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1 Introduction

This paper considers a quasi-differencing (QD) framework that can yield VT consistent and uni-
formly asymptotically normal estimators of autoregressions and multiple regressions when the pre-
dictors are persistent and possibly non-stationary. The approach can also be used to estimate
dynamic stochastic general equilibrium (DSGE) models. The critical values are invariant to the

presence of deterministic trends.

Let 6 be an unknown parameter vector and let #° be its true value. We propose non-linear QD
estimators that can generically be defined as

O = argming(0) Wrg(0), (1)

0O

where g(6) is a K x 1 vector of moments, Wy is a K x K positive-definite matrix, and © is a bounded
set containing values of #.! The basic premise of QD estimation is that for é\K to have classical
properties, g(#) needs to be uniformly bounded in probability and that a central limit theorem can
be applied. To this end, g(0) is defined as the difference between the normalized autocovariances of
the variables in the model and the data, all quasi-differenced at a persistence parameter that is to
be estimated jointly with other parameters of the model. The normalization and quasi-differencing
together provide a non-linear transformation of the autocovariances to result in estimators that are

robust to possible non-stationarity in the data.

Achieving asymptotic normality without knowing when the exogenous process has an autoregressive
unit root can be very useful in applied work because the answers to many macroeconomic questions
are sensitive to assumptions about the nature of the trend and to whether the corresponding
regressions are estimated in levels or in first-differences. The price to pay for practical simplicity
and robustness is that the proposed estimators are /T consistent rather than super-consistent
when the regressors are truly non-stationary. While other asymptotically normal estimators robust
to non-stationary regressors are available, they apply only to specific linear models. The QD
estimation framework is general and can be used whenever the variables can be quasi-differenced

in the way discussed below.

We establish uniform asymptotic normality of QD-based estimators in many different settings.

!The optimization is performed over an expanded neighborhood of the set of admissible values of 6 so that the
parameter of interest is not on the boundary of the support. For the AR(1) model, the admissible values are (—1+4, 1]
where § > 0. We optimize over © = [C1, C2], where C1 < —1+§ < 1 < C2. When the context is clear, © will not be
explicitly specified.



Throughout, we use the notion of uniformity given in Mikusheva (2007a), who studied uniform

coverage properties of various inference procedures for the AR(1) model.

Definition 1 A family of distributions Fe(lT)(:E) = Pyr{&1 < x} is asymptotically approximated by
(converges to) a family of distributions FQ(Q) (x) = Pp{& < z} uniformly over 6 € O if

lim supsup Fé?(:ﬂ) - FQ(Q)(LE) =0.
T—0gco =z ’

In our analysis, FéZ)(x) is in the family of Gaussian distributions.

The paper is structured as follows. Section 2 provides a rigorous analysis of the AR(1) model.
Section 3 extends the analysis to AR(p) models, while Section 4 studies predictive regressions.
Section 5 considers non-linear estimation of structural parameters. Simulations are presented in
Section 6. The relation of QD estimation to other v/T-consistent estimators is discussed in Section
7. All proofs are in the Appendix. As a matter of notation, the indicator function I(a) is one if a
is true and zero otherwise. We let W(:) be the standard Brownian motion and use = to denote

weak convergence.
2 The AR(1) Model

To systematically motivate the idea behind QD estimation, we begin with the simple AR(1) model

with parameter o and whose true value is a’. For t = 1,..., T, the data are generated by
yr = ’yi—1 + e, yo=0. (2)

Hereafter, we let ; be the deviation between the dependent variable and the conditional mean
evaluated at the true parameter value, while e; is the deviation evaluated at an arbitrary value of
the parameter vector. The error €; does not need to be iid or Gaussian, but it cannot be conditional

heteroscedastic or heteroscedastic.

Assumption A (g, F;) is a stationary ergodic martingale-difference sequence with conditional

variance FE(e?|F;_1) = 02 = y9 and E((¢? — 02)?|Fi_1) = 4.



