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In recent years there has been considerable concern about the erosion of

tax revenues due to increased tax evasion. Several alternative strategies have

been suggested to deal with this problem, including reducing marginal tax rates

so as to reduce the incentive to evade, increasing the punishment for evasion,

and expanding the resources of the Internal Revenue Service in order to increase

the likelihood of detecting and prosecuting instances of tax evasion. One pro-

ponent of the third strategy, the Corriiissioner of the Internal Revenue Service,

recently testified before a Congressional subcomittee that for every additional

dollar allocated to his agency's budget, it could return ten dollars in addi-

tional tax collections.1 Although the Commissioner undoubtedly interpreted

these figures as evidence for an expanded IRS budget, in the absence of further

analysis it is not clear whether it is desirable to expand the tax collection

agency in this circumstance.

Not much attention has been paid by public finance economists to the issue

of the optimal degree of enforcement of the tax law, and those that have dealt

with the issue do not speak with one voice. For example, in their textbook,

Schultz and Harriss (1959) lamented the fact that "...although ample evidence

indicates that additional funds spent on administration would yield many times

their amount in added collections, ...even governments starved for funds refuse

to provide enough to collect taxes under existing law." (p. 217) Their implicit

condition for the optimal degree of enforcement is apparently that marginal tax

revenue be equal to the marginal cost of collection. However, Shoup (1969)

notes that although "it might at first appear that money should be appropriated

for tax administration until the incremental dollar of cost yielded just one

dollar's increase in revenue ..., this would be to overlook the fact that in tax

administration real resources are being used up to implement a system of

transfer payments, that is, taxes, not real output. That implementation is a
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valuable commodity, but its value is not necessarily to be reckoned in terms of

the dollars taken in ..." (p. 433). The first explicit analytical treatment of

this issue is in the seminal paper of Sandmo (1981), who apparently espoused the

view that the optimal size of the tax collection agency is even larger than

simple cost-benefit analysis would indicate, and that at the optimum marginal

cost [should be] higher than marginal tax revenue. (p. 283).

The principal goal of this paper is to clarify this issue by deriving the

conditions that characterize the optimal size of a tax collection agency in a

simple model, and then providing a simple interpretation of the conditions in

terms of excess burden. We then construct a numerical example to illustrate the

insights to be gained from our analysis. The paper is arranged as follows.

Section 1 presents a simple model of optimal government policy when labor supply

decisions are fixed. Section 2 expands the model to the case with variable

labor supply, and provides an interpretation in terms of excess burden. In

Section 3 we compare our results to those obtained by Sandmo (1981), and recon-

cile the apparently conflicting results obtained in the two papers. Section 4

presents a numerical example of the analysis. We offer some concluding com-

ments about promising directions for future research in Section 5.

1. Optimal Policy with Fixed Labor Supply

The problem of tax evasion is inherently one of choice under uncertainty.

As modeled by Allingham and Sandmo (1972), a representative risk—averse house-

hold faces a given probability that an understatement of true tax liability will

be detected and punished. The household maximizes expected utility by balancing

at the margin the expected utility of an undetected evasion of tax liability
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with the expected utility of the penalty for evasion. A simple formulation of

the household's optimization problem is

(1) Max E(U) = (1-p)U[y-(T-g)J + pU[y-T-TrgJ

where y is actual (assumed to be all taxable) income, T is the true tax

liability, g is the amount of tax understatement, p is the probability that

the evasion will be detected and penalized, and ir is the rate of penalty for

tax evasion, assessed as a fraction of the evaded tax liability.

It is convenient, following Christiansen (1980), to restate expected utility

in terms of "true" net income (c), defined as y-T. Equation (1) then becomes

(2) Max E(U) = (1—p)U(c+g) + pU(c-irg)

The first-order condition for an optimum is

(3) (1_p)U'(c+g*) = p7r(U'(c_7rg*),

where g* stands for the optimal level of tax understatement. Note that

expected tax payments equal T_(1_pF)g* , where F = 1 +

Now we consider the problem faced by the government. The government

chooses p and I and is constrained to raise a given amount of revenue to

spend on, say, public goods.2 The probability that the tax collection agency

can detect an act of evasion depends on the amount of resources devoted to it;

we denote its cost function as a(p). We assume that, in choosing p and T

the objective of the government is to maximize the expected utility of the

representative household. Thus the government's problem can be stated as

(4) Max W = (1_p)U(c+g*) + pU(c_irg*) subject to T_(1_pF)g* = G + a(p)
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where G is the expected revenue requirement.

