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This paper investigates the behavior of asset prices in an endowment economy in which

a representative agent with power utility consumes the dividends of N assets. The assets

are Lucas (1978, 1987) trees, so I call the collection of assets a Lucas orchard. Despite its

simple structure, the model generates rich interactions between the prices of assets, including

several phenomena that have been documented in the empirical literature; it illustrates “the

importance of explicit recognition of the essential interdependences of markets in theoretical

and empirical specifications of financial models” (Brainard and Tobin (1968)).

Each of the assets is assumed to have i.i.d. dividend growth over time, though there may

be correlation between the dividend growth rates of different assets. This framework allows

for the case in which dividends follow geometric Brownian motions, but also allows for a

rich structure of jumps in dividends. Standard lognormal models make poor predictions

for key asset-pricing quantities such as the equity premium and riskless rate (Mehra and

Prescott (1985)). By allowing for rare disasters, I can avoid these puzzles in the manner

of Rietz (1988) and Barro (2006), without relying on implausible levels of risk aversion or

consumption volatility.

I highlight the important features of the model in a pair of two-tree examples. In

the first, dividends follow independent geometric Brownian motions. An asset’s valuation

ratio depends on its dividend share of consumption: all else equal, an asset is riskier if it

contributes a large proportion of consumption than if it contributes a small proportion. A

cashflow shock to one asset affects the dividend shares, and hence valuation ratios, of all

other assets, so comovement arises even between assets whose dividends are independent.

(Such comovement is a feature of the data. Shiller (1989) shows that stock prices in the US

and UK move together more closely than do fundamentals, and Forbes and Rigobon (2002)

find consistently high levels of interdependence between markets.) In particular, a small

asset experiences strong positive comovement in response to good news about a large asset’s

fundamentals. As a result, the small asset’s beta is surprisingly high from a naive point of

view, given that its fundamentals are independent of the rest of the market. This behavior

was analyzed in the log utility case by Cochrane, Longstaff and Santa-Clara (2008). With

log utility, the CAPM holds, so the small asset has a surprisingly high risk premium to

go with its surprisingly high beta, but the effects are quantitatively tiny. Things become

more interesting as risk aversion rises. Quantitatively, risk premia rise fast, nonlinearly in

γ. Qualitatively, the CAPM fails, and the small asset earns a positive alpha. The ICAPM

(Merton (1973)) and consumption-CAPM (Breeden (1979)) do hold; here, though, prices

are not taken as given but are determined endogenously by exogenous fundamentals.
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In the second example, dividends are subject to rare disasters. Now prices, interest

rates, and expected returns can jump, so the ICAPM and consumption-CAPM also fail. As

noted above, the introduction of disasters enables the model to avoid the equity premium

and riskless rate puzzles. Of greater interest, there is an extreme form of comovement:

disasters spread across assets. If a large asset experiences a disaster, the price of the other

(small) asset drops sharply. This effect provides a new channel through which disasters can

contribute to high risk premia. For example, suppose that small asset 1 has perfectly stable

dividends, but that large asset 2 is subject to occasional disastrous declines in dividends.

Then a disaster for asset 2 leads to a drop in the valuation of asset 1. The possibility of

such price drops may induce a substantial risk premium in asset 1, an ostensibly safe asset.

After extending to the general case N ≥ 2, I revisit these effects in an example with

three assets with identical but independent fundamentals (N = 3 being the largest case that

can be easily represented on paper). With three assets, the state variables are the dividend

shares s1, s2, and s3. These add up to one, so the state space can be thought of as the

unit simplex. Smaller assets comove positively in response to a positive dividend shock for

a large asset, while larger assets comove negatively in response to a positive dividend shock

for a small asset. The interplay between these two effects leads to complicated patterns of

return correlation at different points in the simplex. Large assets are robustly positively

correlated with other assets. Two very small assets are positively correlated with each

other, not because they respond positively to each other’s shocks—quite the contrary—but

because they respond strongly positively to the third, large, asset’s shocks. Intermediate

between these two cases, small and medium assets have roughly zero return correlation as

the two effects—positive comovement with the large asset, negative comovement with each

other—cancel out. However, jumps isolate the two effects: correlations spike down when a

small asset experiences a jump, and spike up when a large asset experiences a jump. These

dramatic shifts in correlation do not occur in otherwise similar calibrations without jumps.

Although one might have expected the effects of interest would not be empirically rel-

evant for assets that make up a small share of overall consumption, it is clear from the

examples that in fact some of the effects are strongest when an asset is extremely small.

To address this issue I consider, in the N = 2 case, the limit in which one of the two assets

is negligibly small by comparison with the other. This limit represents the most extreme

departure from simple models in which price-dividend ratios are constant, and crystallizes

some distinctive features of the model. To illustrate this, suppose that the two assets have

independent dividend streams. It seems plausible that a small idiosyncratic asset should
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earn no risk premium and that it can be valued using a Gordon growth formula, so its

dividend yield should equal the riskless rate minus expected dividend growth. I show that

this intuition is correct whenever the result of the calculation is meaningful (i.e. positive).

But what happens if the riskless rate (determined by the characteristics of the large asset)

is less than the mean dividend growth of the small asset? I show that the small asset

then has a price-consumption ratio that, as one would expect, tends to zero in the limit; it

also a dividend yield of zero in the limit, so its expected return can be attributed entirely

to expected capital gains. An unexpected phenomenon emerges: despite its independent

fundamentals and negligible size, the small asset comoves endogenously, and hence earns a

positive risk premium. In the general case, I provide a precise characterization of when the

Gordon growth model does and does not apply, and solve for the limiting riskless rate, risk

premium and price-dividend ratio in closed form.

I also derive simple closed-form approximations for these quantities that are valid near

the small-asset limit. Time variation in the dividend share of the small asset induces time

variation in its price-dividend ratio, in its expected excess return, and in the riskless rate.

Under certain conditions, variation in the small asset’s price-dividend ratio can be attributed

to variation in its expected excess return: variation in the riskless rate is negligible by

comparison. This is a feature of the data emphasized by Cochrane (2005, p. 400). I also

show that when the Gordon growth model breaks down for a small asset, its log price-

dividend ratio follows an (approximate) random walk.

The same phenomena are present in the example with N = 3, though I am not able to

derive analytical results. Nonetheless, the intuition for what is going on is the same: if the

riskless rate is lower than a very small, idiosyncratic asset’s dividend growth rate, then the

very small asset has an enormous valuation ratio that is sensitively dependent on news for

the large asset.1 As a result, it comoves and earns a high risk premium.

At one level, it is the interaction between multiplicative structure (power utility and

i.i.d. log dividend growth) and additive structure (consumption is the sum of dividends)

that makes the model hard to solve. I solve for prices, returns, and interest rates in terms

of integral formulas that can be evaluated numerically, subject to conditions that ensure

finiteness of asset prices, and hence of the representative agent’s expected utility. When

there are two assets whose dividends follow geometric Brownian motions, or when one of

1In the case where the two other assets are both medium-sized, the riskless rate is high enough that the

standard Gordon growth model applies: with more than two assets, both types of behavior can be present

in the same calibration, in different regions of the state space.
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the two assets is negligibly small, the integrals can be solved in closed form using techniques

from complex analysis, notably the residue theorem.

The tractability of the model in the general i.i.d. case is due in part to the use of

the cumulant-generating function (CGF). Martin (2008) expresses the riskless rate, risk

premium, and consumption-wealth ratio in terms of the CGF in the case N = 1, and

the expressions found there are echoed here. Working with the CGF, the mathematics

is no harder than when working with lognormal models, and there are some important

advantages. Most obviously, the model can handle jumps. A second benefit is that CGFs

bring a perspective that actually clarifies some of the proofs. If we had restricted to the

lognormal special case, it would have seemed natural to prove some of the main results by

tedious and unenlightening algebra. Working in more generality, it becomes clear that the

same results can be proved more cleanly by exploiting convexity of the CGF. (This is not

to claim that no tedious algebra remains.) Finally, the CGF wraps the technological side of

the model into a convenient package that simplifies—up to a point—what would otherwise

be extremely complicated formulas.

Various authors have investigated multi-asset equilibrium models. Brainard and Tobin

(1992, section 8) investigate a two-asset model in which per-period endowments are specified

by a Markov chain with a small number of states. They present limited numerical results,

and—after noting that their “model is simple and abstract; nevertheless it is not easy to

analyze”—no analytical results. Dumas (1992) considers a two-tree production-based model

with shipping costs. Menzly, Santos and Veronesi (2004) and Santos and Veronesi (2006)

present models in which the dividend shares of assets are assumed to follow mean-reverting

processes. By picking convenient functional forms for these processes, closed-form pricing

formulas are available, at the cost of complicated interactions between the cashflows of

different assets. Pavlova and Rigobon (2007) solve an international asset pricing model,

but impose log-linear preferences so price-dividend ratios are constant. The most closely

related paper is that of Cochrane, Longstaff and Santa-Clara (2008), who solve the model

with log utility, two assets, and dividends following geometric Brownian motions. My

solution technique allows for power utility, for jumps in dividends, and for N ≥ 2 assets. I

also solve for bond yields, and hence expand the set of predictions made by the model.

When not included in the main body of the paper, proofs are in the Appendix.
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1 Setup

Time is continuous, and runs from 0 (the present) to infinity. There is a representative

agent with power utility over consumption Ct, with coefficient of relative risk aversion γ (a

positive integer) and time preference rate ρ. The Euler equation, derived by Lucas (1978),

prices an asset with dividend stream {Xt}:

PX = E
∫ ∞

0
e−ρt

(
Ct
C0

)−γ
·Xt dt . (1)

There are N assets, indexed i = 1, . . . , N , that throw off random dividend streams Dit.

Dividends are positive, which makes it natural to work with log dividends, yit ≡ logDit. At

time 0, the dividends (y10, . . . , yN0) of the assets are arbitrary. The vector ỹt ≡ yt − y0 ≡
(y1t − y10, . . . , yNt − yN0) is assumed to follow a Lévy process. This is the continuous-time

analogue of the discrete-time assumption that dividend growth is i.i.d.: it allows for the

possibility that the assets’ dividends grow deterministically, though I assume throughout

that at least one of the assets is nondeterministic (the fully deterministic case being trivial).

In the special case in which ỹ is a jump-diffusion, we can write

yt = y0 + µt+AZt +

K(t)∑
k=1

Jk . (2)

Here µ is an N -dimensional vector of drifts, A a N ×N matrix of factor loadings, Zt an N -

dimensional Brownian motion, K(t) a Poisson process with arrival rate ω that represents the

number of jumps that have taken place by time t, and Jk are N -dimensional i.i.d. random

variables. (I will write J ≡ J1 when I discuss the distribution of these random variables.)

This framework allows for the possibility that different jumps affect different subsets of the

assets. The covariance matrix of the diffusion components of the N dividend processes is

Σ ≡ AA′, whose elements I write as σij .

The following definition introduces an object which turns out to capture all relevant

information about the stochastic processes driving dividend growth.

Definition 1. The cumulant-generating function c(θ) is defined for θ ∈ RN by

c(θ) ≡ logE expθ′(ỹt+1 − ỹt).

Since Lévy processes have i.i.d. increments, c(θ) is independent of t. Table 1, below,

provides conditions that ensure that asset prices are finite. In general, the CGF takes the
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form given in the Lévy-Khintchine representation. If log dividends follow a jump-diffusion

as in (2), then c(θ) = θ′µ+ θ′Σθ/2 + ω
(
E eθ′J − 1

)
.

I close the model by assuming that the representative investor holds the market, and

that dividends are not storable, so that Ct = D1t + · · ·+DNt.

2 The two-asset case

2.1 A suggestive example

Consider the problem of pricing the claim to asset 1’s output with log utility. We have

P10 = E
∫ ∞

0
e−ρt

(
Ct
C0

)−1

·D1t dt

= (D10 +D20)

∫ ∞
0

e−ρt E
(

D1t

D1t +D2t

)
dt ,

and unfortunately this expectation is not easy to calculate. This, essentially, is the major

analytical challenge confronted by Cochrane, Longstaff and Santa-Clara (2008).

Here, though, is an instructive case in which the expectation simplifies considerably.

Suppose that D1t < 1 and D2t ≡ 1 at all times t, so that asset 2 is safe, but asset 1 is

subject to downward jumps at random times. (The jumps may be random in size, but they

must always be downwards.) Then we can expand the expectation as a geometric sum:

E
(

D1t

1 +D1t

)
= E

[
D1t −D2

1t +D3
1t − . . .

]
=
∞∑
n=1

(−1)n+1Dn
10e

c(n,0)t .

Substituting back, we find that

P10 = (1 +D10)

∫ ∞
t=0

e−ρt
∞∑
n=1

(−1)n+1Dn
10e

c(n,0)t = (1 +D10)
∞∑
n=1

(−1)n+1Dn
10

ρ− c(n, 0)
.

If we define s ≡ D10/(D10 + D20) to be the share of asset 1 in global output—a definition

which is maintained throughout—we can rewrite this as

P10/D10 =
1√

s(1− s)

∞∑
n=0

(−1)n( s
1−s)

n+1/2

ρ− c(n+ 1, 0)
. (3)

This expression is easy to evaluate numerically once asset 1’s dividend process—and hence

c(θ, 0)—is specified. For example, if asset 1’s log dividend is subject to downward jumps of

constant size −b arriving at rate ω, then c(θ, 0) = ω(e−bθ− 1), so ρ− c(n+ 1, 0)→ ρ+ω as

n → ∞. Meanwhile, s/(1 − s) < 1 so the terms in the numerator of the summand decline

at geometric rate and numerical summation will converge fast.
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In this special example, we can write D1t/(1 +D1t) as a geometric sum. In the general

case, the analogous move is to write the equivalent of D1t/(1 + D1t) as a Fourier integral

before computing the expectation. The gain from doing so is that, as above, it converts the

otherwise intractable function inside the expectation into an expression involving powers of

terms in D1t and D2t, which can be dealt with using the CGF.

2.2 The general solution

Consider an asset with dividend streamDα,t ≡ Dα1
1t D

α2
2t , α ≡ (α1, α2) ∈ {(1, 0), (0, 1), (0, 0)}.

The three alternatives represent asset 1, asset 2, and a riskless perpetuity respectively. As-

set prices depend on the value of st = D1t/(D1t + D2t) ∈ [0, 1], the share of aggregate

consumption contributed by the dividend of asset 1. It is often more convenient to use a

state variable that is a monotonic transformation of s:

ut = log

(
1− st
st

)
= y2t − y1t.

While st ranges between 0 and 1, ut takes values between −∞ and +∞. As asset 1 becomes

small, ut tends to infinity; as asset 1 becomes large, ut tends to minus infinity. Since y1t

and y2t follow Lévy processes, ut does too. If, say, dividends follow geometric Brownian

motions with equal mean log dividend growth, then ut is a driftless Brownian motion.

The next result supplies an integral formula for the price-dividend ratio on the α-asset.

In the formula, i represents
√
−1. From now on, I drop the subscript t on state variables.

Proposition 1 (The pricing formula). The price-dividend ratio on an asset with dividend

share s that pays dividend stream Dα,t ≡ Dα1
1t D

α2
2t is

Pα
Dα

(u) = [2 cosh(u/2)]γ ·
∫ ∞
−∞

eiuzFγ(z)

ρ− c(α1 − γ/2− iz, α2 − γ/2 + iz)
dz , (4)

where

Fγ(z) ≡ 1

2π
· Γ(γ/2 + iz)Γ(γ/2− iz)

Γ(γ)
. (5)

Proof. The price of the α-asset is

Pα = E
∫ ∞

0
e−ρt

(
Ct
C0

)−γ
Dα1

1t D
α2
2t dt

= (C0)γ
∫ ∞

0
e−ρt E

(
eα1(y10+ỹ1t)+α2(y20+ỹ2t)[
ey10+ỹ1t + ey20+ỹ2t

]γ
)
dt .
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It follows that

Pα
Dα

= (ey10 + ey20)γ
∫ ∞
t=0

e−ρt E

(
eα1ỹ1t+α2ỹ2t[

ey10+ỹ1t + ey20+ỹ2t
]γ
)
dt .

