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1 Introduction

Within-industry differences in plant-level productivity are large. Averaging

across all U.S. manufacturing industries, Syverson (2004b) finds that plants

at the 90th percentile of the productivity distribution are nearly twice as

productive as plants at the 10th percentile. Explaining the causes and con-

sequences of these productivity differences are currently among the most

important research agendas in industrial organization. Existing explana-

tions include management practices, the quality of labor and capital inputs,

information technology, product substitutability, competition, research & de-

velopment, international trade, and regulation (Syverson (2011)). Within-

industry productivity differences also have implications for several other areas

of economics, including trade, labor, and macroeconomics (Bartelsman and

Doms (2000), Syverson (2011)).

In this paper, we explore an explanation for (measured) productivity dis-

persion which has largely been ignored in the economics literature: imputed

data. Nearly all economic surveys suffer from item nonresponse, i.e., respon-

dents answer some questions but not others. Most statistical agencies impute

for the missing values before making data available for secondary analyses.

The manner of imputation can strongly impact secondary analyses of the

completed data (Little and Rubin (2002)).1 We investigate the impacts of

1See Kaplan and Schulhofer-Wohl (2010) for a recent example of how
imputed data affected policymakers’ assessment of the effect of labor mobility
on unemployment in the U.S.
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imputation using the U.S. Census Bureau’s Census of Manufactures (CM)

which supports much of the empirical research on plant-level productivity.

Although the CM represents the best available data for studying U.S. plant-

level total factor productivity, imputations for nonresponse comprise a large

percentage of the data; in fact, we show that this percentage is far higher

than what is reported in the existing literature. For example, in 2007 the

imputation rates for total value of shipments, cost of electricity and cost of

materials inputs in the average 6-digit NAICS industry are, respectively, 27%,

37%, and 42%.2 The missing data pattern in the CM is non-monotone —

e.g., variable X is missing for some plants and Y is observed, while for other

plants X is observed and Y is missing. Therefore the percentage of plants

with missing data for some key variable is even higher than the imputation

rate for any given variable.

The Census Bureau imputes for missing data using a variety of methods,

including ratio imputation and conditional mean imputation. The Bureau’s

primary goal is to facilitate point estimation of industry aggregates; however,

several of the Bureau’s imputation methods are not appropriate for multivari-

ate regression analysis of microdata — such as estimating plant-level total

factor productivity — because these methods can distort covariances and

correlations between variables and lead to underestimates of standard errors

2In calculating these imputation rates, following most researchers who use
the CM data, we exclude so-called administrative records (AR) cases. These
AR plants, which each have fewer than 5 employees, account for about a
third of the total number of plants in the CM.
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(Schafer and Graham (2002) and Little and Rubin (2002)). We find that

functions of key variables in the completed data show evidence of attenua-

tion and under-estimation of variability. Further, the impacts of imputations

are not limited to a few industries and are not mitigated by using statistics

that are robust to outliers. The imputations are pervasive, affecting many

industries that have been studied previously.

Ex ante it is not obvious how imputed data will affect estimates of produc-

tivity dispersion. Total factor productivity is a ratio of output over inputs.

The Census Bureau’s imputations tend to decrease dispersion in both the

numerator (output) and the denominator (inputs). Therefore imputed data

could explain some of the existing estimates of measured TFP dispersion, or

they could leave more dispersion to be explained.

What can be done about this imputed data? One solution, popular among

economists, is to drop observations with imputed values, and only analyze

the plants with complete (non-imputed) data.3 Unfortunately, it is well-

known that in general, complete case analysis — i.e, using only the plants

with no missing or imputed data — sacrifices efficiency and can lead to

biased parameter estimates.4 Even if complete case analysis does not create

3See, for example, Foster, Haltiwanger, and Syverson (2008).
4Complete cases can lead to biased parameter estimates unless the miss-

ingness mechanism is Missing Completely At Random (MCAR) (Little and
Rubin (2002)). Missingness is MCAR if the probability that the data is miss-
ing does not depend on the values of the missing data or the values of the
observed data. We find that smaller plants in the CM are more likely to have
missing data. Thus the missingness in the CM is not MCAR.
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a selection bias for some sample, given the large percentage of missing data

in the CM, the efficiency loss from using complete cases would also be large.

Hence, complete-cases is not a trustworthy solution.

As an alternative to these strategies, we create completed datasets via

multiple imputation (Rubin (1987), Reiter and Raghunathan (2007)).5 We

replace the Census Bureau’s imputations in the CM data with multiple im-

putations using sequences of classification and regression trees (CART), as

recently developed by Burgette and Reiter (2010). We describe the method

in detail in section 4. Here we provide some intuition for how it improves

on the Census Bureau’s imputation methods. First, the Bureau’s condi-

tional mean and average ratio methods put the imputed values on regression

lines, thus underestimating the true variability in the data. In contrast, the

CART method is designed to approximate the conditional distributions of

the variables being imputed. Unlike most of the Census Bureau’s imputa-

tion methods, the CART method works well for skewed distributions like

those in the manufacturing data. It also handles nonmonotone missingness

patterns, which are a common feature of economic data. Finally, the CART

method flexibly and automatically determines which of the available vari-

ables are useful predictors in the imputation model, and flexibly includes

interactions and non-linear relationships.

Using the Census Bureau-imputed data, we estimate within-industry pro-

5See Little and Rubin (2002) for discussion of the benefits of multiple
imputation over some of the methods the Census Bureau uses in the CM,
such as average ratio imputation and conditional mean imputation.

6



ductivity dispersion for several relatively homogeneous industries that have

been studied previously. Then we replace the Census Bureau’s imputations

with multiple imputations using the CART method, and we re-estimate

within-industry productivity dispersion for the same industries. Our results

suggest that there may actually be more within-industry productivity dis-

persion than the existing literature suggests.

These results have implications for counterfactual policy experiments such

as those suggested in Hsieh and Klenow (2009) and for cross-country compar-

isons of allocative efficiency (e.g., Bartelsman, Haltiwanger, and Scarpetta

(2008)). If there is more within-industry productivity dispersion in U.S. man-

ufacturing than previous research suggests, productivity losses from misallo-

cation in other countries may not be as large as Hsieh and Klenow (2009)

suggests. On the other hand, the extent of distortions and misallocation in

U.S. manufacturing may be greater than the existing literature suggests.

We also investigate how imputed data affects some key empirical rela-

tionships between productivity and other economic variables. First, follow-

ing Foster, Haltiwanger, and Syverson (2008), we estimate the probability

of plant exit conditional on plant-level prices, capital stocks, and plant-level

productivity. When we use the Census Bureau’s imputations, we reproduce

FHS’s result that (conditional on plant-level productivity and capital stocks)

plant-level prices are associated with significant decreases in exit probabil-

ities. However, when we estimate the same regression using only plants

with non-imputed price and quantity data, the price coefficient is attenuated
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and no longer statistically significant. The Census Bureau’s imputations ap-

pear to create an artificially strong relationship between exit and plant-level

prices, conditional on productivity and capital stocks. When we replace the

Bureau’s imputations with multiply-imputed CART data, the coefficient on

prices is also attenuated and statistically insignificant.

In a second example, following Syverson (2004a), we regress local market-

level productivity and size moments on a measure of demand density for the

ready-mix concrete industry. Using the Census Bureau’s imputations, we

largely confirm Syverson’s results. However, when we replace the Census

Bureau’s imputations with multiply-imputed data using CART, the demand

density coefficients are significantly affected, and in some cases the sign is

reversed.

Our results should be of interest beyond the community of researchers who

study plant-level productivity and its causes and consequences. Plant-level

U.S. Census manufacturing data has been used to study a variety of other

topics, including why firms export (Bernard and Jensen (2004)), the effects

of environmental regulation on manufacturing plants (Becker and Henderson

(2001) and Greenestone (2002)), product switching (Bernard, Redding, and

Schott (2010)), industry agglomeration (Ellison, Glaeser, and Kerr (2010)),

and firm structure and plant exit (Bernard and Jensen (2007)), just to name

a few examples. Given the documented deficiencies of imputation techniques

like those used by the Census Bureau, the differential results suggest that

improved imputation procedures like the one presented here would benefit
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users of these data or many other economic datasets containing imputed

data.

