
NBER WORKING PAPER SERIES

CONFLICTS OF INTEREST DISTORT PUBLIC EVALUATIONS:
EVIDENCE FROM THE TOP 25 BALLOTS OF NCAA FOOTBALL COACHES

Matthew Kotchen
Matthew Potoski

Working Paper 17628
http://www.nber.org/papers/w17628

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
November 2011

We are grateful to Jesse Burkhardt, Nathan Chan, and John D'Agostino for valuable research assistance.
The views expressed herein are those of the authors and do not necessarily reflect the views of the
National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2011 by Matthew Kotchen and Matthew Potoski. All rights reserved. Short sections of text, not
to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including
© notice, is given to the source.



Conflicts of Interest Distort Public Evaluations: Evidence from the Top 25 Ballots of NCAA
Football Coaches
Matthew Kotchen and Matthew Potoski
NBER Working Paper No. 17628
November 2011
JEL No. D7,D8

ABSTRACT

This paper provides a study on conflicts of interest among college football coaches participating in
the USA Today Coaches Poll of top 25 teams. The Poll provides a unique empirical setting that overcomes
many of the challenges inherent in conflict of interest studies, because many agents are evaluating
the same thing, private incentives to distort evaluations are clearly defined and measurable, and there
exists an alternative source of computer rankings that is bias free. Using individual coach ballots between
2005 and 2010, we find that coaches distort their rankings to reflect their own team's reputation and
financial interests. On average, coaches rank teams from their own athletic conference nearly a full
position more favorably and boost their own team's ranking more than two full positions. Coaches
also rank teams they defeated more favorably, thereby making their own team look better. When it
comes to ranking teams contending for one of the high-profile Bowl Championship Series (BCS) games,
coaches favor those teams that generate higher financial payoffs for their own team. Reflecting the
structure of payoff disbursements, coaches from non-BCS conferences band together, while those
from BCS conferences more narrowly favor teams in their own conference. Among all coaches an
additional payoff between $3.3 and $5 million induces a more favorable ranking of one position. Moreover,
for each increase in a contending team's payoff equal to 10 percent of a coach's football budget, coaches
respond with more favorable rankings of half a position, and this effect is more than twice as large
when coaches rank teams outside the top 10.

Matthew Kotchen
School of Forestry & Environmental Studies,
School of Management,
and Department of Economics
Yale University
195 Prospect Street
New Haven, CT 06511
and NBER
matthew.kotchen@yale.edu

Matthew Potoski
University of California, Santa Barbara
2400 Bren Hall
Santa Barbara, CA 93106
mpotoski@bren.ucsb.edu



1 Introduction

Many spheres of economic and political activity rely on expert ratings to guide choices when

the quality of alternatives is otherwise di¢ cult to assess. Credit rating agencies, including

Moody�s, Standard & Poor�s, and Fitch, rate debt obligations and instruments to facilitate

informed transactions within �nancial markets. The famed magazine Consumer Reports

rates thousands of household goods and services, and individuals concerned with things like

corporate social responsibility, health, and the environment have a proliferation of ratings in

these dimensions as well. Students choosing among colleges and universities can consult the

well-known U.S. News and World Report Rankings along with numerous other references

that compare alternatives. Politicians in a representative democracy also provide a form of

ratings for the public good. Because citizens are rarely informed about the pros and cons

of di¤erent policy alternatives, elected and appointed o¢ cials are tasked, in principle, with

rating alternatives in order to implement the best public policies.

An obvious concern arises when evaluators have incentives to distort ratings for private

gain at the expense of those who rely upon them. Many have argued that credit rating

agencies su¤ered from such a con�ict of interest in the lucrative market for mortgage-backed

securities, whereby in�ated ratings ultimately contributed to the market�s crash in 2007.

The con�ict arises in this industry because the principle source of revenue for rating agencies

comes from the �rms whose products they are rating. Recent empirical research has found

that rating standards became progressively more lax between 2005 and 2007 (Ashcraft,

Goldsmith-Pinkham, and Vickery 2010), subjectivity played an increasing important role in

the ratings of collateralized debt obligations between 1997 and 2007 (Gri¢ n and Tang 2010),

and �nancial incentives explain biased assumptions within rating agencies (Gri¢ n and Tang

2011). Re�ecting more generally on the literature, however, Mehran and Stulz (2007) argue

that research on con�icts of interest within �nancial markets often �nds weaker and more

benign conclusions than those communicated in the media.

Another area that has received considerable scholarly attention is the in�uence of

campaign contributions on the behavior of legislators, whereby contributions produce private

bene�ts for elected o¢ cials that may sway their policy positions and roll call votes away

from the public interest. But, despite a substantial literature, the pattern of how and

when campaign contributions in�uence elected o¢ cials remains unclear (Ansolabehere, de

Figueiredo, and Snyder 2003). The research challenges of studying con�icts of interest, in all

areas, stem not only from the need to persuasively identify causality, but also the fact that

incentives are frequently di¢ cult to de�ne and measure, as are deviations from otherwise

unbiased behavior.
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In this paper, we study the in�uence of private incentives on public evaluations in a

way that seeks to overcome many of these challenges. In particular, we investigate whether

distorting incentives are present among football coaches in the National Collegiate Athletic

Association (NCAA) when participating in the USA Today Coaches Poll of the top 25

teams. Every season approximately 60 coaches are selected to provide weekly rankings

of the top 25 college football teams, and the USA Today publishes aggregated results of

the Poll as a weekly ranking of the top 25 teams. These rankings are closely followed by

millions of football fans, television executives seeking to market and broadcast the games

of highly ranked teams, and other observers interested in university reputations. Moreover,

the �nal regular season poll, conducted in early December after all the pre-bowl games,

carries additional importance because it is used to determine the eligibility of teams for

the �ve high-pro�le Bowl Championship Series (BCS) bowl games, including the national

championship. Selection into a BCS bowl game is not only prestigious, it also comes with

substantial �nancial rewards for participating teams and conferences, as indicated by the

$182 million of revenue that was disbursed within the NCAA after the 2010-11 season.

The question motivating our research is whether coaches can be relied upon to overcome

private incentives and provide unbiased team rankings, the credibility of which is a public

good. Because teams play signi�cantly fewer games during a season than the number of

potential match-ups, the ranking of teams requires judgment. Coaches, who are assumed to

have expert knowledge, are thus relied upon to provide what is intended to be an unbiased

and objective ranking. There are, however, a host of potentially distorting private incentives

that pose a potential con�ict of interest for coaches as they rank teams. These fall into the

broad categories of improving the standing of one�s own team and athletic conference, and

receiving direct �nancial payo¤s by in�uencing which teams are invited to play in BCS bowl

games. The overall conclusion of our analysis, based on more than 9,000 ranking observations

from 363 coach ballots between 2005 and 2010, is that private incentives have a signi�cant

and distorting in�uence on the way coaches rank teams.

We recognize that the rankings of NCAA football teams may not be of immediate

scholarly concern, but we believe our study has methodological advantages and results that

make it of broader interest. Studies on con�icts of interest are notoriously challenging because

data are di¢ cult to collect, incentives are not easy to de�ne, and what constitutes biased or

distorted evaluation is hard to measure. Our study, in contrast, provides a unique setting in

which many agents are evaluating the same thing, private incentives to distort evaluations

are clearly de�ned and measurable, and as we will describe, there exists an alternative source

of computer evaluations that is bias free. Identifying the extent to which coaches are able to

manage con�icts of interest is also useful because, as discussed above, their task of ranking
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teams closely mirrors that in more immediately relevant domains. The �nding that coaches

are not immune to the lure of private interest, even when their rankings are so highly

publicized and scrutinized, should cast further doubt on, for example, the reasonableness

of assuming that elected politicians behave any di¤erently, especially when their full set

of decisions is typically more di¤use and less transparent. It is also the case that NCAA

football has signi�cant economic impacts. One quarter of the U.S. population, or between 75

and 80 million people, follow college football regularly (The Economist/YouGov Poll 2010),

resulting is television contracts worth several billions of dollars.

Our study thus follows in the growing tradition of research that exploits the wealth of

data and well-de�ned incentives often found in sports to investigate more general economic

phenomena. These include studies on globalization and technological progress in track and

�eld (Munasinghe, O�Flaherty, and Danninger 2001) corruption in sumo wrestling (Duggan

and Levitt 2002), maximization behavior in football (Romer 2006), racial discrimination in

basketball (Price and Wolfers 2010), game theory in chess (Levitt, List, and Sando¤ 2011),

and many others.