The expectation inside the integral is calculated, via a Fourier transform, in equation

(24) of Appendix A.1. Interchanging the order of integration—since the integrand is abso-

lutely integrable, Fubini’s theorem applies—and writing u for y20 − y10, we obtain (4):

Pα
Dα

= [2 cosh(u/2)]γ
∫ ∞
z=−∞

∫ ∞
t=0

e−ρtec(α1−γ/2−iz,α2−γ/2+iz)t · eiuvFγ(z) dt dz

(a)
= [2 cosh(u/2)]γ

∫ ∞
z=−∞

eiuzFγ(z)

ρ− c(α1 − γ/2− iz, α2 − γ/2 + iz)
dz.

Equality (a) is valid if ρ−Re[c(α1−γ/2− iz, α2−γ/2+ iz)] > 0 for all z ∈ R. In Appendix

A.3, I show that this inequality holds for all z ∈ R if it holds at z = 0, i.e. so long as

ρ − c(α1 − γ/2, α2 − γ/2) > 0. I refer to this as the finiteness condition, and assume that

it holds when (α1, α2) = (1, 0), (0, 1), or (0, 0).

The pricing formula (4) allows for the stochastic process governing log outputs to be

any Lévy process satisfying the assumptions of Table 1. Moreover, Fγ(z) is a strictly

positive function which is symmetric about z = 0, where it attains its maximum, and decays

exponentially fast towards zero as |z| → ∞, so (4) can easily be evaluated numerically.

Equation (25) of the Appendix provides an alternative representation of Fγ(z) in terms of

elementary functions, though it is less compact than (5).

The proof of Proposition 1 shows that for s ∈ (0, 1), finiteness of the prices of the

two assets—and hence of expected utility—is assured by the assumptions that ρ − c(1 −
γ/2,−γ/2) > 0 and ρ − c(−γ/2, 1 − γ/2) > 0. I also assume that ρ − c(1 − γ, 0) > 0 and

ρ− c(0, 1− γ) > 0, so that aggregate wealth is finite at the limit points s = 0 and s = 1.

Restriction Reason

ρ− c(1− γ/2,−γ/2) > 0 finite price of asset 1

ρ− c(−γ/2, 1− γ/2) > 0 finite price of asset 2

ρ− c(1− γ, 0) > 0 finite aggregate wealth in limit s→ 1

ρ− c(0, 1− γ) > 0 finite aggregate wealth in limit s→ 0

Table 1: The restrictions imposed on the model.

For many practical purposes, this is the end of the story, since the integral formula is
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very well behaved and can be calculated numerically almost instantly; I take this direct

route in Section 2.3. But the pen-and-paper approach can be pushed further in some cases.

To explain how, we need some terminology. Let f be a complex-valued function. The

function f is holomorphic in a subset G of the complex plane if limh→0[f(z+h)−f(z)]/h ex-

ists for all z in some open set containing G. To give some examples, polynomials, convergent

power series, the exponential function, sine and cosine are holomorphic; and compositions

and finite sums and products of holomorphic functions are holomorphic.2

Complex integration takes place over paths in the complex plane: an integral might be

“along the real axis from −∞ to +∞”; “around the unit circle |z| = 1”; or “along the real

line from −R to R, then around a semicircular arc lying in the upper half-plane from R

back to −R.” Integrals like (4) have integrands that are holomorphic everywhere except at

certain singularities, away from the path of integration, where they explode to infinity. If

f is holomorphic in some punctured disc D′(a; r) ≡ {z ∈ C : 0 < |z − a| < r}, but not at

a, then a is an isolated singularity : for example, f(z) = 1/z is holomorphic except for at

an isolated singularity at the origin. In this case, f has a unique power series expansion

f(z) =
∑∞

n=−∞ cn(z−a)n for z ∈ D′(a; r). If cn = 0 for all n < 0, the point a is a removable

singularity. (In other words, it is not “really” a singularity at all. Consider f(z) = sin z/z,

whose singularity at 0 can be removed by defining f(0) = 1.) If there is some positive m

such that c−m 6= 0 and ck = 0 for all k < −m then the point a is a pole (of order m). The

residue of f at a, written Res {f(z); a}, is defined to be the coefficient on the term (z−a)−1

in a power series expansion of f(z). If f(z) = g(z)/h(z), where g(a) 6= 0, h(a) = 0, and

h′(a) 6= 0, so that f(z) has a pole at a, then Res {f(z); a} = g(a)/h′(a): I use this repeatedly

in Appendices A.4 and A.5. The result that makes all this so useful is

Fact 1 (The residue theorem). Let Ω denote a closed path of integration which is to be

integrated around in an anticlockwise direction. If f is holomorphic inside and on Ω, except

for at a finite number of poles at points a1, . . . , am inside Ω, then∫
Ω
f(z) dz = 2πi

m∑
j=1

Res {f(z); aj} .

It is an amazing—and powerful—fact that such an integral can be computed by ana-

lyzing the behavior of the integrand at its poles. To illustrate, I show how to derive (3)

2Evidently, to be holomorphic is to be complex-differentiable. But note that not every function that is

differentiable when considered as a function from R2 → R2 is differentiable when considered as a function

from C→ C. For example, complex conjugation, which maps x+ iy 7→ x− iy, is not holomorphic, although

the function from R2 to R2 that maps (x, y) 7→ (x,−y) is differentiable.
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from the more general (4). Doing so also provides a roadmap for the Brownian motion case

that will be considered below. To streamline the discussion I proceed heuristically, taking

as given various facts that are proved for the Brownian motion case in Appendix A.4.

The expression (3) is valid for s < 1/2, i.e. u > 0. Setting γ = 1 in (4), substituting

α1 = 1, α2 = 0 to calculate the price-dividend ratio of asset 1, and imposing the fact that

D2t ≡ 1, so that c(θ1, θ2) is independent of θ2 and equals, say, c(θ1, 0), we get

P10/D10 = [2 cosh(u/2)] ·
∫ ∞
−∞

eiuzF1(z)

ρ− c(1/2− iz, 0)
dz . (6)

We now proceed in a series of steps. The basic strategy is to attack (6) via the residue

theorem. To do so, we must integrate around a closed contour, rather than over the real

axis. Loosely speaking, we want to integrate from −∞ to +∞ and then loop back along the

arc of an infinitely large semicircle. More formally, we will consider the limit of a sequence of

integrals around increasingly large semicircles with bases lying along the real axis. Each of

these integrals can be evaluated using the residue theorem, by summing over residues inside

these increasingly large semicircles. In the limit, the contribution of the integral along the

semicircular arc—as opposed to the base—tends to zero. (This often happens with integrals

that are amenable to this line of attack.) The upshot is that the original integral (6) equals

2πi times the sum of all the residues of the integrand eiuzF1(z)/[ρ− c(1/2− iz, 0)] in the

upper half plane. These residues occur at the poles of this function, i.e. at the poles of

F1(z) and at the zeros of ρ− c(1/2− iz, 0).

In this example, things are particularly simple because there are no zeros of ρ−c(1/2−
iz, 0) for z in the upper half-plane.3 It remains to consider the poles of F1(z) = (1/2π)Γ(1/2+

iz)Γ(1/2−iz). We will need two standard properties of the Γ-function. First, Γ(n) = (n−1)!

for positive integer n. Second, Γ(z) has poles only at zero and at the negative real integers,

and the residue at −n is (−1)n/n!. As a result, the poles of eiuzF1(z)/[ρ − c(1/2 − iz, 0)]

occur at z = (n+ 1/2)i for n = 0, 1, 2, . . ., and the residue at (n+ 1/2)i is

e−(n+1/2)u(−1)nΓ(n+ 1)/n!

2πi · [ρ− c(n+ 1, 0)]
=

(−1)n( s
1−s)

n+1/2

2πi · [ρ− c(n+ 1, 0)]
.

Summing over all the residues, n = 0, 1, . . ., multiplying by 2πi, and rearranging,

P/D(s) =
1√

s(1− s)

∞∑
n=0

(−1)n( s
1−s)

n+1/2

ρ− c(n+ 1, 0)
,

3By the finiteness condition, ρ − c(1/2,−1/2) = ρ − c(1/2, 0) > 0. Moreover, c(x, 0) is decreasing in

x since D1t < 1, so ρ − c(1/2 + k, 0) > 0 for all k > 0. It follows from Lemma 1 of Appendix A.3 that

Re [ρ− c(1/2− iz, 0)] ≥ ρ− c(Re(1/2− iz), 0) = ρ− c(1/2 + Im z, 0) > 0 for all z in the upper half-plane.
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as in equation (3). This example illustrates the more general point that residues at two

types of poles contribute to the integral: (i) poles of Fγ(z), which are located at regu-

larly spaced points (n + γ/2)i, for n = 0, 1, 2, . . ., on the imaginary axis; and (ii) poles

of 1/ [ρ− c(1− γ/2− iz,−γ/2 + iz)]. The Brownian motion case is tractable because

c(θ1, θ2) is quadratic in θ1 and θ2, so the latter poles occur at zeros of the quadratic

ρ− c(1− γ/2− iz,−γ/2 + iz), of which there is exactly one in the upper half-plane.

Now we return to the general case. The expected return on an asset paying dividend

stream Dα,t can be expressed in terms of integrals very similar to those that appear in the

general price-dividend formula. The instantaneous expected return, Rα, is defined by

Rαdt ≡
E dPα
Pα︸ ︷︷ ︸

capital gains

+
Dα
Pα

dt︸ ︷︷ ︸
dividend yield

.

Proposition 2 (Expected returns). If γ is a positive integer, then Rα is given by

Rα(u) =

γ∑
m=0

(
γ

m

)
e−mu

∫ ∞
−∞

h(z)eiuz · c(wm(z)) dz

γ∑
m=0

(
γ

m

)
e−mu

∫ ∞
−∞

h(z)eiuz dz

+
Dα
Pα

(u) (7)

where h(z) ≡ Fγ(z)/[ρ−c(α1−γ/2−iz, α2−γ/2+iz)] and wm(z) ≡ (α1 − γ/2 +m− iz, α2 + γ/2−m+ iz).

Write BT for the time-0 price of a zero-coupon bond which pays one unit of the con-

sumption good at time T , and define the yield to time T , Y (T ), by BT = e−Y (T )·T , and the

instantaneous riskless rate to be r ≡ limT↓0 Y (T ). The next result expresses interest rates

in terms of the state variable u. The framework can generate upward- or downward-sloping

yield curves and humped curves with an inverse-U shape.

Proposition 3 (Real interest rates). The yield to time T is

Y (T ) = − 1

T
log

{
[2 cosh(u/2)]γ

∫ ∞
−∞

Fγ(v)eiuz · e−[ρ−c(−γ/2−iz,−γ/2+iz)]T dz

}
. (8)

The instantaneous riskless rate is

r = [2 cosh(u/2)]γ
∫ ∞
−∞

Fγ(z)eiuz · [ρ− c(−γ/2− iz,−γ/2 + iz)] dz . (9)

The long rate is a constant, independent of the current state u, given by

lim
T→∞

Y (T ) = max
θ∈[−γ/2,γ/2]

ρ− c(−γ/2 + θ,−γ/2− θ). (10)

In a symmetric calibration, limT→∞Y (T ) = ρ− c(−γ/2,−γ/2).
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For comparison, in a one-tree economy with all consumption drawn from tree 1, the yield

curve would be flat, with an interest rate of ρ−c(−γ, 0); and if all consumption were drawn

from tree 2, the interest rate would be ρ−c(0,−γ). Equation (10) shows that the long rate is

at least as high in the two-tree economy as in either one-tree economy. The long rate is equal

to the long rate in one of these economies if the requirement in (10) that θ ∈ [−γ/2, γ/2]

is binding. In the lognormal case c(θ1, θ2) = µ1θ1 + µ2θ2 + 1
2σ11θ

2
1 + σ12θ1θ2 + 1

2σ22θ
2
2, so

θ = γ/2, say, occurs if µ1 − γσ12 ≤ µ2 − γσ22. This is intuitive: if asset 1’s mean dividend

growth µ1 is sufficiently small, then it will be negligible in the distant future, so the long

rate ρ− c(0,−γ) is determined entirely by the characteristics of asset 2.

It is possible, though, for asset 1 to influence long interest rates even if its share converges

to zero over time with probability one. Suppose that σ12 = 0 and µ2 − γσ22 < µ1 < µ2.

Then, even though tree 2 dominates in the long run (because µ2 > µ1), the long rate does not

equal the rate that would prevail in a tree-2 economy (because µ1−γσ12 > µ2−γσ22). This

is an instance of a general principle that the pricing of long-dated bonds is very sensitive to

bad states of the world (Weitzman (1998), Gollier (2002), Martin (2009))—in this example,

to states in which the slow-growing tree makes a significant contribution to consumption.

2.2.1 The Brownian motion case

Suppose now that the dividend processes follow potentially correlated geometric Brownian

motions, dyi = µi dt+
√
σii dzi, i = 1, 2. Then asset prices can be expressed in terms of the

hypergeometric function F (a, b; c; z), which is defined for |z| < 1 by the power series

F (a, b; c; z) = 1 +
a · b
1! · c

z +
a(a+ 1) · b(b+ 1)

2! · c(c+ 1)
z2 +

a(a+ 1)(a+ 2) · b(b+ 1)(b+ 2)

3! · c(c+ 1)(c+ 2)
z3 + · · · ,

(11)

and for |z| ≥ 1 by analytic continuation of this series with respect to z.

Proposition 4 (The Brownian motion case). When dividends follow geometric Brownian

motions and γ is an integer, the price-dividend ratio of the α-asset is

P/D1(s) =
1

B(λ1 − λ2)

[
1

(γ/2 + λ1) sγ
F

(
γ, γ/2 + λ1; 1 + γ/2 + λ1;

s− 1

s

)
+

+
1

(γ/2− λ2) (1− s)γ
F

(
γ, γ/2− λ2; 1 + γ/2− λ2;

s

s− 1

)]
, (12)
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where B ≡ 1
2X

2, λ1 ≡
√
Y 2+X2Z2−Y

X2 , and λ2 ≡ −
√
Y 2+X2Z2+Y

X2 , with

X2 ≡ σ11 − 2σ12 + σ22

Y ≡ µ1 − µ2 + α1(σ11 − σ12)− α2(σ22 − σ12)− γ

2
(σ11 − σ22)

Z2 ≡ 2(ρ− α1µ1 − α2µ2)− (α2
1σ11 + 2α1α2σ12 + α2

2σ22) +

+ γ [µ1 + µ2 + α1σ11 + (α1 + α2)σ12 + α2σ22]− γ2

4
(σ11 + 2σ12 + σ22).

As the notation suggests, X2 and Z2 are strictly positive.

The instantaneous riskless rate is given by

r = ρ+ γ
[
s
(
µ1 +

σ11

2

)
+ (1− s)

(
µ2 +

σ22

2

)]
−

− γ(γ + 1)

2

[
s2σ11 + 2s(1− s)σ12 + (1− s)2σ22

]
. (13)

Sketch proof. The result follows via the strategy laid out above: the integral formula (4) is

equal to the limit of a sequence of contour integrals around increasingly large semicircles in

the upper half of the complex plane. By the residue theorem, this limit can be evaluated

by summing all residues of the integrand in (4) in the upper half-plane. Carrying out this

summation involves some tedious calculation, but we end up at (12).

Appendix A.4 has the details, but Figure 1 illustrates the approach by showing one of

the integrals in the sequence for a particular calibration and u > 0. The surface is the real

Figure 1: A member of the sequence of contour integrals whose limit is (12).

part of the integrand in (4); several poles are visible where it explodes to infinity. The dark

line indicates the semicircular contour along which we integrate, whose base lies on the real

axis. By the residue theorem, the integral over the contour can be evaluated by computing
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the residues at those poles that happen to lie inside the semicircle. As the semicircle’s radius

becomes larger and larger, the integral along the base approaches (4), while the integral

around the semicircular arc tends to zero. Notice how the arc of the semicircle threads

between the poles that form a spine running up the imaginary axis: this is always possible

because once we get sufficiently far up the imaginary axis, the poles are evenly spaced.