The least squares estimator aprg is defined as the solution to g(«) = 0, where g(«a) = % Zthl €1

is the sample analog of the moment condition
Egi(a”) = Eleiy—1] = 0,

with e; = (y; — ay—1). When o < 1, dprs is VT consistent and asymptotically normal. While
Qors is super-consistent at o® = 1, its distribution is non-standard which makes inference difficult.
In particular, the t-statistic for testing a® = 1 is non-normal in finite samples and converges to
the so-called Dickey-Fuller distribution. The issue of non-standard inference arises because of two
problems. First, when o' = 1, the sample moment evaluated at a value o # a” = 1 explodes, and
second, the normalized sample moment evaluated at the true value does not obey a central limit
theorem. Specifically, g(a) = %Z:{:l e:y¢—1 is stochastically unbounded, and %Z::F:l EtYt—1 =
o? fol W (r)dW (r), where W (r) is the standard Brownian motion.

Our starting point is to resolve the second issue by exploiting the autocovariance structure of the

errors. Specifically, for j > 1, it holds that
E(Etz’ft_j) =0. (3)

Furthermore, for all |a°| < 1 and &; = y; — a®y;_1, the population moment condition has a sample

analog that obeys a central limit theorem:

T
1
\/T T t:;_l Et€t—j — E(EtEt_j) = {j ~ N(O, 0'4). (4)

Obviously, o is unknown and ¢; is not observed. However, we can quasi-difference y; at some
« and then optimize over all possible values of a by matching the sample autocovariances of the
quasi-differenced data?
1 X
i) =% Z eter—j
t=7+1
with those of the model evaluated under the assumption that « is the true value. Precisely, the

model implied moments are
vila) = Eaere—j =1(j = 0)o?,

where E, is the expectation taken under the (not necessarily correct) assumption that « is the

true value. In cases when v;(c) is constant, the dependence of v; on a can be suppressed. For

2To be more precise, we should write i (e, aO,UQ) because the data are generated under o’ and o2, and we
quasi-difference the data at . For notational simplicity, the dependence of 7; on a® and ¢? are suppressed.



example, in the AR(1) under consideration, v;(«) = 0 for all j > 1, and we may write 7; instead
of v;(a). This is also true of the AR(p) and predictive regressions considered in the sections 3 and
4. However, in more complex models such as the one considered in Section 5, v; often depends on
« in a complicated and analytically intractable way. For clarity, we keep the explicit dependence

of v; on a throughout.

Let gnop(@) = (Gongp(@), -, Gk nop(@))’, where
ginopla) = 7j(a) —v(a),

be the difference between the model-implied and the sample autocovariance of e;. The estimator

is defined as
Ak NQD = argmin gyop (@) Wrgnop(a).
o

Although ax ngp is a standard GMM estimator, viewing it from the perspective of a covariance
structure estimator helps understand the analysis to follow. In standard covariance structure
estimation where a typical element of g(a) is g;(a) = %Zthl yiyt—1 — Eoysys—1, each sample
autocovariance is a function of the data y; and hence depends on a, but it does not depend on «.
In our g; yop(a), both the sample and model moments depend on a. It differs from the standard
formulation of covariance structure estimation but it is necessary because \/T(% Zthl YtYe—1 —

Eoyiyi—1) does not obey a central limit theorem at o = a®=1.

The NQD solves one of the two problems inherent in least squares estimation by making \/T§j7 NQD (a)
asymptotically normal for all |[a| < 1. However, the estimator still has non-standard properties
because 7;(c) is stochastically unbounded when a® =1 and « # 1. Thus the moment gjnop(@)

0

explodes at o # o when o is unity or in the neighborhood of one. To resolve this problem,

suppose 7 is known and define
girop(@) = 7;nop(a@) —Jo.nop(@)
- (3@ - ) - () =), o)
aK,rQp = argmingprqp(a) Wrgpgp(a).
(0%

Obviously, g, rop (a®) obeys a central limit theorem. More important is that normalizing 7;(c) by

Yo(e) and v;(a) by 7o yield

1
9jropla) = T Z et(et—j _et) +70-



As shown in Lemma A-2 of the Appendix, 7;(a) —7p(«x) is bounded in probability in the limit even
when o = 1 and a # . Because 9j rop (@) is uniformly bounded in probability for all values
over which « is optimized and a® € (1 — 4, 1], the FQD has very different properties from the NQD

in the local-to-unity framework.

