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1. Introduction 

Utility programs to reduce demand for electricity have been in existence since the late 

1970s following the two energy crises of that decade. Several pieces of federal legislation passed 

in the late 1970s encouraged utilities to develop programs to promote energy efficiency and 

reduce demand in peak periods, and the Public Utilities Regulatory Policies Act of 1978 required 

state Public Utility Commissions to take account of these programs in setting consumer rates for 

electricity. Programs took off in the early 1990s with U.S. utilities spending a total of nearly $2.0 

billion dollars (2007$) on energy efficiency demand-side management (DSM) programs in 

1993.1 After 1993, the peak year of utility spending on DSM according to the Energy 

Information Administration (EIA), electric utility spending on energy conservation and DSM 

started to decline as electricity markets were being restructured to introduce more competition, 

and expenditures on efficiency programs were reduced or eliminated as utilities sought to reduce 

costs. In some states, the move to competition was accompanied by the establishment of wires 

charges, known as system benefit charges or public benefit charges, which were used to fund 

continued investment in energy efficiency. 

After nearly three decades of experience with DSM, a good deal of controversy remains 

over how effective these programs have been in reducing electricity consumption and at what 

cost those consumption reductions have been obtained. Estimates of the cost-effectiveness, or 

cost per kWh saved, of past DSM programs range from just below one cent per kWh saved to 

more than 20 cents.2 Estimates of energy savings have been derived using a variety of different 

methods and are subject to varying degrees of uncertainty, depending on the ability of program 

evaluators to account for human behavior in engineering models that estimate energy savings, 

including free-riding participants and countervailing spillovers to nonparticipants. Nationwide, 

DSM programs have only a modest impact on electricity demand. According to the 2008 Annual 

Energy Review (EIA 2008), utilities reported that DSM programs produced energy savings in 

2007 equal to approximately 1.8 percent of total electricity demand.3 Savings estimates vary 

somewhat across the states.  Data from the California Energy Commission (CEC 2008) suggests 

that current and past utility DSM programs across the state saved 1.8 percent of commercial and 

                                                 
1 In 1993, total DSM spending, including spending on load management, was about $3.7 billion dollars. 
2 See Gillingham, Newell and Palmer (2006) for more information on the ranges of estimates of cost per kWh saved 
across different studies. 
3 Authors’ calculation based on the ratio of total energy savings from DSM programs reported in Table 8.13 and 
total energy demand reported in Table 8.1 of the Annual Energy Review 2008 (EIA 2008). Reid (2009) breaks down 
these numbers by utility and finds that the top 10 utilities in terms of savings all reported cumulative effects of 
energy efficiency programs in excess of 10 percent 
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residential electricity consumption or 1.2 percent of total electricity consumption in 2005.4  

Efficiency Vermont reports higher incremental savings from their efficiency programs in 2008 of 

2.5 percent of total electricity sales in the state (Efficiency Vermont 2008). 

With increasing electricity prices, concerns about the continued reliability of electricity 

supply, and growing interest in limiting emissions of greenhouse gases that contribute to climate 

change, utilities, policymakers, and environmental groups have shown renewed interest in 

policies and programs to promote energy efficiency. In 2006, a group representing utilities, state 

regulators, environmentalists, industry, and federal government employees, coordinated by the 

U.S. Environmental Protection Agency and the U.S. Department of Energy (DOE), published the 

National Action Plan for Energy Efficiency, which includes a call for more funding of cost-

effective energy efficiency. Several states are adopting regulatory rules, including revenue 

decoupling and financial performance incentives, to reward the utilities in their jurisdictions that 

invest in cost-effective energy efficiency programs. Over 20 states, including Maryland and New 

York, have announced specific goals to reduce electricity consumption (or consumption per 

capita) relative to current levels by a target year in the future. Exactly how these goals will be 

achieved is yet to be determined, but several of the states participating in the Regional 

Greenhouse Gas Initiative are using a substantial portion of the revenue from carbon dioxide 

(CO2) allowance auctions to fund DSM initiatives.5 Several recent federal legislative proposals 

to impose a national CO2 cap-and-trade program also included provisions to encourage utilities 

and states to adopt energy efficiency resource standards to help increase the role of energy 

efficiency in meeting emissions reduction goals. There are also stand-alone legislative proposals 

for an energy efficiency resource standard or to include energy efficiency as part of a clean 

energy standard that requires a minimum percentage of electricity supply to come from zero or 

low carbon emitting sources. 

As policymakers try to identify the most effective policies and programs to secure cost-

effective energy savings, understanding the effectiveness and cost-effectiveness of past policies 

and programmatic initiatives becomes particularly important. In this paper, we analyze the 

                                                 
4 Calculation based on electricity consumption savings to commercial and residential customers in 2005 attributable  
to cumulative utility and public agency programs reported in table 6 of CEC (2008) divided by total 2005 sales 
reported in Form 1.1 (CEC 2008). 
5 The Regional Greenhouse Gas Initiative (RGGI) states see investment in DSM as a way to help offset the impacts 
of the regional climate policy on electricity consumers and potentially to reduce the likelihood that power imports 
from non–RGGI states will increase under the program (RGGI 2008).  As of the end of 2010, the second full year of 
the RGGI program, over 50 percent of RGGI CO2 allowance revenues across the ten RGGI states collected over the 
life of the program were used to fund energy efficiency (RGGI 2011). 
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effects of ratepayer–funded utility and third-party DSM spending on electricity demand  at the 

utility level. There are key differences between our study and previous studies. First, our 

empirical method deals with the potential endogeneity of DSM spending. We use two political 

variables, League of Conservation Voters scores and Republican presidential voting percentages 

in each utility’s service territory as instrumental variables. Second, our model allows for a long-

term demand effect from DSM spending. To characterize the time path of the demand effect of 

DSM spending, we use a flexible function that allows the dynamic effect to increase and then 

decrease over time. We estimate the model using non-linear least squares assuming no 

endogeneity and generalized method of moments with optimal instruments to account for 

possible endogeneity of DSM spending.  We also explore the effects on electricity consumption 

of decoupling regulation and building energy efficiency codes.   

We find that current period DSM expenditures have a negative effect on electricity 

demand that persists for a number of years. Based on our results using the largest sample of 

utilities, our findings, which are robust across different modeling approaches and samples, 

suggest that ratepayer funded DSM expenditures between 1992 and 2006 produced a central 

estimate of 0.9 percent savings in electricity consumption over that time period and a 1.8 percent 

savings over all years at an expected average cost to utilities of roughly 5 cents per kWh saved 

when future savings are discounted at 5 percent. This estimate, which is statistically significant at 

the 90 percent level, is lower than those of Loughran and Kulick (2004) and at the low end of the 

range reported in Auffhammer, Blumstein and Fowlie (2008).  We also find that for utilities 

primarily located in states where housing starts are above the mean, the presence of more 

stringent building costs has a statistically significant negative effect on electricity demand . 

The rest of the paper is organized as follows. Section 2 includes a review of past 

empirical studies on DSM and energy efficiency. Section 3 discusses the effects of electricity 

sector restructuring on DSM programs and the growing role for programs operated by third 

parties. Section 4 develops the conceptual model that underlies our calculations of predicted 

energy savings and their costs, and Section 5 discusses the explanatory variables included in the 

empirical application of that model. We discuss the results of the estimation and the policy 

implications in section 6, and section 7 concludes. 

2. Empirical Economic Studies of DSM 

Several empirical economic studies have evaluated the effectiveness and cost-

effectiveness of utility DSM programs focused on energy efficiency. Utility DSM includes 

programs such as information programs (e.g. free energy audits), low cost financing and 

financial incentives or subsidies for purchase of more energy efficiency equipment. Much of this 
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literature is reviewed by Gillingham, Newell and Palmer (2006, 2009), which uncover a range of 

estimates of both the effectiveness and cost-effectiveness of these programs. The studies that use 

ex post econometric analysis tend to find higher costs per unit of electricity saved than those that 

rely largely on ex ante engineering-costing methods. For example, an early study by Joskow and 

Marron (1992) suggests that failure to account for free riders, overly optimistic estimates of 

equipment lifetimes, and underreporting of cost lead utilities to tend to overstate the cost-

effectiveness of DSM programs by a factor of at least two. However, a subsequent study by 

Parformak and Lave (1996) using data from a subset of utilities in the Northeast and California 

finds that 99 percent of utility-reported estimates of savings from DSM are borne out in actual 

metered data on energy use after controlling for the effects of prices, weather, and economic 

activity.  In a similar vein, Eto et al. (1996) analyze data from 20 large utility-sponsored energy 

efficiency programs and develop a consistent approach to measuring savings and costs.  They 

conclude that all the programs that they analyze are cost effective conditional on the underlying 

assumptions about economic lifetimes of the identified energy savings and the level of avoided 

costs of generation. 

Specific estimates of cost-effectiveness from the prior literature range from 0.9 to 25.7 

cents per kWh saved. (All cost estimates are reported in 2007$.) The estimate at the low end of 

this range comes from Fickett et al. (1990). Nadel (1992) offers a range of estimates for utility 

programs of 2.9 – 7.5 cents per kWh saved. Estimates of others tend to fall within this range. Eto 

et al. (2000) report an estimate of 4.2 cents per kWh saved. Nadel and Geller (1996) report both 

costs to utilities (3.0 – 4.7 cents per kWh saved) and costs to utilities plus consumers (5.4–8.0 

cents per kWh saved). Friedrich et al. (2009) use utility and state evaluations and regulatory 

reports on energy savings and utility costs for 14 states to develop an average estimate of the 

average cost to utilities of 2.5 cents per kWh saved.  Gillingham et al. (2004) use DSM 

expenditures by utilities and annual savings reported by utilities to the EIA to derive a cost-

effectiveness estimate of 3.9 cents per kWh saved in the year 2000. 

The cost estimates at the high end of the range come from a more recent study by 

Loughran and Kulick (2004; hereafter L&K). L&K analyze the effects of changes in DSM 

expenditures on changes in electricity sales using utility-level panel data over the time period 

from 1992 through 19996. They find that the DSM programs are less effective and less cost-

effective than utility-reported data would suggest, with their estimates of costs ranging from 7.1 

                                                 
6 Some specifications focus on a shorter time period because of the limited availability of certain explanatory 
variables.   
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to 25.8 cents per kWh saved coming in at between 2 and 6 times as high as utility estimates. 

These high cost estimates follow primarily from their finding that the savings attributable to 

DSM programs indicated by the econometrics are substantially smaller than those directly 

reported by utilities, suggesting a substantial amount of free riding. However, these cost 

comparisons rely on the application of predicted values of percentage savings to mean levels of 

electricity demand to calculate average savings; therefore, they do not represent an appropriately 

weighted national average cost. A reevaluation of the L&K econometric results by Auffhammer, 

Blumstein and Fowlie (2008; hereafter ABF), which weights savings and costs by utility size in 

the construction of a mean cost-effectiveness measure, finds a substantially lower estimate of 

cost per kWh than reported by L&K—a result not disputed by L&K. In their work, ABF find 

DSM expenditure-weighted average cost estimates that range from 5.1 to 14.6 cents per kWh. 

Their reevaluation also accounts for the uncertainty surrounding the model predictions to 

construct confidence intervals for L&K estimates of predicted energy savings from DSM, which 

ABF find contain the utility-reported estimates. ABF point out that the appropriately weighted 

L&K findings are not statistically significantly different from those reported by the utilities in 

their sample.  