Finally, the riskless rate r is given, in the Brownian motion case, by r dt = −E(dM/M),

where Mt ≡ e−ρtC−γt ; (13) follows by Itô’s lemma.

This result can be extended to the case in which log dividends follow a jump-diffusion

as in (2), so long as the only type of jumps that occur are global jumps:

Definition 2 (Global jumps). A jump is global if it causes each asset’s dividend to decline

by the same proportion, i.e. Jk1 = Jk2 for all k in (2).

Proposition 5. If all jumps are global, then equation (12) of Proposition 4 continues to

hold with ρ replaced by ρ′ ≡ ρ−ω
(
E e(1−γ)·J1 − 1

)
, and equation (13) continues to hold with

ρ replaced by ρ′′ ≡ ρ− ω
(
E e−γ·J1 − 1

)
.

Proof. The global jumps condition implies that the CGF takes the form c(θ) = θ′µ +

θ′Σθ/2 + ω
(
E eJ1(θ1+θ2) − 1

)
. In the case of the price-dividend ratio (4), we substitute

θ1 = 1 − γ/2 − iz and θ2 = −γ/2 + iz into c(θ); in the case of the riskless rate (9), we

substitute θ1 = −γ/2− iz and θ2 = −γ/2 + iz. In each case, the sum θ1 + θ2 is independent

of z, so the jump component of the CGF, ω
(
E eJ1(θ1+θ2) − 1

)
, is a constant independent of

z. We can therefore fold this constant into ρ, and the result follows.

2.3 Two examples

I now present two numerical examples. The first is a conditionally lognormal model driven

by Brownian motions, so the consumption-CAPM and ICAPM hold, and familiar intuition

can be brought to bear. It is also easy to use Itô’s lemma to calculate second-moment

quantities such as betas and return volatilities, and I do so without further comment. The

second example illustrates the effects of disastrous jumps, and is revisited later in the paper

with N > 2. Dividend growth is independent and symmetrically distributed across assets in

both examples, so that any correlations and asymmetries that emerge do so endogenously.

I consider several different risk aversion parameters γ, and adjust the time preference rate

ρ so that the long rate remains constant, at 7%, as γ varies. In each example, I consider the

largest possible range of γ ≥ 1 that is consistent with the finiteness assumptions in Table 1.
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2.3.1 Dividends follow geometric Brownian motions

Suppose that the two assets have dividends which follow geometric Brownian motions.

Each has mean log dividend growth of 2% and dividend volatility of 10%. In the notation

of equation (2), µ1 = µ2 = 0.02, σ11 = σ22 = 0.12, and σ12 = 0. Because both assets have

the same mean dividend growth, mean consumption growth does not vary with s. But

the standard deviation of consumption growth does vary: it is lowest “in the middle”, for

s = 0.5, where there is most diversification. At the edges, where s is close to 0 or to 1, one

of the two assets dominates the economy, and consumption growth is more volatile: the

representative agent’s eggs are all in one technological basket. Time-varying consumption

growth volatility leads to a time-varying riskless rate. Figure 2a plots the riskless rate

against asset 1’s share of output s. Riskless rates are high for intermediate values of s

because consumption volatility is low, which diminishes the motive for precautionary saving.

Riskless rates also respond to changing expected consumption growth, with a sensitivity that

depends on the elasticity of intertemporal substitution 1/γ, but this channel is absent in

the present example because mean consumption growth is constant.

Γ =1

Γ =6

0.2 0.4 0.6 0.8 1.0
s
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2

4

6
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R f H%L

(a) Riskless rate
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0.0 0.2 0.4 0.6 0.8 1.0
s
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80

100
P1�D1

(b) P/D

Figure 2: Left: Riskless rate. Right: Price-dividend ratio of asset 1.

Figure 2b shows the price-dividend ratio of asset 1 and of the market. When s is small,

asset 1 contributes a small proportion of consumption. It therefore has little systematic

risk, and hence a high valuation. As its dividend share increases, its discount rate increases

both because the riskless rate increases and because its risk premium increases, as discussed

further below. The model predicts that assets may have very high price-dividend ratios but

not very low price-dividend ratios. Moreover, as an asset’s share approaches zero, its price-

dividend ratio becomes sensitively dependent on its share. I explore these issues further in

Section 2.4.
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(a) Expected return decomposition
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(b) Excess return on asset 1

Figure 3: Left: The two components of expected returns: expected capital gains (solid) and

dividend yields (dashed). Right: Excess return on asset 1 against s.

Figure 3a decomposes expected returns into dividend yield plus expected capital gain.

Most of the time-series and cross-sectional variation in expected returns can be attributed

to changes in dividend yield rather than in expected capital gains.

Figure 3b shows how the risk premium on asset 1 varies with s for each γ. Holding

s constant, the risk premium is monotonically increasing in γ. In the limit s → 1, for

example, we are back in a one-tree world in which the risk premium is the familiar γσ11,

so at the right hand side of the figure the risk premia march up linearly as γ increases:

1%, 2%, . . . , 6%. In contrast, for fixed s close to zero, asset 1’s risk premium rises faster

than linearly in γ. In this lognormal calibration the consumption-CAPM holds, so the risk

premium depends on γ, on the correlation between asset 1 and consumption growth, κ1,∆c,

and on the volatility of asset 1’s return σ1 and of consumption growth σ∆c: risk premium

= γκ1,∆cσ1σ∆c. So two effects are in play. First, the price of risk, γσ∆c, increases linearly

in γ. Second, asset 1’s quantity of risk, κ1,∆cσ1, increases. This could be due either to an

increase in the correlation of asset 1’s return with consumption growth, or to an increase

in the volatility of asset 1’s return; it will turn out to be due to the former.

Now consider the behavior of the risk premium as s varies, holding γ constant. For γ

between 1 and 4, the risk premium is monotonically increasing in s, and it tends to zero

as s tends to zero, though for γ between 2 and 4 the risk premium rises very rapidly for

s close to zero, so that even very small assets earn economically significant risk premia.

For γ equal to 5 or 6, the risk premium is nonmonotonic, and tends to a strictly positive

quantity as s → 0. Again, this reflects the emergence of correlation despite the fact that,

for small s, asset 1’s fundamentals are almost uncorrelated with consumption growth. Thus
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we have the interesting feature that as γ increases, asset prices behave qualitatively, not

just quantitatively, differently. In the terminology of Section 2.4, where I explore this

further, asset 1 is subcritical if γ = 1; subcritical but nearly supercritical if γ = 2, 3, 4; and

supercritical if γ = 5, 6.
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(a) Excess volatility of asset 1.
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(b) Excess volatility of the market.

Figure 4: Left: Asset 1’s excess return volatility relative to its (constant) dividend volatility.

Right: The market’s excess return volatility relative to its (nonconstant) dividend volatility.

At first sight it is surprising that asset 1’s risk premium achieves its maximum at a value

of s close to but strictly less than one. It does so because asset 1 has excess volatility at this

point. Figure 4a plots the amount, in percentage points, by which asset 1’s return volatility

exceeds its dividend volatility. Asset 1’s volatility is smaller than its dividend volatility for

small s and larger for large s. Since the larger asset has a higher weight in the market, the

model generates excess volatility in the aggregate market when γ > 1 (Figure 4b). With log

utility, there is no excess volatility because the price-dividend ratio of the aggregate market

is constant. For the same reason, there is no excess volatility when s = 1/2 or equivalently

u = 0: the market price-dividend ratio is flat, as a function of u, at that point. Lastly,

there is no excess volatility in the one-tree limits, s = 0, 1, or equivalently u = −∞ or +∞;

again, the market price-dividend ratio is flat as a function of u in the limit.

In the two-asset case, two types of shock move an asset’s price: a shock to its dividends,

or a shock to the other asset’s dividends, which changes the asset’s price by changing its

price-dividend ratio. Figure 5 plots the percentage price response of asset 1 (solid) and asset

2 (dashed) to a 1% increase in asset 1’s dividends. When asset 1 is small, it underreacts

to good news about its own cashflow shock and asset 2 moves in the opposite direction.

When asset 1 is large, it overreacts to good news about its own cashflow shock, and asset

2 moves in the same direction. Note also that asset 2’s price moves considerably more, in

response to dividend news for asset 1, when asset 1 is large than when it is small. Again,
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(a) Response of asset 1’s price.
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(b) Response of asset 2’s price.
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(c) Correlation between returns.

Figure 5: The response of assets 1 and 2 to a 1% increase in the dividend of asset 1; and

the correlation in their returns.

the sizes of these effects are nonlinear in γ. For γ equal to 5 or 6, it is even possible for

asset 1 to react more to asset 2’s dividend than to its own (because for these values of γ,

the response of asset 1’s price at the left-hand side of Figure 5a is less than the response of

asset 2’s price at the right-hand side of Figure 5b; note that the setup is symmetrical). The

result can be seen in Figure 5c: the two assets have highly correlated returns despite their

independent fundamentals. The amount of correlation increases sharply with γ, especially

when one asset is much larger than the other.
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(a) Asset 1’s CAPM beta
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Figure 6: Asset 1’s CAPM beta and alpha.

Since the consumption-CAPM holds in this calibration, an asset’s risk premium lines up

perfectly with the covariance of its return with consumption growth. On the other hand,

the CAPM does not hold except in the log utility case γ = 1, so it is interesting to see the

pattern of deviations from the CAPM that the model generates. Figure 6a plots asset 1’s

CAPM beta, covt (d logP1, d logPM ) / vart d logPM (where PM is the price of the market).

It is mechanically equal to 1 when s = 1 (because asset 1 is the whole market) and when

s = 1/2 (because assets 1 and 2 are identical, and hence have identical betas, which must
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equal 1 because the aggregate market’s beta equals 1). For the smaller values of γ, asset 1’s

beta declines towards zero fairly quickly as the asset’s share goes to zero. But for the larger

values of γ, asset 1 has a sizeable beta even in the limit as s→ 0 in which its fundamentals

are independent of consumption growth. Figure 6b shows asset 1’s CAPM alpha measured

in percentage points, the difference between its true expected excess return and the excess

return predicted by the CAPM. When γ = 1 the CAPM holds so alpha is zero for all s. For

larger values of γ, asset 1’s alpha is mechanically zero at the two end points (because in a

one-tree world, the market return is perfectly correlated with consumption growth, so the

CAPM holds) and at s = 1/2 (because the two assets are identical, so their alphas must

both be zero). As asset 1’s share increases from zero, its price-dividend ratio drops sharply

and its alpha increases sharply. Since the aggregate market’s alpha is zero, this means that

alpha drops below zero as s decreases below 1.
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(a) CAPM beta, β
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(b) Cashflow beta, βCFM
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(c) Discount-rate beta, βDRM
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(d) βCF1
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Γ=1

Γ=6

0.2 0.4 0.6 0.8 1.0
s

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

(f) βCF1,DRM
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(g) βDR1
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Figure 7: Beta decomposition.

What is the source of the small asset’s high beta? To answer this question, it is useful

to split asset 1’s return into one part due to shocks to its cashflow, and another part due
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to shocks to its valuation ratio, and to explore how each covaries with the market return:

covt (d logP1, d logPM )

vart d logPM︸ ︷︷ ︸
CAPM beta, β

=
covt (d logD1, d logPM )

vart d logPM︸ ︷︷ ︸
βCF1

+
covt

(
d log P1

D1
, d logPM

)
vart d logPM︸ ︷︷ ︸

βDR1

. (14)

This is analogous to the exercise carried out by Campbell and Mei (1993) who asked, where

do betas come from? Figures 7d and 7g report βCF1 and βDR1 in the model. The two figures

add up to CAPM beta, shown in Figure 7a. As asset 1 gets larger, an increasingly large

proportion of its CAPM beta is due to covariation between its fundamentals and the market

return. In contrast, a very small asset’s beta is almost entirely due to covariation between

its valuation and the market return. The importance of valuation effects is particularly

pronounced if γ is large.

To understand where alphas come from, we can slice CAPM beta up in a different way,

splitting the market’s return into a cashflow component and a valuation component:

covt (d logP1, d logPM )

vart d logPM︸ ︷︷ ︸
CAPM beta

=
covt (d logP1, d logC)

vart d logPM︸ ︷︷ ︸
cashflow beta, βCFM

+
covt

(
d logP1, d log PM

C

)
vart d logPM︸ ︷︷ ︸

discount-rate beta, βDRM

. (15)

This expression breaks the conventional CAPM beta into a cashflow beta that measures

the covariance of the asset’s return with shocks to the aggregate market’s cashflows, and

a discount-rate beta that measures the covariance of the asset’s return with shocks to the

aggregate market’s valuation ratio. It is the continuous-time version of the good-beta/bad-

beta decomposition of Campbell and Vuolteenaho (2004). In a loglinear approximation of

a homoskedastic conditionally lognormal model, Campbell (1993) derives an ICAPM result

whose continuous-time analogue is that

RP = γσ2βCFM + σ2βDRM , (16)

where RP1 denotes asset 1’s instantaneous risk premium, σ2 is the instantaneous variance

of the market return, and βCFM and βDRM were defined in (15). The online Appendix

shows that (16) holds to high accuracy in the present calibration. Figures 7b and 7c plot

cashflow beta and discount-rate beta against s. For small assets, CAPM beta is composed

almost entirely of (“bad”) cashflow beta. When γ = 1, discount-rate beta is zero across the

whole range of s—hence CAPM beta is identically equal to cashflow beta—because with

log utility the consumption-wealth ratio, i.e. the market’s valuation ratio, is constant. For

larger values of γ, (“good”) discount-rate beta becomes a significant contributor once asset
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1 is large. Since discount-rate beta earns a lower risk premium than cashflow beta, large

assets earn negative alphas and small assets earn positive alphas.

To understand why the cashflow and discount-rate betas look as they do, we can do

a further decomposition that, essentially, combines (14) and (15), splitting the returns

on both asset 1 and the market into cashflow and discount-rate components. (Campbell,

Polk and Vuolteenaho (2010) carry out this completing-the-square exercise.) Doing so, we

see that cashflow betas are high for a small asset because the small asset’s discount rate

covaries strongly with the market’s cashflows (Figures 7e and 7h). The picture is more

mixed regarding a small asset’s discount-rate beta. There are two forces pulling in opposite

directions: a small asset’s cashflows covary negatively with market discount rates (Figure

7f), while its discount rate covaries positively with market discount rates (Figure 7i).
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(a) Excess returns on a perpetuity.
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Figure 8: A high yield spread signals high expected excess returns on a perpetuity.

Finally, we can consider the behavior of bonds in zero net supply. Figure 8a plots the

risk premium on a real perpetuity which pays one unit of consumption good per unit time.

Bonds are risky because bad times—i.e., bad news for the larger asset, whether asset 1 or

2—are associated with the state variable moving towards s = 1/2, and hence with a rise in

the riskless rate and a fall in bond prices. Figure 8b shows how the spread in yields between

a 30-year zero-coupon bond and the instantaneous riskless rate varies with s. A high yield

spread forecasts high excess returns on long-term bonds.

2.3.2 Dividends are subject to occasional disasters

The second example briefly highlights the effect of disasters; it will be explored further in

a three-asset example below. In addition to the two Brownian motions driving dividends,

there are also jumps in dividends, representing the occurrence of disasters. Jumps arrive,

independently across assets, at rate 0.017—on average, about once every 60 years. When
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a disaster strikes an asset, it shocks its log dividend by a Normal random variable with

mean −0.38 and standard deviation 0.25. These disaster arrival rates—and the mean and

standard deviation of the disaster sizes—are chosen to match exactly the empirical disaster

frequency estimated by Barro (2006), and to match approximately the disaster size distri-

bution documented in the same paper. I adjust the drifts µ1 and µ2, and the Brownian

variances σ11 and σ22, so that the mean and variance of each asset’s log dividend growth

are the same as in the previous example.
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Figure 9: The disaster calibration.

Figure 9 shows that, holding γ constant, the riskless rate is lower and the risk premium

higher than in the jump-free example for most values of s. As in Rietz (1988) and Barro

(2006), incorporating rare disasters makes it easier to match observed riskless rates and

risk premia without requiring implausibly large γ. Note, though, that with power utility,

disasters lead to far more variation in the riskless rate.