To gain insight about the importance of normalization, we let W be an identity matrix as it does
not affect uniformity arguments and this simplifying assumption makes it possible to obtain useful

closed form expressions.

Proposition 1 Let y; be generated as in equation (2) with error terms satisfying Assumption A.

Assume that Wr is a K x K identity matriz.

i. Letn € {1,2} be the number of local minima in the optimization problem min, Zle ﬁ?NQD(a).
In the local-to-unity framework in which a® = 1+ ¢/T with ¢ < 0, QK NQD 1S super-consistent
and

__=£
< H{?’L = 2} ’ T3/2(aK,NQD - a0)2 ) = fol Jc2(8)d$H{5 < O} (6)

- 1 S S
I{n =1} - T(@x,nep — °) %H{f > 0}
o J2(s)ds

where J. is an Ornstein-Uhlenbeck process generated by the Brownian motion W that is in-
dependent of & ~ N(0,1/K).

ii. Let vo be the true value of o®. For any fized K > 1, the estimator QK. FQD 1S consistent.

Furthermore, uniformly over —1 4+ 6 < a® < 1:

2
(T @)E0) 8 + T (a?)2eY

VT (ax rqp—a’) = N(0,0% pop), where 0% pop =

(SH 0020

The NQD estimator is the basis of the estimators we subsequently investigate. It is consistent
and has a data dependent convergence rate. Since the objective function is a polynomial of the
fourth order, there are multiple solutions. If the realization of data is such that there is a unique
minimum to the optimization problem, the convergence rate is T'. If there are two minima, a slower
convergence rate of T3/ is obtained. In either case, the distribution of & K,NQD is not asymptoti-
cally normal because gygp(a) is not well behaved for all values of a. However, the problematic
term that frustrates a quadratic expansion of J;(a) around a is asymptotically collinear with the

corresponding term in () in the local-to-unity framework. Normalizing each 7;(a) by 3o(a) and



7v;(a) by 7o results in an FQD estimator whose asymptotic distribution is normal uniformly over

a® € (=1+6,1]. When K > 1, the FQD objective function has only one minimum asymptotically.?

The properties for ax rop are stated assuming the true value of 02 is known. The reason why

70 = o2 is not freely estimated along with « is that doing so would yield multiple solutions. The

0 2 _

objective function is zero not only at the true solution a = a®, 02 = 7g, but also at a = 1/a°, o

70/ (a®)?. Without additional information, the FQD cannot uniquely identify o and o2.

In practice, the true value of o2 is not known, and the FQD estimator is infeasible. This can be

overcome by finding another moment that can identify 0. Let § = (o, 02) and consider

s2—0
_ Fi(a) =Fo(a) = (n(a) - 5%)

Gon(0) = | . 7)
Vi (@) = Fo(@) — (v (a) — 5?)

where s = %y’My, and M = It — z(2'2) 712" is the matrix that projects onto the space orthogonal

to z with 2; = y;—1. Observe that the first component of g, () is 52— o2 or equivalently s —vo(a),

but not s* — Fo(c). Thus, Gop () is not a linear transformation of gyop(#). Using s*> —Fp(a) in

the first entry would result in an estimator with the same non-standard properties like a&ngp.

