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1 Introduction

Most work is conducted in teams. In these teams, agents’ actions are typically syner-

gistic – effort by one agent reduces the cost of effort for his colleague. For example,

going on an international business trip is less costly to a manager if she has an efficient

secretary; it is easier for a divisional manager to implement a new workforce practice if

the CEO has developed a corporate culture that embraces change. Synergies are also

important in non-corporate settings – the cost of giving an academic seminar is lower

if one’s coauthor has worked hard to improve the quality of the paper.

The structure of synergies within a team is complex. Within a given team, the

contributions of each agent to the collective synergy are typically asymmetric. A CEO

has a greater impact on the working environment of a divisional manager (through

his choice of organizational structure, corporate culture, and communication policies)

than the other way round; a conversation between a senior faculty member and a junior

colleague usually benefits the latter more than the former. Moreover, the number of

synergistic relationships that an agent will enjoy may vary across agents. A CEO

likely exhibits synergies with each of his divisional managers, but a pair of divisional

managers might not exhibit synergies with each other.

This paper studies an optimal contracting problem in the presence of such syn-

ergies. In our theory, agents contribute to the production of a joint project, which

either succeeds or fails. We model synergies as follows. Influence refers to the extent

to which effort by one agent reduces the marginal cost of effort of a colleague, and

synergy between a pair of agents is the sum of the (unidirectional) influence parame-

ters of the two agents. With more than two agents, a multidimensional synergy profile

captures the synergies between all pairs of agents. Our framework allows for effort to

be continuous, influence to be asymmetric across a given pair of agents, and agents to

differ in the number of colleagues with whom they enjoy synergies and in the strength

of these synergies. The model also allows for the production function to exhibit either

complements or substitutes in the agents’ effort levels, and shows that the effects of

synergies are robust to the choice of production function.

Our analysis solves for the effect of synergies on the optimal effort level of each

agent, the wage paid to a given agent if the project succeeds (both in absolute terms

and relative to his colleagues), and the total wages paid out by the firm to all agents

upon success. In particular, it addresses several questions that cannot be explored

in a single-agent framework, such as the determinants of cross-sectional differences in

pay across agents within the same firm, and the optimal composition of a team or
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boundaries of a firm. While standard models study how effort and pay depend on

productivity and risk aversion, we study the effect of synergy.

We start with a two-agent model in which agents’ efforts are perfect substitutes,

i.e. the probability of project success depends on the sum of their actions. Even

though the agents’ influence can be asymmetric, and so one agent’s effort is more

“productive” in that it reduces his colleague’s marginal cost more than his colleague’s

effort reduces his cost, the principal wants both agents to exert the same effort level.

While the colleague’s effort is less “productive”, which would normally suggest that

he should exert a lower effort level, the synergies arising from the first agent’s action

make it easier for the principal to induce effort from his colleague, and so she wishes the

colleague to exert a similarly high level of effort. This result in the specific two-person

model illustrates a more general point of the model (for any number of agents) – while

influence parameters are individual and may be asymmetric across agents, the synergy

is common to a group of agents. It is the common synergy, not the individual influence

parameters, that determines the optimal effort level.

However, while effort levels are symmetric, wages are not. The more influential

agent receives a higher wage upon success. Since the agent is paid zero upon failure,

a higher success wage represents both higher incentives and a higher level of expected

pay. This asymmetry in the wage occurs even though both agents exert the same effort

level (and so pay is not simply a “compensating differential” for the disutility of effort),

and effort by each agent has an identical effect on the production function. Instead,

higher pay is optimal because it causes the agent to internalize the externalities he

exerts on his colleague. When choosing his effort level, each agent takes his colleague’s

action as given, and so he does not take into account the impact on his colleague’s cost

of effort. A higher wage causes him to internalize this synergy, and so leads him to

exerting the optimal level of effort.

An increase in the overall level of synergies between the agents leads to the principal

implementing a higher effort level, and paying out higher total wages in the case of

success. This result contrasts standard principal-agent models without synergies, in

which total wages are independent of productivity parameters in the presence of risk

neutrality. If an agent is more productive, the principal wishes to implement a higher

level of effort (which requires steeper incentives, ceteris paribus), but greater produc-

tivity means that flatter incentives are required to implement a given level of effort,

and these two effects exactly offset. In our model, the second effect is absent because

synergy only affects cost functions and not an agent’s marginal effect on production,
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and so an increase in synergy unambiguously leads to higher total wages. The result is

consistent with the high level of equity incentives in start-up firms, including to rank-

and-file employees with little direct effect on firm output. Standard principal-agent

theory suggests it is never optimal to give equity incentives to a low-level employee as

he has little effect on the equity price and so equity would merely subject him to risk

outside his control. However, particularly in start-up firms where job descriptions are

blurred and workers interact frequently with each other, agents can have a significant

indirect effect on firm value through aiding their colleagues. In addition, in small firms

with a shallower hierarchy, a junior employee is more likely to interact with a senior

colleague.

An increase in agent i’s influence parameter, holding agent j’s influence parameter

constant, raises total synergies and so increases total effort and total wages as explained

above. Agent i’s wage always increases, but the effect on agent j’s wage is more

nuanced. It increases if and only if his influence parameter is above a critical threshold,

otherwise it decreases. The intuition is as follows. The principal could choose to hold

agent j’s wage constant, in which case an increase in i’s influence parameter raises

j’s effort level because it reduces his marginal cost of effort. Thus, the principal could

reduce agent j’s wage slightly without his effort falling below its previous level. If agent

j’s influence is sufficiently low, his effort is less beneficial to the team than agent i’s

effort. Then, the principal prefers to extract some of the surplus (created by agent j’s

lower cost of effort) and reinvest it in agent i. This is achieved by lowering agent j’s

wage, accepting a lower increase in his effort, and reinvesting a portion of the saved

cash to further increase agent i’s wage. By contrast, if agent j’s influence is sufficiently

high, the principal chooses to reinforce the increase in j’s effort level by augmenting his

wage. An increase in agent i’s relative influence – augmenting his influence parameter

but decreasing agent j’s to keep the total synergy constant – causes agent i’s wage to

increase in both absolute terms, and relative to agent j. In short, synergy determines

the (common) effort level and total pay, and influence determines the agents’ relative

pay.

While the two-agent model fixes some basic ideas in a parsimonious manner, the

core analysis of the paper is a three-agent model which allows us to study differences

in the scope of synergies exerted by agents – such as the earlier example whereby a

CEO influences two divisional managers, but the divisional managers do not influence

each other. The “synergy component” refers to the sum of the bilateral influence

parameters between a given pair of agents: i.e. agent i’s influence on agent j, plus
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agent j’s influence of agent i. There are three synergy components, one for each pair

of agents. If the synergy components are sufficiently close to each other, all agents

exert strictly positive effort, and the ratio of the effort (and thus wage) levels depends

on the relative magnitude of all three synergy components. For example, if agent 1

exhibits more synergies with agent 3 than does agent 2, then agent 1 will exert a higher

effort level than agent 2. This contrasts the two-agent case, where both agents take the

same action. Note that the relative effort levels depend on the total synergies between

each pair of agents, rather than the unidirectional influence parameters. It may seem

that the optimal effort level exerted by agent 1 should depend only on his influence on

agent 3, and not 3’s influence on 1, since only the former affects the productivity of

his effort. However, if 3 has a greater influence on 1, it is less costly for the principal

to induce effort from 1, and so the optimal effort level depends on the total synergy.

As in the two-agent model, the optimal effort levels depend on the collective synergy,

rather than the individual influence parameters; the latter only affect relative pay.

A natural application of the three-agent model is a setting where one synergy com-

ponent is close to zero – for example, if two divisional managers exhibit synergies with

the CEO but less so with each other – then the two non-synergistic agents can be

aggregated into a single employee and the model reduces to a close variant of the two-

agent case. Thus, the CEO exerts almost the same effort level as the two divisional

managers combined, and so his level of pay is also higher than each divisional manager.

Bebchuk, Cremers and Peyer (2011) interpret a high level of CEO pay compared to

other senior managers as inefficient rent extraction, but we show that it can be optimal

given the broad scope of a CEO’s activities. In addition, this result suggests that the

optimal measure of firm size that determines CEO pay, in assignment models such as

Gabaix and Landier (2008) and Terviö (2008), may not be an accounting measure such

as assets or profits (as typically used in empirical studies), but the scope of a CEO’s

influence. The CEO of a large firm where divisions operate independently (such as a

conglomerate) may be paid less than the manager of a small synergistic firm, such as

a start-up.

If one synergy component becomes sufficiently large compared to the other two, then

the model collapses to the two-agent setting. Intuitively, if the synergy between two

agents is sufficiently strong, then only these two agents matter for the principal – she

ignores the third agent and induces zero effort from him, even though he has the same

direct effect on the production function as the first two agents. This also means that the

third agent’s participation depends on circumstances outside his control – in contrast
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to standard models in which an agent’s effort level depends only on parameters specific

to him. Even if his own synergy parameters do not change, if the synergy component

between his two colleagues suddenly increases, this can lead to him being excluded.