Beyond providing insight into con�icts of interest, our results have implications for the

importance of information disclosure requirements. It was only after a wave of controversy

about the integrity of the Coaches Poll, which we discuss later, that individual ballots for the

�nal regular season poll were made publicly available starting in 2005. But disclosure does not

occur for all other weeks of the season. Moreover, the American Football Coaches Association

(AFCA), whose members make up the panelists in the USA Today Coaches Poll, attempted

to revoke the disclosure rule during the 2010 season, until a public backlash caused o¢ cials

to reconsider. Not surprisingly, the question of whether individual ballots of the Coaches Poll

should be made public, and during which weeks, remains controversial. Knowing whether

bias exists and in what form should thus inform continuing debate within NCAA football.

More generally, the analysis provides a useful study on the potential importance of public

disclosure and freedom of information regulations.

The analysis is based on all publicly available ballots of coaches participating in the

Coaches Poll for the 2005-2010 seasons. The empirical strategy is based on regression models

that exploit two distinct approaches to test how di¤erent variables a¤ect the way that coaches

rank teams. One approach uses a set of computer rankings to control for team quality from

year to year, while the other uses �xed e¤ects models that control more �exibly for team

heterogeneity. Overall, we �nd robust evidence that private incentives introduce bias in the

way that coaches rank teams. These arise because of reputation and �nancial rewards that

depend on how teams are ranked and which teams are in position to receive an invitation

to one of the high-pro�le and lucrative BCS bowl games. Among the main results are that
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coaches rank their own team more favorably and show favoritism to teams from their athletic

conference. Playing a team during the season does not in�uence coach rankings, but coaches

rank teams they defeated more favorably, thereby making their own team look better. The

most direct economic result, however, is that �nancial incentives in�uence coach rankings.

When it comes to ranking teams on the bubble of receiving an invitation to one of the BCS

bowl games, coaches show favoritism to conferences and teams that generate higher �nancial

payo¤s to their own university.

2 Background

We begin with background information that helps motivate our research questions and em-

pirical strategy. Speci�cally, we provide information on the USA Today Coaches Poll for

NCAA football, along with the BCS bowl game selection process and corresponding �nan-

cial payo¤s.

2.1 The USA Today Coaches Poll

The USA Today Coaches Poll is a weekly ranking of NCAA Division IA football teams based

on the votes of approximately 60 members of the AFCA Division IA Board of Coaches. The

Poll is sponsored by the USA Today and administered by the AFCA. Each season opens

with a preseason poll that is updated every week during the regular season. The results

are released as the USA Today Coaches Poll ranking of the top twenty-�ve teams, showing

the number of points each team received, where points are allocated as 25 for a �rst-place

rank, 24 for a second-place rank, etc., summed across the ballots of all participating coaches.

The coaches top twenty-�ve rankings are important for the publicity they receive each week

through television advertisements for upcoming games. While the Coaches Poll results are

listed and promoted on their own, they are also combined with other polls (described below)

to produce an o¢ cial BCS ranking.

The �nal regular season poll, conducted after the conference championship games

around the �rst week of December, has added importance because it contributes to the BCS

formula for selecting teams to play in the national championship and the eligibility of teams

for invitations to other BCS bowl games.1 Beginning in 2005, the AFCA began making

public each coach�s ballot for this poll, though ballots are not publicly available for other

polls during the season. Public disclosure of these ballots was a requirement for keeping the

Coaches Poll a part of the BCS rankings formula in the wake of controversy following the

1A �nal Coaches Poll is conducted in January after the bowl games have been played.

4



2004 Poll and BCS rankings.

The 2004 controversy is interesting and relevant to the aim of our research. In the week

leading up to the �nal regular season poll in December 2004, California was ranked ahead

of Texas in both the Coaches Poll and the overall BCS rankings. California thus appeared

poised to become the lowest ranked team invited to play in a BCS game. But Texas head

coach Mack Brown, whose team was ranked just below California, aggressively touted his

team for the �nal BCS invitation over California, arguing that California had recently beaten

Southern Mississippi, a team from a much less prestigious conference, by a disappointingly

�narrow�margin of 26-10. The e¤ect was that in the next Coaches Poll, California�s lead

over Texas dropped 43 points, and Texas received the last BCS bowl invitation. In the

fallout from this controversy came an important reform: in order for the Coaches Poll to

be included in the BCS ranking formula, the AFCA was required to release the individual

ballots for the �nal regular season poll. The disclosure remains controversial, however, with

the AFCA preferring not to make ballots public at all, and critics claiming that the restricted

disclosure does not go far enough.

2.2 The BCS Bowl Games

College football bowl games are played in December and January, after the regular season,

as rewards for regular season performance. Selection into bowl games is by invitation, with

most bowls having agreed in advance to select teams based on their conference ranking. In

some cases, however, better performing teams may receive invitations to more prestigious

and lucrative bowls. The BCS is a selection system that creates match-ups for the most

prestigious and high paying bowls, including an arrangement for the two most highly rated

teams to play in a national championship game. Over the period that we study, 2005 through

2010, there were four BCS bowl games (the Rose, Sugar, Fiesta, and Orange Bowls) with

a �fth National Championship Game added in 2006.2 The BCS method for selecting teams

into these games has changed several times since its inception in the 1990, as has its formula

for distributing revenue to conferences and teams.3

Beginning with the 2005 season, the BCS regular season rankings have been based on

an equally weighted average of the Coaches Poll, the Harris Interactive College Football Poll,

2BCS bowl games are played in January following the season of the previous calendar year. For simplicity
we use the year of the fall football season to refer to all games, including bowls played in January after the
regular season�s end.

3Economics research has shown that some of these reforms have resulted in greater e¢ ciencies within
college football. For example, the BCS allows the matching of teams in bowl games to occur later in the
season, and this results in more highly ranked teams playing in bowls, which increases viewership (Fréchette,
Roth, and Ünver 2007).
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and a composite of computer rankings. The Harris Poll operates much like the Coaches Poll,

but it is composed of ballots from former players, coaches, administrators, and current and

former members of the media. The selection process of those participating in the Harris Poll

aims to have valid representation of conferences and independent schools. The composite

of computer rankings consists of the average among six di¤erent algorithms produced and

updated weekly by Je¤ Sagarin, Anderson & Hester, Richard Billingsley, Wesley Colley,

Kenneth Massey, and Peter Wolfe. The current method for averaging the six computer

programs is to drop the highest and lowest ranking and average the remaining four, before

combining it with the other polls to produce the overall BCS ranking.

The BCS ranking at the end of the regular season is used to determine the two teams

that receive invitations to play in the National Championship Game. The rankings are

also important because they in�uence the eligibility of teams for invitations to the other

four BCS bowl games. The champions of the BCS conferences� i.e., the Atlantic Coast,

Big 12, Big East, Big Ten, Paci�c-12, and Southeastern Conferences� receive automatic

invitations to one of the four bowl games. The remaining at large BCS bowl invitations

are selected by the administrators of the Bowl games themselves, with each game selecting

two teams and the order of selection rotating each year. At large invitations are subject

to some eligibility restrictions, such as a limit of two BCS invitations per conference, that

Notre Dame automatically qualify if ranked in the top eight, and that a non-BCS conference

team automatically qualify if ranked in the top 12 or if ranked in the top 16 and better than

the champion of a BCS conference. While the BCS rankings are used for determining the

eligibility of teams for at large BCS bowl invitations, the individual bowls have on occasion

selected teams ranked in worse positions.4

Selection into one of the BCS bowl games has signi�cant �nancial rewards for teams

and conferences. Net revenues from the BCS games are substantial and continue to grow,

having reached approximately $182 million for the 2010 season bowls and up from $126

million in 2005. The BCS allocates this money to each of the BCS conferences and to the

non-BCS Division 1A conferences, who then divide the money amongst themselves based

on an agreed upon formula. Universities then receive payments from their conference, with

some conferences allocating funds more or less equally and others allocating them relatively

unequally.

The BCS revenue allocation heavily favors the major BCS conferences with rules that

are set out in advance of each season. Of all the payo¤s from 2005 through 2010, just over 87

percent went to the BCS conferences and Notre Dame. Much of this money was dispersed

4In 2007, for example, Kansas received a BCS invitation despite a lower BCS ranking (8) than its Big 12
co-conferee Missouri (6)
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in automatic payo¤s to each of the BCS conferences, roughly $17 million for each conference

in 2005 and $23 million in 2010. Moreover, when a BCS conference had a second team in

one of the BCS bowl games, it received an additional payo¤ of $4.5 million during the 2005-

2009 seasons and $6 million for 2010. The �ve non-BCS Division 1A conferences invariably

received a base payment, which equaled approximately $5 million total for the 2005 season

and nine percent of BCS revenue in 2006-2010. If one non-BCS team received a BCS bowl

game invitation, the non-BCS conferences received an additional 9 percent of BCS revenue,

and for a second invitation, they received a payment of $4.5 million in 2005-2009 and $6

million in 2010.