The next section describes how we estimate plant-level productivity. Sec-

tion 3 describes the data and how the Census Bureau’s imputations affect

ratios of key variables in the data. Section 4 describes the sequential CART

multiple imputation method. Section 5 describes our sample selection strat-

egy and how we choose variables for the imputation model. Section 6 shows

how the imputations affect estimates of productivity dispersion and some key

empirical relationships between productivity and other variables. Section 7

presents validity checks of our imputations. Section 8 concludes.

2 Plant-level Productivity Estimation

Conceptually, total-factor productivity (TFP) is how much output is pro-

duced from a given level of all measurable inputs. Plants with higher TFP

produce more output from the same level of inputs, or the same output with

lower levels of inputs. Syverson (2011) reviews several ways of estimating

plant-level TFP and the measurement issues inherent in each approach. We

use a popular method: we use industry cost shares to estimate a production

function. Specifically, for each industry, we assume that the technology of

every plant within an industry can be approximated by a 4-factor Cobb-

Douglas production function. We calculate two measures of TFP for plant i

in a given year. First, we calculate TFP based on the quantity of the plant’s
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physical output:

TFPQi = lnQi − βklnKi − βllnLi − βelnEi − βmlnMi (1)

where Qi is the quantity of physical output of plant i, Ki is the capital stock,

Li is labor, Ei is energy, Mi is materials, and the βs are the respective output

elasticities for each input. We also calculate a TFP measure based on the

plant’s revenues:

TTFPi = ln(PiQi)− βklnKi − βllnLi − βelnEi − βmlnMi (2)

where PiQi is the total value of the plant’s output.6 We describe the variable

construction in more detail in the appendix.

This method of estimating productivity has well-known deficiences (see,

e.g., Griliches and Mairesse (1995)). Previous research (e.g., Van Biesebroeck

(2004)) has analyzed the strengths and weaknesses of various other methods

of estimating productivity. For example, proxy methods (Olley and Pakes

(1996), Levinsohn and Petrin (2003), Wooldridge (2009)) address the well-

known endogeneity issue (Marschak and Andrews (1944)) and do not impose

constant returns to scale. However, our main goal in this paper is to show

how different methods of imputing for missing data affect widely-used esti-

mates of plant-level productivity dispersion and key empirical relationships

between productivity and other variables. Using cost-shares to estimate the

6FHS call this measure “Traditional TFP.”
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parameters in equations 1 and 2 is the approach used in some of the most

influential research in the productivity literature.7 Thus this choice facili-

tates comparisons with the existing literature on plant-level productivity. To

the extent that other methods of estimating production functions are more

sensitive to imputed data, the resulting productivity estimates may also be

more sensitive to imputed data.

3 The Impact of Imputed Data in the Census

of Manufactures

The quinquennial Census of Manufactures (CM) includes data on roughly

300,000 manufacturing plants. The data for the smallest plants — about a

third of the sample — is entirely imputed. Following most researchers who

use the CM, we exclude these so-called administrative records plants from

all of our analysis.

Over the years, the CM has been plagued by item non-response, and

the Census Bureau has created imputations for this missing data. However,

until the 2002 census, it was difficult to identify which, if any, items for a

given plant were imputed due to item nonresponse, because item-level flags

were not made available. Previous researchers developed several clever ways

7For example, Bailey, Hulten, and Campbell (1992), Syverson (2004b),
Syverson (2004a), and Foster, Haltiwanger, and Syverson (2008), all use this
approach. Hsieh and Klenow (2009) also use cost shares, although they
estimate two-factor value-added production functions.
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to identify some of the imputed values.8 However, the item-level flags that

became available in the 2002 Census show that a much higher percentage of

observations are imputed than are identified by these methods.

Table 1 presents the means and standard deviations of the within-industry

imputation rates for key variables for all 6-digit NAICS industries (the most

detailed level of industry classification) from the 2002 and 2007 Censuses. It

is clear that high percentages of data are imputed. For example, in both 2002

and 2007, for the average industry about 27% of the data on the total value of

shipments are imputed. For some other key variables, the mean imputation

rate is even higher. There is also significant variation in the imputation rates

across industries. For example, an industry that is one standard deviation

above the mean cost of materials imputation rate would have roughly 52% of

its materials data imputed in 2007. Note that these are imputation rates for a

given variable, and the missingness pattern in the CM data is nonmonotone.

In a multivariate analysis — such as estimating total factor productivity —

the percentage of plants that have imputed data for some variable is usually

larger than the percentage of plants that have missing data for any given

variable.

The Census Bureau uses a variety of methods to impute for missing data,

including conditional mean imputation and industry average ratio imputa-

tion. The industry average ratio method imputes for missing values of vari-

8See for example, Dunne (1998), Foster, Haltiwanger, and Syverson
(2008), Roberts and Supina (1996), and Roberts and Supina (2000).
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able Y by multiplying the observed value of variableX by an industry average

ratio:

Y imp
i = Xi

(Y
X

)
(3)

where Y imp
i is the imputed value of Y for plant i, Xi is the observed value of

X for the same plant, and
(
Y
X

)
, is an average ratio of Y

X
for plant i’s industry.

Thus all the imputed values for Y lie on a regression line running through

the origin, where the slope is the industry average ratio Y
X

. Estimates of

the variance of Y conditional on X using data imputed this way understate

the true conditional variance. The same is true for the conditional mean

imputation method.

Furthermore, these methods can introduce bias into estimated relation-

ships between variables. To see this, suppose that we use the industry average

ratio method to impute for Y conditional on X, but in the true (unobserved)

data Z is a strong predictor for Y even after conditioning on X. Then sup-

pose we regress Y (including the imputed values of Y ) on X and Z. The

coefficient on Z will be attenuated, because the imputed values of Y incor-

rectly generate conditional independencies in a subset of observations.9 The

same logic applies to conditional mean imputation if an important predictor

is omitted from the imputation model.

To get some sense of how the Census Bureau’s imputations are affecting

the relationships between key variables in the CM data, we compute the

9Note that in this case the ratio imputation method introduces measure-
ment error (in Y ) that is correlated with the explanatory variable Z.
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following ratio for several input variables X:

RX =
IQR(

Ximp

TV SimpX
)

IQR( Xobs

TV Sobs
)

(4)

where IQR(Z) is the interquartile range of Z, Ximp represents imputed cases

for the variable X, TV SimpX are the corresponding observations for the total

value of shipments (which may be either imputed or observed), Xobs are

observed cases for the variable X, and TV Sobs are the corresponding TVS

observations. A ratio less than one is evidence that there is less dispersion in

the ratio X/TV S in the imputed data than there is in the observed data. We

compute these ratios for several inputs: capital, production worker hours, the

cost of materials, the cost of electricity, and the cost of fuels. Table 2 presents

the ratio of IQRs for the industries at the 25th, 50th, and 75th percentiles

of the industry distributions. The results suggest that the Census Bureau’s

imputations tend to reduce the amount of within-industry variation in the

ratios of key variables, in some cases quite drastically. In both years, for

most industries, and for all of these key input variables, when a variable X

is imputed, there is much less variation in the X/TV S ratio than there is

when X is observed. Since total factor productivity essentially measures the

relationship between output and these inputs, it seems likely that estimates of

productivity dispersion will be affected by the Census Bureau’s imputations.
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4 Multiple Imputation using Classification and

Regression Trees

Given the evidence of the impact of imputed data in table 2 and the de-

ficiences of the Census Bureau’s imputation methods, we replace the Bu-

reau’s imputations with multiple imputations created via sequential regres-

sion trees, as developed by Burgette and Reiter (2010).10 Before describing

the details of the CART method, we provide some intuition for how it im-

proves on the Census Bureau’s imputation methods. First, as noted above,

the Bureau’s conditional mean and average ratio methods put the imputed

values on regression lines, thus underestimating the true variability in the

data. In contrast, the CART method is designed to approximate the con-

ditional distributions of the variables being imputed. Second, some of the

Bureau’s imputation methods use very simple models, conditioning on a

single variable. As noted above, this can introduce bias in estimates of re-

lationships between the imputed variable and other variables. The CART

method is designed to avoid this problem by potentially conditioning on any

available variables (as well as interactions of those variables). The CART

method has also been shown to perform well in the related problem of gen-

erating synthetic data (Reiter (2005), Drechler and Reiter (2011), and Wang

and Reiter (2012)). This suggests that the CART method is also likely to

10The code for implementing the sequential CART method is available on
the internet at http://www.burgette.org/software.html.
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produce reasonable imputations for missing data in the CM.