In another recent study, Horowitz (2007) uses a difference-in-differences approach to 

determine whether changes in electricity demand and electricity intensity from the pre-1992  

(1977 – 1992) to the post-1992 (1992 – 2003) period for residential, commercial, and industrial 

electricity users were stronger for utilities with a strong commitment to DSM than for those with 

a less strong or weak commitment. In this analysis, Horowitz uses measures of reported 

electricity savings attributable to DSM programs to categorize utilities. He finds that utilities 

with strong DSM programs see a bigger decline in energy intensity among all classes of 

customers and in total energy demand among industrial and commercial customers. Horowitz 

does not look at the question of cost-effectiveness.    

Our analysis uses the basic approach of L&K as a starting point. In addition to the key 

differences between our method and all previous literature discussed in previous section, our 

study modifies and augments L&K in several important ways. First, we explicitly address 

possible endogeneity in spending (i.e., utilities may decide to spend more on EE DSM in 

response to stronger demand coming from shocks that we do not observe). Second, we augment 

the data set to include data on utility DSM spending through 2006, and allow for a long-term 

effect of DSM on energy demand. Third, we incorporate spending on DSM by “third party” state 

agencies or independent state-chartered energy efficiency agencies tasked with using revenues 

collected from utility ratepayers to implement energy efficiency programs. Fourth, we explore 

the influence of decoupling regulations and the stringency of state-level residential building 
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codes in the region where each utility operates. Fifth, following ABF, we calculate confidence 

intervals for our estimates of percentage savings and cost effectiveness.  Finally, we model 

percentage electricity savings as a function of average DSM expenditures per customer, rather 

than the level of DSM expenditures. Normalizing expenditures in this way better represents the 

relationship of DSM expenditures and associated electricity savings across utilities of widely 

differing scale. We also carefully lay out the derivation of our estimated cost-effectiveness 

measures, and make a number of other improvements in estimation compared to previous 

studies, as described further below.  

3. Evolution of Ratepayer–Funded DSM in an Era of Electricity Restructuring 

During the late 1990s, the electric utility industry was in the midst of an important 

transition to greater competition. The 1992 Energy Policy Act required the Federal Energy 

Regulatory Commission (FERC) to devise rules for opening the transmission grids to 

independent power producers to sell electricity in the wholesale markets under its jurisdiction. In 

1996, FERC issued Orders 888 and 889 to comply with its mandate (Brennan 1998). In the wake 

of the opening of transmission, several states began to give customers a choice of electricity 

suppliers. In 1994, California became the first state to begin restructuring its utility industry, and 

by 2000, a total of 23 states and the District of Columbia had passed an electric industry 

restructuring policy and opened up their electricity markets to greater competition.7 

The prospect of competition and restructuring had a negative impact on utility DSM 

spending as utilities started to shed all discretionary spending to be better able to compete with 

new entrants that did not offer such programs. The regulatory environment also became less 

favorably disposed toward DSM programs as regulators shifted emphasis away from the 

integrated resource planning approach that often created incentives to invest in DSM rather than 

in new generation capacity. In the new regulatory environment, price caps and greater reliance 

on markets for setting electricity prices created strong incentives for utilities to cut costs and seek 

new opportunities to increase profits by increasing electricity sales, both of which served to 

diminish incentives for DSM programs (Nadel and Kushler 2000). The resulting effect on DSM 

                                                 
7 Note that since 2000 the spread of electricity restructuring has stalled and even reversed itself with the California 
Public Utility Comission suspending retail competition in that state in March 2002 and the Virginia state legislature 
rejecting retail competion for Virginia electricity consumers in 2007. 
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expenditures over the course of the 1990s can be seen in Figure 1, which shows a substantial 

decline in utility DSM spending directed toward energy efficiency between 1993 and 1998.8 

In anticipation of a decline in utility DSM spending in the wake of electricity 

restructuring, a number of states established mechanisms to replace utility programs as part of 

the restructuring process (Eto et al. 1998). The most common approach has been to establish a 

public benefit fund to pay for DSM and other public benefit programs, such as renewable energy 

promotion, research and development, and low-income assistance, as a part of restructuring 

legislation or enabling regulation (Nadel and Kushler 2000). Typically, these programs are 

funded by a per-kWh wires charge on the state-regulated electricity distribution system 

(Khawaja, Koss, and Hedman 2001). These wires charges are often referred to as systems benefit 

charges or public benefit charges. 

According to the American Council for an Energy Efficient Economy (2004), 23 states 

have policies encouraging or requiring public benefit energy efficiency programs that were in 

effect during some portion of our data sample period. Most of these programs are administered 

by the distribution utilities and thus presumably are captured in the EIA energy efficiency 

spending data by utility. However, in nine states — Illinois, Maine, Michigan, New Jersey, New 

York, Ohio, Oregon, Vermont, and Wisconsin —these public benefit efficiency programs are 

administered either by a state government entity (e.g., state energy office) or a for-profit or 

nonprofit, third party administrator and therefore potentially excluded from the EIA data. We 

refer to these as third-party DSM programs. The aggregate level of spending by these state-level 

third-party energy efficiency programs is shown by year in Figure 1, as is their effect on total 

national ratepayer–funded DSM expenditures.9 Note that, although these programs have not fully 

offset the decline in utilities’ own spending on DSM, they have partially filled the gap.  

4. Empirical Model and Estimation Strategy 

 Our aim in this paper is to estimate an empirical model of electricity demand change in 

response to multiple factors, particularly variables related to DSM. Based on the estimated 

                                                 
8 Note that Figure 1 includes only the portion of DSM spending used for energy efficiency and thus excludes 
expenditures on load management, load building, and indirect expenditures. 
9 Note that in constructing the total line in this graph, we add third-party expenditures to utility-level expenditures 
only when there are no reported utility-level expenditures. We can therefore be certain that the utility-reported 
expenditures do not include money expended by the utility, but obtained from the funds managed by a third-party 
administrator. To assume otherwise would potentially double-count this DSM spending, and in our data we found 
evidence that third party spending through utilities is in fact reported by utilities in the EIA form 861. 
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model, we compute estimates of energy savings from DSM, the cost-effectiveness of DSM, and 

confidence intervals for these measures. 

4.1 Empirical Model of Electricity Demand 

We begin by specifying an aggregate electricity demand function for the customers of 

each utility u in year t
 

 ( , , , , ),ut ut ut u t utQ f X D                                                     (1) 

where utQ  is aggregate electricity demand. utX  includes a number of demand factors such as 

number of customers, level of economic activity, energy prices, weather conditions, and 
regulatory variables influencing electricity demand.  utD  is a vector of DSM spending per 

customer in current and previous years, 
0, 1 , 2 ,{ , , ,..., }ut ut u t u t u tD d d d d   with 0t being the year 

when DSM spending began in utility u. This vector is used to capture the fact that the amount of 

energy efficiency capital owned by customers is a function of all past DSM spending by the 

utility or other entity charged with implementing DSM programs on behalf of electricity 
customers. u  is a vector of utility-level fixed effects. t  is a vector of year fixed effects. ut    

captures idiosyncratic demand shocks.  

     Following the literature, we specify the following baseline function for estimation 

with the dependent variable being the logarithm of electricity demand: 

                                         

0

,
0

ln( ) ( )[1 exp( )] ,
t t

ut ut u t u t j ut
j

Q X j d     





     
                      

(2)                         

where the key variables of interest, past and current DSM spending per customer, are in the 

fourth term on the right side. Because we ultimately estimate a model to predict percentage 

changes in demand, we use average DSM spending per customer (as opposed to simply the level 

of DSM). Otherwise, the effect on electricity saved of an additional dollar of DSM spending 

would be larger for larger utilities, which is conceptually incorrect.  

Our specification allows DSM spending in all previous years to potentially affect current 

demand. The exponential function allows the partial effect of DSM spending on electricity 
demand to vary with DSM spending per customer. ( )j  gives the individual effects of current 

and past DSM expenditures as a function of when they were made relative to year t. We use a 
parametric function for ( )j , to be specified below, to capture the time path of the demand effect 

from previous DSM spending. γ gives the rate of diminishing (or increasing) returns (Jaffe and 

Stavins 1995). The rate of diminishing returns increases as γ gets large in magnitude, whereas 

the function becomes linear (i.e., constant returns to DSM) as γ becomes closer to zero.  We 
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would expect γ to be negative if increased DSM spending lowers electricity demand. Thus, for 
example, when   is positive and  is negative, the function implies that DSM spending will 

reduce electricity demand, but at a decreasing rate. In one of the alternative specifications, we 

use a linear function in DSM spending per customer in the fourth term on the right side of 

equation (2).10 

             We specify a parametric function for the time effect of DSM spending rather than 

estimate it non-parametrically for the following two reasons. First, this parametric function 

allows DSM spending in all previous years to potentially affect current demand. Our estimation 

results using parametric specifications as well as initial estimates using nonparametric 

specifications suggest that the effect of DSM spending could have long lags. Second, the 

parametric specification avoids dropping data in the early years as the nonparametric 

specification does. This is important empirically given our relatively small sample size. 

We use a two-parameter function for ( )j  to allow a flexible shape for the long term 

effect of DSM spending: the effect could be decreasing over time or have a single peak at a point 

in time. In the baseline specification, we use the probability density function of a Gamma 

distribution:  

                                          
2 1 1

1 2 1 2 1( , , ) ( 1) exp[ ( 1)] / ( ),j j j                                         (3)                         

where 1( ) is a Gamma function. The two parameters 1 and 2 will be estimated together with 

other parameters in the demand function. In an alternative specification, we use the probability 

density function of a Weibull distribution and obtain similar results. 

The demand model of equation (2) is specified as if EE DSM spending for all previous 

years were available. As described in section 5, our data start in 1989, but many utilities engaged 

in demand side management programs long before that and systematic data on DSM spending 

before 1989 are not available. We modify equation (2) to address this issue. Specifically, we use 

a flexible function of DSM spending in early years in our data (i.e., 1989-1991) to control for the 

demand effect of DSM spending that occurred before our data period begins: 

                                                 
10 In this research we initially explored a functional form that was more similar to that used by L&K in that DSM 
expenditures entered in a log form, but still using DSM per customer for reasons explained.  However, we found that 
the results obtained using this specification were highly dependent on the treatment of observations with zero DSM 
spending. Entering DSM expenditures in log form also lead to very extreme curvature of the percent savings as a 
function of DSM expenditures and in turn of the average cost function described below. 
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0

0, 1,
0

ln( ) ( )[1 exp( )] ( , ) ,
t t

u tut ut u t u t j t ut
j

Q X j d f d      





      
               

(4)                   

where 0t is chosen to be 1992, implying equation (4) is estimated for electricity demand 

beginning from 1992.11 The control function 0, 1( , )u t tf d   is a high-order polynomial function of 

average DSM spending during 1989-1991 and the time trend variable to capture the effect of 
DSM spending prior to 1989 on electricity demand after 1992. 0, 1u td  is the average DSM 

spending of utility u from 1989 to 1991 and t is the inverse of the number of years since 1991. In 

the baseline estimation, we include nine interaction terms between the polynomials of 0, 1u td  (up 

to the 3rd order) and the polynomials of the time trend variable (up to the 3rd order). We also 

conduct robustness checks using different specifications of this control function. Our results 

show that without controlling for the effect of early DSM expenditures (i.e., not including the 

control function), the demand effect of recent DSM spending would be substantially 

overestimated. 