3 Criticism and Hypotheses

The USA Today Coaches Poll has a signi�cant impact on the reputation and visibility of

college football teams throughout the season, and on whether contending teams receive one

of the highly sought after BCS bowl invitations. The Coaches Poll has nevertheless been

the subject of continuing controversy and criticism. For example, the Poll�s Wikipedia entry

states that �The coaches poll has come under criticism for being inaccurate, with some of

the charges being that coaches are biased towards their own teams and conferences, that

coaches don�t actually complete their own ballots, and that coaches are unfamiliar with even

the basics, such as whether a team is undefeated or not, about teams they are voting on�

(November 7, 2011). Similar statements are made in hundreds of popular commentaries

throughout each college football season, especially when individual ballots are released for

the end of the regular season poll. Although the AFCA�s decision to begin partial disclosure

in 2005 was intended to reduce such criticism, it was largely unsuccessful. Even upon the

initial announcement, the ESPN network, citing concerns about con�icts of interest and lack

of transparency, discontinued sponsorship of the Poll after the AFCA decided not to release

the complete set of ballots each week (Carey 2005).

Despite such criticism, there is surprisingly little systematic evidence on whether the

Coaches Poll is subject to bias. We are aware of only one paper that studies the question

using the ballots from 2007 through 2010 aggregated at the conference level (Sanders 2011).

The results are consistent with coaches showing favoritism to their own conference, espe-

cially when teams from a BCS conference are on the margin of receiving a BCS bowl game

invitation. While we consider the same potential sources of bias in the present paper, our

approach di¤ers because we exploit the complete set of available data (years and ballots),

test further hypotheses, and employ statistical methods more commonly accepted in the

economics literature.
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We test for bias in several dimensions, the �rst of which is whether coaches rank their

own teams more favorably, where hereafter ranking a team more favorably means giving it

a �higher� rank. Higher-ranked teams enjoy reputation bene�ts, as they generate greater

interest among fans, which increases demand for tickets and merchandise. More talented

high school football players likewise favor higher-ranked teams when deciding where to play

college football (Dumond, Lynch, and Platania 2008), and having better recruits makes for

stronger teams (Langelet 2003). We thus predict, based on direct reputation bene�ts, that

coaches are likely to have biased rankings in favor of their own teams.

The quality of a team�s opponents also a¤ects its reputation. In particular, having

played and defeated higher-ranked teams improves a team�s own reputation in the eyes of

fans, the media, and potential recruits. Because of this transitivity, we predict that coaches

will tend to assign better rankings to teams they have played and defeated during the season.

It is easy to envision how coaches might have the same incentive when ranking teams that

defeated them, as a loss to a higher-ranked team does not look so bad. While we think this

e¤ect is plausible, though perhaps less direct, our empirical strategy tests whether coaches

rank opponents di¤erently depending on who won.

We have already referenced research on how high school football recruits favor higher-

ranked teams, and that successful recruiting makes for stronger teams. Knowing that coaches

compete rigorously for leading recruits, it follows that coaches may bene�t from less favorable

rankings of teams with whom they compete for recruits. Using data between 2004-2009 on

where all high school football players received scholarship o¤ers and ultimately chose to

play, we evaluate whether recruiting competition a¤ects rankings. That is, we test whether

coaches assign less favorable rankings to teams that o¤er scholarships to the same high school

players.

The common assertion that coaches show favoritism to teams in their own conference

resonates with many because coaches have several reasons to do so.5 At least two reasons are

based on the collective bene�ts of making one�s own conference look better. Higher-ranked

teams attract more television appearances and better viewership ratings. More successful

teams are therefore in a better position to negotiate television contracts, but these nego-

tiations take place at the conference level, with earnings split among conference teams.

Conference television contracts are substantial, such as the $2.25 billion 15-year contract

between ESPN and the Southeastern Conference, and the $2.8 billion 25-year contract be-

5Interestingly, coaches are not the only ones who have been accused of showing favoritism in rankings for
personal gain. Following the 1969 season, long before there was a national championship game, President
Nixon declared undefeated Texas as the national champion, despite the fact that Penn State was undefeated
as well. Many commentators suggested that the President�s unusual proclamation was in pursuit of the Lone
Star state�s electoral votes.
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tween the Big Ten Network (part of Fox Sports) and the Big Ten Conference. It follows that

coaches seeking to increase their own bene�ts from television contracts have an incentive to

promote the collective reputation of their conference by ranking member teams more favor-

ably. Another reason for promoting one�s own conference reputation is to improve recruiting

prospects. Within conference match-ups are most common, and even for less competitive

teams, being in a conference with higher-ranked teams helps recruiting prospects because

players are likely attracted to more prestigious and highly visible conferences.

The selection method for BCS bowl games creates what is perhaps the most direct

private incentive that may distort how coaches rank teams. As described previously, the

Coaches Poll is an important part of the BCS formula for determining eligibility for at

large invitations, and the payo¤s are substantial to the conferences of teams receiving these

invitations. Each season there are a set of teams considered contenders for an at large

invitation, which we refer to as �bubble teams.�We expect that all of the reputation bene�ts

already discussed apply in particular to coaches ranking teams on the bubble because of the

high pro�le of BCS bowl games.

At large BCS invitations have direct �nancial incentives as well. The payo¤ to a

coach�s university may di¤er signi�cantly depending on which of the bubble teams receives

an invitation. These di¤erences are based on the BCS rules for revenue allocation, with the

payo¤ to any given university depending on several factors, including whether a team is from

the same conference as the coach, whether other teams from the coach�s conference receive a

BCS invitation, whether the coach�s team and the team being ranked are both from a BCS

Conference or a non-BCS Conference, and on conference rules for allocating revenue among

member teams. The di¤erences are often signi�cant; for example, the 2010 payo¤ rules imply

that a coach from a BCS Conference ranking two bubble teams, one from his own conference

and one from a non-BCS Conference, would face an $8 million di¤erence in the payout to

his conference, depending on which team receives the BCS invitation.6 While BCS payouts

are made to conferences, which then allocate funds among their university members, there

is reason to believe that university athletic departments and football teams are the ultimate

�nancial bene�ciaries. For example, when criticizing the BCS in testimony before the U.S.

House of Representatives Subcommittee on Commerce, Trade and Consumer Protection,

Mountain West Conference Commissioner Craig Thomas discussed how inequities in BCS

payo¤s disadvantaged non-BCS athletic programs, resulting in fewer athletic and academic

opportunities for non-BCS conference athletes (U.S. House Subcommittee on Commerce,

Trade and Consumer Protection, 2009). To investigate whether such direct �nancial incen-

tives in�uence the way coaches rank teams, we construct a data set of the payo¤s to coaches

6See the Appendix for details about how this calculation is made.
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based on whether di¤erent bubble teams receive a BCS invitation. We hypothesize that

greater �nancial payo¤s lead to favoritism in the way that coaches rank bubble teams.

4 Data Description

We use the ranking data from the �nal regular season ballots of coaches participating in

the USA Today Coaches Poll from 2005 through 2010, that is, all six years the ballots are

publicly available and posted online by the USA Today. In each poll, participating coaches

submit their ranking of the top 25 teams, where lower numbers correspond with better teams.

The number of coaches submitting a ballot in each year is 62, 62, 60, 61, 59, and 59 for 2005

through 2010, respectively. The dataset consists of 9,073 ranking observations, and the mean

Coach rank is just under 13, as it should be, with a range between 1 and 25 (see Table 1).7

There are 139 di¤erent coaches in the sample, and the average number of years that a coach

submits a ballot is 2.62, with a range between 1 and 6. The speci�c distribution of the

number of coaches with ballots from one to six years is, respectively, 42, 37, 17, 24, 12, and

7. Coaches in the sample sometimes change teams, which occurs 11 times, with one coach

changing teams twice. The Poll also includes coaches that are coach of the same team in

di¤erent years. It follows that the number coaches di¤ers from the number of coach teams

at 103.

The computer rankings used by the BCS provide an important variable for our analy-

sis. These include those produced by Je¤ Sagarin, Anderson & Hester, Richard Billingsley,

Wesley Colley, Kenneth Massey, and Peter Wolfe. These rankings use di¤erent algorithms for

ranking teams, taking into account a variety of factors such as win-loss records, the strength

of opponents, and winning margins.8 A particularly useful feature for our analysis is that

the computer rankings provide an ordering of teams that is free of potentially distorting

incentives, and thereby provide one way to control for team quality in our statistical models.

To construct a single variable out of the six rankings, we follow the BCS protocol of dropping

the highest and lowest ranking for each team and averaging the remaining four. We follow

this procedure for every team in each year that was ranked in the top 25 by at least one

coach, using the computer rankings for the corresponding week of the Coaches Poll.9 Table

1 shows that the mean Computer rank is approximately 21, with a range between 1 and 73.

7The dataset is only two less than complete, as the 25th ranked team is missing for two coaches (Art
Briles and Larry Blakeney) in 2006. It unclear whether these missing observations were intentional on the
part of the coaches or simply missing from the USA Today ballots posted online.

