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1 Introduction

Dispersed investor information, and disagreement among investors about the expected cash-flows

of different securities is a common feature of many, if not most financial markets. In this paper, we

develop a parsimonious, flexible model of asset pricing in which heterogeneity of information and its

aggregation in the market emerges as the core force determining asset prices and expected returns.

Our model is tractable for a rather general specification of the asset’s underlying cash-flows, and

it delivers novel insights and sharp predictions that link the asset’s predicted prices and returns to

features of the market environment and the distribution of the underlying cash-flow risk. We further

show that heterogeneous information provides a natural source of excess price volatility. Finally,

our model can easily be adapted to address a variety of questions. Using our model, we reconsider

two classical results in a heterogeneous information setting: the Modigliani-Miller Theorem, and

the sustainability of bubbles in a dynamic environment.

Specifically, we consider an asset market along the lines of Grossman and Stiglitz (1980), Hellwig

(1980) and Diamond and Verrecchia (1981).1 An investor pool is divided into informed traders

who have observed a noisy signal about the value of an underlying cash flow, and uninformed

noise traders. The traders all submit orders to buy shares in the cash flow at the going price.

The price serves as a noisy signal of the state, which traders use along with their private signals

to form an update about the cash flows. Using the market structure first introduced in Hellwig,

Mukherji and Tsyvinski (2006), we assume that traders are risk neutral but face limits on their

asset positions. This enables us to derive a closed-form characterization for prices and expected

dividends conditional on the price, with no restriction on cash flows other than monotonicity in the

underlying fundamental shocks.

In our model, the asset price is equal to the expectation of cash flows for a “marginal investor”

who is just indifferent between investing and not investing in the asset. We compare the marginal

investor’s posterior belief to the belief of an objective outsider, who uses the observation of the

price to update beliefs about dividends, or equivalently an “econometrician” who uses a sample of

price-dividend observations to estimate this relationship. Compared to the outsider, the marginal

trader treats the information contained in the price as if he over-estimated its information content.

His posterior expectations thus attach a higher weight to the market signal and a lower residual

uncertainty to the fundamental than would be justified by its true information content. We label

this discrepancy the “information aggregation wedge”.

1See Brunnermeier (2001), Vives (2008), and Veldkamp (2011) for textbook discussions.
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Despite its appearance, the information aggregation wedge is not the result of non-Bayesian

updating or irrational trading decisions. Instead, it results from compositional shifts under investor

heterogeneity: to maintain market-clearing, the identity of the marginal trader has to change

with the observed price in a way that amplifies the impact of the price on the marginal trader’s

expectations. For example, consider either an increase in the informed traders’ demand coming from

a more favorable realization of the fundamentals (and hence their aggregate signal distribution),

or an increase in the noise traders’ demand. These shifts both result in a higher price and a

higher expectation of future dividends, because of the information conveyed through the price.

In addition, since the demand by informed traders has become larger (or the pool of available

securities smaller), the marginal investor’s private signal has to become more optimistic just to

maintain market-clearing. This further increases the price, but not expected dividends, over and

above the direct signal effect. The asset price thus appears to respond more to the market signal

than would be justified on the basis of its true information content.

From an ex ante perspective, we characterize the average price and dividends in closed form

as a function of the cash flow distribution and a parameter that summarizes the severity of the

informational friction. This information friction parameter depends on the accuracy of informed

traders’ private signals, and the variance of noise trading shocks. Intuitively, the unconditional

wedge is the expected value of a mean-preserving spread of the underlying distribution of the

payoffs, i.e. from an ex ante perspective the market puts a higher weight on the tails than the

objective distribution. Moreover, the unconditional wedge has increasing differences between the

informational noise parameter, and the asymmetry between upside and downside risks, where the

latter is defined as a partial order on payoff risks that compares the marginal gains and losses at

fixed distances from the prior mean of the fundamental.

From this characterization, Theorem 1 then provides several general implications for expected

returns. Regardless of the informational parameters, the unconditional wedge is zero when payoff

risk is symmetric. The wedge is positive (meaning that the expected price exceeds expected divi-

dends) for risks that are dominated by the upside, and negative for risks that are dominated by the

downside. Moreover, in absolute value this wedge becomes more pronounced for more asymmetric

payoff risks, or for a higher degree of information aggregation frictions. Our model thus offers

sharp, novel predictions that link the occurrence, size and direction of price premia and discounts,

both unconditionally and conditionally on the realization of shocks, to specific characteristic of the

market and the underlying cash-flow risk.

Theorem 2 characterizes the variability of prices relative to expected and realized dividends. We
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show that prices are always more variable than expected dividends. If the information aggregation

wedge is sufficiently important, prices may even be more variable than realized dividends. In the

limiting cases, the variability of prices exceeds that of realized dividend by any arbitrarily large

factor. Moreover, the correlation between price and realized dividends may be arbitrarily close to

zero. This stands in sharp contrast with the standard result in the asset pricing literature that price

volatility coming from dividend expectations is bounded above by the volatility of realized dividends

(as in West, 1988). Since dividend volatility in the data falls short in explaining variability of prices

(LeRoy and Porter, 1981; Shiller, 1981), the consensus explanation stresses variation in stochastic

discount rates (Campbell and Shiller, 1988; Cochrane, 1992). Our theory instead suggests that high

price volatility could result from volatile market expectations about dividends in a fully rational

environment despite low variability in observed dividends, as long as the informational frictions are

strong enough.

We consider two applications of our theory. The first revisits the Modigliani-Miller Theorem,

which establishes that under conditions of no arbitrage the total market value of any given cash flow

is not influenced by how it is divided into separate securities. Absent distortions inside the firm,

the optimal capital structure is indeterminate and disconnected from the firm’s market valuation

(Modigliani and Miller, 1958). Capital structure theories then focus mostly on trade-offs that

affect the generation of cash flows inside the firm, such as agency costs, information frictions or tax

distortions, assuming that the market value of the resulting cash flow is not affected by its split

into different securities. Here instead we take the view that capital structure and firm value may

also be influenced by heterogeneous information and financial market frictions.

We consider a seller who is splitting a given cash flow into two pieces which are sold to separate

investor pools in two different markets, and suppose that at least one of the pieces is dominated

either by upside or by downside risk. We show that the expected revenue of the seller is not

affected by the split, if and only if the two markets are characterized by identical informational

characteristics. However, when the investor pools differ, the seller can manipulate her expected

revenue by selling downside risks in the market with smaller information aggregation frictions,

and upside risks in the market with larger information aggregation frictions. The seller maximizes

expected revenue by completely separating upside and downside risks, splitting the cash flow into

a debt claim for the downside, and an equity claim for the upside, with a default point for debt at

the prior median.

Second, we consider the sustainability of rational bubbles. A well-known result shows that the

absence of arbitrage eliminates the possibility of persistent over-pricing of securities (Tirole, 1982;
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Santos and Woodford, 1997). While the anticipation of higher future prices would, in principle,

induce agents to increase the price bid in the current period, the combination of no arbitrage with

transversality conditions (or backwards induction, in case of assets with finite horizons) rules out

the possibility of any security trading at a price that exceeds the net present value of expected

future cash flows.

We consider a simple, infinitely repeated version of our trading model with constant discounting,

and give conditions under which a security may be permanently over- or under-priced, regardless

of current market conditions. As usual, we can break down the current price, expected dividends

and wedge into a component resulting from expectations about current cash-flows, and a com-

ponent resulting from expected discounted future cash-flows and prices. The former inherits the

same properties as the static conditional information aggregation wedge, while the latter inherits

the properties of the unconditional wedge. If the cash-flow has a bounded downside risk and is

dominated by the upside, and traders are sufficiently patient, then the positive expected future

wedge more than offsets any negative current wedge. The asset then trades at a premium over its

expected dividend value regardless of the current state realization. The flipside of these conditions

shows that securities that have bounded upside and are dominated by the downside risk may be

permanently underpriced.

Finally, we discuss the theoretical robustness of the information aggregation wedge. First, we

generalize distributional assumptions for fundamentals and signals, and by considering arbitrary

bounds on the portfolio holdings. Second, we also extend the financial market model to include

uninformed traders which partially arbitrage the wedge.

Our paper contributes to a large literature on noisy information aggregation in asset markets,

including the papers cited above. Much of this literature works within a canonical preference struc-

ture of CARA utility and normally distributed signals and dividends. Remarkably, the information

aggregation wedge appears to have received little attention in this literature, even though it is

present in these canonical models, and, as we show, is the source of rich implications for prices,

trading activities, and market volatility.2 By avoiding the restrictive functional form assumptions

on cash-flow distributions, we are able to provide a characterization of this wedge for a general

class of securities and draw implications that link average returns and return volatility to features

of the cash-flow distribution and the importance of information frictions.

Another influential literature emphasizes heterogeneous beliefs and short sales constraints as

2The only written statement of this observation that we have found appears in Vives (2008), where it is only

mentioned in passing.
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potential sources of bubbles, mis-pricing, and market anomalies (Harrison and Kreps, 1978; Allen,

Morris and Postlewaite, 1993; Chen, Hong and Stein, 2002; Scheinkman and Xiong, 2003; Hong

and Stein, 2007; Hong and Sraer, 2011). Mispricing is sustained by the option to resell an over-

valued security to an even more optimistic buyer in the future. This option becomes valuable

in the presence of (one-sided) short-sales constraints, and implies a channel for over-valuation.

Heterogeneity in prior beliefs is taken as exogenous, and with the exception of Allen, Morris and

Postlewaite (1993), traders do not update from the observation of prices. We touch on similar

themes, but stay within the REE tradition in which traders’ beliefs result from exogenous signals,

and information aggregation through prices imposes tight restrictions on the heterogeneity in beliefs.

Furthermore, our limits to arbitrage are not explicitly asymmetric, give rise to over- as well as

under-valuation results, and our market environment is static, so the resale option doesn’t play an

important role (except in the dynamic application to bubbles). The mechanism that gives rise to

mis-pricing and bubbles is therefore quite different.3

The literature on “over-confidence” explores how asset prices and financial markets are influ-

enced by the degree to which investors over-estimate the accuracy of their own information (e.g.

Odean, 1998, and Daniel, Hirshleifer and Subrahmanyam, 1998). When viewed from the perspec-

tive of a representative investor, the market price that emerges in our model is perfectly consistent

with these same over-confidence biases, yet all investors are fully rational and not mistaken about

the quality of their signals. What may look like an over-confidence bias in the aggregate can thus

be accounted for by heterogeneity and aggregation from the micro level.

More generally, any theory of mispricing must rely on some source of noise affecting the market,

coupled with some limits to the traders’ ability to exploit the resulting arbitrage opportunity

(see Gromb and Vayanos, 2010, for an overview and numerous references). In our model, the

combination of noise trading and limits to arbitrage with heterogeneous information leads not just

to random errors in the price, but to systematic, predictable departures of the price from the

asset’s fundamental value. The exact nature of our limits to arbitrage assumptions (embedded in

the position limits and the noise trading formulation) is not central for our results, but guarantees

the tractability of the updating, with virtually no assumptions imposed on cash-flows.

In section 2, we describe our model and provide the equilibrium characterization of asset prices.

3For example, the difference between our work and theories of bubbles based on short-sales constraints becomes

clear if one considers the case of debt instruments, as in Hong and Sraer (2011). Whereas in their model, short-sales

constraints lead to over-valuation of debt, but with less volatility and trading volume than equity bubbles, our model

predicts that debt may naturally be under-priced.

5



In section 3, we define the information aggregation wedge and discuss at length the resulting

prediction for conditional and unconditional asset returns. Section 4 uses the insight offered by

these two results to revisit the Modigliani-Miller theorem, and the existence of bubbles in the

dynamic version of the model. Section 5 concludes the analysis with the robustness discussion.