Another feature distinctive to jumps is that disasters propagate to apparently safe assets:

when the state variable jumps, interest rates and bond prices jump too. As a result the

risk premium on a perpetuity is considerably higher than before when the current riskless
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rate is low (for s close to 0 or 1), even though disasters do not affect its cashflows; and

relative to the previous calibration, disasters have a much larger effect on the perpetuity’s

risk premium than on asset 1’s risk premium.

As in the previous example, the riskless rate is locally constant at s = 1/2. Nonetheless,

the perpetuity earns a negative risk premium there because it is a hedge against disasters:

when a disaster strikes one of the assets, the riskless rate jumps down and the perpetuity’s

price jumps up. In the previous example, by contrast, the perpetuity was riskless at s = 1/2

because without jumps, the state variable could only move locally.

2.4 Equilibrium pricing of a small asset

A distinctive qualitative prediction of the model is that there should exist extreme growth

assets, but not extreme value assets, as shown in Figure 2b. The extreme growth case also

represents the starkest departure from simple models in which price-dividend ratios are

constant (as in a one-tree model with power utility and i.i.d. dividend growth). Finally, it

is important to understand whether the complicated dynamics exhibited above are relevant

for assets that are small relative to the aggregate economy. This section therefore explores

the price behavior of asset 1 in the limit s→ 0.4

Consider the problem of pricing a negligibly small asset whose fundamentals are inde-

pendent of consumption growth in an environment in which the (real) riskless rate is 6%.

If the small asset has mean dividend growth rate of 4%, the following logic seems plausible.

Since the asset is negligibly small and idiosyncratic, it need not earn a risk premium, so

the appropriate discount rate is the riskless rate. Next, since dividends are i.i.d., it seems

sensible to apply the Gordon growth model to conclude that dividend yield = riskless rate

− mean dividend growth = 2%. This argument can be made formal, and I do so below.

Now consider the empirically more relevant situation in which the riskless real rate is 2%.

If the asset does not earn a risk premium, the Gordon growth model seems to suggest that

the dividend yield should be 2%− 4% = −2%, a nonsensical result.

To investigate this issue, I return to the general setup and make a definition.

Definition 3. If the inequality

ρ− c(1,−γ) > 0 (17)

4In this section I assume that ỹ1 has uncountable essential support, so that Lemma 3 applies. This is

an extremely weak assumption. The only remotely natural case in which it fails is if log dividends follow a

pure jump process with jumps of fixed size.
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holds, we are in the subcritical case, while if the inequality

ρ− c(1,−γ) < 0 (18)

holds, we are in the supercritical case.5

The supercritical regime occurs if ρ is sufficiently small, γ sufficiently large, or if fun-

damentals are sufficiently risky, in the sense that the CGF has large curvature.6 Consider,

for example, the case in which dividend growth is independent across assets, so that the

risk in question is both small and idiosyncratic. Conditions (17) and (18) can then be given

a simple interpretation, since the CGF decomposes as c(θ1, θ2) = c1(θ1) + c2(θ2) where

ci(θi) ≡ logE exp {θi(ỹi,t+1 − ỹi,t)}, so

ρ− c(1,−γ) = ρ− [c1(1) + c2(−γ)] = ρ− c(0,−γ)︸ ︷︷ ︸
Rf

− c(1, 0)︸ ︷︷ ︸
G1

.

More generally, if the assets are not independent, conditions (17) and (18) allow for the fact

that asset 1 earns a risk premium. In the lognormal case, for example,

ρ− c(1,−γ) = Rf + γ cov(∆y1,t+1,∆ct+1)︸ ︷︷ ︸
risk premium

−G1.

Thus the subcritical case applies whenever the Gordon growth model produces a reasonable—

meaning positive—dividend yield, and the supercritical case applies when the Gordon

growth model breaks down, predicting a negative dividend yield.

The next result gives various asymptotics in the two cases. Bars above variables indicate

limits as s→ 0, so for example Rf = lims→0Rf (s). To highlight the link with the traditional

Gordon growth formula, I write G1 ≡ c(1, 0) and G2 ≡ c(0, 1) for (log) mean dividend

growth on assets 1 and 2 respectively, and R1 and R2 for the limiting expected instantaneous

returns on assets 1 and 2. Finally, I write XS1 for the limiting excess return on asset 1.

Proposition 6. As s→ 0 the Gordon growth model, D/P2 = R2 −G2, holds for the large

5There is also a knife-edge critical case in which ρ− c(1,−γ) = 0 and z∗ = γ/2. The simple example in

Section 1 of Cochrane, Longstaff and Santa-Clara (2008) is critical. This is no coincidence: the condition

that implies criticality also ensures that the expression for the price-dividend ratio is relatively simple.
6In the lognormal case with γ = 1, condition (18) reduces to a simplified version of Cochrane, Longstaff

and Santa-Clara’s (2008) condition θ ≤ 1. With log utility and lognormal dividend growth, though, the

supercritical case only occurs in rather unusual calibrations.
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asset in either the subcritical or supercritical case, and we have

Rf = ρ− c(0,−γ)

D/P2 = ρ− c(0, 1− γ)

XS2 = c(0, 1) + c(0,−γ)− c(0, 1− γ).

In the subcritical case, the Gordon growth model also holds for the small asset: D/P1 =

R1 −G1. We have

D/P1 = ρ− c(1,−γ)

XS1 = c(1, 0) + c(0,−γ)− c(1,−γ).

If the two assets have independent fundamentals, then 0 = XS1 < XS2.

In the supercritical case, the Gordon growth model fails, and we have

D/P1 = 0

XS1 = c(1− γ/2 + z∗, γ/2− z∗) + c(0,−γ)− c(1− γ/2 + z∗,−γ/2− z∗) (19)

where z∗ is the unique positive root of φ(z) ≡ ρ− c(1− γ/2 + z,−γ/2− z), so

ρ− c(1− γ/2 + z∗,−γ/2− z∗) = 0. (20)

If G1 ≥ G2, then D/P1 ≥ R1 − G1. If the assets have independent fundamentals, then

0 < XS1 < XS2.

Sketch proof. (Here I outline the proof for the small asset, which is the more interesting

of the two. See Appendix A.5 for the full proof.) The basic idea is that the behavior of

the integrals (4), (7) and (9) in the small-asset limit u → ∞ is determined only by the

residue at the minimal pole whose imaginary part is closest to zero, because poles with

larger imaginary parts are asymptotically irrelevant due to the eiuz term. I show this by

integrating around a contour which avoids all poles except for this minimal pole.

The key issue is the precise location of the minimal pole. In the case of the riskless

rate, the minimal pole of the integrand in (9) is at the minimal pole of Fγ(z), which lies at

(γ/2)i by standard properties of the Γ-function. In the case of the price-dividend ratio (4)

or expected return (7), the minimal pole of the integrand could occur at (γ/2)i, but there is

also the possibility that it occurs at the minimal zero of ρ−c(1−γ/2−iz,−γ/2+iz). Lemma

3 in Appendix A.3 shows that such a minimal zero must lie on the imaginary axis, at z∗i,
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Figure 10: The contour of integration in the subcritical and supercritical cases.

say. If there is such a zero, then z∗ is a solution to (20), and is unique by convexity of c(·, ·).
The question is whether z∗, if it exists, is larger or smaller than γ/2. In the subcritical

case, z∗ may or may not exist, but it certainly cannot be smaller than γ/2 because φ is

concave, and positive at z = 0 and at z = γ/2 by the finiteness and subcriticality conditions

respectively. So the minimal pole of the integrand occurs at (γ/2)i, and the desired result

follows on computing the residue there; this is the less interesting case. In the supercritical

case, φ(z) is now negative at z = γ/2 by the supercriticality condition (18). Therefore there

is a unique z∗ solving (20), by the intermediate value theorem and concavity of φ, and the

location of the minimal pole is at z∗i.

The two alternatives are illustrated in Figure 10, which indicates poles of Fγ(z) with

circles and marks the pole due to the zero of ρ−c(1−γ/2−iz,−γ/2+iz) with a cross. (Not

all poles are shown: for example, Fγ(z) has poles at (γ/2 +m)i for all nonnegative integer

m. There may also be other poles due to zeros of ρ− c(1− γ/2− iz,−γ/2 + iz); if so, they

must lie off the imaginary axis and have imaginary parts greater than z∗.) For the sake of

argument, consider the effect of increasing patience on the part of the representative agent,

i.e. decreasing ρ. Starting from a high value of ρ, z∗ is large (left panel). As ρ declines, the

cross indicating the pole at z∗i moves smoothly down the axis. After it crosses (γ/2)i, it

becomes the minimal pole (right panel), and there is a qualitative change in the behavior

of asset 1, which becomes supercritical.

Figures 10a and 10b also show the rectangular contours around which we integrate. As

N →∞, the integral along the base of the rectangle tends to the integral we want, and the

contribution of the other three sides becomes negligible.

The large asset’s valuation ratio and excess return, and the riskless rate, are determined
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only by the characteristics of the large asset’s dividend process, and by formulas that are

exactly analogous to those derived in Martin (2008).

The small asset is more interesting because there is no economic reason to impose the

constraint that its price-dividend ratio should be finite in the limit.7 If it is, in the subcritical

case, then the small asset obeys the Gordon growth formula, and earns no risk premium if

its dividends are independent of the large asset’s dividends (and hence of consumption).

In the supercritical regime, on the other hand, the small asset has an enormous valu-

ation ratio—reminiscent of Pástor and Veronesi (2003, 2006)—and one that is sensitively

dependent on its dividend share. As a result, when the large asset has bad news, the small

asset falls down the valuation curve, hence comoves. This means that the small asset earns

a strictly positive risk premium even if its fundamentals are independent of the large asset’s

fundamentals (and hence of consumption). Moreover, the expected return on the asset is

entirely due to expected capital gains, because the asset’s dividend yield is zero in the limit.

The next result refines the previous one by showing what happens near, not just at,

the limit. When z∗ > γ/2 + 1, the riskless rate, price-dividend ratio and excess return of

the small asset are approximately affine functions of s. Things are more interesting in the

supercritical case and in the nearly supercritical case in which γ/2 < z∗ < γ/2 + 1, so I now

restrict to these cases. The notation a
.

= b means “a equals b plus higher order terms in s”.

Proposition 7. The riskless rate is given, to leading order in s, by

Rf
.

= A1 +B1 · s.

In the nearly supercritical case, the dividend yield and excess return satisfy

D/P1
.

= A2 +B2 · s|z
∗−γ/2|

XS1
.

= A3 +B3 · s|z
∗−γ/2|.

In the supercritical case, the dividend yield and excess return are given by

D/P1
.

= B4 · s|z
∗−γ/2|

XS1
.

= A5 +B5 · s|z
∗−γ/2|

7In contrast, there is an economic reason to impose a finite price-consumption ratio in the limit. Since

P1/C = D1/(D1 +D2) ·P1/D1 = s ·P1/D1, the price-consumption ratio will tend to zero if P1/D1 tends to

infinity more slowly than s tends to zero. Appendix A.5 shows that this holds so long as ρ− c(0, 1− γ) > 0,

i.e., so long as the price-dividend ratio of the large asset is finite in the limit. This is one of the finiteness

assumptions in Table 1.
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where the constants Ai were given in Proposition 6, and the constants Bi are given in

Appendix A.5.1. Dividend yields are increasing in share, B2 > 0 and B4 > 0.

If the assets have independent fundamentals, then excess returns increase in share, too:

A3 = 0 and B3 > 0 in the nearly supercritical case, and A5 > 0 and B5 > 0 in the

supercritical case.

This result has three immediate implications. First, the exponent |z∗ − γ/2| is between

zero and one, so s|z
∗−γ/2| is much larger than s when s ≈ 0: its derivative with respect

to s is infinite at zero. Thus near the small-asset limit, the small asset’s price-dividend

ratio and risk premium are far more sensitive to changes in s than the riskless rate is.

In particular, changes in price-dividend ratio—which, mechanically, are associated with

changes in expected returns, since dividend growth is unforecastable—can be attributed

more specifically to changes in expected excess returns as opposed to changes in interest

rates. Cochrane (2005, p. 400) emphasizes that this is a feature of the data. Second, the

small asset’s price-dividend ratio is decreasing in its share, and so comoves positively in

response to shocks to the large asset’s dividend, no matter what we assume about the

dividend processes of the two assets or the correlation between the two. Finally, in the

supercritical case, the small asset’s log price-dividend ratio follows a random walk—more

precisely, a Lévy process. For, since st ∼ e−ut in the small-asset limit, we have

logP/D1t
.

= − logB4︸ ︷︷ ︸
constant

+ |z∗ − γ/2|ut. (21)

If log dividends follow Brownian motions, for example, then so does logP/D1,t. This is why

(19)—which can be rephrased as ER1 = c(1− γ/2 + z∗, γ/2− z∗)—takes the form it does:

by (21), it is expressing the fact that ER1 = logE
[
D1,t+1

D1,t

P1,t+1/D1,t+1

P1,t/D1,t

]
= logE

[
P1,t+1

P1,t

]
.
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Figure 11: The price-dividend ratio of a small asset, its excess return, and the riskless rate.

Figure 11 shows zoomed-in versions of some of the figures from Section 2.3.1, to exhibit
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these phenomena in the Brownian-motion-driven example considered there. This should

make it clear both that the supercritical case does not require extreme parameter values

and that the magnitudes of the effects are economically meaningful. To recap, the world

is symmetric, and the two assets are independent with 2% mean dividend growth and 10%

dividend volatility. The small asset is not nearly supercritical if γ = 1; is nearly supercritical

if γ = 2, 3 or 4; and is supercritical if γ = 5 or 6. To keep the graphs readable, I plot γ = 1, 4

and 5 as representatives of the three possibilities. As always, I adjust ρ so that the long

rate is 7%. In each case, the riskless rate is essentially constant over the range plotted.

When γ = 1, asset 1’s price-dividend ratio and excess return are effectively constant. When

γ = 4, the price-dividend ratio almost doubles (from 69 to 127) over the range plotted and

the excess return varies between about 25bp and 75bp. When γ = 5, the price-dividend

ratio explodes and the time-varying excess return remains above 1.5% even in the limit.

3 N assets

The basic approach is the same with N > 2 assets. The main technical difficulty lies in

calculating FN
γ (z) ≡ FN

γ (z1, . . . , zN−1), the generalization of Fγ(z) to the N -tree case. It

turns out that we have

FN
γ (z) =

Γ (γ/N + iz1 + iz2 + . . .+ izN−1)

(2π)N−1Γ(γ)
·
N−1∏
k=1

Γ (γ/N − izk) .

Before stating the main result, it will be useful to recall some old, and to define some

new, notation. Let ej be an N -vector with a one at the jth entry and zeros elsewhere, and

define the N -vectors y0 ≡ (y10, . . . , yN0)′ and γ ≡ (γ, . . . , γ)′, and the (N − 1)×N matrix

U and the (N − 1)-vector u by

U ≡


−1 1 0 · · · 0

−1 0 1
. . .

...
...

...
. . .

. . . 0

−1 0 · · · 0 1

 and u ≡


u2

u3

...

uN

 ≡ Uy0 =


y20 − y10

y30 − y10

...

yN0 − y10

 . (22)

In the two-asset case, the state variable was one-dimensional. With N assets, a natural

set of state variables is {si}i=1,...,N−1, where si = Di0/(D10 + · · · + DN0) is the dividend

share of asset i; it turns out, though, to be more convenient to work with the (N − 1)-

dimensional state vector u. The first entry of u is u2 = y20− y10, which corresponds to the
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state variable u of previous sections. More generally, uk = yk0− y10 is a measure of the size

of asset k relative to asset 1. Consistent with this notation, I write u1 ≡ y10 − y10 = 0 and

define the N -vector u+ ≡ (u1, u2, . . . , uN )′ = (0, u2, . . . , uN )′ to make some formulas easier

to read.

The following Proposition generalizes earlier integral formulas to the N -asset case. All

integrals are over RN−1. The condition that ensures finiteness of the price of asset j is that

ρ− c(ej − γ/N) > 0. I assume that this inequality holds for all j.