The first-order conditions of this problem with respect to p and 1,

respectively, are

(5) [U(c+g*) - U(c1Tg*)] - r[(R/p) - a'(p)J = 0 and

(6) (l_p)U1(c+g*) + pUI(c7rg*) - r[aR/T] = 0,

where R is the sum of expected revenues and penalties collected and r equals,

at a maximum, the marginal expected utility of relaxing the government revenue

requirement by one dollar.

Consider equation (5). The first term in brackets is clearly positive, and

it can be shown that r is also positive. The second expression in brackets

must then also be positive. Thus one conclusion we can draw from (5) is that at

a maximum R/ap > a'(p), or by increasing p the tax collection agency could

increase revenue by more than the cost of doing so.3 This contrasts to the classic

case of the tax farmer interested only in maximizing profits. In the tax farmer

case, aR/ap would equal a' (p) and lead to a socially excessive amount of

resources devoted to tax collection. Expression (6) implies that a maximum

is positive, i.e., that the government should be on the increasing part of the

"Laffer curve.'

Further insight into the interpretation of equation (5) can be gained by

deriving what we refer to as the excess burden of tax evasion. In the absence

of any other uncertainty, it is always the case that the representative risk-

averse household would prefer to pay its expected tax liability, T_(l_pF)g*,

with certainly compared to the alternative of paying T_g* with probability

(1-p) and T+irg* with probability p, which is the effective contingent tax

schedule when evasion is considered. We define the excess burden of tax

evasion, in utility terms, to be the difference in expected utility between the

case of paying the revenue requirement with certainty and the alternative of
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paying it with uncertainty, or

(7) EB = U(c+(1_pF)g*) - [(1_p)U(c+g*) + pU(c_*)J

which is greater than zero as long as g* is positive (which it will be if eva-

sion is better than a fair gamble, or if (1—pF) is positive). In this model

the excess burden of evasion, EB , is simply the utility loss due to the fact

of paying taxes as a lottery, rather than as a certainty. Note that this

measure of excess burden is independent of the cost of administering the tax

system (which is presumably positive in this model, or else no taxes would be

paid). Of course, each individual believes himself to be better off by engaging

in evasion. However, because the tax rates will be adjusted to raise the same

amount of expected revenue, the representative household is clearly worse off in

the end.

The total social cost of evasion is conveniently thought of as the sum of

the excess burden of tax evasion, as defined above, and the administrative cost

of limiting the amount of evasion, a(p) . Then the social optimization problem

can be interpreted as minimizing the social cost of evasion.4

It is useful to derive the marginal excess burden with respect to a change

in p . To do this, consider an experiment where the government increases p

but returns the additional revenue thus gained by adjusting T enough so that

total net revenue (including both taxes and penalties) is unchanged. In the

appendix we show that this expression allows us to express (5) simply as

(8) -(d(EB)/dp) =

where -(d(EB)/dp) is the marginal excess burden of tax evasion with respect to

p.
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Thus there is a simple rule for the optimal size of the tax collection

agency. It is that, at the margin, the cost of increasing p should equal the

saving of excess burden due to the decline in the exposure to risk. The

increased revenue to be gained from increasing the enforcement of the law does

not enter the expression because this is merely a transfer among the economy's

agents.

2. Optimal Policy with Variable Labor Supply

In this section we expand the individual decisi on problem to include the

choice of how much labor to supply, which we assume must be determined before

the state of the world (audited or not audited) is known. This additional

dimension adds two new considerations to the problem. First, the proportional

income tax is now distortionary at the margin of labor supply. Thus, any addi-

tional revenue raised by enforcing the tax law more aggressively due to reduced

evasion allows a reduction in the distortionary tax on labor.5 The second new

consideration is that increasing uncertainty may itself cause labor supply to

increase and thus tend to reduce the distortion at the labor supply margin.

This possibility has been emphasized by Weiss (1976) and Stiglitz (1982), who

characterized the utility functions for which, even in the absence of costly

enforcement, some randomness in tax liability would be desirable.