8While the six computer ranking produce di¤erent results, they are, not surprisingly, highly correlated.
Pair-wise correlation coe¢ cients among them range between 0.81 and 0.97.

9The number of teams that at least one coach ranked in the top 25 for each of the years 2005 through
2010 is 38, 33, 38, 36, 42, and 34, respectively.
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Figure 1 plots a histogram of the di¤erence between Coach rank and Computer rank

for all of the observations in the dataset. The vast majority of the di¤erences are clus-

tered more or less symmetrically around zero, indicating the coaches and computers often

agree, and in general are quite close. Further out in the tails, the asymmetry favoring the

negative side corresponds to cases where coaches rank teams substantially more favorably

than the computer rankings. The important observation to make from the histogram is that

coaches appear to rank teams di¤erently, and the primary aim of our empirical analysis is

to determine whether the private incentives of coaches help explain the heterogeneity.

As discussed previously, several variables are hypothesized to have a potential a¤ect

on how coaches rank teams. To test these hypotheses, we create variables based on pairings

between a coach�s team and the teams he ranked in each year. Own team is an indicator for

whether the observation is a coach ranking his own team. Same conference is an indicator

for whether the coach�s team is in the same conference as the team being ranked. Season

play is an indicator for whether the coach�s team played the team being ranked during the

season. Coach win is an indicator for whether the coach�s team beat the team being ranked

during the season.10 Note that Season play must equal one in order for Coach win to equal

one. Table 1 reports summary statistics for each of these variables along with others to

which we turn now.

We create a variable for competition among teams to recruit high school players. We

obtained data from Scouts.com, which includes a comprehensive listing of all high school

players recruited to play Division I football. One of the online interfaces with the database

reports for each team in each year all of the high school players that were o¤ered scholarships.

We downloaded these data for the 2004 through 2009 recruiting seasons and matched between

schools based on player name. From this, we create Common recruits as the percentage

of scholarship o¤ers from a coach�s team that also received an o¤er from the team being

ranked. The recruiting competition is thus based on the percent of common scholarship

o¤ers between the coach�s team and the team being ranked.11 The average of Common

recruits is 3.8 percent, ranging between zero and 48 percent.

Other variables are based on the �nancial payo¤s from BCS bowl invitations. We

restrict attention to teams that were on the bubble of receiving a BCS invitation in each

season. These are the teams in each year for which a more or less favorable ranking in the

10In only eight cases did teams play more than once during a season. In these cases, the variable was
coded as a win only if the coach�s team beat the team being ranked both times.
11Using data from Scouts.com, we also created an alternative variable that measured the percentage of

players o¤ered a scholarship from the coach�s team that ultimately signed to play at the team being ranked.
With this variable, we found statistically insigni�cant results, and it is highly correlated with Common
recruits. We therefore report results based on Common recruits rather than including both variables.
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Coaches Poll could in�uence their chances of receiving a BCS bowl invitation. To system-

atically identify these teams, we �rst calculate rankings based on the average of the Harris

Poll and the computer rankings during the week prior to the �nal regular season Coaches

Poll. Recall that the Harris Poll and computer rankings contribute two-thirds of the overall

BCS ranking and therefore provide the best indicator of the next BCS ranking independent

of the Coaches Poll. We then eliminate all BCS conference champions, as they receive au-

tomatic invitations. We also assume that the remaining two most highly ranked teams will

receive invitations, unless one of them is the third-ranked team in a conference, as only two

teams from a conference ever receive a BCS invitation. We then move down the ranking

categorizing the more highly ranked teams as on the bubble until there appears a natural

drop o¤. Among these teams, any third-ranked team in a conference, with a gap of at least

4 positions from the second-ranked team, is not considered on the bubble. Notre Dame is

considered on the bubble if it was within 4 spots of the eighth-ranked team, the point at

which it becomes an automatic quali�er.

We create the variable Bubble team as an indicator for whether the team being ranked

is in contention for a BCS at large invitation. This occurs 14 percent of the time coaches

rank teams, and the number of bubble teams for 2005 through 2010 is 5, 4, 6, 5, 5, and 6,

respectively. Table 2 includes the list of these teams, along with the average ranking for the

week prior and whether the team ultimately received a BCS invitation

We have already discussed how coaches face di¤erent �nancial payo¤s depending on

which bubble team plays in a BCS bowl game. As a rough measure of these di¤erences,

we �rst create interactions that re�ect how a coach�s payo¤ di¤ers categorically among

the bubble teams, should the team receive a BCS invitation. These variables enable tests

of whether direct �nancial incentives a¤ect the way coaches rank teams. Same group is

an indicator for whether the coach�s team and the team being ranked are both in a BCS

conference or both in a non-BCS conference. To further re�ect how the payo¤s may di¤er,

we interact Bubble team with Same conference to indicate whether the coach�s team and the

team being ranked are from the same conference. Table 1 indicates that 56 percent of the

coach ranks on bubble teams are pairings from the Same group, while 9 percent are from the

Same Conference. Also shown in Table 1 is the further breakdown of whether Same group

consists of pairings within BCS conferences or within non-BCS conferences, and whether

Same conference consists of parings within the BCS or non-BCS conferences.

The last two variables are designed to capture the actual �nancial payo¤s that arise

because of BCS bowl invitations. Speci�cally, we estimate the �nancial payo¤to each coach�s

university that would occur if the bubble team being ranked received a BCS invitation. To

accomplish this, we consider the coach�s payo¤ that would occur if the particular team being
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ranked received the invitation compared to the average payo¤ of the other bubble teams

receiving the invitation. In general, these di¤erences depend on several factors, including

the categorical pairings described above, how the BCS allocates money to conferences, how

non-BCS conferences allocate BCS revenues among themselves, and how conferences allocate

money among their universities. In the Appendix, we describe the speci�c assumptions,

steps, and data sources for estimating the payo¤s and creating the variable Bubble payo¤ .

The last row of Table 1 reports that the payo¤s range from a minimum negative value of

-$3.4 million to a maximum of $13.6 million.12 A negative payo¤ re�ects the fact that a

BCS invitation to the team being ranked lowers the payo¤ to the ranking coach�s university,

perhaps by reducing the chances that a team from the coach�s conference receives an at large

invitation. Finally, we collected data from the NCAA on the total size of the football budget

for each team in order to scale BCS payo¤s as a fraction of the overall football budget of

the coach doing the ranking.13 This variable, Bubble payo¤ share, ranges from negative 23

percent to positive 70 percent.

5 Empirical Analysis

We employ two di¤erent empirical strategies to investigate which variables explain the way

coaches rank teams. The �rst is to estimate models of the form

Coach rankijt = �+ �Xijt + f (Computer rankjt) + "ijt; (1)

where subscripts i denote coaches, j denotes teams being ranked, and t denotes year; Xijt

is a column vector of explanatory variables; � and the row vector � are coe¢ cients to

be estimated; f (�) leaves open the functional form of the relationship between coach and

computer ranks; and "ijt is an error term. A key feature of speci�cation (1) is the inclusion

of Computer rank as an explanatory variable. This controls for the quality of each team

in each year, and the control is immune from the potential distortionary incentives that

confront coaches.14 We estimate models with linear and quadratic functional forms, with

12It is worth mentioning that largest payo¤ values occur for the special case of Notre Dame�s coach voting
on Notre Dame, which is not a¢ liated with any conference and subject to special rules.
13Data on the annual budgets of football programs at universities is made available by the O¢ ce of

Postsecondary Education of the U.S. Department of Education. The data are collected as part of the Equity
in Athletics Disclosure Act and can be downloaded at http://ope.ed.gov/athletics/GetDownloadFile.aspx.
14Alternative speci�cations could use the Harris Interactive Poll rather than the computer rankings, or

possibly both. We estimate these alternatives and the results are very similar to those reported here. We
chose to use the computer rankings because they provide the best control that is free of alternative sources
of bias that may be correlated with bias in the Coaches Poll. Research has shown, for example, that the
Associate Press Poll is susceptible to di¤erent sources of bias (Coleman et al. 2009).
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the rationale to simply absorb variation and test robustness of the results.15 Of primary

interest are the coe¢ cients in � because they relate directly to the hypotheses discussed in

Section 3.

We estimate variants of speci�cation (1) using ordinary least squares and report two-

way clustered standard errors (Cameron, Gelbach, andMiller 2011), at the levels of team-year

and coach-year. The two-way clustering ensures robust inference that takes account of two

features of the data. The �rst is that Computer rank varies only at the team-year level. The

second is that a coach�s rankings of di¤erent teams are not independent within each year,

because, for example, ranking one team higher means another must be lower. The two-way

clustering accounts for the way that "ijt may be arbitrarily correlated within the two clusters

and adjusts the standard errors accordingly.

