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1 Introduction

Principal-agent models have been used to analyze problems as diverse as executive compensation,

regulation, organizational design, entrepreneurship, and accounting.1 As Kenneth Arrow points

out, “economic theory in recent years has recognized that [principal-agent problems] are almost

universal in the economy at least as one significant component of almost all transactions” (Arrow,

1986).

In the classic framework, a principal hires an agent to perform a task for her. The agent bears

a private cost of taking actions. The principal does not observe the agent’s action, rather, she

observes a noisy measure of it (such as profits). It is this measure that is contractible, and it is

assumed that the the agent’s cost of e↵ort function, both parties’ preferences, and the stochastic

mapping from actions to outputs are common knowledge between principal and agent. There have

been several important extensions to the basic model (e.g., multitasking and repeated contracting),

but it is standard to assume that both the principal and the agent know how e↵ort a↵ects output.2

Yet, in many applications, this assumption seems implausible.

Consider a few examples. In executive management, assuming that principals and agents know

the stochastic mapping from inputs to output is equivalent to assuming a CEO knows how her

actions will impact the collective goals of the board of directors. This requires knowledge of

the intensity of di↵ering board-member preferences and how those preferences are aggregated–a

complex issue about which board-members themselves are likely not fully informed. In education,

these assumptions require that students (or their teachers) know the intricacies of the education

production function even when econometricians with large data sets and sophisticated statistical

techniques are not certain of its functional form.3

To examine the implications of relaxing this assumption for the design and e�cacy of incentive

schemes, we develop a simple 2⇥ 2 conceptual apparatus–two periods and two tasks–which is both

a simplification and extension of the pioneering work of Holmstrom and Milgrom (1991).4 In each

1For classic treatments see Mirrlees (1975), Holmstrom (1979), Grossman and Hart (1983).
2See Beaudry (1994), Chade and Silvers (2002), Kaya (2010), and Fryer, Holden, and Lang (2012) for notable

exceptions.
3Conversely, there are many applications (e.g. computer science, engineering or manufacturing) where the stan-

dard assumption seems applicable.
4See Acemoglu, Kremer, and Mian (2008) for a similar 2x2 multitasking model of education production that

addresses incentives for teacher productivity.
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period, a risk-neutral principal o↵ers a take-it-or-leave-it linear incentive contract to an agent,

who, upon accepting the contract, takes two non-verifiable actions which we label “e↵ort.” E↵ort

generates a benefit to the principal and is related to an observable (and contractable) performance

measure. We assume that an agent’s type augments their e↵ort in producing output: higher type

agents have higher returns to e↵ort than lower type agents, all else equal. An important assumption

in the model is that neither the principal nor the agent know the mapping from actions to output.

Solving the model yields four primary predictions. First, incentives for a given task lead to an

increase in e↵ort on that task. Second, incentives for a given task lead to a decrease in e↵ort on

the non-incentivized task. Further, the decrease in e↵ort on the non-incentivized task can be more

or less for higher-type agents relative to lower-type agents, depending on how substitutable those

tasks are in the cost of e↵ort function. Our final, and perhaps most distinguishing, theoretical

result concerns the persistent e↵ects of changes in incentives due to agents updating about their

ability types. We show that when the agent’s true ability on a given task is su�ciently low, the

learning that comes from the provision of incentives is detrimental to the principal. In the absence

of incentives the agent would exert some baseline level of e↵ort due to intrinsic motivation and

hence learn “little” about her ability. Providing incentives induces more e↵ort than this and hence

more learning about their ability type. When agents discover that they are lower-ability than they

previously believed, they exert lower e↵ort in period two for any tasks on which there is a positive

incentive slope (as in the case of optimal incentives). Thus, the average impact of an incentive

contract depends on the distribution across ability types, among other things.

To better understand these predictions in a real-world laboratory, we analyze new data from a

randomized field experiment conducted in fifty traditionally low-performing public schools in Hous-

ton, Texas during the 2010-2011 school year.5 We provided financial incentives to students, their

parents, and their teachers for fifth graders in twenty-five treatment schools. Students received $2

per math objective mastered in Accelerated Math (AM), a software program that provides practice

and assessment of leveled math objectives to complement a primary math curriculum. Students

practice AM objectives independently or with assistance on paper worksheets that are scored elec-

tronically and verify mastery by taking a computerized test independently at school. Parents also

5The original impetus of the experiment was to study the impact of aligning parent, teacher, and student incentives
on student achievement. The two-year evaluation of the experiment led to puzzling findings inconsistent with existing
theory.
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received $2 for each objective their child mastered and $20 per parent-teacher conference attended

to discuss their student’s math performance. Teachers earned $6 for each parent-teacher confer-

ence held and up to $10,100 in performance bonuses for student achievement on standardized tests.

In total, we distributed $51,358 to 46 teachers, $430,986 to 1,821 parents, and $393,038 to 1,734

students across the 25 treatment schools.

The experimental results are consistent with the predictions of the model: the good, the bad,

and the ugly. Throughout the text we report Intent-to-Treat (ITT) estimates.6 On outcomes for

which we provided direct incentives, there were very large and statistically significant treatment

e↵ects. Students in treatment schools mastered 1.087 (0.031) standard deviations (hereafter �)

more math objectives than control students. On average, treatment parents attended almost twice

as many parent-teacher conferences as control group parents. And, perhaps most important, these

behaviors translated into a 0.081� (0.025) increase in math achievement on Texas’s statewide

student assessment.

Now, the bad and the ugly: the impact of our incentive scheme on reading achievement (which

was not incentivized) is -0.084� (0.026) – o↵setting the positive math e↵ect. And, while higher-

achieving students (measured from pre-treatment test scores) seemed to gain from the experiment

on nearly every dimension, lower-achieving students had significant and lasting negative treatment

e↵ects.

Higher-achieving students master 1.66� more objectives, have parents who attend two more

parent-teacher conferences, have 0.228� higher standardized math test scores and equal reading

scores relative to high-achieving students in control schools. Conversely, lower-achieving students

master 0.686� more objectives, have parents who attend 1.5 more parent-teacher conferences, have

equal math test scores and 0.165� lower reading scores. Put di↵erently, higher-achieving students

put in significant e↵ort and were rewarded for that e↵ort in math without a deleterious impact in

reading. Lower-achieving students also increased e↵ort on the incentivized task, but did not increase

their math scores and their reading scores decreased significantly. These data are compatible with

predictions (i) through (iii) of the model.

Consistent with the fourth – and most stark – prediction of the model, one year after taking the

incentives away, higher-achieving students continue to do well, maintaining a positive treatment

6Treatment on the Treated estimates can be found in Appendix Table 1.

4



e↵ect in math and a zero e↵ect in reading. Lower-achieving students, however, exhibit large and

statistically significant decreases in both math [-.223� (0.056)] and reading achievement [-.170�

(0.080)] after the incentives are removed. We find an identical pattern on a separate low stakes,

nationally normed, exam. We argue that this is most likely explained by students learning about

their own ability and not decreases in intrinsic motivation. The treatment e↵ect on the latter,

gleaned from survey data, is small and statistically insignificant.

The paper concludes with three robustness checks to our interpretation of the data. First,

we consider the extent to which sample attrition threatens our estimates by calculating lower

bound treatment e↵ects (Lee 2009). Second, we account for multiple hypothesis testing by using

Boneferonni corrected p-values to account for the family-wise error rate. Our findings are virtually

una↵ected in both cases.

Third, and more generally, our principal-agent model predicts that if we observe that students

within the treatment group experience a “bad shock” – in the sense that they underperform on

the on the 2010-11 state math test relative to the amount of e↵ort they exerted in AM – they

will infer that they are low ability and perform worse (weakly) on their 2011-12 standardized tests

than students who experience a “good shock.” The data seem to support this hypothesis. Students

who experience “bad shocks” score 0.252� (0.055) lower than students whose test scores are best

predicted by their e↵ort in AM, while students who experience “good shocks” score 0.498� (0.061)

higher– a di↵erence of 0.75� between receiving a“bad shock” versus a “good shock” in 2010-11 on

students’ 2011-12 test scores.