When there is a distortionary labor income tax in addition to the presence

of tax evasion, it is not meaningful to talk of the excess burden of either tax

evasion or labor income taxation separately, but only the total excess burden of

the system as a whole. It is, though, meaningful to talk of the marginal excess

burden from changing a particular instrument of the government.
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In order to analyze this question, we first pose the household's decision

problem, which is

(9) Max (1—p)U(c+g,L) + pU(c—71g,L)

where c is true after—tax income, or (.1—t)wL, and g is the amount of tax

understatement. The first—order conditions with respect to L and g are

(10) w(1—t)[(1—p)U(c+g,L) + pU(c—rrg,L)J +(1—p)U(c+g,L) + pU(c_rrg,L) = 0

(11) (1—p)UjJc+g,L) = PirU(c_ng,L)

The problem facing the government is to set t and p to maximize the

expected utility of the representativehousehold, subject to raising G in

revenue. We can write this problem as

(12) Max (1_p)UCc*+g*,L*J+pUEc*_lrg*,L*] subject to twL*_(1_pF)g* = 6 + a(p).

The first-order conditions of this problem with respect to p and t

respectively, are
-

(13) U[c*+g*,L*J — U[c*_irg*,L*J = T[(R/ap) — a'(p)]

(14) (1_p)Uc*+g*,L*J + pU[c*_irg*,L*J = T(3R/t)

By substituting the expression for the marginal excess burden as derived in

the appendix, we see that the interpretation of the condition for optimal p is

unchanged from Section 1: that the reduction in the excess burden due to an
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increase in p should, at the margin, be equal to the marginal administrative

cost of increasing p . What is different between the optimality condition in

the fixed labor supply case and the variable labor supply case is only the

interpretation of the marginal excess burden. Without further investigation,

the marginal excess burden with respect to p in the variable labor supply case

may be higher or lower than the marginal excess burden in the presence of an in-

elastic labor supply. The implication of Weiss (1976) and Stiglitz (1982) is

that the marginal excess burden might be negative in the neighborhood of a value

of p just high enough so that there is no evasion (i.e., p = 1/F). In this

case the induced labor supply outweighs the disutility of the riskiness of tax

payment. This implies that, even if enforcement of the tax laws was costless,

the optimal p would not be so high as to completely discourage evasion. In the

presence of costly enforcement, the optimal p is lower, at the p where

marginal excess burden equals the marginal administrative cost. Note that at

the optimum p the marginal saving in excess burden from a further increase in

p is positive, even though it may be negative for higher values of p

3. Reconciliation with Sandino

The finding that, at the optimum, the marginal revenue from increasing the

size of the tax collection agency exceeds the marginal cost is apparently at

odds with the conclusion drawn by Sandmo (1981) in the context of an essentially

similar, though more complex, model than the one presented here. He claims that

marginal cost should be higher than marginal tax revenue," and that "the opti-

mal probability of detection ... is higher than a simple cost-benefit analysis

would seem to indicate." These claims are justified by a condition of the opti-
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mum that says, in Sandrno's words, that "the marginal cost of catching an addi-

tional evader should at the optimal be equal to the marginal tax revenue,

computed along the compensated supply curves, plus a term reflecting the cur-

vature of the utility function or the degree of risk aversion." (p. 283).

The apparent conflict between his result and ours is, though, only semantic

in nature, and hinges on the precise meaning of the term "marginal tax revenue,

computed along the compensated supply curves." Sandmo's usage of this term is

not obvious and could lend itself to misinterpretation. The marginal tax reve-

nue is calculated net of the money necessary to keep the evader at the same

level of expected utility. Thus, there are two differences between this concept

of marginal tax revenue and the usual uncompensated notion. The first difference

is the usual purging of the income effects on behavior of the change in p

The second is the netting out of the funds required for the compensation.6

Sandmo's concept of marginal revenue is thus crucially different than the stan-

dard usage, and his statement that the probability of detection ought to be set

higher than a simple cost-benefit calculation would indicate must be

interpreted with great caution. This "simple" cost—benefit calculation must

measure marginal tax revenue carefully, subtracting the funds the tax collection
-

agency must disburse to ensure that the evading population is no worse off when

the probability of audit increases. The numerical example presented in the next

section shows clearly that conclusions based on an inappropriate notion of

marginal revenue can lead to large errors in the optimal setting of p.

