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1. Introduction
Given a conditional distribution function F(y|x) defined on possibly multivariate outcomes y
and exogenous covariates x, estimation of marginal or partial effects of covariates x on various

conditional parameters or functionals &(x) of F(y|x) is often the main target of applied

microeconometric analysis. In general 8§(x)/8x will describe x's effects on conditional means,
guantiles, probabilities, and other conditional functionals.

In the specific context of probit models, estimation of partial effects like aProb(yeS‘x)/ax

is typically of central interest. Such estimation is straightforward in univariate models for

8Prob(y=1|x)/8x, and Greene, 1996, 1998,1 has extended these calculations to handle quadrant

probability marginal effects E)Prob(y1 =k,,y, =k2‘x)/ax, ki=0,1, in bivariate probit models.

The main purpose of this paper is to extend these results to encompass the general m>2
multivariate probit (MVP) case for arbitrary orthant probabilities. Specifically the paper derives and

then demonstrates in several contexts the usefulness of analytical representations of

E)Prob(y1 =K, ey, = km‘x)

o (1)

or, in shorthand, 8Prob(y=k‘x)/8x, where y=[yj] is the m-variate binary outcome vector,

k=[kj} is an m-vector of zeros or ones indicating any of the 2™ possible outcomes, x are

conditioning covariates,” and Prob(...) is a joint or orthant probability from a multivariate normal

! See also Christofides et al., 1997, 1998.

> To streamline the analysis and notation the x's will be treated as continuous so that " dx" calculus
(continued)



distribution.?

Greene's formulae for the marginal effects in the bivariate quadrant probability (m=2) case
are well established, but the analytical formulae describing the general orthant probability result
are not evident in the literature. This paper derives the general result which contains Greene's
bivariate formula as a special case. While numerical simulation methods like GHK (see Hajivassiliou
et al., 1996) are available for obtaining these marginal effects as discussed below, there may arise
computational advantages from calculating analytical marginal effects, with the bottom line result
being that the dimensionality of the cumulative normal that must be evaluated to obtain the partial
effect is reduced by one to m-1 if the analytical formulae are applied. The paper then extends these

results in several directions that are described below.

Data and Estimation

The outcomes y=[yj] can be thought of as arising in the standard probit context as binary

(continued)
can be used. Discrete x's (e.g. dummy variables or count measures) can be introduced

straightforwardly with the understanding that discrete differences in Prob(y1 =K oY =km‘x) due

to ij =1 will be of interest; these can be computed by evaluating Prob(y1 =K oY =km‘x) at two

different values of x; and then differencing. See Stock, 1989, for discussion of partial effects of
interest in policy analysis.

? Somewhat informally, the paper uses the term "orthant probability" in reference to the vector of
binary outcomes y to refer to the probabilities that the underlying latent random variables that map

into the observed binary y (see (2) below) occupy any of the 2™ orthants in R™ defined implicitly by
k.

Some additional notation will also prove useful. Let K be the mx2™ matrix whose columns
(arranged arbitrarily) are the 2™ possible outcome configurations k. Let P be a 2™-element set
indexing columns of K having typical indexing element p, so that k,=K, will denote a particular (p-
th) outcome configuration. Subject-specific "i" subscripts will be suppressed unless useful for
clarity.



indicators of threshold crossings of latent marginal normal variates:

v, = xBj te, j=1,...m

y=1(y >0)
e=[e,,...e, |]~MVN(0R) (2)
and
1 plz o plm
R= p.12 1 :
o1

The parameters B=[BI,...,B;] and R can be estimated using algorithms like Stata's

mvprobit that uses a "full-information" approach (i.e. estimating all elements of B and R
simultaneously) with simulated maximum likelihood. Alternatively B and R can be estimated

consistently using a "limited-information" approach suggested by Avery et al., 1980, in which, e.g.,
the P elements of R are estimated one-by-one using bivariate probit estimators (e.g. Stata's
biprobit algori‘chm).S Which pairwise estimates of B to use in the latter instance is not obvious, but
note that even univariate probit estimates of B would suffice to obtain consistent estimates of the
Bj parameters. For present purposes the method of estimation is not of particular concern so long

as consistent estimates of B and R are available. In practice, if considerations of inference about

marginal effects are relevant then the method of estimation may become relevant.

* This paper does not appeal to a common factor error structure for € in (2) although it may be that
such an assumption would simplify estimation and, ultimately, computation of the marginal effects.

> Avery et al. actually discuss use of a GMM approach, but the limited-information idea can also be
implemented straightforwardly using bivariate probit MLE.



Applications
Why might such marginal effects be of interest in economic applications? In some contexts
the sample or population averages of the marginals will be of interest in their own right for all or for

some particular patterns of the kj's, i.e.

8Prob(y:kp‘x)

ox ’ ®)

APEp =Avg

for some p or set of p'sin P. In practice, a variety of situations arise where understanding how a
Ax intervention affects the entire pattern of multivariate outcomes (or, possibly, particular
patterns of interest) is of central importance.6

Beyond this, consider an evaluation context involving a policy question where the focus is
on how a change in some x; (intervention, incentive, policy, etc.) affects expected utility through its

impacts on the distribution of a set of outcomes y over which welfare is defined. Let utility be given

by V(yl,...,ym)=V(y). Expected utility conditional on x is then given by

E[V(y)‘x] = Zimzo”'z,;:o{v(yl =K,y =km)><Prob(y1 =K Y, =km|x)} . (4)

Thus the change in expected utility arising from a change in x is

® Two examples of work in progress are illustrative. The first is an examination of the role of
socioeconomic status measures (e.g. parental schooling attainment) as correlates or determinants
of patterns of five categories of disabilities in children ages 5-14 using data from the American
Community Survey. The second is an analysis of determinants of the temporal persistence of high-
guantile Medicare expenditures using data from the Medical Expenditure panel survey, in which
persistence is characterized by an elderly individual's expenditure being always or largely in the
upper quantiles (.75, .90) of the expenditure distribution in that age group over the survey waves.
In each case consideration of how some or all of the orthant probabilities respond to one or more
of the x's is of central concern.