2 Model

2.1 Agents, assets, information structure and financial market

The market is set as a Bayesian trading game with a unit measure of risk-neutral, informed traders,

a stochastic measure of uninformed “noise traders”, and a ‘Walrasian auctioneer’. There is a risky

asset whose supply is normalized to a unit measure, and whose dividend is a strictly increasing and

twice continuously differentiable function π(·) of a stochastic “fundamental” θ.

At the start, nature draws θ according to a normal distribution with mean 0, and unconditional

variance σ2θ , θ ∼ N (0, σ2θ). Each informed trader i then receives a noisy private signal xi which is

normally distributed with a mean θ and a variance β−1, and is i.i.d. across traders (conditional

on θ), xi ∼ N (θ, β−1). Each trader decides whether to purchase up to one share of the asset at

the prevailing price P , in exchange for cash. Formally, trader i submits a price-contingent demand

schedule di(·) to maximize her expected wealth wi = di · (π(θ)− P ). Traders cannot short-sell the

asset or buy additional shares, restricting demand to [0, 1]. Individual trading strategies are then

a mapping d : R2 → [0, 1] from signal-price pairs (xi, P ) into asset holdings. Aggregating traders’

decisions leads to the aggregate demand by informed traders, D : R2 → [0, 1],

D(θ, P ) =

∫
d(x, P )dΦ(

√
β(x− θ)), (1)

where Φ(·) denotes a cumulative standard normal distribution, and Φ(
√
β(x − θ)) represents the

cross-sectional distribution of private signals xi conditional on the realization of θ.4 In addition,

there is stochastic demand for the asset from noise traders, which takes the form Φ (u), where u

is normally distributed with mean zero and variance σ2u, u ∼ N (0, σ2u), independently of θ. This

specification is adapted from Hellwig, Mukherji, and Tsyvinski (2006), and allows us to preserve

the tractability of Bayesian updating with normal posterior beliefs.5

Once all traders have submitted their orders, the auctioneer selects a price P to clear the

market. Formally, the market-clearing price function P : R2 → R selects P from the correspondence

4We assume that the Law of Large Numbers applies to the continuum of traders, so that conditional on θ the

cross-sectional distribution of signal realizations ex post is the same as the ex ante distribution of traders’ signals.
5We generalize this demand specification in Section 4.2 allowing for price-elastic demands by noise traders.
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P̂ (θ, u) = {P ∈ R : D(θ, P ) + Φ(u) = 1}, for all (θ, u) ∈ R2.6 After all trades are completed, the

dividends π(θ) are realized and disbursed to the owners of the asset.

Let H(·|x, P ) : R → [0, 1] denote the traders’ posterior cdf of θ, conditional on observing a

private signal x, and conditional on the market price P . A Perfect Bayesian Equilibrium con-

sists of demand functions d(x, P ) for informed traders, a price function P (θ, u), and posterior

beliefs H(·|x, P ) such that (i) d(x, P ) is optimal given H(·|x, P ); (ii) the asset market clears for

all (θ, u); and (iii) H(·|x, P ) satisfies Bayes’ rule whenever applicable, i.e., for all p such that

{(θ, u) : P (θ, u) = p} is non-empty.

2.2 Equilibrium Characterization

We begin by characterizing informed traders’ demand. With risk-neutrality, the trader’s expected

value of holding the asset is
∫
π(θ)dH (θ|x, P ). Since private signals are log-concave and π(·)

is increasing in θ, posterior beliefs H(·|x, P ) are first-order stochastically increasing in x, and∫
π(θ)dH (θ|x, P ) is strictly increasing in x, for any P that is observed in equilibrium (Milgrom,

1981). The traders’ decisions are therefore characterized by a signal threshold function x̂ : R →

R∪{±∞}, such that d(xi, P ) = Ixi≥x̂(P ), that is, the trader places an order to buy a share at price

P , if and only if xi ≥ x̂(P ). We call the trader who observes the signal equal to the threshold,

x = x̂ (P ), and who is therefore indifferent, the marginal trader. The signal threshold is uniquely

defined by

x̂(P ) = +∞ if lim
x→+∞

∫
π(θ)dH (θ|x, P ) ≤ P,

x̂(P ) = −∞ if lim
x→−∞

∫
π(θ)dH (θ|x, P ) ≥ P,

P =

∫
π(θ)dH (θ|x̂(P ), P ) otherwise. (2)

Expression (2) illustrates three cases: (i) if the most optimistic trader’s expected dividend is lower

than the price, no trader buys, so the signal threshold becomes +∞; (ii) if the most pessimistic

trader’s expected dividend exceeds the price, all traders buy, and the threshold for buying is

−∞; (iii) only some traders buy, and the threshold x̂(P ) takes an interior value at which the

marginal trader’s posterior expectation of the dividend must equal the price. Aggregating the

individual trading decisions, the informed demand is D(θ, P ) =
∫∞
x̂(P ) 1 · dΦ(

√
β (x− θ)) = 1 −

Φ(
√
β (x̂(P )− θ)), which equals 0 if x̂(P ) = +∞, and 1 if x̂(P ) = −∞.

6We can without loss of generality restrict the range of P (·) to coincide with the range of π (·).
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Next, we analyze the market-clearing condition. Since Φ(u) ∈ (0, 1), in equilibrium, x̂(·) must

be finite for all P on the equilibrium path, and satisfy the third condition in (2). From the market-

clearing condition, we then have Φ(
√
β (x̂(P )− θ)) = Φ (u), which allows us to characterize the

correspondence of market-clearing prices:

P̂ (θ, u) =

{
P ∈ R : x̂(P ) = θ +

1√
β
u

}
. (3)

From now on, we focus on equilibria in which the price is conditioned on (θ, u) through the

observable state variable z ≡ θ+ 1/
√
β ·u. The next lemma characterizes the resulting equilibrium

beliefs. All proofs are provided in the appendix.

Lemma 1 (Information Aggregation) (i) In any equilibrium with conditioning on z, the equi-

librium price function P (z) is invertible. (ii) Equilibrium beliefs for price realizations observed

along the equilibrium path are given by

H (θ|x, P ) = Φ

(√
σ−2θ + β + βσ−2u

(
θ − βx+ βσ−2u · x̂(P )

σ−2θ + β + βσ−2u

))
. (4)

Part (ii) of the Lemma exploits the invertibility to arrive at a complete characterization of

posterior beliefs H(·|x, P ). With invertibility, we can summarize information conveyed by the price

through z. Conditional on θ, z is normally distributed with mean θ and variance σ2u/β. Thus, the

price is isomorphic to a normally distributed signal of θ, with a precision that is increasing in the

precision of private signals, and decreasing in the variance of demand shocks.

Using Lemma 1 we rewrite (2), the indifference condition that defines the signal threshold x̂(P ):

P =

∫
π(θ)dΦ

(√
σ−2θ + β + βσ−2u

(
θ − β + βσ−2u

σ−2θ + β + βσ−2u
x̂(P )

))
. (5)

This condition equates P to the marginal trader’s expectation of dividends. The latter also

depends on P through its effect on posterior beliefs. Using the market-clearing condition x̂(P ) = z,

Proposition 1 uniquely characterizes the market equilibrium.7

Proposition 1 (Asset market equilibrium) For any increasing dividend function π(·), an as-

set market equilibrium exists, is unique, and is characterized by the price function Pπ (z) and the

traders’ threshold function x̂(p) = z = P−1π (p), where

Pπ(z) = E (π(θ)|x = z, z) =

∫
π(θ)dΦ

(√
σ−2θ + β + βσ−2u

(
θ − β + βσ−2u

σ−2θ + β + βσ−2u
z

))
. (6)

7Notice that this only implies the uniqueness of the equilibrium that conditions on the summary statistic z, not

overall uniqueness of the equilibrium characterized in proposition 1.
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The price function Pπ(z) is uniquely defined and strictly monotone, and therefore defines the

unique market equilibrium.8

3 The Information Aggregation Wedge

3.1 Conditional Information aggregation wedge

We now discuss how noisy information affects equilibrium prices and expected dividend values.

To be precise, we form expectations of dividends from the perspective of an outside observer (or

“econometrician”) who does not have access to any private signal about θ, but knows the parameters

of the game and observes the realization of the price P , or equivalently the state z. This outsider

holds a conditional belief that θ|z ∼ N (βσ−2u /
(
σ−2θ + βσ−2u

)
·z, (σ−2θ +βσ−2u )−1), and therefore has

an expectation of dividends conditional on public information z, denoted Vπ(z):

Vπ(z) = E (π(θ)|z) =

∫
π(θ)dΦ

(√
σ−2θ + βσ−2u

(
θ − βσ−2u

σ−2θ + βσ−2u
z

))
. (7)

The main observation from comparing Proposition 1 with equation (7) is that at the interim

stage –when the share price is observed but before dividends are realized– the equilibrium price

differs from the expected dividend, conditional on the public information. This difference is due to

the impact of private information on equilibrium prices. We label this difference the information

aggregation wedge, Wπ(z) ≡ Pπ(z)− Vπ(z).

The choice of Vπ(·) as a natural benchmark of comparison for Pπ(·) follows from the fact that

Vπ(·) also corresponds to the expected dividend (or in a sufficiently large data set, to the average

dividend), conditional on the observation of P (recall that Pπ(·) is invertible). This benchmark

differs from the one chosen e.g. by Harrison and Kreps (1978), who compare an asset’s value to the

dividend expectation of any trader in their market, or to an average of those expectations, as in

Bacchetta and van Wincoop (2006). Our formulation has the advantage that Vπ(·) and Pπ(·) both

have direct empirical counterparts in any set of price-return data, and this formulation therefore

allows us to directly focus on the empirical, testable implications of our model.

The price Pπ(z), and the expected dividend conditional on public information, Vπ(z), differ

in how expectations of θ are formed. The price equals the dividend expectation of the marginal

trader who is indifferent between keeping or selling her share. This trader conditions on the market

signal z, as well as a private signal whose realization must equal the threshold x̂(P ) in order to be

8We index an equilibrium function or variable by π to make explicit that it is derived from a specific dividend

function π (·), i.e. Pπ (·) is the equilibrium price function that is derived from dividend function π (·) by equation (6).
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consistent with the trader’s indifference condition. The trader treats these two sources of informa-

tion as mutually independent signals of θ. At the same time, the market-clearing condition implies

that x̂(P ) must equal z in order to equate demand and supply of shares. The marginal trader’s

expectation E (π(θ)|x = z, z) thus behaves as if she received one signal z of precision β + βσ−2u

instead of βσ−2u . In contrast, the expected dividends E (π(θ)|z) conditional on P (or equivalently

z) weighs z according to its true precision βσ−2u .

Figure 1: Marginal Trader Identity Shift

The difference in the responsiveness of the price relative to the expected dividend conditional

in the price results from the compositional shift in the identity of the traders holding the shares.

This is depicted in figure 1. Any increase in z shifts the identity of the marginal trader’s private

signal one-for-one. If θ increases, the distribution of private signals shifts up, so for a given signal

threshold, demand for the asset by informed traders increases, but demand from uninformed traders

is unchanged. If instead s increases, uninformed demand increases, but informed demand remains

the same. In both cases, the asset is relatively scarcer for informed traders, so the threshold for

the informed trader’s private signal has to increase in order to clear the market. In addition to this

compositional shift (which only appears in the expectation of the marginal trader, e.g. the price),

all traders, as well as the uninformed outsider, recognize that an increase in z, as revealed through

P shifts up their expectation of the state θ. This is reflected in the weight βσ−2u attributed to z in

both Pπ(z) and Vπ(z).