4. Numerical Example

In this section we develop a numerical example of the choice of the opti—



mally sized tax collection agency. The purpose of the exercise is to show the

contribution of the various components of the problem to the outcome.

We consider a case with variable labor supply, in which utility in any

state is a Cobb—Douglas function of consumption and leisure. This implies that,

for given leisure, the individual exhibits constant relative risk aversion with

respect to lotteries over consumption. The maximand in this case is

(15) (1P)Cla(1L)B + paC2(1-L)where C1 = wL(1-t)+g and C2 = wL(1-t)-g

Manipulation of the firstorder condition implies that

(16) L* = a/(a+)

(17) E* = [L*(1t)(A1)J/[t(1+A)] , where A = E(p)/(l-p)] and g* = twE*.

Here E* is the amount of evasion expressed in equivalent units of labor supply.

The indirect expected utility function is

(18) V = k [(1t)(1+)/(1+A)f[(1p)Aa + pJ where k=[5/(a+5)J[a/(a+)fw.

The government's problem is to choose p and t to maximize V subject

to the constraint that revenue equal some fixed requirement plus the funds

necessary to support its chosen level of tax law enforcement, that is

(19) tw[L*_(1_pF)E*] = + a(p)

Note that in this case labor supply is independent of both p and r , as
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well as the wage rate and the marginal tax rate. Furthermore, the first—order

condition for the optimal choice of p is identical to the case of fixed labor

supply (when the fixed L is the same as the optimal L in the Cobb—Douglas

case). Thus, the introduction of an elastic labor supply with the accompanying

efficiency cost of a distorting labor income tax does not alter the optimal size

of the tax collection agency. The intuition behind this result is as follows.

Although an increase in p allows the government to reduce t , the effective

tax on labor income also depends on the expected profitability of evasion, as

this is a way to reduce the effective tax on labor. Thus, a decrease in t and

an increase in p does not, with a fixed revenue requirement, reduce the

expected effective marginal tax on labor. Moreover, in the Cobb-Douglas case,

the fact that there is a dispersion of effective marginal tax rates across

states does not affect labor supply, given the expected effective tax rate.7

Because this is a highly stylized model of the problem at hand, our para-

meterization of the example does not attempt to mirror observed data.8 As an

illustration we have chosen Tr=1, c=-1, -2 (so that L* will be 1/3),

w60,000 (to represent an annual per capita wage), a=l000p + 5000p2, and

6=5000 (or one-fourth of wage income). Note that with 71=1, the probability of

detection must be less than 0.5 in order for there to be any evasion at all.

In Figure 1 we present a graphical interpretation of the optimum problem.

The curve labelled FO represent those pairs of p and t which satisfy the

first-order conditions for p and t . Each point on this curve represents an

optimum for some given revenue requirement. Note that this curve has a small

negative slope, implying that the optimal probability of detection declines

when more revenue must be raised. This result depends on two aspects of the

example. First of all, the penalty for detected evasion is a multiple of the
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tax understatement. Thus, a higher value of t not only increases the tax

saving from a dollar of income understatement, it also increases proportionately

the penalty for detected evasion. Thus, as has been stressed by Yitzhaki

(1974), increases in t have no substitution effect on evasion, only income

effects. The assumption of constant relative risk aversion implies that, with

lower income due to higher t , risk taking in the form of evasion will be

reduced. With lower evasion, the marginal saving in excess burden from

increases in p decline. Thus, when more revenue must be raised, a lower p

is called for. This is not a generally applicable result, and depends on the

implict assumption that the purposes for which the government raises revenue do

not serve to increase welfare (or, more precisely, do not have any income effects).

The curve labelled GG represents those pairs of p and t which raise the

required expected revenue. The negative slope indicates that these instruments

are substitutes for revenue raising purposes. The intersection of the FO and GG

curves reveals the optimal combination of marginal tax rate, t , and size of

tax collection agency, p . In this case, p*O.36, t*_O.34, L*O.33, and

E*0.O9.

The comparative statics of the problem are revealing. An increase in the

revenue requirement, G , moves the GG curve to the right, increasing the

optimal t but decreasing the optimal p . This is due to the income effect of

reduced private income, which lowers the incentive to evade income. Reducing

the marginal cost of enforcing the tax law raises the FO curve and moves the OG

curve to the left, resulting in higher optimal p and a lower optimal t

This is a shift toward the now relatively less expensive instrument.