This is because the increased synergy between his colleagues raises the value of the

firm, and thus the cost of giving the third agent equity to induce effort. This result

has interesting implications for the optimal composition of a team – if two agents

enjoy sufficiently high synergies with each other, there is no gain in adding a third

agent, even if he has just as high a direct impact on the production function as the

first two. Similarly, if the agents are interpreted as divisions of a firm, the model has

implications for the boundaries of a firm and suggests which divisions should be added,

divested or retained. Conventional wisdom suggests that a division should be divested

only if it does not exhibit synergies with the rest of the conglomerate. However, here,

even if a division enjoys strictly positive synergies, it should still be divested if its

synergies are lower than those enjoyed by the other divisions – i.e. it is relative, not

absolute, synergies that matter for the boundaries of the firm. Similarly, a firm should

not automatically acquire a target even if it will generate strictly positive synergies in

absolute terms.

We finally consider a model of perfect complements, where the success probability

depends only on the minimum effort level across all agents. Even though the production

function is a polar opposite, the model’s core results remain robust. An increase in

total synergy augments the effort levels and pay of all agents; a rise in the relative

influence of a single agent raises his pay in both relative and absolute terms.

Our study builds on the literature on multi-agent principal-agent problems. Holm-

strom (1982) considers two team-based settings. Where agents contribute to a joint

output, a free-rider problem exists. Where each agent has his own output measure,

the principal can use relative performance evaluation to reduce the noise in evaluating

each agent. There are no synergies in his model: effort by one agent has no effect on

the marginal productivity or marginal cost of another agent’s effort. In the individual-

output model, there is no interaction between the agents; in the joint-output model, the

only interaction stems from a joint production function in which the efforts are perfect

substitutes rather than exhibiting complementarities. A rich literature, summarized

by Bolton and Dewatripont (2005, Chapter 8), has built on both of these settings, ana-

lyzing further interesting questions such as the possibility of collusion between agents,

mutual monitoring between agents, and the optimal structuring of a team into hierar-

chies, but do not consider synergies. Itoh (1991) studies a multi-tasking problem where
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agents take two actions: one increases their own output, and another increases his col-

league’s output. This contrasts our setting where there is a single output across the

team, and each agent takes a single action which both improves the joint output and

reduces his colleague’s marginal cost – thus, the productive action is also synergistic

and the contract must change to force the agent to internalize this externality. Some of

the subsequent literature on team-based incentives has focused on the free-rider prob-

lem in settings that involve complementarities in the production function under a joint

output. Che and Yoo (2001) extend the free-rider problem to a repeated setting, where

an agent can threaten to punish a shirking colleague by shirking himself in a future

period. Kremer (1993) studies the case of extreme complementarities in production,

when failure in one agent’s task leads to automatic failure of the joint project, although

agents do not make an effort decision. Winter (2004) extends this framework to incor-

porate a binary effort choice and shows that it may be optimal to give agents different

incentive schemes even if they are ex ante homogenous. Extending this framework

further, Winter (2006) studies how the optimal contract depends on the sequencing of

agents’ actions, and Winter (2010) shows how it depends on the information agents

have about each other. Gervais and Goldstein (2007) analyze optimal contracting in

a model with production complementarities and agents with self-perception biases.

Sakovics and Steiner (2011) study optimal subsidies where there are complementarities

in production.

We show in the paper that complementarities in the production function are in-

herently different from the synergies studied in our paper. In our paper, effort by one

agent reduces the marginal cost of effort of his colleague. This can also be interpreted

as an agent’s effort increasing the marginal private benefit of effort by his colleague –

for example, giving an academic seminar is more enjoyable if one’s coauthor has worked

hard on the paper. Regardless of whether we interpret an agent’s effort as affecting

his colleague’s private cost or private benefit, the agent does not take into account

this externality when making his effort decision, and has to be compensated differently

to internalize it. On the other hand, in models with complementarities in the pro-

duction function, the agent does internalize the effect his effort has on his colleagues’

productivity, because he receives a share of the output. Thus, when the production

complementarity increases, the agent will raise his effort level even if the contract is

held constant – the contract does not need to change to cause him to internalize his ex-

ternality. In a single-agent model, modifying the production function is isomorphic to

modifying the cost function; in a multi-agent model, complementarities in production
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are fundamentally different from complementarities in costs.

Of closest relevance to our paper are other models of contracting with externalities.

Kandel and Lazear (1992) study peer pressure, whereby an agent’s effort affects the

utility of other agents. Their focus is on demonstrating how to model a peer pressure

situation, rather than solving for the optimal contract. In Segal (1999), agents exert

externalities on each other through their impact on other agents’ reservation utilities

rather than cost functions. The agents’ actions are observable participation decisions

(e.g. the decision to buy a product) rather than the choice of an unobservable effort

level; there is no output or production function as in this paper. Studying the optimal

effort choice (out of a continuum) rather than a zero-one participation decision leads

to several new results, such as the effect of total synergy on the optimal effort level,

that efforts may be symmetric even if influence is asymmetric, and that the optimal

effort level of an agent may be zero even if he enjoys strictly positive synergies. In

addition, while we focus on the optimal contract, Segal’s focus is on what outcomes are

achievable and the bulk of the analysis concerns symmetric externalities. Bernstein and

Winter (2010) also focus on a participation decision, as in Segal (1999), and study the

case of heterogeneity in externalities. Dessein, Garicano, and Gertner (2010) study the

optimal allocation of tasks under economies of scale, which they refer to as synergies.

This is a different concept from the synergy in our paper, where effort by one agent

reduces the cost of effort of another agent.

The paper proceeds as follows. Section 2 presents the most general version of the

model, which we then specialize to a perfect substitutes production function in Section

3. We start with the preliminary two-agent model and then move to the core three-

agent model. Section 4 analyzes a perfect complements production function and shows

that the core results are robust, and Section 5 concludes. Appendix A contains all

proofs not in the main text.

2 The Generic Model

This section outlines our general synergy model. Section 3 later specializes the model

to the case where agents’ outputs are substitutes, and Section 4 considers the case of

complements.

There is a risk-neutral principal (“firm”), and N risk-neutral agents (“workers”)

indexed i = 1, 2, . . . N . Each agent is protected with limited liability and has a reser-
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vation utility of zero. Each agent exerts an unobservable effort level

pi ∈ [0, 1] i = 1, 2, . . . N.

The agents’ efforts affect the firm’s output. The firm has two possible output levels,

r ∈ {0, 1}. The output level is publicly observable and contractible. We will sometimes

refer to r = 1 as “success” and r = 0 as “failure”. The probability of success depends

on effort levels p of all agents as follows:

Pr(r = 1) = P (p1, p2, . . . pN). (1)

Each agent’s cost of effort ci (p) depends not only on his own effort level pi, but

also the effort levels exerted by all other agents. We specify agent i’s cost function as:

ci (p) = hi (pi)

(
1−

∑
j 6=i

εjipj

)
i = 1, 2, . . . N, (2)

where

εij ≥ 0 1 ≤ i 6= j ≤ N

∀i,
∑
j 6=i

εji < 1.

The variable εij is an influence parameter that represents the influence agent i exerts

on agent j. The higher the influence parameter, the greater the extent to which effort

by agent i reduces the cost of effort of agent j. A central feature of our model reflected

in (2) is that the effort by agent i reduces the marginal cost of effort by agent j. This

is the source of the synergistic relations among agents in our model: when an agent

exerts more effort, he makes it less costly for other agents to exert more effort as well.

We will sometimes refer to hi (pi) as agent i’s individual cost function, to distinguish it

from the “all-in” cost function ci (p). The influence parameters εij and the individual

cost functions hi (pi) are common knowledge before contracting takes place. For now

we consider the case of non-negative influence parameters; in Section 3.3 we extend the

model to allow for εij < 0.

It is automatic that each agent i will be paid zero in the case of failure. The

principal wishes to solve for the optimal wage wi ≥ 0 to pay agent i in the case of

success. The timing of the model is such that the principal chooses the wages wi for
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every agent i. The wage wi of agent i is then common knowledge to all agents. Then,

given the wages, each agent i chooses his effort level pi to maximize his expected utility,

given by his wage minus his cost of effort, i.e.:

wi1r=1 − ci (p) . (3)

Agents choose their levels of effort simultaneously, and their effort levels constitute a

Nash Equilibrium.

The solution of the model is then given as follows. The principal maximizes her

payoff, given by the expected output net of wages paid to the agents, i.e., she solves:

max
{pi},{wi}

P (p1, p2, . . . pN)

(
1−

∑
i

wi

)
, (4)

subject to the incentive compatibility (IC) conditions for each agent i:

pi ∈ arg max
p
P (p1, . . . pi−1, p, pi+1, . . . pN)wi − hi(p)

(
1−

∑
j 6=i

εjipj

)
i = 1, 2, . . . N.