Let

OxqQp = (aK,QD,CAT%(,QD):al"g;mnﬁgp(@)/WTﬁQD(Q)

Proposition 2 Let Wr be a (K +1) x (K +1) identity matriz. For any fired K > 1, the estimator

ak.gp is consistent, and the following convergence holds uniformly over —1 + 4§ < al < 1:
> (a2
2
(S )

VT(@xgp - a®) = N(0,0% op), where 0% op =

Estimator ax gp can also be implemented as a two-step estimator in which s? is first obtained, and

its value would then be used as o in the moment function gpgp(a) = (91, rop (@), - -, Ik rop(a))"-

The asymptotic variance of @ op takes into account the sampling uncertainty of s?. The surprising

aspect of Proposition 2 is that ax gp does not have an inflated variance as is typical of two-step

3When the NQD has two local minima, it does not matter which one is chosen as they are asymptotically symmetric

around the true value. This was why we state our result as T°%/?(@x nop — a®)? rather than T%*(@x vop — o). If

K =1, the FQD objective function has 2 minima, only one of which is consistent for a°.



estimators. Instead, the estimator is more efficient than ax pgp that has a known o2. Pierce (1982)
showed in a framework for stationary data that using estimated values of nuisance parameters can
yield statistics with smaller variance than if the nuisance parameters were known. This somewhat
paradoxical result was also reported by Prokhorov and Schmidt (2009) and Han and Kim (2011)
for GMM estimators. Our results suggest that this feature may also arise in the local-to-unity

framework.

The closed form expression for the asymptotic variance of ax gp in Proposition 2 was obtained
under the assumption that Wy is an identity matrix. For an arbitrary positive-definite weighting

matrix, the asymptotic variance of ax gp is the (1,1)-th element of asymptotic variance matrix
Avar(Ox.op) = (GOWG°) ' GO"WS'W G (GOWGP) (8)

where W, G? and S are the probability limits of Wy, the derivative of Jop(0) with respect to ¢
evaluated at 6%, and the asymptotic variance of 90 p(6°), respectively. The asymptotic variance
can thus be estimated as though the GMM estimator were developed in the stationary framework
under regularity conditions such as those given in Newey and McFadden (1994). In theory, more
efficient estimates can be obtained if Wr is an optimal weighting matrix. However, it has been
documented in Abowd and Card (1989) and Altonji and Segal (1996) that an optimal weighting
matrix may not be desirable for covariance structure estimation for empirically relevant sample

sizes.

The key to the classical properties of ax gp is the ability to exploit the autocovariance properties
of the quasi-differenced data in an appropriate way. Quasi-differencing has a long tradition in
econometrics and underlies GLS estimation, see Phillips and Xiao (1998). Canjels and Watson
(1997) and Phillips and Lee (1996) found that quasi-differencing gives more precise estimates of
trend parameters when the errors are highly persistent. Pesavento and Rossi (2006) suggest that
for such data, quasi-differencing can improve the coverage of impulse response functions. In both
studies, the data are quasi-differenced at o = @ which is fixed at the value suggested by the local-
to-unity framework. In contrast, the FQD and QD simultaneously estimate this parameter and
use the normalized autocovariances of the quasi-differenced data for estimation. Notably, both the
FQD and the QD have classical properties that hold even in the presence of deterministic terms.

Consider data generated as

Yr = di + x, (9a)
zr = oz + e (9b)



The deterministic terms are captured by d; = Z;:o 1/thj where r is the order of the deterministic
trend function. In the intercept-only case, d; = g, and in the linear trend case, d; = ¥g + Y1 t.
Once the parameters of the trend function are consistently estimated, QD estimation proceeds by
replacing y; with demeaned or de-trended data, z; = y; — c?t Let ¢, = Ty — aZy_g. The sample

autocovariances can be constructed as

L T
(@) = 7 > @k
t=k+1

Demeaning and de-trending do not affect the asymptotic distribution of the QD.4

The practical appeal of QD estimation is that asymptotic normality permits standard inference.
The usual critical values of £1.96 and £1.64 can be used for two-tailed tests at the 5 and 10 percent
significance levels, respectively. We will see in simulations that the size of tests and the coverage
of the confidence sets based on the asymptotic normality of ax gp are stable over the parameter
set a’ € (=144, 1]. The cost of imposing the stronger assumption of conditional homoscedasticity

seems well justified.