The contribution of this paper is three fold. First, we extend the classic multitask principal-

agent model to a multi period, multi-type, setting in which the agent does not know the production

function, but can learn it over time.7 Second, we demonstrate, using data from a randomized

experiment, that the e↵ort substitution problem is larger for low-ability types.8 Third, we show

7See Fryer, Holden, and Lang (2012) for a single task model with similar features. Beaudry (1994) also studies
a setting where the principal knows the mapping from action to output but the agent does not. In his model there
are two types of agent and two possible output levels. Focusing on separating perfect Bayesian equilibria he shows
that high types receive a higher base wage and a lower bonus than low types. See also Chade and Silvers (2001)
and Kaya (2010). Our also relates to the so-called informed principal problem in mechanisms design first analyzed
by Myerson (1983) and Maskin and Tirole (1990, 1992). This large literature studies studies the equilibrium choice
of mechanisms by a mechanism designer who possess private information. The key di↵erence is that our focus is
on a specific environment with hidden actions after the contracting stage, rather than on characterizing the set of
equilibria in very general hidden information settings. One way to see this di↵erence is that in Maskin and Tirole
(1992) actions are observable and verifiable.

8There is a growing literature on the use of financial incentives to increase student achievement in primary
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that student incentives can have a persistent negative impact on student test scores using multiple

measures – a cautionary tale on the design of incentives when agents do not know the production

function.9

The next section presents a multi-period, multitasking principal-agent model. Section 3 provides

details of the field experiment and its implementation. Section 4 describes the data collected,

research design, and econometric framework used in the analysis. Section 5 presents estimates of

the impact of the treatment on various test score and non-test score outcomes. The final section

concludes with a more speculative discussion of the implications of the model and experimental

data for the design of incentive schemes. There are three online appendices. Online A provides

technical proofs of the propositions detailed in Section 2, along with other mathematical details.

Online Appendix B is an implementation supplement that provides details on the timing of our

experimental roll-out and critical milestones reached. Online Appendix C is a data appendix

that provides details on how we construct our covariates and our samples from the school district

administrative files used in our analysis.

2 A Multi-period, Multitasking Model with Learning

2.1 Statement of the problem

In each of two periods, a risk-neutral principal o↵ers a take-it-or-leave-it incentive contract to

an agent, who, upon accepting the contract, takes two non-verifiable actions e1 and e2. We will

typically refer to these actions as e↵ort. Each action takes values in R+, and generates a benefit

on task i of ↵iei to the principal and a performance measure mi = ↵iei + ✏i where ✏i ⇠ N(0,�2
i )

and is independent of everything else. We will sometimes refer to the level of ↵i as the “type” of

the agent on task i.

We assume that only the mi’s are contractable, and the principal o↵ers a linear incentive

contract of the form s+ b1m1 + b2m2 that the agent can accept or reject. If the agent accepts she

then makes her e↵ort choice(s), the performance measure is realized, and the principal pays the

agent according to the contract.

(Bettinger 2010, Fryer 2011a), secondary (Angrist and Lavy 2009, Fryer 2011a, Kremer, Miguel, and Thornton 2009),
and postsecondary (Angrist, Lang, and Oreopoulos 2009, Oosterbeek et al. 2010) education.

9Psychologists often warn of the potential negative e↵ects of incentives due to intrinsic motivation. Our model
and data suggests a di↵erent mechanism: rational, but potentially incorrect, learning about one’s type.
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A key assumption of our model is that neither the principal nor the agent knows the true value

of ↵1 and ↵2. Both have a prior probability probability distribution ↵i ⇠ N(↵i, µ
2
i ). We assume

that it is common knowledge between the principal and agent that ↵ does not change over time,

and the ✏is are independent of each other and i.i.d. over time.

We further assume that the agent has preferences that can be represented by a utility function

that exhibits constant absolute risk aversion (CARA):

u(x, e) = � exp


�⌘

✓
x� 1

2
(c1e

2
1 + c2e

2
2)� �e1e2

◆�
,

where x is the monetary payment she receives. Let U be the certainty equivalent of the agent’s

outside option and normalize this to zero. Notice that the parameter � (which we assume to be

strictly positive) measures the degree of substitutability between the tasks.10

Finally, we assume that the agent is myopic and unable to borrow, and we normalized the

common discount factor to 1.

2.2 Interpretation of the Model

We pause briefly to map the somewhat abstract formulation above into the experimental data we

will o↵er below. One can think of task 1 as math and task 2 as reading. E↵orts on these tasks is

e↵ort devoted to learning–of which homework is a significant component but the ✏ shocks represent

the noisy relationship between measured homework e↵ort and “true” learning. In the context

of the experiment we will think of e↵ort on task 1 (math) as doing the incentivized homework

problems. The outputs m1 and m2 are the (noisily) measured homework e↵ort on math and reading

respectively. The incentive slope b is the payment per measured homework problem (typically two

dollars); c1 and c2 reflect the marginal cost of e↵ort on math and reading homework respectively.

2.3 Theoretical Analysis

2.3.1 One Period and E↵ort Substitution

The one-period version of the model is very closely related to the classic Holmstrom-Milgrom multi-

task model (Holmstrom and Milgrom 1991). The main di↵erence, captured by the parameter ↵ is

10In fact 0 < �  p
c1c2.
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the uncertainty about agent ability. This changes the agent’s certainty equivalent and complicates

the analysis somewhat, but the main forces in Holmstrom-Milgrom remain. In the appendix we

provide a solution to the one-period case and show that the equilibrium e↵ort levels are given by

e

⇤
1 =

↵1b1
�
c2 + ⌘b

2
2µ

2
2

�
� ↵2b2��

c1 + ⌘b

2
1µ

2
1

� �
c2 + 2⌘b22µ

2
2

�
� �

2
, (1)

and symmetrically for task 2.

Now notice that when there is no uncertainty about ↵i (i.e. µ

2
i = 0), we get the classic

Holmstrom-Milgrom e↵ort function as equation (1) becomes

e

⇤
1 =

↵1b1c2 � ↵2b2�

c1c2 � �

2
, (2)

and symmetrically for task 2. It is immediately clear that e⇤1 is increasing in b1 and decreasing in

b2, and symmetrically for e⇤2. We have thus proved:

Proposition 1 An increase in incentives bi on task i leads to an increase in agent e↵ort on task

i and a decrease in agent e↵ort on the other task j.

We are also interested in how this e↵ort substitution problem di↵ers by agent type. A simple

way to think about type is to consider two agents drawn from di↵erent ability distributions, with

one having a higher mean than the other.

Taking that approach, notice from equation (1) that

@

2
e

⇤
1

@b2@↵2
=

�

��
b

2
1⌘µ

2
1 + c1

� �
b

2
2⌘µ

2
2 � c2

�
+ �

2
�

�
�

2 �
�
b

2
1⌘µ

2
1 + c1

� �
b

2
2⌘µ

2
2 + c2

��
2
.

This can be positive or negative, although for small uncertainty about ↵i (i.e. µ

2
i close to zero) it

is negative. We thus have

Proposition 2 For su�ciently small uncertainty about ability, an increase in incentives bi on task

i leads to a smaller decrease in agent e↵ort on task j for higher type agents than lower type agents,

but in general the sign is ambiguous.

It is therefore an empirical matter as to whether higher ability agents su↵er a smaller e↵ort substi-

tution problem. In fact, even when one sets bj equal to zero–as is the case in the experiment where
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reading homework is not incentivized–the sign of the cross partial above is ambiguous.

2.3.2 Two Periods and Agent Updating

Now consider the two-period problem that the principal faces. She cannot change the agent’s

actions in period 1, but after period one the agent updates her belief about ↵1 and ↵2 based on

the outputs her actions generated. Thus, the choice of b1 and b2 in period 1 can a↵ect the agent’s

actions in period two through these beliefs. After taking actions (e11, e
1
2) (superscripts index the

period) and observing outputs (m1
1,m

1
2) the agent’s posterior belief about her ability on task i are:

E[↵|mi] = ↵̄i

✓
�

2
i

µ

2
i + �

2
i

◆
+mi

✓
µ

2
i

µ

2
i + �

2
i

◆
. (3)

In forming her posterior, the agent puts some weight on her prior, and some weight on first

period output, which depends on her e↵ort and her true ability. This obviously bears strong

similarities to the classic career concerns model of Holmstrom (1982) in terms of the way the agent

updates about her ability (see also, very closely related, Dewatripont, Jewitt and Tirole (1999a,b)).

There are two things to note. The first is the role that the signal-to-noise ratio plays in terms of

how much weight is placed on the prior and how much on first-period output. Second the agent’s

posterior is increasing in period 1 output, mi, which itself depends on ability ↵i and the intensity

of incentives bi. This will play a key role. The principal can increase expected output by using

more intense incentives in period 1. Thus, she can to some degree control how surprised the agent

is. This come at a cost, however, because the agent’s individual rationality constraint must be

satisfied, and that depends on the how costly e↵ort for the agent is, relative to her subjective belief

about her ability.