Belief heterogeneity and limits to arbitrage are both necessary ingredients to obtain the wedge.
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If instead all informed traders have access to a common signal z of fundamentals, they all hold

identical expectations and must be indifferent between buying and not buying to clear the market.

But this requires that the price equals the common expectation of the dividend, i.e. Pπ (z) = Vπ (z).

The same result applies with free entry of uninformed arbitrageurs (Kyle, 1985).

The remainder of this subsection describes properties of the wedge, conditional on z, which will

form the basis for our main results on expected returns and price volatility. To this end, we define

γP ≡
β + βσ−2u

σ−2θ + β + βσ−2u
, and γV ≡

βσ−2u
σ−2θ + βσ−2u

as the response coefficients of the expectations of θ entering Pπ(·) and Vπ(·) to innovations in z.

The equilibrium price and expected dividends are then rewritten as:

Pπ(z) =

∫
π(γP z + σθ

√
1− γPu)φ (u) du

Vπ(z) =

∫
π(γV z + σθ

√
1− γV u)φ (u) du

This formulation summarizes the difference between the price and the expected dividend by the

response parameters γP and γV , which measure the marginal trader’s and outsider’s update of θ to

z. These parameter enter Pπ(·) and Vπ(·) in two ways: the marginal trader’s expectation responds

more strongly to z, and his residual uncertainty about θ (after observing z) is lower: σ2θ (1− γP )

instead of σ2θ (1− γV ). Using a third-order Taylor expansion, we approximate the wedge by

Wπ(z) ≈ π (γP z)− π (γV z) +
σ2θ
2

[
π′′(γP z) (1− γP )− π′′(γV z) (1− γV )

]
. (8)

The term π (γP z) − π (γV z) captures the shift in expectations, while the second term in squared

brackets captures the role of residual uncertainty. The latter plays a role only if π (·) is non-linear,

and in that case matters through second- and higher derivatives. The shift in expectations from

γV z to γP z amounts to a mean-preserving spread from an ex ante perspective, and is therefore a

source of increased variability in the price, relative to expected fundamentals: π (γP z) − π (γV z)

crosses 0 at a single point where z = 0, is negative when z < 0, and positive when z > 0.

When π (·) is linear, the higher sensitivity of expectations to z is the only effect determining the

wedge, while the residual uncertainty plays no role. Panel a) of figure 2 plots the price (solid line),

the expected dividend (dashed line) and conditional wedge (dashed-dotted line) as a function of

the state variable z, for π(θ) = θ. The price is more sensitive to innovations in z than the expected

dividend, resulting in a wedge Wπ(z) = (γP − γV )z that is negative for z < 0, zero for z = 0, and

positive for z > 0.
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For non-linear dividends, residual uncertainty shifts the level of the wedge up or down, depending

on a comparison between the residual uncertainty levels 1− γP relative to 1− γV , and the second

derivatives π′′(γP z) and π′′(γV z). At the prior mean z = 0, the second derivatives are comparable,

so the reduction of uncertainty implies a negative wedge if π′′(0) > 0, and a positive wedge, if

π′′(0) < 0. Away from z = 0, the third- and higher derivatives may reduce or even overturn

this effect, and therefore make it impossible to offer precise results on the shape of Wπ(·) without

additional restrictions. We illustrate these possibilities with two parametric examples that follow.

Figure 2: Conditional Price, Expected Dividend, and Wedge
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a) Linear dividend function
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d) Exponential dividend function (k = −2)
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b) Cubic dividend function (a = 10)
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c) Exponential dividend function (k = 2)
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Example 1: Exponential dividend function

Suppose that π (θ) = 1
ke
kθ, with k 6= 0. Expected dividends, prices and the wedge are then

12



characterized by:

Vπ (z) =
1

k
ekγV z+

k2

2
σ2
θ(1−γV ), Pπ (z) =

1

k
ekγP z+

k2

2
σ2
θ(1−γP )

Wπ (z) = Pπ (z)

(
1− e−k(γP−γV )z+ k2

2
(γP−γV )σ2

θ

)
.

In this case, the price and expected dividend are both exponential functions in z, with a stronger

reaction of prices to z. The residual uncertainty affects both Vπ (z) and Pπ (z) multiplicatively, but

the factor is larger for Vπ (z), reflecting the fact that residual uncertainty is greater for the outsider.

If k > 0, we then have a dividend function that is increasing, convex, and bounded below by

zero (figure 2, panel c). The wedge is negative at z = 0 and non-monotone. It decreases at first,

reaches its lowest value at some intermediate point, and is increasing and convex from there on,

crossing 0 at z = k
2σ

2
θ > 0. The reverse image obtains when k < 0, in which case π is increasing,

concave, and bounded above by zero (figure 2, panel d). For negative z, the wedge is negative at

first and increasing in z, crossing 0 at z = k
2σ
−2
θ < 0. It reaches its maximum value at a negative

z and then monotonically converges towards 0. This example thus confirms the intuitions from

the shift in means which makes Pπ (z) more responsive to a shift in z, and the shift in residual

uncertainty that is captured by the multiplicative factors. The curvature parameter k governs the

shape of the wedge function, and whether the residual uncertainty increases or decreases the wedge.

We use this example to illustrate our two main results. First, we show that the expected wedge

is positive if and only if k > 0, and negative if k < 0. That is, the security trades at a premium

in the case with convex dividends and upside risks, and at a discount in the case with concave

dividends and downside risks. Taking expectations, we have

E (Vπ (z)) = 1/k · e
k2

2
σ2
θ , E (Pπ (z)) = 1/k · e

k2

2
σ2
θ

[
1+
(
γP
γV
−1
)
γP

]
and E (Wπ (z)) = 1/k · e

k2

2
σ2
θ

{
e
k2

2
σ2
θ(γP /γV −1)γP − 1

}
,

which is positive whenever k > 0, and negative for k < 0 (and can be checked to approach 0

continuously as k → 0).

Second, we show that the model exhibits excess price volatility. Focusing on log variances

for analytical convenience, we have: V ar (log π (θ)) = k2σ2θ , V ar (log Vπ (z)) = γV k
2σ2θ , and

V ar (logPπ (z)) = γ2P /γV ·k2σ2θ . Therefore, we observe that V ar (logPπ (z)) > V ar (log Vπ (z)), for

any parameter set. Moreover, if the information aggregation wedge becomes sufficiently important,

then we may have γ2P /γV > 1, and therefore V ar (logPπ (z)) > V ar (log π (θ)). In particular, this is

a result of the following two limiting scenarios: (i) if for given γV < 1, γP approaches 1, i.e. the in-

formed traders have very precise signals for given level of information in the price, or (ii) if γV → 0,
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while γP is bounded away from 0. In this case, the market becomes very noisy, for a given level of

private information. On the other hand, V ar (log Vπ (z)) is always less than V ar (log π (θ)), which

is a direct application of Blackwell’s Theorem on comparison of information structures (Blackwell,

1951, 1953).

Our main two theorems that follow generalize these observations about the unconditional wedge

and excess price volatility. Theorem 1 below establishes that the sign and magnitude of the average

wedge on the comparison of upside vs. downside risks. Theorem 2 generalizes the result that prices

are more variable than expected dividends, and in some cases even more variable than realized

dividends. Our second example, however, reinforces the observation that the conditional wedge

Wπ(·) need not be monotone in general, and may also cross 0 at multiple points, which rules out

conditional or local versions of these results without imposing additional assumption on dividends.

Example 2: Cubic dividend function

Suppose that π (θ) = θ + aθ3, with a > 0 to ensure monotonicity of π. For a cubic function

(figure 2, panel b), the above approximation holds exactly, so that

Wπ(z) = (γP − γV )z + a(γ3P − γ3V )z3 + 3azσ2θ [γP (1− γP )− γV (1− γV )] ,

where the first two terms correspond to the shift in means, and the last to the shift in residual

uncertainty. If γP + γV > 1 and a sufficiently large, W ′π(0) < 0. Since Wπ(0) = 0, it follows

immediately that Wπ(·) is non-monotone and crosses 0 in three different locations.

3.2 Unconditional information aggregation wedge

To obtain general results, we focus on unconditional moments of prices and expected dividends.

Let Wπ = E (Wπ (z)) denote the expected information aggregation wedge associated with a payoff

function π(·). The next lemma provides a characterization of Wπ which forms the basis for the

subsequent comparative statics results.

Lemma 2 (Unconditional Wedge) Define σP as σ2P = σ2θ (1 + (γP /γV − 1) γP ). The uncondi-

tional information aggregation wedge Wπ is characterized by

Wπ =

∫ ∞
0

(
π′ (θ)− π′ (−θ)

)(
Φ

(
θ

σθ

)
− Φ

(
θ

σP

))
dθ. (9)

This characterization shows how the wedge depends separately on both the curvature the payoff

function, and the parameters describing the informational environment. The parameter σP > σθ
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corresponds to the prior variance of θ, as assessed by the marginal trader, and summarizes the

importance of informational frictions in the market. By taking ex ante expectations over z, the

shifts in mean and residual uncertainty combine into a mean-preserving spread between the weights

that the marginal trader and the outsider associate with each realizations of θ.

The marginal trader places more weight on the tails of the fundamental distribution, from an ex

ante perspective (i.e., σP > σθ). This result can intuitively be understood as follows: the marginal

trader’s posterior of θ, conditional on z, is normal with mean γP z and variance (1− γP )σ2θ . The

prior over z is normal with mean 0 and variance σ2θ/γV . Compounding the two distributions, the

marginal trader’s prior over θ is characterized as a normal distribution with mean 0 and variance

(1− γP )σ2θ +γ2Pσ
2
θ/γV = σ2P . The outsider, on the other hand, holds the posterior that conditional

on z, θ is normal with mean γV z and variance (1− γV )σ2θ . His compounded distribution then

corresponds to the actual prior distribution of θ, as the prior variance is just (1− γV )σ2θ + γV σ
2
θ =

σ2θ . Hence, the information frictions summarized by the distance of σP from σθ will be large

whenever the market signal is noisy relative to private signals, or the ratio γP /γV is high, as this

leads to a large discrepancy between the posterior beliefs held by the marginal trader and the

outsider.

We use Lemma 2 to sign the unconditional wedge as a function of the shape of the dividend

function, and to offer comparative statics with respect to π and the informational parameters γP

and γV . Our next definition provides a partial order on payoff functions that we will use for the

comparative statics.

Definition 1 (i) A dividend function π has symmetric risks if π′ (θ) = π′ (−θ) for all θ > 0.

(ii) A payoff function π is dominated by upside risks, if π′ (θ) ≥ π′ (−θ) for all θ > 0. A payoff

function π is dominated by downside risks, if π′ (θ) ≤ π′ (−θ) for all θ > 0.

(iii) A dividend function π1 has more upside (less downside) risk than π2 if π′1 (θ)− π′1 (−θ) ≥

π′2 (θ)− π′2 (−θ) for all θ > 0.

This definition classifies payoff functions by comparing marginal gains and losses at fixed dis-

tances from the prior mean to determine whether the payoff exposes its owner to bigger payoff

fluctuations on the upside or the downside. Any linear dividend function has symmetric risks, any

convex function is dominated by upside risks, and any concave dividend function is dominated by

downside risks. The classification however also extends to non-linear functions with symmetric

gains and losses, as well as non-convex functions with upside risk or non-concave functions with

downside risk. Figure 3 plots examples of payoff functions dominated by different types of risk.
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Figure 3: Dividend risk types
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The following Theorem summarizes the comparative statics implications that follow directly

from this partial order, and the characterization in lemma 2.

Theorem 1 (Average prices and returns) (i) Sign: If π has symmetric risk, then Wπ = 0. If

π is dominated by upside risk, then Wπ ≥ 0. If π is dominated by downside risk, then Wπ ≤ 0.