Proposition 8. The price-dividend ratio on asset j is

P/D = e−γ
′u+/N (eu1 + · · ·+ euN )γ

∫
FN
γ (z)eiu

′z

ρ− c(ej − γ/N + iU ′z)
dz.

Defining the expected return by ERdt ≡ E(dP +Ddt)/P , we have

ER =
Φ

P/D
+D/P,

where

Φ =
∑
m

(
γ

m

)
e(m−γ/N)′u+

∫
FN
γ (z)eiu

′zc(ej +m− γ/N + iU ′z)

ρ− c(ej − γ/N + iU ′z)
dz.

The sum is over all vectors m = (m1, . . . ,mN )′ whose entries are non-negative integers

that add up to γ. I write
(
γ
m

)
for the multinomial coefficient γ!/(m1! · · ·mN !).

The zero-coupon yield to time T is

Y (T ) = ρ− 1

T
log

[
e−γ

′u+/N (eu1 + · · ·+ euN )γ
∫

FN
γ (z)eiu

′zec(−γ/N+iU ′z)T dz

]
.

The riskless rate is

r = e−γ
′u+/N (eu1 + · · ·+ euN )γ

∫
FN
γ (z)eiu

′z
[
ρ− c(−γ/N + iU ′z)

]
dz.

These formulas can be expressed in terms of the dividend shares {si} by making the

substitution uk = log(sk/s1).

Unfortunately, I have not been able to make any further analytical progress from these

results, so I now resort to numerical evaluation of these integral formulas in an example

with N = 3 trees. This is the largest N that can easily be represented graphically. I use

the calibration of Section 2.3.2 with independent and symmetric fundamentals, γ = 4, and

ρ set so that the long rate is 7%, as before.
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Figure 12 shows three contour plots on the unit simplex. At the each corner of the

simplex, one asset is dominant, N = 1. The top corner represents the state (s1, s2, s3) =

(1, 0, 0); the bottom left corner represents (s1, s2, s3) = (0, 1, 0); and the bottom right corner

represents (s1, s2, s3) = (0, 0, 1). Along the edges, two assets are dominant, N = 2. Light

regions represent larger values and dark regions represent smaller values.

Figure 12a shows the riskless rate. The contours indicate riskless rates of 8%, 6%, . . . ,−2%,

radiating outwards from the center. The figure is symmetric because the calibration is sym-

metric. As in the two-asset case, the riskless rate is highest in the middle, where the three

assets have the same size, and lowest in the corners, where the economy is dominated by

just one asset. Along the edges, we have copies of Figure 9a.

Figure 12b plots asset 1’s excess return over the simplex. The contours indicate excess

returns of 1%, 2%, . . . , 8%. Since the calibration is symmetric, we can also read off the

excess returns of assets 2 and 3 from the figure, by relabelling appropriately. If asset 1 is

dominant, it has a high risk premium, and as its share declines, its risk premium declines;

this is familiar. But as asset 1 becomes small, two distinct regimes emerge. If the economy

is reasonably well balanced, in the sense that assets 2 and 3 are of roughly similar size, then

the riskless rate is fairly high. In this situation, asset 1’s risk premium tends to zero as its

share approaches zero. But towards either of the bottom corners, where the economy is

unbalanced, the riskless rate is low—lower than asset 1’s mean dividend growth rate—and

asset 1’s valuation is high and sensitively dependent on dividend news for whichever asset

dominates the economy. As a result of this endogenous positive comovement, it requires a

sizeable risk premium even though its dividend is uncorrelated with consumption growth.

This effect is enhanced because of disasters: when the large asset suffers a disaster, the

small asset also suffers a “valuation disaster”. I will refer to the two regimes as subcritical

and supercritical, respectively, by analogy with Section 2.4. A new feature that arises once

N > 2 is that an asset can be either subcritical or supercritical depending on where we are

in the state space.

Figure 12c plots asset 1’s price-dividend ratio. The contours are at price-dividend ratios

of 14, 17, 20, . . . , 35. The price-dividend ratio is lowest between the top corner and the mid-

dle of the diagram, where the riskless rate is high because the world is well balanced and the

risk premium on asset 1 is high because it is relatively large. As asset 1 becomes dominant,

towards the top corner, the price-dividend ratio increases slightly from its minimum as the

riskless rate drops more rapidly than asset 1’s risk premium rises. When asset 1 is very

small, there are two possibilities, as noted in the previous paragraph. In the subcritical
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regime in which assets 2 and 3 are well-balanced, asset 1’s price-dividend ratio increases

towards a finite limit as its share and risk premium tend to zero. But in the supercritical

regime in which one of assets 2 or 3 dominates the market, so that the riskless rate is low,

asset 1’s price-dividend ratio can grow unboundedly as its share approaches zero, which

is why no contours are plotted near the bottom corners. Along the bottom edge of the

simplex, therefore, asset 1’s dividend yield and excess return move in opposite directions as

it shifts from one regime to the other.

Asset 2 Asset 3

Asset 1

(a) Riskless rate

Asset 2 Asset 3

Asset 1

(b) Asset 1’s excess return

Asset 2 Asset 3

Asset 1

(c) Asset 1’s P/D

Figure 12: The riskless rate, and asset 1’s excess return and price-dividend ratio.

The dependence of asset 1’s price-dividend ratio on the state variable generates en-

dogenous overreaction and underreaction to own-cashflow news, and positive or negative

comovement in response to cashflow news of other assets. Figure 13a shows how asset 1’s

price responds to a 1% shock to its own dividend in different regions of the simplex. The

contours indicate price increases of 0.5%, 0.6%, . . . , 1.2%. The thick dashed contour indi-

cates points at which the price increases by exactly 1%, i.e. at which valuation ratios remain

constant. When asset 1 is large—above this contour—it overreacts to own-cashflow news.

When it is small, it underreacts to cashflow news, particularly in the supercritical regime

in which its price-dividend ratio declines rapidly as its dividend share increases.

Figure 13b shows how comovement arises, and specifically how asset 2’s price responds

to the 1% dividend shock to asset 1 (though because the calibration is symmetric, the figure

can be used to work out how any of the three assets responds to any other). The contours

indicate price increases of −0.3%,−0.2%, . . . , 0.7%. The thick dashed contour indicates

points at which asset 2’s price does not respond to a dividend shock for asset 1. If asset 1

is sufficiently large—at points above the contour—asset 2’s price increases in response to

good news for asset 1, i.e. there is positive comovement. If asset 1 is small, though, asset 2’s

price moves in the opposite direction following a shock to asset 1’s dividend. This negative
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comovement effect is strongest towards the bottom right corner of the simplex, where asset

2 is itself small and hence in its own supercritical regime.

Figure 13c puts everything together, plotting the correlation between the returns of

assets 1 and 2. This is the correlation due to the Brownian component of the assets’

returns, as would be calculated during normal times. The contours indicate correlations of

0% (the thick dashed contour), 10%, 20%, . . . , 70%. If both assets 1 and 2 are very small, at

the bottom right of the simplex, they are positively correlated with one another. This is not

because they comove in response to each other’s dividend shocks—on the contrary, Figure

13b shows that they comove negatively in response to each other’s shocks—but because

they both comove strongly with the dominant asset 3. As asset 3 becomes less dominant

this second effect weakens, and we move into a region in which the correlation between

assets 1 and 2 is negative, reaching a minimum of about −7%. In the middle of the figure,

where all three assets have the same size, assets 1 and 2 have positive correlation. This is

intuitive: the riskless rate attains its maximum at the center of the figure, so is constant

near it, to first order. On the other hand, dividend shocks do have first order effects on risk

premia in the familiar way. Thus a positive dividend shock for asset 1 drives down asset 2’s

share, depressing its required risk premium and leading to an appreciation in its valuation

ratio, and hence to positive comovement. The same logic applies, mutatis mutandis, in the

middle of the left-hand edge. Finally, if either asset 1 or asset 2 is dominant, the correlation

is highest of all, rising above 70%. In this regime, the risk premium effect continues to

operate, but there are now riskless rate effects that pull in opposite directions. Without

loss of generality, suppose that asset 1 is large. Positive dividend news for asset 1 makes

the world more unbalanced, driving the riskless rate down and amplifying the positive

comovement of asset 2. On the other hand, positive dividend news for asset 2 pushes the

riskless rate up, leading to negative comovement of asset 1. The first effect is quantitatively

more important, however, so the overall result is that the correlation is highest of all when

one of the two assets is dominant.

Using the information in Figures 13a and 13b, the simplex can be divided into three

regions: if asset 1 is sufficiently dominant, it overreacts to own-cashflow news, and other

assets comove positively with it; at the other extreme, if asset 1 is sufficiently small, it

underreacts to own-cashflow news, and other assets comove negatively; in between, asset

1 underreacts to own-cashflow news and other assets comove positively with it. This last

regime applies when all three assets are the same size, in the middle of the simplex, where

the riskless rate is constant to first order.
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Asset 2 Asset 3

Asset 1

(a) Asset 1’s response

Asset 2 Asset 3

Asset 1

(b) Asset 2’s response

Asset 2 Asset 3

Asset 1

(c) Correlation in returns

Figure 13: The response of assets 1 and 2 to a shock to asset 1’s dividend, and the correlation

between the returns of assets 1 and 2. Asset 1 overreacts (underreacts) at points above

(below) the dashed line in panel (a). Asset 2 comoves positively (negatively) at points

above (below) the dashed line in panel (b). Correlation is negative in the dark band in

panel (c), and positive elsewhere.

It is natural to ask what happens for larger N . How large must asset 1 be for other

assets to comove with it? And how large must it be to overreact to its own cashflow

news? In the N = 2 case, the issues of comovement and overreaction are intertwined: in

a symmetric calibration, if an asset experiences overreaction when its share is larger than

s—where s is the point at which P1/D1(s) achieves its minimum, s = 0.608 in the present

calibration—then other assets will comove with it when its share is larger than 1− s.

Comovement if. . . Overreaction if. . .

N s1 ≥ rel. size ≥ s1 ≥ rel. size ≥
2 0.39 0.64 0.61 1.54

3 0.26 0.71 0.47 1.80

4 0.20 0.74 0.41 2.06

5 0.16 0.75 0.37 2.34

6 0.13 0.76 0.35 2.66

Table 2: Regions in which (positive) comovement and overreaction occur.

For N = 3 or larger, this tight link between overreaction and positive comovement is

broken. Table 2 shows the corresponding results for N up to 6. In each case, I assume

that asset 1 has dividend share s1, and that all other assets are equally large, with dividend

shares (1−s1)/(N−1). The column labelled “rel. size” shows the ratio of asset 1’s dividend
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share to the dividend share of (any) one of the other assets, i.e. (N − 1)s1/(1 − s1). We

have already seen that positive comovement and underreaction are the norm at the center

of the state space. Indeed, positive comovement can occur even if asset 1 is significantly

smaller than all the other assets. On the other hand, for an asset to overreact it must be

significantly larger than all the other assets, and the relative amount by which it must be

larger increases fairly rapidly with N .

Different calibrations deliver very similar results. In the no-jump calibration the critical

values of s1 are within 0.01 of those reported in Table 2. The same is true if we introduce

correlation between dividends in such a way that that consumption volatility in the middle,

where all assets have equal share, is held constant as N increases. On the other hand, the

critical values at which comovement and overreaction take place are sensitive to γ. Lower

γ reduces the variability of the riskless rate by more than it reduces the variability of risk

premia, so underreaction and positive comovement occur over more of the simplex.

Large
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5 10 15 20

1

2
3

5
7

10

(a) Dividends

Large

Small

5 10 15 20

20

15

(b) Price-dividend ratios

Large

Small

5 10 15 20

100

50

20
30

15

150

70

(c) Prices

Figure 14: A 20-year sample path with initial dividends in proportions 9:3:1.

To make things more vivid, Figure 14 shows a 20-year sample path realization in the

three-asset example, starting from a state of the world in which the assets have dividends

of 9, 3, and 1 respectively. There are three disasters of equal severity over the sample

period, one for each asset. These disasters provide a particularly clean illustration of the

mechanism, since they isolate the effect of a dividend shock to a single asset. When the small

asset experiences its dividend disaster, its own price drops sharply, though it underreacts

since its price-dividend ratio increases. The medium and large assets comove negatively,

and hence experience modest upward price jumps. When the medium-sized asset has a

disaster, the same qualitative features occur, though with more quantitative impact than

in the case of the small asset disaster. When the large asset has a disaster, all the assets

comove positively, and experience large downward price jumps.

Figure 15 plots realized return correlations over the sample path, using 1-year rolling
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Figure 15: Realized daily return correlations calculated from rolling 1-year horizons.

windows. The return correlation between large and medium, and between large and small,

is on the order of 0.5 in normal times. In each case, this is because the positive comovement

associated with shocks to the larger asset’s dividend outweighs the negative comovement

associated with shocks to the smaller asset’s dividend. When the smaller asset experiences

a disaster, however, the negative comovement comes to the fore, and we see the correlation

jump down below zero. When the larger asset experiences a disaster, both the other assets

move with it, and correlations spike close to one. Finally, the correlation between the

medium and small assets is close to zero in normal times due to two offsetting effects: the

two assets experience negative comovement in response to each other’s cashflow shocks, but

comove in response to the large asset’s shocks. The former effect dominates when either

the small or medium asset experiences a disaster, so correlations jump below zero; and the

latter effect dominates when the large asset experiences a disaster, so correlations jump

up. Such spikes in correlations are a familiar feature of the data, and here they arise in an

example in which the correlation in fundamentals is constant—at zero—at all times.

4 Conclusion

This paper generalizes the model of Cochrane, Longstaff and Santa-Clara (2008) in three

directions: it allows for power utility (rather than log), for dividends to follow exponential

Lévy processes (rather than geometric Brownian motions), and for multiple assets (rather

than just two). Each of these directions introduces interesting new types of behavior. Once

risk aversion is higher than one, the CAPM fails, and the concern expressed by Cochrane,

Longstaff and Santa-Clara that “the magnitudes are small” is lessened, because many of

the quantities of interest increase faster than linearly in γ. When we allow for jumps, we

step outside the familiar framework in which the ICAPM and consumption-CAPM hold.

The riskless rate and equity premium puzzles can be avoided; more interestingly, jumps
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spread across assets, and thereby provide a new channel for high risk premia even in assets

that are not themselves subject to jumps in fundamentals. With more than two assets,

we can untangle effects that cannot be separated when N = 2. For example, comovement

and overreaction are two sides of the same coin when N = 2, but not when N > 2. It

also becomes possible to differentiate between assets on both the size and value dimension;

I explore this possibility in the online appendix. Jumps and multiple assets also interact

in an interesting way, leading to spikes in correlations in both directions, as comovement

effects that would be blurred together in Brownian-motion-driven models are isolated at

the instant of a jump.

The solution method presented here is very different to that of Cochrane, Longstaff and

Santa-Clara (2008). Their approach relies in part on an inspired guess-and-verify solution to

an ODE, and in part on a series of miraculous identities between integrals. An unmotivated

identity does occur at one point in this paper—in Step 3 of Appendix A.4, where I derive

the closed form for the Brownian motion case—but in other respects my approach is (in a

good sense) more mechanical and therefore more amenable to generalization. For example,

Martin (2010) allows for imperfect substitution between the goods produced by the two

trees, so that terms-of-trade effects enter the picture, and Chen and Joslin (2011) show how

to handle the case with non-i.i.d. dividend growth. In a different direction, the approach

taken here can be adapted to compute asset price behavior in an economy with two agents

with differing risk aversion and one tree that is potentially subject to jumps, generalizing

Wang (1996) and Longstaff and Wang (2008) (and closely related to Dumas (1989)); or to

solve for asset prices with two trees and two agents with differing risk aversion.