To highlight the e↵ect of updating on incentive design we first consider the case where there is a

single task. Furthermore, we are interested in settings where the principal faces multiple agents but

is constrained to o↵er a single contract. To that end, suppose the principal faces a continuum of

agents who each perform a single task. The following result shows that incentives in period 1 lead

“higher type” agents to update positively about their ability and “lower type” agents to update

negatively, and that this leads to reduced e↵ort from the lower types.

Proposition 3 Consider a single contract with positive incentives on task 1 in period 1 o↵ered to
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all agents. Then there exists a cuto↵ level of ability ↵̂1 such that for all types above this e↵ort on

task 1 in period 2 increases and for all types below this it decreases.

When the agent’s true ability on task 1 is su�ciently low the learning that comes from the

provision of incentives leads to lower second-period e↵ort. In the absence of incentives the agent

would exert some baseline level of e↵ort due to intrinsic motivation (in our model literally zero)

and hence learn “little” (again, literally zero in our model) about her ability. Providing incentives

induces more e↵ort than this and hence more learning about ability. When agents discover that

they are lower-ability than they thought they exert lower e↵ort in period two for any tasks on

which there is a positive incentive slope (as in the case of optimal incentives). Indeed, the agent’s

first-order condition for the single task means that e↵ort in any period is given by

e

⇤
1 =

E[↵1]b1
�
c2 + 2⌘22

�
�
c1 + 2⌘21

� �
c2 + 2⌘22

�
.

The fact that there is a cuto↵ type, above which increased period-one incentives lead to a

positive update and below which incentives lead to a negative update stems from the fact that

more intense incentives in period 1 lead to a Blackwell-more-informative experiment about agent

ability. But Bayes Rule implies that the expectation of the conditional expectation of ability given

period 1 output must equal the unconditional expectation. Thus, when the experiment leads to

some agents updating positively about their ability, it must also lead (from an ex ante perspective)

to some agents updating negatively.

It is natural to ask whether agents getting more precise information about their ability is a

good or bad thing from a welfare perspective. We will return to this issue in the conclusion, but a

basic starting point is that, due to moral hazard, the e↵ort levels are second-best e↵ort levels (i.e.

below the social optimum), and hence “low” types believing that they are higher ability then they

actually are may be beneficial.

We also note that Proposition 3 was stated for a second period incentive intensity b equal to the

first period incentive intensity. After period 1 output is realized, however, the optimal incentive

scheme may change. Since the principal faces a continuum of agents, the law of large number implies

that the distribution of abilities observed by the principal is the same as the prior. However, any

given agent’s posterior belief about ability has lower variance and this would lead the optimal
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incentive intensity to increase in period 2.

2.3.3 Two Periods, Two Tasks

We now consider learning in the two-task setting. When abilities on the tasks are statistically

independent for each agent the two-task case is simply a replication of the one-task case analyzed

above. The more interesting setting is where abilities are correlated. To that end, suppose that for

a given agent abilities on the two tasks are drawn from a joint normal distribution with variance-

covariance matrix:

⌃ =

0

@µ

2
1 ⇢

⇢ µ

2
2

1

A
.

A given agent’s updating about beliefs works as in the one task case above, other than that

they condition on both first-period outcomes m1,m2 in forming posterior beliefs about ability on

both tasks. A straightforward consequence of this is that Proposition 3 extends to spillovers on the

second task in the following sense.

Proposition 4 Suppose period 1 incentives on task 1 are positive, period 1 incentives on task 2

are zero, and ⇢ is strictly positive. The there exists a “cuto↵ type” ↵̂2 such that period two e↵ort

on task 2 is lower for all types ↵2 < ↵̂2 and higher for all types ↵2 > ↵̂2.

This “spillover e↵ect” implies that negative (positive) updating that comes from learning about

ability on one task a↵ects beliefs about ability on other tasks. The strength of this e↵ect, of course,

depends on how strongly correlated abilities are across types. But, it provides for the sobering

possibility that incentives for one subject may lead an agent to believe they are low ability in other

subjects.

3 Program Details

Houston Independent School District (HISD) is the seventh largest school district in the nation

with 202,773 students. Eighty-eight percent of HISD students are black or Hispanic. Roughly 80

percent of all students are eligible for free or reduced-price lunch and roughly 30 percent of students

have limited English proficiency.
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Table 1 provides a bird’s-eye view of the demonstration project. To begin the field experiment,

we followed standard protocols. First, we garnered support from the district superintendent and

other key district personnel. Following their approval, a letter was sent to seventy-one elementary

school principals who had the lowest math performance in the school district in the previous year.

In August 2010, we met with interested principals to discuss the details of the experiment and

provided a five day window for schools to opt into the randomization. Schools that signed up to

participate serve as the basis for our matched-pair randomization. All randomization was done

at the school level. Prior to the randomization, all teachers in the experimental group signed

a non-binding commitment form vowing to use the Accelerated Math curriculum to supplement

and complement their regular math instruction and indicating their intention to give all students

a chance to master Accelerated Math objectives on a regular basis regardless of their treatment

assignment.11 After treatment and control schools were chosen, treatment schools were alerted

that they would participate in the incentive program. Control schools were informed that they

were not chosen, but they would still receive the Accelerated Math software – just not the financial

incentives.12 HISD decided that students and parents at selected schools would be automatically

enrolled in the program. Parents could choose not to participate and return a signed opt-out form

at any point during the school year.13 HISD also decided that students and parents were required

to participate jointly: students could not participate without their parents and vice versa. Students

and parents received their first incentive payments on October 20, 2010 and their last incentive

payment on June 1, 2011; teachers received incentives with their regular paychecks.14

Table 2 describes di↵erences between schools that signed up to participate and other elementary

schools in HISD with at least one fifth grade class across a set of covariates. Experimental schools

have a higher concentration of minority students and teachers with low-value added. All other

covariates are statistically similar.

11This was the strongest compliance mechanism that the Harvard Institutional Review Board would allow for
this experiment. Teachers whose data revealed that they were not using the program were targeted with reminders
to use the curriculum to supplement and complement their normal classroom instruction. All such directives were
non-binding and did not a↵ect district performance assessments or bonuses.

12Schools varied in how they provided computer access to students (e.g. some schools had laptop carts, others
had desktops in each classroom, and others had shared computer labs), but there was no known systematic variation
between treatment and control.

13Less than 1%, 2 out of 1695 parents opted out of the program.
14In the few cases in which parents were school district employees, we paid them separately from their paycheck.
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A. Students

Students begin the program year by taking an initial diagnostic assessment to measure mastery

of math concepts, after which AM creates customized practice assignments that focus specifically

on areas of weakness. Teachers assign these customized practice sheets, and students are then

able to print the assignments and take them home to work on (with or without their parents).

Each assignment has six questions, and students must answer at least five questions correctly to

receive credit.15 After students scan their completed assignments into AM, the assignments are

graded electronically. Teachers then administer an AM test that serves as the basis for potential

rewards; students are given credit for o�cial mastery by answering at least four out of five questions

correctly. Students earned $2 for every objective mastered in this way. Students who mastered

200 objectives were declared “Math Stars” and received a $100 completion bonus with a special

certificate.16

B. Parents

Parents of children at treatment schools earned up to $160 for attending eight parent-teacher

review sessions ($20/each) in which teachers presented student progress using Accelerated Math

Progress Monitoring dashboards. Appendix Figure 1 provides a typical example. Parents and

teachers were both required to sign and submit the student progress dashboards and submit them

to their school’s Math Stars coordinator in order to receive credit. Additionally, parents earned $2

for their child’s mastery of each AM curriculum objective, so long as they attended at least one

conference with their child’s teacher. This requirement also applied retroactively: if a parent first

15Accelerated Math does not have a set scope and sequence that must be followed. While the adaptive assessment
assigns a set of objectives for a student to work on, the student can work on these lessons in any order they choose,
and teachers can assign additional objectives that were not initially assigned through the adaptive assessment.

16Experimental estimates of AM’s treatment e↵ect on independent, nationally-normed assessments have shown
no statistically significant evidence that AM enhances math achievement. Ysseldyke and Bolt (2007) randomly
assign elementary and middle school classes to receive access to the Accelerated Math curriculum. They find that
treatment classes do not outperform control classes in terms of math achievement on the TerraNova, a popular
nationally-normed assessment. Lambert and Algozzine (2009) also randomly assign classes of students to receive
access to the AM curriculum to generate causal estimates of the impact of the program on math achievement in
elementary and middle school classrooms (N=36 elementary classrooms, N=46 middle school classrooms, divided
evenly between treatment and control). Lambert and Algozzine do not find any statistically significant di↵erences
between treatment and control students in math achievement as measured by the TerraNova assessment. Nunnery
and Ross (2007) use a quasi-experimental design to compare student performance in nine Texas elementary schools
and two Texas middle schools who implemented the full School Renaissance Program (including Accelerated Math)
to nine comparison schools designated by the Texas Education Agency as demographically similar. Once the study’s
results were adjusted to account for clustering, Nunnery and Ross’s (2007) analysis reveals no statistically significant
evidence of improved math performance for elementary or middle school students.
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attended a conference during the final pay period, the parent would receive a lump sum of $2 for

each objective mastered by their child to date. Parents were not instructed on how to help their

children complete math worksheets.

