall, 1997; Malloy, Moskowitz, and Vissing-

Jorgensen, 2009).  We examine two-year and three-year returns, compounding the returns but 

maintaining the assumption that the decision interval in the model is one year.  The CCAPM and 

2-State-Variable model deliver the largest pricing errors, similar in size to the raw returns. The 

cointegrated long-run risk model delivers the smallest errors for two of the seven assets and in no 

case does it perform the worst. The advantage of the CAPM under GLS is not apparent here. 

Two-year returns produce similar results. 
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 We also examine the MSEs. Under OLS risk premiums, the consumption beta model 

performs better, in relative terms, on the longer-horizon returns. The cointegrated model 

generally outperforms the stationary long-run risk model. Using GLS risk premiums, the CAPM 

wins for four to five out of seven assets on a MSE basis. Thus, overall the conclusions are 

similar to those from the previous tables. 

 

6.5. The effects of bias correction 

 We examine models in which we apply versions of the bias correction procedure 

developed by Amihud, Hurvich, and Wang (2009) to the coefficients on the highly persistent 

variables.  In the stationary version of the long-run risk model the bias corrections have a trivial 

impact, and the average pricing errors are typically identical to one basis point per year. In the 

cointegrated model the bias corrections have a larger impact. For example, under OLS the 

average pricing errors are smaller by as much as 0.4-0.5% per year for four of the seven assets. 

Thus, bias-corrected estimation appears to be useful, and we recommend that future work 

estimating cointegrated long-run risk models apply bias corrections. 

 

6.6. Sensitivity to the number of test assets 

 The risk premiums are estimated using the seven test assets, but the maximum correlation 

portfolio in a larger set of assets delivers different risk premiums. With fewer assets we likely 

“overfit” the risk premiums. (Intuitively, with the same number of assets as risk premiums the 

unrestricted models reduce to using the sample mean of each asset to predict the expected 

return.) We increase the number of assets to 31 by adding Size deciles 2 to 9, Book-to-Market 

deciles 2 to 9, and Momentum deciles 2 to 9. As expected, the pricing errors on the original 
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seven assets get larger for all the models except the CAPM, although only slightly larger for the 

consumption CAPM, but the differences are not large enough to change the previous 

impressions.  

 

6.7. Alternative price/dividend measures 

The “true” price/dividend ratio envisioned by the long-run risk models is not observable, 

and the standard measures use trailing corporate dividends to smooth out seasonality.  The use of 

annual data helps mitigate some of the concerns about seasonality, but the “true” aggregate 

dividend is hard to measure. Given that share repurchases represent an important component of 

payouts (Boudoukh, Michaely, Richardson, and Roberts, 2007), we examine an alternative 

price/dividend measure that accounts for share repurchases and equity issuances. Using this 

alternative price/dividend measure, the models’ pricing errors on average get larger with the 

exception of the 2-State-Variable model, but the changes do not substantially alter the previous 

impressions.  The improved performance of the 2-State-Variable model likely reflects the 

improved predictive ability of the alternative price/dividend measure. 

 

6.8. Alternative risk-free rate measures 

Our main results use a nominal, three-month Treasury rate as the risk-free rate state 

variable. This is not the real, ex ante yield envisioned in the models. Measuring returns in excess 

of the risk-free rate reduces or eliminates concerns about real versus nominal returns, but not 

about the risk-free rate used as a state variable. We conduct experiments to evaluate the 

sensitivity of our findings to the state variable. Following Bansal, Kiku, and Yaron (2009), a real 

risk-free rate is estimated as the annualized yield on the 3-month treasury bill minus the trailing 
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12-month realized annual inflation. Overall, the results using this proxy are similar to the results 

using the three-month treasury yield as the state variable. 

 

6.9. Alternative variance identification 

 An alternative version of the LRRS model identifies the stochastic volatility from the 

squared residuals of the expected consumption, or fitted xt process instead of the unexpected 

consumption growth.  Under OLS the alternative variance model performs slightly worse on the 

Size and Value-Growth effects and on the Term Premium, but slightly better on the rest and the 

overall average pricing error is identical.  The MSE’s are virtually identical to the previous 

version of the model.  Under GLS the alternative variance model performs worse on the Equity 

Premium, Momentum, the Credit and Term Premium but much better on the Size Effect.  The 

MSEs of the alternative variance model are slightly smaller overall under GLS estimation.   