Classification and regression trees (CART) approximate the conditional

distribution of a single variable using multiple predictors (see Breiman, Fried-

man, Olshen, and Stone (1984), Hastie, Tibshirani, and Friedman (2009), and

Ripley (2009)). Intuitively, the procedure is designed to classify units (in our

application, manufacturing plants) into relatively homogeneous groups. One

can think of the algorithm as building a tree from the ground up, where the

leaves of the tree contain sets of similar plants. Suppose, for example, we are

building an imputation model for plant output, and suppose that we have

only one potential predictor: employment. In the each stage of the tree-

building process, the goal is to use employment to divide the plants into two

subgroups that are more homogeneous in plant output than the group that is

being divided. The CART algorithm searches through all the observed values

of employment for the threshold such that the variance of output within the

two subgroups (above and below the employment threshold), is reduced the

most. This split results in the first two branches in the tree — plants with

employment values below the threshold are put in one branch, and those

above the threshold are put in the other branch. The process continues re-

cursively on each branch of the tree until the “leaves” contain some minimum

number of plants or until the leaves all meet some criteria for homogeneity.

Of course, in general there will be many potential predictors available.

In the general case, at each stage of the tree-building process, the algorithm

searches over all observed values (within a given branch) of all the predictors
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for the split which most reduces the variance of output in that branch. Once

the tree for output is built, imputations for output are created by taking

draws from the output observations in the appropriate leaves of the tree.

Thus imputations for missing output for plant i are drawn from observed

output values of plants that are similar to i. A separate tree is built for each

variable in the dataset, and the entire process is repeated multiple times to

create multiple imputations for each missing value.

We now describe the procedure in more detail. We run the imputation

process separately for each industry. We begin the process in any industry

by deleting (making missing) any Census Bureau imputations identified by

the item-level edit/impute flags and filling in initial guesses for these missing

data to create completed datasets for the industry; see Burgette and Reiter

(2010) for an explanation of how to obtain initial guesses. Then, we order

the variables in terms of increasing percentages of missing data. For the first

variable in this ordering with missing data, say Y1, we fit the tree of Y1 on all

other variables, say Y−1, so that each leaf contains at least k records; call this

tree Y(1). We use k = 5, which is a default specification in many applications

of CART, to provide sufficient accuracy and reasonably fast running time.

We grow Y(1) by finding the splits that successively minimize the variance of

Y1 in the leaves. We cease splitting any particular leaf when the variance in

that leaf is less than 0.00001 times the variance in the marginal distribution

of Y1 or when we cannot ensure at least k records in each child leaf. For any

plant with missing data, we trace down the branches of Y(1) until we find
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that plant’s terminal leaf. Let Lw be the wth terminal leaf in Y(1), and let

Y
(1)
Lw

be the nLw values of Y1 in leaf Lw. For all records whose terminal leaf

is Lw, we generate replacement values of Yij by drawing from Y
(1)
Lw

using the

Bayesian bootstrap (Rubin (1981)). Repeating the Bayesian bootstrap for

each leaf of Y(1) results in an initial set of plausible values.

We next move to the second variable in the ordering with missing data,

say Y2. We fit the tree of Y2 on all other variables, which we call Y(2), using

the newly completed values of Y1. We run observations down Y(2) to create

plausible values for Y2. The process continues for each Yi in the ordering,

each time using the newly imputed values of Y−i to fit the tree and in locating

leaves. We then cycle through this process ten times to help move the trees

away from the initial starting values. The end result is one completed dataset.

We repeat this entire process 20 times to generate 20 completed datasets.

By cycling through the process ten times between completed datasets, we

minimize dependence between the completed datasets.11

5 Sample Selection and Imputation Model

In order to directly investigate the impact of imputation on estimates of

plant-level productivity dispersion, we select a few detailed industries. Our

industry selections are motivated by two factors. First, we want to choose

11This independence allows us to use Rubin’s (1987) combining formulas
to estimate the impact of imputed data on our standard errors, which we
cannot do with the Census Bureau’s single imputations.
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industries that have been studied previously, to facilitate comparision with

the existing literature on plant-level productivity. Second, we want to select

industries that are relatively homogeneous. In industries that are relatively

homogeneous, plants with missing data are likely to be relatively similar to

plants with complete data. Thus for homogeneous industries we would think

that the Census Bureau’s relatively simple imputation methods would have a

better chance of preserving the relationships in the data between productivity

and other variables.

To satisfy both of our criteria we select the manufacturing industries stud-

ied in Foster, Haltiwanger, and Syverson (2008): boxes, white pan bread,

carbon black, coffee, ready-mix concrete, hardwood flooring, motor gasoline,

ice, plywood, and sugar.12 According to FHS, “Producers of these prod-

ucts make outputs that are among the most physically homogeneous in the

manufacturing sector.” For all of these industries except concrete, in at least

one year we have data on the values and physical quantities of the products

the plants produce.13 This allows us to construct plant-level prices and to

ensure that the plants in our sample are specializing in the same product

or products. We describe our sample selection procedure in detail in the

appendix.

12Some of these industries have also been studied previously by Roberts
and Supina (1996), Roberts and Supina (2000), and Davis, Grim, and Halti-
wanger (2008).

13For two of the industries — motor gasoline and ice manufacturing —
we also have consistent measures of product-level physical quantities in both
2002 and 2007.
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Table 3 shows the sample size and imputation rates for key variables

for each of our selected industries. Except for the concrete industry, the

imputation rates in our sample are significantly lower than in the average

manufacturing industry. However, the imputation rate for physical quantity

of product shipped, at 45%, is substantially higher than the rates for the

other variables. In the ready-mix concrete industry, for most variables the

imputation rates are close to the manufacturing average. As noted above,

the missingness pattern in the CM data is nonmonotone, and measuring

TFP requires using combinations of all of the variables in table 3. Thus

the percentage of plants with missing/imputed data for at least one of the

variables is higher than the imputation rate for any given variable. In the

next section we describe the sequential CART method, which we use to create

multiple imputations to replace each of the Census Bureau’s imputations.

What variables should be included in the imputation model? Little and

Rubin (2002) and Schafer and Graham (2002) provide guidance on this point

for multiple imputation methods in general. Essentially, the imputer should

include as input to the imputation procedure any available variable he thinks

is not independent of the other variables, including any variable that will be

used in the subsequent analysis. For any given “dependent” variable, the

CART procedure only splits on predictors that are useful for characteriz-

ing the conditional distribution of that variable. Since we want to analyze

total factor productivity, we include any variable in the CM that is used

to calcuate TFP, as well as variables that we expect to be useful predic-
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tors of these variables. These considerations lead us to include a rich set of

variables as inputs to the CART procedure. For each industry in table 3

except concrete, the potential predictors for each tree include — whenever

the variable is not the dependent variable — the value of product shipments,

the physical quantity of product shipments, the book value of assets, the

cost of purchased electricity, the cost of fuels, the total cost of materials,

the number of production workers, production worker hours, total salaries

and wages, production worker wages, the total value of shipments, and the

number of non-production workers. Since we also plan to analyze the rela-

tionship between plant-level productivity and plant survival, we also include

as a potential predictor an indicator for whether or not the plant exited be-

tween 2002 and 2007. For the ready-mix concrete industry, we have a larger

sample size and slightly different set of available variables, so we build a

somewhat different imputation model. We describe the variable selection for

the concrete industry in section 6.2.