C. Teachers

Fifth grade math teachers at treatment schools received $6 for each academic conference held

with a parent in addition to being eligible for monetary bonuses through the HISD ASPIRE pro-

gram, which rewards teachers and principals for improved student achievement. Each treatment

school also appointed a Math Stars coordinator responsible for collecting parent/teacher confer-

ence verification forms and organizing the distribution of student reward certificates, among other

duties. Coordinators received an individual stipend of $500, which was not tied to performance.

Over the length of the program the average student received $226.67 with a total of $393,038

distributed to students. The average parent received $236.68 with a total of $430,986 distributed

to parents. The average teacher received $1,116.48 with a total of $51,358 distributed to teachers.

Incentives payments totaled $875,382.

One may worry that the experiment has incentives for teachers, parents, and students whereas

the model has a single agent. Note: if parent and teacher e↵ort has a non-negative e↵ect on

student e↵ort, then this is isormorphic to our single agent model with more intense incentives and

analogous to the monitoring intensity principle in Milgrom and Roberts (1992). Given the lack of

impact on direct outcomes in many previous experiments using financial incentives, we chose to

align incentives (Angrist and Lavy 2009, Fryer 2011a) to ensure a strong “first stage.”

4 Data, Research Design, and Econometric Model

A. Data

We collected both administrative and survey data from treatment and control schools. The

administrative data includes first and last name, birth date, address, race, gender, free lunch

eligibility, behavioral incidents, attendance, special education status, limited English proficiency

(LEP) status, and four measures of student achievement: TAKS math and ELA and STAAR math

and reading assessments. Toward the end of the treatment year, the TAKS assessments were

administered between April 12 and April 23, 2011, with a retake administered from May 23 to
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May 25, 2011. At the end of the follwing year, the STAAR assessments were administered from

April 24 to April 25, 2012. We use administrative data from 2008-09 and 2009-10 (pre-treatment)

to construct baseline controls with 2010-11(treatment) and 2011-12 (post-treatment) data for two

outcome measures.

Our initial set of outcome variables are the direct outcomes that we provided incentives for:

mastering math objectives via Accelerated Math and attending parent-teacher conferences. We

also examine a set of indirect outcomes that were not directly incentivized, including TAKS math

and ELA scale scores, Stanford 10 math and ELA scale scores, and several survey outcomes.

We use a parsimonious set of controls to aid in precision and to correct for any potential

imbalance between treatment and control. The most important controls are reading and math

achievement test scores from the previous two years and their squares, which we include in all

regressions. Previous years’ test scores are available for most students who were in the district in

previous years (see Table 3 for exact percentages of experimental group students with valid test

scores from previous years). We also include an indicator variable that takes on the value of one if

a student is missing a test score from a previous year and zero otherwise.

Other individual-level controls include a mutually exclusive and collectively exhaustive set of

race dummies pulled from each school district’s administrative files, indicators for free lunch eligi-

bility, special education status, and whether a student demonstrates limited English proficiency.17

Special education and LEP status are determined by HISD Special Education Services and the

HISD Language Proficiency Assessment Committee.

We also construct three school-level control variables: percent of student body that is black,

percent Hispanic, and percent free lunch eligible. For school-level variables, we construct demo-

graphic variables for every 5th grade student in the district enrollment file in the experimental year

and then take the mean value of these variables for each school. We assign each student who was

present in an experimental school before October 1 to the first school they are registered with in

the Accelerated Math database. Outside the experimental group, we assign each student to the

17A student is income-eligible for free lunch if her family income is below 130 percent of the federal poverty
guidelines, or categorically eligible if (1) the student’s household receives assistance under the Food Stamp Program,
the Food Distribution Program on Indian Reservations (FDPIR), or the Temporary Assistance for Needy Families
Program (TANF); (2) the student was enrolled in Head Start on the basis of meeting that program’s low-income
criteria; (3) the student is homeless; (4) the student is a migrant child; or (5) the student is a runaway child receiving
assistance from a program under the Runaway and Homeless Youth Act and is identified by the local educational
liaison.
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first school they attend according to the HISD attendance files, since we are unable to determine

exactly when they begin attending school in HISD. We construct the school-level variables based

on these school assignments.

To supplement each district’s administrative data, we administered a survey to all parents and

students in treatment and control schools.18 The data from the student survey includes information

about time use, spending habits, parental involvement, attitudes toward learning, perceptions about

the value of education, behavior in school, and Ryan’s (1982) Intrinsic Motivation Inventory. The

parent survey includes basic demographics such as parental education and family structure as well

as questions about time use, parental involvement, and expectations.

To aid in survey administration, incentives were o↵ered at the teacher level for percentages of

student and parent surveys completed. Teachers in treatment and control schools were eligible

to receive rewards according to the number of students they taught: teachers with between 1-20

students could earn $250, while teachers with 100 or more students could earn $500 (with fifty

dollar gradations in between). Teachers only received their rewards if at least ninety percent of the

student surveys and at least seventy-five percent of parent surveys were completed.

In all, 93.4 percent of student surveys and 82.8 percent of parent surveys were returned in

treatment schools; 83.4 percent of student surveys and 63.3 percent of parents surveys were returned

in control schools. These response rates are relatively high compared to response rates in similar

survey administrations in urban environments (Parks et al. 2003, Guite et al. 2006, Fryer 2010).

Table 3 provides descriptive statistics of all HISD 5th grade students as well as those in our

experimental group, subdivided into treatment and control. The first column provides the mean,

standard deviation, and number of observations for each variable used in our analysis for all HISD

5th grade students. The second column provides the mean, standard deviation, and number of

observations for the same set of variables for treatment schools. The third column provides identical

data for control schools. The fourth column displays the p-values from a t-test of whether treatment

and control means are statistically equivalent. See Online Appendix C for details on how each

variable was constructed.

Within the experimental group, treatment and control students are fairly balanced, although

treatment schools have more black students and fewer white, Asian, LEP, and gifted and talented

18Parent surveys were available in English and Spanish.

16



students. Treatment schools also have lower previous year scores in TAKS math. A joint significance

test yields a p-value of 0.643, suggesting that the randomization is collectively balanced along the

observable dimensions we consider.

To complement these data, Appendix Figure 2 shows the geographic distribution of treatment

and control schools, as well as census tract poverty rates. These maps confirm that our treatment

and control schools are similarly distributed across space and are more likely to be in higher poverty

areas of a city.

B. Research Design

We use a matched-pair randomization procedure similar to those recommended by Imai et

al. (2009) and Greevy et al. (2004) to partition the set of interested schools into treatment and

control.19 Recall, we invited seventy-one schools to sign up for the randomization. Fifty-nine schools

chose to sign up. To conserve costs, we eliminated the nine schools with the largest enrollment

among the 59 eligible schools that were interested in participating, leaving 50 schools from which

to construct 25 matched pairs.

To increase the likelihood that our control and treatment groups were balanced on a variable

that was correlated with our outcomes of interest, we used past standardized test scores to construct

our matched pairs. First, we ordered the full set of 50 schools by the sum of their mean reading

and math test scores in the previous year. Then we designated every two schools from this ordered

list as a “matched pair” and randomly drew one member of the matched pair into the treatment

group and one into the control group.

C. Econometric model

To estimate the causal impact of providing financial incentives on outcomes, we estimate Intent-

To-Treat (ITT) e↵ects, i.e., di↵erences between treatment and control group means. Let Zs be an

indicator for assignment to treatment, let Xi be a vector of baseline covariates measured at the

individual level, and let Xs denote school-level variables; Xi and Xs comprise our parsimonious

19There is an active debate on which randomization procedures have the best properties. Imbens (2011) summarizes
a series of claims made in the literature and shows that both stratified randomization and matched-pairs can increase
power in small samples. Simulation evidence presented in Bruhn and McKenzie (2009) supports these findings,
though for large samples there is little gain from di↵erent methods of randomization over a pure single draw. Imai et
al. (2009) derive properties of matched-pair cluster randomization estimators and demonstrate large e�ciency gains
relative to pure simple cluster randomization.
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set of controls. Moreover, let �m denote a mutually exclusive and collectively exhaustive set of

matched pair indicators. The ITT e↵ect, ⇡, is estimated from the equation below:

achievementi,m = ↵+Xi� +Xs� + Zs⇡ + �m✓ + "i,m (4)

The ITT is an average of the causal e↵ects for students in schools that were randomly selected

for treatment at the beginning of the year and students in schools that signed up for treatment but

were not chosen. In other words, ITT provides an estimate of the impact of being o↵ered a chance

to participate in the experiment. All student mobility between schools after random assignment is

ignored. We only include students who were in treatment and control schools as of October 1 in

the year of treatment.20 In HISD, school began August 23, 2010; the first student payments were

distributed October 20, 2010.