(5)

Before we move to analyze specific cases of the model, a couple of points about the

setup are worth making. First, as specified above, agent i sets his effort pi without

observing the effort levels of other agents (but rather only correctly expecting them in

equilibrium). Since the cost of agent i’s effort depends on the effort levels exerted by

other agents, this implies that agent i decides on his own effort without observing the

implied cost (only correctly expecting it in equilibrium). We think this is a realistic

feature of the model. For example, a CEO may commit to a business trip and exert

effort in advance to make it successful, but the exact cost she bears in making the trip

will depend on the level of preparation conducted by her secretary, which is not known

to the CEO until after the trip is completed. Alternatively, the cost function ci may

combine elements of private benefit – e.g., the extent to which the CEO enjoys her trip

– which again depend on the effort by other agents in the firm.

Second, since the agent is paid zero upon failure (which is a consequence of the

combination of risk neutrality, limited liability, and zero reservation utility), an increase

in wi corresponds to an increase in both incentives (the sensitivity of pay) and expected

pay (the level of pay, which is often referred to as the “wage” in empirical studies).

Thus, in the analysis that follows, all results pertaining to wi are predictions for both

the level and sensitivity of pay. Both move in the same direction: an increase (decrease)
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in wi raises (reduces) both. These predictions do not hinge upon our assumption of

risk neutrality but will continue to hold in a model with risk aversion and a binding

participation constraint. An increase in the sensitivity of pay will cause the agent to

demand a risk premium, augmenting the level of pay.

3 Substitute Effort

This section specializes the general production function (1) to the case in which the

agents’ efforts are perfect substitutes, i.e. the probability of success depends on the

aggregate effort undertaken by all agents. Section 3.1 considers a preliminary two-agent

model, as this version of the model is most tractable and illustrates the core ideas most

clearly. Section 3.2 considers a three-agent model which is the core focus of the paper.

3.1 The Preliminary Two-Agent Model

The production function (1) now specializes to:

Pr(r = 1) =
p1 + p2

2
. (6)

We assume a quadratic individual cost function:

hi(pi) =
1

4
p2i .

Differentiating agent i’s expected utility function (5) gives his first-order condition

as:

wi = pi(1− εjipj).

Plugging this into the principal’s objective function (4) gives her reduced-form maxi-

mization problem as:

p∗1, p
∗
2 ∈ arg max

p1,p2

p1 + p2
2

(1− (p1 + p2) + p1p2(ε12 + ε21)) . (7)

We define the following term:

Definition 1 Synergy is defined to be the sum of the influence parameters s = ε12 +

ε21.
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We also make the following assumption to resolve cases in which the principal is

indifferent between two contracts:

Assumption 1 When computing the optimal contract, if the principal is indifferent

between two arrangements A and B, and A is preferred by all agents over B, then A is

chosen.

The solution to the model and its properties are given by Proposition 1 below.

Proposition 1 (Substitute production function, two agents.) (i) For all nonzero syn-

ergy, optimal efforts are equal: p∗1(s) = p∗2(s) ≡ p∗(s). There exists a critical synergy

level s∗ > 0 such that

p∗(s) =

2−
√
4−3s
3s

s ∈ (0, s∗)

1 s ≥ s∗.

Optimal effort p∗(s) is strictly increasing on (0, s∗] and explodes to 1 at s∗. When there

is no synergy, any combination of efforts that sum to 1
2

is optimal.

(ii) Total wages given success, w∗1 +w∗2, and expected total wages
p∗1+p

∗
2

2
(w∗1 + w∗2) =

p∗ (w∗1 + w∗2) are both increasing in s on (0, s∗].

(iii) Suppose synergy is subcritical. An increase in either influence parameter will

lead to increases in optimal effort, total wages given success, and expected total wages.

(iv) Suppose synergy is subcritical. The more influential agent receives the higher

wages upon success, i.e. w∗1 > w∗2 if and only if ε12 > ε21.

(v) Fix a subcritical synergy level. An increase in agent i’s relative influence (i.e.

increasing εij and lowering εji so that s is unchanged) increases both his relative and

absolute wealth. Specifically,

w∗i
w∗j
,

w∗i
w∗i + w∗j

, w∗i and p∗w∗i all strictly increase.

(vi) Suppose synergy is subcritical. An increase in εij increases w∗i and p∗w∗i . The

effect on w∗j depends on εji as follows: An increase in εij leads to an increase in w∗j if

and only if εji is sufficiently high. Specifically,

d

dεij
w∗j


> 0 εji ∈ ( 1

6p∗(s)
, s∗ − εij)

= 0 εji = 1
6p∗(s)

< 0 εji ∈ [0, 1
6p∗(s)

)

. (8)
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Finally, d
dεij

p∗w∗j is always positive.

(vii) The more influential agent receives the higher utility.

We now discuss the intuition behind and implications of each part of the Proposi-

tion. Part (i) states that each agent exerts the same effort level. This result may appear

surprising as it seems efficient for the more influential agent to exert the greater effort

level. It is tempting to consider influence as a component of an agent’s “productivity”,

and conclude that the more influential agent is more “productive” and so should work

harder. However, this is not the case, because greater effort by the more influential

agent decreases the cost of effort of his colleague, inducing the latter to exert more

effort. Mathematically, from the principal’s reduced-form objective function (7), we

can see that the cost saving due to synergy is given by p1p2 (ε12 + ε21). It thus depends

on the product p1p2 and is highest when p1 = p2. Assume without loss of generality

that agent i is the more influential agent. If pi > pj, then the principal is not benefiting

much from agent i’s influence on agent j since agent j is exerting little effort; thus, it

is optimal for her to increase pj. If pi < pj, then the principal should increase pi to

allow agent j (who is exerting high effort) to benefit from agent i’s influence. In sum,

for the principal to gain from the synergy, she needs pi to be high to reduce j’s cost of

effort, and pj also to be high so that j benefits from this reduced cost of effort.

The expression for the cost saving also shows that it is only the sum of influence

parameters – i.e., the synergy s – that matters for the determination of equilibrium

effort levels p∗(s). The components ε12 and ε21 themselves do not matter beyond their

sum. To glean the intuition, the synergy can be thought of as an “echo” between the

two agents – the influence of agent i on agent j raises the optimal effort level for agent

i, which reduces the cost of effort for agent j, which raises the optimal effort level for

agent j, which, due to the influence of agent j on agent i, reduces the cost of effort for

agent i, which raises the optimal effort level for agent i, and so on. In this process, it is

the combination of influence parameters (here, their sum) that determines the optimal

efforts of the two agents and, in the current specification, pulls them closer to each

other.

Intuitively, we see that as the synergy parameter s increases, effort by each agent is

more productive – in addition to its (unchanged) direct effect on firm output, it now has

a greater effect on the other agent’s cost function, and so it is efficient for the principal

to implement a higher effort level. When the synergy crosses a threshold s∗, the optimal

effort level jumps discontinuously to its maximum value of 1. Essentially, when s < s∗,

the echo between the two agents is dampening and the solution is interior. When
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s > s∗, the synergy is so strong that the echo is amplifying and the model “explodes”,

leading to the maximum effort being optimal.

Part (ii) states that wages increase with synergy. While intuitive, this result is far

from automatic. With greater synergies, it is efficient to implement a higher effort

level, which requires a higher wage holding all else equal. However, it seems that there

is a counteracting effect in the opposite direction – when synergies are higher, each

agent’s cost of effort is lower, and so a lower wage is required to implement a given

effort level. Indeed, in a single-agent moral hazard model under risk neutrality and

limited liability, the optimal contract involves paying the agent one-half of the firm’s

output, regardless of the agent’s productivity or cost of effort, because these two effects

exactly offset each other.

Here, wages are unambiguously increasing in the synergy parameter s. The key is

that synergies have no direct effect on output. The synergy parameter does not appear

in the production function and so does not affect the direct marginal productivity of an

agent’s effort. It only affects output indirectly through changing the other agent’s cost

of effort and in turn affecting his effort choice. In a Nash equilibrium, when choosing

his effort level, agent i takes agent j’s effort choice as given and does not take into

account the effect he has on agent j’s cost function. Thus, he does not internalize

his externality, and so the principal chooses to give him a sharper contract to cause

him to do so. Importantly, this result illustrates the difference between our approach

of modeling the complementarity between the agents in the cost function (or private

benefit function), and an alternative approach of modeling it in the production function.

Under the alternative approach, wages would be independent of the complementarity.

We will return to this point in Section 3.4.