(ii) Comparative Statics w.r.t. π: For given σ2P , if π1 has more downside and less upside

risk than π2, then Wπ2 ≥Wπ1.

(iii) Comparative Statics w.r.t. σ2P : If π is dominated by upside or downside risk, then

|Wπ| is increasing in σP . Moreover, limσP→σθ |Wπ| = 0, and limσP→∞ |Wπ| = ∞, whenever there

exists ε > 0, such that |π′ (θ)− π′ (−θ) | > ε for all θ ≥ ε.

(iv) Increasing differences: If π1 has more upside risk than π2, then Wπ1 (σP ) −Wπ2 (σP )

is increasing in σP .

This theorem summarizes how the shape of the dividend function and the informational param-

eters combine to determine the sign and magnitude of the unconditional information aggregation

wedge. It shows that unconditional price premia or discounts arise as a combination of two ele-

ments: upside or downside risks in the dividend profile π, and an impact of private information on

market prices (γP > γV ). The latter requires that updating from prices is noisy (γV < 1). This

Theorem forms the first part of our core theoretical contribution, and shows that noisy informa-

tion aggregation may influence conditional and unconditional returns of assets through their payoff
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profile and the informational characteristics of the market.

The result is easily understood from our interpretation of the wedge as the expected value of a

symmetric, mean-preserving spread of the true underlying fundamental distribution.

Part (i) shows that the sign of the wedge is determined by whether π is dominated by upside,

downside, or symmetric risk. When the dividend function has symmetric risk, the gains from this

spread on the upside exactly cancel the expected losses on the downside, and the total effect is 0.

When the dividend is dominated by upside risks, the expected upside gains dominate and the value

of the mean-preserving spread is positive, leading to a positive unconditional wedge. Conversely,

when the dividend is dominated by downside risks, the expected losses on the downside dominate

and the expected value of the spread is negative.

Parts (ii), (iii), and (iv) complement the first result on the possibility of price premia or

discounts with specific predictions on how its magnitude depends on cash flow and informational

characteristics.

Part (ii) shows that an asset with more upside or less downside risk on average has a higher

price premium or a lower price discount, all else equal. Thus, returns on average are lower (and

prices higher) for securities that represent more upside risks. Simply put, the mean-preserving

spread becomes more valuable when the payoff function shifts towards more upside risk.

Part (iii) shows the role of informational parameters. For a given payoff function, the uncon-

ditional wedge increases in absolute value as the information aggregation friction has bigger effects

(higher σP ). For a given set of upside or downside risks, a bigger mean-preserving spread generates

bigger gains or losses. Moreover, a wedge obtains only if γP > γV , i.e., if the heterogeneous beliefs

have an impact on price. The wedge is increasing in γP and decreasing in γV , as the precision of

market information and private information move the wedge in opposite directions. Under regular-

ity conditions, which ensure that the payoff asymmetry doesn’t disappear in the tails, the absolute

value of the wedge approaches infinity when γV → 0. This obtains if for a given value of β, the

market noise becomes infinitely large. In this limiting case, the marginal trader remains responsive

to z, even though the z is infinitely noisy.

Part (iv) shows that the unconditional wedge has increasing differences between the dominance

of upside risk and the level of market noise. This implies that the effects of market noise and

asymmetry in dividend risk are mutually reinforcing on the magnitude of the wedge.

Importantly, our results on differences between expected prices and dividends are not a conse-

quence of irrational trading strategies, behavioral biases of investors, or agency conflicts. Nor are

such differences accounted for by risk premia (since traders are risk neutral). Our model thus offers
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a theory in which average prices can differ systematically from expected dividends as a result of the

interplay between the dividend structure and the partial aggregation of information into prices, in

a context where traders hold heterogeneous beliefs in equilibrium and arbitrage is limited. To our

knowledge, this channel is new to the literature.

3.3 Excess Price Variability

Our second main result concerns the variability of prices, relative to expected dividends and realized

dividends. As can readily be seen from the above characterizations, if W ′π (·) > 0, the unconditional

variance of prices (prior to realization of z) exceeds the variability of expected dividends. Consider

furthermore the limiting case where γP → 1, in which Pπ (z) → π (z). Since the variance of z

exceeds that of θ, it follows immediately that in this limit, where the informed traders’ signals

become arbitrarily precise, the variability of prices can exceed the variability of dividends. This

result is illustrated in the linear and the log-normal examples discussed in section 3.1.

Our second theorem generalizes these observations. To do so, we will need to impose some re-

strictions to handle the non-linearities and higher-order effects that are confounding the comparative

statics of Wπ with respect to z. Concretely, we will focus on risks that are symmetric or dominated

by the upside or downside, and we will focus on E
(

(Pπ (z)− Pπ (0))2
)

, E
(

(Vπ (z)− Vπ (0))2
)

, and

E
(

(π (θ)− π (0))2
)

as our criterion for the variability of prices, expected dividends, and realized

dividends, respectively, rather than the unconditional variances. The next theorem states our main

result concerning excess variability:

Theorem 2 (Excess variability of prices) For any payoff function π (·) that is symmetric, dom-

inated by upside, or dominated by downside risk:

(i) The variability of expected dividends is always less than the variability of realized dividends

and the variability of prices:

E
(

(Vπ (z)− Vπ (0))2
)
< E

(
(π (θ)− π (0))2

)
and E

(
(Vπ (z)− Vπ (0))2

)
< E

(
(Pπ (z)− Pπ (0))2

)
(ii) The excess variability of prices relative to expected dividends is increasing in γP and de-

creasing in γV .

(iii) For any γV , if γP is sufficiently high, then the variability of prices exceeds the variability

of realized dividends. The same occurs if, for given γP , γV is sufficiently low.

(iv) If π (·) is unbounded on one side, then limγV→0 E
(

(Pπ (z)− Pπ (0))2
)

=∞.
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This theorem shows that the price is more variable than expected dividends, and if the market

is sufficiently noisy, even more variable than realized dividends. The latter occurs in the limiting

cases where supply shocks are unboundedly large (σ2u → ∞, γV → 0), or the traders’ private

information is infinitely precise (β → ∞, γP → 1). In the former case, the variability of prices

can be arbitrarily large, even as the variability of realized and expected dividends is bounded. The

statement of the result relies on two restrictions which we used for analytical tractability. First,

the focus on a variability measure which combines a variance with a bias between the average price

and the price at the average fundamental. Second, we restrict ourselves to symmetric, upside or

downside risks. With these restrictions, the results are the cleanest, and easiest to interpret.

To understand this result, and the source of excess price variability in our model, it is use-

ful to think of a counter-factual third person who observes a signal z with distribution z|θ ∼

N (θ, (β + βσ−2u )−1). Like the uninformed outsider, this third person is fully Bayesian, but has ac-

cess to a more informative signal, whose precision matches that of the marginal traders’. Therefore

in comparison to the marginal trader, the third person will form the same posterior beliefs, condi-

tonal on a realization of z, but z will be drawn from a distribution with a lower ex ante variance,

and be consistent with Bayes’ Rule derived from the objective signal precision. In comparison to

the uninformed outsider, the third person is also fully Bayesian, but with simply a more precise

signal. We break down the comparison between E
(

(Pπ (z)− Pπ (0))2
)

and the other terms into

a comparison between E
(

(Pπ (z)− Pπ (0))2
)

and E
(

(Pπ (z)− Pπ (0))2 |z ∼ N (θ, (β + βσ−2u )−1)
)

,

and the comparison of this latter term with the ex ante variability of expected and realized divi-

dends. E
(

(Pπ (z)− Pπ (0))2 |z ∼ N (θ, (β + βσ−2u )−1
)

corresponds to the counter-factual variability

of prices, if z had been drawn from a distribution z|θ ∼ N (θ, (β + βσ−2u )−1), such that Pπ (z) is

consistent with a posterior expectation of π conditional on z.

For the comparison of the counter-factual variability of prices with the variability in expected

and realized dividends, we first proceed to break down the variability measures into a variance and a

bias term. The variance terms can then be compared using Blackwell’s theorem on the comparison

of experiments (Blackwell, 1951, 1953). Since π (θ), Pπ (z), and Vπ (z) correspond to the posterior

expectation of π (θ) for respectively, an agent who observes the true θ, the counter-factual signal

z, and the actual signal z, the unconditional variance of π exceeds the unconditional variance of

P under the distribution z ∼ N (θ, (β + βσ−2u )−1), which exceeds the unconditional variance of V

under the distribution z ∼ N (θ, σ2u/β). For symmetric, upside and downside risks, the bias terms

follow exactly the same ranking.9

9Our choice of variability measure (which is equivalent to the variance for symmetric risks) allows for the cleanest
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Therefore, if this second term was the only relevant component, the variability of prices in our

model would satisfy the standard conditions resulting from the Blackwell comparison of experiments

- namely, that a more informative price signal raises price volatility and expected dividend volatility,

but both are bounded by the volatility of realized dividends. At best, the volatility gap can be

brought close to zero when information in the market is sufficiently precise. For models in which

asset prices are always equal to expected future dividends, this observation is made precise by West

(1988).

The excess volatility then results from the first term, which measures the over-reaction of the

price compared to its true information content. This term measures the difference between the

variability in prices under the objective signal distribution z ∼ N (θ, σ2u/β) with the variability in

prices (derived from the same price function) for a counter-factual signal distribution z ∼ N (θ, (β+

βσ−2u )−1), under which the market’s beliefs are consistent with Bayes’ Rule. This over-reaction

effect is always positive, and may be strong enough to cause the volatility of prices to exceed the

volatility of realized dividends. This becomes possible in particular when information frictions in

the market (as measured by the gap between γP and γV ) are sufficiently severe.

To conclude, we point out that the same forces that lead to large excess volatility in prices also

generate a low correlation of prices with realized dividends.

Proposition 2 (Low predictability of dividends) Fix γP > 0. Then

lim
γV→0

corr(Pπ (z) , π (θ)) = 0 and lim
γV→0

cov(Pπ (z) , π (θ))

V ar (Pπ (z))
= 0.

The key to this result is to note that the unconditional correlation of prices and realized div-

idends is bounded above by the ratio between the unconditional variances of the expected and

realized dividends Vπ (z) and π (θ). Likewise, the OLS regression coefficient for regressing realized

dividends against prices is bounded by the ratio of the unconditional variances of Vπ (z) and Pπ (z).

When γV is sufficiently low, i.e. when the market signal is very uninformative, then these ratios

are close to zero (i.e. the posterior expectation remains much closer to the prior expectation than

the actual dividend realization, and the posterior expectation is much less volatile than the price).

In this case, the predictability of dividends from prices is very low. This turns out to be precisely

the case in which the information aggregation wedge also has the potential to generate large excess

price volatility.

possible comparison between the actual and the counter-factual variance of prices. This variability measure then

introduces the need to also rank the bias terms, which is done for symmetric, upside or downside risks. Since the bias

terms are likely to be small compared to the variances, similar, but technically less clean results are likely to hold for

arbitrary risks or other variability measures.
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These results offer a new perspective on the well documented “excess volatility puzzle” (Le Roy

and Porter 1981; Shiller 1981), and the low predictability of future dividend growth. As reported

by Shiller (1981) and Le Roy and Porter (1981), the volatility of realized dividends is much lower

than the volatility in prices. In representative agent models with Bayesian updating, the volatility

of expected dividends can never exceed realized dividends (West, 1988), whose importance in

variance decomposition tests is very small.10 Therefore, the literature has focused on variation

in the stochastic discount factor coming from risk aversion as a source of excess price volatility in

economies that allow a representative agent characterization (Campbell and Shiller 1988; Cochrane,

1992).