5 Empirical Analysis

5.1 Direct Outcomes

Table 4A includes ITT estimates on outcomes for which we provided incentives – AM objectives

mastered and parent-teacher conferences attended. Objectives mastered are measured in � units.

Results with and without our parsimonious set of controls are presented in columns (1) and (2),

respectively. In all cases, we include matched pair fixed e↵ects. Standard errors are in parenthesis

below each estimate. To streamline the presentation of the experimental results, we focus the dis-

cussion in the text on the regressions which include our parsimonious set of controls. All qualitative

results are the same in the regressions without controls.

The impact of the financial incentive treatment is statistically significant across both of the

direct outcomes we explore. The ITT estimate of the e↵ect of incentives on objectives mastered

in AM is 1.087� (0.031). Treatment parents attended 1.572 (0.099) more parent conferences. Put

di↵erently, our aligned incentive scheme caused a 125% increase in the number of AM objectives

mastered and an 87% increase in the number of parent-teacher conferences attended in treatment

20This is due to a limitation of the attendance data files provided by HISD. Accelerated Math registration data
confirms students who were present in experimental schools from the beginning of treatment. Using first school
attended from the HISD attendance files or October 1 school does not alter the results.
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versus control schools.21

In addition, we were able to calculate the price elasticity of demand for math objectives by

examining the change in AM objectives mastered before and after two unexpected price shocks

as seen in Figure 1. After five months of rewarding math objective mastery at a rate of $2 per

objective, we (without prompt or advance warning) raised the reward for an objective mastered

in AM to $4 for four weeks starting in mid-February and then from $2 to $6 for one week at

the beginning of May. Treatment students responded by increasing their productivity; the rate

of objective mastery increased from 2.05 objectives per week at the price of $2 per objective up

to 3.52 objectives per week at $4 per objective, and 5.80 objectives per week at $6 per objective.

Taken at face value, this implies a price elasticity of demand of 0.87.

Taken together, the evidence on the number of objectives mastered and parent conferences

attended in treatment versus control schools as well as the response to unexpected price shocks

implies that our incentive scheme significantly influenced student and parent behavior.

5.2 Indirect Outcomes

In this section, we investigate a series of indirect outcomes – standardized test scores, student

investment, parental involvement, attendance, and intrinsic motivation – that are correlated with

the outcomes for which we provided incentives. Theoretically, due to misalignment, moral hazard,

or psychological factors, the e↵ects of our incentive scheme on this set of outcomes is ambiguous.

For these, and other reasons, Kerr (1975) notoriously referred to investigating impacts on indirect

outcomes as “the folly of rewarding A, while hoping for B.” Still, given the correlation between

outcomes such as standardized test scores and income, health, and the likelihood of incarceration,

they may be more aligned with the outcomes of ultimate interest than our direct outcomes (Neal

and Johnson 1996, Fryer 2011b).

A. Student Test Scores

Panel A of Table 4B presents estimates of the e↵ect of incentives on testing outcomes for which

students were not given incentives. These outcomes include Texas’ state-mandated standardized

21The average control school actively mastered objectives during 8.16 of 9 payment periods. One school never
began implementing the program and six stopped utilizing the program at some point during the year. Of these six,
one ceased active use during February, four stopped during March, and one stopped during April. All twenty-five
treatment schools actively mastered objectives throughout the duration of the program.
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test (TAKS). The math and ELA assessments are normalized to have a mean of zero and a standard

deviation of one across the city sample. Estimates without and with our parsimonious set of controls

are presented in columns (1) and (2), respectively. As before, standard errors are in parentheses

below each estimate.

ITT estimates reveal that treatment students outperform control students by 0.081� (.025) in

TAKS math and underperform in TAKS ELA by 0.077� (.027).22

B. Student and Parent Engagement

The survey results reported in Panel B of Table 4B report measures of student and parent

engagement. Students were asked a variety of survey questions including “Did your parents check

whether you had done your homework more this year or last year?” and “What subject do you

like more, math or reading?” Parents were also asked a variety of questions including “Do you ask

your 5th grade student more often about how he/she is doing in Math class or Reading class?”

Answers to these questions are coded as binary measures and treatment e↵ects are reported as a

percentage change. Details on variable construction from survey responses are outlined in Online

Appendix C.

Treatment parents were 7.1 (2.7) percentage points more likely, relative to the control mean of

31 percent, to report that they checked their student’s homework more during the treatment year

than in the pre-treatment year. Moreover, the increased parental investment was skewed heavily

towards math. Treatment parents were 12.2 (2.8) percentage points more likely to ask more about

math than reading homework, and treated students were 11.2 (2.3) percentage points more likely

to report a preference for math over reading.

C. Attendance and Intrinsic Motivation

22It may be surprising that the impact on math scores is not larger, given the increase in e↵ort on mastering
math objectives that were correlated with the Texas state test. One potential explanation is that the objectives
in AM are not aligned with those assessed on TAKS. Using Accelerated Math’s alignment map, we found that of
the 152 objectives in the AM Texas 5th grade library, only 105 (69.1 percent) align with any Texas state math
standards (TEKS). Texas state standard alignments are available at http://www.renlearn.com/fundingcenter/

statestandardalignments/texas.aspx Furthermore, matching the AM curriculum to Texas Essential Knowledge
and Skills (TEKS) standards in the six sections of the TAKS math assessment reveals the AM curriculum to be
heavily unbalanced; 91 out of the 105 items are aligned with only 3 sections of the TAKS assessment (1, 4, and
6). The treatment e↵ect on the aligned sections is modest in size and statistically significant, 0.137� (.028). The
treatment e↵ect on the remaining (non-aligned) portions of the test is small and statistically insignificant, 0.026�
(.030). Not shown in tabular form. Another, non-competing, explanation is that students substituted e↵ort from
another activity that was important for increasing test scores (i.e. paying attention in class) to mastering math
objectives.
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The first row of Panel C in Table 4 reports results for student attendance – a proxy for e↵ort.

The treatment e↵ect on attendance rates are 0.050� (0.027) higher than their control counterparts.

This amounts to treatment students attending roughly one half of an extra day of school per year.

One of the major criticisms of the use of incentives to boost student achievement is that the

incentives may destroy a student’s “love of learning.” In other words, providing extrinsic rewards

can crowd out intrinsic motivation in some situations. There is a debate in social psychology on

this issue – see Cameron and Pierce (1994) for a meta-analysis.

To measure the impact of our incentive experiments on intrinsic motivation, we administered

the Intrinsic Motivation Inventory, developed by Ryan (1982), to students in our experimental

groups.23 The instrument assesses participants’ interest/enjoyment, perceived competence, e↵ort,

value/usefulness, pressure and tension, and perceived choice while performing a given activity.

There is a subscale score for each of those six categories. We only include the interest/enjoyment

subscale in our surveys, as it is considered the self-report measure of intrinsic motivation. To get

an overall intrinsic motivation score, we sum the values for these statements (reversing the sign on

statements where stronger responses indicate less intrinsic motivation). Only students with valid

responses to all statements are included in our analysis of the overall score, as non-response may

be confused with low intrinsic motivation.

The final row of Table 4B provides estimates of the impact of our incentive program on the

overall intrinsic motivation score of students in our experimental group. The ITT e↵ect of incentives

on intrinsic motivation is almost exactly zero – 0.006� (0.06).

5.3 Heterogenous Treatment E↵ects

Table 5 investigates treatment e↵ects on number of objectives mastered and state test scores for a

set of predetermined subsamples – gender, race/ethnicity, previous year’s test score, and whether

a student is eligible for free or reduced price lunch.24

All regressions include our parsimonious set of controls. Gender is divided into two categories

and race/ethnicity is divided into five categories: non-Hispanic white, non-Hispanic black, Hispanic,

non-Hispanic Asian and non-Hispanic other race. We only include a racial/ethnic category in

23The inventory has been used in several experiments related to intrinsic motivation and self-regulation [e.g., Ryan,
Koestner, and Deci (1991) and Deci et al. (1994)].