Part (ii) implies that total wages, as a fraction of output, will be higher in firms

in which synergies are greater. Moreover, these higher wages come in the form of

performance-sensitive pay. This is a potential explanation for why high equity incen-

tives are given to low-level employees, even though they may have a small direct effect

on output. High equity incentives are optimal if they have a large indirect effect by

changing another agent’s cost function – for example, an efficient analyst in a private

equity firm reduces the cost of a director going to a meeting by producing accurate

briefing materials. Synergies are likely particularly high in small and young firms, where

job descriptions are often blurred and interactions are frequent. This may explain why

incentive-based compensation is particularly high in start-ups, even among low-level

employees – as was the case in firms such as Google. Hochberg and Lindsey (2010)
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document systematic evidence of broad-based option plans. Note that our model can

only explain equity compensation to rank-and-file employees that exert significant syn-

ergies on a sufficiently large number of people. If firms grant equity to non-synergistic

employees, this is likely for alternative reasons already in the literature.1

Part (iii) follows naturally from parts (i) and (ii). Since an increase in a single

influence parameter, holding the other influence parameter constant, raises the total

synergy level s, it will raise the effort levels of both agents, total wages, and expected

total wages. However, a single influence parameter has no independent effect on effort

and total wages other than through its impact on the total synergy. Total synergy is

a “sufficient statistic” for effort and total wages – how the synergy is divided between

the two influence parameters does not matter. The influence parameters do have an in-

dependent effect on the relative pay of each employee, as shown in part (iv). The more

influential agent receives the higher wage. This result holds even though both agents

exert the same level of effort, so the higher wage is not merely a “compensating differ-

ential” for the disutility of exerting a higher level of effort. It also holds even though the

agents have the same direct productivity in the production function (6): each agent’s

task is equally important to firm value. Instead, the wage differential is driven purely

by the indirect effect each agent has on his colleague. Part (iv) leads to empirical

predictions for within-firm differences in pay: more influential agents should receive

higher wages, even if all the tasks they perform are the same. For example, senior

faculty within academic departments are paid more than junior faculty even though

they all have the same formal job description (teaching courses and writing papers);

the former can reduce the latter’s cost of effort through mentorship and guidance.

Part (v) analyzes the effect of an increase in agent i’s relative influence: it increases

agent i’s wage both in absolute terms and also relative to agent j’s wage. Since agent i is

exerting a greater externality, it is efficient to pay him more to cause him to internalize

this externality.

While part (iii) shows that an increase in i’s influence parameter augments total

wages, part (vi) studies the effect on the individual wages of each agent. It is clear

that agent i’s wage rises, since total wages rise (part (iii)) and i’s share of total wages

1Oyer (2004) justifies broad-based option plans from a retention perspective: options are worth
more when employees’ outside options are higher, persuading them to remain within the firm. Oyer
and Schaefer (2005) find support for both this explanation and the idea that option compensation
screens for employees with desirable characteristics. They do not test our synergy explanation, which
has not been previously proposed to our knowledge. Bergman and Jenter (2007) present theory and
evidence that option plans are used to take advantage of employees’ irrational overvaluation of their
firm’s options.
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rises due to his greater relative influence (part (v)). However, there are two conflicting

effects on agent j’s absolute wage: total wages rise, but j’s share of total wages falls.

Part (vi) characterizes which force dominates when. If the principal held w∗j constant,

the rise in εij would increase agent j’s effort because it reduces his marginal cost of

effort. However, the principal need not hold w∗j constant. She could choose to decrease

j’s wage and thus extract part of the “surplus” created by the rise in εij by paying j

less; in return she accepts a smaller (but still positive) increase in agent j’s effort. Put

differently, since j’s marginal cost of effort has fallen, it is cheaper to induce effort from

him and she takes advantage of this by lowering his wage. Alternatively, she could

increase j’s wage and reinforce the increase in j’s effort brought about by the rise in

εij. Put differently, since it is cheaper to induce effort from j, she can take advantage

of this by increasing j’s effort even further (above and beyond the increase already

occurring from the rise in εij) via a higher wage. The latter option is desirable if j’s

effort is particularly beneficial to the team, i.e., if j’s influence on i is particularly high.

Moreover, the threshold level of εji,
1

6p∗(s)
, is decreasing in the common effort level

and thus the common synergy – i.e., the higher the synergy, the greater the range

of parameters εji under which agent j’s wage increases. As explained earlier, the

synergy creates an “echo” between the agents which amplifies the effect of changes in

a parameter on the equilibrium. If the echo is strong enough, the increase in εij causes

such a large increase in total wages that it outweighs the fall in j’s share of the total

wage pool. Thus, j’s wage rises in absolute terms. While the change in j’s absolute

wage depends on εji, the expected wage p∗w∗j unambiguously rises (regardless of εji),

due to the increase in the optimal effort level p∗ from part (iii).

Finally, part (vii) compares the utility of the two agents. The more influential agent

receives a higher wage, but also has a higher cost function since he is helped out less by

his colleague. The Proposition shows that the first effect is stronger, and so the more

influential agent receives the higher utility.

3.2 The Main Three-Agent Model

We now present the three-agent model which is the core analysis of this section. The

production function (1) now specializes to:

Pr(r = 1) =
p1 + p2 + p3

3
. (9)
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and we continue to assume a quadratic individual cost function, which is now given by:

hi(pi) =
1

6
p2i .

Differentiating agent i’s utility function (3) gives his first-order condition as:

wi(pi) = pi

(
1−

∑
j 6=i

εjipj

)
,

and plugging this into the principal’s objective function (4) gives her reduced-form

maximization problem as:

p∗1, p
∗
2, p
∗
3 ∈ arg max

p1,p2,p3∈[0,1]

(p1 + p2 + p3)

3
(1− (p1 + p2 + p3) + Ap1p2 +Bp1p3 + Cp2p3) ,

where

A = ε12 + ε21 B = ε13 + ε31 C = ε23 + ε32.

We define the following terms:

Definition 2 The synergy profile s is defined to be the vector (A,B,C). The quan-

tities A, B and C are the synergy components of the synergy profile. The size of

s is defined to be s = ||(A,B,C)||.

Quantity A is the analog of the synergy scalar s in the two-agent model: it measures

the sum of the influence that agents 1 and 2 exert on each other, and B and C are

defined analogously for agents 1 and 3 and agents 2 and 3, respectively. In a three-

agent model, there are three relevant synergy components between each of the three

pairs of agents, which together form the synergy profile s.

The solution to the model is given by Proposition 2 below for the case of an interior

solution, and Proposition 3 for the case of a boundary solution.

Proposition 2 (Substitute production function, three agents, interior solution.) (i)

Suppose the synergy profile s is strictly nonzero and the optimal effort profile p∗(s) =

(p∗1(s), p∗2(s), p∗3(s)) is interior. Then we have:

Ap∗2(s) +Bp∗3(s) = Ap∗1(s) + Cp∗3(s) = Bp∗1(s) + Cp∗2(s) (10)
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which implies

p∗1(s)

p∗2(s)
=
C

B

A+B − C
A+ C −B

;
p∗2(s)

p∗3(s)
=
B

A

A+ C −B
B + C − A

;
p∗3(s)

p∗1(s)
=
A

C

B + C − A
A+B − C

. (11)

In particular, interior optimal effort profiles occur only when each synergy component

is strictly smaller than the sum of the other two. Moreover, the optimal effort ratios are

homogenous of degree 0 in A,B and C. Therefore the direction of the synergy profile is

sufficient to determine the direction of the optimal effort profile provided it is interior.

(ii) Fix a direction of the synergy profile such that each component is strictly smaller

than the sum of the other two. There exists a critical synergy size threshold s∗ such

that, if s is subcritical then the optimal effort profile is interior, and the size of the

optimal effort profile is a strictly increasing function of synergy size.2 At the critical

synergy size s∗, the optimal effort profile explodes so that at least one agent is now

applying effort 1.

(iii) Total wages given success and expected total wages are strictly increasing in s

up to the critical synergy size s∗.

(iv) Fix a synergy profile such that the optimal effort profile is interior. An increase

in agent i’s relative influence (i.e., increasing at least one element of {εij}j 6=i and

decreasing some elements of {εji}j 6=i so that s is unchanged) increases both his relative

and absolute wealth. Specifically,

w∗i∑
j w
∗
j

, w∗i and p∗w∗i all strictly increase,

and
w∗i
w∗j

weakly increases for all j and strictly increases at least one j.

Proposition 3 (Substitute production function, three agents, boundary solution.) Sup-

pose there is a single synergy component that is greater than the sum of the other two.

Then the efforts exerted by the two agents who have the largest synergy with each other

are equal and the other agent does not exert effort. The size of the other two synergy

components has no effect on the optimal effort profile and the model is isomorphic to

the 2-agent model.

Combining the results of Propositions 2 and 3 gives the full solution to the model

as Theorem 2, the key result of this section:

2Recall that part (i) implies that, in this interval, the direction of the optimal effort profile is fixed.

18



A = K

B = K C = K

A = B + C

C = A+BB = A+ C

p∗1 = p∗2
p∗3 = 0

p∗2 = p∗3
p∗1 = 0

p∗1 = p∗3
p∗2 = 0

p∗1 ≥ p∗2 ≥ p∗3 p∗2 ≥ p∗1 ≥ p∗3

p∗1 ≥ p∗3 ≥ p∗2 p∗2 ≥ p∗3 ≥ p∗1

p∗3 ≥ p∗1 ≥ p∗2 p∗3 ≥ p∗2 ≥ p∗1

p∗1 = p∗2 + p∗3 p∗2 = p∗1 + p∗3

p∗3 = p∗1 + p∗2

Figure 1: The A+B + C = K simplex where K > 0 is some constant.

Theorem 2 The optimal effort profile is summarized in Figure 1.