6 Results

Table 4 presents within-industry productivity and price dispersion statistics

for the industry-years for which we are able to calculate them. For each

measure — TTFP, TFPQ, and prices — we compute the ratio of the 75th

percentile to the 25th percentile. Columns 1, 3, and 5 present these statistics

calculated from the Bureau-completed data, which includes both the non-
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imputed data and the Census Bureau’s imputations for missing data. Like

FHS, we find more within-industry dispersion in the physical quantity-based

productivity measure, TFPQ, than in the revenue-based measure. With the

exception of boxes and plywood, product prices in the Bureau-completed

data are also less dispersed than either measure of productivity — this is

also consistent with FHS’s findings.

Columns 2, 4, and 6 of table 4 present estimates of within-industry pro-

ductivity and price dispersion based on datasets completed with the se-

quential CART method. We compute each statistic separately from each

of our 20 completed datasets, and report the means of the 20 estimates.

Comparing columns 1 and 2, for every industry except bread there is more

within-industry TTFP dispersion in the CART-completed data than in the

Bureau-completed data, and in some industries, there is much more disper-

sion. Comparing TFPQ (columns 3 and 4) and prices (columns 5 and 6), the

differences between the CART-completed data and the Bureau-completed

data are even larger. For the average industry-year in our sample, TFPQ

dispersion is 30% higher in the CART-completed data and price dispersion

is 46% higher.

The impact of imputed data also varies substantially across industries.

TFPQ and prices for plywood are impacted the most, perhaps because of

the relatively small sample size, and the relatively heterogeneous products

the industry produces (compared to the other industries in our sample).

Productivity and price dispersion estimates for the gasoline industry seem to
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be the least affected by imputed data, perhaps because the primary products

are quite homogeneous.

How do the dispersion measures in the Bureau-completed data and the

CART-completed data compare to dispersion measures in the non-imputed

data? To answer this question we calculate productivity and price dispersion

statistics for the subset of plants in our sample that have no imputed data.14

For each industry-year statistic in table 4, we compute the ratio of that

statistic in the non-imputed data over the same statistic calculated from the

Bureau-completed data. A ratio greater than 1 indicates that there is more

dispersion in the non-imputed data than in the completed data. For TTFP,

on average there is slightly less dispersion in the non-imputed data than in

the Bureau-completed data — the average ratio is 0.96 — although there is

some industry-year variation in this ratio. For the average industry-year, the

75-25 TFPQ ratio is 14% larger and the price dispersion is 22% greater in

the non-imputed data than in the Bureau-completed data. Thus, on average

the TFPQ and price dispersion measures in the non-imputed data lie about

half way between the dispersion estimates from the Bureau-completed data

and the CART-completed data.

14For the productivity statistics, these are plants that have non-imputed
data for all the variables required to calculate productivity. For the price
statistics, we only required that the plants have non-imputed product quan-
tity and product value data. Only about 43% of the plants in our sample
in have fully-observed (non-imputed) data for productivity, and about 62%
have non-imputed data for product quantity and value data. Thus the ef-
ficiency losses from using only complete cases in this sample could be quite
large.
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If our CART imputation models are correct,15 these results suggest that in

addition to the (substantial) efficiency losses that would result from complete-

cases analysis, using only complete cases would also create a sample selection

bias. Smaller plants are more likely to have missing data, so the apparent

sample selection bias may be the result of correlations between size, produc-

tivity and prices.

The lower degree of price dispersion in the Bureau-completed data is

not surprising given what we know about the Census Bureau’s imputation

methods. Although the Bureau uses a variety of imputation methods and

models for some variables, for the product physical quantity data, it primarily

uses the industry average ratio method. This method imputes for missing

quantity data by multiplying the value of the product shipments (for the

same plant) by an industry average ratio of product quantity to product

value. This implicitly assumes that all plants with imputed physical quantity

data for a given product sell the product for the same price. Given the

degree of within-industry price dispersion we see in the non-imputed data,

this imputation method is at least part of the reason price dispersion is

significantly lower in the Bureau-completed data. Since small plants are

more likely to have missing data than larger plants, plugging in industry

averages could underestimate dispersion even further than if their were no

relationship between plant size and missingness.

The method of imputing for missing data clearly affects estimates of

15We check the validity of the CART imputation models in section 7.
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within-industry productivity and price dispersion. But do imputations affect

key empirical relationships between productivity and other variables? In the

next subsections we show that they do.

6.1 Productivity, Prices and Plant Survival

Foster, Haltiwanger, and Syverson (2008) build on an important theoretical

and empirical literature analyzing and documenting the connection between

producers’ productivity and survival and its affect on industry aggregates

(Jovanovic (1982), Ericson and Pakes (1995), Melitz (2003), and Bartelsman

and Doms (2000)). One of FHS’s contributions is to separately measure the

effects of productivity and prices on plant survival. Specificallly, they find

that, controlling for physical productivity (TFPQ) and plant capital stock,

plants with higher output prices are less likely to exit. FHS interpret the

price coefficient as a demand effect.

FHS use data from the Censuses of Manufactures for 1977-1997, and

it is difficult to identify imputed data for these years. Here we attempt to

replicate FHS’s results using the 2002 and 2007 CM data, so that we can take

advantage of the item-level impute flags to identify imputed data. To the

extent possible we use FHS’s sample selection strategy. The main difference is

that we exclude concrete plants, since the Census Bureau stopped collecting

physical quantity data for this industry in 1992.16 Following FHS, we use

16We describe our industry definitions and sample selection strategy in
detail in the appendix.
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probit regressions to estimate the probability that a plant exits between 2002

and 2007, conditional on the plant’s productivity, output price, and capital

stock.17

Table 5 presents the results of the probit regression run on different sam-

ples. All the regressions include industry fixed effects (not reported). Column

1 shows the results from the Bureau-completed data. Like FHS, we find that

a higher capital stock, higher productivity, and higher prices are associated

with a statistically significantly lower probability of exit.18 Column 2 re-

ports the results when we run the same regression on only the plants with

imputed product physical quantity data. The coefficient on physical pro-

ductivity is 36% larger in magnitude, and the coefficient on prices is almost

3 times larger in magnitude compared to column 1. Column 3 shows the

results when we repeat the same regression on the sample of plants with ob-

served (non-imputed) product physical quantity data. Compared to column

2 the coefficient on physical TFP is about 40% smaller in magnitude, the

price coefficient is about 80% smaller, and neither coefficient is statistically

significant. The Census Bureau’s imputations seem to strongly affect the es-

timated relationship between prices and the probability of exit, conditional

on plant-level productivity and capital stock.

17The exit rate in our estimation sample is 18.4%, which is quite similar
to the average exit rate of 19.6% in FHS’s sample.

18FHS also estimate a probit, but report the marginal effects. For com-
parison, our estimated marginal effects for physical TFP, prices, and capital
(evaluated at the sample mean) are, respectively, -0.099, -0.092, and -0.042.
These are similar to FHS’s estimates.
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Column 4 of table 5 shows the results of the same probit regression run on

the CART-completed dataset. We estimate each probit separately on each of

the 20 CART datasets and report the means for each coefficient. We compute

the standard errors using Rubin’s (1987) combining formula. The coefficients

on physical TFP and capital are still significant, but the price coefficient is

no longer significant. The relationship between plant-level prices and plant

survival, conditional on physical productivity and capital, does not seem to

be as strong as the Bureau-completed data suggests.

6.2 Another Concrete Example: Productivity and Mar-

ket Structure

The ready-mix concrete industry has been studied by a number of economists

— Syverson (2008) reviews some of this research. Perhaps most notably,

Syverson (2004a) uses data from the 1982-1992 Censuses of Manufactures

to study the industry. Because ready-mix concrete is subject to high trans-

port costs, the industry’s output markets are geographically segmented. The

product is also relatively homogeneous. Syverson takes advantage of these

features of the industry to assess the impact of market-level demand shocks

on market structure and market-level moments of the productivity distribu-

tion. Here we attempt to replicate some of Syverson’s findings using the 2002

and 2007 Censuses, and we assess the impact of imputation on the results.