4.2 Estimation Strategy 

Following L&K and many other energy demand studies, we estimate a model in first-difference 

form, thereby controlling for unobserved utility-specific attributes that could otherwise lead to 

omitted variable bias.  Thus the equation that we bring to the data is given by: 

                 

0

0

0

1 2 ,
0, 1

1

, 11 2 , 1
0

ln ( , , )[1 exp( )]

( , , )[1 exp( )] ( , ) ,

t t
ut

ut t u t j
ju t

t t

u tu t j t ut
j

Q
X j d

Q

j d f d

     

     






 

 


 
       

 

  




                                 

(5) 

Because 1 2,  and   enter the equation nonlinearly, this equation can be estimated using 

the nonlinear least squares method. A potential concern in estimating this equation is that DSM 

spending could be correlated with unobserved demand shocks. For example, utilities may decide 

to spend more on EE DSM in response to stronger demand coming from shocks that we do not 
observe (and captured by ut ). Ignoring this correlation, the nonlinear least squares method 

would under-estimate the effect of DSM spending on demand. On the other hand, the bias could 

go in the opposite direction if utilities with more effective programs, and thus lower demand, 

                                                 
11 In choosing the number of years to construct the proxy for DSM spending before 1989, we face the trade-off 
between a good proxy (favoring using a larger number of years) and losing data in demand estimation. Sensitivity 

analysis shows that setting 0t to be 1992 or 1993 gives similar results. 
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tend to spend more. To our knowledge, the endogeneity issue has not been addressed in previous 

empirical literature on DSM. 

We address the endogeneity concern in two ways, both within the framework of 

nonlinear Generalized Method of Moments (GMM). First, because we specify the dynamic path 

of the DSM effect on demand  in a parametric form with only two parameters, the third term in 
equation (5) has only three parameters ( 1 2,  and  ), but fifteen DSM spending variables 

because we use DSM data from 1992 through 2006. If we assume that current demand shocks 

are uncorrelated with DSM spending that occurred in the far past, we can employ GMM to 
estimate the model where lagged DSM spending (as well as their polynomials), denoted by utLD , 

can be used as instruments to form moment conditions. Given the nonlinear nature of the model, 

we construct feasible optimal instruments to improve the efficiency of the GMM estimator. 

Denoting all the parameters in the model as   and exogenous variables as Z , Chamberlain 
(1987) shows that the optimal instruments in our context are given by , 1[log( / ) | , ]ut u tE Q Q z  . 

Following Newey and McFadden (1994), we construct optimal instruments using polynomials of 

utLD in an iterative procedure. The procedure starts by using the exogenous variables themselves 

to obtain initial parameter estimates ̂  and , 1
ˆ[log( / ) | , ]ut u tE Q Q z  , which is then regressed on

Z including polynomials of utLD . The fitted values are then used as instruments in the next 

iteration.    

            Identification in the previous approach arises from the parametric functional form 
assumption on ( )j  and no excluded exogenous variables are needed. In the second approach, 

we add additional exclusion restrictions based on two political economy variables: the average 

League of Conservative Voters (LCV) environmental scores of federal legislators who represent 

voters in the utility’s service territory, and the percentage of voters who voted for the Republican 

candidate in the last political election. We construct both variables for the area served by each 

utility. In estimation, these two variables and their polynomials are used to construct optimal 

instruments in an iterative procedure outlined above. Our results show that both approaches 

produce similar results. 

4.3 Examining DSM Effectiveness and Cost-Effectiveness 

Next we show how equation (4), once the parameters have been estimated, can be 

transformed to yield expressions to examine both the effectiveness and cost-effectiveness of 

DSM spending. We measure effectiveness by using two metrics: percentage electricity savings 

across all utilities from 1992-2006 attributable to DSM spending during this period; and 

electricity savings from 1992 on due to DSM spending during 1992-2006 as a percentage of 
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electricity consumption during 1992 to 2006.12 Different from the first measure, the second 

measure also includes the demand effect after the data period as a result of EE DSM spending 

that occurred during the data period. The first measure can be computed directly from the data 

based on parameter estimates while the second one necessitates an assumption about the level of 

electricity demand after 2006.  

The estimated percentage change at utility u in year t (before 2007) due to current and 
past DSM spending from 1992 on, % utS is given:  

               

0

0

,'
0

,
0

1 exp ( )[1 exp( )]
( 0) ( )

% ,
( )

exp ( )[1 exp( )]

t t

u t j
jut ut ut ut

ut t t
ut ut

u t j
j

j d
Q D Q D

S
Q D

j d

 

 











 
  

    
 

 
 




                     

(6)             

where ( )ut utQ D is electricity consumption at utility u in year t. Negative   implies that the 

percentage change is negative and that consumption is reduced by DSM spending. Note that the 
electricity savings in any given year are the result of DSM expenditures from year 0t  to the 

current year. 

To calculate an aggregate estimate of electricity savings from DSM across utilities and 

time, it is necessary to translate percentage savings into a level of savings (in kWh) by 

multiplying the percentage savings by total electricity consumption. 

                                                                % * .ut ut utS S Q                                                        (7)                               

Equation (7) gives a predicted energy savings from DSM for each observation in the sample. 

With that, we can compute an overall percentage savings estimate by summing energy savings 

across all utilities and years (1992-2006), and dividing by the sum of electricity consumption. 
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(8) 

Equation (8) provides the first measure of program effectiveness. The second measure is 

electricity savings from 1992 on (including savings that persist beyond the data period) due to 

                                                 
12 L&K and ABF report alternative summary statistics for aggregating savings and costs across utilities and time, 
including unweighted means. We agree with ABF that the alternative unweighted measures are misleading and we 
therefore do not report them here. 
 



14 

 

DSM spending during 1992-2006 as a percentage over electricity consumption 1992-2006. The 

difference between these two measures lies in the numerator and the common denominator 
permits comparison. We use the estimated  and the ( )j  function to predict the cumulative 

percentage savings at utility u after 2006 attributable to DSM expenditures during 1992 and 2006 

at that utility. The percentage saving at utility u in year k (k>2006) resulting from DSM spending 

during the data period is given by:  
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(9) 

,2006uD
 
is a vector of annual DSM spending from 1992 to 2006. To predict total electricity saved 

in a future year, we assume that electricity consumption is flat after 2006 for each utility.  

                                                        ,2006% * .uk uk uS S Q
                                                            

(10)                          

We add these future savings to the numerator in equation (8) and obtain the second measure: 
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(11)                         

where T is the last year when 2006 DSM spending ceases to have any demand effect. Our 

estimates suggest that the effect is practically zero after 20 years so we do not add future savings 

after 2026. 

To examine the cost-effectiveness of DSM spending, we calculate spending (in cents) per 

kWh saved. Denoting the number of customers in utility u at time t by Nut, we divide total DSM 

spending across all utilities and years by total electricity savings: 
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(12)                         

              When the energy savings from DSM spending last a long time as our empirical results 

show, one should discount future benefits in order to compare them to upfront DSM spending. 

Discounting makes a bigger difference in the cost-effectiveness analysis when the energy savings 

accrue over a longer time period. We calculate average cost per kWh saved (AC) using 
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alternative discount rates: 0 percent, 3 percent, 5 percent, and 7 percent. A higher discount rate 

implies smaller total discounted electricity savings and hence a larger average cost estimate. We 

take the estimates based on 5 percent discount rate as the focal point of discussion, as this is in 

the middle of the 3 percent and 7 percent rate typically used for government policy analysis.

13

 

5. Estimation Variables and Data Sources 

 Our data set is a panel of annual utility-level data from EIA Form 861 Annual Electric 

Power Industry Report and other sources over the 18-year period 1989–2006.14 The observations 

in the estimation sample start in 1992 because we use DSM spending in 1989-1991 to control for 

spending prior to our data period. Thus, our panel covers a period roughly twice as long as that 

of L&K. Summary statistics appear in Table 1. All dollar values are converted from nominal to 

real using the gross domestic product (GDP) deflator. 

Our main sample has 3,326 observations from 307 utilities. The original data set from 

which our main sample is drawn includes all utilities in the lower 48 states that meet the 

minimum size criteria for reporting DSM expenditures throughout the sample period. We 

exclude utilities with no residential customers. The original data set has many observations with 

                                                 
13 Recent estimates place the weighted average cost of capital for electric utilities at about 5% and the cost of equity 
at about 7% (Damodaran 2006). 

14 Analysts have raised some concerns about the quality of the utility level data on energy efficiency collected on 
EIA-861, including missing values for expenditures in some years for large utilities and a lack of consistency across 
utilities in what gets reported for both expenditures and savings measures, particularly the annual savings (Horowitz 
2004, York and Kushler 2005, Reid 2009, Horowitz 2010). Note that we do not use the EIA-861 energy savings data 
for our econometric analysis. Early in the course of this research, we also attempted to identify and correct 
shortcomings in the expenditures data, drawing on other sources including ACEEE and the Consortium for Energy 
Efficiency that have sought to fill in missing expenditures in certain years or collect their own data.  However, we 
were unable to use those data because they did not have a sufficient degree of detail and time coverage necessary for 
our analysis. So we proceeded solely with the EIA data. Nonetheless, we did carefully check the EIA data and 
eliminated a number of outliers, including observations with year-to-year growth in demand or total customers in 
excess of 30 percent (due to mergers, acquisitions, and other factors) and utilities with no residential customers. 
Also, there appears to be inconsistent reporting of zeros and missing values for DSM energy efficiency expenditures 
in the 861 data depending on the year. We do some consistency tests across the different components of DSM 
expenditures to determine when reported zeros are likely missing values and when reported missing values are likely 
to be zeros. When energy efficiency expenditure is reported as zero and total DSM expenditures is non-zero,if the 
sum of the components of DSM, including energy efficiency, load management, load building (for those years when 
it is reported) and indirect costs, is less than the total DSM then we convert the zero expenditures to missing.  
Alternatively, if EE DSM is reported as missing and total DSM is reported as zero, then we treat the energy 
efficiency component of DSM expenditures as zero. While we believe there may be measurement error associated 
with the energy efficiency DSM expenditures reported to EIA, we do not believe it introduces a systematic bias to 
our analysis.   
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missing values for DSM spending even after our meticulous efforts to find them from various 

sources.15 Because our empirical model allows all previous DSM spending to potentially affect 

current demand, whenever encountering a missing DSM spending, we have to drop all 

subsequent observations for the same utility.  