 

7.  Conclusions 

 This study examines the ability of long-run risk models to fit out-of-sample returns.  The 

question of the out-of-sample fit is important because asset pricing models are almost always 

used in practice in an out-of-sample context. We examine stationary and cointegrated versions of 

long-run risk models using annual data for 1931-2009.  

 The long-run risk models perform well in capturing the Momentum Effect. The 

performance of the cointegrated version of the long-run risk model is markedly better than the 

stationary version. While the long-run risk models often deliver smaller average pricing errors 

than the CAPM, the mean squared pricing errors (MSEs) are not significantly better in economic 

terms, except in explaining momentum.  However, the long-run risk models do perform 
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significantly better than models that suppress their consumption-related shocks. Holding the 

parameters fixed, the models perform better during 1951-1990 than in the decades before or 

after. Sampling not seasonally adjusted consumption data in the last quarter of the year improves 

the fit, consistent with Jagannathan and Wang (2007).  Bias corrected regressions improve the 

performance of cointegrated versions of the models but have little effect on stationary versions. 

Restricting the models with economically reasonable preference parameters increases the 

average pricing errors, but often improves the error variances.  

 Our results suggest several areas for future research.  Cointegrated versions of the long-

run risk models have received less attention in the literature than stationary versions. Our results 

suggest that cointegrated models deserve more attention. We examine only the most basic 

versions of the long-run risk models, and they perform relatively poorly in explaining credit 

spread returns and excess long-term bond returns. Recent papers have refined the models, 

incorporating inflation and credit risk dynamics to achieve success in calibrating to term 

premiums and credit spreads. More empirical work on these refined models is clearly warranted. 

For example, the simple long-run risk models turn in a strong performance in explaining 

Momentum. Avramov, Chordia, Jostova, and Philipov (2007) find that momentum is 

concentrated in low credit risk stocks. This suggests that refined versions of long run risk models 

with credit risks should perform well in empirical tests. In our view, the practical importance of 

long-run risk models is yet to be fully established, and will depend on their performance in 

future empirical estimation and tests. 
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Table 1: Average Out-of-Sample Pricing Errors  
 
Average excess returns and out-of-sample pricing errors (actual minus prediction) are shown 
based on rolling estimation during 1967-2009, using a window length of 36 years. The 
continuously-compounded returns are in annual percent, and measured in excess of a one-month 
Treasury bill return. CCAPM is the simple consumption beta model.  CAPM is the Capital Asset 
Pricing Model.  LRRC is the cointegrated long-run risk model and LRRS is the stationary long-
run risk model. 2-State-Variable is the model with only shocks to the two state variables (the 
risk-free rate and log price/dividend ratio). RLRRC is restricted version of the cointegrated long-
run risk model and RLRRS is restricted version of the stationary long-run risk model. The p-
values in parentheses are for two-sided Diebold-Mariano (1995) test of the null hypothesis that 
the model in question performs no differently than the classical CAPM. The empirical p-values 
are based on 10,000 simulation trials. p-values of 10% or less are in bold face. 
 
Premium: Mean Excess

Returns CCAPM CAPM LRRC LRRS 2-State-Variable RLRRC RLRRS
Panel A: OLS Risk Premiums

Equity Premium 3.88 2.45 2.48 0.76 0.88 3.22 4.01 12.20
(0.97) (0.00) (0.01) (0.21) (0.00) (0.08)

Small-Big 2.50 2.07 1.21 0.22 2.06 2.64 2.65 3.22
(0.26) (0.07) (0.18) (0.00) (0.00) (0.03)

Value-Growth 6.47 1.64 5.51 3.31 1.65 5.95 6.35 5.13
(0.00) (0.00) (0.00) (0.04) (0.00) (0.67)

Win-Lose 17.95 12.10 18.30 7.66 9.58 16.97 17.80 12.20
(0.00) (0.00) (0.00) (0.00) (0.00) (0.08)