At the same time, a large body of empirical work in finance suggests that share prices are at

best a very noisy predictor of future growth in dividends. As reviewed in Campbell (2003) (see

references therein), quarterly real dividend growth and real stock returns for US post-war data

have a correlation of only 0.03, which increases to 0.47 at 4-year horizons. This poses another

challenge for risk-based explanations of asset price volatility, because it suggests that most of the

price volatility results from factors that are largely orthogonal to expected future dividends.

Our theory suggests instead that high return volatility could result from volatile dividend ex-

pectations in a Bayesian environment despite low variation in observed dividends, as long as the

informational frictions stressed above are severe enough. When noise trading is highly volatile, mar-

ket information in prices is noisy and traders beliefs remain heterogeneous in equilibrium. With

finite precision of private signals, large shifts in noisy demand are then absorbed by large shifts in

the identity of the marginal trader, resulting in high price volatility. The ratio between price and

realized dividend volatility can be made arbitrarily large by increasing the variance of noise trading

shocks. At the same time, the correlation between prices and realized subsequent dividends can be

arbitrarily close to zero, which is potentially consistent with the evidence summarized by Campbell

(2003). If the price is sufficiently noisy so as to be a poor signal of fundamentals, yet individual

traders have sufficiently precise private information, then our model can jointly account for large

excess price volatility, and low predictability of future dividend yields.

Whether heterogeneous expectations can quantitatively account for observed excess price volatil-

ity and low predictability of future dividends is an empirical question we do not address here.

Rather, the contribution of our model in this respect is to offer a theoretical framework, fully con-

sistent with agent rationality, where this channel is not ruled out by the mere observation that the

variability of actual dividends is modest, and not highly correlated with prices.

10For a recent digression, see Chen and Zhao (2009).
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4 Applications

In this section, we study two applications of our theory. First, we reconsider the Modigliani-Miller

Theorem. Second, in a dynamic extension of our model we show conditions under which bubbles

arise.

4.1 Splitting Cash-flows to influence market value

The Modigliani-Miller theorem states that in perfect and complete financial markets, splitting a

Cash-flow into two different securities, and selling these claims separately to investors does not

influence its total market value (Modigliani and Miller, 1958). Here we show that with noisy in-

formation aggregation, the Modigliani-Miller theorem remains valid only if the different claims are

sold to investor pools with identical informational characteristics. When the investor pools for

different claims have different characteristics, then the nature of the split influences the seller’s

revenue. The seller in turn can increase her revenues by tailoring the split to the different investor

types.

Consider a seller who owns claims on a stochastic dividend π (·). This cash flow is divided into

two parts, π1 and π2, both monotone in θ, such that π1 + π2 = π, and then sold to traders in two

separate markets. We assume that π2 has more upside risk than π1. For each claim, there is a unit

measure of informed traders who obtain a noisy private signal xi ∼ N
(
θ, β−1i

)
, and a noise trader

demand Φ (si), where  s1

s2

 = N

 0

0

 ,

 σ2u,1 ρσu,1σu,2

ρσu,1σu,2 σ2u,2


That is, each market is affected by a noise trader shock si with market-specific noise parameter

σ2u,i. The environment is then characterized by the market-characteristics βi and σ2u,i, and by the

correlation of demand shocks across markets, ρ. Traders are active only in their respective market.

However, we consider both the possibility that traders observe and condition on prices in the other

market (informational linkages), and the possibility that they do not (informational segregation).

Under informational segregation, the analysis of the two markets can be completely separated;

any correlation between the two in prices is the result of correlation in demand shocks, as well as the

common underlying fundamental, but this doesn’t influence expected revenues. The equilibrium

characterization from proposition 1 applies separately in each market:

Pi (zi) = E
(
πi(θ)|x = zi, zi;βi, σ

2
u,i

)
and Vi (zi) = E

(
πi(θ)|zi;βi, σ2u,i

)
.
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The seller’s total expected revenue in excess of the cash flow’s expected dividend value is then

given by Wπ1 (σP,1) +Wπ2 (σP,2), where σP,i is determined as in lemma 2, and denotes the level of

informational frictions in each market.

With informational linkages, the equilibrium analysis has to be adjusted to incorporate the

information contained in price 1 for the traders in market 2, and vice versa. The characterization

proceeds along the same lines as the previous model. Since expected dividends are monotone,

informed traders in market i will buy a security if and only if their private signal exceeds a threshold

x̂i (·), where x̂i (·) is conditioned on both prices. By market-clearing, it must be the case that

x̂i (·) = zi ≡ θ + 1/
√
βi · si. Observing Pi is then isomorphic to observing zi, and observing both

prices is isomorphic to observing (z1, z2). We let (z1, z2) denote the state, and consider equilibrium

price functions P1 (·) and P2 (·) that are measurable w.r.t. (z1, z2). It is then straight-forward to

characterize posterior beliefs over θ using Bayes’rule, and to characterize the traders’ indifference

conditions and hence the market price functions, and expected dividends, conditional on (z1, z2):

P1 (z1, z2) = E (π1(θ)|x = z1; z1, z2) and V1 (z1, z2) = E (π1(θ)|z1, z2) ,

P2 (z1, z2) = E (π2(θ)|x = z2; z1, z2) and V2 (z1, z2) = E (π2(θ)|z1, z2)

In Appendix B we fully characterize expected prices and dividends for this two asset model. In

particular, we show the following modified version of lemma 2.

Lemma 3 (Unconditional Wedge with two assets) For each cash-flow πi, the unconditional

information aggregation wedge Wπi is characterized by

Wπi (σP,i) =

∫ ∞
0

(
π′i (θ)− π′i (−θ)

)(
Φ

(
θ

σθ

)
− Φ

(
θ

σP,i

))
dθ, where

σ2P,i = σ2θ +
βi

(βi + V )2
(
1 + σ2u,i

)
and V = σ−2θ +

1

1− ρ2

(
β1
σ2u,1

+
β2
σ2u,2

− 2ρ

√
β1β2

σu,1σu,2

)
Therefore, the cases of informational segregation and informational linkages only differ in terms

of how our measure of informational frictions σP,i depends on the underlying primitive parameters in

each case, but for given values of πi and σP,i, the seller’s expected revenue net of expected dividends

in both cases is Wπ1 (σP,1) +Wπ2 (σP,2). We can now state a first version of the Modigliani-Miller

theorem for expected revenues in our model.

Proposition 3 (Modigliani-Miller I) (i) The cash-flow split does not affect the seller’s expected

revenue, if and only if the market characteristics are identical: σP,1 = σP,2.

(ii) If σP,1 > σP,2, Wπ1 (σP,1) + Wπ2 (σP,2) > Wπ1 (σP,2) + Wπ2 (σP,1), while if σP,1 < σP,2,

Wπ1 (σP,1) +Wπ2 (σP,2) < Wπ1 (σP,2) +Wπ2 (σP,1).

23



The key to this proposition is that, for given values of σP , the expected information aggregation

wedge is additive across cash flows: Wπ1 (σP ) + Wπ2 (σP ) = Wπ1+π2 (σP ), for any σP , π1 and π2.

If the two markets have identical characteristics, i.e. σP,1 = σP,2, only the combined cash flow

matters for the total wedge - i.e. the Modigliani-Miller result applies. If on the other hand the

two markets have different informational characteristics, then the increasing difference property of

Wπ1 (·) implies that the seller’s revenue is influenced by how the two cash flows are matched to

the two markets, and the revenue is higher when the upside risk is matched with the market that

has more severe information frictions (a higher value of σP ). Intuitively, the seller exploits the

information aggregation wedge to manipulate revenues, matching the pool of investors with high

informational frictions with the upside risk, while selling the downside risks to an investor pool

with lower informational frictions. This maximizes the gains from the positive wedge resulting on

the upside, while it minimizes the losses from the negative wedge on the downside. This logic is

pushed further by the next proposition, which considers how the seller can exploit the heterogeneity

in investor pools if she gets to design the split of π into π1 and π2.

Proposition 4 (Designing Cash flows) The seller maximizes her expected revenues by splitting

cash flows according to π∗1 (θ) = min {π (θ) , π (0)} and π∗2 (θ) = max {π (θ)− π (0) , 0}, and then

assigning π∗1 to the investor pool with the lower value of σP .

Figure 4 sketches the optimal dividend split for an arbitrary dividend function. The seller

maximizes the total proceeds by assigning all the cash flow below the line defined by π(.) = π(0)

to the investor group with the lowest information friction parameter; σP,1, and the complement

to the investor group with the highest friction; σP,2. It is easy to show that any other arbitrary

division of cash flows {π1(·), π2(·)} implies that both π∗′1 (θ) − π∗′1 (−θ) ≤ π′1 (θ) − π′1 (−θ), and

π∗′2 (θ) − π∗′2 (−θ) ≥ π′2 (θ) − π′2 (−θ). That is, π1 has less downside risk than π∗1, and π2 has less

upside risk than π∗2. The increasing difference property of part iv) in Theorem 1 then implies that

any transfer of cash flows between investor groups resulting from the alternative split reduces the

total proceeds of the issuance. Intuitively, the optimal split loads the entire downside risk on the

investor group that discounts the price of the claim the least with respect to its expected payoff

(because of the low friction parameter; σP,1), while loading the entire upside risk to the group that

overvalues the claim the most with respect to its expected dividend (due to the high information

frictions; σP,2). When π (·) > 0, this split has a straight-forward interpretation in terms of debt

and equity, with a default point on debt that is set at the prior mean θ = 0.

An important limitation of the discussion in this section is that we take as given the differences
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Figure 4: Optimal Cash-flow Design
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in market characteristics. Moreover, we are implicitly assuming that, given these differences, the

seller can freely assign the cash-flows to these two pools. In practice the situation is of course more

complicated, because the investor’s incentives to obtain information also depends on the asset risks

they face. Analyzing this interplay between investor’s information choices and the resulting market

characteristics, along with the seller’s security design question is clearly beyond the scope of this

paper, but an important avenue for further work. The results here are simply intended to highlight

the possibility of systematic departures from Modigliani and Miller’s (1958) irrelevance result, and

show that the information frictions give the owner of a cash flow distinct possibility to manipulate

its market value through strategic security design.

We conclude this section by stating a second version of the Modigliani-Miller theorem for realized

revenues, Pπ1 (z1, z2)+Pπ2 (z1, z2). The original Modigliani-Miller theorem holds also at an interim
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stage conditional on new information, as long as the marginal traders in the two markets hold

identical beliefs for each realization (z1, z2).

Proposition 5 (Modigliani-Miller II) (i) With informational segregation: Pπ1 (z1, z2)+Pπ2 (z1, z2) =

Pπ (z1, z2) almost surely, if and only if the noise trading is perfectly correlated across markets

(ρ = 1), and the two markets have identical informational characteristics (β1 = β2 and σ2u,1 = σ2u,2).

(ii) With informational linkages Pπ1 (z1, z2) + Pπ2 (z1, z2) = Pπ (z1, z2) almost surely, if and

only if the noise trading is perfectly correlated across markets (ρ = 1), and either β1 = β2 and

σ2u,1 = σ2u,2, or β1σ
−2
u,1 6= β2σ

−2
u,2.

The perfect correlation reduces the noise to a single common shock. That this is necessary for the

theorem to hold under segregation is immediate. It is also necessary for the case with informational

linkages, because of the different weighting between the signals for the marginal traders in the two

markets. In addition the signal distributions need to be the same, requiring that β1 = β2 and σ2u,1 =

σ2u,2. Finally, the wedge needs to be the same in the two markets, or σP,1 = σP,2. Together these

conditions imply that the two markets have identical informational characteristics, and the marginal

trader therefore holds identical beliefs. In the case with informational linkages, we need to consider

the additional possibility that when β1σ
−2
u,1 6= β2σ

−2
u,2 and ρ = 1, the observations of two signals with

different precision but perfectly correlated noise enables every trader to perfectly infer θ and u from

the two prices regardless of the informational parameters, hence Pπ1 (z1, z2) + Pπ2 (z1, z2) = π(θ).