Our second approach is less restrictive and based on �xed e¤ects estimates of the

general speci�cation

Coach rankijt = �Xijt + �jt + "ijt; (2)

where the di¤erence is that �it is a unique intercept for each team-year. These team-year

�xed e¤ects account for heterogeneity of team quality each season in a way that replaces the

need for including Computer rank, which is perfectly colinear. The primary advantage of

speci�cation (2) is that it controls for team-year heterogeneity without requiring a functional

form assumption between the coach and computer rankings. This is accomplished by pulling

out into the intercept the average ranking, conditional on the model, that all coaches assign

to each team in each year. The result is that identi�cation of the coe¢ cients in � is based on

how coaches for whom each variable applies di¤er from other coaches ranking the same team.

With our estimates of the coe¢ cients in speci�cation (2), we again report standard errors

that are two-way clustered on the team-year and coach-year levels. While the estimates based

on speci�cation (2) are preferable because of the more �exible functional form, comparison

of the results across models provides useful robustness checks.

Table 3 reports the �rst set of results, with the explanatory variables of Own team,

Same conference, Season play, and Common recruits. The �rst column includes the estimate

of speci�cation (1) with Computer rank entering as a linear function. Not surprisingly,

Computer rank has a positive and statistically signi�cant e¤ect on Coach rank.16 Other

15Note that these functional form assumptions are less restrictive versions of a model in which the left-hand
side variable is the di¤erence between Coach rank and Computer rank, as this implicitly assumes a linear
relationship with a coe¢ cient equal to 1. We also estimate this alternative, but do not report the results for
several reasons: the results are generally quite similar, there is evidence that assuming a linear coe¢ cient
equal to 1 is overly restrictive, and we prefer less restrictive speci�cations when possible.
16With respect to the alternative speci�cation mentioned in footnote 15, we test whether the coe¢ cient

of 0.652 on Computer rank is statistically di¤erent from 1. We reject the null hypothesis based on a Wald
test (F = 73:25, p < 0:01).
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statistically signi�cant results indicate that coaches rank a team more favorably if it is

their own team, is in their same conference, and is a team they defeated during the season.

Recruiting competition does not have a statistically signi�cant e¤ect. Before turning to

the magnitude of these e¤ects, let us consider robustness of the qualitative results across

speci�cations. The model in column II has Computer rank entering as a quadratic function.

The estimated relationship is increasing and concave, which one might expect given that

Coach rank, unlike Computer rank, has an upper bound at 25. While this model �ts the

data better, increasing the R2 from 0.72 to 0.83, the pattern of statistically signi�cant results

remains the same. Column III reports the �xed e¤ects estimates of speci�cation (2), the R2

increases to 0.94, and the qualitative results are again the same.

The coe¢ cient magnitudes across the three models in Table 3 are relatively stable.

While there are some di¤erences, we focus on those from the preferred, �xed e¤ects model.

To facilitate interpretation, we illustrate the main results in Figure 2, which shows coe¢ cient

estimates on the categorical variables along with 95-percent con�dence intervals. When

coaches rank teams in their own conference, they rank them, on average, 0.7 positions more

favorably than teams not in their conference. Coaches rank their own team an additional

1.4 positions more favorably. Combining these results by summing the coe¢ cients, we �nd

that coaches rank their own team 2.1 positions more favorably than teams outside their

conference. While having played a team during the season does not signi�cantly a¤ect

rankings, having defeated a team during the season does. Coaches rank teams they defeated

0.43 positions more favorably compared to teams that defeated them. Compared to teams

they never played, they rank teams they defeated 0.56 positions more favorably.

We now turn to models that expand upon those in Table 3 in order to focus on

incentives stemming from BCS bowl payo¤s. While considering variants of equation (1),

we report only the quadratic speci�cation, as it is more �exible and improves the model�s �t.

The �rst column of Table 4 reports such a model with three additional variables speci�c to

bubble teams. The coe¢ cient on Bubble team provides and estimate of how, after controlling

for the other variables, coaches rank bubble teams in a season di¤erently than other teams.

Bubble�Same group estimates the e¤ect on bubble team ranks of whether the coach�s team
and the team being ranked are both in a BCS conference or both in a non-BCS conference.

The third variable, Bubble� Same conference measures the additional e¤ect of having the
paring within the same conference. Recall that these variables are designed to re�ect the

general pattern of how BCS payo¤s from the bowl games are distributed between BCS and

non-BCS conferences and among conferences themselves. While none of the new variables

is statistically signi�cant in the �rst model of Table 4, we do �nd signi�cant results with

the �xed e¤ects model in column II. Coaches do not rank teams di¤erently if they are from
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the same group, but the rankings are di¤erent when coaches rank bubble teams within their

same conference. Rankings within the same conference are 0.38 positions more favorable

than only within the same group, and 0.45 positions more favorable than those not within

the same group (t = 1:94, p = 0:05).

The models in columns III and IV estimate the bubble e¤ects separately for coaches

in BCS and non-BCS conferences. The rationale is that payo¤s are structured di¤erently

between the two groups. In particular, bonuses for receiving a bowl invitation are paid to

individual conferences for those within the BCS, whereas part of the bonuses for non-BCS

teams are paid to non-BCS conferences as an entire group. Consequently, one might expect

BCS coaches to show more favoritism towards their own conference, while non-BCS coaches

have a greater incentive to show favoritism towards all non-BCS teams. We �nd this general

pattern in the results. The model in column III has a negative and statistically signi�cant

coe¢ cient on Bubble�Same group for the non-BCS conferences. The magnitude is -1, indi-
cating that coaches in non-BCS conferences rank non-BCS teams nearly one whole position

more favorably on average. But these same coaches do not show additional favoritism to-

wards teams in their particular conference. This result continues to hold in the �xed e¤ects

model (column IV), where we �nd nearly the opposite e¤ect for coaches in BCS conferences.

For them, favoritism is focused on teams in their own conference, by nearly half a position

over teams only in their same group, re�ecting the way payo¤s are structured for them.

The next set of models focuses directly on the actual �nancial payo¤s of invitations to

BCS bowl games. Instead of categorical variables re�ecting the rules for revenue disburse-

ment, we �rst include our estimates of the payo¤s with the variable Bubble payo¤ . Recall

that this variable captures the payo¤ to a coach�s university if the bubble team being ranked

receives a BCS invitation compared to the average payo¤ of other bubble teams that year.

Table 5 reports the two speci�cations in columns I and II. We �nd that the coe¢ cients

on Bubble payo¤ are negative and statistically signi�cant. The magnitudes imply that a

$100,000 increase in the payo¤ produces more favorable rankings of between 0.03 and 0.02

positions. Another way to express these results is that, after accounting for reputation ben-

e�ts, boosting a coach�s ranking of a bubble team one position requires an additional payo¤

between $3.3 and $5 million. Columns III and IV report the result of models with the scaled

variable Bubble payo¤ share, which converts the payo¤ amount to a percentage of the annual

football budget of the coach�s team. The coe¢ cient is negative and statistically signi�cant

for the �xed e¤ects model, with a magnitude of -.05. This implies, for example, that an in-

crease in the payo¤ equal to 10 percent of the revenue for a coach�s football program causes

a more favorable ranking of half a position on average.

The �nal component of our analysis tests whether the explanatory variables have dif-
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ferent e¤ects on the way that coaches rank the top teams compared to others. Consensus

tends to emerge around the top teams each season, even though coaches have di¤erent opin-

ions about the exact ranking. But the task of ranking 25 teams pushes coaches into areas

of much greater heterogeneity in opinions about team quality. Figure 3 illustrates this point

with a scatter plot of Computer rank against Coach rank. Notice the greater variability of

computer rankings as coach ranks move from 1 to 25; that is, there is less consensus about

lower ranked teams. Given the greater variability further down in the rankings, it is rea-

sonable to question whether the estimated e¤ects of our explanatory variables are constant

between the more high- and low-ranked teams. One might expect, for example, that coaches

have more latitude to distort rankings when there is less consensus outside of the elite teams.

Table 6 reports the results of models that expand on the �xed e¤ects models in Table

5. The di¤erence is inclusion of interactions between covariates and Low rank, which is an

indicator for whether the team being ranked has Computer rank > 10. These speci�cations

enable tests of whether coe¢ cients di¤er depending on whether teams are highly ranked

(Computer rank < 10) or lower ranked (Computer rank > 10).17 The �rst column under

each model includes the coe¢ cient estimates. The second column includes the sum of the

original estimate and the coe¢ cient on the corresponding interaction. Hence estimates in

the �rst column are for the highly ranked teams, and those in the second column are for the

relatively low-ranked teams.