To recapitulate, the proposed QD estimation of the AR(1) model is based on two simple premises:
first, that for all j > 1, E(e4e,—;) = 0 and its sample analog obeys a central limit theorem, and,
second, that the objective function is uniformly bounded in probability for all values of o and aP.
The idea can be used whenever the variables can be quasi-differenced to form suitably normalized
moment conditions that satisfy these two properties. The next two sections consider the AR(p)
model and predictive regressions, respectively. We then show that the quasi-differenced variables

can be serially correlated and that the QD framework can be used in non-linear estimations.
3 AR(p) Models

Consider the data generating process

p—1
ye =y + Y WAy +ey (10)
j=1

4De-trending does not affect the asymptotic distribution of FQD, but the J. in the distribution of the NQD
estimator will depend on d;. In the intercept only case, one should use the de-meaned Ornstein-Uhlenbeck process
Je(r) = Jo(r) — fol Jo(s)ds. In the linear trend case, the de-trended process is Jo(r) = Jo(r) — fol (4 —6s)J.(s)ds —
rf01(12 — 6s)J(s)ds.



Let f = (a,b1,...,bp—1) be a p x 1 parameter vector of interest. The true parameter vector is
denoted 8, and the correct lag length is denoted p. Let [A1] < [Aa]... < |Ay| be defined implicitly

by the identity
p—1
l—aL - bLli(1-L)=(1-XML)...(1-AL).
j=1

We restrict the parameter set in such a way that the p— 1 smallest roots do not exceed § in absolute
value for some fixed 0 < § < 1. If the largest root exceeds ¢ in absolute value, then it is positive

and not larger than 1.

Definition 2 The parameter set Rs consists of all B such that the corresponding roots satisfy the
following two conditions: (i) |M\p—1| < 8, (ii) if \p € R, then —6 <\, < 1.5

Define the quasi-differenced series e; by

p—1
€L =Y — QY1 — ijAyt—j-
=1

Obviously, e; = ; is white noise when 8 = %, but e; is in general serially correlated. Thus, as in

the AR(1) model, the model-implied autocovariances satisfy

v(B) = Eg(etei—;) =0, j>1 VB eRs

with () = 2. The sample autocovariances of e; are

1 T
%iB) = 7 > el
t=j+p+1

Let s> = %y’ My where M projects onto the space orthogonal to the one spanned by X; =
(Y1, AYt—1, .., Ayt—pt1)’, t =1,...,T. Let 79 be the true value of o%. Define

Br,FQD = arg/gnin Grop(B) Wrgrgp(B),

where

91.7op(B) 71(8) —=7(8) = (1 (8) — )
Irop(B) = : = :
9x,ropn(B) Y& (B) —F0(B) — (v (B) —0)

®The optimization in equation (1) is done over a bounded set that includes a neighborhood of M5 in order to avoid
the boundary problem.




Define
(6K,QD7 6%{,@[)) = arﬁgrr;in gQD(B? 0—2)/WT§QD (57 02)7
0
where

Jo.op(B) §°—o0o

Gop(B.0%) — | rer®) | _ | B =50l = 0n(3) =

dcon®)  \Gx(8) = 50(8) — ((8) — %)

Proposition 3 Let y; be generated as in equation (10) with error terms satisfying Assumption
-1

A. Let a, = E[( X4 + Xt —2X¢) &) and G = (ZkK 1aka§€> . For any fized K > p > 1,

the estimators 61( QD and ,BK .FQD are consistent. Furthermore, when Wr is an identity weighting

matriz, the following results hold uniformly over % € Rs:

~ /
(i) \/T(/BK,FQD — ﬁo) = N(O, EK,FQD); where EK,FQD =oiG + waG (Zi(:l ak) <Z§:1 ak> G,

(ii) \/T(,B\K,QD — ,BO) = N(0, EK,QD); where X g op = a'G.