Following Syverson, we use the Bureau of Economic Analysis’s component
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economic area (CEA) as our market definition, and we select producers in

markets with at least 5 concrete plants. For each plant-year observation

we calculate traditional TFP as in equation 2. For each market-year, we

calculate the median TFP, the interquartile range (IQR) of TFP, output-

weighted mean TFP, the 10th percentile of TFP, the log of average plant

output, and Syverson’s measure of concrete demand density — construction

sector employment per square mile.19 Table A3 in the appendix presents

descriptive statistics for our sample, computed from the Bureau-completed

data.20

We regress each market-year moment of productivity or output on the log

of market demand density. Table 6 presents estimates and heteroskedasticity-

robust standard errors for the coefficient on demand density. Columns 1

and 2 show the results of two specifications run on the Bureau-completed

data. With the exception of the output-weighted mean TFP regression, the

magnitudes of the coefficients are roughly the same as Syverson’s results and

the sign pattern is the same: within-market TFP dispersion is negatively

associated with demand density, and median TFP, 10th percentile TFP, and

average output are positively associated with demand density. The demand

19We describe the variable construction in more detail in the appendix.
20Compared to Syverson’s sample, in the average market we have about

3 more plants with TFP data, and the interquartile range of the number
of plants per market is exactly the same. In our sample there is more
across-market variation in within-market TFP dispersion, median TFP, and
weighted mean TFP, less variation in the 10th percentile of TFP and demand
density, and about the same variation in average output.
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density coefficient is statistically significant at the 5% or 1% level in the latter

three regressions.

The across-market output and TFP variation that we see in table A3

and the results in the first two columns of table 6 suggest that market-level

demand density is a useful predictor of plant size and productivity. Accord-

ingly, in addition to the input and output variables included as potential

predictors in the imputation models for the other industries, for the concrete

industry we include demand density as a potential predictor in the impu-

tation model. On the other hand, we do not observe plant-level physical

quantities of output for the concrete industry, so we cannot include them as

potential predictors in the imputation model.

We create 20 CART-completed datasets for the concrete industry and

run the regressions separately on each dataset. Columns 3 and 4 of table

6 show the means of the 20 estimates for each regression. We combine the

heteroskedasticity-robust standard errors from each of the 20 regressions us-

ing the combining formulas in Rubin (1987). The imputations have a strong

impact on some of the results. The demand density coefficients are now much

larger in the TFP dispersion regressions and 10th percentile of TFP regres-

sions, and the coefficients are now statistically significant in the former. In

the median TFP regressions, the demand density coefficient changes sign and

increases in magnitude.

Why do the imputations affect the results in this way? It turns out

that in the concrete industry, demand density is correlated with the market-
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level imputation rate: in a regression of log demand density on the market-

level fraction of concrete TFP data that is imputed, the coefficient on the

imputation rate is −0.51. Markets with lower levels of demand density have

higher percentages of imputed concrete data in the CM. Since the Census

Bureau’s imputation methods tend to affect the overall distribution of TFP

we see in the observed data, these imputations also affect the estimated

relationships between market-level TFP and demand density.

7 Validity Checks

Intuition and the statistical literature on imputation suggest that the CART

method should do a better job of capturing the joint distribution of the

data than, for example the Census Bureau’s industry average ratio method.

However, it is still possible that the CART imputations are distorting the

joint distribution of the variables in our data in a way that leads to biased

estimates of productivity dispersion or the regression coefficients in tables 5

or 6. To check the validity of our imputation models for the analyses above,

we use posterior predictive checks (He, Zaslavsky, Harrington, Catalano, and

Landrum (2010)). Intuitively, we use the CART method to create many pairs

of datasets, where the first dataset in each pair includes imputed and non-

imputed data, while the second dataset is (almost) entirely imputed. Then

we re-estimate the regressions and productivity dispersion statistics on each

dataset. If, for example, the regression coefficient of interest is consistently
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higher in the almost entirely imputed datasets, then this is evidence that

the imputation model may be leading to upward-biased estimates of that

coefficient.

We now provide a formal description of the validity checks. Following

Burgette and Reiter (2010), suppose that the n by k data matrix Y is ar-

ranged so that Y = (Yp|Yc), where Yp are the p partially observed columns of

Y and Yc are the remaining k− p columns that are completely observed. Let

Yobs denote the set of observed elements in Y , and let Ymis denote the set of

missing elements. For each industry, we use the CART method to create 500

pairs of datasets. The first dataset in each pair is a completed dataset, in

which we create imputations for each element of Ymis. To create the second

dataset in each pair, we replace every element of Yp, including elements that

were not imputed in the original data. To do this, we take draws from the

predictive distribution of Yp conditional on Yc using the tree fitted to create

the first dataset in the pair. Let the second dataset in each pair be called

the predicted datasets. We then estimate the parameter of interest — the

within-industry productivity or price dispersion or a regression coefficient —

separately on each dataset. For each of the 500 pairs of datasets, we compute

the differences between the parameter estimates from the completed dataset

and those from the predicted dataset. Finally, for each parameter θj, we
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compute a two-sided posterior predictive P-value:

Pj =
2

500
min{

500∑
i=1

I(θ̂imp,ij−θ̂pred,ij),
500∑
i=1

I(θ̂pred,ij−θ̂imp,ij)} (5)

where I(x) equals one if x > 0 and equals zero otherwise. Here, θ̂imp,ij is

the estimate of parameter θj — a regression coefficient or within-industry

dispersion measure — from the ith completed dataset, and θ̂pred,ij is the

estimate from the ith predicted dataset. If the predicted data come from

the same distribution as the completed data, we would expect θ̂imp,ij to be

higher than θ̂pred,ij for about half the dataset pairs and lower than θ̂pred,ij

in the other half. A small Pj indicates that the θ̂pred,i consistently differs

from θ̂imp,i in one direction. This would suggest that the imputation model

does not adequately capture the relationships in the data, and thus estimates

based on the imputed data may be biased.

We calculate P for each measure of productivity and price dispersion

in table 4 and for the regressions presented in tables 5 and 6For 24 of the

33 dispersion moments estimated in table 4, the associated P probabilities

are greater than 0.05, and 20 of them are greater than 0.10.21 In the few

cases where there is evidence of a bias, the biases tend to be small. For

example, the traditional TFP dispersion for the boxes industries tends to

be only about 5 percentage points higher in the predicted data than in the

completed data, and there is no evidence of bias in the physical TFP or price

21We provide the full set of P values in table A4 in the appendix.
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dispersion statistics for the boxes industry.

For the exit probits in table 5, the P probabilities associated with the

coefficients on physical TFP, prices, and capital are, respectively, 0.24, 0.24,

and 0.06. Thus we find no evidence that the CART imputations are leading

to biased estimates of the coefficients that are most affected by the imputa-

tion method — the coefficients on physical TFP and prices. Together this

evidence suggests that the CART model generates plausible data with respect

to most of the estimated relationships represented in tables 4 and 5.

In table 6, for the regressions with productivity dispersion as the de-

pendent variable, the validity checks provide no evidence that the CART

imputations lead to a bias in the demand density coefficients.22 In the other

regressions in table 6, the validity checks suggest there is a positive bias in

the demand density coefficients. However, in the median TFP and weighted-

mean TFP regressions, this bias works against finding that the imputation

method matters. In the median TFP regressions, we find negative, statisti-

cally significant coefficients in the CART data despite evidence of a positive

bias.

22We report the P values for the regressions in 6 in table A5 in the ap-
pendix.
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8 Conclusions and Suggestions for Further Re-

search

Much of the literature on plant-level productivity uses the Census Bureau’s

Census of Manufactures (CM). A surprisingly large percentage of the CM

data is imputed. Our results suggest that these imputations have an eco-

nomically significant effect on estimates of within-industry productivity dis-

persion as well as relationships between productivity and other important

economic variables.

Using classification and regression trees (CART), we provide a new set of

multiple imputations that seek to better preserve the joint distribution of key

variables in the data and thus provide more accurate estimates of plant-level

productivity dispersion and the relationships between productivity and other

economic variables. The estimates of within-industry TFP dispersion using

CART-completed data are often significantly higher than estimates based on

the Census Bureau-completed data. These results suggest that there is more

within-industry productivity dispersion than the previous literature suggests.