We �nd only one statistically signi�cant di¤erence based on model I. Coach win leads

to more favorable rankings for low-ranked teams, but not high-ranked teams. Nevertheless,

a Wald test of whether the coe¢ cients on all the interaction terms are jointly equal to zero

fails to reject the null hypothesis. This is not the case, however, for the model in which

we include Bubble payo¤ share. Model II produces a statistically signi�cant di¤erence in

the ranking between highly ranked and lower ranked teams in response to direct �nancial

payo¤s. In fact, the coe¢ cient is almost four times as large for the low-ranked teams. While

an increase in the payo¤ equal to 10 percent of the revenue for a coach�s football program

causes a more favorable ranking of a quarter of a position for elite teams, the same payo¤

has a full position e¤ect for teams outside of the top 10. This result, along with those for

Coach win, are consistent with the hypothesis that at least some distorting incentives are

stronger for relatively low-ranked teams.

17The choice of where to set the cuto¤between relatively high- and low-ranked teams is somewhat arbitrary.
We chose the top 10 because it is often a focal point, and it produces bubble teams on both sides of the
cuto¤. We did, however, estimate models will di¤erent cuto¤ points, and the general pattern of results
remains unchanged.
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6 Discussion and Conclusion

This paper provides robust evidence that private incentives have a distorting in�uence on

the way coaches rank teams in the USA Today Coaches Poll for college football. While

coaches are tasked with providing unbiased rankings of teams, they face incentives that

pose potential con�icts of interest. These arise because of reputation and �nancial rewards

that depend on how teams are ranked and whether teams are in position to receive an

invitation to one of the high-pro�le and lucrative BCS bowl games. We �nd, based on two

distinct identi�cation strategies in our statistical analysis, that con�icts of interest bias coach

rankings in predictable ways.

The pattern of results shows the importance of both reputation bene�ts and direct

�nancial payo¤s. Coaches have clear incentives to rank both their own team and other

teams in their athletic conference more favorably. We �nd, on average, that coaches rank

teams from their own conference nearly a full position more favorably and boost their own

team�s ranking more than two full positions. We also �nd that it does not matter if a coach�s

team simply plays a team during the season, but coaches rank teams they defeated more

favorably by more than half a position. Coaches thus make their own team look better by

ranking more favorably teams they defeated.

Above and beyond the e¤ect of reputation concerns, coach rankings respond to the

structure and amount of direct �nancial incentives created by at large invitations to the

BCS bowl games. When it comes to ranking teams on the bubble of receiving an invitation

to one of the BCS bowl games, coaches show favoritism to conferences and teams that

generate higher �nancial payo¤s to their own university. Re�ecting the structure of BCS

payo¤ rules, the non-BCS conferences band together such that when one of their teams is

on the bubble, non-BCS coaches rank the teams one position more favorably on average.

In contrast, coaches from BCS conferences show favoritism toward bubble teams from their

own conference, though not to BCS conference teams more generally. These patterns are

consistent with the distribution payo¤s: all non-BCS conferences receive a portion of the

payout when a non-BCS team receives an invitation, but for BCS conference teams, the

payo¤s go only to the participating team�s conference.

All coaches, however, respond to the magnitude of the direct �nancial payo¤s associ-

ated with bubble teams. When a coach�s university receives a greater �nancial payo¤ if a

particular bubble team receives a BCS invitation, coaches rank that team higher, thereby

increasing their chance of receiving the payo¤. On average, an additional payo¤between $3.3

and $5 million buys a more favorable ranking of one position. Moreover, for each increase

in a bubble team�s payo¤ equal to 10 percent of a coach�s football budget, coaches respond
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with more favorable rankings of half a position. Finally, this e¤ect is strongest, more than

twice as large, when coaches rank teams outside the top 10, where there is less consensus

about the relative standing of teams.

We believe it is a stretch to interpret these results as evidence of corruption in the USA

Today Coaches Poll. Instead, one interpretation is that coaches are intentionally gaming the

system, but it is also possible that private incentives in�uence rankings in more subcon-

scious ways. While distinguishing between these mechanisms is challenging, one way to gain

traction is to consider the implications of disclosing individual coach�s ballots. Our study is

based on all of the publicly available ballots, and coaches knew their ballots would be made

available when �lling them out. Does the disclosure cause them to evaluate teams di¤erently?

We do not have undisclosed ballots to make direct comparisons, but as a rough measure, we

can look at the pattern of aggregate Coaches Poll results compared to computer rankings,

before and after disclosure began in 2005. Our goal is to see if coaches�rankings become

more similar to the computer rankings when their ballots are subject to public scrutiny.

We assembled data on the aggregated Coaches Poll and the computer rankings used

by the BCS for the last two regular season polls from 2000 through 2010.18 Note that this

is the poll we have studied throughout the paper, along with the previous week�s pool and

four years of earlier data. For each team in each poll we calculate the di¤erence between

the Coaches Poll and computer rankings and average the absolute di¤erence among observa-

tions separately for all those before and after disclosure began in 2005. These averages are

summarized in Table 7, where for example 2.494 is the average absolute di¤erence between

the coach and computer rankings of each team for the �nal regular season polls from 2000

through 2004. Given that adjacent polls are likely to have much in common, and can be used

to account for overall di¤erences before and after 2005, we calculate the di¤erence between

the �nal regular season poll and the previous week�s poll, and then compare the di¤erence in

this di¤erence between the pre- and post-disclosure periods. Note that the di¤erences drop

during both the pre and post-disclosure periods, but the drop is larger after disclosure by

nearly twice as much. This implies that the di¤erence between the Coaches Poll and the

computer ranking, between two adjacent polls in the same year, is more than 100 percent

smaller when the ballots are made public. It appears, therefore, that coaches are aware of

their biases because their rankings move closer to the objective (computer) rankings when

disclosed for public scrutiny. That coaches rankings are noticeably di¤erent under public

disclosure raises further questions about how much stronger the biases are when there is no

disclosure, and the result underscores the importance of public disclosure to minimize bias.

18The National Football Foundation archives these data and makes them available at
http://www.footballfoundation.org/n¤/page/379/bowl-championship-series-archive.
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In conclusion, this study focuses on how private incentives distort public evaluations

in the context of NCAA football, but we think our methods and results should be of more

general interest to economists. Con�icts of interest are ubiquitous through many spheres of

economic and political activity, with credit rating agencies, third party certi�cation, and the

political process itself just a few examples. But studying con�icts of interest in these areas is

notoriously challenging because data are di¢ cult to collect, incentives are not easy to de�ne,

and what constitutes biased or distorted evaluation is hard to measure. In contrast, our study

of the USA Today Coaches Poll provides a unique setting in which many agents are evaluating

the same thing, private incentives to distort evaluations are clearly de�ned and measurable,

and there exists an alternative source of evaluations that is bias free. The analysis provides

strong statistical evidence on the distorting in�uence of private bene�ts based on reputation

and �nancial incentives, along with the potential importance of information disclosure for

managing con�icts of interest. Concern and debate about these issues has clear applicability

beyond NCAA football, and the methodological approach that we apply here may inform

research design is other areas.
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7 Appendix

We describe our data sources and methods for deriving Bubble payo¤ . The variable measures

the �nancial payo¤ to a coach�s university if a particular bubble team receives an at large

BCS bowl invitation, compared to the average payo¤ if one of the other bubble teams receives

an invitation in that year. The �rst step is to calculate the direct payo¤ to coach conferences

if each bubble team were to receive an invitation, assuming initially no e¤ect on other bubble

teams. Several factors a¤ect the size of the direct conference payo¤s, some of which are based

on rules and others that require assumptions and estimation.

First, following BCS rules, if a team from a BCS conference receives an at large invi-

tation, the team�s conference receives $4.5 million for the 2005-2009 seasons and $6 million

for 2010. If one team from a non-BCS conference receives an invitation, the non-BCS con-

ferences receive 9 percent of the BCS net revenues to divide among themselves. If a second

team from a non-BCS conference receives an invitation, the non-BCS conferences receive an

additional 4.5 percent of the BCS net revenues to divide among themselves.

Second, we estimate how much of the payo¤ to non-BCS conferences goes to the

qualifying team�s conference. It is known that conferences of the invited teams received a

larger payo¤, with the remaining �share pool�divided among the other non-BCS conferences

(O�Toole 2006). To back out the formula, we use data on actual payo¤s reported by the

BCS (Bowl Championship Series 2010, 2011). For example, the Mountain West received

approximately $3.7 million in 2007, when none of its teams quali�ed, and $9.8 million in

2008, when Utah received the only non-BCS invitation. This comparison suggests that the

Mountain West received a payo¤ of roughly $6 million for Utah�s quali�cation. Based on

similar comparisons across years, along with information on the total amount paid to non-

BCS conferences, we derive the following rules: The conference of the �rst qualifying team

receives $6 million in 2005-2009 and $8 million in 2010, with respective share pools of $3

million and $4 million to be split among the other non-BCS conferences. Moreover, the

conference of the second qualifying team receives $4.5 million in 2005-2009 and $6 million

in 2010, with no additional revenue going to a share pool. First and second quali�ers are

designated based on rankings reported in Table 2.