The proof is a generalization of Propositions 1 and 2. A sketch of the arguments is as follows. From
the definition that e;(3) = e; + (8° — 8)' Xy, we have

T T T
~ 1 1 1
Vi(B) = T Z eer—j+ (8 — 5)/f Z <Xt€tj + th€t) +(8° - ﬁ),f Z X X
t=j+p+1 t=j+p+1 t=j+p+1
The moment function can be rewritten as
95.,rop(B) = Ajrop + (8° = B) Bjrgp + (8° — B) Cjron(8° — B).
The thrust of the proof is to show that for each 1 < j < K uniformly over Ry,
1 T
AjrQp = T Z etet—j — V(B Z el —10(8°) | = Op(T713), (11)
t=j+p+1 t=p+1
T
Bj rop =7 Z <Xt€t—j + Xi_je — 2Xt5t> —P aj, (12)
t=j+p+1
1 T
Cjrep =57 S (X X] 4+ X X] - 2X,X[) = 0,(1). (13)
t=j+p+1

10

B8’ — B).



Equations (11)-(13) imply that the function g; pop () is bounded in probability uniformly for all
B in the optimization set and By € Ry. It also follows from equations (11)-(13) that

99; FoD , 5 »
Tﬁ(ﬁK,FQD) —" aj,

and

VTG, rop(Brrap) = VTAprop + apVT(Br.rop — 8°) + 0p(1).

The first order condition for the optimization problem implies:

K
VT(Br,rop — °) = G Z VTAj pgpaj + op(1)
j=1
In view of equation (4), VT A rop = \/ngFQD(,BO) = & — & uniformly over R;, part (i) of
the proposition follows. Part (ii) uses a similar argument with one exception: A;gop = A rop +
2 — o2 = %ZtT:j_H eigr—j. As in the AR(1) case, B\K,QD has a smaller variance than BK,FQD-
Furthermore, one can use other weighting matrices in the estimation. The asymptotic variance of

B\ Kk,Qp can be computed from the expression given in equation (8).
4 Predictive Regressions

Consider the predictive regression with scalar predictor x;_1:

yr = %1 + ey (14a)
zy = x| + ean. (14b)
If «® = 1, then (1;—-3%) is a co-integrating vector, and ordinary least squares provide super-

consistent estimates but inference is non-standard. Unfortunately, the finite sample distribution of
30 s is not well approximated by the normal distribution if x; is highly persistent. The challenge is

how to conduct inference robust to the dynamic properties of z;. Let ey = (Eyt, €xt)/ be a martingale-

difference sequence with E(g;e}|F;—1) = Q0 = < Zyy ZW . Consider quasi-differencing the data
yx TT
at 6 = (8, «) to obtain
eyt = Yt — Pri1,
Erxt — Tt — OT¢_1.

11



Now Y; = 6%2;_1 + &; where V; = <yt) and 0° = (89, a%)’. Let ¢; = <eyt) . Then

Tt Cxt

e = (90 — Q)Jit_l + &¢.

Let I';(0) = Eg(ece;_ j) where Ejy is the expectation taken under the assumption that 6 is the true

value. The model implies

;@) = 0, j#0,

The sample autocovariance at lag j is

A central limit theorem applies to /T fj(ﬁo). Evaluating I'g at the true value of 2 and letting
S = %Y’MY, M = I7 — 2(2'2) 712, 2z = 241, we can define, for j =1,..., K:
gjrop() = Vec(fj(e) —To(0) — (T;(6) — To)).
Let Grop(0) = (G1.rop(0); -Gk rop(0)'). The FQD estimator is
aK,FQD = argngngFQD(e)/WTgFQD(‘g)'

Analogously, let Gop(0,Q) = (Goop(0,)', ..., Ik.op(0,2)") where

~

Giop(0.Q) = vec(T;(0) —To(0) — (T;(0) - 9)), j=>1
Jo,op(0,9Q) = vech(S — Q).

Define the QD estimator as

(Ok.op, Qcop) = arg Iglgl Gop (0,0 Wrgop(6, Q).