We also find that estimated relationships between productivity and demand

density, and between prices, capital, and plant survival are not robust to

replacing Bureau-imputed data with CART-imputed data.

In addition to demand density, prices, and capital stocks, the existing

literature provides a variety of explanations for measured within-industry

productivity differences, including heterogeneity in management practices,
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the quality of labor inputs, information technology, research and develop-

ment, international trade, and regulation. These variables are not part of

the Census Bureau’s imputation models for the CM. Most existing research

using Census Bureau manufacturing data was unable to identify much of the

imputed data. This suggests that many existing estimates of the relation-

ships between U.S. manufacturing productivity and other key variables may

be biased.

Our findings also have broader implications. Although imputation for

missing data is a well-developed field in statistics, economists have ignored

many of its findings. Complete-cases analysis is known to lead to biased

parameter estimates except under restrictive assumptions (Little and Rubin

(2002)), but economists still routinely drop imputed data from their samples

without correcting for sample selection bias. The goals of statistical agencies

that collect microdata and publish aggregate statistics are typically different

from the goals of economists and other researchers who use the microdata the

agencies collect. As a result, statistical agencies’ imputations for missing data

are often not suitable for multivariate microeconometric analysis. In the past,

it was difficult to identify imputed data in many economic microdatasets.

Fortunately, in recent years, the U.S. Census Bureau and other agencies have

made it easier identify imputations in their microdata. Our results suggest

that using this information and improved imputation procedures like the one

presented here would benefit users of these datasets as well as consumers of

their research.
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Table 1: Imputation Rates for Key Variables At 6-digit NAICS Industry

Level, 2002 and 2007 Censuses of Manufactures

Total Production Cost of

Value of Book Value Worker Purchased Cost of Cost of

year Statistic Shipments of Assets Hours Electricity Fuels Materials

2002 Mean 27% 31% 19% 38% 37% 42%

s.d. 9% 10% 7% 14% 14% 10%

2007 Mean 27% 32% 31% 37% 35% 42%

s.d. 9% 10% 13% 13% 12% 10%

The table shows the means and standard deviations of 6-digit NAICS industry-level

imputation rates. The imputation rate is the percentage of tabulated non-Administrative

Records cases that are imputed by the Census Bureau.
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Table 2: Distribution of Ratios of Within-Industry Interquartile Ranges of

Ratios of Key Variables in Imputed Data vs. Fully Observed Data, 2002 and

2007 Censuses of Manufactures

Book Production Cost of

Value of Worker Purchased Cost of Cost of

percentile Assets Hours Electricity Fuels Materials

2002

25th 0.002 0.159 0.062 0.088 0.036

50th 0.004 0.293 0.112 0.174 0.208

75th 0.018 0.522 0.219 0.356 0.456

2007

25th 0.216 0.353 0.088 0.152 0.089

50th 0.369 0.486 0.179 0.370 0.262

75th 0.565 0.704 0.326 0.782 0.478

The table shows the 25th, 50th and 75th percentiles of the within-industry

interquartile range (IQR) of the ratio Ximp/TV SimpX divided by the IQR

of Xobs/TV Sobs, where Ximp represents imputed cases for the variable X,

TV SimpX are the total value of shipments for the same plants, and

Xobs/TV Sobs is the ratio when both are observed.
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Table 3: Imputation Rates for Key Variables, Selected Industries

FHS industries,

except concrete, concrete,

concrete 2002 2007

Sample Size 1453 4845 5512

Value of Shipments 12% 24% 20%

Quantity of Product 45% NA NA

Book Value of Assets 13% 25% 32%

Production Worker Hours 8% 39% 27%

Cost of Electricity 11% 35% 36%

Cost of Fuels 10% 33% 34%

Cost of Materials 19% 33% 36%

The imputation rate is the percentage of cases in the sample that are imputed

by the Census Bureau. Excluding concrete, the FHS industries are boxes, white

pan bread, carbon black, coffee, hardwood flooring, motor gasoline, ice, plywood,

and sugar.
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Table 4: Productivity and Price Dispersion, Selected Industries

75-25 TTFP Ratios 75-25 TFPQ Ratios 75-25 Price Ratios

(1) (2) (3) (4) (5) (6)

Sample Census Census Census

industry Year Size Bureau CART Bureau CART Bureau CART

boxes 2002 626 1.17 1.18 1.90 2.13 1.86 2.03

bread 2002 71 1.79 1.61 2.10 2.11 1.09 1.53

carbon black 2002 21 1.45 1.56 1.45 1.83 1.09 1.82

coffee 2002 98 1.15 1.67 1.32 2.38 1.07 1.71

flooring 2002 40 1.35 1.40 1.81 2.09 1.26 1.95

gasoline 2002 73 1.12 1.15 1.15 1.18 1.08 1.10

gasoline 2007 61 1.18 1.19 1.16 1.21 1.05 1.08

ice 2002 169 1.48 1.61 1.67 2.10 1.15 1.72

ice 2007 237 1.68 1.78 1.93 2.71 1.11 2.34

plywood 2002 36 1.26 1.29 1.89 3.96 1.50 3.11

sugar 2002 21 1.31 1.64 1.40 1.61 1.02 1.10

The table shows ratios of the 75th percentile to the 25th percentile of within-industry-year

distributions of total factor productivity (TFP) and prices. TTFP is a traditional revenue-

based TFP measure. TFPQ is based on the physical quantity of output. Columns 1, 3, & 5

show estimates from the Census Bureau-completed data. Columns 2, 4, & 6 show the

means of estimates from 20 CART-completed datasets.
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Table 5: Plant-level Productivity, Prices, and Exit

Specification (1) (2) (3) (4)

Physical TFP -0.386*** -0.526*** -0.314 -0.326**

(0.136) (0.192) (0.196) (0.162)

Prices -0.358** -0.988*** -0.178 -0.281

(0.171) (0.307) (0.223) (0.176)

Capital Stock -0.162*** -0.148*** -0.165*** -0.137***

(0.030) (0.042) (0.047) (0.029)

Sample Size 1155 434 721 1155

The table shows coefficient estimates (and heteroskedasticity-robust standard errors)

for exit probit regressions estimated on four different samples. All regressions include

industry fixed effects. The samples consists of plants in the industries in table 4.

Columns 1-3 report results from, respectively, the Census Bureau-completed data,

the sample of plants with imputed product quantity data, and plants with non-imputed

product quantity data. The final column shows the means of coefficient estimates

from 20 CART-completed datasets and robust standard errors combined using

Rubin’s (1987) combining formulas. *,**,and *** indicate significance at the

10, 5, and 1 percent levels, respectively.

46



Table 6: Concrete Productivity, Size, and Demand Density

Bureau-completed data CART-completed data

(1) (2) (3) (4)

TFP interquartile range -0.019 -0.019 -0.147*** -0.146***

(0.012) (0.012) (0.048) (0.048)

Median TFP 0.015** 0.013** -0.054** -0.054**

(0.007) (0.006) (0.022) (0.022)

Output-weighted mean TFP 0.001 0.000 0.006 0.006

(0.014) (0.014) (0.027) (0.027)

10th percentile TFP 0.025*** 0.023*** 0.141* 0.140*

(0.007) (0.006) (0.079) (0.078)

Mean output 0.202*** 0.202*** 0.208*** 0.207***

(0.023) (0.023) (0.023) (0.022)

Year dummies? no yes no yes

The table shows estimated coefficients on demand density when market-level

productivity and output statistics are regressed on demand density. The sample

consists of 444 market-year observations. Heteroskedasticity-robust standard

errors are in parentheses. The first two columns show estimates from Census

Bureau-completed data. Columns 3 and 4 show the means of coefficient estimates

from 20 CART-completed datasets and robust standard errors combined using

Rubin’s (1987) combining formulas.
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Appendices

In this online appendix we provide detailed descriptions of the sample se-

lection strategy, variable construction, and method for identifying imputed

data for the analyses in the main text. We also provide descriptive statistics

(table A3) for the concrete sample, and P-values (tables A4 and A5) for the

validity checks described in the main text.

A Sample Selection

This section provides detailed descriptions of our sample selection strategy.