24All other outcomes are in Appendix Table 2.
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our analysis if there are at least one hundred students from that racial/ethnic category in our

experimental group; only black and Hispanic subgroups meet this criteria. Eligibility for free lunch

is used as an income proxy. We also partition students into quintiles according to their baseline

TAKS math scores and report treatment e↵ects for the top and bottom quintiles.

The treatment e↵ect on objectives mastered is statistically larger for girls (1.159�) than for

boys (1.012�). Hispanic students made the strongest gains on math tests. They also mastered

more objectives while their parents attended fewer conferences. Students eligible for free lunch

showed statistically larger and statistically significant gains on TAKS Math (0.144�). They also

lost less ground in reading; however, the inter-group di↵erences are only marginally significant in

reading.

The most noticeable and robust di↵erences occur when we stratify on previous year test scores.

Consistent with Proposition 2 from Section 2, high-ability students gain most from the experiment,

both in comparison to high-ability students in control schools or low-ability students in treatment

schools. For instance, high-ability students master 1.66� (.117) more objectives, have parents who

attend two more parent-teacher conferences, have 0.228� (.082) higher standardized math test scores

and equal reading scores relative to high-ability students in control schools (see Appendix Table 2

for a larger set of subgroup results). Conversely, low-ability students master 0.686� (0.047) more

objectives, but score 0.165� (0.063) lower in reading and have similar math test scores compared

with low-ability students in control schools. In other words, the e↵ort substitution problem is less

for high ability students.

5.4 Post-Treatment Outcomes

The treatment ended with a final payment to students in June of 2011. A full year after the

experiment, we collected data on post-treatment test scores; math and reading state tests as well

as Stanford 10 for treatment and control students during late spring of their sixth grade year.

Recall that in the model, low-ability and high-ability students who are induced to put forth

additional e↵ort on a given task learn their type when they observe the results of their additional

exertion of e↵ort and that high-ability agents have lower cost of displaced e↵ort. If agents base

future e↵ort on their beliefs about their ability-type and update their beliefs in this way, the

provision of incentives could lead low-ability agents to exert less e↵ort in the future, while high-
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ability agents increase their expected return to e↵ort uopn learning they are a high-ability agent

and exert more e↵ort in the future (see Proposition 4).

Table 6 examines lasting treatment e↵ects on standardized test scores and attendance in the

year following treatment. Column 1 displays the treatment e↵ects that persisted one full year after

all financial incentives were withdrawn for the full group of students with valid 2011-12 test scores.

Columns 2 and 3 display the same results for the subgroups of students in the top and bottom

quintiles of pre-treatment math test scores.

In columns 5 and 6, we restrict our sample to treatment students only and regressed year 1 state

test scores on objectives mastered (a measure of e↵ort exerted in math) and predicted the residuals

for each student. These residuals capture the di↵erence between a student’s expected score on the

state test (based upon e↵ort, as measured by objectives mastered) and her actual score. Students

were divided into quintiles based upon the size of this residual, with students whose residual is the

most negative in the bottom quintile or, “bad shock” group and students with the largest residuals

in the top quintile or, “good shock” group. Columns 5 and 6 report the coe�cient on a dummy for

being in the top or bottom quintile in a regression of second year test scores on residual quintiles

and our standard set of controls, including two years of lagged test scores. Point estimates are

relative to the median quintile, which is omitted from the regression.

While post-treatment e↵ects in the full sample are statistically insignificant in math (0.042�(0.029),

negative e↵ects linger in reading (-0.071� (.029)). More interestingly, the subgroups reveal stark

di↵erences between higher and lower achieving students, as well as di↵erences based upon what

students may have learned about their ability from their first year e↵ort and resulting test scores.

The negative e↵ect on the reading scores of lower-achieving students persist, as lower-achieving

treatment students score 0.170� (.080) lower than lower-achieving control students, and there are

significant spillovers into math achievement, where lower-achieving treatment students are outper-

formed by 0.223� (.056). Conversely, higher-achieving treatment students outperform their control

group peers by 0.135� (.080) in math and 0.103� (.086) in reading.
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6 Robustness Checks

In this section, we explore the robustness of our results to two potential threats to validity and

conclude by exploring further theoretical predictions.

6.1 Attrition and Bounding

A potential worry is that our estimates use the sample of students for which we have state test

scores immediately following treatment. If students in treatment schools and control schools have

di↵erent rates of selection into this sample, our results may be biased. A simple test for selection

bias is to investigate the impact of the treatment o↵er on the probability of having valid test

score data. The results of this test are reported in Table 7. In the treatment year, there were

no significant di↵erences between treatment and control students on the likelihood of being in the

sample. In the post-treatment year, however, treatment students are 3% less likely to have a valid

math or reading test score. Non-treated parents were significantly less likely to return our survey.

To address the potential issues that arise with di↵erential attrition, we provide bounds on

our estimates. Consistent with Lee (2009), our bounding method, calculated separately for each

outcome, drops the highest-achieving lottery winners until response rates are equal across treatment

and control. If n is the excess number of treatment responses, we drop the n treated students

with the most favorable values for each variable. These bounds therefore approximate a worst-case

scenario, that is, what we would see if the excess treatment respondents were the “best” respondents

on each measure. This approach is almost certainly too conservative.

Yet, as Table 8 demonstrates, it does not significantly alter our main results. In all cases,

statistical significance is maintained and in two of the six cases are the estimated treatment e↵ects

statistically di↵erent than the bounded estimates. Math and ELA estimated – due to the fact that

there was only a 3% di↵erence between treatment and control – does not alter the results. The

impacts on parent conferences attended change considerably, but are still statistically significant.

6.2 Family-Wise Error Correction

A second concern is that we are detecting false positives due to multiple hypothesis-testing. To

address this Appendix Table 3 displays Bonferonni corrected p-values for our the main hypotheses.
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The Bonferonni is the simplest and most conservative method to control the Family-Wise Error

Rate.

Column (1) displays the p-value for our regression for the six main hypotheses presented in the

paper and column (2) presents Bonferonni corrected p-values. Five out of the six null hypotheses

continue to be rejected at the 5% level and the remaining on is rejected at the 10% level. In other

words, the results seem robust to the most conservative correction for multiple hypothesis tests.

6.3 Further Theoretical Predictions

A. Learning

Consistent with the model, we observe that students within the treatment group who experience

a “bad shock” in the sense that they underperform on the on the 2010-11 state math test relative

to the amount of e↵ort they exerted in AM perform far worse on their 2011-12 standardized tests

than students who experience “good shock” in their 2010-11 state math test scores relative to the

amount of e↵ort they exerted in AM. Students who experience “bad shocks” score 0.252� (0.055)

lower than students whose test scores are best predicted by their e↵ort in AM, while students who

experience “good shocks” score 0.498� (0.061) higher– a stark di↵erence of 0.75� between receiving

a“bad shock” versus a “good shock” in 2010-11 on students’ 2011-12 test scores.

B. Discouragement Effects

An alternative interpretation of our findings is that individuals in the treatment group who

did well were “encouraged” by their results (and potentially their parents and teachers based on

their results) and students who did not do well were “discouraged.” Put di↵erently, the underlying

mechanism may not be rational learning about ability, but rather discouragement about the link

between e↵ort and output. Unfortunately, our experiment was not implemented in a way that

allows one to distinguish between students learning about their ability and student learning about

the production function.

7 Conclusion

Individuals, even school children, respond to incentives. How we design those incentives to ellicit

desirable short and longer term responses is far less clear. We demonstrate these complexities with
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a model and a field experiment.

The model has four predictions. First, incentives for a given task lead to an increase in e↵ort

on that task. Second, incentives for a given task lead to a decrease in e↵ort on the non-incentivized

task. Further, the decrease in e↵ort on the non-incentivized task can be more or less for higher-type

agents relative to lower-type agents, depending on how substitutable those tasks are in the cost

of e↵ort function. Fourth, when the agent’s true ability on a given task is su�ciently low, the

learning that comes from the provision of incentives is detrimental to the principal. In the absence

of incentives the agent would exert some baseline level of e↵ort due to intrinsic motivation and

hence learn “little” about her ability. Providing incentives induces more e↵ort than this and hence

more learning about their ability type. When agents discover that they are lower-ability than they

previously believed, they exert lower e↵ort in period two for any tasks on which there is a positive

incentive slope (as in the case of optimal incentives).