Corollary 1 Suppose the influence between any pair of agents is symmetric. That is

for each i 6= j, εij = εji. Then when the optimal effort profile is in the interior, the

ratios of optimal wages coincide with the ratios of optimal efforts.

We now discuss the intuition behind and implications of each of the above results.

Part (i) of Proposition 2 states that the ratio of the optimal effort levels only depends

on the relative size of the different synergy components A, B and C, and not their

absolute magnitude. Thus, a proportional increase in each synergy component will

augment each effort level to the same degree, leaving the ratios unchanged.

Part (ii) states that, if the size of the synergy profile s is sufficiently small, and the

synergy components are balanced so that no single component exceeds the sum of the

other two, the optimal effort profile is strictly interior. Analogous to part (i) of Propo-

sition 1, when synergy size increases, effort by each agent becomes more productive as
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it now has a greater impact on the other agents’ cost functions, and so it is efficient for

the principal to implement a higher effort profile. When synergies become sufficiently

strong, it becomes optimal for the principal to implement the maximum effort level of

1 for at least one agent.

The simplex in Figure 1 fixes the sum of the synergy components A + B + C

at a constant K and studies the effect of changing the relative level of the synergy

components. The middle triangle (bounded by the three dots) in Figure 1 illustrates

the case of an interior effort profile summarized by Proposition 2. For an interior effort

profile, all three synergy components matter for the relative size of the individual effort

levels. For example, if and only if B > C (i.e. the left-hand side of the triangle), we

have p1 > p2: since agent 1 generates more synergies with agent 3 than does agent 2,

it is efficient for agent 1 to exert a higher effort level than the level of effort exerted by

agent 2; from Corollary 1, if pairwise influences are symmetric, agent 1 will also enjoy

higher pay.

Note that it is the total synergy between agent 1 and agent 3 (relative to the total

synergy between agent 2 and agent 3) that determines the relative values of p1 and p2,

not agent 1’s unidirectional influence on agent 3, ε13 (relative to agent 2’s unidirectional

influence on agent 3, ε23). It may seem that p1 should only depend on ε13 (and not

ε31) as only the former affects the productivity of agent 1’s effort. However, when ε31

rises, agent 1’s cost function is lower and so it is cheaper to implement a higher level

of effort. The intuition is similar to that in the two-agent model, whereby synergy

can be thought of as an echo between two agents, and it is the combination of their

influences on each other that matters, not each influence parameter separately. Hence,

when the synergistic relation between agents 1 and 3 is stronger than that between

agents 2 and 3, it is optimal for agent 1 to exert higher effort than agent 2. Similarly,

if and only if A > C, then p1 > p3, and if and only if A > B, then p2 > p3. In sum, the

relative size of the total synergies between each of the three pairs of agents determines

their relative effort levels. The agent that exhibits the greatest total synergies with

both of his colleagues will work the hardest (and earn the highest pay, if influence is

symmetric).

On the one hand, this result extends the principle in the two-agent case, that the

optimal effort level depends on the common synergy, and not the individual influence

parameters. The synergy profile is a “sufficient statistic” for the effort profile; how

it is divided into the individual influence parameters does not matter. On the other

hand, the result also contrasts the two-agent setting, since it is no longer the case that
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all agents exert the same effort level. In the two-agent case, there is only one synergy

component (agent 1’s synergy component with agent 2 is identical to agent 2’s synergy

component with agent 1) and so one common effort level. Here, the existence of three

synergy components allows for asymmetry in effort levels between the three agents.

However, while there are individual effort levels, they still only depend on the common

synergy components, not the individual influence parameters.

A natural application of the model is the case where one agent has strong synergies

with both other agents, but the other agents do not have strong synergies between them.

Suppose, for example, that A and B are large, but C is close to zero. The synergistic

agent, agent 1, is the CEO, who shares synergies with two division managers, agents 2

and 3, but they do not share strong synergies between them. As we can see in Figure

1, in this case, the effort exerted by agent 1 will be highest. Essentially, agents 2 and

3 can be aggregated, and their combined effort level is close to the effort exerted by

agent 1.

Proposition 3 considers the case of a boundary effort profile. It states that, if one

synergy component exceeds the sum of the other two, then the model collapses to the

two-agent model of Proposition 1. Intuitively, if the synergy between two agents is

sufficiently strong, then only those two agents matter for the principal – she ignores

the third agent and induces zero effort from him. This “corner” result (captured by the

three triangles that surround the middle triangle in Figure 1) is striking because the

third agent still has the same direct effect on the production function (9) as the other

two agents, yet is being completely ignored. Moreover, it means that even if there is

no change to the synergies exerted by the third agent on his colleagues, an increase in

the synergies between agents 1 and 2 can lead to him being excluded. Thus, the third

agent’s participation depends not only on his own synergy parameters, but also on

parameters that have no direct relevance to him. Since the synergies between agents 1

and 2 are so strong, it is always more efficient to increase their effort level from p− ε
to p rather than to increase the third agent’s effort level from 0 from ε. Note that this

result holds even though we have a convex function and so it is more costly to increase

the effort levels of agents 1 and 2 than agent 3. The convex cost function is why, even

if A > B and A > C, agent 3 typically exerts a strictly positive effort level even though

he exhibits fewer synergies. Only if A > B +C are the synergies between the first two

agents sufficiently strong to outweigh the effect of the convex cost function and lead to

agent 3’s effort level being zero. Due to the strong synergy, raising the effort levels of

agents 1 and 2 “echoes” many times and is thus more effective than raising the effort
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level of agent 3. Another way to view the intuition is that increased synergy between

agents 1 and 2 raises the value of the firm, and thus the cost to the principal of giving

agent 3 equity to induce effort from him.

The above result has interesting implications for the optimal composition of a team.

If two agents exhibit sufficiently high synergies with each other, there is no benefit in

adding a third agent to the team, even if the third agent has just as high a direct

impact on firm value as the existing two agents and has strictly positive synergies with

the first two agents. If the third agent was added, he would become a redundant “third

wheel” and be asked to implement zero effort, so there is no loss in excluding him from

the team. Moreover, the three agents can be interpreted as three different divisions

of a firm, in which case Proposition 3 has implications for the boundaries of the firm.

If two divisions exhibit sufficiently strong synergies with each other (e.g. there are

spillovers in marketing campaigns), it may be optimal to divest a third division even

if that third division makes a strong direct contribution to overall firm value and the

first two divisions exhibit no direct synergies in the production function. Conversely,

it may be optimal for a two-division firm not to acquire a third division even if it

would generate strictly positive synergies, if those synergies are low relative to those

enjoyed by the two existing divisions. Conventional wisdom is that any division that

enjoys positive synergies should be included within a firm. Here, even though the third

division enjoys strictly positive synergies with the first two, it is relative, not absolute,

synergies that determine the optimal boundaries of the firm. The empirical implication

is that a decision to divest (or not acquire) a division might not be driven by the low

synergies generated (or potentially generated) by this division, but rather by the strong

synergies between other divisions.

While in Proposition 2, all three synergy components matter for the optimal effort

profile, in Proposition 3 only the largest synergy component matters and the other two

are irrelevant. For example, within the middle triangle, the relative size of B and C

affects the relative size of p1 and p2, as discussed earlier. In the top triangle (where

A > B+C), we have p1 = p2 regardless of the relative size of B and C. Intuitively, the

synergy between agents 1 and 2 is so important that their individual synergies with

agent 3 become irrelevant. Wages are then determined as in the two-agent model and

depend on the relative influence of each agent.

Having considered the optimal effort profile, we now turn to the implications for

the optimal wage profile. Part (iii) of Proposition 2 is analogous to part (ii) of Proposi-

tion 1: total wages depend on the total synergy across all agents. While total synergy
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determines total wages, the influence parameters determine relative wages: part (iv)

of Proposition 2 is analogous to part (iv) of Proposition 1. An increase in one agent’s

influence parameter augments his wage in both absolute and relative terms; the intu-

ition is as earlier. Moreover, if the influence parameters are symmetric across all pairs

of agents, the entire wage profile can be fully solved: Corollary 1 states that the ratios

of optimal wages coincides with the ratios of optimal effort.

The model can thus explain why CEOs earn significantly more than other senior

managers. Bebchuk, Cremers, and Peyer (2011) argue that this is due to inefficient rent

extraction by the CEO, but our theory suggests that it may be efficient: the centrality

of the CEO leads to him exhibiting greatest synergies, increasing his optimal effort level

and thus pay.3 Thus, the three-agent model shows that a CEO’s wage depends on the

scope of the firm under his control, i.e. the number of agents (or divisions) with which

he exhibits synergies and the strength of these synergies. Talent assignment models

argue that CEO pay depends on the size of the firm under his control (e.g. Gabaix and

Landier (2008), Terviö (2008)), where firm size is typically measured by an accounting

variable such as total assets or profits. Our theory suggests that the relevant measure

of firm size is the scope and depth of the CEO’s synergies. Thus, the CEO of a large

firm in which the divisions operate independently (e.g. a holding company) may be

paid less highly than the manager of a small firm where there are strong synergies (e.g.

a start-up).

3.3 Negative Influence Parameters

This subsection extends the model to the case where the influence parameters εij can

be negative. We start with the two-agent model and then move to the three-agent

model.