Reversal 5.39 0.92 5.14 -1.46 -0.02 4.68 5.39 4.66
(0.00) (0.00) (0.00) (0.14) (0.08) (0.56)

Credit Premium 0.58 0.81 0.09 2.43 0.80 0.16 0.59 1.45
(0.03) (0.00) (0.12) (0.70) (0.00) (0.08)

Term Premium 1.82 1.22 1.86 0.02 -0.01 1.50 1.81 4.55
(0.00) (0.00) (0.00) (0.15) (0.05) (0.62)

Average 5.51 3.03 4.94 1.85 2.13 5.02 5.51 6.20

Panel B: GLS Risk Premiums

Equity Premium 3.88 2.12 -2.14 1.52 1.71 4.40 n.a. n.a.
(0.00) (0.00) (0.00) (0.00)

Small-Big 2.50 1.55 -1.05 1.24 3.11 7.18
(0.00) (0.01) (0.00) (0.00)

Value-Growth 6.47 1.40 5.16 3.00 2.04 8.48
(0.00) (0.01) (0.00) (0.00)

Win-Lose 17.95 12.10 19.80 7.52 10.11 13.40
(0.00) (0.00) (0.00) (0.00)

Reversal 5.39 0.04 5.39 -0.95 0.22 8.24
(0.00) (0.00) (0.00) (0.00)

Credit Premium 0.58 0.58 -0.69 0.79 0.53 0.87
(0.00) (0.00) (0.00) (0.00)

Term Premium 1.82 1.32 1.36 0.73 1.11 1.83
(0.85) (0.00) (0.36) (0.01)

Average 5.51 2.73 3.98 1.98 2.69 6.34

    Average Pricing Errors
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Table 2: Full Sample Average Pricing Errors, 1931-2009 
 
Average excess returns and out-of-sample pricing errors (actual minus prediction) are shown 
based full sample estimation during 1931-2009. The number of observations is 79. The 
continuously-compounded returns are in annual percent, and measured in excess of a one-month 
Treasury bill return. CCAPM is the simple consumption beta model.  CAPM is the Capital Asset 
Pricing Model.  LRRC is the cointegrated long-run risk model and LRRS is the stationary long-
run risk model. 2-State-Variable is the model with only shocks to the two state variables (the 
risk-free rate and log price/dividend ratio). RLRRC is restricted version of the cointegrated long-
run risk model and RLRRS is restricted version of the stationary long-run risk model.  
 

Premium: Mean Excess
Returns CCAPM CAPM LRRC LRRS 2-State-Variable RLRRC RLRRS

Panel A: OLS Risk Premiums

Equity Premium 5.87 2.91 3.73 -3.15 -2.31 1.86 6.03 5.73

Small-Big 4.65 5.93 3.67 0.83 0.03 3.94 5.00 4.65

Value-Growth 4.51 5.33 3.84 4.95 5.92 8.66 4.87 4.54

Win-Lose 15.69 7.71 16.60 7.10 6.89 11.80 15.10 15.40

Reversal 5.28 10.20 5.16 6.08 6.35 4.13 5.79 5.43

Credit Premium 1.14 -2.14 0.27 -4.22 -3.93 2.92 1.18 1.00

Term Premium 1.69 2.12 1.61 -1.76 -1.90 -3.70 1.82 1.69

Average 5.55 4.58 4.98 1.40 1.58 4.23 5.68 5.49

Panel B: GLS Risk Premiums

Equity Premium 5.87 2.84 0.00 -0.46 1.36 4.70 n.a. n.a.