An interim version of the theorem therefore requires perfect correlation in the noise in different

markets, on top of identical informational characteristics.

4.2 Dynamic Trading and Bubbles

As our second application, we consider a simple dynamic extension of our basic model, and show

by means of an example how it can easily result in persistent (or even permanent) over-valuation

of securities. Standard arguments imply that no arbitrage and common information rules out the

possibility of rational bubbles for a general class of dynamic asset market economies (Tirole, 1982;

Santos and Woodford, 1997). This is one of the classic no-arbitrage results: while a buy-and-

hold strategy insures that a security can never be worth less than its fundamental value under

no-arbitrage, a positive bubble component in the price is consistent with arbitrage by buy-and-sell

strategies only if its date zero present value follows a Martingale process. But this is inconsistent

with the implication of discounting and the transversality condition, that aggregate wealth and
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the present discounted value of aggregate consumption has finite present value - unless the bubble

component is exactly zero.

Here, we show in a simple dynamic example how heterogeneous information and our limits to

arbitrage break exactly this result. It is still true that the anticipation of a higher price in the future

leads traders to bid up the price in the current period. In our environment, however, extending

the insights of Theorem 1 to a dynamic environment, we show that a positive wedge (on average)

is sustainable in the future, and leads to a higher willingness to pay in the current period. If

this anticipation of a positive future wedge is sufficiently strong it can more than offset a negative

contribution of current payoffs to the wedge, implying that the security is priced above the present

discounted value of future dividends in all periods and states.

We establish this result in a model in which per period cashflows π (·) are i.i.d. over time, and

the security is infinitely lived. As conditions, we require that π (·) is dominated by upside risks, so

that on average it is expected to trade at a premium, and bounded below (non-negative), so that

there is a bound on the wedge on the downside. Inverting the conditions, we also obtain that a

security that is dominated by downside risks and has a uniform bound on the upside may trade

permanently at a discount.

Time is discrete and infinite, and in each period a new trading round takes place, with informed

traders and noise traders. As before the total asset supply is 1. The asset pays dividends π (θt)

after the current trading round has taken place (hence θt is publicly known before the start of

period t+ 1). For simplicity we assume that the fundamental θt and the stochastic demand shock

ut are distributed as specified as in section 2, and i.i.d. over time.11 Traders are long-lived and

risk-neutral and discount the future at a rate δ ∈ (0, 1).

The lack of persistence in the dividend process implies that trading in round t only aggregates

information about the current fundamental, but includes the anticipation of future prices. Formally,

the payoff to a share bought in period t is π (θt) + δP (zt+1), where P (zt+1) is the price in period

t + 1, contingent on the period t + 1 state zt+1. The price then satisfies the following recursive

characterization:

Pπ (zt) = E (π (θt) + δPπ (zt+1) |x = zt, zt) , (10)

and the expected dividend value of the asset satisfies:

Vπ (zt) = E (π (θt) + δVπ (zt+1) |zt) . (11)

11It is possible but outside the scope of the current paper to extend the analysis to allow for persistent fundamental

processes. The i.i.d. case is sufficient to convey the core insights that anticipated future wedges influence the current

level of the wedge.
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Using the fact that in the i.i.d. case, the expected future prices and dividend values correspond

to the unconditional ones, we have the following characterization of the information aggregation

wedge in the dynamic model:

Wπ (zt) = wπ (zt) + δE (Wπ (z)) = wπ (zt) +
δ

1− δ
E (wπ (z)) , where (12)

wπ (zt) = E (π (θt) |x = zt, zt)− E (π (θt) |zt)

is the wedge resulting from the current period payoffs, and E (wπ (z)) its corresponding uncondi-

tional expectation. Thus, the information aggregation wedge in the dynamic setting depends on

both the wedge resulting from current payoffs, and the expected discounted future wedge. Even

when the current wedge is negative (at low realizations of z), the overall wedge may still be positive

because traders anticipate higher share prices in the future. The following proposition formalizes

this observation.

Proposition 6 (Sustainability of Bubbles) Suppose that π (θ) is bounded below, increasing,

and convex. Then, for any σP > σθ, there exists δ̂ < 1 such that for all δ > δ̂, W (z) > 0,

for all z.

Proposition 6 shows how claims that have a lower bound on payoffs (for example, requiring them

to be non-negative), and that generate a positive unconditional wedge, can be priced in the market

at a value exceeding expected dividends at all times and in all states of the world. Symmetrically,

a claim whose payoffs are bounded above may be undervalued in all future states. The positive

(negative) exponential payoff function from example 1 exactly satisfies the required conditions for

a permanent bubble (or discount).

The example illustrates the key forces that are at play to overturn the no-arbitrage argument

against bubbles: First, with mean reversion in fundamentals and noise trading (captured by the i.i.d.

assumption in shocks), the traders anticipation of future wedges are driven by the unconditional

wedge. With upside risks, this is positive. Second, with bounded payoffs, there is a limit to how

much the market’s expectation of current dividends can be undervalued relative to the objective

outsider’s expectation. Third, the anticipation of a positive future wedge will dominate a negative

current wedge, if traders are sufficiently patient.

This example is of course highly stylized, as a complete and exhaustive discussion of dynamic

extensions of our model leads to additional difficulties on its own, which exceed the scope of

this paper, and are left to future work. Nevertheless it is suggestive of the types of markets in

which information-driven bubbles are likely to emerge, and when they are likely to occur, namely
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those that represent significant future upside opportunities, and/or markets in which investors face

implicit protection against downside risks. Furthermore, such bubbles are more likely to occur in

time periods where real interest rates are low.

5 Discussion

In this section, we explore the robustness of the information aggregation wedge to changes in

the model’s core assumptions. We show that the information aggregation wedge is (i) robust to

alternative specifications of the prior distribution of θ, alternative distributions of private signals,

and arbitrary specifications of the position limits, and (ii) inversely related to the extent of arbitrage

activity by risk-neutral, uninformed traders (or more specifically the demand elasticity of noise and

uninformed traders).

5.1 Distributional assumptions and limits to arbitrage

First, we generalize the distributional assumptions and arbitrage limits. Specifically, suppose as be-

fore that traders are risk-neutral, but consider now the following generalization: (i) θ is distributed

according to an arbitrary smooth prior h (·) on R, (ii) private signals are distributed i.i.d. according

to a distribution with cdf F (·|θ), which satisfies the monotone likelihood ratio property, (iii) posi-

tion limits are arbitrary finite numbers [dL, dH ], and (iv) the noise trader demand D is distributed

according to an arbitrary smooth distribution with cdf G (·) on [1− dH , 1− dL]. This formulation

imposes few restrictions on the distributions apart from the monotone likelihood ratio property

for private signals (to insure monotonicity of posteriors and trading behavior), and smoothness as-

sumptions to maintain continuity and invertibility of the price function. The following equilibrium

characterization is then a direct generalization of proposition 1:

Proposition 7 (Distributional Assumptions and arbitrage limits) In the unique asset mar-

ket equilibrium, the price function P (z) is characterized by

P (z) = E (π(θ)|x = z, z) =

∫
π(θ)h (θ) g̃ (F (z|θ)) f2 (z|θ) dθ∫
h (θ) g̃ (F (z|θ)) f2 (z|θ) dθ

, (13)

and the traders’ threshold function is x̂(p) = z = P−1 (p). The expected dividend conditional on z

takes the form

V (z) = E (π(θ)|z) =

∫
π(θ)h (θ) g̃ (F (z|θ)) f (z|θ) dθ∫
h (θ) g̃ (F (z|θ)) f (z|θ) dθ

, (14)

where g̃ (D) = (dH − dL) g (1− dH + (dH − dL)D).
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Risk-neutrality, position limits and the MLRP on private signals allow us to retain a threshold

characterization for the buying strategy of informed traders. We can then use the market-clearing

condition to redefine the information conveyed through P by an observable state variable z = x̂ (P ),

whose realization depends only on the exogenous shocks θ and D. The indifference condition for

the marginal trader implies that P (z) = E (π(θ)|x = z, z). That is, the asset price equal the

expectation of an informed trader with public signal z and an independent private signal x whose

realization also equals z. The expected dividend, on the other hand, conditions on z only once as

the market signal. The final step in the proof consists in characterizing the distribution of z from

the primitive distributions, and showing that its conditional pdf is ϕ (z|θ) = g̃ (F (z|θ)) f (z|θ) =

(dH − dL) g (1− dH + (dH − dL)F (z|θ)) f (z|θ).

This characterization shows that the logic of the wedge is not directly tied to the specific

distributional assumptions that we have made (other than the MLRP assumption on signals). It also

shows that the position bounds to [dL, dH ] = [0, 1] amount to nothing more than a re-normalization

of the noise-trading distribution, such that a wider band in positions (as measured by a higher value

of dH − dL) is equivalent to a reduction of the variance in supply shocks. In other words, a model

with arbitrary position bounds [dL, dH ] and a given distribution G (·) of supply shocks is equivalent

in terms of prices to a model with position bounds normalized to [0, 1] along with a normalized

distribution of supply shocks given by G̃ (·), where G̃ (D′) = G (1− dH + (dH − dL)D′).

5.2 Price impact of information

We now generalize our previous formulation to allow for a response of uninformed traders to per-

ceived excess returns on the asset, as well as stochastic trading motives which are unrelated to

dividend expectations (for example, liquidity or hedging needs). We keep the same model as in

section 2, but consider the following formulation for asset demand:

D(u, P ) = Φ (u+ η (E (π (θ) |P )− P )) , (15)

with u ∼ N
(
0, σ2u

)
. Uninformed traders’ demand is increasing in the expected return conditional

on the price, E (π (θ) |P ) − P , with an elasticity given by η.12 The parameter η captures the

responsiveness of uninformed traders to the expectation of dividends in excess of prices, or in other

words, the extent to which they are willing or able to arbitrage away the difference between expected

12Exactly the same analysis can be conducted if uninformed traders responded to the expected return E (π (θ) |P ) /P

(provided the latter is well-defined, i.e. π (θ) is always non-negative), instead of the payoff difference E (π (θ) |P )−P .
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price and dividend value. Equivalently, η measures the price impact of private information which

relates naturally to the concept of market liquidity.

We follow our previous equilibrium characterization and asset prices with minor changes to ac-

count for the endogeneity of demand to asset prices. Market-clearing implies Φ
(√
β (x̂ (P )− θ)

)
=

Φ (u+ η (E (π (θ) |P )− P )), or

z = θ +
1√
β
u = x̂ (P )− η/

√
β · (E (π (θ) |P )− P ) . (16)

Observing P is thus isomorphic to observing z ∼ N
(
θ, σ−2u /β

)
, and Lemma 1 continues to hold

without any changes. Using the fact that the expected dividend is E (π (θ) |P ) = E (π (θ) |z) =

V (z), the equilibrium price function is implicitly defined by the marginal trader’s indifference

condition

P (z) = E (π (θ) |x̂ (P ) , z) = E
(
π (θ) |z + η/

√
β · (V (z)− P (z)) , z

)
. (17)

This condition implicitly defines the equilibrium price. Let P (z; η) denote the equilibrium price

as a function of the elasticity parameter η, and P (z; 0) = P (z) the price function with inelastic

supply. The next proposition shows that the magnitude of the information aggregation wedge is

inversely related to the uninformed trader’s demand elasticity.