There are two particularly obvious areas to work on. The riskless rate fluctuates signif-

icantly in the model. If the model could be generalized from power utility to Epstein-Zin

(1989) preferences then this riskless rate variation could be dampened by letting the elastic-

ity of intertemporal substitution exceed 1/γ. An alternative view—which calls for a more

ambitious extension of the model, allowing at the very least for goods to be stored over

time—is that the riskless rate is stable not for reasons related to preferences, but for rea-

sons related to technologies. In each case, it is likely that the effect of reducing riskless rate

variation would be to enlarge the region in which underreaction and positive comovement

take place. A second question is whether the N -asset integral formulas can be solved ex-

plicitly in special cases. It is desirable to try to do so because these formulas are subject to

the curse of dimensionality, so become computationally intractable as N increases.
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A The two-asset case

A.1 The expectation

This section contains a calculation used in the proof of Proposition 1. The goal is to evaluate

E ≡ E

(
eα1ỹ1t+α2ỹ2t[

ey10+ỹ1t + ey20+ỹ2t
]γ
)

= e−γ/2(y10+y20) · E

(
e(α1−γ/2)ỹ1t+(α2−γ/2)ỹ2t

[2 cosh((y20 − y10 + ỹ2t − ỹ1t)/2)]γ

)

for general α1, α2, γ > 0. A word or two is in order to explain why it is natural to rearrange

E like this. First, with power utility, valuation ratios should be unaffected if all assets are

scaled up in size proportionally, so it is natural to look for a state variable like y20 − y10.

Second, a function must decline fast towards zero as it tends to plus or minus infinity in

order to possess a Fourier transform. Thus it is natural to reshape the term inside the

expectation into an exponential term in ỹ1t and ỹ2t, which is easy to handle with the CGF,

and a term in [1/ cosh(·)]γ , which is well behaved under the Fourier transform. Specifically,

1/ [2 cosh(u/2)]γ has a Fourier transform, Fγ(z), that can be found in closed form for integer
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γ > 0, and satisfies
1

[2 cosh(u/2)]γ
=

∫ ∞
−∞

eiuzFγ(z) dz. (23)

We have, then,

E = e−γ(y10+y20)/2 E
[
e(α1−γ/2)ỹ1t+(α2−γ/2)ỹ2t

∫ ∞
−∞

Fγ(z)eiz(y20−y10)eiz(ỹ2t−ỹ1t) dz

]
= e−γ(y10+y20)/2

∫ ∞
−∞

Fγ(z)eiz(y20−y10)ec(α1−γ/2−iz,α2−γ/2+iz)t · dz . (24)

By the Fourier inversion theorem, definition (23) implies that

Fγ(z) =
1

2π

∫ ∞
−∞

e−iuz

(2 cosh(u/2))γ
du =

1

2π

∫ 1

0
tγ/2−iz(1− t)γ/2+iz dt

t(1− t)
,

using the substitution u = log [t/(1− t)]. This is a Dirichlet surface integral that can be

evaluated in terms of Γ-functions, giving (5): see Andrews, Askey and Roy (1999, p. 34).

An alternative representation of Fγ(z) will also be useful. By contour integration,

one can show that F1(z) = 1
2 sechπz and F2(z) = 1

2z cosechπz. From these two facts,

expression (5), and the fact that Γ(x) = (x− 1)Γ(x− 1), we have, for positive integer γ,

Fγ(z) =


z cosech(πz)

2(γ − 1)!
·
γ/2−1∏
n=1

(
z2 + n2

)
for even γ ,

sech(πz)

2(γ − 1)!
·

(γ−1)/2∏
n=1

(
z2 + (n− 1/2)2

)
for odd γ .

(25)

A.2 Expected returns and interest rates

Given a jump-diffusion y, with dy = µdt + AdZ + JdN , there is a simple formula for

E d(ew
′y), where w is a constant vector. First, define x ≡ w′y; then dx = w′µdt +

w′AdZ +w′JdN . We seek E d(ex). By Itô’s formula for jump-diffusions, we have

d(ex) = ex
[(
w′µ+

1

2
w′Σw

)
dt+w′AdZ +

(
ew
′J − 1

)
dN

]
where Σ ≡ AA′; and so, after taking expectations,

E d(ew
′y) = ew

′y ·
[
w′µ+

1

2
w′Σw + ω

(
E ew

′J − 1
)]
dt = ew

′y · c(w)dt . (26)

If y is a general Lévy process, this holds by Proposition 8.20 of Cont and Tankov (2004).

For convenience, I write, throughout this section,

h(z) ≡ Fγ(z)

ρ− c(α1 − γ/2− iz, α2 − γ/2 + iz)
and

(
n

m

)
≡ n!

m!(n−m)!
.
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Introducing this notation,

Pα =

∫ ∞
−∞

h(z) · (ey10 + ey20)γ e(α1−γ/2−iz)y10+(α2−γ/2+iz)y20 dz

=

γ∑
m=0

(
γ

m

)∫ ∞
−∞

h(z) · ewm(z)·y dz , (27)

where wm(z) ≡ (α1 − γ/2 +m− iz, α2 + γ/2−m+ iz)′. Using (26),

E(dPα) =

{
γ∑

m=0

(
γ

m

)∫ ∞
−∞

h(z) · ewm(z)·yc [wm(z)] dz

}
· dt.

Dividing by (27) and rearranging, the expected capital gain is given by the formula

E dPα
Pα

=

γ∑
m=0

(
γ

m

)
e−mu

∫ ∞
−∞

h(z)eiuz · c(wm(z)) dz

γ∑
m=0

(
γ

m

)
e−mu

∫ ∞
−∞

h(z)eiuz dz

· dt.

Now for interest rates. From the Euler equation, we have

BT = E

[
e−ρT

(
CT
C0

)−γ]
= e−ρTCγ0 E

[
1

(D1T +D2T )γ

]
.

Using the result of Appendix A.1, we find that

BT = e−ρT (ey10 + ey20)γ e−γ(y10+y20)/2

∫ ∞
−∞

eiz(y20−y10)Fγ(z)ec(−γ/2−iz,−γ/2+iz)T dz

= e−ρT [2 cosh(u/2)]γ
∫ ∞
−∞

Fγ(z)eiuz · ec(−γ/2−iz,−γ/2+iz)T dz ,

from which (8) follows, and hence also (9), by l’Hôpital’s rule.

The function ρ − c(−γ/2 − iz,−γ/2 + iz), considered as a function of z ∈ C, has a

stationary point on the imaginary axis. Call it z∗ = is∗, where s∗ ∈ R; then s∗ maximizes

ρ− c(−γ/2 + s,−γ/2− s). Poles of the integrand in (8) occur at the poles of Fγ(z): that

is, at ±(γ/2)i,±(γ/2 + 1)i, and so on. If |s∗| < γ/2 then the contour of integration in

(8) (i.e. the real axis) can be deformed to pass through is∗ without crossing a pole, and

therefore without altering the value of the integral, by Cauchy’s theorem. It follows that

Y (∞) = ρ− c(−γ/2 + s∗,−γ/2− s∗) by the method of steepest descent.

If |s∗| ≥ γ/2, then deforming the contour of integration to pass through is∗ requires

a pole to be crossed, and hence a residue to be taken into account. This residue, rather

than the precise location of is∗, turns out to dictate the behavior of the long end of the
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yield curve. If s∗ > γ/2, for example, the integral to be evaluated picks up an extra term

proportional to e−[ρ−c(0,−γ)]T . Since ρ− c(−γ/2 + s∗,−γ/2− s∗) is larger than ρ− c(0,−γ)

by construction of s∗, the term in e−[ρ−c(−γ/2+s∗,−γ/2−s∗)]T is irrelevant in the limit, and

Y (∞) = ρ− c(0,−γ). Moreover, in this situation, concavity of ρ− c(−γ/2 + s,−γ/2− s)
implies that ρ− c(0,−γ) > ρ− c(−γ/2 + s,−γ/2− s) for all s < γ/2. An almost identical

argument shows that if s∗ < −γ/2, we have Y (∞) = ρ−c(−γ, 0), and that in this situation

ρ− c(−γ, 0) > ρ− c(−γ/2 + s,−γ/2− s) for all s > −γ/2. Equation (10) follows.

A.3 Consequences of the finiteness condition

This section develops two consequences of the finiteness condition ρ−c(α1−γ/2, α2−γ/2) >

0, which is assumed to hold for the values of α1 and α2 discussed in Table 1.

Lemma 1. For z1, z2 ∈ C, we have Re c(z1, z2) ≤ c(Re z1,Re z2). The inequality is strict

if z1 and z2 have nonzero imaginary parts and ỹ1 has uncountable essential support.

Proof. For any z ∈ C, Re log z = log |z|. It follows that Re c(z1, z2) = log
∣∣E ez1ỹ11+z2ỹ21

∣∣ ≤
logE

∣∣ez1ỹ11+z2ỹ21
∣∣ = logE eRe z1·ỹ11+Re z2·ỹ21 = c(Re z1,Re z2). The inequality is strict unless

ez1ỹ11+z2ỹ21 is real almost surely or imaginary almost surely, which is not the case if z1 and

z2 have nonzero imaginary parts and ỹ1 has uncountable essential support.

For ỹ1 to have uncountable essential support it is sufficient, but not necessary, that one

of the dividend processes has a Brownian component or is subject to jumps witih continuous

size distribution. The only remotely natural example in which the inequality in Lemma 1

is not strict is if log dividends follow a pure jump process with jumps of fixed size.

Lemma 2. For all z ∈ R, we have ρ− Re [c(α1 − γ/2− iz, α2 − γ/2 + iz)] > 0.

Proof. From Lemma 1, Re c(α1 − γ/2 − iz, α2 − γ/2 + iz) ≤ c(α1 − γ/2, α2 − γ/2), so

ρ− Re c(α1 − γ/2− iz, α2 − γ/2 + iz) ≥ ρ− c(α1 − γ/2, α2 − γ/2) > 0.

Definition 4. Let f be a meromorphic function. A zero (or pole) of f is minimal if it lies

in the upper half-plane and no other such zero (or pole) has smaller imaginary part.

Lemma 2 shows that ρ− c(α1 − γ/2− iz, α2 − γ/2 + iz) has no zeros on the real axis.

The next result documents an important property of its minimal zero.

Lemma 3. If ỹ1 has uncountable essential support, then the minimal zero of ρ − c(α1 −
γ/2− iz, α2 − γ/2 + iz), if it exists, is unique and lies on the imaginary axis.
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Proof. Let p + qi be a minimal zero, and suppose (aiming for a contradiction) that p 6= 0.

Lemma 1 applies with strict inequality, so ρ−c(α1−γ/2+q, α2−γ/2−q) < 0. But then the

finiteness condition and the intermediate value theorem imply that there exists q2 ∈ (0, q)

such that ρ− c(α1 − γ/2 + q2, α2 − γ/2− q2) = 0. If so, q2i is a zero with q2 < q, so p+ qi

is not minimal, giving the desired contradiction.

A.4 The Brownian motion case

In the Brownian motion case, c(θ1, θ2) = µ1θ1 +µ2θ2 + 1
2σ11θ

2
1 +σ12θ1θ2 + 1

2σ22θ
2
2. There are

two solutions to the equation ρ−c(α1−γ/2−iz, α2−γ/2+iz) = 0, each of which lies on the

imaginary axis. One—call it λ1i—lies in the upper half-plane; the other—call it λ2i—lies in

the lower half-plane. We can rewrite ρ−c(α1−γ/2− iz, α2−γ/2+ iz) = B(z−λ1i)(z−λ2i)

for B > 0, λ1 > 0, λ2 < 0 given in the main text. The aim, then, is to evaluate

I ≡
∫ ∞
−∞

eiuzFγ(z)

B(z − λ1i)(z − λ2i)
dz , (28)

in terms of which the price-dividend ratio is P/D = [2 cosh(u/2)]γ · I.

The proof of Proposition 4 is somewhat involved, so I have divided it into several steps.

Step 1 starts from the assumption that the state variable u is positive and shows that the

integral (28) can be calculated using the residue theorem. Steps 2 and 3 carry out these

calculations and simplify. Step 4 extends the result to negative u.

Step 1. Let u > 0. Consider the case in which γ is even. Let Rn ≡ n + 1/2, where n

is an integer. Define the large semicircle Ωn to be the semicircle whose base lies along the

real axis from −Rn to Rn and which has a semicircular arc (ωn) passing through the upper

half-plane from Rn through Rni and back to −Rn. I will first show that

I = lim
n→∞

∫
Ωn

eiuzFγ(z)

B(z − λ1i)(z − λ2i)
dz . (29)

Then, from the residue theorem, it will follow that

I = 2πi ·
∑

Res

{
eiuzFγ(z)

B(z − λ1i)(z − λ2i)
; zp

}
, (30)

where the sum is taken over all poles zp in the upper half-plane.

The first step is to establish that (29) holds. The right-hand side is equal to

lim
n→∞

∫ Rn

−Rn

eiuzFγ(z)

B(z − λ1i)(z − λ2i)
dz︸ ︷︷ ︸

In

+

∫
ωn

eiuzFγ(z)

B(z − λ1i)(z − λ2i)
dz︸ ︷︷ ︸

Jn
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The integral In tends to I as n → ∞. The aim, then, is to establish that the second

term Jn tends to zero as n → ∞. Along the arc ωn, we have z = Rne
iθ where θ varies

between 0 and π. At this point it is convenient to work with the representation of Fγ(z)

of equation (25). Substituting from (25), we have

Jn =

∫ π

0

eiuRn cos θ−uRn sin θP (Rne
iθ)

Q(Rneiθ)
(
eπRn(cos θ+i sin θ) − e−πRn(cos θ+i sin θ)

) ·Rnieiθ dθ
with P (·) and Q(·) polynomials.

To show that Jn tends to zero as n tends to infinity, I separate the range of integration

[0, π] into two parts: [π/2− δ, π/2 + δ] and its complement in [0, π]. Here δ will be chosen

to be extremely small. First, consider

J (1)
n ≡

∣∣∣∣∣
∫ π/2+δ

π/2−δ

P (Rne
iθ)eiuRn cos θ−uRn sin θRnie

iθ

Q(Rneiθ)
(
eπRn(cos θ+i sin θ) − e−πRn(cos θ+i sin θ)

) dθ∣∣∣∣∣
≤

∫ π/2+δ

π/2−δ

∣∣∣∣P (Rne
iθ)

Q(Rneiθ)

∣∣∣∣ e−uRn sin θRn∣∣eπRn(cos θ+i sin θ) − e−πRn(cos θ+i sin θ)
∣∣ dθ

Pick δ sufficiently small that∣∣∣eπRn(cos θ+i sin θ) − e−πRn(cos θ+i sin θ)
∣∣∣ ≥ 2− ε

for all θ ∈ [π/2 − δ, π/2 + δ]; ε is some very small number close to but greater than zero.

This is possible because the left-hand side is continuous, and equals 2 when θ = π/2. Then,

J (1)
n ≤

∫ π/2+δ

π/2−δ

∣∣∣∣P (Rne
iθ)

Q(Rneiθ)

∣∣∣∣ e−uRn sin θRn
2− ε

dθ (31)

Since (i) we can also ensure that δ is small enough that sin θ ≥ ε for θ in the range

of integration; (ii) |P (Rne
iθ)| ≤ P2(Rn), where P2 is the polynomial obtained by taking

absolute values of the coefficients in P ; (iii) Q(Rne
iθ) tends to infinity as Rn becomes large;

and (iv) decaying exponentials decay faster than polynomials grow, in the sense that for

any positive k and λ, xke−λx → 0 as x → ∞, x ∈ R, we see, finally, that the right-hand

side of (31), and hence J
(1)
n , tends to zero as n→∞.