To better understand these predictions in a real-world laboratory, we analyze new data from

a randomized field experiment conducted in fifty traditionally low-performing public schools in

Houston, Texas during the 2010-2011 school year. We argue that the data from the field experiment

are consistent with the model, though other explanations are possible. Higher-achieving students

master more objectives, have parents who attend more parent-teacher conferences, have higher

standardized math test scores and equal reading scores relative to high-achieving students in non-

treated schools. Conversely, lower-achieving students master more objectives, have parents who

attend more parent-teacher conferences, have equal math test scores and lower reading scores. Put

di↵erently, higher-achieving students put in significant e↵ort and were rewarded for that e↵ort in

math without a deleterious impact in reading. Lower-achieving students also increased e↵ort on

the incentivized task, but did not increase their math scores and their reading scores decreased

significantly.

Consistent with the fourth prediction of the model, higher-achieving students continue to do

well, maintaining a positive treatment e↵ect in math and a zero e↵ect in reading, one year after

the incentives are taken away. Lower-achieving students, however, exhibit large and statistically

significant decreases in both math and reading achievement after the incentives are removed. We

argue that this is most likely explained by students learning about their own ability though we

cannot rule out the possibility that they updated their priors on the production function in a way
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that might explain these results.

Finally, it is worth pausing to consider the welfare implications of learning one’s true ability

under this model. The principal’s goal is to increase e↵ort among the agents. Agents, however,

weight the cost of e↵ort with the benefit of that e↵ort. Reduced e↵ort on the part of the agent as

an optimal response to new information may be welfare enhancing. Conversely, in a multitasking

framework, where abilities across tasks are not perfectly correlated, learning one’s ability on task A

may cause students to underinvest in task B. Moreover, if abilities change over time, then optimal

investments are more complex and the possibiity of not learning the correct investment profile over

time grows. In other words, the welfare implications are unclear.

Taken together, both the theoretical model and the experimental results o↵er a strong caution-

ary tale on the use of financial incentives when individuals may not know the stochastic mapping

from e↵ort to output.
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Table 1: Summary of Math Stars Houston Incentives Experiment

Schools
50 (of 70 eligible) HISD schools opted in to participate, 25 schools randomly chosen for treatment. All treatment and
control schools were provided complete Accelerated Mathematics software, training, and implementation materials
(handouts and practice exercises).

Treatment Group 1,693 5th grade students: 27.5% black, 70.1% Hispanic, 55.5% free lunch eligible

Control Group 1,735 5th grade students: 25.7% black, 68.2% Hispanic, 53.6% free lunch eligible

Outcomes of Interest
TAKS State Assessment, STAAR State Assessment (post-treatment),Number of Math Objectives Mastered, Parent
Conference Attendance, Measures of Parent Involvement, Measures of Student Motivation and E↵ort

Test Dates Year 1: TAKS: April 12-23, 2011; TAKS Retake: May 23-25, 2011; Stanford 10: May 8-10, 2011
Year 2: STAAR: April 24-25, 2012

Objectives Database Students took a diagnostic test and were assigned math objectives to practice based upon their measured deficiencies.

Incentive Structure Students paid $2 per objective to practice a math objective and pass a short test to ensure they mastered it.

Additional Incentives $100 for mastering 200th objective (cumulatively)

Frequency of Rewards Paydays were held every 3-4 weeks

Operations $875,000 distributed in incentives payments, 99% consent rate. 2 dedicated project managers.

Notes. Each row describes an aspect of treatment indicated in the first column. Entries are descriptions of the schools, students, outcomes of interest, testing dates,

objectives database, incentive structure, additional incentives, frequency of rewards and operations. See Appendix A for more details. The numbers of treatment and control

students given are for those students who have non-missing reading or math test scores.



Table 2: Pre-Treatment Characteristics of Non-Experimental and Experimental Schools
Non-Exp. Exp. E vs. NE T vs. C
5th Grade 5th Grade p-value Treatment Control p-value

Teacher Characteristics

Percent male 0.161 0.183 0.105 0.174 0.191 0.317
(0.079) (0.078) (0.074) (0.082)

Percent black 0.322 0.370 0.307 0.366 0.374 0.777
(0.255) (0.292) (0.330) (0.257)

Percent Hispanic 0.343 0.365 0.547 0.352 0.377 0.417
(0.213) (0.202) (0.222) (0.183)

Percent white 0.290 0.222 0.033 0.236 0.207 0.668
(0.233) (0.158) (0.141) (0.176)

Percent Asian 0.034 0.032 0.798 0.029 0.035 0.315
(0.039) (0.032) (0.030) (0.035)

Percent other race 0.010 0.011 0.838 0.015 0.007 0.224
(0.015) (0.022) (0.026) (0.016)

Mean teacher salary / 1000 51.942 52.079 0.674 52.088 52.071 0.523
(2.058) (1.848) (1.706) (2.014)

Mean years teaching experience 11.878 12.082 0.657 12.222 11.942 0.326
(2.781) (2.656) (2.476) (2.870)

Mean Teacher Value Added: Math 0.040 -0.162 0.031 -0.211 -0.113 0.456
(0.468) (0.586) (0.417) (0.722)

Mean Teacher Value Added: Reading 0.040 -0.121 0.080 -0.128 -0.113 0.779
(0.465) (0.566) (0.411) (0.696)

Student Body Characteristics

# of suspensions per student 0.096 0.106 0.606 0.087 0.126 0.883
(0.096) (0.155) (0.108) (0.192)

# of days suspended per student 0.214 0.261 0.365 0.225 0.297 0.925
(0.988) (0.344) (0.290) (0.395)

Total Enrollment (Pre-treatment) 727.467 593.068 0.000 606.522 579.251 0.718
(202.807) (142.169) (163.744) (117.878)

Number of Schools 130 50 25 25

NOTES: This table reports school-level summary statistics for our aligned incentives experiment. The non-
experimental sample includes all HISD schools with at least one 5th grade class in 2009-10. Column (3) reports
p-values on the null hypthesis of equal means in the experimental and non-experimental sample. Column (6) reports
the same p-value for treatment and control schools. Each test uses heteroskedasticity-robust standard errors, and the
latter test controls for matched-pair fixed effects.



Table 3: Student Pre-Treatment Characteristics
HISD T vs. C.

5th Grade Treatment Control p-value
Student Characteristics

Male 0.510 0.526 0.525 0.504
(0.500) (0.499) (0.500)

White 0.078 0.019 0.046 0.000
(0.268) (0.138) (0.211)

Black 0.248 0.275 0.257 0.015
(0.432) (0.447) (0.437)

Hispanic 0.632 0.701 0.682 0.876
(0.482) (0.458) (0.466)

Asian 0.030 0.001 0.009 0.002
(0.172) (0.035) (0.094)

Other Race 0.012 0.003 0.006 0.364
(0.109) (0.055) (0.077)

Special Education Services 0.098 0.108 0.086 0.668
(0.297) (0.311) (0.281)

Limited English Proficient 0.307 0.293 0.336 0.017
(0.461) (0.455) (0.473)

Gifted and Talented 0.193 0.138 0.166 0.040
(0.394) (0.345) (0.373)

Economically Disadvantaged 0.828 0.929 0.909 0.219
(0.377) (0.257) (0.287)

Free or Reduced Price Lunch 0.513 0.555 0.536 0.349
(0.500) (0.497) (0.499)

State Math (Pre-treatment) 0.000 -0.142 -0.082 0.043
(1.000) (0.944) (0.954)

State ELA (Pre-treatment) 0.000 -0.166 -0.152 0.629
(1.000) (0.934) (0.956)

Missing Pre-treatment Math Scores 0.129 0.117 0.114 0.448
(0.336) (0.321) (0.317)

Missing Pre-treatment ELA Scores 0.134 0.125 0.122 0.514
(0.340) (0.331) (0.327)

p-value from joint F-test 0.643

Student Outcomes
Participated in Program 0.111 0.966 0.001 0.000

(0.314) (0.180) (0.034)
Periods Treated 0.944 8.473 0.003 0.000

(2.717) (1.739) (0.107)

Observations 15389 1693 1735 3428

NOTES: This table reports summary statistics for our aligned incentives experiment. The sample is restricted to
5th grade students with valid test score data for the 2010 - 2011 school year. Column (4) reports p-values on the null
hypothesis of equal means in treatment and control groups using heteroskedasticity-robust standard errors and controls
for matched-pair fixed effects.