5.1 Electricity Demand and DSM Expenditures 

Data on utility-level electricity sales, DSM spending, and number of customers are from 

Form EIA-861. Like L&K, we use as our measure of utility spending on energy efficiency DSM 

that portion of DSM expenditures that utilities report as being devoted specifically to energy 

efficiency, as opposed to load management, load building, or indirect costs.16 To be as 

comprehensive as possible in our treatment of ratepayer–funded DSM energy efficiency 

programs, we also include third-party state-level DSM programs that have come into being post-

restructuring.17 We share state-level third-party DSM expenditures to the utility level using each 

utility’s share of total customers within the state. Given that comparisons of third-party DSM 

expenditure data shared to the utility and utility-reported DSM expenditures suggest that there is 

some overlap, we only include third-party expenditures in the analysis when the utility-reported 

DSM expenditures are zero or missing.18 As noted in section 4, we normalized DSM 

expenditures by number of customers at the utility in order to control for size. Finally, note that 

conducting the analysis at the utility level means that we are able to pick up the effects of intra-

utility spillovers that would result when customers who do not participate in a program actually 

                                                 
15 Under Form EIA-861, utilities with sales to both ultimate consumers and resale less than 120,000 MWhwere not 
required to report energy efficiency expenditures through 1997. The threshold became 150,000 MWh in 1998; we 
therefore exclude all utilities with less than 150,000 MWh. Further, following L&K, we do not include utilities in 
Alaska, the District of Columbia, Hawaii, or the U.S. territories. We also drop observations that have missing values 
for DSM expenditures during the estimation process. 
16 Note that utilities did not report expenditures for energy efficiency separately until 1992, so we use the energy 
efficiency share of total DSM expenditures by utility in 1992 to impute values for energy efficiency–related 
expenditures in prior years to use as lagged measures of energy efficiency DSM expenditures.   
17 From a variety of sources, we were able to collect data on energy efficiency expenditures for third-party 
programs for only eight states and these data are reported in Appendix Table A-2, which shows the annual DSM 
expenditures by each program. When constructing these data, we did our best to match the categories of 
expenditures included in the energy efficiency portion of DSM spending reported by utilities to the expenditures 
reported by third parties, but such parsing of the third-party data into the portion that is directly comparable to the 
EIA definition of energy efficiency spending was not always possible.  To the extent that we overrepresent the 
relevant category of energy efficiency spending, that would tend to bias our cost-effectiveness estimates upward.We 
were unable to obtain data on energy efficiency spending by the public benefit fund administrator in Ohio and thus 
we exclude the Ohio utilities from our estimation for the years 2000 and beyond.  
18  A linear regression of utility-reported DSM expenditures on third-party DSM expenditures shared to the utility 
level yields a coefficient of 1, suggesting that these third-party expenditures may be incorporated into utility reports. 
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make investments in efficient equipment on their own and thus reduce their electricity 

consumption at no cost to the program. 

5.2 Decoupling Regulation 

To test whether state-level revenue decoupling regulation leads to reduced demand, we 

include a categorical variable indicating its presence.19 Because of the way electricity is priced in 

most places, many of the fixed costs of delivering electricity are recovered in per-kWh charges. 

This means that programs that are effective at reducing electricity consumption could also reduce 

revenues that are used to recover fixed costs, potentially creating losses for the utilities that offer 

DSM programs. In some states, regulators have allowed the utilities that they regulate to recover 

the relevant portion of lost revenues to eliminate disincentives for offering DSM programs. One 

such approach is revenue decoupling, so named because it decouples the portion of utility 

revenues dedicated to recovering fixed distribution costs from the amount of electricity that the 

utility sells. Note that because our data end in 2006, we do not incorporate the recent dramatic 

increase in the adoption of decoupling regulation at the state level. 

5.3 Building Energy Efficiency Codes 

Previous studies of DSM have not examined the effects of building codes on electricity 

demand.20 As a result, if building code stringency is positively correlated with average DSM 

expenditures per customer,21 a portion of the energy savings caused by building codes may be 

attributed to DSM spending, which would result in an underestimate of the cost per kWh 

savings.22 We address this issue by including a series of categorical variables to characterize the 

                                                 
19 Another approach is lost revenue recovery, which allows utilities to raise prices to compensate them for revenues 
from sales that utilities can show were lost as a result of DSM programs.  Unfortunately, data on the presence and 
form of state rules governing lost revenue recovery are not available for several of the years in our sample. 

20Jaffe and Stavins (1995) examined the effectiveness of building codes using a cross-sectional data set, finding no 
significant effect of building codes on energy demand in their analysis. Aroonruengsawat et al. (2009) find that 
building codes decreased per capital residential electricity consumption by 3 – 5 % in 2006.  Jacobsen and Kotchen 
(2010) find that the introduction of more stringent building codes in Gainesville, Florida reduced demand for 
electricity by about 4%.  Costa and Kahn (2009) find that building codes affect residential electricity consumption in 
California after 1983 but not before. 
21 In our sample, we find a small positive correlation of building code stringency and DSM expenditures per 
customer. 
22 In some cases, however, such attribution may not be so far off.  A significant issue with building codes is 
compliance, and for some utilities in some years, a portion of DSM expenditures may be devoted to improving 
compliance with residential building codes.  In these cases DSM could increase the potential for building codes to 
yield savings. 
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stringency of building codes within each state during each year. We obtained data on the 

evolution of energy building codes from the Building Codes Assistance Project (www.bcap-

energy.org) and the DOE Building Energy Codes Program (www.energycodes.gov). See Figure 

2 for a map of building code stringency as of 2007, which shows the western states, such as 

California and Washington, with the most stringent building codes and Midwestern states with 

typically less stringent codes. 

We began by creating six categories of building code stringency, which, in order of 

decreasing stringency, are: (a) code met or exceeded the 2006 International Energy Conservation 

Code (IECC) or equivalent and was mandatory statewide; (b) code met 2003 IECC or equivalent 

and was mandatory statewide; (c) code met the 1998–2001 IECC or equivalent and was 

mandatory statewide; (d) code preceded the 1998 IECC or equivalent and was mandatory 

statewide; (e) significant adoptions in jurisdictions, but not mandatory statewide; and (f) none of 

the aforementioned conditions hold and no significant adoptions of building codes in the state. 

After speaking with a building codes expert, we further consolidated these into four categories to 

represent more substantial differences in stringency: BC1 indicates the stringency is (a) above; 

BC2indicates the stringency is (a)–(d) above; BC3 indicates the stringency is (a)–(e) above; the 

fourth (excluded) category is category (f).23 Thus, the variables are structured to indicate the 

incremental effect of building codes compared to the next most-stringent category.  

5.4 Energy Prices and Other Variables 

The annual average price of electricity by state also comes from Form EIA-861.24 

Residential natural gas and fuel oil prices by state also come from EIA. We compiled state-level 

data on several other variables from a variety of sources. Annual state-level GDP comes from the 

Bureau of Economic Analysis. Data on population-weighted heating and cooling degree days by 

state are from the National Oceanic and Atmospheric Administration (NOAA).These data are 

                                                 
23 We also obtained data on energy efficiency codes for commercial buildings. However, we found a high 
correlation between the residential and commercial building code stringency, and so chose to focus on a single 
measure of stringency.  
24 Electricity prices can vary substantially across utlities within a state and our price data will not reflect this intra-
state variation in price levels where it exists  However, given the potential for endogeneity introduced by using utlity 
level price data, and the fact that our analysis focuses on changes in price and not price levels, we believe that using 
state level prices for electricity and other fuels is appropriate. 
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summed to construct a single climate variable.25 Data on state-level housing starts are from 

Mitsubishi Bank (Bank of Tokyo-Mitsubishi UFJ, Ltd.). Some utilities operate in multiple states 

and separately report sales of electricity for each of the states in which they operate. We sum 

these sales to a utility-level total for our dependent variable. This is necessary because the energy 

efficiency DSM expenditures from Form EIA 861 are only available at the utility level and not 

broken down by state. For variables that are only available at the state level (i.e., energy prices, 

GDP, and heating and cooling degree days), we use the value associated with the state in which 

the utility does the majority of its business. 

We obtained the League of Conservation Voters (LCV) scores for each member of the 

U.S. House of Representatives directly from National Environmental Scorecards for 1991-2006 

from the LCV website.26 The National Environmental Scorecard grades representatives on a 

scale of 0-100 based on how they vote on key environmental legislation (e.g., legislation related 

to energy, global warming, environmental health and safety protections, public lands and wildlife 

conservation and spending for environmental programs). We use GIS to match congressional 

districts to utility service territories tracking changes in congressional district geography over 

time. When a utility service territory overlaps multiple congressional districts, we use area 

weights to construct a utility-service-territory level LCV index for each year.27 The Republican 

voting share variable comes from county-level information on the percentage of the votes for the 

Republican candidate in each presidential election from 1988 through 2004. These county-level 

data were mapped to the utility service territory using GIS information.28  For years between 

presidential elections we used the information from the most recent election. 

                                                 
25 Although more than 99 percent of building air cooling is powered by electricity, the role of electricity in space 
heating is much smaller (between 2 percent and 18 percent)  and varies substantially across regions of the country. 
To better represent the limited role of electricity in delivering space heating, we weight our heating degree day 
variable by the share of electricity in space heating for residential and commercial buildings by region of the 
country. The shares are from the Residential Energy Consumption survey and Commercial Building Energy 
Consumption survey for available years, and are interpolated for intervening years. We found this adjustment to be 
important empirically. 
26 See http://www.lcv.org/scorecard/past-scorecards/. 
27We chose area-weighting because although representatives are elected by the population of their district, an LCV 
score is assigned to a single Congressional representative who is representative of each component of an entire 
Congressional District area equally. 
28 Where a service territory spans multiple counties the number of Republican votes cast were summed across the 
component counties and then divided by the total number of presidential votes cast across the component 
counties.  When a county is split among multiple utility service territories, we performed an area weighted 
calculation, assigned a weight to each utility-county component relative to the total county size, and multiplied that 
by the number of voters in the county. 
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6. Estimation and Results 

 We first estimate equation (5) using nonlinear least squares assuming no endogeneity in 

DSM spending, as has been done in previous studies in this literature. To address the issue of 

possible endogeneity, we then estimate equation (5) using nonlinear GMM as discussed in 

section 4. A variety of robustness checks are conducted to check the sensitivity of the findings 

with respect to assumptions on demand specification, parametric assumptions on the time path 

the effects of past DSM spending, treatment of missing DSM data, as well as controlling for 

DSM spending before 1992. Based on the estimated parameters, we examine the effectiveness 

and cost-effectiveness of DSM spending. The results appear in Tables 2-6. In the following, we 

first present coefficient estimates and we then discuss their implications for program 

effectiveness and cost-effectiveness. 

6.1 Coefficient Estimates 

Table 2 presents coefficient estimates and their standard errors from estimating equation 

(5). The first-difference equation includes year dummies and the control function to capture the 

demand effect of EE DSM spending before 1992. As discussed in Section 4.1, the control 

function includes nine interaction terms between the polynomials of the average level of DSM 

spending during 1989-1991 and the polynomials of the time trend variable.29 The results under 

model 1 are obtained from nonlinear least squares (NLS). The results under model 2 are from 

GMM where we use the polynomials (up to 5th order) of the lagged spending (the 4th lags and 
those earlier) to construct the optimal instrument , 1[log( / ) | , ]ut u tE Q Q z  as described in 

Section 4.2. Model 3 includes LCV scores and percentage of Republican presidential votes in the 

last election in each utility service territory as additional variables to construct optimal 

instruments. 

The parameter estimates across the three models are very close, suggesting that current 

DSM spending is not correlated with current demand shocks. This similarity may reflect that 

DSM spending is determined before the current demand shocks are realized. If utilities base their 

DSM spending on (projected) future demand conditions, their predictions of future demand 

conditions can be captured well by the observed demand factors used in our model.  Basing 

current DSM spending on expectations regarding future demand growth is consistent with an 

integrated planning model approach in which utilities see energy efficiency investments as an 

                                                 
29 These nine interactions are 

2 3 2 3 2 32 2 2 3 3 3* , * , * , * , * , * , * , * , *d d d d d d d d d         . 
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alternative to building new power plants in order to balance demand and supply in the future 

(Gillingham et al. 2006). This finding also holds in other demand specifications to be discussed 

in the next section. In all of the models, we find a negative estimate for the γ coefficient. Given 
that ( )j in equation (4) is always positive, a negative γ implies a negative relationship between 

electricity demand and DSM spending per customer. The magnitude of the γ coefficient, which 

gives the rate at which diminishing returns set in, is quite small, implying that the diminishing 

return is not strong at least for the spending levels observed in the data. Since our model is 

nonlinear in parameters, the demand effect of DSM spending is determined by γ and other 

parameters in the model. 