Small-Big 4.65 5.96 1.95 6.37 6.49 10.90

Value-Growth 4.51 5.35 2.67 5.53 7.81 9.86

Win-Lose 15.69 7.52 18.20 6.17 4.86 6.54

Reversal 5.28 10.30 4.95 9.27 10.40 11.00

Credit Premium 1.14 -2.22 -1.24 -1.85 -0.98 3.43

Term Premium 1.69 2.13 1.47 -0.77 -0.45 -0.67

Average 5.55 4.55 4.00 3.47 4.21 6.54

   Average Pricing Errors
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Table 3: Out-of-Sample MSEs Relative to the CAPM (%)  
 
MSEs relative to the CAPM (%) are presented based on rolling estimation during 1967-2009, 
using a window length of 36 years. The relative MSE pricing error is calculated as 100(1+ 
ln(Model MSE /CAPM MSE)). The continuously-compounded returns are in annual percent, and 
measured in excess of a one-month Treasury bill return. CCAPM is the simple consumption beta 
model.  CAPM is the Capital Asset Pricing Model.  LRRC is the cointegrated long-run risk 
model and LRRS is the stationary long-run risk model. 2-State-Variable is the model with only 
shocks to the two state variables (the risk-free rate and log price/dividend ratio). RLRRC is 
restricted version of the cointegrated long-run risk model and RLRRS is restricted version of the 
stationary long-run risk model. The p-values in parentheses are for two-sided Diebold-Mariano 
(1995) tests of the null hypothesis that the model in question performs no differently than the 
classical CAPM. The empirical p-values are based on 10,000 simulation trials. p-values of 10% 
or less are in bold face.  
 

Premium:
CAPM MSEs CCAPM LRRC LRRS 2-State-Variable RLRRC RLRRS

Panel A: MSE relative to CAPM (%), OLS

Equity Premium 3.88 91.8 104.0 95.0 99.5 97.8 308.0
(0.30) (0.68) (0.54) (0.95) (0.64) (0.48)

Small-Big 5.21 102.0 100.0 100.0 102.0 100.0 106.0
(0.75) (0.92) (0.98) (0.61) (1.00) (0.42)

Value-Growth 4.13 87.1 99.4 97.5 105.0 100.0 101.0
(0.16) (0.90) (0.75) (0.01) (0.95) (0.80)

Win-Lose 9.78 78.9 76.7 82.5 97.5 96.9 194.0
(0.00) (0.04) (0.04) (0.32) (0.00) (0.63)

Reversal 4.43 105.0 104.0 106.0 105.0 101.0 98.9
(0.59) (0.67) (0.48) (0.06) (0.46) (0.70)

Credit Premium 1.34 93.0 105.0 107.0 103.0 97.0 127.0
(0.31) (0.64) (0.44) (0.11) (0.18) (0.58)

Term Premium 1.02 93.7 97.0 103.0 103.0 99.6 229.0
(0.14) (0.66) (0.72) (0.55) (0.39) (0.62)

Panel B: MSE relative to CAPM (%), GLS

Equity Premium 3.88 92.9 107.0 92.4 101.0 n.a. n.a.
(0.44) (0.44) (0.44) (0.91)

Small-Big 5.28 93.4 106.0 94.1 117.0
(0.40) (0.50) (0.63) (0.10)

Value-Growth 4.09 85.1 108.0 103.0 121.0
(0.17) (0.37) (0.76) (0.01)

Win-Lose 10.20 78.0 70.3 77.4 84.3
(0.00) (0.02) (0.01) (0.03)

Reversal 4.46 104.0 115.0 110.0 120.0
(0.73) (0.22) (0.37) (0.00)

Credit Premium 1.33 94.0 103.0 104.0 105.0
(0.31) (0.71) (0.58) (0.19)

Term Premium 0.99 98.1 101.0 105.0 108.0
(0.61) (0.86) (0.23) (0.01)

MSE relative to CAPM (%)
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Table 4: Full Sample MSEs Relative to the CAPM (%), 1931-2009  
 
MSEs relative to the CAPM (%) are based on full sample estimation during 1931-2009. The 
relative MSEs for a model is calculated as 100(1+ln(Model MSE/MSE CAPM)). The number of 
observations is 79. The continuously-compounded returns are in annual percent, and measured in 
excess of a one-month Treasury bill return. CCAPM is the simple consumption beta model.  
CAPM is the Capital Asset Pricing Model.  LRRC is the cointegrated long-run risk model and 
LRRS is the stationary long-run risk model. 2-State-Variable is the model with only shocks to 
the two state variables (the risk-free rate and log price/dividend ratio). RLRRC is restricted 
version of the cointegrated long-run risk model and RLRRS is restricted version of the stationary 
long-run risk model. The p-values in parentheses are for two-sided Diebold-Mariano (1995) tests 
of the null hypothesis that the model performs no differently than the classical CAPM. The 
empirical p-values are based on 10,000 simulation trials. p-values of 10% or less are in bold 
face.  