Third, we estimate the formula for how non-BCS conferences distribute the share pool

among their conferences without a qualifying team. We again make inferences based on

actual payo¤s (Bowl Championship Series 2010, 2011). After netting out the payment to

conferences for a qualifying team, we calculate the proportion of BCS payments that goes to

each of the non-BCS conferences, using all years of data. We then assume that the share pool

is split among the conferences in rescaled proportion after excluding the conference with the
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�rst qualifying team. For example, if a conference receives an average of 20 percent of the

BCS payments (excluding a qualifying bonuses) over all years, then it receives 25 percent of

the share pool, as there are �ve non-BCS conferences.

Fourth, Notre Dame is a special case as an independent, without conference a¢ liation.

Notre Dame received $14,866,667 for its 2005 BCS bowl invitation and $4.5 million for its

2006 invitation, but the team was not on the bubble in any of the subsequent years.

Fifth, the direct payo¤s need to account for the fact that money paid to the non-BCS

conferences and/or Notre Dame for at large invitations often reduces the money available

for automatic disbursement to the BCS conferences. When applicable, we make these ad-

justments to account for negative payo¤s associated with some bubble teams and coach

conferences. For example, the payo¤ to non-BCS conferences for Boise State�s 2006 qual-

i�cation ($9 million) was $4.5 million greater than the conference payo¤ for an at large

quali�er from a BCS conference team. Hence, Boise State�s invitation counts as a loss to

all BCS conferences, and we calculate this loss as $750,000 per conference ($4.5 million/6

BCS conferences). In 2009, however, Boise State�s quali�cation produced a non-BCS payo¤

equal to that of a BCS team ($4.5 million as the second non-BCS team) and therefore has

no e¤ect on the automatic disbursement to BCS conferences.

To summarize with examples, Appendix Table 1 lists the Direct conference payo¤ to

all coach conferences for the �ve bubble teams in 2009: Texas Christian, Boise State, Iowa,

Virginia Tech, and Penn State. Penn State and Iowa have direct payo¤s of $4.5 million to the

Big Ten, and Virginia Tech has a direct payo¤ of $4.5 million to the Atlantic Coast. Texas

Christian, as the higher ranked bubble team from a non-BCS conference, has a direct payo¤

of $6 million to the Mountain West, with the remaining non-BCS conferences dividing the

share pool in proportions observed in the data. Texas Christian has negative direct payo¤s

for the BCS conferences of $750,000. Finally, Boise State, as the lower ranked bubble team

from a non-BCS conference, has a direct payo¤ of $4.5 million to the Western Athletic

conference, and no e¤ect on the payo¤s to other conferences. We calculate a matrix like that

in Appendix Table 1 for each year 2005-2010.

The next step is to adjust the Direct conference payo¤ to account for the way that

bubble teams interact. Speci�cally, when considering the payo¤ of ranking one bubble team,

coaches are likely to consider the comparative payo¤s of other bubble teams. To capture this,

we create a new variable Conference bubble payo¤ , which is de�ned as the di¤erence between

the Direct conference payo¤ for each bubble team and the average of Direct conference payo¤

for the other bubble teams in the same year.

The �nal step is to divide Conference bubble payo¤ by the number teams in each coach

conference. We thus assume that conference revenues are distributed evenly among teams.

22



While this assumption is accurate for some conferences, others are known to have unequal

distributions (e.g., the Big-12). We nevertheless use the average because other distribution

rules speci�c to football are not available among conferences. The resulting variable is Bubble

payo¤ as a measure of the �nancial consequences for each coach should the team he is ranking

receive a BCS invitation relative to what he would receive on average for the other bubble

teams receiving an invitation. The variable captures the fact that a coach has an incentive

to rank a team more favorably if it produces a larger positive payo¤ and/or reduces the

chances of a larger negative payo¤. Similarly, the variable captures the fact that coaches

have an incentive to rank teams less favorably if they are from other conferences.

Appendix Table 2 summarizes Bubble payo¤ reported in dollars, again for the example

year 2009. Note that for coaches from conferences with teams on the bubble, their payo¤

for the other bubble teams are negative values, re�ecting the fact that these coaches have

incentives to give less favorable rankings to other bubble teams. Moreover, for coaches from

conferences without teams on the bubble, there are incentives to rank teams higher or lower

depending on whether the coach and team are both in BCS or non-BCS conferences.
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Figure 1: Histogram of the difference between Coach rank and Computer rank for all 9,073 observations
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Figure 2: Average magnitudes and 95­percent confidence intervals of how variables affect coach
rankings based on the fixed effects estimates in column III of Table 3
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Figure 3: Scatter plot of Computer rank against Coach rank for all 9,073 observations
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Table 1: Summary statistics of all variables used in the empirical analysis

Variable Observations Mean Std. Dev. Min Max
Coach rank 9073 12.997 7.210 1 25
Computer rank 13362 21.182 14.260 1 72.750
Coach rank − Computer rank 9073 ­1.399 5.049 ­49.750 11.250
Own team 13362 0.010 0.098 0 1
Same conference 13362 0.095 0.293 0 1
Season play 13362 0.098 0.298 0 1
Coach win 13362 0.074 0.262 0 1
Common recruits (%) 13232 3.828 5.938 0 48.077
Bubble team 13362 0.140 0.347 0 1
Bubble x Same group 1872 0.557 0.497 0 1
Bubble x Same conference 1872 0.089 0.284 0 1
Bubble x Same group x BCS 1872 0.457 0.498 0 1
Bubble x Same group x non­BCS 1872 0.100 0.300 0 1
Bubble x Same conference x BCS 1872 0.072 0.258 0 1
Bubble x Same conference x non­BCS 1872 0.017 0.130 0 1
Bubble payoff ($100,000s) 1872 ­0.002 4.343 ­37.167 148.667
Bubble payoff share (%) 1872 ­0.001 3.077 ­23.411 70.234
Notes: Variables are defined in the main text. The variable Common recruits excludes observations
when coaches are ranking their own team. Statistics for the variables in the last eight rows apply only
for the bubble teams in each year.
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Table 2: Designated bubble teams for a BCS at large invitation, 2005 through 2010

Year Team Average rank BCS bowl invitation
2005 Ohio State 4 Yes
2005 Oregon 5 No
2005 Miami 7 No
2005 Notre Dame 8 Yes
2005 Virginia Tech 9 No
2006 Boise State 7 Yes
2006 Notre Dame 10 Yes
2006 West Virginia 13 No
2006 Rutgers 14 No
2007 Missouri 6 No
2007 Kansas 7 Yes
2007 Hawaii 10 Yes
2007 Arizona State 11 No
2007 Boston College 13 No
2007 Illinois 14 Yes
2008 Utah 5 Yes
2008 Texas Tech 6 No
2008 Boise State 9 No
2008 Ohio State 10 Yes
2008 Texas Christian 11 No
2009 Texas Christian 5 Yes
2009 Boise State 6 Yes
2009 Iowa 10 Yes
2009 Virginia Tech 11 No
2009 Penn State 13 No
2010 Ohio State 7 Yes
2010 Arkansas 8 Yes
2010 Michigan State 9 No
2010 Louisiana State 10 No
2010 Boise State 11 No
2010 Missouri 12 No

Notes:  Average  rank  reported  in  this  table  is  based  on  the  Harris
Interactive Poll and the computer rankings in the week prior to the final
regular season USA Today Coaches Poll.
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Table 3: Regression models explaining how coaches rank teams

Model
(I) (II) (III)

Own team ­1.391*** ­0.851*** ­1.394***
(0.427) (0.321) (0.230)

Same conference ­0.695*** ­0.754*** ­0.704***
(0.232) (0.197) (0.124)

Season play 0.249 0.278 ­0.127
(0.334) (0.251) (0.160)

Coach win ­1.100*** ­0.846*** ­0.430***
(0.332) (0.232) (0.156)

Common recruits (%) 0.016 0.013 0.004
(0.015) (0.012) (0.004)

Computer rank 0.652*** 1.214*** ­­
(0.041) (0.042)

Computer rank squared ­­ ­0.014*** ­­
(0.001)

Constant 3.709*** ­0.168
(0.562) (0.318)

Team­year fixed effects No No Yes
Observations 9,073 9,073 9,073
R­squared 0.722 0.825 0.938
Notes: The dependent variable is Coach rank. Standard errors, with
two­way  clustering  at  the  team­year  and  coach­year  levels,  are
reported  in  parentheses.  One,  two,  and  three  asterisk(s)  indicate
statistical  significance  at  the  90­,  95­  and  99  percent  levels,
respectively.
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Table 4: Regression models explaining how coaches rank teams, including
categorical BCS bubble variables

Model
(I) (II) (III) (IV)

Own team ­0.842*** ­1.374*** ­0.845*** ­1.387***
(0.323) (0.229) (0.324) (0.231)

Same conference ­0.682*** ­0.633*** ­0.670*** ­0.625***
(0.196) (0.130) (0.195) (0.130)