The next two parameters ( 1 2,  ) characterize the function (pdf of a Gamma distribution) 

used to capture the long-term effect of DSM spending. Depending on parameter values, the 

function could be strictly decreasing or non-monotonic with a single peak. The top panel of 
Figure 3 plots the function itself and 95% confidence intervals based on estimates of ( 1 2,  ) 

from model 1 (NLS) while the bottom panel is based on results from model 3 (GMM with 

exclusion restrictions). The confidence interval is constructed base on the delta method. We also 

plot an arbitrary path within the 95% confidence band in each plot to illustrate one alternative 

time path that is consistent with the confidence interval around the estimated function. For 

example, the function itself in both plots peaks around t = 9 (t = 1 for current year) and based on 

the function itself, one might conclude that DSM spending has the strongest demand effect after 

eight years. However, this interpretation ignores the fact that the confidence band around the 

function is quite wide, especially around the peak point, suggesting that the peak point may be 

hard to isolate based on the data and model we have. In fact, the confidence bands suggest that 

the alternative path given in the plots could also be a potential time-path for the demand effect of 

DSM spending.  

We believe that there are two important messages from the plots. First, DSM spending 

has a long-lasting demand effect. The plots suggest that the demand effect in year 15 is still 

statistically different from zero at the 5 percent confidence level. This is in contrast with the 

modeling assumption used in previous studies that DSM spending only affects demand within 

the first few years. Many DSM programs promote energy-efficient investments by customers 

(including residential, commercial and industrial users). These investments are often in the form 

of subsidies for the purchase of energy-efficient durable (consumption or capital) goods or for 

building retrofits such as insulation or new windows. The reduction in electricity demand 

resulting from these types of long-lived investments could last for a long time. 

Second, the demand effect of DSM spending could be small initially and not achieve its 

maximum until a few years later. For example, programs that subsidize energy audits may not 
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see immediate results as it may take time for customers to take up all the recommendations from 

these programs (e.g., making energy-efficient investments). To the extent that these 

recommendations could require a large financial commitment, consumers may not act upon them 

immediately. This may be especially true for industrial and commercial customers if the 

investment involves significant capital turnover. Also, according to Gillingham et al. (2004), by 

the 1990s utilities were increasingly focusing their DSM spending on market transformation 

programs that sought to transform markets for energy using equipment such that the efficient 

option becomes the norm.  These types of programs involved coordinated information, training, 

demonstration and financing campaigns and their effectiveness could very well build over time 

as suggested by our results.  While it is impossible to know from our EE DSM expenditure data 

exactly what types of programs utilities were funding during the years for which we have data, 

our results are consistent with some of the general trends in program evolution identified by 

Gillingham et al. (2004). 

The remaining parameter estimates are intuitively signed and in most cases are 

statistically significant. The relationships between electricity demand and indicators of the size 

of the market (number of customers and population) and overall economic condition (gross state 

product and housing starts) are positive and significant across the different models. We include 

prices of electricity, natural gas and fuel oil (in logarithm) and their quadratic terms to allow for 

more flexible elasticity patterns. Electricity demand is significantly negatively associated with 

the price of electricity (elasticity of -0.27 at the mean level of electricity price), and is positively 

associated with the prices of natural gas and fuel oil (elasticity of 0.04 and 0.18 at the mean level 

of prices).30 Electricity demand is also positively associated with increases in the climate variable 

(i.e., heating/cooling degree days) and the size of this effect is fairly consistent across the 

different models at an elasticity of about 0.1. In all models, we also include building code 

stringency dummies (base group: no building codes) and their interactions with housing starts. 

Recall from section 5 that the dummy for having building codes is one  if there is any type of 

building codes in the area (regardless of stringency) while the two dummies for more stringent 

building codes are one for all areas that have building codes above a certain threshold. The 

                                                 
30 The parameter estimates on electricity price suffer from the potential endogeneity problem and is better 
interpreted as an indication of association rather than causation. 
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coefficient estimates suggests that having the most stringent building codes reduces electricity 

demand and the reduction effect is stronger in areas with more housing starts.31 

6.2 Percentage Savings and Average Cost-Effectiveness 

We use the estimated coefficients in Table 2 to examine the effectiveness and cost-

effectiveness of DSM spending. We use equation (8) to calculate the percentage electricity 

savings occurred from 1992 to 2006 from DSM spending in the same period. We present the 

results for the three models in Table 3, based on the corresponding parameter estimates in Table 

2. Noting that the results are very close across models, we focus on the results from NLS in our 

discussion.  

We find that DSM expenditures in the data period, from 1992 through 2006, produce 

weighted average energy savings during the data period of just below 1 percent.  When savings 

in future years are taken into account and divided by demand during the data period (when the 

DSM expenditures were incurred) the total effect is a 1.8 percent reduction in demand.  

Assuming a discount rate of 5 percent, the cost of these energy saving is estimated at 5 cents per 

kWh saved with a 90 percent confidence interval that goes from nearly 0.3 to 9.8 cents per kWh. 

Because our demand estimation suggests that the demand effect from DSM spending lasts a long 

time, the average cost estimates can be quite different under different discount rates: it is 

estimated to be 3 cents per kWh under no discounting and 6 cents per kWh when future savings 

are discounted using a 7 percent discount rate.   

We can use our model to compare predictions of savings with the actual savings data 

reported by the utilities to EIA in the 861 database. Utilities report to EIA the cumulative savings 

in each year that result from all current and past spending.  Given that our model relies on EE 

DSM spending data that start in 1992 and our finding that savings persist for several years, the 

most reasonable comparison is one for a later year in the database.  In 2006 there were only 50 

utilities that had non-missing values of energy savings for all relevant categories of customers 

and for those 50 utilities the total reported savings in 2006 was 4.2 percent of total sales in the 

same year.  Our model predicts total savings for those same 50 utilities of 2.6 percent with a 

standard error 1.4 percent and thus the reported savings are within the 90 percent confidence 

interval of our estimate.  Note that these 50 utilities appear to be slightly more successful at 

                                                 
31 The partial effect of having most stringent building codes on electricity demand is given by 
(0.1061 0.0953 0.1981) ( 0.0091 0.0102 0.0203)*log(housing starts)      . It is equal to -0.0184 at the mean 

value of housing starts (138,340) in the areas with most stringent building codes. 
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producing savings as the average cumulative savings in 2006 for all 126 utilities in our data set is 

only 2.1 percent with a standard error of 1.1 percent.    

The expected average cost estimate of 5 cents per kWh for utility costs is less than the 

national average retail price of electricity in 2006 of 9.1 cents per kWh across all sectors (EIA 

2009). Recall, however, that these are costs only for the utility itself. The fact that the average 

electricity price is higher than the estimated utility cost per kWh saved suggests that these 

programs may have produced zero-cost or low-cost CO2 emissions reductions, depending on the 

magnitude of the costs to utility customers of implementing energy efficiency measures. 

Although the marginal cost of electricity—which is not generally equal to the electricity price—

is perhaps a better estimate of the benefits of energy savings from DSM, estimates of marginal 

cost can vary substantially depending on what margin is being considered. In the short run, the 

marginal cost of generation can vary substantially by time of day. For example, in December 

2006, the hourly marginal cost of generation ranged from roughly 2 cents per kWh to 27 cents 

per kWh depending on location and time of day (PJM 2006). In the longer run, marginal 

generation costs are given by the levelized cost of new investments, which vary by technology 

and fuel and, according to the National Academy of Sciences (2009), range from roughly 8–9 

cents per kWh for new baseload fossil capacity to a little over 13 cents per kWh for a new gas 

turbine peaker. 

Accounting for customer costs is also challenging. Earlier research (Nadel and Geller 

1996; Joskow and Marron 1992) suggests that the sum of customer costs and utility costs is 

roughly 1.7 times utility costs alone. Because this ratio is based on such a small number of 

somewhat dated studies, we do not think it is appropriate to use this ratio to estimate customer 

costs for our results. Nonetheless, it suggests that the total average cost of a kWh saved is still 

below the price of electricity, suggesting that energy efficiency programs can be a cost-effective 

way to reduce CO2 emissions.  

Our estimate is in the range of some more recent estimates of the cost-effectiveness of 

energy efficiency programs.  For example, PG&E (2010) finds that its energy efficiency 

programs in 2009 produced savings at an average cost to the utility of 4.5 cents per kWh saved. 

6.3 Robustness Analysis 

To check the sensitivity of our findings to modeling assumptions, we conduct a variety of 

robustness checks. The first robustness check is with respect to the specification of the model. 

The baseline specification given by equation (4) assumes that DSM spending enters the demand 

equation nonlinearly, which is to capture the possibility that the demand reduction effect could 
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have a diminishing return. In an alternative specification, we let the DSM spending variable  

enter the demand equation linearly:   

(13)                          
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The estimation results based on NLS and GMM with exclusion restrictions for this 

specification are presented in Table 4. NLS and GMM results are very similar to the baseline 

specification, again suggesting that DSM spending is not correlated with idiosyncratic demand 

shocks. The parameter estimates from this alternative specification are very close to those from 
the baseline specification shown in Table 2. This is consistent with the fact that is estimated to 

be very close to zero in the baseline specification, implying a near linear relationship between 

DSM variables and the dependent variable. The percentage electricity savings and average cost 

estimates from the alternative specification, shown in panel 1 in Table 6, are also similar to those 

in the baseline specification. The average cost per kWh saved is estimated to be 4.8 cents with a 

discount rate of 5 percent, compared to 5.0 cents in the baseline specification.  

The second robustness check is with respect to missing data in the sample. Because we 

have to drop all the observations subsequent to a missing one for the same utility, this implies 

that the number of utilities used in the analysis is smaller over time. To check how this could 

affect estimation results, we use the same demand function specification as the baseline but focus 

on utilities that have at least 10 observations in the data and this gives rise to 3,014 instead of 

3,326 observations. The parameter estimates are close to those in the baseline model. Panel 2 of 

Table 6 provides the estimates of percentage electricity savings and average cost, all of which are 

similar to the baseline estimates as well. 