E)Prob(y1 =K, ey, = km‘x)
ox

%(xy)bq:zimzon'xazo V(y1 =k1,...,ym =km)>< (5)

As such one must know the full conditional joint probability structure and how it varies with x to
undertake welfare analysis of interventions in this context.

Quite generally, if one has available consistent estimates of the full conditional probability

structure Prob(y=k|x) for all k and of how that structure varies with x, then it is possible using the

approach described below to investigate a broad class of applied questions involving the role of

varying x's on outcomes defined by Prob(y=k|x) as well as aggregates over or differences between

such joint probabilities for different k's of interest as well as particular moment structures based

thereon. Sections 4-6 of the paper pursue this idea in greater detail.

Plan for the Paper

The remainder of the paper is organized in nine short sections. Section 2 derives the results
for arbitrary joint distributions. Section 3 presents the specific formulae for the multivariate probit
model. Building on the results from section 3, section 4 derives the marginal effects of probabilities
that are conditioned on subvectors of y. Section 5 constructs a familiar count data model on the
foundation of an MVP probability structure and derives several marginal effects relating to the
count data structure, including those for that model's conditional mean, section 6 considers issues
arising when using univariate models' marginals to represent those of underlying MVP structures,
and section 7 extends the results of the previous sections to multivariate ordered probit models.
Section 8 demonstrates that the marginal effects in multinomial probit models are essentially a

special case of those in the MVP model. Section 9 reports on a simulation exercise comparing the



computational performance of the analytical results obtained here with results obtained using

numerical differentiation based on simulated probabilities. Section 10 summarizes.

2. Results for Arbitrary Joint Distributions
The paper first establishes the main results on marginal effects for an arbitrary joint
distribution and then proceeds in the next section to obtain the particular results for the MVP

model. Assume (ul,...,um) are continuously measured random variables with population joint
distribution function F(ul,...,um),‘ normality is not assumed at this point. A standard result or
definition is

amF(vl,...,vm)

av1~--avm =f(v1,...,vm) (6)

where f() is the joint density and v=[v ] are specific points of evaluation of u=[uj] Note that

i
(6) can also be written as:

m-1
0 F(Vlr---er_lijﬂr---er vj) _
f,(v_)x =f(vl,...,v ), for any j=1,...,m. (7)
! ov -0V oV, -0V m

Proposition 1

The partial derivative of F(vl,...,vm) with respect to v; satisfies:

4(vj)><F7j (vl,...,vjfl,vjﬂ,...,vm’vj) , J=1,...,m (8)



An explicit general expression for BF(V)/BVJ_ is elusive in the mathematical statistics texts

and econometrics literature the author has surveyed, although (8) is obviously trivially correct in the

case of mutual independence. For an intuition, note that in the m=2 case the partial derivative

w.r.t. v; of the function g(vl,vz)EBF(vl,vz)/av2 must give the joint density f(vl,vz). One function

g(vl,vz) satisfying this is g(vl,v2)=f (vz)xF(vl‘vz) , Which is of the form (8); this follows since

2

o, (VZ)XF(V1|V2) . (VZ)XM:‘; (vz)xf(vl‘vz):f(v vz)- (9)

By recursion, this m=2 result generalizes to cases with m>2 by working backwards from the m-th
cross partial derivative to the first. The form of the corresponding forward sequence of cross

partials is suggested in the following result.

Proposition 2
The general (forward) cumulative sequence of partial derivatives of F(...) is (differentiating

w.o.l.0.g. in the order j=1,2,...,m):

and



The result in (10) is trivial in the case where the v; are mutually independent (in which case all the
conditionings vanish), but less so when the v; are not mutually independent.
Alternatively (8) can be obtained directly using Leibniz's rule for differentiation of integrals

whose limits depend on the variable of differentiation, as follows.

Proposition 3

Since

Flv)= 2 [ 1) duyau,, (1)

then one can obtain 8F(v)/8vj by noting that v; appears in this expression only once, as the upper

limit of one integration, so that passing Leibniz's rule into the integral yields:

R O P B N jj;[aiv_ j;f(ul,...,um)duj] du,+du_du_ -+,
J J
= j_V:J_V: J_V:1~~-J._V;(f(ul,...,uj_l,vj,ujﬂ,...,um)) du---du_du, ---du_
= J_v:.[_v: J_V:---J‘_V;(f(ul,...,uj_l,ujﬂ,...,um vj)xfj(vj)) du,---du_du ---du_

=f O el IO du ---du d d
=flv, xj_m---j_w L@ ---J._m ul,...,uj_l,ujﬂ,...,um‘vj u---du_du --du

= fj (vj)foj (vl,...,vjfl,vjﬂ,...,vm vj)

(12)

Note that (12) is a restatement of (8).



Suppose F(u) is evaluated at u=c(6)=[c1(9),...,cm(9)}, where 0 is a common parameter

(scalar or vector) across the j=1,...,m margins of F(...), and where all cj(e) are differentiable in 0.

This gives

F(c(6))=F(c,(6)..-.c,(6))- (13)

Using a standard chain rule for differentiation in conjunction with (8) or (12) gives:

o(c,(6)..-.c, 0)) s o(c,(6)...c, (6)) dc (o)

20 ac_(e) "0

J

=3 46 (0)% (<. (6)-vc,. (6. (6) e, (6)]c

3. Results for the Multivariate Probit Model

Recall that there are 2™ possible outcome configurations. For each configuration k,, peP,

one has a corresponding conditional outcome probability Prob(yl=k1p,...,ym=kmp‘x). Let
sjp:2kjp—1 so that sjpe{—1,+1} , and define correspondingly the mxm diagonal transformation

matrixes Tp =diag[sjp], p=1,...,2", j=1,...m. Also define for each p a transformation Qp :TpRTp of

the original covariance (i.e correlation) matrix R so that Q; is of the form

1 slpSpr12 Slpsmpplm 1 TlZp o Tlmp
Q = S1,520P1 1 : | T 1 : . (15)
P . . .
s1psmpp1m “. 1 Tlmp 1