Premium:
CAPM MSEs CCAPM LRRC LRRS 2-State-Variable RLRRC RLRRS

Panel A: MSE relative to CAPM (%), OLS

Equity Premium 4.30 98.7 99.1 98.0 97.6 105.0 104.0
(0.15) (0.90) (0.76) (0.23) (0.03) (0.04)

Small-Big 5.41 104.0 97.6 97.5 100.0 102.0 102.0
(0.07) (0.39) (0.48) (0.13) (0.09) (0.11)

Value-Growth 4.38 103.0 102.0 105.0 113.0 102.0 101.0
(0.04) (0.06) (0.04) (0.01) (0.06) (0.07)

Win-Lose 7.94 68.2 66.6 66.1 81.1 93.8 95.1
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Reversal 5.13 114.0 102.0 103.0 98.1 101.0 101.0
(0.00) (0.03) (0.02) (0.06) (0.03) (0.03)

Credit Premium 1.42 103.0 112.0 110.0 106.0 101.0 101.0
(0.48) (0.13) (0.18) (0.23) (0.59) (0.63)

Term Premium 0.69 103.0 101.0 101.0 115.0 101.0 100.0
(0.04) (0.93) (0.88) (0.25) (0.06) (0.07)

Panel B: MSE relative to CAPM (%), GLS

Equity Premium 4.16 102.0 100.0 100.0 105.0 n.a. n.a.
(0.53) (0.91) (0.77) (0.31)

Small-Big 5.31 106.0 107.0 107.0 120.0
(0.13) (0.11) (0.10) (0.01)

Value-Growth 4.30 105.0 105.0 112.0 119.0
(0.08) (0.07) (0.02) (0.01)

Win-Lose 8.49 60.9 57.7 55.0 58.5
(0.00) (0.00) (0.00) (0.00)

Reversal 5.11 115.0 111.0 115.0 117.0
(0.00) (0.00) (0.00) (0.00)

Credit Premium 1.44 102.0 101.0 99.6 107.0
(0.20) (0.24) (0.41) (0.42)

Term Premium 0.68 103.0 97.7 97.1 97.5
(0.05) (0.71) (0.58) (0.67)

MSE relative to CAPM (%)
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Table 5: Clark-West Tests on Out-of-Sample MSEs  

Clark-West (2007) tests on out-of-sample MSEs are presented based on rolling estimation during 1967-2009.  The number of 
observations in the evaluation period is 43. In panels A and B the benchmark model is the CCAPM. In panels C and D the benchmark 
model is the 2-State-Variable Model. The t-statistics examine the one-sided tests of the null hypothesis that the two models have the 
same mean squared pricing error. The alternative hypothesis is that the more complex model has smaller error. The empirical p-values 
are based on 10,000 simulation trials. p-values of 10% or less are in bold face. The continuously-compounded returns are in annual 
percent, and measured in excess of a one-month Treasury bill return. LRRC is the cointegrated long-run risk model and LRRS is the 
stationary long-run risk model. 2-State-Variable is the model with only shocks to the two state variables (the risk-free rate and log 
price/dividend ratio).  RLRRC is restricted version of the cointegrated long-run risk model, and RLRRS is restricted version of the 
stationary long-run risk model. Panel A and C results are based on OLS risk premium estimates. Panel B and D results are based on 
GLS risk premium estimates.   
 