In the third robustness check, we investigate the sensitivity of the findings to the control 

function used to capture the demand effect of DSM spending occurred before 1989, the first year 

of our data. Recall that we use a polynomial function of average DSM spending between 1989 

and 1991 and the time trend as the control function. The baseline specification includes 

interaction terms between 3rd-degree polynomials of the average annual level of DSM spending 

during 1989-1991 and those of the time trend variable  (9 interactions in total)) while in this 

robustness check, we include interaction terms of 4th-degree polynomials of each of the two 

variables  (16 interactions). Estimation results from this specification, shown in the first part of 
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Table 5 and the third panel of Table 6, are still in line with those in the baseline model.32 The 

fourth alternative specification employs a different parameter function to capture the long-term 

demand effect of DSM spending. Instead of the probability density function of the Gamma 

distribution in the baseline model, we use a Weibull distribution which is also a two-parameter 

function and allows flexible pattern of the time path. The parameter estimates are presented in 
Table 5.  Based on the estimates for 1 2,  , we plot the function and the 95% confidence interval 

in Figure 4. The two plots correspond to estimation results from NLS and GMM with exclusion 

restriction. The two salient features observed in Figure 3 for the baseline specification are still 

present in Figure 4: DSM spending could have a long-lasting effect and the effect could be small 

initially and reach its maximal strength a few years later. Panel 4 of Table 6 shows the 

percentage saving and average cost estimates. The average cost decreases from 5 cents in the 

baseline to 4 cents in this specification. Nevertheless, given the standard errors for these two 

estimates, the difference would not be statistically significant. 

The specific nature of the individual EE DSM activities included in these utility and state 

programs is not discernible in our data, and there can be substantial variability across programs. 

While some DSM programs are implemented with a direct goal of reducing consumption within 

utility service territories, others are carried out as less intensive pilot programs or customer 

service activities (e.g., information programs).33 If one expects that the programs under the 

second category have a smaller effect on energy saving (per dollar of expenditure), our results 

from combining all types of programs together would under-estimate the effect of demand 

reduction from the programs in the first category (i.e., more intensive programs explicitly 

motivated to achieve high energy savings).  

To examine this issue, we conduct two additional robustness checks where we drop “less 

committed” utilities that have positive DSM spending but whose spending per customer is below 

the 10th percentile or the 20th percentile of the DSM spending distribution (among the utilities 

who carried out DSM spending). The results from these two robustness checks are very similar 

to those obtained for the baseline model, and are available upon request. For example, demand 

reduction from DSM spending during the data period is -0.92% from Model 1 (NLS in Table 2) 

                                                 
32We note that we also estimate the model without including the control function. Because this approach would 
attribute the demand effect of DSM spending that occurred before 1992 to expenditures in later years, the results 
show that the demand effect would be substantially overestimated: the estimated percentage savings during 1992-
2006 is 3.2 percent and the cost per kWh saved is less than one cent compared to 0.9 percent and five cents in the 
baseline model. 
33 We thank one of the referees for calling this issue to our attention. 
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while the effect is estimated at -0.93% in the first robustness check and -0.89% in the second 

robustness check, all being significant at the 10% level. The central cost-effectiveness estimate 

from these more limited samples actually increases somewhat, although the change is not 

statistically significant from the baseline model. This is also consistent with the fact that in the 
baseline model,  (the rate of diminishing returns) is estimated to be very close to zero in the 

baseline specification, implying a near linear relationship between DSM per customer and 

log(electricity consumption) for the data we have. 

To investigate whether revenue decoupling strengthens the demand-reducing effect of 

DSM spending, we add an interaction term between DSM spending and the decoupling dummy 

in the baseline specification. The demand equation becomes: 
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Decoup is a dummy variable equal to 1 if revenue decoupling policy is in effect for the utility. 
The estimates for 1 2 and   from NLS are -0.0006 (0.0007) and -0.0034 (0.0029) with standard 

errors in parenthesis. The 2 estimate suggests that the demand reduction effect is stronger 

among utilities that have revenue decoupling regulation. However, it is not statistically 

significant, likely due to the fact that only 7 percent of the observations are affected by this 

policy and the policy status does not change often over time for the same utility during our data 

period (more and more utilities are subject to this policy after 2006, the end of our data period). 

All the other parameter estimates (not reported to save space) are close to those in the baseline 

model. Moreover, NLS and GMM give similar results as well. The percentage savings estimates 

based on equations (8) and (11) are 0.9 percent (0.5) and 1.5 percent (1.0) from NLS. The 

average cost per kWh saved is 6 cents with a standard error of 4 with a discount rate of 5 percent. 

7. Conclusion 

The cost-effectiveness of utility DSM programs is a subject of considerable interest and 

study. Most of the past efforts to study cost-effectiveness take utility reports of electricity 

savings attributable to DSM programs as given, often adjusting by a pre-established net-to-gross 

factor to account for free riders net of spillover effects. In this analysis, we take a different 

approach that relies on econometric techniques to estimate how DSM expenditures affect 

electricity demand, controlling for other demand drivers, such as changes in price, income and 

weather. We build on earlier work by expanding the dataset and including additional important 

explanatory variables. More importantly, we develop a carefully motivated empirical model to 

capture the long-term demand effect of DSM expenditure. We explicitly address the potential 
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endogeneity problem of DSM expenditure using nonlinear GMM, which has not been done 

previously.  

 Our main results suggest that, over the 15-year period covered by this analysis, 

ratepayer–funded DSM expenditures produced a central estimate of 0.9 percent savings in 

electricity consumption within the data period and 1.8 percent savings including savings that 

occur beyond the data period. The average cost to utilities of electricity savings achieved under 

these programs depends importantly on the discount rate employed to calculate the present 

discounted value of future electricity savings. With a discount rate of 5 percent, the average cost 

is 5 cents per kWh saved, with a 90 percent confidence interval that goes from 0.3 cents to nearly 

10 cents per kWh saved. Higher discount rates yield higher mean estimates of average cost. Our 

findings are robust to many alternative assumptions about model structure and the structural 

model used to incorporate the effects of lagged DSM spending. Our model suggests that over the 

range of DSM spending data in our sample, returns to increased EE DSM spending are roughly 

constant. Decoupling regulation appears to strengthen the demand-reducing effects of EE DSM 

spending. Our results do provide evidence that for utilities primarily located in states where 

housing starts are above the mean, the presence of more stringent building costs has a 

statistically significant negative effect on electricity demand. 

In future work, it would be useful to discern lessons about the relative effectiveness of 

different types of energy efficiency programs (e.g. information programs versus rebate programs 

versus loan programs) or the relative effectiveness of programs targeted at different classes of 

customers (residential, commercial, industrial), both of which would require more detailed data 

on EE DSM spending by program type and type of customer. In recent years energy efficiency 

regulatory policy has focused on questions of who is best suited to deliver energy savings 

through efficiency investments at the point of use and what types of regulatory incentives are 

necessary to encourage utilities to embrace end-use energy efficiency. States have opted either to 

charge the electric utilities with promoting energy efficiency or have chosen to establish a 

separate state-run or state-chartered entity (e.g., Efficiency Maine Trust, Efficiency Vermont or 

NYSERDA) to operate its ratepayer funded energy efficiency programs.  

On the regulatory side, state utility regulators have had a renewed interest in developing 

regulatory mechanisms such as revenue decoupling and incentive mechanisms to reward 

successful energy efficiency programs to help overcome utility incentives to maximize revenues 

and profits through greater electricity sales. As experience with these different structural and 

regulatory institutions accumulates, we hope the necessary data will be collected to enable us and 

other researchers to identify the implications of these different institutional arrangements and 
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regulatory approaches for the performance of programs that use ratepayer funds and other public 

dollars to invest in greater end-use energy efficiency. 

Utility energy efficiency programs are taking center stage in ongoing discussions about 

U.S. energy policy and how best to combat climate change. Studies such as the recent McKinsey 

Study (Granade et al. 2009) on the potential for saving energy at low or negative cost are part of 

this debate. However, missing from studies like McKinsey’s are the specific policy measures that 

would be required to bring about the investments and behavioral changes necessary to realize 

these energy savings and estimates of the extent to which the costs of implementing these 

policies might differ from the engineering costs. The present study offers additional evidence 

about how effective past utility and third-party state-level programs have been in reducing 

electricity demand, and how much they have cost per unit of electricity saved. 
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Table 1: Summary Statistics 

Variables Mean Median Std. Dev. Min Max

First difference of Log(electricity demand) 0.031 0.028 0.045 -0.290 0.297

Electricity demand (billion KWH) 7.98 1.08 16.02 0.16 103.65

Electricity demand per customer (MWH) 24.02 21.49 10.75 8.21 96.52

DSM spending ($ millions) 4.71 0.06 16.82 0.00 230.20

DSM spending per customer ($) 9.41 1.19 18.08 0.00 191.85

Number of customers (thousands) 325 53 678 4 5,121

Population (thousands) 9,139 6,452 8,072 574 36,200

State GDP ($ billions) 362 256 346 18 1788

Housing starts (thousands) 48 31 52 2 265

Electricity price (cents per KWH) 8.80 8.12 2.37 4.90 15.87

Natural gas price (cents per Mcf) 10.30 9.79 2.91 5.35 22.12

Fuel oil price (cents per gallon) 130.43 119.49 35.84 73.40 275.31

Climate 1,647 1,454 825 369 3,937

Indicator: most stringent building codes  0.028 0.000 0.165 0.000 1.000

Indicator: more stringent building codes  0.797 1.000 0.402 0.000 1.000

Indicator: building codes exist 0.852 1.000 0.355 0.000 1.000

Mean DSM spending per customer 89-91 ($) 7.40 0.81 13.18 0.00 64.82

Number of observations 3,326

Number of utilities 307         

Notes:  Dollars are inflation-adjusted to 2007. Mcf denotes thousand cubic feet. 
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Table 2: Estimation Results from the Baseline Model 

Variables Model 1: NLS Model 2: GMM Model 3: GMM
Para. S.E. Para. S.E. Para. S.E.

DSM spending per customer -0.0016 0.0010 -0.0015 0.0010 -0.0016 0.0010

 in Gamma probability density function 8.4155 5.7705 8.8819 6.1876 8.3271 5.7275

 in Gamma probability density function 0.7768 0.5972 0.8282 0.6409 0.7672 0.5930

Log(number of customers) 0.3617 0.0453 0.3617 0.0454 0.3617 0.0454

Log(population) 0.4573 0.0921 0.4574 0.0921 0.4573 0.0921

Log(gross state product) 0.2003 0.0436 0.2004 0.0436 0.2002 0.0436

Log(house starts) 0.0381 0.0080 0.0381 0.0080 0.0381 0.0080

Log(electricity price) -0.4660 0.1905 -0.4655 0.1908 -0.4661 0.1909

Log(electricity price) squared 0.0911 0.0406 0.0910 0.0407 0.0911 0.0407

Log(natural gas price) 0.1229 0.0589 0.1228 0.0588 0.1229 0.0589

Log(natural gas price) squared -0.0349 0.0143 -0.0349 0.0143 -0.0349 0.0143

Log(fuel oil price) 0.3451 0.2213 0.3460 0.2213 0.3449 0.2212

Log(fuel oil price) squared -0.0344 0.0232 -0.0345 0.0232 -0.0344 0.0232

Log(climate) 0.0962 0.0066 0.0962 0.0066 0.0962 0.0066

Dummy for most stringent bldg codes 0.1061 0.0586 0.1054 0.0586 0.1062 0.0586

Dummy for more stringent bldg codes -0.0953 0.0928 -0.0953 0.0928 -0.0953 0.0928

Dummy for bldg codes exist 0.1981 0.0861 0.1982 0.0861 0.1981 0.0861

Log(house starts)*most stringent codes -0.0091 0.0050 -0.0091 0.0050 -0.0091 0.0050