Season play 0.263 ­0.141 0.260 ­0.140
(0.247) (0.159) (0.249) (0.158)

Coach win ­0.830*** ­0.415*** ­0.820*** ­0.414***
(0.230) (0.156) (0.229) (0.156)

Common recruits (%) 0.013 0.004 0.011 0.003
(0.012) (0.004) (0.012) (0.004)

Computer rank 1.214*** ­­ 1.213*** ­­
(0.042) (0.042)

Computer rank squared ­0.014*** ­­ ­0.014*** ­­
(0.001) (0.001)

Bubble team 0.041 ­­ 0.034 ­­
(0.458) (0.458)

Bubble x same group 0.008 ­0.072 ­­ ­­
(0.171) (0.139)

Bubble x same conference ­0.412 ­0.376* ­­ ­­
(0.275) (0.209)

Bubble x same group BCS ­­ ­­ 0.231 0.179
(0.285) (0.110)

Bubble x same conf. BCS ­­ ­­ ­0.507 ­0.487**
(0.313) (0.222)

Bubble x same group non­BCS ­­ ­­ ­1.003* ­0.824***
(0.567) (0.267)

Bubble x same conf. non­BCS ­­ ­­ 0.060 0.125
(0.429) (0.452)

Constant ­0.177 ­0.160
(0.344) (0.343)

Team­year fixed effects No Yes No Yes
Observations 9,073 9,073 9,073 9,073
R­squared 0.825 0.938 0.825 0.938
Notes: The dependent variable is Coach rank. Standard errors, with two­way clustering
at  the  team­year  and  coach­year  levels,  are  reported  in  parentheses.  One,  two,  and
three  asterisk(s)  indicate  statistical  significance  at  the  90­,  95­  and  99  percent  levels,
respectively.
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Table 5: Regression models explaining how coaches rank teams, including
monetary BCS payoff variables

Model
(I) (II) (III) (IV)

Own team ­0.776** ­1.340*** ­0.825** ­1.371***
(0.325) (0.234) (0.321) (0.231)

Same conference ­0.744*** ­0.696*** ­0.717*** ­0.676***
(0.194) (0.125) (0.194) (0.124)

Season play 0.284 ­0.123 0.268 ­0.134
(0.251) (0.159) (0.250) (0.159)

Coach win ­0.840*** ­0.426*** ­0.816*** ­0.409***
(0.231) (0.156) (0.228) (0.155)

Common recruits (%) 0.013 0.004 0.013 0.003
(0.012) (0.004) (0.012) (0.004)

Computer rank 1.214*** ­­ 1.214*** ­­
(0.042) (0.042)

Computer rank squared ­0.014*** ­­ ­0.014*** ­­
(0.001) (0.001)

Bubble team 0.008 ­­ 0.008 ­­
(0.466) (0.465)

Bubble payoff ($100,000s) ­0.032*** ­0.021* ­­ ­­
(0.010) (0.011)

Bubble payoff share (%) ­­ ­­ ­0.065 ­0.049*
(0.052) (0.029)

Constant ­0.174 ­0.173
(0.344) (0.344)

Team­year fixed effects No Yes No Yes
Observations 9,073 9,073 9,073 9,073
R­squared 0.825 0.938 0.825 0.938
Notes: The dependent variable is Coach rank. Standard errors, with two­way clustering
at  the  team­year  and  coach­year  levels,  are  reported  in  parentheses.  One,  two,  and
three  asterisk(s)  indicate  statistical  significance  at  the  90­,  95­  and  99  percent  levels,
respectively.
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Table 6: Regression models testing for heterogeneous effects between high­ and low­ranked teams

Model (I) Model (II)

Coefficients
Coefficients if

Low rank Coefficients
Coefficients if

Low rank
Own team ­0.964*** ­1.544*** ­1.058*** ­1.560***

(0.255) (0.315) (0.247) (0.313)
Same conference ­0.711*** ­0.619*** ­0.687*** ­0.648***

(0.166) (0.157) (0.164) (0.155)
Season play ­0.366 ­0.097 ­0.385 ­0.098

(0.306) (0.171) (0.308) (0.172)
Coach win 0.010 ­0.590*** 0.026 ­0.577***

(0.298) (0.179) (0.299) (0.179)
Common recruits (%) 0.005 0.003 0.005 0.003

(0.005) (0.005) (0.005) (0.005)
Bubble payoff ($100,000s) ­0.018** ­0.131 ­­ ­­

(0.007) (0.091)
Bubble payoff share (%) ­­ ­­ ­0.026** ­0.098***

(1.293) (0.035)
Own team x Low rank ­0.580 ­0.502

(0.402) (0.395)
Same conference x Low rank 0.092 0.040

(0.216) (0.209)
Season play x Low rank 0.268 0.288

(0.329) (0.332)
Coach win x Low rank ­0.599* ­0.603*

(0.336) (0.337)
Common recruits x Low rank ­0.002 ­0.002

(0.007) (0.007)
Bubble payoff x Low rank ­0.113 ­­

(0.092)
Bubble payoff share x Low rank ­­ ­0.072**

(3.083)

Team­year fixed effects Yes Yes
Observations 9,073 9,073
R­squared 0.938 0.938
Wald test of all interactions = 0 F = 1.22

[p = 0.29]
F = 2.02
[p = 0.06]

Notes: The dependent variable is Coach rank. Low rank is an indicator for whether Computer
rank > 10. Standard errors, with two­way clustering at the team­year and coach­year  levels,
are reported in parentheses. One, two, and three asterisk(s) indicate statistical significance at
the 90­, 95­ and 99 percent levels, respectively.
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Table 7: Difference­in­differences comparison between coach and computer rankings
by polls before and after public disclosure in 2005

Years 2000 ­ 2004 Years 2005 ­ 2010
Previous week’s Poll 2.567 2.931
Final regular season Poll 2.494 2.775
Difference ­0.073 ­0.159
Difference­in­differences ­­ ­0.086
Notes: Differences may not be exact due to rounding. Numbers based on
192 rankings for Years 2000­2004 and 300 rankings for Years 2005­2010.

Appendix Table 1: Direct conference payoff to coach conferences for bubble teams 2009

Bubble teams
Coach conference Penn  State Iowa Virginia Tech Texas Christian Boise State

[Big Ten] [Big Ten] [Atlantic Coast] [Mountain West] [Western Athletic]
BCS conferences
Atlantic Coast 0 0 $4,500,000 ­$750,000 0
Big East 0 0 0 ­$750,000 0
Big Ten $4,500,000 $4,500,000 0 ­$750,000 0
Big­12 0 0 0 ­$750,000 0
PAC­10 0 0 0 ­$750,000 0
Southeastern 0 0 0 ­$750,000 0

Independent 0 0 0 0 0

Non­BCS conferences
Mountain West 0 0 0 $6,000,000 0
Western Athletic 0 0 0 $1,015,925 $4,500,000
Conference USA 0 0 0 $838,642 0
Mid­American 0 0 0 $627,727 0
Sun Belt 0 0 0 $517,707 0
Notes: Conference  names  in  brackets  are  those  corresponding  to  the  bubble  team. As  described  in  the
text, Texas Christian is treated differently than Boise State because it is the higher ranked non­BCS bubble
team. This Table is only for an example year, as similar tables are created for all years 2005 through 2010.
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Appendix Table 2: Bubble payoff to coach teams in conferences for bubble teams 2009

Bubble teams
Coach conference Penn  State Iowa Virginia Tech Texas Christian Boise State

[Big Ten] [Big Ten] [Atlantic Coast] [Mountain West] [Western Athletic]
BCS conferences
Atlantic Coast ­$78,125 ­$78,125 $390,625 ­$156,250 ­$78,125
Big East $23,438 $23,438 $23,438 ­$93,750 $23,438
Big Ten $323,864 $323,864 ­$187,500 ­$272,727 ­$187,500
Big­12 $15,625 $15,625 $15,625 ­$62,500 $15,625
PAC­10 $18,750 $18,750 $18,750 ­$75,000 $18,750
Southeastern $15,625 $15,625 $15,625 ­$62,500 $15,625

Independent $0 $0 $0 $0 $0

Non­BCS conferences
Mountain West ­$166,667 ­$166,667 ­$166,667 $666,667 ­$166,667
Western Athletic ­$153,220 ­$153,220 ­$153,220 ­$12,120 $471,780
Conference USA ­$17,472 ­$17,472 ­$17,472 $69,887 ­$17,472
Mid­American ­$12,072 ­$12,072 ­$12,072 $48,287 ­$12,072
Sun Belt ­$9,956 ­$9,956 ­$9,956 $39,824 ­$9,956
Notes: Conference names  in  brackets are  those corresponding  to  the bubble  team.  As described  in  the
text, Texas Christian is treated differently than Boise State because it is the higher ranked non­BCS bubble
team. This Table is only for an example year, as similar tables are created for all years 2005 through 2010.
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