The conditional-on-x probability of any particular outcome configuration k; is thus given by



Prob(y1 =Ky Y, =kmp‘x) = Q)Qp (SleB1'~-'5mprm) =(DQp (Oclp,...,ocmp) ) (16)
where CI)Q(...) denotes the cumulative of an MVN(O,Q) distribution having corresponding density

¢Q(...) and o is shorthand for s xp, J
To obtain the specific results for the MVP's marginal effects it thus suffices to obtain the

particular expressions corresponding to the second line in (14). Specifically fj(cj(e)) is simply a

univariate N(O,l) density and F_j(cl(e),...,cj_l(e)c (9),...,cm(9)‘cj(9)) is the cumulative of a

7T
conditional (m-1)-variate multivariate normal distribution. The cj(e) in (14) are equal to ij[ﬁj in

the MVP context, with x playing the role of the "parameter" that is common across outcomes, so
that dcj(e)/de is d(ijBj)/dx=sj|3j.

Substituting into (14) ¢() for f(...), CI)() for F(...), and ocjpfor cj(e) gives:

ox Jo ox

jp

= Z;il{((p(ocjp) X q)qp{-,-} (oclp,...,O((J._l)p,Oﬁ(jﬂ)pr--v“mp|a,-p)) x (SjpBJ)T} '

~ ~

Given consistent estimates B and Q, estimation of (17) is complicated only by evaluation of the

atbop (oclp,...,ocmp) _s 8<I>QP (Otlp,---,Otmp) x[ dar ]
=1

(17)

ocjp) . This result provides the basis of this calculation:

expression ‘DQP{,J-} (oclp,...,oc(j_l)p,oc(j+1)p,...,(xmp

7 Using the transformed matrixes Q in place of the original correlation matrixes R provides for
streamlined notation and computation since for each configuration p the outcome orthant
probability can be described by a joint cumulative rather than by a computationally messy mix of
marginal cumulatives and survivor functions. In effect this amounts to a linear change-of-variables

operation on e=[£1,...,8m] of the form Tpe which becomes the effective error structure of model

at each p; this transformation works due to the symmetry of € around the origin.

10



Result: Joint Conditional Distribution of an MVN-Variate, Adapted from Rao, 1973 (8a.2.11)

0)11 le
Q, Q,

Suppose z=[z ,...,zm]~MVN(0,Q) and partition Q as

. where ®,, is scalar.

Then z_1=[zz,...,zm] conditional on z; has an (m-1)-variate MVN(QHUJ:zl,(QZZ—m;llQuQu))

distribution. (This result generalizes in an obvious way to z_j=[zl,...,zj_l,zj+l,...,zm], j=2,...,m, by

defining different partitions of Q .)

In the particular case of interest here, Q:Qp so that w  =1. It then follows that the particular

form of the joint conditional distribution is

2
1- TlZp T23p - IlZpT13p e IZmp - TlZpTImp
Wl T -T 1T 1-12 :
z_1 Zl ~MVN , 23p . 12p "13p 13p . , (18)
zT : :
1 1mp 2
TZmp - TlZprlmp e 1- Tlmp

again with obvious generalization to the distributions of z_j‘zj ,j=2,...,m.

To compute (DQP{—j} (oclp,...,oa(j_l)p,oc(jﬂ)p,...,(xmp ocjp), it is useful to define the (m-1)-vector of

differences from (conditional) means
T
A—J,p = [(alp ~ % )""'(a(il)p B (XJ'DT(J'I)JP)'(OL(Jﬂ)p B (xipt(m)jp )""’(amp % i )} ’ (19)

-1
and an (m-1)x(m-1) diagonal transformation matrix H_=diag .[(1/1—1.2 ) } LetL =H A be
ip k=] jkp i P =ip

the corresponding (m-1)-vector of normalized differences. Then

o oclp,...,(x(j_l)p,(x(jﬂ)p,...,ocmp

p

OL) can be computed by referring Lj, to CDZZ( ), which is the

11



cumulative of an (m-1)-variate semi-standardized MVN(O,E) distribution in which the off-diagonals

of £ may be nonzero. In this instance X is the variance-covariance matrix of L, which is in

correlation matrix form having typical off-diagonal (r,c) eIement To _TerT]cp /\/ 1- ’Ejrp 1 chp)

Let this matrix be denoted V.

Assembling all the components, the MVP model marginal effects are given by

8Prob(y1 =k1E;;(...,ym =kmp‘x) :Zil{q)(ajp)xq)%(Ljp)x(sjpBJ)T] . (20)

Note that for m=2 this is the result presented by Greene, 1998 (unnumbered equation displayed in

the middle of p. 298). Greene's result in his notation,

NGB 00) i 7)o s -o{p 5 +1)) N

0z, (21)
+{¢(a'x2)®[((ﬁ'xl+y)—p(oc'x2))/ 1—p2}}ocZ
translates in the present notation (and for the ki=k,=1 case of interest to Greene) into
0P ((x o ) o -0 T
Q. \ 1’ 2 | 2 (3-ior et (3-1)ier y
ox - zFl ¢(aJP*)X®ZV X(SJP*BJ) ! (22)

A
17,

where p* is the element of P corresponding to the orthant defined by k;=k,=1

Finally, from (17) it is noteworthy for computational purposes that it is only an (m-1)-
dimension cumulative normal that must be evaluated to obtain the marginal effects. This may
reduce computational time and effort as compared with fully numerical methods that operate on
the m-dimension cumulative normal. Even though numerical methods will typically be required in
conjunction with the analytical formulae presented here, the reduction in dimensionality should

facilitate computation; this is particularly obvious in the m=3 case in which canned functions like

12



Stata's binormal(...) bivariate normal cumulative can be used in lieu of simulation procedures.