It remains to be shown that

J (2)
n ≡

∣∣∣∣∣
∫

[0,π/2−δ]∪[π/2+δ,π]

P (Rne
iθ)eiuRn cos θ−uRn sin θRnie

iθ

Q(Rneiθ)
(
eπRn(cos θ+i sin θ) − e−πRn(cos θ+i sin θ)

) dθ∣∣∣∣∣
is zero in the limit. Since δ > 0, for all θ in the range of integration we have that | cos θ| ≥
ζ > 0, for some small ζ. We have

J (2)
n ≤

∫
[0,π/2−δ]∪[π/2+δ,π]

∣∣∣∣P (Rne
iθ)

Q(Rneiθ)

∣∣∣∣ e−uRn sin θRn∣∣eπRn(cos θ+i sin θ) − e−πRn(cos θ+i sin θ)
∣∣ dθ .
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Now,∣∣∣eπRn(cos θ+i sin θ) − e−πRn(cos θ+i sin θ)
∣∣∣ ≥ ∣∣∣∣∣∣eπRn(cos θ+i sin θ)

∣∣∣− ∣∣∣e−πRn(cos θ+i sin θ)
∣∣∣∣∣∣

= eπRn| cos θ| − e−πRn| cos θ|

≥ eπRnζ − e−πRnζ

for all θ in the range of integration. So,

J (2)
n ≤

∫
[0,π/2−δ]∪[π/2+δ,π]

∣∣∣∣P (Rne
iθ)

Q(Rneiθ)

∣∣∣∣ e−uRn sin θRn
eπRnζ − e−πRnζ

dθ

≤
∫

[0,π/2−δ]∪[π/2+δ,π]

∣∣∣∣P (Rne
iθ)

Q(Rneiθ)

∣∣∣∣ Rn
eπRnζ − e−πRnζ

dθ

which tends to zero as n tends to infinity.

The case of γ odd is almost identical. The only important difference is that we take

Rn = n (as opposed to n+ 1/2) before allowing n to go to infinity. The reason for doing so

is that we must take care to avoid the poles of Fγ(z) on the imaginary axis.

Step 2. From now on, I revert to the definition of Fγ(z) given in (5). The integrand is

eiuzΓ(γ/2− iz)Γ(γ/2 + iz)

2π ·B · Γ(γ) · (z − λ1i)(z − λ2i)
, (32)

which has poles in the upper half-plane at λ1i and at points z such that γ/2 + iz = −n for

integers n ≥ 0, since the Γ-function has poles at the negative integers and zero. Combining

the two, (32) has poles at λ1i and at (n+ γ/2)i for n ≥ 0.

We can calculate the residue of (32) at z = λ1i directly, using the fact that if f(z) =

g(z)/h(z) has a pole at a, and g(a) 6= 0, h(a) = 0, and h′(a) 6= 0, then Res {f(z); a} =

g(a)/h′(a). The residue at λ1i is therefore

e−λ1uΓ(γ/2 + λ1)Γ(γ/2− λ1)

2πi ·B · Γ(γ) · (λ1 − λ2)
. (33)

For integer n ≥ 0, Γ(z) has residue (−1)n/n! at z = −n, so the residue of (32) at

(n+ γ/2)i is

−e−u(n+γ/2) · Γ(γ + n) · (−1)n

n!

2πi ·B · Γ(γ) · (n+ γ/2− λ1)(n+ γ/2− λ2)
(34)

Substituting (33) and (34) into (30), we find

I =
e−λ1uΓ(γ/2 + λ1)Γ(γ/2− λ1)

B · Γ(γ) · (λ1 − λ2)
− e−γu/2

∞∑
n=0

(−e−u)
n · Γ(γ + n) · 1

n!

B · Γ(γ) · (n+ γ/2− λ1)(n+ γ/2− λ2)
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Since | − e−u| < 1 under the assumption that u > 0, which for the time being is

still maintained, we can use the series definition of Gauss’s hypergeometric function (11),

together with the fact that Γ(γ + n)/Γ(γ) = γ(γ + 1) · · · (γ + n− 1), to obtain

I =
e−λ1u

B(λ1 − λ2)

Γ(γ/2− λ1)Γ(γ/2 + λ1)

Γ(γ)
+

+
e−γu/2

B(λ1 − λ2)

[
1

γ/2− λ2
F
(
γ, γ/2− λ2; 1 + γ/2− λ2;−e−u

)
−

− 1

γ/2− λ1
F
(
γ, γ/2− λ1; 1 + γ/2− λ1;−e−u

)]
(35)

Step 3. A further simplification follows from the fact that

e−λ1u
Γ(γ/2− λ1)Γ(γ/2 + λ1)

Γ(γ)
=

eγu/2

γ/2 + λ1
F (γ, γ/2 + λ1; 1 + γ/2 + λ1;−eu) +

+
e−γu/2

γ/2− λ1
F
(
γ, γ/2− λ1; 1 + γ/2− λ1;−e−u

)
,

which follows from equation (1.8.1.11) of Slater (1966, pp. 35–36). Using this in (35),

I =
1

B(λ1 − λ2)

[
eγu/2

γ/2 + λ1
F (γ, γ/2 + λ1; 1 + γ/2 + λ1;−eu) +

+
e−γu/2

γ/2− λ2
F
(
γ, γ/2− λ2; 1 + γ/2− λ2;−e−u

)]
.

It follows that

P/D1(u) =
[2 cosh(u/2)]γ

B(λ1 − λ2)

[
eγu/2

γ/2 + λ1
F (γ, γ/2 + λ1; 1 + γ/2 + λ1;−eu) +

+
e−γu/2

γ/2− λ2
F
(
γ, γ/2− λ2; 1 + γ/2− λ2;−e−u

)]
; (36)

thus far, however, the derivation is valid only under the assumption that u > 0.

Step 4. Suppose, now, that u < 0. Take the complex conjugate of equation (28). Doing

so is equivalent to reframing the problem with (u, λ1, λ2) replaced by (−u,−λ2,−λ1). Since

−u > 0,−λ2 > 0, and −λ1 < 0, the method of steps 1–4 applies unchanged. Since the

formula (36) is invariant under (−u,−λ2,−λ1) 7→ (u, λ1, λ2), we can conclude that it is

valid for all u. Substituting u 7→ log(1− s)/s delivers (12).

Step 5. Straightforward algebra gives the values of B, λ1, and λ2 in terms of the

fundamental parameters. Since c(θ1, θ2) = µ1θ1 + µ2θ2 + 1
2σ11θ

2
1 + σ12θ1θ2 + 1

2σ22θ
2
2,

ρ− c(α1 − γ/2− iz, α2 − γ/2 + iz) =
1

2
X2z2 + iY z +

1

2
Z2, (37)
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where X2, Y , and Z2 are defined in the main text. I have chosen to write X2 and Z2

to emphasize that these two quantities are positive: the first because it is the variance of

y21 − y11, the second because of the finiteness conditions, after setting v = 0 in (37).

A.5 Small asset asymptotics

From (4), the small asset’s price-dividend ratio in the limit can be rewritten

P/D1 = lim
u→∞

∫ ∞
−∞

eiuzFγ(z)

ρ− c(1− γ/2− iz,−γ/2 + iz)
dz

∫ ∞
−∞

eiuzFγ(z) dz

. (38)

By the Riemann-Lebesgue lemma, both the numerator and denominator on the right-hand

side of (38) tend to zero in the limit as u tends to infinity. What happens to their ratio?

This section shows how to calculate limiting price-dividend ratio, riskless rate and excess

returns in the small-asset case. For clarity, I work through the price-dividend ratio in detail;

the same approach applies to the riskless rate and to expected returns. At the end of the

section, I discuss the corresponding calculations for the large asset.

Step 1. Consider the integral which makes up the numerator of (38),

I ≡
∫ ∞
−∞

eiuzFγ(z)

ρ− c(1− γ/2− iz,−γ/2 + iz)
dz .

If log dividends are drifting Brownian motions, Appendix A.4 showed that this integral

could be approached by summing all residues in the upper half-plane. The aim here is to

show that the asymptotic behavior of this integral in the general case is determined only

by the minimal residue as discussed in the main text. To show this, I integrate around a

contour which avoids all poles except for the minimal pole. Either the minimal pole occurs

at the minimal zero of ρ−c(1−γ/2−iz,−γ/2+iz), so lies on the imaginary axis by Lemma

3, or the minimal pole occurs at the minimal pole of Fγ(z), i.e. at iγ/2. In either case, the

minimal pole occurs at some point mi, where m > 0 is real. See Figure 10.

Let �N denote the rectangle in the complex plane with corners at −N , N , N + (m+ε)i

and −N + (m+ ε)i. Since the integrand is meromorphic, all poles are isolated, so ε > 0 can

be chosen to be sufficiently small that the rectangle �N only contains the pole at mi. By

48



the residue theorem, we have

J ≡
∫
�N

eiuzFγ(z)

ρ− c(1− γ/2− iz,−γ/2 + iz)
dz

= 2πi Res

{
eiuzFγ(z)

ρ− c(1− γ/2− iz,−γ/2 + iz)
;mi

}
.

On the other hand, we can also decompose the integral into four pieces:

J =

∫ N

−N

eiuzFγ(z)

ρ− c(1− γ/2− iz,−γ/2 + iz)
dz +

∫ m+ε

0

eiu(N+iz)Fγ(N + iz)

ρ− c(. . .)
i dz +

+

∫ −N
N

eiu(z+(m+ε)i)Fγ(z + (m+ ε)i)

ρ− c(. . .)
dz +

∫ 0

m+ε

eiu(−N+iz)Fγ(−N + iz)

ρ− c(. . .)
i dz

≡ J1 + J2 + J3 + J4

I now show that J2, J3, and J4 tend to zero as N and u tend to infinity. Consider J2.

Since the range of integration is a closed and bounded interval, the function |ρ − c(. . .)|
attains its maximum and minimum on the range. Since the function has no zeros on the

interval, we can write |ρ− c(. . .)| ≥ δ1 > 0 for all z in the range of integration. We have

|J2| ≤
∫ m+ε

0

∣∣∣∣∣eiu(N+iz)Fγ(N + iz)

ρ− c(. . .)
i

∣∣∣∣∣ dz
=

∫ m+ε

0

e−uz |Fγ(N + iz)|
|ρ− c(. . .)|

dz

≤ 1

δ1

∫ m+ε

0
|Fγ(N + iz)| dz

→ 0

as N tends to infinity because |Fγ(N + iz)| converges to zero uniformly over z in the range

of integration. An almost identical argument shows that |J4| → 0 as N →∞.

Now consider J3. Set δ2 = |ρ− c(1− γ/2 +m+ ε,−γ/2−m− ε)| > 0. Using the results

of Appendix A.3, |ρ− c(. . .)| ≥ δ2 for all z in the range of integration, so

|J3| ≤
∫ N

−N

e−(m+ε)u |Fγ(z + (m+ ε)i)|
|ρ− c(. . .)|

dz

≤ e−u(m+ε) · 1

δ2

∫ N

−N
|Fγ(z + (m+ ε)i)| dz

→ e−u(m+ε) ·X/δ2

where X is the (finite) limit of the integral
∫ N
−N |Fγ(z + (m+ ε)i)| dz as N tends to infinity.

(X is finite because Fγ(z + (m+ ε)i) decays to zero exponentially fast as z → ±∞.)
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By the residue theorem, J1 + J2 + J3 + J4 = 2πi × residue at mi = O(e−mu). As

N goes to infinity, J2 and J4 go to zero, J1 tends to I and J3 tends to e−u(m+ε)X; so

I + e−u(m+ε)X = 2πi × residue at mi = O(e−mu). In the limit as u → ∞, e−u(m+ε)X is

exponentially smaller than e−mu, so

I ∼ 2πi Res

{
eiuzFγ(z)

ρ− c(1− γ/2− iz,−γ/2 + iz)
;mi

}
:

the asymptotic behavior of I is dictated by the residue closest to the real line.

Essentially identical arguments can be made to show that the other relevant integrals

are asymptotically equivalent to 2πi times the minimal residue of the relevant integrand;

they are omitted to prevent an already complicated argument becoming totally unreadable.

Step 2. (i) In the price-dividend ratio case, we have to evaluate

lim
u→∞

P/D(u) = lim
u→∞

∫ ∞
−∞

eiuzFγ(z)

ρ− c(1− γ/2− iz,−γ/2 + iz)
dz∫ ∞

−∞
eiuzFγ(z) dz

≡ lim
u→∞

In
Id
. (39)

We have seen that In and Id are asymptotically equivalent to 2πi times the residue at

the pole (of the relevant integrand) with smallest imaginary part. I will refer to the pole

(or zero) with least positive imaginary part as the minimal pole (or zero).

Consider, then, the more complicated integral In. The integrand has a pole at iγ/2 due

to a singularity in Fγ(z). The question is whether or not there is a zero of ρ− c(1− γ/2−
iz,−γ/2 + iz) for some z with imaginary part smaller than γ/2. If there is, then this is the

minimal pole. If not, then iγ/2 is the minimal pole. By Lemma 3, the zero in question is

of the form z∗i for some positive real z∗ satisfying ρ − c(1 − γ/2 + z∗,−γ/2 − z∗) = 0. If

z∗ > γ/2—in the subcritical case—the minimal pole for both integrals is at iγ/2, so

P/D →
Res

{
eiuzFγ(z)

ρ− c(1− γ/2− iz,−γ/2 + iz)
; iγ/2

}
Res

{
eiuzFγ(z); iγ/2

} =
1

ρ− c(1,−γ)
.

If z∗ < γ/2—the supercritical case—the minimal pole is at iz∗ for In and at iγ/2 for Id, so

P/D →
Res

{
eiuzFγ(z)

ρ− c(1− γ/2− iz,−γ/2 + iz)
; iz∗

}
Res

{
eiuzFγ(z); iγ/2

}
= eu(γ/2−z∗) ·

Res

{
Fγ(z)

ρ− c(1− γ/2− iz,−γ/2 + iz)
; iz∗

}
Res {Fγ(z); iγ/2}

→ ∞ .

50



To see that the price-consumption ratio, P/C = s ·P/D, remains finite in this limit, we

must evaluate lims→0 s · P/D. Since s = 1/(1 + eu) ∼ e−u, we have, asymptotically,

P/C → eu(γ/2−z∗−1) ·
Res

{
Fγ(z)

ρ− c(1− γ/2− iz,−γ/2 + iz)
; iz∗

}
Res {Fγ(z); iγ/2}

,

which tends to zero as u→∞ because γ/2− z∗ − 1 < 0.

(ii) For the riskless rate, we seek the limit of

r =

∫ ∞
−∞

Fγ(z)eiuz · [ρ− c(−γ/2− iz,−γ/2 + iz)] dz

∫ ∞
−∞

Fγ(z)eiuz dz

.

This is much simpler, because the minimal pole is iγ/2 for both numerator and denominator.

It follows that r → ρ− c(−γ/2− i(iγ/2),−γ/2 + i(iγ/2)) = ρ− c(0,−γ).

(iii) To calculate expected returns, we need the limiting expected capital gain (the first

term on the right-hand side of (7)). This is asymptotically equivalent to∫ ∞
−∞

eiuzFγ(z)c(1− γ/2− iz, γ/2 + iz)

ρ− c(1− γ/2− iz,−γ/2 + iz)
dz

∫ ∞
−∞

eiuzFγ(z)

ρ− c(1− γ/2− iz,−γ/2 + iz)
dz

≡ Jn
Jd

since the higher-order exponential terms e−mu for m ≥ 1 which appear in (7) become

irrelevant exponentially fast as u tends to infinity. Again, there are two subcases. In the

subcritical case, the minimal pole of each of Jn and Jd occurs at iγ/2, so

lim
u→∞

E dP/P =

Res

{
eiuzFγ(z)c(1− γ/2− iz, γ/2 + iz)

ρ− c(1− γ/2− iz,−γ/2 + iz)
; iγ/2

}
Res

{
eiuzFγ(z)

ρ− c(1− γ/2− iz,−γ/2 + iz)
; iγ/2

} = c(1, 0).

In the supercritical case, the minimal pole of each of Jn and Jd occurs at iz∗, so

lim
u→∞

E dP/P =

Res

{
eiuzFγ(z)c(1− γ/2− iz, γ/2 + iz)

ρ− c(1− γ/2− iz,−γ/2 + iz)
; iz∗

}
Res

{
eiuzFγ(z)

ρ− c(1− γ/2− iz,−γ/2 + iz)
; iz∗

}
= c(1− γ/2 + z∗, γ/2− z∗) .
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Since instantaneous expected returns are the sum of expected capital gains and the

dividend-price ratio, expected returns in the asymptotic limit are c(1, 0) + ρ − c(1,−γ) in

the subcritical case, and c(1− γ/2 + z∗, γ/2− z∗) in the supercritical case.