Increasing the amount of risk aversion lowers the FO curve and shifts the GG

curve to the left. This results in an unambiguous decline in the optimal value
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of p , but t may either increase or decrease. Increased risk aversion,

because it reduces the amount of evasion, also reduces the social return to corn-

batting it through enforcement.

Figure 2 illustrates the determinants of the optimal choice of p , for a

given value of t, 0.325. The upward sloping line is the marginal resource

cost of increasing p , which according to our assumptions is 1000 + l0000p.

The higher of the two downward sloping curves is the marginal revenue with

respect to p . The lower downward sloping curve is the saving in marginal

excess burden with respect to p. (—d(EB)/dp), divided by the marginal utility

of income so as to express all three relationships in terms of dollars.

According to our expression (A-7), the optimal p is given by the intersection

of the a' line and the (-d(EB)/dp) curve. It is interesting to note from this

graph that, as expected, at the optimum R/p exceeds a'(p). Furthermore, a

policy which, according to "simple cost-benefit analysis", sets p such that

R/ap was equal to a'(p) would substantially overcomrnit resources to the tax

collection agency. In this example, p would be set at 0.41 instead of 0.37,

and the budget of the collection agency would be 1250.5 instead of the optimal

budget of 1054.5.

5. Conclusion

The rule for the optimal size of a tax collection agency derived

here is based on simple models of the individual's decision problem and the

government's objectives. Before this rule can be used directly as a guide to

policy, both aspects of the problem must be expanded.

With respect to the individual decision problem, the assumption that the
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probability of detection is fixed must be generalized. In fact, the probability

of detection depends on the character and magnitude of the evasion, and on the

resources expended by the evader in reducing the likelihood of detection. These

resources are another social cost of evasion. How a recognition of these addi-

tional costs would affect the optimal size of the tax collection agency is not,

however, clear. Increased enforcement could conceivably increase the degree to

which individuals try to avoid detection.

The optimization problem should also be expanded to include many types of

individuals, with different opportunities to evade and different tastes. This

feature would äiiOW study of the horizontal and vertical equity aspects of tax

evasion .

The final step toward application of this model is the development of

empirical counterparts to key parameters of the model. More information is

needed on the actual responsiveness of evasion to the probability of detection

and the severity of punishment,1° the current extent of evasion as well as the

likelihood that a given act of evasion will be detected, and the cost function

of the tax collection agency. These are the critical pieces of information

needed to construct an example like that of Section 4 which is more than just an

illustration.

Varying the size of the tax collection agency is not the only possible

policy response to the problem of tax evasion. Alternatively, the penalty for

tax evasion may be increased. Another possible response is to change the tax

law itself so that the opportunities and incentives are decreased. One poten-

tially valuable direction for research is to develop an integrated approach to

the optimal government policy toward tax evasion.
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APPENDIX

Derivation of the marginal excess burden

We define the excess burden of a tax system which raises a given amount of

revenue to be the increase in utility that could be achieved if the same revenue

could be raised using lump-sum taxes and in the absence of evasion. We assume

that evasion is prevented by an effective and costless enforcement structure,

so as to distinguish the excess burden of evasion from the total social cost of

evasion. Let V(Z,w(i—t),F,p) be the indirect expected utility function, where

Z represents lump—sum income (or, if negative, a lump-sum tax), w(1—t) is the

after—tax wage rate, F is the rate of penalty on detected evasion, and p is

the probability of detection. The utility level achieved by an efficient tax

system is V(—G,w,F',p') where p'F'>l , and G is the required revenue. The

utility level achieved by a tax system which must use income taxation, which has

evasion, and which raises the same revenue is given by V(O,w(l-t),F,p) where

G=twL*_(1_pF)E* and pF<1. Then the excess burden is defined as

(A—i) EB = V(—G,w,F',p') — V(O,w(1—t),F,p)

For a given G , the first term is constant with respect to either p or t

Hence

(A-2) d(EB)/dp = -V(O,w(i-t),F,p)/9p

R =G

where R is gross tax revenue.
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Let Rt-3R/ot, RR/ip, Vt;V/t, and V—V/p. Then

(A-3) (at/) =
Rp/Rt

R=G

and

(A-4) d(EB)/dp -[Vp - VtRp/RtJ

It is straightforward to show that the left—hand side of equations (13) and

(14) in the text are -Vp and —Vt , respectively. Thus, the first—order con-

ditions for optimal p and t in the presence of administrative cost can be

written as

(A-5) V -T[R — a'(p)]

and

(A—6) Vt =-T Rt

Some substitution and rearrangement of (A-4), (A-5), and (A-6) yields

(A-7) —[dEB/dp] = Ta'(p)

This condition says that, at the optimum, the saving in excess burden due

to an increase in p , valued in dollars, should be equal to the marginal

resource cost of increasing p , or that the marginal social cost with respect

to p is zero.