For the industries analyzed in tables 4-6, to the extent possible we follow the

sample selection strategy of Foster, Haltiwanger, and Syverson (2008). We

select industries that produce products for which the Census of Manufactures

collects physical quantities of products. For industries for which physical

quantity data is collected in both 2002 and 2007, we also require that the

data is collected for the same products in both years. We exclude all plants

flagged as Administrative Records (AR) cases, since virtually all of the data

for these plants is imputed. Following FHS, we also limit the sample to plants

for which at least 50% of the plant’s revenue is from the product or products

that we use the define the plant’s industry. As described in FHS, the Census

Bureau uses balancing codes to correct for cases where the sum of the values

of the plant’s products do not sum to the value that the plant reports as it’s
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total value of shipments. Following FHS, we exclude these balancing records

when we calculate the plant’s specialization. One way in which our sample

selection strategy differs from FHS is in how we deal with imputed data. We

use the item-level edit/impute flags to identify imputed data, but we include

these plants in our sample. FHS delete plants with data that they identify as

imputed. They attempt to identify imputed data by finding plants for which

certain ratios are the same as the within-industry-year mode of that ratio.

They use the ratios of materials costs over payroll (i.e., salaries and wages),

total value of shipments (TVS) over payroll, and product physical quantity

over payroll to identify imputed items. This method does not identify most

of the data that are imputed in the 2002 and 2007 CM data.

We define our industries as follows.

Boxes manufacturing plants in 2002 produce one or more of the follow-

ing 12 products: corrugated shipping containers for food and beverages

(NAICS product code 3222110111), corrugated carryout boxes for retail

food (3222110114), corrugated shipping containers for paper and allied prod-

ucts (3222110221), corrugated shipping containers for metal products, ma-

chinery, equipment (3222110341), corrugated shipping containers for electri-

cal machinery, equipment (3222110345), corrugated shipping containers for

glass, clay, and stone products (3222110431), corrugated shipping contain-

ers for chemicals and drugs, including paints,varnishes, cosmetics, and soaps

(3222110433), corrugated shipping containers for lumber and wood prod-

ucts, including (3222110435), corrugated shipping containers for all other
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end uses (3222110437), corrugated paperboard in sheets and rolls, lined and

unlined (3222110551), corrugated solid fiber containers (3222110661), and

corrugated and solid fiber pallets, pads, and partitions (3222110665). The

physical quantity measure for boxes is thousands of square feet.

Bread plants produce white pan bread, not frozen (NAICSPC 3118121111)

and/or frozen white pan bread (3118121121). White pan bread is measured

in thousands of pounds.

Carbon black plants products carbon black (NAICSPC 3251820100),

which is measured in thousands of pounds.

Coffee manufacturing plants produce whole bean roasted coffee (3119201111),

ground roasted coffee (3119201211), or ground roasted coffee mixtures (3119201331),

all of which are measured in thousands of pounds.

Concrete manufacturing plants in our sample produce ready-mix con-

crete (3273200100). The Census of Manufactures last collected physical

quantity data for this product in 1992. However, the CM does still col-

lect product-level value of shipments data for concrete plants. The concrete

plants in our sample are highly specialized, with over 90% of the revenue of

each plant coming from ready-mix concrete shipments.

Hardwood flooring plants in our sample produce hardwood oak flooring

(3219187111), hardwood oak parquetry flooring(3219187121), other hard-

wood oak flooring (3219187131), and/or hardwood maple flooring (3219187141).

The physical measure is thousands of board feet.

Gasoline plants in our sample produce motor gasoline (3241101121) in
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2002. In 2007, this product is disaggregated into regular grade motor gaso-

line (3241101122), mid-premium grade motor gasoline (3241101123), and

premium grade motor gasoline (3241101124). The physical measure in both

years is thousands of barrels.

Ice plants produce manufactured can or block ice (3121130111) or man-

ufactured cubed, crushed, or other processed ice (3121130121) in 2002. In

2007 these two products are classified as one product: manufactured ice,

(cubed, crushed, etc.), including can or block (3121130100). The physical

measure in both years is short tons.

Plywood manufacturing plants in our sample produce hardwood ply-

wood, veneer core (3212113111), hardwood plywood, particleboard core (3212113221),

hardwood plywood, medium density fiberboard core (3212113231), and/or

hardwood plywood, other core (3212113291). Plywood is measured in thou-

sands of square feet.

Sugar manufacturing plants in our sample produce raw cane sugar (3113110111),

which is measured in short tons.

B Variable Construction

This section provides detailed descriptions of the variables we use in the main

text.

For physical output, we use the physical quantity shipped for that prod-

uct. For plants in our sample that produce more than one of the products that
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define our industries, following Foster, Haltiwanger, and Syverson (2008), we

aggregate the physical quantities for those products.

We compute prices by dividing the total product value (i.e., the reported

revenue from the given product or products) by the physical quantity for

that product.

For the “traditional TFP” measure, our output measure is the plant’s

total value of shipments deflated by the shipments deflator for the corre-

sponding industry from the NBER Productivity Database.

Energy is the sum of the cost of fuels and the cost of purchased electricity.

For materials, we use the total cost of intermediate inputs less energy costs.

To construct real values for these inputs, we deflate the nominal measures by

the energy and materials deflators for the corresponding industry deflators

from the NBER Productivity Database.

We measure labor in production-worker-equivalent hours: Li = SWi ∗

PHi/WWi, where SW are total salaries and wages, PH are production

worker hours, and WW are production worker wages.

The 2002 and 2007 Censuses of Manufactures have data on the plant’s

total book value of assets. We construct real capital stocks by deflating

the nominal book values to 2002 levels using sector-specific deflators from

the Bureau of Economic Analysis, using the procedure described in Foster,

Haltiwanger, and Krizan (2001).

To estimate output elasticities, we use industry-level cost shares. For

labor, energy, and materials, we using the industry-level costs for the corre-
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sponding industry-year from the NBER Productivity Database. To construct

capital costs, we multiply the industry-level capital stocks for equipment and

structures in the NBER Productivity Database by the corresponding 3-digit

NAICS sector-level rental rates for capital equipment and structures. The

capital rental rates are from unpublished data used to construct the Bureau

of Labor Statistics’ multifactor productivity index.

We construct the market-level demand density variable used in table 6

just as described in Syverson (2004a). Concrete demand density within a

market is defined as construction sector employment per square mile. We

use the Bureau of Economic Analysis’s Component Economic Areas (CEA)

in 2007 as the market definition. We obtain county-level construction sector

employment from the Census Bureau’s 2002 and 2007 County Business Pat-

terns published data, and county-level areas from the Census Bureau’s City

County Data Book. For each year, 2002 and 2007, we compute the average

construction sector employment per square mile within each CEA. In the

regressions presented table 6 we use the natural log of this measure.

C Identifying Imputed Data

In this section we describe how we identify an element in the data matrix

as imputed or not. As part of its edit and imputation process, the Census

Bureau sets item-level edit/impute flags for the most important variables in

the Census of Manufactures. We use the item’s edit/impute flag variables to
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determine whether or not an item was imputed. We define an observation as

imputed if it meets the criteria below based on the edit/impute flags.

Each edit/impute flag consists of two or three characters. The first char-

acter is either a blank, indicating that the item was not reported on the

survey form, or an ‘R’, indicating that it was reported. The second and (if

applicable) third characters take one of 22 values. Table A1 list the 22 codes

(including blank) and the names of each code. Table A2 briefly describes

when each code is set. Each variable has a corresponding edit/impute flag

with some combination of these codes. For example, if total value of ship-

ments (TVS) for a particular plant is reported on the survey form and not

edited or imputed, then the edit/impute flag for TVS for that plant will be

’R ’, indicating that the TVS value in the final dataset was reported on the

survey form and was not edited or imputed. The third column of table A1

shows the Census Bureau categorization of each of these codes as either im-

puted or non-imputed. For example, if a data item is corrected by a Census

Bureau analyst (code C), that item is not considered to be imputed.