4. Marginal Effects of Probabilities Conditional on Subvectors of y

In the context of bivariate probit models, Greene, 1996, suggests that consideration of the

marginal effects of x on conditional-on-y probabilities, e.g. aProb(yl‘yz,x)/E)x, may be of interest in

some instances.® Using the approach developed above, this idea can be extended straightforwardly

to the general multivariate probit context as follows.
Partition the outcome vector y as [ya,yb] and correspondingly partition k; as [kpa,kpb],
where y, and ky, are c-vectors and y, and ky, are (m-c)-vectors. Suppose interest is in the

quantities Prob(ya =k .|V, =kpb,x) and 8Prob(ya =kpa‘yb =kpb,x)/8x. Note that

Prob(y = kp‘x) . q)qp (oclp,...,ocmp)

Prob(yb :kp,b"‘) cDQp,b (oc(cﬂ)p,...,ocmp)

Prob(ya =kp’a (23)

yb = kp,b’x) =

where the matrix Q,, is defined in an obvious way as a submatrix of Q,. Using the quotient rule for

differentiation,

8Prob(y=kp|x)
ox

aProb(yb =k |D‘x)
X P,
ox

) Prob(yh =kplb‘x)>< —Prob(y=kp‘x)

8Prob(ya =k,
ox

Y, =kp’b,x

2
Prob(yb =kp’b‘x)

(24)

Y, =kp’b,x)is
often absent, and this conditional probability may or may not be the parameter whose marginal
effects are of particular concern to the analyst. See Greene, 1996, for conceptual discussion of
fundamentals. Bhattacharya et al., 2006, provide a broad assessment of such models in the context
of treatment effect estimation, illustrating their approach in a model of mortality outcomes; Fichera
and Sutton, 2011, present an interesting related application to smoking cessation outcomes.

&n applied studies an explicit formulation of the model of interest as Prob(ya=kpa

13



The component partial derivatives in the numerator of the rhs expression are simply the marginal

effects described above for the multivariate outcomes y and yy, respectively.

5. Count Data Models Based on MVP Probability Structures

Empirical analysis sometimes encounters applications where the scalar sum s of the vector
m . . 9 . . .

Y, s=2_ Y, =1"y, is the outcome measure of interest.” The substantive economic, psychometric,
=

or biometriclointerpretation of s notwi‘chs‘canding,11 such outcomes are numerically well defined

and obviously inherit their statistical properties from those of y.

Define P, ={peIP

1Tkp =n} , n=0,...,m, and consider the count data probability model defined
by
Prob(s=n‘x)=zpep Prob(y=kp‘x) , n=0,...,m. (25)

In some instances, analysis proceeds by regression of the outcome measures s defined thusly on x

% See Dor et al., 2006, for discussion in the context of health outcome measures. More generally
one might consider weighted sums s=2;;wjyj =w'y; an example of one such index is the Social

Readjustment Rating Scale (Holmes and Rahe, 1967). The discussion that follows should apply
equally appropriately for such weighted sums.

1A prominent biometric example is that of allostatic load measures (e.g. Seeman et al., 2001) in
which binary threshold (quantile) exceedances for each of m continuous biomarkers are summed to
arrive at the comprehensive allostatic load measure. In the measure devised by Seeman et al.,
m=10 and the threshold quantiles are specified to be .75 (for biomarkers for which higher levels are
harmful, e.g. systolic blood pressure) or .25 (for biomarkers for which lower levels are harmful, e.g.
HDL cholesterol). Such additive measures arise outside health contexts as well. For instance, the
highly publicized ratings of U.S. Members of Congress by organizations like the League of
Conservation Voter and the American Conservative Union are essentially of this nature; asset
holdings and composition are also sometimes measured in such a manner (see McKenzie, 2005, for
discussion).

! Note that even the likert-scale or ordinal properties of such measures may be questionable.

14



using linear or nonlinear regression,12 presumably with the goal of recovering an estimate of the
conditional mean E[s|x} and the marginal effects therein implied. However, when the y that beget
s arise according to (2), such approaches fail to respect the underlying structures in (2). As such, it
is not clear how to relate an estimate E|:S|X:| so obtained to the underlying model structure.
Whether or not such considerations are empirically important depends on circumstances, but in any

event a linear regression model for E[s|x} is unlikely to be an appropriate specification.

If estimation of E[s|x} and its marginal effects are of central interest one can, however,
specify a proper conditional mean model that respects the underlying probability structure of y in
(2) and whose marginal effects aE[S‘XJ/aX consequently also respect that structure. Moreover,

such marginal effects can be computed using exactly the same apparatus as described in section 3,

as follows.

Since s=2;;yj =1"y, (25) implies that

E[s|x]=znm:0(nx2pep Prob(y:kp|x)). (26)
Of course since s=z:;i1yj then it also holds that

E[s|x}=zzlE[yj|x}:Z;Prob(yj :l‘x), (27)

so an equivalent and in some instances more direct representation of the conditional mean is

simply as the sum of the m univariate probit marginals. If (2) holds, then any functional form

representation of E[s|x} other than (26) or (27) is a misspecification. It follows from (26) that

2 5ee Evans et al., 2007, for an example in which allostatic load measures of the sort defined in the
footnote 10 are the outcomes of interest.

15



aProb(y:kp‘x)

OE| s|x N
gx‘ LZFO n><2pdpnT . (28)

The partial derivatives on the rhs of (28) are simply the marginal effects obtained in section 3.

6. Univariate Representations of Multivariate Probit Outcomes and Counts
In applied work, multivariate discrete outcomes like those under consideration here may be

summarized by univariate discrete outcomes that might be defined quite generally according to

vz{ 1 ify=kp forpeQ ’ (29)

0 else
where Qc P is an index set defining a subset of outcome patterns whose entirety is considered for
purposes of such analysis to be a "success". Taking such an approach one step further, the analyst
may specify that the "univariate" process determining v is given by a probit model, so that
Prob(v=1‘x)=d)(x9), (30)
where CD() here denotes a univariate cumulative standard normal distribution.