Note that the same interpretation applies if taxes are lump sum in nature,

as in Section 1 of this paper.
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FOOTNOTES

1. See the testimony of Commissioner Roscoe L. Egger, Jr., before the House

Subcommittee on the Treasury, Postal Service, and General Government

Appropriations, February 27, 1984.

2. Note that we also assume that the penalty for tax evasion is not an instru-

ment subject to choice by the government. Models which include this dimension

of choice inevitably conclude that an optimal policy features a large penalty

and a small probability of conviction such that no offenses are comitted. This

strategy implies a zero social loss, because fines are transfers with no

resource cost, while maintaining a tax collection agency does entail resource

costs. What limits the penalty for tax evasion is a presumption that the

penalty should be commensurate to the seriousness of the crime. This kind of

consideration lies outside of our modeling effort. An excellent discussion of

this issue is contained in Stern (1978).

3. Note that Sandmo (1981) comes to the same conclusion in his expression (48),

p. 278. See Section 3 of this paper for a reconciliation of Sandmo's findings

and the results presented here.

4. See Yitzhaki (1979) for a similar interpretation of the optimal coverage of

excise taxation.

5. Although, the decreased profitability of evasion may itself be a disincen-

tive to supplying labor.

6. To see this more clearly, note that dR/dp is, in Sandmo's model and nota-

tion, equal to

(F-i) twe(aLeIp) - b ÷oweE + powe(E/ap)
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The difference between this and what he refers to as "marginal tax revenue, com-

puted along the compensated supply curves" is then

(F-2) twe[(Le/p) — (aLe/op) 3 + pewe[(Etp —(E/p)] — b +eweE
b-comp b-comp

where we is the wage rate, L is labor supply reported to the tax authorities, E

is unreported labor supply, e is the penalty rate for evasion , and b is a

payment from the government to the individual payable only in the detected

state. The terms in brackets reflect the difference in behavioral response due

to income effects. The term —b + eweE is the amount of compensation paid in

the "detected" state needed to keep the expected income of an evader constant,

and is equal to the increased expected penalty paid, holding E and L

constant. It is abs approximately, but not exactly, equal to the amount of

funds, payable in the "detected" state, needed to fully compensate an evader for

a unit increase in p . Because the evader is risk-averse, a payment of

somewhat less than —b + ewE, received in the state with higher marginal uti-

lity, is required. The reduction in the required payment is approximated by

(Ucc/2Uc)(Cle_C2e)2. This can be demonstrated by first forming VPe,Vbe from Sandmo's

(22) and (24), which is [(U(C2e,Le + E) — u(cie,Le + E)]/r Then substitute

pUc(C2e,Le + E) for from (14). Finally, using the Taylor expansion

following (59), we obtain

e

VP U(Cle,Le+E)_U(C2e,Le÷E) Ucc(C2e,Le+E)— ________________________ = N_b+eweE) + ______________ (C1e_C2e)2].

Uc(C2e,LE) Uc(C2e,Le4.E)
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7. Of course, because increasing p requires real resources, there is not a

fixed revenue requirement. An increase in p then will be accompanied by an

increased expected effective tax rate. This qualification, though, applies

equally to the case of fixed labor supply.

8. One particularly difficult problem in parameterization is the determination

of p . We know the proportion of returns audited by the IRS and the number of

convicted evaders, but not the extent of undetected evasion. The penalty for

evasion is also problematic, as it varies according to whether the evasion is

due to negligence or fraud, and may include a sizable, but difficult to measure,

psychic component.

9. Sandmo (1981) considers two groups of individuals, one with the opportunity

to evade and the other without this opportunity.

10. See Clotfelter (1983) for a pioneering empirical investigation of the

determinants of income tax evasion.
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