Subtracting the riskless rate, excess returns are c(1, 0) + c(0,−γ) − c(1,−γ) in the

subcritical case, and c(1− γ/2 + z∗, γ/2− z∗)− ρ+ c(0,−γ) in the supercritical case. Since

ρ = c(1− γ/2 + z∗,−γ/2− z∗) by the definition of z∗, the excess return in the supercritical

case can be rewritten as c(1− γ/2 + z∗, γ/2− z∗) + c(0,−γ)− c(1− γ/2 + z∗,−γ/2− z∗).
Step 3. If dividends are also independent across assets then we can decompose c(θ1, θ2) =

c1(θ1) + c2(θ2) where ci(θ) ≡ logE exp θyi1. It follows that in the subcritical case, XS →
c(1, 0) + c(0,−γ)− c(1,−γ) = 0, and in the supercritical case,

XS → c(1− γ/2 + z∗, γ/2− z∗) + c(0,−γ)− c(1− γ/2 + z∗,−γ/2− z∗)

= c2(γ/2− z∗) + c2(−γ)− c2(−γ/2− z∗) .

Step 4. This last expression is positive because c2(x)—as a CGF—is convex. To spell

things out, (c2(e) − c2(d))/(e − d) < (c2(g) − c2(f))/(g − f) whenever d < e < f < g.

In the supercritical case, we have −γ < −γ/2 − z∗ < 0 < γ/2 − z∗, so [c2(−γ/2 − z∗) −
c2(−γ)]/[(−γ/2 − z∗) − (−γ)] < [c2(γ/2 − z∗) − c2(0)]/[(γ/2 − z∗) − 0] or equivalently,

because c2(0) = 0, c2(−γ/2− z∗)− c2(−γ) < c2(γ/2− z∗), as required.

Step 5(i). Proof that R1 < R2, assuming independence of dividends: In the subcritical

case, R1 = ρ+ c(1, 0)− c(1,−γ) and R2 = ρ+ c(0, 1)− c(0, 1− γ). Since we are assuming

independence, we must show that −c2(−γ) < c2(1)− c2(1− γ), or equivalently that c2(1−
γ) < c2(1) + c2(−γ), which follows by convexity of c2(·).

In the supercritical case, R1 = c(1−γ/2+z∗, γ/2−z∗) and R2 = c(1−γ/2+z∗,−γ/2−
z∗) + c(0, 1)− c(0, 1− γ) (substituting in for ρ from the definition of z∗). By independence,

it remains to show that c2(γ/2− z∗) < c2(−γ/2− z∗) + c2(1)− c2(1− γ), or equivalently

that c2(1− γ) + c2(γ/2− z∗) < c2(1) + c2(−γ/2− z∗), which follows by convexity of c2(·).
Step 5(ii). Next, I show that in the supercritical case, R1 ≤ G1 if G1 ≥ G2. We do

not need the independence assumption here. Write θ = γ/2 − z∗ ∈ (0, 1), so that the

limiting R1 = c(1 − θ, θ). The claim is that c(1 − θ, θ) ≤ c(1, 0). This follows from the

convexity of c(·, ·), which implies that c(1−θ, θ) ≤ (1−θ)c(1, 0)+θc(0, 1). By assumption,

c(0, 1) ≤ c(1, 0), so c(1− θ, θ) ≤ (1− θ)c(1, 0) + θc(1, 0) = c(1, 0), as required.

Limiting quantities for the large asset. In the case of the large asset, the assumed

finiteness of its price-dividend ratio excludes the possibility that the minimal pole lies below

(γ/2)i. If we run through the above logic, the analogue of φ(z) is φ2(z) ≡ ρ−c(−γ/2+z, 1−
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γ/2 − z). But now we must have φ2(γ/2) > 0 by the finiteness condition. So the minimal

pole must lie at (γ/2)i, and the result follows by calculating residues there, as above.

A.5.1 Asymptotics near the small-asset limit

To prove Proposition 7, we need to consider the two closest residues to the real axis. By

assumption z∗ ∈ (γ/2−1, γ/2+1), so for price-dividend ratio and excess-return calculations,

the closest residue is at (γ/2)i and the next closest is at z∗i. For the riskless rate calculation,

the two closest residues are at (γ/2)i and (γ/2+1)i. The residues at (γ/2)i were calculated

in the previous section, so it only remains to compute the residues at z∗i and at (γ/2 + 1)i

for the integrands in question. In the case of the dividend yield, we must analyze

D

P
=

∫ ∞
−∞

eiuzFγ(z) dz∫ ∞
−∞

eiuzFγ(z)

ρ− c(1− γ/2− iz,−γ/2 + iz)
dz

.
=

e−γu/2

e−γu/2

ρ− c(1,−γ)
+

B(γ/2− z∗, γ/2 + z∗)e−z
∗u

c1(1− γ/2 + z∗,−γ/2− z∗)− c2(1− γ/2 + z∗,−γ/2− z∗)

,

where the second (approximate) equality follows by the residue theorem logic, as in the

previous section, B(x, y) ≡ Γ(x)Γ(y)/Γ(x + y), and ci(·, ·) indicates the partial derivative

of c(·, ·) with respect to its ith argument.

In the subcritical case, z∗ > γ/2, straightforward algebra gives

D

P

.
= ρ−c(1,−γ) +

−B(γ/2− z∗, γ/2 + z∗) [ρ− c(1,−γ)]2

c1(1− γ/2 + z∗,−γ/2− z∗)− c2(1− γ/2 + z∗,−γ/2− z∗)︸ ︷︷ ︸
B2

e−u(z∗−γ/2),

while in the supercritical case, z∗ < γ/2, we have

D

P

.
=
c1(1− γ/2 + z∗,−γ/2− z∗)− c2(1− γ/2 + z∗,−γ/2− z∗)

B(γ/2− z∗, γ/2 + z∗)︸ ︷︷ ︸
B4

e−u(γ/2−z∗).

To see that B2 > 0, note first that B(γ/2− z∗, γ/2 + z∗) is negative: it equals Γ(γ/2−
z∗)Γ(γ/2 + z∗)/Γ(γ), and Γ(x) is negative for x ∈ (−1, 0) and positive for x > 0. Second,

the denominator of B2 is positive, because it has the opposite sign to the derivative of

φ(z) ≡ ρ − c(1 − γ/2 + z,−γ/2 − z) with respect to z, evaluated at z∗. This derivative is

negative because φ(z) is (i) concave in z (because c(·, ·) is convex), (ii) positive at z = 0

by the first finiteness condition in Table 1, and (iii) zero at z = z∗ by the definition of z∗.
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To see that B4 > 0, the same logic shows that the numerator is positive. The denominator

is also positive, because γ/2 − z∗ > 0 so now B(γ/2 − z∗, γ/2 + z∗) > 0. Similarly,

B1 = γ [c(1,−1− γ)− c(0,−γ)], B3 = B2 [ρ− c(1,−γ)] · Y , and B5 = B4
ρ−c(1,−γ) · Y , where

Y ≡ [c(1, 0)− c(1,−γ) + c(1− γ/2 + z∗,−γ/2− z∗)− c(1− γ/2 + z∗, γ/2− z∗)] .

It only remains to show that if the two assets have independent fundamentals, then Y < 0

in the supercritical case and Y > 0 in the nearly supercritical case. The former follows by

the logic of Steps 3 and 4 of the previous subsection. The latter does too: the sign of the

inequality is reversed because now γ/2 < z∗.

B The N-tree case

B.1 The expectation

To make a start, we seek the integral

IN ≡
∫
RN−1

e−ix1z1−ix2z2−···−ixN−1zN−1(
ex1/N + · · ·+ exN−1/N + e−(x1+x2+...+xN−1)/N

)γ dx1 . . . dxN−1 .

Write xN ≡ −x1 − · · · − xN−1 and, for i = 1, . . . , N , define

ti =
exi/N

ex1/N + · · ·+ exN/N
. (40)

The variables ti range between 0 and 1, sum to 1, and satisfy exi = tNi /
∏N
k=1 tk. Since

tN = 1− t1 − · · · − tN−1, we can rewrite

xi = N log ti −
N−1∑
k=1

log tk − log

(
1−

N−1∑
k=1

tk

)
, i = 1, . . . , N − 1 . (41)

To make the change of variables (40), we must calculate the Jacobian J ≡
∣∣∣∂(x1,...,xN−1)
∂(t1,...,tN−1)

∣∣∣.
From (41), ∂xi

∂tj
= 1

tN
− 1

tj
+

Nδij
ti

, where δij equals one if i = j and zero otherwise, so

∂(x1, . . . , xN−1)

∂(t1, . . . , tN−1)
=


N
t1

N
t2

. . .

N
tN−1

 +


1

1
...

1




1
tN
− 1

t1
1
tN
− 1

t2
...

1
tN
− 1

tN−1



′

≡ A + αβ′ .

The last line defines the (N − 1)× (N − 1) diagonal matrix A and the (N − 1)-dimensional

column vectors α and β. To calculate J = det
(
A+αβ′

)
we can use
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Fact 2 (Matrix determinant lemma). If A is an invertible matrix, and α and β are column

vectors of length equal to the dimension of A, then det
(
A+αβ′

)
=
(
1 + β′A−1α

)
detA.

In the present case, detA = NN−1/(t1 · · · tN−1), and A−1 is diagonal with ti/N as

the ith entry along the diagonal. It follows that J = NN−2/(t1 · · · tN ). Writing Π for the

product
∏N
k=1 tk and making the substitution suggested in (40),

IN =

∫ (
tN1
Π

)−iz1 ( tN2
Π

)−iz2
· · ·
(
tNN−1

Π

)−izN−1

(
t1+t2+···+tN

Π1/N

)γ · J dt1 . . . dtN−1

= NN−2

∫ (
t
γ/N+iz1+···+izN−1−Niz1
1 t

γ/N+iz1+···+izN−1−Niz2
2 · · ·

· · · tγ/N+iz1+···+izN−1−NizN−1

N−1 · tγ/N+iz1+···+izN−1

N

) dt1 . . . dtN−1

t1 . . . tN−1tN
.

This is a Dirichlet surface integral with range of integration [0, 1]N−1. As shown in Andrews,

Askey and Roy (1999, p. 34), it can be evaluated in terms of Γ-functions: we have

IN =
NN−2

Γ(γ)
· Γ (γ/N + iz1 + iz2 + . . .+ izN−1) ·

N−1∏
k=1

Γ (γ/N + iz1 + · · ·+ izN−1 −Nizk) .

Defining GN
γ (z) = IN/(2π)N−1, where z = (z1, . . . , zN−1), we have

GN
γ (z) =

NN−2

(2π)N−1
·Γ (γ/N + iz1 + iz2 + . . .+ izN−1)

Γ(γ)
·
N−1∏
k=1

Γ (γ/N + iz1 + · · ·+ izN−1 −Nizk) .

(42)

Writing x = (x1, . . . , xN−1), it follows from the Fourier inversion theorem that

1(
ex1/N + ex2/N + . . .+ e−(x1+x2+...+xN−1)/N

)γ =

∫
RN−1

GN
γ (z)eiz

′x dz . (43)

With α ≡ (α1, . . . , αN )′ and ỹt ≡ (ỹ1t, . . . , ỹNt)
′, we seek the expectation

E = E

[
eα
′ỹt(

ey10+ỹ1t + · · ·+ eyN0+ỹNt
)γ
]
.

Define the (N − 1)×N matrix Q and vectors qi by

Q ≡


q′2

q′3
...

q′N

 ≡

−1 N − 1 −1 · · · −1

−1 −1 N − 1
. . .

...
...

...
. . .

. . . −1

−1 −1 · · · −1 N − 1

 ,
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and let q1 ≡ (N − 1, . . . ,−1,−1)′: this is the “missing” row that does not appear as the

top row of Q. Then, with Q(y0 + ỹt) playing the role of x in expression (43),

E = E

 eα
′ỹt−γ′(y0+ỹt)/N(

eq
′
1(y0+ỹt)/N + · · ·+ eq

′
N (y0+ỹt)/N

)γ


= e−γ
′y0/N

∫
GN
γ (z)eiz

′Qy0ec(α−γ/N+iQ′z)t dz . (44)

B.2 Prices, expected returns, and interest rates

Using (44), the price-dividend ratio equals

P/D = Cγ0

∫ ∞
0

e−ρt E

[
eα1ỹ1t+···+αN ỹNt(

ey10+ỹ1t + · · ·+ eyN0+ỹNt
)γ
]
dt

= Cγ0

∫ ∞
t=0

e−ρt
(
e−γ

′y0/N

∫
GN
γ (z)eiz

′Qy0ec(α−γ/N+iQ′z)t dz

)
dt

= Cγ0 e
−γ′y0/N

∫
GN
γ (z)eiz

′Qy0

ρ− c(α− γ/N + iQ′z)
dz (45)

=
(
eq
′
1y0/N + · · ·+ eq

′
Ny0/N

)γ ∫ GN
γ (z)eiz

′Qy0

ρ− c(α− γ/N + iQ′z)
dz .

As in the two-asset case, I assume that Re [ρ− c(α− γ/N + iQ′z)] > 0 for all z, which

follows from the apparently weaker condition that ρ− c(α− γ/N) > 0.

To calculate expected capital gains, use (45) to write the price of the α-asset as

P =
∑
m

(
γ

m

)∫
GN
γ (z)e(α−γ/N+m+iQ′z)′y0

ρ− c(α− γ/N + iQ′z)
dz .

The sum is taken over all m whose entries are nonnegative integers which add up to γ. So,

E dP =
∑
m

(
γ

m

)∫
GN
γ (z)e(α−γ/N+m+iQ′z)′y0c(α− γ/N +m+ iQ′z)

ρ− c(α− γ/N + iQ′z)
dz dt ,

whence

Φ =
∑
m

(
γ

m

)∫
GN
γ (z)e(−γ/N+m+iQ′z)′y0c(α− γ/N +m+ iQ′z)

ρ− c(α− γ/N + iQ′z)
dz

=
∑
m

(
γ

m

)
em1q′1y0/N+···+mNq

′
Ny0/N

∫
GN
γ (z)eiz

′Qy0c(α− γ/N +m+ iQ′z)

ρ− c(α− γ/N + iQ′z)
dz .

The price of a time-T zero-coupon bond is BT = E e−ρT
(
CT
C0

)−γ
. Using (44),

BT = e−ρTCγ0 E
1(

ey10+ỹ1T + · · ·+ eyN0+ỹNT
)γ

= e−ρT
(
eq
′
1y0/N + · · ·+ eq

′
Ny0/N

)γ ∫
GN
γ (z)eiz

′Qy0ec(−γ/N+iQ′z)T dz,
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so the yield (from which the riskless rate follows by by l’Hôpital’s rule) is

Y (T ) = ρ− 1

T
log

{(
eq
′
1y0/N + · · ·+ eq

′
Ny0/N

)γ ∫
GN
γ (z)eiz

′Qy0ec(−γ/N+iQ′z)T dz

}
.

B.3 A final change of variables

These expressions can be simplified by a final change of variables. Define ẑ ≡ Bz, where

B ≡


N − 1 −1 · · · −1

−1 N − 1
. . .

...
...

. . .
. . . −1

−1 · · · −1 N − 1

 , so B−1 =
1

N


2 1 · · · 1

1 2
. . .

...
...

. . .
. . . 1

1 · · · 1 2

 .

It follows that ẑk = Nzk − z1− · · · − zN−1, and that ẑ1 + · · ·+ ẑN−1 = z1 + · · ·+ zN−1. The

Jacobian can be calculated using the matrix determinant lemma (Fact 2 above): detB−1 =

1/NN−2, so—since z = B−1ẑ—dz is replaced by dẑ/NN−2. Next, ẑ was defined in such

a way that GN
γ (z), defined in equation (42), is equal to NN−2FN

γ (ẑ), defined in the main

text. Finally, noting that B−1Q = U and u ≡ Uy0, as defined in (22), we have Q′z =

Q′B−1ẑ = U ′ẑ and z′Qy0 = ẑ′Uy0 = ẑ′u = u′ẑ. Proposition 8 follows after making

these substitutions throughout the various integrals and dropping the hat on ẑ.
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