While such dimension-reduction or aggregation approaches may be informative for some
purposes, it should be emphasized that they fail fundamentally to respect the properties of the

underlying probability structure of the multivariate model in (2). That is, the parameters 8 of a
standard univariate probit mapping like v=1(x9+1)>0) implied in (30) cannot readily be

interpreted in terms of the parameters (B,R) in (2); neither is there any straightforward relationship
between the marginal effect of x in (30) and the marginal effect defined by summing (20) over

pe@. For instance, one obvious version of such a univariate mapping rule assigns v=1 if s>n¥*,

16



. 13,14 . . .
where n*<m, i.e. "large" counts are "successes". Given (2) and the count data model defined in

(25), the proper marginal effect corresponding to (29) is given by defining Q={pe]P’ 1TyIa Zn*} and

then summing (20) across all pe@Q. How such marginal effect estimates compare empirically to

those derived from estimates of a model like (30) is an interesting and open question.

7. Multivariate Ordered Probit Models
Marginal effects for multivariate ordered probit model (see Greene and Hensher, 2010,
chapter 10) are straightforward to compute using essentially the same algebra as derived in section

3 for the multivariate binary probit model.”® To begin, assume that (2) holds except that for

Ba variety of medical diagnoses are rendered in such a manner. Given m binary indicators of
patient conditions or attributes, a disorder is deemed to be present if s=n*. One illustrative
example is metabolic syndrome:

The metabolic syndrome is a constellation of interrelated risk factors of metabolic
origin -- metabolic risk factors -- that appear to directly promote the development of
atherosclerotic cardiovascular disease (ASCVD). Patients with the metabolic
syndrome also are at increased risk for developing type 2 diabetes mellitus. (Grundy
et al., 2005).

Metabolic syndrome is diagnosed when at least three of the following five measures satisfy the
indicated threshold criteria: waist circumference (> 35" (females), > 40" (males)); triglycerides (>
150 mg/dL, or drug treatment for elevated triglicerides); HDL-C (< 50 mg/dL (females), < 40 mg/dL
(males), or drug treatment for reduced HDL-C); blood pressure (= 130 mm Hg systolic or > 85 mm
Hg diastolic blood pressure, or antihypertensive drug treatment in patients with hypertension
history); and fasting glucose (> 100 mg/dL, or drug treatment for elevated glucose). In this paper's
notation, therefore, m=5 and n*=3. See Behncke, 2011, O'Brien et al., 2006, and Orchard et al.,
2005 for examples of economic and clinical studies in which such metabolic syndrome outcomes
are analyzed. It should be noted that a variety of psychiatric and substance abuse disorders (e.g.
ADHD, alcohol abuse, etc., based on DSM-IV diagnoses), as well as other medical disorders, are
diagnosed in analogous fashion.

' Geronimus et al., 2006, use such an approach with allostatic load outcome measures as described
earlier dichotomized (0-3 vs. 4-10) and analyzed accordingly in regression contexts.

> Estimation of the m-variate multivariate ordered probit model may be challenging. However,
consistent estimates of the parameters B, R, and M can be obtained by estimating bivariate ordered
(continued)
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j=1,...,m each observed y; assumes one of g possible values, Y, e{O,...,(g—l)} 1® with the mapping

given by:
Yi = zle(c_l)X1[(“(c1)J B XBJ) <u< (“q‘ —xﬁj)} ’ (31)

with —oo S <H <. S S teo As such there are (g-1) free threshold or cutoff parameters

:
{“11"“'“(g_1)j} for each j. For shorthand, let H, :[plj,...,p(g_l)j} , M=[pl,...,pm], and o, :ucj—xBj

for all j. It follows that
Prob(yj:( )‘ ) J.c' ¢( )du —J_ ¢(uj)duj—‘[j°’1)j¢(uj)duj, c=1,...,8, (32)

where ¢() is a univariate N(0,1) density.

Analogous to the definition of K, define the mxg™ matrix C whose columns (arranged
arbitrarily) are the g™ possible outcome configurations ¢, and let C be a g"-element set indexing
columns of € having typical indexing element r, so that ¢,=C, will denote a particular (r-th) outcome

configuration. Thus

Prob(y=cr‘x)=J:1C’m_)... :(C”_)q)R(ul,...,um)dul...dum , reC. (33)

Note that (33) will be a sum of positively and negatively signed multivariate normal cdfs (including

zeros and ones at lower and upper integration limits), so that marginal effects at any ¢, will simply

(continued)
probit models for all j#k outcome pairs (yj,yk) , analogous to the discussion in footnote 5. Stata's

bioprobit is one such estimation procedure.

16 Allowing the y; to have assume different numbers of outcomes is straightforward; the assumption
of equal numbers of categories across j is made solely to keep notation from becoming unwieldy.
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be the corresponding sum of the components' marginals, taking care to sign the awc /ax correctly.

For example, for the trivariate (m=3) ordered probit model the integral in (33) is

rl rl r2

(0] [0 (0]
3 2 1 —
'[ (i)R(ul,...,um)dulduzdua—d)R(o)c ’(Dc,z’mc,3)_q)"(mc 0, 'm(crs—l))_

(34)

Analogous to the count data model (25) that arises in the multivariate binary probit model,

one can define a count model corresponding to the multivariate ordered probit model."” As before

let s=2Lyj:1Ty, define (Cn={re(C

1Tcr=n} , n=0,..., (g—l)xm, and consider the count data
probability model:
Prob(s=n‘x)=2r€€ Prob(y=cr‘x), n:O,...,(g—l)xm (35)

that has corresponding conditional mean

E[s|x]=2£Z1)X"’(nx2recnProb(y:cr‘x)). (36)

Y For example, the CES-D Depression Scale (Radloff, 1977) is based on a data structure that might
plausibly be described by a multivariate ordered probit model. For a one-week reference period
("During the past week..."), there are 20 questionnaire items ("l was bothered by things that usually
don’t bother me", "I did not feel like eating; my appetite was poor", etc.) and for each item a
plausibly ordered intensity or frequency dimension ("Rarely or none of the time (less than 1 day )",
"Some or a little of the time (1-2 days)", "Occasionally or a moderate amount of time (3-4 days)",
and "Most or all of the time (5-7 days)"). Scoring of the CES-D is based on assigning values of 0, 1, 2,

or 3 to correspond to higher frequencies for each item, with the overall score or count se{O,...,GO}
being derived as the simple sum of the item scores. In this case there are 4% = 1,099,511,627,776
possible outcome patterns, so proper computation of the partial effects is not feasible. Shorter

versions of the CES-D based on as few as four items have been proposed (e.g. Melchior et al., 1993);
computation of marginal effects is more reasonable in such instances.
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Partial effects for the count model outcome probabilities or the conditional mean follow as before,
mutatis mutandis. However, it should be noted that as g and/or m increase, the computational
burden -- in terms of the number of multivariate normal cdf evaluations required -- increases

rapidly for any given s or combinations of 518

8. Marginal Effects in Multinomial Probit Models

It turns out that the marginal effects with respect to the conditioning covariates in a
multinomial probit model are special cases of those described above in (20) for the multivariate
probit model.” This can be shown as follows.