3.3.1 The Preliminary Two-Agent Model

Recall the principal’s reduced-form maximization problem is given by:

p∗1, p
∗
2 ∈ arg max

p1,p2

p1 + p2
2

(1− (p1 + p2) + p1p2(ε12 + ε21)) .

There are thus two cases to consider.

3Kale, Reis, and Venkateswaran (2009) study another reason for why high pay for the CEO may
be efficient – to provide tournament incentives for other senior managers. They find that the pay
differential between the CEO and other senior managers is positively related to firm performance.
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Case 1. ε12 > 0 > ε21, and ε12 + ε21 > 0.

By inspecting the maximization problem, we can see that the solution only depends

on the total synergy s and not the individual influence parameters εij. Since we have

s > 0, we are in the case of the core model and so Proposition 1 holds.

Case 2. ε12 + ε21 < 0.

Since we now have s < 0, by inspecting the maximization problem we can see that

the solution requires p∗1p
∗
2 = 0 and so one agent exerts zero effort. Since both agents

have the same direct productivity, it does not matter which agent this is. Without loss

of generality, assume that p∗2 = 0. Then the principal solves:

p∗1 ∈ arg max
p1

p1
2

(1− p1) .

This is a single-agent model. The solution is standard, and is given by Proposition 4

below:

Proposition 4 (Substitute production function, two agents, negative synergy.) Sup-

pose that the total synergy s is negative. Then only one agent exerts strictly positive

effort; without loss of generality, assume this is agent 1. The analog of Proposition 1

is as follows:

(i) The optimal effort levels are given by p∗1(s) = 1
2
, p∗2(s) = 0.

(ii) The wage levels are given by w∗1 = 1
2

and w∗2 = 0, and are independent of s as

long as s < 0.

(iii) An increase in either influence parameter has no effect on effort and wages as

long as s < 0.

(iv) Since the principal is indifferent over which agent has the zero effort and wage

level, it is possible to have w1 > w2 for ε12 < ε21.

(v) For a fixed s < 0, changes in agent i’s relative influence have no effect.

(vi) As long as s < 0, changes in agent i’s absolute influence have no effect.

(vii) The agent who is exerting effort has the higher utility. Since the principal is

indifferent over which agent has the zero effort and wage level, it is possible that this

is the less influential agent.

We can summarize the above results as follows. Case 1 shows that, as long as

the total synergy is positive, the core model’s result of equal effort levels (irrespective

of individual influence parameters) continues to hold in the case where one influence

parameter is negative. It may seem surprising that the principal chooses to hire (i.e.,

induce strictly positive effort from) an agent that exert negative influence, but this is
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optimal if it is outweighed by the other agent exerting a sufficiently positive influence

so that the total synergy is positive. Case 2 shows that, if total synergy is negative,

the principal only wishes to hire one agent, and the individual influence parameters

are irrelevant for the choice of agent. Again, it is the total synergy that matters for

whether both agents exert effort, so it does not matter if one influence parameter is

negative as long as the total synergy is positive.

3.3.2 The Main Three-Agent Model

In the two-agent model, the solution depended on whether the total synergy (rather

than the individual influence parameters) was positive or negative. In the three-agent

model, the solution depends on whether the synergy components are positive or nega-

tive. Without loss of generality, we will assume that A is the largest synergy component,

followed by B and then C. There are four cases to consider:

Case 1. A > B > C > 0.

If each synergy component is positive, we are in the case of the core model and Propo-

sitions 2 and 3 continue to hold.

Case 2. A > B > 0 > C.

Here, one of the synergy components is negative. This ensures that there is a single

synergy component that is greater than the sum of the other two: A > B+C. We thus

obtain the corner solution of Proposition 3. Only the two agents who have the largest

synergy with each other exert effort, and the problem reduces to the 2 agent model.

Case 3. A > 0 > B > C

This case is similar to Case 2 in that we have A > B + C. We thus obtain the corner

solution of Proposition 3.

Case 4. 0 > A > B > C.

In this case, only one agent exerts effort. Since all three agents have the same direct

productivity, it does not matter which agent this is. Without loss of generality, assume

that p∗2 = p∗3 = 0. We are in a single agent model where p∗1 = 1
2

and the analogy of

Proposition 4 applies.

3.4 Discussion: The Synergy Concept

A key feature of our model is that an agent’s effort reduces the marginal cost of effort

of his colleague. Alternatively, as mentioned before, this can be interpreted as an

agent’s effort increasing the marginal private benefit that the colleague derives from
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his own effort. This feature generates the synergies among agents in our model. To

what extent is this different from instead assuming that there are complementarities in

the production function, i.e., that an agent’s effort increases the marginal productivity

of the other agent’s effort in the production function?

In a single-agent model with separable utility, changing the agent’s marginal pro-

ductivity by multiplying the production function by a constant factor is indeed isomor-

phic to changing his marginal cost by dividing the cost function by the same multiple.

However, in a multi-agent world, synergies in the cost function are fundamentally

different from complementarities in the production function. The most conceptually

important difference is that cost synergies are a true externality, but production com-

plementarities are not. To illustrate this distinction, suppose that agents do not affect

other agents’ cost of effort, i.e., ci = hi (pi) (= 1
4
p2i in the two-agent model), but

that the production function exhibits complementarities, e.g., in the two-agent model

Pr(r = 1) = p1+p2
2

+s′
√
p1p2. Complementarity is captured by the positive cross partial

s = s′

4
√
p1p2

. An increase in agent i’s effort will increase the productivity of agent j, but

does not take this into account because he holds agent j’s effort fixed when calculating

his own optimal action. One might be tempted to conclude that the complementarity

therefore represents an externality. To show that it does not, consider the case of a

single agent who internalizes everything – he owns production and exerts both efforts

p1 and p2. If the complementarity captured by the positive cross partial s is an ex-

ternality, it should be taken into account by the single agent since he internalizes all

externalities. However, the single agent’s optimization problem for his choice of pi is

max
pi

pi + p∗j
2

+ s′
√
pip∗j −

1

4
p2i −

1

4
p∗2j ,

and analogously for the choice of pj. Thus, even in a single-agent model, the com-

plementarity between pi and pj is ignored. Even the single agent holds pj fixed when

choosing pi, which is why pj enters as p∗j in the above objective function rather than as

a function of pi. Thus, the optimal pi is independent of the cross-partial with respect

to pi and pj. To the extent that first-order conditions are sufficient, then, by definition,

second-order effects such as production complementarities do not matter.

To illustrate further that the multi- and single-agent models are similar under pro-

duction complementarities, and thus that such complementarities are not true exter-

nalities, consider the case in which there are no cost synergies (but there may be

production complementarities), there is unlimited liability, and utility is quasi-linear

in money. Then, the optimality conditions of the aggregate agent in a single-agent
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model equal the aggregate of the optimality conditions of each individual agent in a

multi-agent model. Thus, if the optimal contract for the single agent is w(r), then the

optimal contracts in the two-agent world are simply two copies of w(r) plus some lump-

sum transfers. This is essentially a consequence of the the analysis of the free-rider

problem in Holmstrom (1982). This will not be the case if there are cost synergies.

More generally, because contracts are contingent upon output but cannot be made

contingent on effort costs, agents naturally internalize the effects of their efforts on

production but not on costs. To illustrate, in a multi-agent model with production

complementarities but no cost synergies, agent i’s objective function is:(
pi + p∗j

2
+ s′

√
pip∗j

)
wi −

1

4
p2i . (12)

In the current model, with cost synergies only, an aggregate agent’s optimization

problem for his choice of pi is:

pi + p∗j
2

− 1

4
p2i
(
1− εjip∗j

)
− 1

4
p∗2j (1− εijpi) . (13)

In a multi-agent model, agent i’s objective function is:

pi + p∗j
2

wi −
1

4
p2i
(
1− εjip∗j

)
. (14)

Equation (12) shows that agent i does internalize the production complementarity

s when choosing his effort level. This is because the complementarity s affects output,

and he receives a share of output since output is contractible. By contrast, equation

(14) shows that agent i does not consider his influence on agent j, εij, when considering

his effort level: this term does not appear in his objective function. This is because

his influence affects agent j’s cost of effort (which is non-contractible, and so he does

not share in this effect) but has no effect on output, and so he does not internalize it.

Thus, synergies in the cost function represent true externalities that are not internalized

by the agents. Even with unlimited liability and quasilinear utility, the optimality

conditions of the aggregate agent in the single-agent model do not equal the aggregate

of the optimality conditions of each individual agent in a multi-agent model. In the

multi-agent model, the principal would like the agents to internalize the cost synergies

as they affect total surplus, as shown by equation (13), and thus varies the contract to

cause them to do so. Indeed, the paper’s main objective is to analyze how the principal

increases incentives to induce the agents to internalize their cost externalities, although
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such internalization is only partial since it is costly to the principal – due to limited

liability, increased incentives can only be achieved by an increase in the success payoff

and not a reduction in the failure payoff, and the principal trades off this cost with the

benefits of internalization.