Log(house starts)*more stringent codes 0.0102 0.0093 0.0102 0.0093 0.0102 0.0093

Log(house start)*existing codes -0.0203 0.0086 -0.0203 0.0086 -0.0203 0.0086

Year dummies (14) Yes Yes Yes

Control function for early DSM Yes Yes Yes

Notes: The number of observations is 3,326. Results are for equation (4).  The dependent variable is log(electricity 
demand). The first set of results is from NLS while the second and third sets are from GMM using optimal instruments in 
an iterative procedure. Model 2 does not include exclusion restrictions in constructing optimal instruments while model 3 
includes LCV scores as well as the percentage of Republican votes in each utility’s service area in the last presidential 
election. Parameter estimates in bold are significant at the 10% level.  
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Table 3: Effectiveness and Cost-Effectiveness from Baseline Model 
  Model 1: NSL Model 2: GMM Model 3: GMM 
  Est. S.E. Est. S.E. Est. S.E. 
Demand effect of DSM spending (data period) -0.009 0.005 -0.009 0.005 -0.009 0.005
Demand effect of DSM spending (total effect) -0.018 0.011 -0.017 0.011 -0.018 0.011
Cost-effectiveness (no discounting)(cents per 
kwh saved) -3.0 1.8 -3.2 1.9 -3.0 1.8
Cost-effectiveness using 3% discount rate -4.1 2.4 -4.3 2.6 -4.1 2.4
Cost-effectiveness using 5% discount rate -5.0 2.9 -5.2 3.1 -5.0 2.9
Cost-effectiveness using 7% discount rate -6.1 3.5 -6.3 3.7 -6.0 3.5
Notes: The first row, the demand effect of DSM spending during data period, shows the effect of DSM spending from 1992 
to 2006 on total electricity demand during the same period. The second row gives the effect of DSM spending from 1992 to 
2006 on total electricity demand over all future periods (up to 20 years after the spending), assuming the demand after 2007 
to be the same as in 2006. The cost-effectiveness is calculated based on total DSM spending from 1992 and 2006 and total 
electricity saving resulted from it. The four sets of cost-effectiveness estimates are based on four different discount rates: 0%, 
3%, 5% and 7%. All standard errors are obtained using the delta method. All estimates are significant at the 10% level, but 
not the 5% level. 
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Table 4: Robustness Checks: First Two Sets 

  Robustness 1: log-linear specification Robustness 2: a subsample

NSL GMM NLS GMM

Variables Para S.E. Para S.E. Para S.E. Para S.E.

DSM spending per customer  -0.0016 0.0009 -0.0016 0.0009 -0.0015 0.0010 -0.0014 0.0010

 in Gamma pdf 7.7790 5.0811 7.7955 5.1572 8.5685 6.0393 8.9962 6.4233

 in Gamma pdf 0.7000 0.5244 0.7019 0.5325 0.8000 0.6290 0.8473 0.6695
Log(number of customers) 0.3617 0.0454 0.3617 0.0454 0.3916 0.0519 0.3916 0.0519
Log(population) 0.4571 0.0920 0.4571 0.0920 0.4435 0.0964 0.4436 0.0964
Log(gross state product) 0.2001 0.0436 0.2001 0.0436 0.1991 0.0463 0.1993 0.0462
Log(house starts) 0.0381 0.0080 0.0381 0.0081 0.0330 0.0086 0.0330 0.0086
Log(electricity price) -0.4665 0.1905 -0.4665 0.1909 -0.4896 0.1937 -0.4893 0.1940
Log(electricity price) squared 0.0912 0.0406 0.0912 0.0407 0.0953 0.0413 0.0952 0.0413
Log(natural gas price) 0.1231 0.0589 0.1231 0.0589 0.1134 0.0603 0.1133 0.0603
Log(natural gas price) squared -0.0350 0.0143 -0.0350 0.0143 -0.0318 0.0147 -0.0317 0.0147
Log(fuel oil price) 0.3430 0.2212 0.3430 0.2212 0.3303 0.2260 0.3312 0.2260
Log(fuel oil price) squared -0.0342 0.0232 -0.0342 0.0232 -0.0332 0.0237 -0.0333 0.0237
Log(climate) 0.0962 0.0066 0.0962 0.0066 0.1031 0.0069 0.1031 0.0069
Dummy for most stringent bldg codes 0.1076 0.0585 0.1075 0.0585 0.1000 0.0590 0.0994 0.0590
Dummy for more stringent bldg codes -0.0952 0.0929 -0.0952 0.0929 -0.0891 0.0927 -0.0891 0.0926
Dummy for bldg codes exist 0.1981 0.0862 0.1981 0.0861 0.1961 0.0859 0.1962 0.0859
Log(house starts)*most stringent codes -0.0093 0.0050 -0.0093 0.0050 -0.0085 0.0050 -0.0085 0.0050
Log(house starts)*more stringent codes 0.0102 0.0093 0.0102 0.0093 0.0097 0.0093 0.0097 0.0093
Log(house start)*existing codes -0.0203 0.0086 -0.0203 0.0086 -0.0201 0.0086 -0.0201 0.0086
Year dummies (14) Yes Yes Yes Yes
Control function for early DSM Yes Yes   Yes Yes
Notes: the first set of robustness checks is based on equation (13) which assumes that DSM spending enters the demand equation linearly. 
The second set of estimations is based on utilities that have at least 10 observations in the data (3,014 observations in total). GMM 
estimations in both sets include exclusion restrictions (LCV and percentage Republican votes) in constructing the optimal instruments. 
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Table 5: Additional Robustness Checks 

  Robustness 3: different control function Robustness 4: Weibull distribution

NSL GMM NLS GMM

Variables Para S.E. Para S.E. Para S.E. Para S.E.

DSM spending per customer  -0.0018 0.0012 -0.0018 0.0011 -0.002 0.0012 -0.002 0.0014

 in pdf 7.8165 5.1638 8.2783 5.3018 12.3169 2.3712 12.3756 2.4461

 in pdf 0.6926 0.5245 0.7449 0.5398 2.8819 1.1952 2.8605 1.3109
Log(number of customers) 0.3615 0.0455 0.3591 0.0454 0.3617 0.0455 0.3617 0.0455
Log(population) 0.4626 0.0928 0.4589 0.0929 0.4576 0.0919 0.4575 0.092
Log(gross state product) 0.2019 0.0438 0.2022 0.0438 0.198 0.0435 0.198 0.0434
Log(house starts) 0.0385 0.0081 0.0382 0.0081 0.0382 0.0081 0.0383 0.0081
Log(electricity price) -0.4658 0.1915 -0.4492 0.1919 -0.4647 0.1912 -0.4647 0.1919
Log(electricity price) squared 0.0912 0.0408 0.0873 0.0409 0.091 0.0408 0.0911 0.041
Log(natural gas price) 0.1248 0.0589 0.128 0.0588 0.1245 0.0589 0.1246 0.0589
Log(natural gas price) squared -0.0354 0.0143 -0.0362 0.0143 -0.0353 0.0143 -0.0354 0.0143
Log(fuel oil price) 0.3359 0.2212 0.3227 0.2214 0.3332 0.2208 0.3325 0.2208
Log(fuel oil price) squared -0.0334 0.0232 -0.032 0.0232 -0.0331 0.0231 -0.033 0.0231
Log(climate) 0.0961 0.0066 0.0954 0.0066 0.0962 0.0066 0.0962 0.0066
Dummy for most stringent bldg codes 0.1071 0.0578 0.1111 0.0579 0.1124 0.0582 0.1127 0.0581
Dummy for more stringent bldg codes -0.0925 0.0933 -0.0931 0.0931 -0.0951 0.0934 -0.0951 0.0935
Dummy for bldg codes exist 0.1964 0.0863 0.1979 0.0862 0.1982 0.0864 0.1982 0.0864
Log(house starts)*most stringent codes -0.0092 0.0049 -0.0096 0.0049 -0.0097 0.0049 -0.0097 0.0049
Log(house starts)*more stringent codes 0.01 0.0094 0.01 0.0094 0.0102 0.0094 0.0102 0.0094
Log(house start)*existing codes -0.0202 0.0087 -0.0203 0.0087 -0.0204 0.0087 -0.0204 0.0087
Year dummies (14) Yes Yes Yes Yes
Control function for early DSM Yes Yes   Yes Yes
Notes: the third set of robustness checks include 16 variables (instead of 9), which are interactions of (up to) 4th order polynomials of the 
time trend variable and those of early DSM spending variable, to control for the effect from DSM spending prior to 1992. The fourth set of 
estimations uses the Weibull distribution (instead of Gamma distribution) to parameterize the long-term effect from DSM spending. 
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Table 6: Effectiveness and Cost-Effectiveness from Alternative Specifications 
  NSL GMM 
  Est. S.E. Est. S.E. 
Panel 1: Robustness check 1: log-linear specification 
Demand effect of DSM spending (data period) -0.010 0.005 -0.010 0.005
Demand effect of DSM spending (total effect) -0.019 0.010 -0.019 0.010
Cost-effectiveness no discounting (cents per kwh saved) -2.9 1.5 -2.9 1.6
Cost-effectiveness using 3% discount rate -3.9 2.1 -3.9 2.1
Cost-effectiveness using 5% discount rate -4.8 2.5 -4.8 2.5
Cost-effectiveness using 7% discount rate -5.8 3.1 -5.8 3.1
Panel 2: Robustness check 2: a subsample 
Demand effect of DSM spending (data period) -0.009 0.005 -0.009 0.005
Demand effect of DSM spending (total effect) -0.017 0.011 -0.016 0.011
Cost-effectiveness no discounting (cents per kwh saved) -3.2 2.0 -3.3 2.1
Cost-effectiveness using 3% discount rate -4.4 2.7 -4.5 2.8
Cost-effectiveness using 5% discount rate -5.3 3.2 -5.4 3.4
Cost-effectiveness using 7% discount rate -6.4 3.9 -6.6 4.1
Panel 3: Robustness check 3: different control function 
Demand effect of DSM spending (data period) -0.010 0.005 -0.010 0.005
Demand effect of DSM spending (total effect) -0.021 0.012 -0.021 0.012
Cost-effectiveness no discounting (cents per kwh saved) -2.6 1.6 -2.7 1.5
Cost-effectiveness using 3% discount rate -3.7 2.1 -3.7 2.1
Cost-effectiveness using 5% discount rate -4.5 2.6 -4.5 2.6
Cost-effectiveness using 7% discount rate -5.4 3.1 -5.5 3.1
Panel 4: Robustness check 4: Weibull distribution 
Demand effect of DSM spending (data period) -0.011 0.006 -0.011 0.007
Demand effect of DSM spending (total effect) -0.022 0.012 -0.023 0.014
Cost-effectiveness no discount  (cents per kwh saved) -2.5 1.4 -2.4 1.5
Cost-effectiveness using 3% discount rate -3.4 1.8 -3.1 1.5
Cost-effectiveness using 5% discount rate -4.1 2.2 -3.8 1.8
Cost-effectiveness using 7% discount rate -4.9 2.7 -4.6 2.1
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Figure 1. Ratepayer–Funded Energy Efficiency Expenditures 

 

 

Note: The total line in the figure adds third-party EE spending to utility EE spending only when there are no 

reported utility-level expenditures. This is to avoid double-counting, as we found evidence that third party spending 

through utilities is reported by utilities in the EIA form 861. 
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Figure 2. Stringency of Building Codes in 2007 
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Figure 3:  Long-term Effect of DSM Spending from the Baseline Model 

 
 

 

Notes: the top graph is based on results from NLS (model 1 in table 2) and the bottom graph is 

based on results from GMM (model 3 in table 2). 