A standard setup for a multinomial probit model is to assume that the value that individual i
attaches to choice q is given by a random utility model

Uiq:wiqn+ziyq+niq, g=1,...,m, (37)
wherein the wjq are attributes of choice q faced by individual i (e.g. the unit price of acquiring choice

q), the z are attribute-invariant characteristics of i (e.g. income), ® and 7y, are corresponding

parameters, and n, is an unobservable contributor to utility distributed jointly normally with the

'8 Given the number of ordered categories, g, for each outcome and the number of outcomes, m,

with yje{o,...,(g—l)} for all j=1,..,m, the number of combinations vyielding the sum

se{O,...,mx(g—l)} is the s-th multinomial coefficient from the expansion of (zf::xt) . For
example, for g=3,4,5 and m=2,3,4,5 the numbers of combinations yielding the indicated values of s
are displayed in table 1. See http://oeis.org, entries A027907, A008287, and A035343. Recursions

are straightforward; see http://dImf.nist.gov/26.4.

19 Wooldridge, 2010, p. 649, notes: "Theoretically, the multinomial probit model is attractive, but it
has some practical limitations. The response probabilities are very complicated, involving a (J+1)-
dimensional integral. This complexity ... makes it difficult to obtain the partial effects on the
response probabilities..." See Deb et al., 1996, for an application of MNP to insurance coverage
choice.

20



other (m-1) n,- Only pairwise differences in utility are relevant, so define

=2
1l
c
|
C
1

o = i g (wij—wiq)n+zi(v,.—Yq)+(nij—niq) (38)
or, using obvious notational shorthand,
0 =W w+zT" +v (39)
ij ijq I )q jq

q
=—A_+V_,
q q

so that Xijq=(wiq—wij)n+zi(yq—'yj). The residuals v in (39) will have an (m-1)-variate normal

distribution whose particular parameterization is discussed below. The behavioral model typically

assumed is that subject i selects the outcome having the largest U; so that

imq

Prob(i selects q‘\l\/i,zi)=Prob((vilq <li1q),...,(v Ving <A )‘Wi,zi),

i(g-1)q < ki(q—l)q)’(vi(qﬂ)q < xi(qﬂ)q )""’(
(40)

where the conditioning W; denotes the entire collection of the Wj.

Assuming for the moment that the v,, are iid across i and follow an (m-1)-dimension

N(O,‘P) distribution wherein W is in correlation matrix form, then the probability expression in (40)

corresponds to an (m-1)-dimension version of the expression (16) in which all s;;=1 and in which the

xBj are replaced by )\'ijq' As such the basic form of the relevant marginal effects

aProb(i selects q‘Wi,zi)/E){ wiq,wij,zi} corresponds to (20), mutatis mutandis.?

2 One computational issue should be noted at this juncture. Normalization of the parameters in a
multinomial probit model is in general a complicated matter (StataCorp, 2007, under asmprobit;
Cameron and Trivedi, 2005, Section 15.8; Monfardini and Santos Silva, 2008). Normalizing ¥ to
have a correlation matrix structure (ones on the diagonal; free correlation parameters elsewhere) is
one admissible possibility. However, if the normalization used results in a structure for ¥ other
than one having a correlation matrix structure, then some additional computations may be required
to be able to use formulae based on (20); the relevant considerations arise in the discussion

(continued)
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In the case of this general multinomial probit model, there are three distinct partial effects
to be considered: own-attribute covariates (wjq, e.g. own-price); cross-attribute covariates (wj, e.g.

cross-price); and attribute-invariant covariates (z;, e.g. income). These covariates feature differently

T
across the various upper integration limits in (40). Thus, the terms (sjij) that appear in (20) are

replaced as follows:
;
(a) Own-attribute marginal effects, aProb(i selects q‘Wi,zi)/awiq: Replace (sjij) with 7’
in each summand, j=1,...,(j-1),(j+1),...,m.

ik 7

(b) Cross-attribute marginal effects, aProb(i selects q‘Wi,zi) ow, , k=1,...,(j-1),(j+1),...,m:

T
Replace (sjij) with —xt" only in the k-th summand; set equal to zero in the other

summands.

;
(c) Attribute-invariant marginal effects, aProb(i selects q‘Wi,zi)/azi: Replace (sjij) with

('yq—yj)T in each summand, j=1,...,(j-1),(j+1),...,m.

9. Numerical Results

This section reports on a small simulation exercise designed to compare computational
performance of marginal effects using the analytical formulae derived here against numerical
probability derivatives that can be obtained using the GHK simulator in Stata's Mata programming

language (see Hajivassiliou et al., 1996, Gates, 2006). (This is the ghk(...) procedure in Mata, Stata

(continued)
appearing between equations (19) and (20) above.
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v.10.) ghk(...) is used here both to compute the (m-1)-dimension cumulative in Result 6 (ghk(S,x,V))
as well as to simulate the marginal effects based on fully numerical methods appealing to the m-
dimension cumulative (ghk(S,x,V,d1,d2)).

Use of ghk(...) requires specification of the number of simulation points (S). To assess how
this choice affects computational performance, three sets of results are obtained corresponding to

$=100, S=1,000, and S=10,000. Computational time and accuracy should both increase in S. Results
are obtained here for me{3,4,8} using a simple covariate specification where x is a scalar equal to

one. For each m, one set of illustrative values is chosen for B and R; these are detailed in Table 2.