Note that, even though cost and production synergies are fundamentally different

from a modeling standpoint, in that the latter but not the former are internalized by

an agent, they are similar in the economic idea that they represent. In the presence

of production synergies, effort by one agent increases the marginal productivity of

his colleague, for a given unit cost. In the presence of cost synergies, effort by one

agent reduces the marginal cost of his colleague, for a given unit productivity. Thus,

although we are modeling synergies differently from a framework in which they appear

in the production function, our model continues to capture the same economic idea

that synergies improve a colleague’s productivity-to-cost ratio.

In the next section, we analyze our model of cost synergies in addition to com-

plementarities in the production function, and show that the presence of complemen-

tarities in the production function over and above cost synergies does not change the

implications generated by cost synergies so far in the paper.

4 Complementary Effort

This section specializes the general production function (1) to the case in which the

agents’ efforts are perfect complements, i.e. the probability of success depends on

the minimum effort level undertaken by all agents. The production function (1) now

specializes to:

Pr(r = 1) = min (p1, p2, ..., pN) . (15)

We continue to assume a quadratic individual cost function:

hi(pi) =
κi
2
p2i .

Differentiating agent i’s utility function (3) gives his first-order conditions as:

p1 = p2 = . . . = pN ≡ p, (16)

and

wi(p) = κip

(
1−

∑
j 6=i

εjip

)
. (17)
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These first-order conditions already give us some preliminary results. Equation (16)

shows that all agents will exert the same effort level, as is intuitive given the perfect

complementarities production function (15). Equation (17) shows that agent i’s wage

is linear in his cost parameter κi, i.e. agents with more difficult tasks (higher κi) will

receive higher wages.

Plugging the first-order conditions (16) and (17) into the principal’s objective func-

tion (4) gives her reduced-form maximization problem as:

p∗ ∈ arg max
p

p

(
1−

∑
i

wi(p)

)
= arg max

p
p

(
1− p

∑
i

κi + p2
∑
i

(∑
j 6=i

εijκj

))
.

We define the following terms:

Definition 3 Synergy is defined to be the sum of each agent’s total influence:

s =
∑
i

(∑
j 6=i

εijκj

)

Difficulty is defined to be the sum of the cost parameters, κ ≡
∑

i κi.

Assumption 3 Difficulty κ > 1
2
.

This is a nontriviality assumption about the difficulty of the project being not too

low. It ensures that the problem has nontrivial solutions in agent efforts for at least

some realized levels of synergy.

The solution to the model is given by Proposition 5 below.

Proposition 5 (Complementary production function.) (i) There exists a unique crit-

ical synergy threshold s∗ (κ) > 0 such that optimal effort is given by:

p∗(s) =

κ−
√
κ−3s
3s

s ∈ [0, s∗ (κ))

1 s ≥ s∗ (κ) .

Optimal effort p∗(s) is strictly increasing on [0, s∗ (κ)]. Furthermore, if difficulty κ > 1,

then p∗(s) explodes to 1 when the critical synergy level s∗ (κ) is reached.

(ii) Total wages given success, w∗(s) =
∑

iw
∗
i (s), and expected total wages p∗(s)w∗(s)

are both strictly increasing on [0, s∗ (κ)].

29



(iii) Suppose synergy is subcritical. An increase in any influence parameter of any

agent will lead to increases in optimal effort, total payment given success and total

expected success payment.

(iv) Fix a subcritical synergy level. Suppose agent i’s relative influence increases,

i.e. his total influence increases while holding synergy constant. If the resulting decrease

in the total influence of the other agents is nondistortionary4 then there is an increase

in agent i’s relative and absolute wealth. Specifically,

w∗i∑
j w
∗
j

, w∗i and p∗w∗i all strictly increase,

and
w∗i
w∗j

weakly increases for all j and strictly increases at least one j.

Proposition 5 shows that our model’s key results are robust to the nature of the

production function. Even though the perfect complements production function of this

section is the polar opposite of the perfect substitutes production function of Section 3,

the main insights regarding the effort and wage profiles remain unchanged. In addition

to demonstrating robustness to the specification of the production function, this section

also shows that the results naturally extend to the case of N agents.

As in Section 3, an increase in total synergy leads to an increase in the implemented

effort levels, total pay and expected total pay; the intuition is the same. An increase

in a single agent’s influence parameters augments total synergy (thus leading to the

above effects) and his own pay in both relative and absolute terms.

5 Conclusion

This paper has studied the effect of synergies on optimal effort levels and wages in

a team-based setting. We model synergies as effort by one agent reducing the cost,

or increasing the private benefit, of effort by a colleague. This is a fundamentally

different notion of synergy to complementarities in the production function and leads

to a number of new results. In a two-agent framework, effort levels are equal even

though influence may be asymmetric. Wages differ across agents, even though both

agents exert the same effort level and have the same direct impact on output, with the

4In other words, the decrease in the other agents’ total influence is achieved by simply multiplying
their influence parameters with a common scalar c < 1.
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more influential agent receiving higher pay. Total wages increase with the total level

of synergy, consistent with the high equity incentives in small start-up firms. In short,

total synergy determines total effort and total wages; individual influence parameters

only affect individual wages. The model also shows that it may be optimal to grant

rank-and-file employees strong equity incentives, even if their direct effect on output

is low, if they exert sufficiently high synergies. This prediction is consistent with the

frequency of broad-based stock option plans.

With three agents, optimal effort levels differ and depend on the total synergies an

agent enjoys with his colleagues rather than his unidirectional influence. If synergies

between two agents are sufficiently strong, it is optimal for the principal to focus

entirely on these agents and ignore the third. This result has implications for the

optimal composition of a team and optimal firm boundaries – if synergies between two

agents (divisions) become sufficiently strong, it is efficient to discard the third agent

(division) even if his (its) own parameters do not change. Agents that exert synergies

over a greater number of colleagues receive higher pay, consistent with the wage premia

CEOs enjoy over divisional managers.

31



A Proofs

We first start with a maximization problem which we will make repeated use of in these

proofs. Consider the following maximization problem where a, b ≥ 0:

max
x∈[0,1]

x(1− bx+ ax2).

Let x∗(a, b) denote the set of argument solutions.

Lemma 1 (i) If b ≤ 1
2
, then x∗(a, b) = 1.

(ii) If b > 1
2
, then there exists a threshold a∗(b) > 0 such that

x∗(a, b) =


b−
√
b2−3a
3a

a < a∗(b)

{ b−
√
b2−3a
3a

, 1} a = a∗(b)

1 a > a∗(b)

.

Proof. We first define some notation. Let U(x, a, b) = x(1− bx+ ax2) and xloc(a, b) =
b−
√
b2−3a
3a

.

First let b ≤ 1
2
. If a = 0, it is clear that x∗(0, b) = 1. If a > 0, then

d

dx
U(x, a, b)|x=1 = 1− 2bx+ 3ax2|x=1 = 1− 2b+ 3a > 0 (18)

To show x∗(a, b) = 1, it suffices to show there is no local maximum of U(x, a, b) on

(0, 1). By the quadratic formula, a local maximum exists (anywhere) if and only if

b2 − 3a = 3a(b · b
3a
− 1) > 0. Since b ≤ 1

2
, this implies b

3a
> 2. In addition, b

3a
is the

inflection point of U(x, a, b). Since U(x, a, b) is a positive cubic, the inflection point lies

above the local maximum. Thus, since d
dx
U(x, a, b) > 0 for x = 1 (from (18)), and the

inflection point is not reached until x = b
3a
> 2, the local maximum must be between

x = 1 and x = b
3a

. Thus, we must also have d
dx
U(x, a, b) > 0 for all x < 1. Thus, there

is no local maximum of U(x, a, b) on (0, 1).

Now consider b > 1
2
. We have the following facts:

Fact 1: xloc(a, b) is strictly increasing in a on [0, b
2

3
]. This follows from the fact that

b−
√
b2 − 3a is convex while 3a is linear and both are equal to zero when a = 0.

Fact 2: By the envelope theorem,

d

da
U
(
xloc(a, b), a, b

)
=
[
xloc(a, b)

]3
< 1 when xloc(a, b) < 1

32



Fact 3: On the other hand,

d

da
U(1, a, b) = 1

Fact 4: For all sufficiently low a, x∗(a, b) = xloc(a, b). To see this, notice since

lima↓0 x
loc(a, b) = 1

2b
< 1, so for all sufficiently low a, the local maximum is in the

interval (0, 1). Of course when a = 0, the local maximum is the global maximum. By

continuity, the fact is true.

Clearly, whenever xloc(a, b) > 1 or does not exist, then x∗(a, b) = 1. Therefore,

suppose xloc(a, b) ≤ 1 and exists. Fact 1 implies that the set of a that satisfy these two

conditions is of the form [0, ã] where ã ≤ b2

3
. We wish to show that U

(
xloc(a, b), a, b

)
and U(1, a, b) satisfy the single crossing property on the interval [0, ã]. ã is the upper

bound on the interval of a’s such that xloc(a, b) ≤ 1 and exists. Thus, there are two

cases to consider. First, we could have xloc(ã, b) = 1, in which case the functions

U
(
xloc(a, b), a, b

)
and U(1, a, b) cross at a = ã. Second, we could have xloc(ã, b) < 1.