Table 4a - Mean Effect Sizes (Intent to Treat Estimates): Direct Outcomes
Raw Controlled

Parent Conferences Attended 1.639*** 1.572***
(0.089) (0.099)
2052 2052

Objectives Mastered 0.978*** 1.087***
(0.029) (0.031)
3292 3292

Notes: This table reports ITT estimates of the effects of our aligned incentives experiment on various test scores and
survey responses in the treatment year. The number of objectives mastered is standardized to have mean zero and
standard deviation one in the experimental sample. Raw regressions include controls for previous test scores, their
squares, and matched-pair fixed effects. Controlled regressions also include controls for the gender, race, free lunch
eligibility, special education status, and whether the student spoke English as second language. Standard errors are
robust to heteroskedasticity. *** = significant at 1 percent level, ** = significant at 5 percent level, * = significant at
10 percent level.



Table 4b - Mean Effect Sizes (Intent to Treat Estimates): Indirect Outcomes
Raw Controlled

A. Student Achievement
State Math 0.077*** 0.081***

(0.024) (0.025)
3128 3128

State ELA -0.084*** -0.077***
(0.026) (0.027)
3108 3108

Aligned State Math 0.129*** 0.137***
(0.027) (0.028)
3090 3090

Unaligned State Math 0.023 0.026
(0.029) (0.030)
3090 3090

B. Survey Outcomes
Parents check HW more 0.036 0.071***

(0.024) (0.027)
2041 2041

Student prefers Math to Reading 0.118*** 0.112***
(0.021) (0.023)
2356 2356

Parent asks about Math more than Rdg. 0.115*** 0.122***
(0.024) (0.028)
1908 1908

C. Attendance and Motivation
Attendance 0.045* 0.050*

(0.026) (0.027)
3187 3187

Intrinsic Motivation 0.041 0.006
(0.056) (0.060)
2004 2004

Notes: This table reports ITT estimates of the effects of our aligned incentives experiment on various test scores and
survey responses in the treatment year. Testing and attendance variables are drawn from HISD attendance files and
standardized to have a mean of 0 and standard deviation of 1 among 5th graders with valid test scores. The survey
responses included here are coded as zero-one variables; The effort and intrinsic motivation indices are constructed
from separate survey responses; their construction is outlined in detail in the text of this paper and Online Appendix
B. Raw regressions include controls for previous test scores, their squares, and matched-pair fixed effects. Controlled
regressions also include controls for the gender, race, free lunch eligibility, special education status, and whether the
student spoke English as second language. Standard errors are robust to heteroskedasticity. *** = significant at 1
percent level, ** = significant at 5 percent level, * = significant at 10 percent level.



Table 5: Mean Effect Sizes (Intent to Treat) By Subsample
Full Gender Race Free Lunch Math Quintile

Sample Male Female p-value Black Hispanic p-value Yes No p-value Bottom Top p-value
A. Incentivized Outcomes
Objectives Mastered 1.087*** 1.012*** 1.159*** 0.816*** 1.114*** 1.096*** 1.055*** 0.686*** 1.660***

(0.031) (0.045) (0.043) 0.017 (0.045) (0.045) 0.000 (0.043) (0.047) 0.519 (0.047) (0.117) 0.000
3292 1728 1554 857 2283 1774 1492 694 423

B. Non-Incentivized Outcomes
State Math 0.081*** 0.106*** 0.040 -0.002 0.104*** 0.144*** -0.006 -0.004 0.228***

(0.025) (0.035) (0.037) 0.183 (0.056) (0.033) 0.101 (0.034) (0.037) 0.003 (0.049) (0.082) 0.011
3128 1636 1491 828 2165 1687 1421 663 428

State ELA -0.077*** -0.067* -0.090** -0.069 -0.076** -0.033 -0.122*** -0.165*** 0.023
(0.027) (0.037) (0.039) 0.678 (0.071) (0.033) 0.926 (0.038) (0.041) 0.106 (0.063) (0.083) 0.060
3108 1616 1491 821 2151 1677 1411 659 427

NOTES: This table reports ITT estimates of the effects of the experiment on incentivized and non-incentivized outcomes in the treatment year for a variety of
subsamples. All regressions follow the controlled specification described in the notes of previous tables. All test outcomes are standardized to have mean zero and
standard deviation one among all HISD fifth graders. *** = significant at 1 percent level, ** = significant at 5 percent level, and * = significant at 10 percent level.



Table 6: Mean Effect Sizes (Intent to Treat) on Post-Treatment Outcomes By Subsample
Full Previous Year Math Achievement Bad Good

Sample Bottom Quintile Top Quintile p-value Shock Shock p-value
State Math -0.042 -0.223*** 0.134* -0.252*** 0.498***

(0.029) (0.056) (0.078) 0.000 (0.055) (0.061) 0.000
2461 511 332 375 230

State Reading -0.071** -0.170** 0.103 -0.196*** 0.156**
(0.029) (0.080) (0.086) 0.013 (0.056) (0.063) 0.000
2458 516 336 375 230

Stanford 10 Math -0.060** -0.142** 0.069 -0.225*** 0.370***
(0.029) (0.066) (0.072) 0.021 (0.055) (0.065) 0.000
2445 517 335 375 230

Stanford 10 ELA -0.077** -0.135* 0.099 -0.158** 0.203***
(0.033) (0.080) (0.087) 0.037 (0.063) (0.072) 0.000
2564 553 335 375 230

Attendance 0.011 0.084 0.018 -0.070 0.040
(0.035) (0.091) (0.070) 0.538 (0.075) (0.072) 0.147
2598 588 342 375 230

Notes: Columns 1-3 report ITT estimates of the effects of the experiment on year 2 test scores and attendance. Columns 5 and 6 report regression coefficients from
a regression of year 2 outcomes on dummies for whether a student received a large negative shock relative to his or her predicted year 1 test score (predicted by
objectives mastered in Accelerated Math, a measure of effort). Students are broken into quintiles by the size their residuals from a regression of year 1 test scores
on objectives mastered, and students with large negative residuals are in the bottom quintile, having received a while students with large positive residuals are in
the top quintile, having received a . Coefficients in this regression are reported relative to the third quuintile, who experienced the median shock. The sample is
restricted to the treatment group for this regression. All regressions follow the controlled specification described in the notes of previous tables. All test outcomes
are standardized to have mean zero and standard deviation one among all HISD fifth graders. *** = significant at 1 percent level, ** = significant at 5 percent level,
and * = significant at 10 percent level.



Table 7 - Attrition
Raw Controlled

Attrited - State Math (Treatment) 0.013* 0.005
(0.007) (0.006)
3428 3428

Attrited - State ELA (Treatment) 0.007 -0.004
(0.007) (0.006)
3428 3428

Attrited - State Math (Post-treatment) -0.007 -0.031**
(0.015) (0.016)
3428 3428

Attrited - State ELA (Post-treatment) -0.001 -0.029*
(0.016) (0.016)
3428 3428

Attrited - Parent Conferences -0.291*** -0.325***
(0.015) (0.015)
3428 3428

Attrited - Accelerated Math Objectives -0.015** -0.022***
(0.006) (0.006)
3428 3428

NOTES: This table reports ITT estimates of the effects of our aligned incentives experiment on whether a student is
missing various test scores and survey responses. Each attrition measure is coded as a one if a given student does
not have valid scores or survey respones for that outcome and a zero otherwise. Raw regressions include controls for
previous test scores, their squares, and matched-pair fixed effects. Controlled regressions also include controls for the
gender, race, free lunch eligibility, special education status, and whether the student spoke English as second language.
Standard errors are robust to heteroskedasticity. *** = significant at 1 percent level, ** = significant at 5 percent level,
* = significant at 10 percent level.



Table 8 Attrition-Bounded Estimates
Observed ITT Attrition-Bounded ITT p-value

State Math (Treatment) 0.081*** 0.074***
(0.025) (0.025) 0.844
3128 3120

State ELA (Treatment) -0.077*** -0.086***
(0.027) (0.027) 0.803
3108 3101

State Math (Post-Treatment) -0.042 -0.065**
(0.029) (0.029) 0.573
2461 2423

State Reading (Post-Treatment) -0.071** -0.090***
(0.029) (0.029) 0.645
2458 2424

Parent Conferences Attended 1.572*** 0.661***
(0.099) (0.101) 0.000
2052 1647

Objectives Mastered 1.087*** 1.000***
(0.031) (0.028) 0.038
3292 3255

NOTES: This table reports ITT estimates of the effects of our aligned incentives experiment on whether a student is
missing various test scores and survey responses. Each attrition measure is coded as a one if a given student does
not have valid scores or survey respones for that outcome and a zero otherwise. Raw regressions include controls for
previous test scores, their squares, and matched-pair fixed effects. Controlled regressions also include controls for the
gender, race, free lunch eligibility, special education status, and whether the student spoke English as second language.
Standard errors are robust to heteroskedasticity. *** = significant at 1 percent level, ** = significant at 5 percent level,
* = significant at 10 percent level.