The results of the simulation exercise are presented in Tables 3-5.%

For each S, the tables
show the simulated orthant probabilities as well as the analytical and the fully numerical marginal

effects. While obvious, it is useful to note at this point that

8Prob(y1 = klp,...,ym = kmp‘x)

peP ox

(41)

i.e. the net effect of a change in x on all the orthant probabilities is zero. As such, it should be found
empirically that the sum across all orthants of the probabilities should equal one while the sum of
the marginal effects across all orthants should equal zero. How the simulated results compare with
these benchmarks is one indication of the accuracy of the different computational approaches.
Since for m=3 only reference to a bivariate normal cumulative is required to compute the analytical
marginal effects, table 3 also shows the results where Stata's canned bivariate normal cumulative
function binormall...) is used instead of the ghk(...) probability simulator.

It is not surprising to observe in the tables that as S increases the sum across p of the

L In the interest of space, only the summaries are shown for m=8. The full results for the 256
marginal effects are available on request.
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probabilities approaches one and that the sum of the marginal effects across p approaches zero for
each me{3,4,8}. Most noteworthy is that the sum across p of the analytical marginal effects

approaches zero much more rapidly than does the sum across p of the fully simulated derivatives.
In most cases, however, the individual marginal effects for j=1,...,m are for practical purposes
relatively similar between methods and across S.

Computation times are reported in Table 6.22 The "xb" are generated as U(0,1) variates. For
concreteness, this exercise uses sample sizes in the neighborhood of those commonly encountered
in applied microeconometric analysis (N=5,000 and N=10,000). At each m, S, and N the
computation time differences between the analytical and fully numerical approaches are striking,

ranging from approximately four-fold for m=3 and m=4 to roughly twenty-fold at m=8.

10. Summary

Multivariate probit models are used in a wide variety of cross-sectional and panel data
contexts in applied microeconometrics. Correspondingly, in practice partial or marginal effects of
covariates on various outcome probability configurations are likely to be important quantities to
compute based on estimates of such MVP models.

This paper has derived the marginal effects for multivariate probit models of arbitrary
dimension m > 2, thus generalizing a result obtained by Greene, 1996, 1998, for the m=2 (bivariate
probit) case, and has extended these results to related contexts of interest in sections 4-8. The
formulae for these marginal effects are straightforward to program using Stata's Mata language and

its ghk(...) procedure. Beyond elucidating the mechanics of these marginal effects, one obvious

2 The exercises are conducted using Mata v.10 on a MacBook Pro notebook computer running Mac
0OS X v.10.6.4 with a 2.4 GHz Intel Core 2 Duo processor and 8 GB of 1067 MHz DDR3 memory.
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advantage of the analytical results obtained here is that they reduce the dimension of the
multinormal numerical simulation relative to what is required to obtain fully numerical
derivatives.” The numerical results presented in section 9 show that use of the analytical formulae
versus fully numerical derivatives results in both a reduction in computational time as well as an
increase in some dimensions of accuracy.

Some of the results obtained above will generalize straightforwardly to related data
structures not specifically considered here. For instance, the binary outcomes described in (2)
might in some applications be generalized to ordered outcomes, with each marginal distribution
having a familiar ordered probit structure. With suitable adaptations, the general approach to
computation of marginal effects presented here can be extended to multivariate ordered probit
outcome structures. The bivariate model and some of its marginal effects have been analyzed in
detail by Greene and Hensher, 2010, Chapter 10. Greene and Hensher also discuss the extension to
the general multivariate context, but caution that computational complexity is likely to inhibit
applications of such models.

Finally, the paper has not addressed issues regarding sampling variation in the estimates of
the marginal effects and corresponding inference considerations. It may be that the results derived
here point the way to the derivation of a d—method estimator of the variance of the estimated
marginal effects, but the algebra would be quite messy. If computational power is adequate,
bootstrapping would provide a far more straightforward approach even though the results in Table
5 suggest that even under best-case circumstances and for a modest number of bootstrap

replications such exercises will likely be time-intensive.

2 See Huguenin et al., 2009, for a discussion of other considerations that arise in estimation of MVP
models wherein dimension reduction is a primary consideration.
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Table 1
Number of Combinations Yielding the Sum se{O,...,mx(g—l)} ,m=2,3,4,5,g=3,4,5

m|0|1|2|3|4|5|6|7|8|9(10(11|12|13|14|15|16|17|18|19|20
2|12 |3|2

3|11(3|6|7[6]3]1

4 (1(4|10|16|19|16|10| 4| 1

5]|1|5]|15|30|45|51(45(30(15|5 | 1

2|11 (2|3 (4(3]2]1

3|13 |6|(10(12(12(10|(6 |3 |1

4 (1(4(10(20|31|40|44|40|31|20|10|4 |1

51| 5]15|35|65(101({135({155({155|135|101|65|35|15| 5 | 1

2|11 (2|3 |4|5(4|3]2]1

3113 |6|(10(15(18|19|18|15|10| 6| 3 |1

4 (1(4(10[{20|35|52|68|80|85|80|68(52(35(20(10( 4 |1

51| 5]15|35|70|121(185(255(320|365|381|365|320|255|185|121|70|35|15| 5 | 1
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Table 2
Parameter Values for Simulations

B R
) 1 -5 .25
[—1,1,1] -5 1 5
25 5 1
1 -5 25 -1
T -5 1 5 -25
[_3’_1'1’2] 25 5 1 4
1 -25 1 1
1 -5 25 -1 05 .05 -05 —05
-5 1 5 -25 05 .05 -05 —05
25 5 1 1 .05 .05 .05 .05
[_21_1'1,1,1'1’2'2]T -1 -25 1 1 05 .05 .05 .05
05 05 .05 .05 1 -5 .25 —1
05 .05 .05 .05 -5 1 5 -—.25
05 -05 .05 05 25 5 1 .1
05 -05 05 05 -1 -25 .1 1
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Table 3

Simulation Results: m=3

Probabilities: GHK S=

Marginal Effects

Analytical: Analytical: GHK S= Numerical: GHK S=
y 100 1,000 10,000 binormal 100 1,000 10,000 100 1,000 10,000