Proposition 4 Suppose that the data are generated according to formulas (14a) and (14b). Sup-
pose also that error terms are stationary martingale-difference sequence with E(gie}|Fi—1) = Q°
and finite four moments. Define aj = Elxy—1(e4—;j — €¢)]. Then for any fized K > 1, the estima-
tors §K7FQD and §K,QD are consistent. Furthermore, when Wy is an identity matriz, the following
asymptotic results hold uniformly over all possible values of B, and uniformly over all possible values

of v € (—1+0,1]:

12



(i) Let Tg = Q°. Then f(QKFQD 6°) = N(0, Yk, FQD), where

2 K 2
1 1
EK,F D=\ ——"7""" a’ Qoak QO + | —— FE
¢ (zi& k> kzzl( o) SK dyay

(ii) VT (Ox.op —0°) = N(0,Sk.qp) where
2 K
E[QQD = ( ) akQOak
Zk | @Ok Z

As in the case of autoregressions, the FQD moments alone cannot globally identify both 6 and €.

K
(1) aj)2€t€2] :

k=1

Thus, the properties of §K7 FQp are stated by evaluating (2 at the true value of 0. Proposition 4
shows that (/9\1(7@ p has classical properties both in the stationary and the local-to-unity framework
and is more efficient than the estimator gK, rgp that uses the known 2. The QD can be implemented
as a sequential estimator in which the covariance matrix is computed for shocks obtained from two
least squares regressions: one by regressing y; on x; to get e,;, and another autoregression in z; to

obtain €.

Proposition 4 has useful implications for applied work because there does not exist an estimator
that is robust to the persistent properties of the predictors. The approach of Jansson and Moreira
(2006) relies on model-specific conditional critical values and, in any event, their inference procedure

does not yield an estimator per se. In contrast, the QD estimator is simple and robust.

The predictive regression can be generalized to accommodate stationary and pre-determined re-

gressors, z;. Suppose the data generating process is

Yo = fEtflﬁo + Zt’YO + eyt

Iy = aoxt—l + Exty (5yt7 55015)/ ~ (07 Q)v Q — (Uyy ny) .

Ory Ozz-
Let 6 = (8, ) and as before, I'; = Eg(stsgfj) =0 for all j # 0 with T’y = Q°. Let Yors be obtained
from least squares regression of y; on x;_1 and z;, and let (AZO 1.5 be the estimated covariance matrix
of the errors. Since z; is stationary, the estimator 7org is vI' consistent and asymptotically normal

uniformly over @ € (—1 + 4, 1]. Define the quasi-differenced sequence

- ~ o . eyt
Cyt = Yt — T 1B — 2YoLs, €xt = Ty — i1, € = ent)
X

Let fj(Q) = %Z?:j+1 ete;_; and define g; op(0,Q2) as in the absence of 2;. Using arguments

analogous to Proposition 4, it can be shown that /H\K,Q p is still VT consistent and asymptotically
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normal. Proposition 4 assumes that the regression error €,; is white noise. This is not restrictive

as lags of Ay; and Ax; can be added to z; to control for residual serial correlation.

5 Non-Linear Models and Minimum Distance Estimation

So far, the QD framework has been used to estimate linear models, where the model autocovariances
are such that v;() = 0 for all § assumed to be the true value and j > 1. The analysis also holds if
7v;(8) equals a constant vector other than zero provided that the constant vector is known or can be
computed numerically. For example, if 2; is an ARMA(1,1) instead of an AR(1), v;(#) will depend

on the parameters of the model. Another example is DSGE models which we now consider.

To fix ideas, consider the simple one sector stochastic growth model presented in Uhlig (1999). Let
Q:, Cy, Ky, I be output, consumption, capital stock, and investment, respectively. The problem
facing the central planner is to maximize expected utility Ei_1 Y o, (1+ p) " log C; subject to the
constraints Q; = KZZLIZtlfw =Cy+ I and K; = (1 — §)K;—1 + I; where u; = log Z; evolves as

U = QUs_1 + &, &~ (0,02).