0 2 4 6 8 10 12 14 16 18 20
-0.05

0

0.05

0.1

0.15

0.2

 

 

95% Lower Bound

Time Path

Alternative Path

95% Upper Bound

0 2 4 6 8 10 12 14 16 18 20
-0.05

0

0.05

0.1

0.15

0.2

 

 

95% Lower Bound

Time Path

Alternative Path

95% Upper Bound

Year 

Year 

 
 



39 

 

 

Figure 4:  Long-term Effect of DSM Spending using Weibull Distribution 

 
 

 

Notes: the top graph is based on results from NLS (robustness 4 in table 5) and the bottom graph 

is based on results from GMM (robustness 4 in table 5). 

0 2 4 6 8 10 12 14 16 18 20
-0.05

0

0.05

0.1

0.15

0.2

 

 

95% Lower Bound

Time Path

Alternative Path

95% Upper Bound

0 2 4 6 8 10 12 14 16 18 20
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

 

 

95% Lower Bound

Time Path

Alternative Path

95% Upper Bound

Year 

Year 

 
 



40 

 

References 

ACEEE (American Council for an Energy Efficient Economy) (2004). “Summary Table of 

Public Benefit Programs and Electricity Restructuring.” Accessed at 

http://www.aceee.org/briefs/apr04_01.htm (July 6, 2009). 

Aroonruengsawat, Anin, Maximilian Auffhammer and Alan Sanstad  (2009). “The Impact of 

State-Level Building Codes on Residential Electricity Consumption.”  Working paper. 

Auffhammer, Maximilian, Carl Blumstein, and Meredith Fowlie ( 2008). “Demand Side 

Management and Energy Efficiency Revisited.” The Energy Journal 29(3): 91–104. 

Brennan, Timothy (1998). “Demand-Side Management Programs under Retail Electricity 

Competition.” Resources for the future discussion paper 99-02.  

California Energy Commission ( 2007).  California Energy Demand 2008 - 2018, Staff Revised 

Forecast, CEC-200-2007-015-SF2, November. 

Chamberlain, G. (1987). “Asymptotic Efficiency in Estimation with Conditional Moment 

Restrictions,” Journal of Econometrics 34: 305-334. 

Costa, Dora and Matthew Kahn (2009).  “Toward a Greener California:  An Analysis of 

Household Variation in Residential Electricity Purchases”,  mimeo, November. 

Damodaran, Aswath ( 2006). Damodaran on Valuation: Security Analysis for Investment and 

Corporate Finance, 2nd edition, Wiley and Sons Inc.  

Efficiency Vermont (2008).  Efficiency Vermont Annual Report, Accessed at 

http://www.efficiencyvermont.com/stella/filelib/2008_Efficiency_Vermont_Annual_Rep

ort.pdf, (November 11, 2009) 

EIA (U.S. Energy Information Administration) (2009). Annual Energy Review 2008. DOE/EIA-

0384(2008). Washington, DC: EIA. 

Eto, J., E. Vine, L. Shown, R. Sonnenblick, and C. Paine (1996). “The Total Cost and Measured 

Performance of Utility-Sponsored Energy Efficiency Programs,” The Energy Journal 17 

(1): 31-51. 

Eto, Joseph, Chuck Goldman, and Steve Nadel (1998). “Ratepayer-Funded Energy-Efficiency 

Programs in a Restructured Electricity Industry: Issues and Options for Regulators and 

Legislators,”  LBNL-41479, May. 



41 

 

Eto J., S. Kito, L. Shown, and R. Sonnenblick (2000). “Where Did the Money Go? The Cost and 

Performance of the Largest Commercial Sector DSM Programs.” The Energy Journal 

21(2):23-49. 

Freidrich, Katherine, Maggie Eldridge, Dan York, Patti Witte, and Marty Kushler (2009). Saving 

Energy Cost-Effectively: A National Review of the Cost of Energy Saved through Utility-

Sector Energy Efficiency Programs. ACEEE Report Number U092, September. 

Washington, DC: ACEEE. 

Fickett A.P., Clark W. Gellings, and Amory B. Lovins (1990). “Efficient Use of Electricity.” 

Scientific American 263 (September): 64–74. 

Gillingham, Kenneth, Richard G. Newell, and Karen Palmer (2004). “Retrospective Examination 

of Demand Side Energy Efficiency Policies.” Resources for the Future Discussion Paper 

04-19 REV (June). 

Gillingham, Kenneth, Richard G. Newell, and Karen Palmer (2006). “Retrospective Review of 

Energy Efficiency Policies.” Annual Review of Environment and Resources 31: 161–192. 

Gillingham, Kenneth, Richard G. Newell, and Karen Palmer (2009). “Energy Efficiency 

Economics and Policy.” Annual Review of Resource Economics 1:14.1–14.23. 

Granade, Hanah Choi, Jon Creyts, Anton Derkach, Philip Farese, Scott Nyquist, and Ken 

Ostroski (2009). Unlocking Energy Efficiency in the U.S. Economy. McKinsey Global 

Energy and Materials, July. McKinsey and Company. 

Horowitz, Marvin J. (2004). “Electricity Intensity in the Commercial Sector: Market and Public 

Program Effects.” The Energy Journal 25(2): 115 – 137. 

Horowitz, Marvin J. (2007). “Changes in Electricity Demand in the United States from the 1970s 

to 2003.” The Energy Journal 28(3):93–119.   

Horowitz, Marvin J. (2010).  “EIA’s Energy Efficiency Program Data: Toxic if Swallowed,” 

paper presented at the 15th Annual POWER conference, Energy Institute at Haas, 

University of California, Berkeley, California, March 18. 

Jacobsen, Grant D. and Matthew J. Kotchen  (2010).  “Are Building Codes Effective at Saving 

Energy? Evidence from Residential Billing Data in Florida,” NBER Working Paper 

16194 (June). 

Jaffe, Adam B., and Robert N. Stavins (1995). “Dynamic Incentives of Environmental 

Regulations: The Effects of Alternative Policy Instruments on Technology Diffusion,” 

Journal of Environmental Economics and Management 29(3): 43–63. 



42 

 

Joskow, Paul and Donald Marron  (1992). “What Does a Negawatt Really Cost? Evidence from 

Utility Conservation Programs." The Energy Journal 13: 41–74. 

Khawaja, Sami, Patricia Koss, and Brian Hedman (2001). “System Benefits Charge: Economic 

Impacts and Implications.” The Electricity Journal 14(5):25–32.  

Loughran, David S., and Jonathan Kulick (2004). “Demand-Side Management and Energy 

Efficiency in the United States.” The Energy Journal 25(1): 19–41. 

Nadel Steven (1992). “Utility Demand-Side Management Experience and Potential: A Critical 

Review.” Annual Review of Energy and the Environment 17:507–535. 

Nadel, Steven, and Howard Geller (1996). “Utility DSM: What Have We Learned? Where Are 

We Going?” Energy Policy 24(4): 289–302. 

Nadel, Steven, and Marty Kushler (2000). “Public Benefit Funds: A Key Strategy for Advancing 

Energy Efficiency.” The Electricity Journal 13(8):74–84.  

National Academy of Sciences (2009). Electricity from Renewable Resources: Status, Prospects 

and Impediments. America’s Energy Future Panel on Electricity from Renewable 

Resources. Washington, DC: National Academies Press. 

Newey, Whitney, and Daniel McFadden (1986). “Large Sample Estimation and Hypothesis 

Testing.”, in: R. F. Engle and D. McFadden (ed.), Handbook of Econometrics, 1(4): 

2111-2245. Elsevier. 

Pacific Gas and Electric  (2010). Energy Efficiency Program Portfolio Annual Report for 2009, 

report to California Public Utility Commission, June. 

Parformack, Paul W., and Lester B. Lave (1996). “How Many Kilowatts Are in a Negawatt? 

Verifying ‘Ex Post’ Estimates of Utility Conservation Impacts at the Regional Level.” 

The Energy Journal 17(4): 59–88. 

PJM Independent System Operator (2006). Executive Report. Accessed at 

http://www.pjm.com/~/media/committees-groups/committees/mc/20070125-item-03a-

december-2006-executive-report-markets.ashx, October 29, 2009. 

Reid, Michael (2009).  “Using U.S. Energy Information Administration Data to Benchmark 

Electric Utility DSM Portfolios,” paper prepared for the 2009 International Energy 

Efficiency Program Evaluation Conference, Portland, Oregon, June. 

RGGI (Regional Greenhouse Gas Initiative) Emissions Leakage Multi-State Staff Working 

Group (2008). Potential Emission Leakage and the Regional Greenhouse Gas Initiative. 



43 

 

Final Report, March. Accessed at http://www.rggi.org/docs/20080331leakage.pdf, April 

3, 2008. 

RGGI, Inc.  (2011).  “Investment of Proceeds from RGGI CO2 Allowances,” February. 

Accessed at http://www.rggi.org/docs/Investment_of_RGGI_Allowance_Proceeds.pdf, 

March 8, 2011. 

Takahashi, Kenji and David A. Nichols  (2008). “The Sustainability and Costs of Increasing 

Efficiency Impacts: Evidence from Experience to Date”, presentation at the 2008 ACEEE 

Summer Conference, August. Accessed at http://www.synapse-energy.com/cgi-

bin/synapsePublications.pl?filter_type=Year&filter_option=2008&advanced=false, 

November 11, 2009 

U.S. EIA (Energy Information Administration)  (2008).  Annual Energy Review 2008. DOE/EIA 

– 0384(2008), June. 

York, Dan and Marty Kushler (2005).  ACEEE’s 3rd National Scorecard on Utility Public 

Benefits Energy Efficiency Programs:  A National Review and Update of State-Level 

Activity. U054, Washington, DC:  American Council for an Energy-Efficient Economy. 

 
 
  



44 

 

Appendix 

 

 

Table A-1. Third-Party DSM Expenditures: State, Year, and Data Source 
(millions of 2007$) 

 

State 1998 1999 2000 2001 2002 2003 2004 2005 2006 Administrator 

Illinois 0.00 0.00 0.00 0.00 0.00 3.21 3.12 0.93 1.06 

Department of Commerce and 
Economic Opportunity(Energy 
Efficiency Trust Fund) 

Maine 0.00 0.00 0.00 0.00 0.00 2.80 5.11 8.26 9.33 Efficiency Maine 

Michigan 0.00 0.00 0.00 0.00 1.12 2.51 3.66 3.70 2.89 

Michigan Public Service 
Commission (The Low-Income 
and Energy Efficiency Fund) 

New 
Jersey 0.00 0.00 0.00 66.19 107.25 99.44 101.52 90.53 81.78 

New Jersey Board of Public 
Utilities (New Jersey Clean 
Energy Collaborative)  

New York 7.86 12.05 30.54 80.34 137.77 160.32 152.87 150.86 155.01 

New York State Energy 
Research and Development 
Authority 

Oregon 0.00 0.00 0.00 0.00 8.41 27.46 43.89 54.49 46.69 Energy Trust of Oregon 

Vermont 0.00 0.00 6.71 10.30 12.63 14.59 15.31 16.01 15.24 Efficiency Vermont 

Wisconsin 0.00 0.00 0.00 0.00 29.07 50.65 42.62 41.48 40.84 Focus on Energy 

Total 7.86 12.05 37.25 156.83 296.24 360.98 368.11 366.26 352.84 
 

 

 