Panel A: OLS Estimation. The Benchmark Model is the CCAPM. 

t-stat p value t-stat p value t-stat p value t-stat p value t-stat p value t-stat p value t-stat p value

LRRC -0.99 0.87 0.63 0.27 -1.38 0.93 0.69 0.33 1.00 0.15 -0.68 0.77 0.21 0.40

LRRS -0.21 0.59 0.72 0.23 -1.39 0.94 -0.34 0.67 0.38 0.36 -1.36 0.97 -0.09 0.53

RLRRC -0.82 0.78 1.41 0.08 -0.70 0.75 -2.56 0.99 1.32 0.09 0.09 0.51 -0.92 0.81

RLRRS 0.97 0.08 1.59 0.06 0.53 0.26 -1.48 0.99 1.63 0.04 -0.66 0.79 0.95 0.08

Term PremiumEquity Premium Small-Big Value-Grow Win-Lose Reversal Credit Premium

 
 
 
Panel B: GLS Estimation. The Benchmark Model is the CCAPM. 

t-stat p value t-stat p value t-stat p value t-stat p value t-stat p value t-stat p value t-stat p value

LRRC -0.78 0.79 -0.74 0.72 -1.49 0.94 1.28 0.16 -0.21 0.57 -0.86 0.86 0.00 0.48

LRRS 0.64 0.25 0.37 0.34 -2.84 1.00 0.43 0.38 -0.28 0.58 -1.43 0.97 -0.77 0.78

Equity Premium Small-Big Value-Grow Win-Lose Reversal Credit Premium Term Premium
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Panel C: OLS Estimation. The Benchmark Model is 2-State-Variable Model. 

t-stat p value t-stat p value t-stat p value t-stat p value t-stat p value t-stat p value t-stat p value

LRRC -0.14 0.55 0.97 0.17 1.97 0.04 3.51 0.00 1.20 0.12 0.87 0.16 1.43 0.06

LRRS 1.59 0.06 0.94 0.18 1.78 0.04 3.47 0.00 0.74 0.23 0.49 0.31 1.25 0.10

RLRRC 0.63 0.23 0.75 0.28 1.26 0.04 0.32 0.34 1.67 0.04 2.67 0.00 1.06 0.10

RLRRS 1.07 0.07 0.35 0.39 1.31 0.03 -0.96 0.92 1.54 0.01 -0.15 0.62 1.12 0.07

Term PremiumEquity Premium Small-Big Value-Grow Win-Lose Reversal Credit Premium

 
 
 
Panel D: GLS Estimation. The Benchmark Model is 2-State-Variable Model. 

t-stat p value t-stat p value t-stat p value t-stat p value t-stat p value t-stat p value t-stat p value

LRRC -0.15 0.57 1.92 0.02 2.19 0.02 2.92 0.00 1.95 0.02 1.52 0.08 2.37 0.01

LRRS 2.41 0.01 2.74 0.00 2.54 0.00 2.10 0.02 2.14 0.02 1.53 0.07 1.21 0.12

Equity Premium Small-Big Value-Grow Win-Lose Reversal Credit Premium Term Premium
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Table 6: Comparison of Subperiods 
 
Pricing errors for portfolios of the seven test assets are compared, estimating the model parameters 
using the full sample and evaluating the pricing errors over subperiods. The returns are continuously-
compounded annual percents. CCAPM is the simple consumption beta model.  CAPM is the Capital 
Asset Pricing Model.  LRRC is the cointegrated long-run risk model and LRRS is the stationary 
long-run risk model. 2-State-Variable is the model with only shocks to the two state variables (the 
risk-free rate and log price/dividend ratio). RLRRC is restricted version of the cointegrated long-run 
risk model and RLRRS is restricted version of the stationary long-run risk model. The MSE relative 
to the CAPM is calculated as 100x[1+ln(model MSE/CAPM MSE)]. 
 

Premium:
1931-1950 1951-1970 1971-1990 1991-2009

Panel A: OLS
Average Pricing Errors of Equally-weighted Portfolio

CCAPM 6.13 3.17 3.75 5.19

CAPM 6.81 3.53 4.10 5.54

LRRC 3.16 -0.11 0.40 2.06

LRRS 3.38 0.12 0.69 2.23

2-State-Variable 5.97 2.74 3.29 5.01

RLRRC 7.39 4.23 4.84 6.29

RLRRS 7.20 4.04 4.63 6.11

Panel B: OLS

CAPM MSE 2.46 0.52 0.71 0.77

MSEs of Equally-Weighted Portfolio Relative to the CAPM (%)