Note that at a = ã, the function U (x, a, b) must have a single critical point. If it had

two critical points, we could increase a. An increase in a “flattens” out the cubic by

bringing the value of the local minimum and local maximum closer, but since there are

two critical points to begin with, this can be done without violating the requirement

that at least one critical point, xloc(a, b), exists. An increase in a also raises xloc(ã, b)

(from Fact 1), but since xloc(ã, b) < 1, this can be done without violating the constraint

that xloc(a, b) ≤ 1. Since a can be increased without violating the constraints that

xloc(a, b) ≤ 1 and exists, ã would not meet the requirement of being the upper bound

on the interval of a’s such that these constraints are satisfied. By contrast, if U (x, a, b)

has a single critical point, a cannot be increased further as the function would then

have no critical points. Since U (x, a, b) has a single critical point, it is non-decreasing

in x. Thus, xloc(ã, b) < 1 implies U
(
xloc(ã, b), ã, b

)
< U(1, ã, b). Facts 2 and 3 imply

that
dU(xloc(a,b),a,b)

da
< dU(1,a,b)

da
, and we also have U

(
xloc(0, b), 0, b

)
< U(1, 0, b). Thus,

the functions U
(
xloc(a, b), a, b

)
and U(1, a, b) must cross at some point a∗(b) ∈ [0, a].

Finally, Fact 4 implies that on [0, a∗(b)), x∗(a, b) = xloc(a, b).

Lemma 2 (i) If b > 1
2

then x∗(a, b) is strictly increasing on [0, a∗(b)).

(ii) If b ∈ (1
2
, 1] then

b−
√
b2−3a∗(b)
3a∗(b)

= 1 and x∗(a, b) smoothly increases up to 1.

(iii) If b > 1 then
b−
√
b2−3a∗(b)
3a∗(b)

< 1 and x∗(a, b) explodes up to 1 upon reaching the

critical threshold a∗(b).
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Proof. The first claim follows from Fact 1 in the proof of Lemma 1. For the third

claim, note xloc(a, b) is only defined when a ≤ b2

3
and xloc( b

2

3
, b) = 1

b
. Fact 1 then implies

the b > 1 claim. For the second claim, now suppose b ≤ 1. Then xloc( b
2

3
, b) = 1

b
≥ 1 and

it is also the inflection point. In general the inflection point is b
3a

. Thus as a decreases

from b2

3
, the inflection point is increasing. In particular, it remains above 1. However,

the only way that we can have U (1, a∗ (b) , b) > U
(
1, xloc (a∗ (b)) , b

)
(i.e. an explosion)

is if both xloc(a∗(b), b) and the inflection point are both strictly smaller than 1. Thus,

there is no explosion.

Lemma 3 If b > 1
2

then the quantities bx∗(a, b) − ax∗2(a, b) and x∗(a, b)(bx∗(a, b) −
ax∗2(a, b)) are both increasing on [0, a∗(b)).

Proof. On [0, a∗(b))

d

dx
U(x, a, b)|x∗(a,b) = 1− 2bx∗(a, b) + 3ax∗2(a, b) = 0

⇒ d

da
U(x∗(a, b), a, b) = −2bx∗1(a, b) + 6ax∗(a, b)x∗1(a, b) + 3x∗2(a, b) = 0 (19)

Now
d

da
bx∗(a, b)− ax∗2(a, b) = bx∗1(a, b)− 2ax∗(a, b)x∗1(a, b)− x∗2(a, b)

Equation (19) then implies

d

da
bx∗(a, b)− ax∗2(a, b) =

b

3
x∗1(a, b) > 0

This shows bx∗(a, b)− ax∗2(a, b) is increasing. Since x∗(a, b) is positive and increasing

as well, so x∗(a, b)(bx∗(a, b)− ax∗2(a, b)) is also increasing.

Proof of Proposition 1

The principal’s objective function is p1+p2
2

(1− (p1 + p2) + p1p2s). We first wish to

prove that p1 = p2. Fix a given X = p1 + p2. The term p1p2s is maximized, for a

given X, by setting p1 = p2. The other terms in the objective function are all terms

in X. Thus, we have p1 = p2. This allows us to apply Lemmas 1, 2 and 3 with

x = p1+p2
2

; statements (i), (ii) and (iii) are essentially transcriptions of these three

Lemmas, respectively. The only difference is that at the critical synergy level, we now

discriminate between the two optimal efforts in accordance with Assumption 1.
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To see (iv), note if i is more influential than j then εij > εji. This implies:

w∗i (s) = p∗(s)(1− εjip∗(s)) > p∗(s)(1− εijp∗(s)) = w∗j (s).

More generally, holding synergy fixed, an increase in agent i’s relative influence means

both increasing εij and decreasing εji. This causes both an increase in w∗i and a decrease

in w∗j , which proves (v).

The proof of part (vi) is as follows. We use a dot to denote the derivative with

respect to εij.

ẇ∗j = ṗ∗ − 2εijp
∗ṗ∗ − p∗2

p∗ ∈ arg max
p
p(1− 2p+ s∗p2)⇒ 1− 4p∗ + 3sp∗2 = 0⇒ −4ṗ∗ + 6sp∗ṗ∗ + 3p∗2 = 0

A linear combination of the two gives us

ẇ∗j =
1

3
ṗ∗ (6εijp

∗ − 1)

Since ṗ∗ > 0, this means that, when s < s̄, ẇ∗j and 6εijp
∗ − 1 have the same sign.

Equation (8) follows immediately. Turning to the expected wage, we have:

˙p∗w∗j = 2p∗ṗ∗ − 3εijp
∗2ṗ∗ − p∗3

−4ṗ∗ + 6sp∗ṗ∗ + 3p∗2 = 0⇒ p∗
(
−4ṗ∗ + 6sp∗ṗ∗ + 3p∗2

)
= 0

A linear combination of the two gives us

˙p∗w∗j = 3εijp
∗2ṗ∗ +

1

2
p∗3 > 0.

Finally, for part (vii), the first-order condition yields: w1 = p1 (1− ε21p2). Thus,

agent 1’s utility is given by:

U1 = p1 (1− ε21p2)
(
p1 + p2

2

)
− 1

4
p21 (1− ε21p2)

=
3

4
p2 (1− ε21p)

where p = p1 + p2, and similarly U2 = 3
4
p2 (1− ε12p). Hence U1 > U2 if and only if

ε12 > ε21.

Proof of Proposition 2
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Holding total effort constant,

p∗1(s), p∗2(s), p∗3(s) ∈ arg max
p1,p2,p3∈[0,1]

Ap1p2 +Bp1p3 + Cp2p3 (20)

The first-order conditions which characterize interior solutions to this convex problem

are captured by equation (10). This proves (i).

Since the maximization problem of equation (20) is convex, the optimal effort profile

will satisfy the ratios of equation (11) so long as:

1. Each synergy component is strictly smaller than the sum of the other two.

2. The restriction of each effort being no greater than 1 is nonbinding.

Condition 1 is assumed in this lemma and condition 2 holds if synergy is sufficiently

small. Suppose then that synergy is small. Call by p the highest effort of the optimal

effort profile. Then there exists 1 ≥ α ≥ β > 0 such that the other two efforts are αp

and βp. Assume without loss of generality that agent 1’s effort is highest, agent 2’s

effort is α times agent 1’s effort and agent 3’s effort is β times agent 1’s effort. Then

the principal’s maximization problem becomes

p∗ ∈ arg max
p∈[0,1]

(1 + α + β)p
(
1− (1 + α + β) p+ (Aα +Bβ + Cαβ) p2

)
.

Statement (ii) now follows from Lemma 1. Statement (iii) follows from Lemma 3.

Holding the synergy profile fixed, an increase in agent i’s relative influence means

both an increase of at least one element of {εij}j 6=i and a corresponding decrease of

some elements in {εji}j 6=i. This causes an increase in w∗i and a decrease in at least one

element of {w∗j}j 6=i provided the effort profile is interior. p28, final paragraph of the

proof of proposition 2. Moreover, since (p1, p2, p3) is a function of the synergy profile

only, it is unaffected by changes in relative influence and so p∗ is unchanged. Statement

(iv) now follows.

Proof of Proposition 3

Without loss of generality, suppose A > B ≥ C and A ≥ B + C. Looking at

the convex problem of equation (20), it is clear that p∗3 = 0. But then the principal’s

maximization problem becomes symmetric in p1 and p2 and there is nontrivial synergy

between agents 1 and 2. The statement in the proposition then follows from the

preliminary two-agent case.
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Proof of Corollary 1

Recall the optimal wage for agent i is

w∗i (p
∗
i ) = p∗i

(
1−

∑
j 6=i

εjip
∗
j

)
.

Equation (10) and the corollary’s assumption about the influence parameters imply

that the quantity inside the parentheses is the same for all i. The result now follows

immediately.

Proof of Proposition 5

The proof is essentially the same as in Proposition 1.
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