(0,0,0) 0.05130 0.05115 0.05115 -0.09326 | -0.09290 | -0.09322 | -0.09326 | -0.09319 | -0.09320 | -0.09326
(0,0,1) 0.04343 0.04483 0.04496 -0.01231 | -0.01186 | -0.01226 | -0.01230 | -0.01069 | -0.01215 | -0.01229
(0,1,0) 0.09479 0.09507 0.09509 -0.10111 | -0.10129 | -0.10113 | -0.10111 | -0.10061 | -0.10104 | -0.10109
(0,1,1) 0.65370 0.65025 0.65013 0.44865 0.44785 | 0.44856 0.44863 0.44939 0.44885 0.44868
(1,0,0) 0.01151 0.01136 0.01137 -0.04313 | -0.04319 | -0.04314 | -0.04314 | -0.04354 | -0.04310 | -0.04313
(1,0,1) 0.05142 0.05120 0.05116 -0.09326 | -0.09290 | -0.09322 | -0.09326 | -0.09375 | -0.09340 | -0.09329
(1,1,0) 0.00098 0.00103 0.00104 -0.00446 | -0.00440 | -0.00446 | -0.00446 | -0.00421 | -0.00444 | -0.00446
(1,1,1) 0.09479 0.09507 0.09509 -0.10111 | -0.10129 | -0.10113 | -0.10111 | -0.10061 | -0.10104 | -0.10109

Sum 1.001915 | .999957 .999988 -5.55E-17 _l'ng_ 4.16E-17 | -1.39E-17 | .002784 .000482 .000072
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Table 4

Simulation Results: m=4

Probabilities: GHK S=

Marginal Effects

Analytical: GHK S=

Numerical: GHK S=

y 100 1,000 10,000 100 1,000 10,000 100 1,000 10,000
(0,0,0,0) 0.00457 0.00455 0.00455 -0.02571 -0.02567 -0.02568 -0.02577 -0.02568 -0.02569
(0,0,0,1) 0.15049 0.15013 0.15019 -0.19577 -0.19559 -0.19558 -0.19668 -0.19535 -0.19548
(0,0,1,0) 0.01036 0.01044 0.01045 -0.03996 -0.04016 -0.04020 -0.03975 -0.04013 -0.04019
(0,0,1,1) 0.67317 0.67388 0.67439 0.51686 0.51666 0.51668 0.51414 0.51566 0.51602
(0,1,0,0) 0.00048 0.00049 0.00049 -0.00379 -0.00380 -0.00380 -0.00377 -0.00381 -0.00380
(0,1,0,1) 0.00324 0.00329 0.00329 -0.01636 -0.01635 -0.01634 -0.01604 -0.01631 -0.01634
(0,1,1,0) 0.00722 0.00720 0.00720 -0.03746 -0.03740 -0.03741 -0.03757 -0.03744 -0.03744
(0,1,1,1) 0.14782 0.14754 0.14761 -0.18450 -0.18440 -0.18438 -0.18489 -0.18400 -0.18410
(1,0,0,0) 3.31E-06 3.31E-06 3.31E-06 | -5.51E-05 | -5.51E-05 | -5.51E-O05 | -5.51E-05 | -5.52E-05 | -5.51E-05
(1,0,0,1) 0.00004 3.76E-05 3.76E-05 -0.00051 -0.00051 -0.00051 -0.00051 -0.00051 -0.00051
(1,0,1,0) 0.00006 5.90E-05 5.90E-05 -0.00078 -0.00078 -0.00078 -0.00078 -0.00078 -0.00078
(1,0,1,1) 0.00125 0.00125 0.00125 -0.01192 -0.01191 -0.01191 -0.01198 -0.01192 -0.01192
(1,1,0,0) 7.69E-18 5.76E-11 1.47E-11 -1.37E-14 | -3.09E-10 | -1.00E-10 | -5.13E-16 | -2.16E-09 | -5.54E-10
(1,1,0,1) 7.10E-21 8.22E-21 8.35E-21 -5.60E-19 | -5.86E-19 | -5.89E-19 | -5.00E-19 | -5.79E-19 | -5.88E-19
(1,1,1,0) 4.81E-07 4.98E-07 4.88E-07 -9.57E-06 | -9.56E-06 | -9.56E-06 | -9.66E-06 | -9.92E-06 | -9.74E-06
(1,1,1,1) 1.22E-06 1.22E-06 1.22E-06 | -2.28E-05 | -2.27E-05 | -2.27E-05 | -2.26E-05 | -2.27E-05 | -2.27E-05

Sum .998691 .998875 .999516 3.20E-17 | -1.09E-17 1.58E-17 -.003702 -.000359 -.000317
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Table 5
Simulation Results, Summary: m=8

Probabilities: GHK S=

Marginal Effects

Analytical: GHK S=

Numerical: GHK S=

100

1,000

10,000

100

1,000

10,000

100

1,000

10,000

Sum

.995138

.999038

.999388

2.48E-16

-2.86E-16

-5.17€-17

.079133

.002651

-.000259
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Table 6
Computational Time for Partial Derivatives, Samples of Size N (in Seconds):
The Analytical Marginal Effects are computed using ghk(S,xb,r) with xb 1x(m-1) and R (m-1)x(m-1);
the Numerical Marginal Effects are computed using ghk(S,xb,r,d1,d2) with xb and d1 1xm, R mxm, and d2 1x(.5*m*(m-1)).
(In all cases the xb are generated as the successive rows from a uniform(N,m) matrix defined in Mata)

Marginal Effects
Analytical: GHK S= Numerical: GHK S=

m N 100 1,000 10,000 100 1,000 10,000

5,000 434 2.28 21.2 1.59 8.53 76.5
3 10,000 .729 4.63 43.0 3.15 16.8 154
4 5,000 .538 3.95 37.3 2.61 15.6 144

10,000 1.09 7.73 77.8 5.07 31.4 293

5,000 1.19 10.5 112 23.2 194 2,145
8 10,000 2.34 19.6 217 46.1 373 3,930
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