CCAPM 94.1 95.3 95.8 92.7

LRRC 85.8 72.7 77.4 60.7

LRRS 84.3 72.9 79.0 58.9

2-State 96.8 89.0 93.7 94.3

RLRRC 102.1 109.0 108.0 110.0

RLRRS 101.0 106.0 105.0 107.0

Subperiods
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Premium:

1931-1950 1951-1970 1971-1990 1991-2009
Panel C: GLS
Average Pricing Errors of GLS Portfolio

CCAPM 5.70 2.48 4.39 5.58

CAPM 5.45 1.88 3.76 4.58

LRRC 5.02 1.53 3.49 4.21

LRRS 5.77 2.61 4.54 4.84

2-State-Variable 7.90 4.46 6.39 7.14

RLRRC 6.41 2.93 4.86 6.29

RLRRS 6.23 2.74 4.65 6.11

Panel D: GLS

CAPM MSE 2.13 0.47 0.88 0.85

MSEs of GLS Portfolio Relative to the CAPM (%)

CCAPM 100.0 106.0 106.0 107.0

LRRC 99.2 95.7 99.3 104.0

LRRS 101.0 107.0 108.0 110.0

2-State 114.0 130.0 127.0 136.0

RLRRC 105.0 110.0 110.0 113.0

RLRRS 104.0 108.0 108.0 111.0

Subperiods
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 Table 7: Average Pricing Errors and MSEs of the Conditional Models, 1967-2009 
 
Average excess returns, out-of-sample pricing errors (actual minus prediction), and MSEs 
relative to the CAPM (%) are shown based on rolling estimation of the conditional models 
during 1967-2009, using a window length of 36 years. The continuously-compounded returns are 
in annual percent, and measured in excess of a one-month Treasury bill return. CCAPM is the 
simple consumption beta model.  CAPM is the conditional Capital Asset Pricing Model.  LRRC 
is the cointegrated long-run risk model and LRRS is the stationary long-run risk model. 2-State-
Variable is the model with only shocks to the two state variables (the risk-free rate and log 
price/dividend ratio). The p-values in parentheses are for two-sided Diebold-Mariano (1995) test 
of the null hypothesis that the model in question performs no differently than the classical, 
unconditional CAPM. The empirical p-values are based on 10,000 simulation trials. p-values of 
10% or less are in bold face.  
Premium:

Unconditional CAPM CCAPM CAPM LRRC LRRS 2-State-Variable RLRRC RLRRS
Panel A: OLS Risk Premiums

Equity Premium 2.48 2.20 3.84 2.03 1.72 4.62 4.04 19.70
(0.72) (0.14) (0.62) (0.44) (0.00) (0.00) (0.08)

Small-Big 1.21 1.71 1.60 -0.62 2.43 2.28 2.70 3.87
(0.64) (0.43) (0.20) (0.39) (0.27) (0.00) (0.07)

Value-Growth 5.51 0.88 5.22 2.18 2.08 5.11 6.29 3.96
(0.00) (0.24) (0.01) (0.00) (0.41) (0.00) (0.63)

Win-Lose 18.30 10.90 18.10 4.58 8.47 17.70 17.80 7.21
(0.00) (0.52) (0.00) (0.00) (0.40) (0.00) (0.08)

Reversal 5.14 -0.17 4.97 -4.55 -1.79 3.58 5.43 4.02
(0.00) (0.10) (0.00) (0.00) (0.06) (0.04) (0.57)

Credit Premium 0.09 0.77 0.29 3.29 0.73 -0.03 0.58 2.23
(0.13) (0.24) (0.00) (0.25) (0.58) (0.00) (0.07)

Term Premium 1.86 1.07 2.21 0.98 -0.51 2.19 1.81 7.01
(0.01) (0.00) (0.07) (0.00) (0.33) (0.04) (0.62)

Average 4.94 2.48 5.18 1.13 1.88 5.06 5.52 6.86

Panel B: GLS Risk Premiums

Equity Premium -2.14 2.27 -0.03 2.82 3.02 5.49 n.a. n.a.
(0.00) (0.00) (0.00) (0.00) (0.00)

Small-Big -1.05 1.47 -0.15 0.35 4.57 5.22
(0.00) (0.04) (0.25) (0.00) (0.00)