Proposition 8 (Price-elastic demand) If P (z; 0) = V (z), then P (z; η) = V (z), for all η. If

P (z; 0) 6= V (z), then |P (z; η)− V (z)| is strictly decreasing in η and limη→∞ |P (z; η)− V (z)| = 0.

Therefore, the more elastically the uninformed and noise traders respond to the wedge between

prices and expected dividends, the more they arbitrage away this difference, and the smaller the

information aggregation wedge becomes. This is illustrated by figure 5, which illustrates (in com-

parison to figure 1) how the price impact of a shift in θ is muted by the price elasticity of uninformed

traders.

The wedge results from the informed traders’ impact on equilibrium prices. The more traders

move prices by acting on their private information, the larger is the wedge. In the inelastic case,

the wedge was maximized as the informed traders fully determined prices. In the other extreme,

their price impact vanishes in the limit as η →∞ and the uninformed traders completely arbitrage

the wedge. The parameter η can thus also be intuitively interpreted as a measure of the limits to

arbitrage by uninformed, risk neutral outsiders.

We can illustrate these effects simply in the example with linear dividends: π (θ) = θ. In this

case, the expected dividend value is V (z) = γV · z, as before. The price however solves

P (z) = γP z +
η
√
β

σ2θ (1− γP )
(V (z)− P (z)) =

(
γP − (γP − γV )

η
√
β

σ2θ (1− γP ) + η
√
β

)
z.
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Figure 5: Identity Shift with Elastic Supply

Compared to the case with inelastic demand, the over-reaction is smaller, i.e. the coefficient in

front of z is decreasing in η, and converges to 1 as η →∞. The wedge

W (z) = (γP − γV )
σ2θ (1− γP )

σ2θ (1− γP ) + η
√
β
z

is also decreasing in η and vanishes as η → ∞. The information aggregation wedge is therefore

largest when uninformed traders are not actively arbitraging the expected return difference coming

from the information aggregation wedge.

6 Concluding Remarks

In this paper we have presented a theory of asset price formation based on heterogeneous infor-

mation and limits to arbitrage. This theory ties expected asset returns to properties of their risk

profile, and generates a channel for excess price volatility. The theory is parsimonious, in the sense

that all its results follow directly from the interplay between heterogeneous information and limits

to arbitrage. The theory is general, in the sense that we do not impose any strong restrictions on

the distribution of asset payoffs for the purpose of tractability (although we do impose such restric-

tions on information, risk preferences and noise-trading assumptions), but rather aim to identify

the relevant underlying features of cash flows at a general level. And the theory is tractable and

lends itself easily to applications, as suggested by our discussion of the Modigliani-Miller theorem

and the sustainability of bubbles.
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We conclude with short remarks on future potential research directions and our related research.

An important avenue for future work is to merge our model with risk-based asset pricing models. In

Albagli, Hellwig, and Tsyvinski (2011a) we provide a first step in this direction to study information

aggregation wedge in a CARA-normal setup. We show that the main intuition and results extend in

the case where (as is common in CARA models) dividends are symmetrically normally distributed.

A second direction, also explored in one-going related research (Albagli, Hellwig, and Tsyvinski,

2011b), is to incorporate the release of public news and disclosures into our asset pricing model,

and explore both positive and normative implications of public information and disclosure rules for

asset prices. A third important extension is to extend the analysis of a multi-period, and multi-asset

extensions of our market model, both of which have already been touched upon in this paper in the

context of specific examples. A final important direction lies in the integration of financial market

frictions with real decisions that endogenize the dividend payoff function we considered here. In a

companion paper (Albagli, Hellwig, and Tsyvinski, 2011c), we consider one such model in which

there is interplay between information aggregation, firm decisions and managerial incentives in a

simple model of informational feedback.
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7 Appendix: Proofs

Proof of Lemma 1. Part (i): By market-clearing, z =x̂(P (z)) and x̂(P (z′)) = z′, and therefore

z = z′ if and only if P (z) = P (z′).

Part (ii): Since P (z) is invertible, observing P is equivalent to observing z =x̂(P (z)) in equi-

librium. But z|θ ∼ N
(
θ, σ2u/β

)
, from which the characterization of H (·|x, P ) follows immediately

from Bayes’ Law.

Proof of Proposition 1. Substituting x̂(P ) = z, a price function P (z) is part of an equilibrium if

and only if it satisfies (6) and is invertible. π (·) is strictly increasing, and an increase in z represents

a first-order stochastic shift in the posterior over θ, so the price function Pπ (z) is continuous and

monotone over its domain and spans its entire range, hence invertible. Moreover, all prices are

observed in equilibrium (and hence out-of-equilibrium beliefs play no role). Thus, Pπ (z) defines

the unique equilibrium in which prices are conditioned only on z.

Proof of Lemma 2. By the law of iterated expectations, E (V (z)) = E (π (θ)) =
∫∞
−∞ π (θ) dΦ (θ/σθ).

To find E (P (z)), define σ2P = σ2θ (1 + (γP /γV − 1) γP ). Simple algebra shows that∫ ∞
−∞

1√
1− γPσθ

φ

(
θ − γP z√
1− γPσθ

)
dΦ

(√
γV z

σθ

)
=

1

σP
φ

(
θ

σP

)
.

With this, we compute E (P (z)):

E (P (z)) =

∫ ∞
−∞

∫ ∞
−∞

π (θ) dΦ

(
θ − γP z√
1− γPσθ

)
dΦ

(√
γV z

σθ

)
=

∫ ∞
−∞

π (θ)

∫ ∞
−∞

1√
1− γPσθ

φ

(
θ − γP z√
1− γPσθ

)
dΦ

(√
γV z

σθ

)
dθ

=

∫ ∞
−∞

π (θ)
1

σP
φ

(
θ

σP

)
dθ.

Therefore, Wπ is

Wπ =

∫ ∞
−∞

π (θ)

(
1

σP
φ

(
θ

σP

)
− 1

σθ
φ

(
θ

σθ

))
dθ

=

∫ ∞
−∞

π′ (θ)

(
Φ

(
θ

σθ

)
− Φ

(
θ

σP

))
dθ

=

∫ ∞
0

(
π′ (θ)− π′ (−θ)

)(
Φ

(
θ

σθ

)
− Φ

(
θ

σP

))
dθ,

where the first equality proceeds by integration by parts, the second by a change in variables, and

the third step uses the symmetry of the normal distribution (Φ (−x) = 1− Φ (x)).
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Proof of Theorem 1. Parts (i)− (iii) follow immediately from lemma 2, the definition of upside

and downside risk, and the fact that Φ (θ/σθ) > Φ (θ/σP ) for all θ (since σP > σθ). For part (iv)

notice that

Wπ1 (σP )−Wπ2 (σP ) =

∫ ∞
0

∆ (θ)

(
Φ

(
θ

σθ

)
− Φ

(
θ

σP

))
dθ,

where ∆ (θ) = π′1 (θ)− π′1 (−θ)− (π′2 (θ)− π′2 (−θ)).

Since π1 is has more upside risk than π2, ∆ (θ) ≥ 0 for all θ, which implies that Wπ1 (σP )−Wπ2 (σP )

is increasing in σP .

Proof of Theorem 2. Part (i): To compare the volatility of prices with that of expected

dividends, we write E
(

(Pπ (z)− Pπ (0))2
)

as

E
(

(Pπ (z)− Pπ (0))2 |z ∼ N
(
θ, σ2u/β

))
− E

(
(Pπ (ẑ)− Pπ (0))2 |ẑ ∼ N (θ, (β + βσ−2u )−1)

)
+E

(
(Pπ (z)− Pπ (0))2 |ẑ ∼ N (θ, (β + βσ−2u )−1)

)
where we have just made explicit the distribution of z conditional on θ, and we have added

and subtracted the term E
(

(Pπ (ẑ)− Pπ (0))2 |ẑ ∼ N (θ, (β + βσ−2u )−1)
)

. This term evaluates the

variability of prices under a counter-factual distribution of the signal, such that Pπ (ẑ) can be

interpreted as a posterior expectation of π conditional on ẑ. The various comparisons are now

based on (i) evaluating the difference in the first line, which we will label the amplification term,

and (ii) comparing E
(

(Pπ (ẑ)− Pπ (0))2 |ẑ ∼ N (θ, (β + βσ−2u )−1)
)

with E
(

(Vπ (z)− Vπ (0))2
)

and

E
(

(π (θ)− π (0))2
)

.

For the amplification term, we have

E
(

(Pπ (z)− Pπ (0))2 |z ∼ N
(
θ, σ2u/β

))
− E

(
(Pπ (ẑ)− Pπ (0))2 |ẑ ∼ N (θ, (β + βσ−2u )−1)

)
=

∫
(Pπ (z)− Pπ (0))2

[√
γV

σθ
φ

(√
γV z

σθ

)
−
√
γP

σθ
φ

(√
γP z

σθ

)]
dz

=

∫
2P ′π (z) (Pπ (z)− Pπ (0))

[
Φ

(√
γP z

σθ

)
− Φ

(√
γV z

σθ

)]
dz

For z > 0, Pπ (z) > Pπ (0) and Φ
(√
γP z/σθ

)
> Φ

(√
γV z/σθ

)
, while for z < 0, both the inequalities

are reversed. It follows immediately that this integral is always positive.
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For the second part, we first break down the three terms into a variance and a bias component:

E
(

(π (θ)− π (0))2
)

= V ar (π (θ)) + (E (π (θ))− π (0))2

E
(

(Vπ (z)− Vπ (0))2
)

= V ar (Vπ (z)) + (E (Vπ (z))− Vπ (0))2

E
(

(Pπ (ẑ)− Pπ (0))2 |ẑ ∼ N (θ, (β + βσ−2u )−1)
)

= V ar
(
Pπ (ẑ) |ẑ ∼ N (θ, (β + βσ−2u )−1)

)
+
(
E
(
Pπ (ẑ) |ẑ ∼ N (θ, (β + βσ−2u )−1)

)
− Vπ (0)

)2
Now, the functions π (·), Vπ (·) Pπ (·) are all equal to E (π (θ) |s), for different specifications

of the conditioning information s: s|θ = θ for π (·), s|θ ∼ N
(
θ, σ2u/β

)
for Vπ (·), and s|θ ∼

N (θ, (β + βσ−2u )−1), for Pπ (·). We can rank these three signal distributions in that N
(
θ, σ2u/β

)
is

a mean-preserving spread over N (θ, (β+βσ−2u )−1), which is a mean-preserving spread over s|θ = θ.

It follows immediately from Blackwell (1951) that

V ar (π (θ)) > V ar
(
Pπ (ẑ) |ẑ ∼ N (θ, (β + βσ−2u )−1)

)
> V ar (Vπ (z)) .

Moreover, E (π (θ)) = E (Vπ (z)) = E
(
Pπ (ẑ) |ẑ ∼ N (θ, (β + βσ−2u )−1)

)
, by the Law of Iterated

Expectations. To compare the bias terms, observe that∫ +∞

−∞
π
(√

1− γσθu
)
φ (u) du =

∫ +∞

0

(
π
(√

1− γσθu
)

+ π
(
−
√

1− γσθu
))

φ (u) du

= π (0) +

∫ +∞

0

(
π′ (θ)− π′ (−θ)

)(
1− Φ

(
θ√

1− γσθ

))
dθ.

Applying this formula to P (0) with γ = γP , to V (0) with γ = γV , to E (π (θ)) with γ =

0, we find that for upside risks, E (π (θ)) > V (0) > P (0) > π (0), while for downside risks,

E (π (θ)) < V (0) < P (0) < π (0). In both cases, (E (π (θ))− π (0))2 > (E (π (θ))− P (0))2 >

(E (π (θ))− V (0))2, which completes the proof for part (i).