In general, we define an item as imputed if the second or third character

in its edit/impute flag is in the “imputed” category. We make an exception to

this rule for the capital stock variables. In many cases the edit/impute flags

for capital variables — total book values of assets beginning of year (TAB)

and end of year (TAE)–and capital expenditures (TCE) are set to ‘ K’. The

blank first character means that the item was not reported on the survey

form. The K supposedly means that the sum of a set of detail items do not
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balance to a total, so the detail items are changed proportionally to correct

the imbalance. In the case of capital stock variables, TAB plus TCE should

sum to TAE minus depreciation. However, in 2002 we find that for many

plants the flags indicate that none of these capital variables was reported on

the survey form and all of them were “raked.” Since it is impossible to adjust

to a total that was not reported, we treat these items as imputed.

The Census Bureau uses different imputation methods for different vari-

ables. For example, the “industry average” ratio method is used frequently

for the energy input cost variables (cost of fuels, cost of purchased electric-

ity), and almost all of the imputations for the product-level product quantity

shipped (PQS) data are created with this method. On the other hand, for

total value of shipments and the total cost of materials, the “Beta (Cold Deck

Statistical)” method is the most common method. Note that although the

edit/impute flags tell us what general method was used to impute each data

element, for most variables we still do not know exactly how each element

was imputed. For example, if the edit/impute flag for a plant’s cost of pur-

chased electricity is set to ‘ V’, we know that the plant’s electricity costs are

set to the industry average by ratio imputation, but we do not know what

the denominator of the ratio is. Similarly, a flag set to ‘ B’ (“Cold Deck Sta-

tistical”) means that the item was imputed using a regression model based

on historical data. However, in general we do not know what sample was

used for this regression or even what explanatory variables are in the regres-

sion model. One exception to this rule are the imputations for the product
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quantity variable (PQS). For this variable, almost all of the imputations are

constructed by multiplying the plant’s product value shipped (PV) by an

industry average ratio of product quantity over product value.
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Table A1: Edit/Impute Flags in the 2002 and 2007 Census of Manufactures

Code Name Category

(blank) Flag Not Set Non-imputed

A Administrative Records Data Imputed

B Beta (Cold Deck Statistical) Imputed

C Analyst Corrected Non-imputed

D Donor Model Record Imputed

E Endpoints of Limits (Upper/Lower) Imputed

G Goldplated Non-imputed

H Historic Values Imputed

J Subject Matter Rule Imputed

K Raked Non-imputed

L Logical Imputed

M Midpoints of Limits Imputed

N Rounded Non-imputed

O Override Edit with Reported Data Non-imputed

P Prior Year Administrative Records Data Imputed

S Direct Substitution Imputed

T Trim and Adjust Algorithm Imputed

U Unable to Impute Non-imputed

V Industry Average Imputed

W Warm Deck Statistical Imputed

X Unusable Non-imputed

Z Acceptable Zero Non-imputed

Source: Grim (2011)
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Table A2: Definitions of Edit/Impute Flags

Edit/Impute Action Occurs when...

Administrative (A) the item is imputed by direct substitution of corresponding

administrative data (for the same establishment/record).

Cold Deck Statistical (B) the item is imputed from a statistical

(regression/beta) model based on historic data.

Analyst Corrected (C) the reported value fails an edit, and an analyst directly

corrects the (reported or imputed) value.

Model (Donor) Record (D) the item is imputed using hot deck methods.

High/Low (E) the item is imputed by direct substitution of value

near (high or low) endpoints of imputation range.

Goldplated (G) the reported value for the item is ”protected” from any

changes by the edit. The value of a goldplated item is not

changed by the editing system, even if the item fails one or

more edits. In general, the goldplate flag is set by an analyst.

Historic (H) the item is imputed by ratio imputation using

historic data for the same establishment (for

example, prior year data imputation in Manufacturing)

Subject Matter Rule (J) the item is imputed using a subject matter defined

rule (e.g. y=1/2x).
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Table A2: Definitions of Edit/Impute Flags (continued)

Edit/Impute Action Occurs when...

Raked (K) the sum of a set of detail items do not balance to the total.

The details are then changed proportionally to correct the

imbalance. This preserves the basic distribution of the

details.

Logical (L) the item’s imputation value is defined by an additive

mathematical relationship (e.g., obtaining a missing

detail item by subtraction).

Midpoint (M) the item is imputed by direct substitution of

midpoint of imputation range.

Rounded (N) the reported value is replaced by its original value divided

by 1000.

Restore Reported Data (O) the reported value fails an edit. Either an analyst

interactively restores the originally reported value of an edit

(set by the interactive update system) or the ratio module

later “imputes” originally reported data for an item which

was imputed in the previous edit pass.

Prior Year Administrative (P) the item is imputed by ratio imputation using

corresponding administrative data from prior year

(for same establishment).

Direct Substitution (S) the item is imputed by direct substitution of another

item’s value (from within the same questionnaire.)
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Table A2: Definitions of Edit/Impute Flags (continued)

Edit/Impute Action Occurs when...

Trim-and-Adjusted (T) the item was imputed using the Trim-and Adjust

balancing algorithm (balance module default).

Unable to Impute (U) the reported item is blank or fails an edit, and the system

cannot successfully substitute a statistically reasonable

value for the original data.

Industry Average (V) the item is imputed by ratio imputation using an

industry average.

Warm Deck Statistical (W) the item is imputed from a statistical

(regression/beta) model based on current data.

Unusable (X) the sum of a set of detail items cannot be balanced to the

total because none of the scripted solutions achieved a

balance.

Acceptable Zero (Z) the reported value for an item is zero, and the item has

passed a presence (zero/blank) test. This often occurs with

part time reporters (e.g., births, deaths, idles). The zero

value will not be changed, even if it fails one or more edits.

Source: Grim (2011)
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Table A3: Concrete Markets: Productivity, Size, and Demand Density

75th-25th 90th-10th

Percentile Percentile

Mean Std. Dev. Range Range

TFP interquartile range 0.29 0.27 0.19 0.42

Median TFP 1.49 0.16 0.22 0.37

Output-weighted mean TFP 1.60 0.27 0.25 0.52

10th percentile TFP 1.24 0.18 0.19 0.38

Number of plants with TFP 17.4 19.6 10.0 36.0

ln(mean plant output) 8.14 0.55 0.74 1.42

Construction employment/square mile 3.21 3.95 2.77 7.04

The table shows descriptive statistics for 444 market-year observations

for the ready-mix concrete industry in 2002 and 2007. A market is defined

as the Bureau of Economic Analysis’s Component Economic Area (CEA).
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Table A4: Validity Checks of the CART Imputation Models:

Within-industry Productivity and Price Dispersion

P value for:

75-25 75-25 75-25

TTFP TFPQ Price

industry Year Ratio Ratio Ratio

boxes 2002 0.000 0.176 0.348

bread 2002 0.280 0.468 0.148

carbon black 2002 0.552 0.204 0.056

coffee 2002 0.272 0.508 0.440

flooring 2002 0.164 0.404 0.532

gasoline 2002 0.008 0.000 0.000

gasoline 2007 0.076 0.000 0.000

ice 2002 0.012 0.076 0.088

ice 2007 0.192 0.552 0.416

plywood 2002 0.008 0.476 0.664

sugar 2002 0.168 0.196 0.000

The table shows P probabilities (see equation 5 in the main text)

for traditional TFP, physical TFP, and price dispersion measures

by industry-year. A probability close to zero is evidence

that the CART imputation model distorts the joint distribution

of the data for that industry-year such that the given

dispersion estimate may be biased.
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Table A5: Validity Checks of the CART Imputation Model

For Concrete: Regressions on Demand Density

Dependent variable (1) (2)

TFP interquartile range 0.164 0.164

Median TFP 0.000 0.000

Output-weighted mean TFP 0.000 0.000

10th percentile TFP 0.024 0.024

Mean output 0.000 0.000

Year dummies? no yes

The table shows P probabilities (see equation 5 in main text)

for checks of the validity of the CART imputations model

for a regression of market-level moments of concrete

productivity or output on concrete market demand density.

A probability close to zero is evidence that the CART

imputations are distorting the joint distributions in a way

that leads to biased estimates of the demand density

coefficient.
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