Value-Growth 5.16 1.53 5.14 3.70 3.18 8.39
(0.00) (0.92) (0.32) (0.12) (0.00)

Win-Lose 19.80 12.20 19.20 5.57 8.89 14.30
(0.00) (0.04) (0.00) (0.00) (0.00)

Reversal 5.39 0.03 5.24 -3.74 -1.04 6.33
(0.00) (0.07) (0.00) (0.00) (0.19)

Credit Premium -0.69 0.59 -0.32 1.66 1.47 1.22
(0.00) (0.01) (0.00) (0.00) (0.00)

Term Premium 1.36 1.28 1.68 0.91 0.62 1.86
(0.72) (0.00) (0.23) (0.20) (0.05)

Average 3.98 2.77 4.39 1.61 2.96 6.12

    Average Pricing Errors
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Premium:
Unconditional CAPM MSEs CCAPM CAPM LRRC LRRS 2-State-Variable RLRRC RLRRS

Panel C: MSE relative to unconditional CAPM (%), OLS

Equity Premium 3.88 92.7 117.0 123.0 110.0 108.0 97.9 431.0
(0.41) (0.10) (0.04) (0.39) (0.45) (0.65) (0.49)

Small-Big 5.21 107.0 106.0 117.0 123.0 108.0 100.0 119.0
(0.35) (0.19) (0.16) (0.10) (0.36) (0.97) (0.36)

Value-Growth 4.13 89.3 100.0 105.0 109.0 101.0 100.0 127.0
(0.33) (0.97) (0.63) (0.46) (0.79) (0.95) (0.33)

Win-Lose 9.78 76.1 101.0 88.3 81.8 101.0 96.7 284.0
(0.00) (0.72) (0.67) (0.05) (0.85) (0.00) (0.63)

Reversal 4.43 114.0 98.7 122.0 120.0 111.0 101.0 104.0
(0.24) (0.20) (0.13) (0.11) (0.14) (0.43) (0.13)

Credit Premium 1.34 95.6 102.0 133.0 116.0 105.0 97.1 171.0
(0.52) (0.53) (0.18) (0.20) (0.12) (0.19) (0.58)

Term Premium 1.02 96.9 103.0 120.0 112.0 112.0 99.5 343.0
(0.69) (0.13) (0.04) (0.32) (0.06) (0.24) (0.61)

Panel D: MSE relative to unconditional CAPM (%), GLS

Equity Premium 3.88 92.8 112.0 123.0 110.0 104.0 97.4 456.0
(0.46) (0.24) (0.10) (0.50) (0.79) (0.78) (0.36)

Small-Big 5.28 95.9 103.0 101.0 120.0 99.7 98.4 114.0
(0.59) (0.43) (0.89) (0.26) (0.97) (0.81) (0.41)

Value-Growth 4.09 87.0 100.0 118.0 118.0 117.0 102.0 145.0
(0.24) (0.99) (0.20) (0.17) (0.08) (0.73) (0.29)

Win-Lose 10.20 78.2 99.6 79.6 78.0 86.5 93.0 296.0
(0.00) (0.79) (0.42) (0.03) (0.02) (0.00) (0.63)

Reversal 4.46 108.0 98.7 125.0 119.0 109.0 101.0 113.0
(0.49) (0.16) (0.13) (0.13) (0.23) (0.55) (0.19)

Credit Premium 1.33 95.6 101.0 120.0 110.0 105.0 98.2 186.0
(0.41) (0.73) (0.33) (0.41) (0.20) (0.51) (0.51)

Term Premium 0.99 98.7 103.0 116.0 114.0 114.0 103.0 372.0
(0.76) (0.09) (0.11) (0.16) (0.03) (0.12) (0.10)

MSE relative to unconditional CAPM (%)
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Figure 1: Time-Series Plots of },{  from Rolling Estimation of the RLRRS Model  
 
Time-series plots of the utility function parameters },{  , the risk aversion and the 
intertemporal elasticity of substitution (IES) from rolling estimation of the RLRRS model. The 
estimation period is 1967-2009 and the window length is 36 years. 
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