Part (ii) Follows immediately from observing that these comparative statics apply separately

to each of the terms used in the decomposition in part (i).

Part (iii) Fixing γV < 1, if γP → 1 the variance and bias terms for P approach those for π (·).

We thus wish to show merely that the amplification term doesn’t vanish. But this term converges

to ∫
2P ′π (z) (Pπ (z)− Pπ (0))

[
Φ

(
z

σθ

)
− Φ

(√
γV z

σθ

)]
dz > 0.

Likewise, fixing γP < 1, as γV → 0, the bias and variance terms are fixed, and we therefore consider
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the amplification term, which converges to∫
2P ′π (z) (Pπ (z)− Pπ (0))

[
Φ

(√
γP z

σθ

)
− 1

2

]
dz

= lim
z→∞

1

2
(Pπ (z)− Pπ (0))2 + lim

z→−∞

1

2
(Pπ (−z)− Pπ (0))2

−E
(

(Pπ (z)− Pπ (0))2 |z ∼ N
(

0,
σ2θ
γP

))
,

which is strictly positive, and infinite whenever Pπ (·) (or equivalently π (·) ) is unbounded on at

least one side (part iv).

Proof of Proposition 2. The covariance of Pπ (z) with π (θ) satisfies

|cov (Pπ (z) , π (θ))| = |E ((Pπ (z)− E (Pπ (z))) (π (θ)− E (π (θ))))|

= |E ((Pπ (z)− E (Pπ (z))) (Vπ (z)− E (Vπ (z))))| ≤
√
V ar (Pπ (z))V ar (Vπ (z)).

Therefore the correlation of Pπ (z) with π (θ) satisfies

|corr (Pπ (z) , π (θ))| = |cov (Pπ (z) , π (θ))|√
V ar (Pπ (z))V ar (π (θ))

≤

√
V ar (Vπ (z))

V ar (π (θ))
,

and the regression beta of π (θ) against Pπ (z) satisfies

|cov (Pπ (z) , π (θ))|
V ar (Pπ (z))

≤

√
V ar (Vπ (z))

V ar (Pπ (z))
.

The result then follows from observing that, for given σ2θ , limγV→0 V ar (Vπ (z)) = 0, while V ar (π (θ))

remains constant and V ar (Pπ (z)) is bounded away from 0.

Proof of Lemma 3. We focus on market 1; the characterization is identical for market 2. The

two market signals (z1, z2) and θ are jointly normally distributed according to
θ

z1

z2

 = N




0

0

0

 ,


σ2θ σ2θ σ2θ

σ2θ σ2θ + τ−11 σ2θ + ρ
√
τ−11 τ−12

σ2θ σ2θ + ρ
√
τ−11 τ−12 σ2θ + τ−12


 ,

where τ1 = β1/σ
2
u,1 and τ2 = β2/σ

2
2 denote the signal’s precision levels and ρ the correlation in their

errors. Define

Σ =

 σ2θ + τ−11 σ2θ + ρ
√
τ−11 τ−12

σ2θ + ρ
√
τ−11 τ−12 σ2θ + τ−12

 and 1 =

 1

1

 .
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By Bayes’ Rule, θ|z1, z2 ∼ N
(
µ (z1, z2) , V

−1), where

µ (z1, z2) = σ2θ1
′Σ−1

 z1

z2

 and V =
{
σ2θ − σ2θ1′Σ−11σ2θ

}−1
= σ−2θ +

τ1 + τ2 − 2ρ
√
τ1τ2

1− ρ2
.

If x ∼ N
(
θ, β−11

)
is the traders’ private signal distribution, then θ|x, z1, z2 ∼ N

(
µ̂ (x, z1, z2) , (β + V )−1

)
,

where µ̂ (x, z1, z2) = (β1x+ V µ (z1, z2)) / (β1 + V ). Therefore,

µ̂ (x = z1, z1, z2) = (β1 + V )−1
(
β′ + V σ2θ1

′Σ−1
) z1

z2

 ,

where β′ = (β1, 0). This fully characterizes the price and expected dividend functions Pπ (z1, z2) =

E (π (θ) |x = z1, z1, z2) and Vπ (z1, z2) = E (π (θ) |z1, z2). From an ex ante perspective, µ̂ (x = z1, z1, z2) ∼

N
(
0, σ̂21

)
, where

σ̂21 = (β1 + V )−1
(
β′ + V σ2θ1

′Σ−1
)

Σ
(
Σ−11σ2θV + β

)
(β1 + V )−1

= (β1 + V )−2
(
β21
(
σ2θ + τ−1z

)
+ 2β1σ

2
θV + V σ2θ1

′Σ−11σ2θV
)

= (β1 + V )−2
(
β21
(
σ2θ + τ−1z

)
+ 2β1σ

2
θV + V 2σ2θ − V

)
= σ2θ +

(
β1

β1 + V

)2

τ−1z −
V

(β1 + V )2
,

Therefore, we compute σ2P,1 as σ2P,1 = σ̂2 + (β + V )−1 or

σ2P,1 = σ2θ +

(
β1

β1 + V

)2

τ−1z −
V

(β1 + V )2
+ (β1 + V )−1 = σ2θ

(
1 +

β1σ
−2
θ

(β1 + V )2
τz + β1
τz

)
.

The proof is completed by substituting for τ1 and τ2 in the definition of V .

Proof of Proposition 3. If σP,1 = σP,2 = σP , then Wπ1 (σP,1)+Wπ2 (σP,2) = Wπ (σP ), and hence

the total expected revenue is not affected by the split. If instead σP,1 6= σP,2, then by Theorem 1,

Wπ1 (σP,1) +Wπ2 (σP,2) > Wπ1 (σP,2) +Wπ2 (σP,1), whenever σP,2 > σP,1 (since π2 has more upside

risk than π1).

Proof of Proposition 4. For any alternative split (π1, π2), the monotonicity requirements imply

that 0 ≤ π′1 (θ) = π′ (θ)−π′2 (θ) ≤ π′ (θ). This in turn implies that for all θ ≥ 0, π∗′1 (θ)−π∗′1 (−θ) =

−π′ (−θ) ≤ π′1 (θ) − π′1 (−θ) and π∗′2 (θ) − π∗′2 (−θ) = π′ (θ) ≥ π′2 (θ) − π′2 (−θ), i.e. π1 has less

downside risk and more upside risk than π∗1, and π2 has more downside risk and less upside risk

than π∗2. Moreover,(
π′1 (θ)− π′1 (−θ)

)
+
(
π′2 (θ)− π′2 (−θ)

)
= π′ (θ)−π′ (−θ) =

(
π∗′1 (θ)− π∗′1 (−θ)

)
+
(
π∗′2 (θ)− π∗′2 (−θ)

)
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But then, the expected revenue of selling π1 to the investor pool with σP,1 and π2 to the investor

pool with σP,2 is Wπ1 (σP,1) +Wπ2 (σP,2) = Wπ (σP,1) +Wπ2 (σP,2)−Wπ2 (σP,1), while the expected

revenue from selling π∗1 to the investor pool with σP,1 and π∗2 to the investor pool with σP,2 is

Wπ∗
1

(σP,1)+Wπ∗
2

(σP,2) = Wπ (σP,1)+Wπ∗
2

(σP,2)−Wπ∗
2

(σP,1). The difference in revenues is therefore

Wπ∗
2

(σP,2)−Wπ∗
2

(σP,1)−(Wπ2 (σP,2)−Wπ2 (σP,1)), which is positive, since π∗2 contains more upside

and less downside risk than π2, and σP,2 ≥ σP,1 (Theorem 1, part (iv)).

Proof of Proposition 5.

Clearly, z1 = z2 = z almost surely if and only if ρ = 1. If β1 = β2 and σ2u,1 = σ2u,2, it then

follows that Pπ1 (z1, z2) + Pπ2 (z1, z2) = Pπ (z), almost surely, if and only if ρ = 1. Moreover,

it follows from the characterizations of Pπ1 and Pπ2 that the price function is no longer additive

(even if ρ = 1), whenever β1 6= β2 or σ2u,1 6= σ2u,2, unless the markets are informationally linked,

and β1σ
−2
u,1 6= β2σ

2
u,2. In this last case, we find that signals have different precision, but perfectly

correlated errors, so θ and the correlated error can be perfectly inferred from the two signals, i.e.

V →∞ in the characterization in lemma 3, and the wedge disappears.

Proof of Proposition 6. If π (·) is convex, then by Theorem 1, for any finite w, there exists

δ̂ < 1, s.t. δ > δ̂, δE (w (z)) > − (1− δ)w. We therefore need to establish a lower bound for w (z).

But if π (·) is bounded below, then limz→−∞w (z) = 0, and w (z) is positive for sufficiently high z,

so it is necessarily bounded.

Proof of Proposition 7. Risk-neutrality, position limits, and the MLRP on private signals

jointly imply that E (π(θ)|x, P ) is monotone in x, and the informed demand is characterized

by a private signal threshold x̂ (P ) which satisfies the same indifference condition as (2), with

the posterior H (·|x, P ) to be determined. Market-clearing then implies that dLF (x̂ (P ) |θ) +

dH (1− F (x̂ (P ) |θ)) +D = 1, or

F (x̂ (P ) |θ) =
D − (1− dH)

dH − dL
.

Since the LHS is increasing in x̂ (P ) and decreasing in θ, and the RHS is increasing in D, we can

define the endogenous market signal by z = x̂ (P ) which is informationally equivalent to observing

P . But then, this implies that equilibrium prices take the form

P (z) = E (π(θ)|x = z, z) =

∫
π(θ)h (θ)ϕ (z|θ) f (z|θ) dθ∫
h (θ)ϕ (z|θ) f (z|θ) dθ

,

where ϕ (z|θ) denotes the posterior density of z conditional on θ. To complete the proof notice that

Pr
(
z ≤ z′|θ

)
= Pr

(
D ≤ 1− dH + (dH − dL)F

(
z′|θ
))

= G
(
1− dH + (dH − dL)F

(
z′|θ
))

,
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It follows immediately that ϕ (z|θ) = (dH − dL) g (1− dH + (dH − dL)F (z′|θ)) f (z|θ).

Proof of Proposition 8.

If P (z; 0) = V (z), then P (z; η) = V (z) solves the pricing equation for any η > 0. If P (z; 0) 6=

V (z), then define the function T η (P, z) as

T η (P, z) = E
(
π (θ) |z + η/

√
β · (V (z)− P ) , z

)
.

T η (P, z) is continuous and decreasing in P , and T η (V (z) , z) = P (z; 0). Moreover, if V (z) >

P (z; 0), then T η (P (z; 0) , z) > P (z; 0), T η (V (z) , z) < V (z), and therefore there exists a unique

P (z; η) ∈ (P (z; 0) , V (z)), such that T η (P (z; η) , z) = P (z; η). If instead V (z) < P (z; 0), then

T η (P (z; 0) , z) < P (z; 0), T η (V (z) , z) > V (z), and T η (P (z; η) , z) = P (z; η) for a unique

P (z; η) ∈ (V (z) , P (z; 0)). Moreover, replacing P (z; 0) with P (z; η′) for η′ < η in the steps

above shows that |P (z; η)− V (z)| is strictly decreasing in η. For the limit, notice that since

P (z; η) is monotone in η and bounded, it must converge to a limit P (z;∞) = limη→∞ P (z; η).

If P (z;∞) > V (z), then P (z;∞) = limη→∞ T η (P (z; η) , z) = −∞, whereas if P (z;∞) < V (z),

then P (z;∞) = limη→∞ T η (P (z; η) , z) =∞., both of which are contradictions. Therefore, we are

left with P (z;∞) = V (z) at the limit.
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