Denote the deviation of a variable from its mean by lower case letters. Let Y; = (y1¢,...,ynt)" be
the collection of endogenous variables in the model (such as consumption, output, etc.). As shown

in Uhlig (1999), this simple model has an analytic solution:
ke = virki—1 + vguy
where vg < 1 does not depend on «, but v, depends on «. For each y,,; € Yy,
(1 = vpe L) (1 — aL)yns = ug + Vpup—1

is an ARMA(2,1) with a moving-average parameter ¥,, that is a function of the structural pa-
rameters. Note that all series in Y; have the same autoregressive dynamics as k;. The param-
eters of the linearized solution are 5 = (vgk, Vkz,J1,...,Un). The parameters of the model are

0 = (¢, a,0%, p,68). Let © be a compact set containing possible values of 6.

In analysis of DSGE models, whether the shocks have permanent or transitory effects matter for
how a model is to be linearized. For this reasons, researchers typically need to decide whether to
difference the data ahead of estimation even though it is understood that the assumption affects

the estimates and policy analysis. To date, there does not exist an estimator of DSGE models that
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has classical properties for all values of o within the likelihood framework because the likelihood

function is not well defined when the data are non-stationary.®

We propose to estimate the parameters of the model without making a priori assumptions about
the degree of persistence of the shocks. We use the fact that the features of covariance station-
ary processes are completely summarized by their second moments. Conveniently, the software
DYNARE automatically calculates the covariance structure of the data. Even though the analysis
is not likelihood based, priors can still be incorporated using the approach of Chernozhukov and

Hong (2003).” The key is to construct the moments g(6) appropriately.

Two variations of the QD framework are considered. The first method proceeds as follows. For given
0,let e, = Y;—aY;_1 withT'j(0) = E(ese}). Define the moment w;(#) = (I';(#)—Io(#)) whose sample
analog is W;(0) = (f](G) —T(6)). Note that since e;(#) can be serially correlated, I';(6) need not be
a null matrix as in the applications considered thus far. Let gop(0) = (G1.0p(0), .-, Gx.on(0)")
where g; op(0) = vec(W;j(f) — w;(#)). The QD estimator considered in Gorodnichenko and Ng
(2010) is defined as®

Ox.op = aragrgingQD(Q)’gQD(G). (15)
S

As written, §K7Q p is an equally weighted estimator. An optimal weighting matrix can be used
subject to constraints imposed by stochastic singularity. In the one-shock stochastic growth model
considered, the autocovariance at lag one of both output and consumption can both be used to
construct an efficient §K7Q D, but additional autocovariances will not add independent information.
In contrast, the use of data for both output and consumption in likelihood estimation would not

even be possible.

Another QD-based estimator can be obtained if we entertain the possibility of a reduced form
model. Consider a finite order AR(p) model:
p—1
yr = a’yp—1 + Z b?Aytfj + et (16)
j=1
where 89 = (a%, 89, .., 52—1) = [(6°) are the true ‘reduced-form’ parameters that can be computed

analytically or numerically. We also need the following;:

SLikelihood estimation is also problematic when there are more variables than shocks, a problem known as stochas-
tic singularity.

"For an example of this implementation, see Coibion and Gorodnichenko (2011).

81dentification requires rank %GD(@ = dimf#. Now g;(#) depends on ¢ through the parameters in the solution
to expectation equations. Formal identification conditions are given in Komunjer and Ng (2011).
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Assumptions B. (Identification) (i) there is a unique #° such that 5(6°) = 8% (ii) the function
B(0) is twice continuously differentiable; (iii) B(8°) = V3(0°) has full rank k = dim(0) < p.

The method proceeds as follows. For y,; € Yy, define e,(8) = ynt — ayni—1 — Z?;i bjyni—; where
B = (a,b1,...,bp,—1). Note that Y; is now quasi-differenced using the ‘reduced-form’ parameter
B instead of the structural parameter a as in method 1. Once the data are quasi-differenced,
estimation proceeds by defining w;(0; p) = (I';(0;p) —To(0;p)) with g, op(0;p) = &;(0;p) — w;(0;p)
and sample analog as in (15). Let gop(0;p) = (G1.0p(0;p)'s - -, Gx.op(0;p)")'. The estimator is

Or.op = aregrgiHEQD(H;p)’ﬁQD(G;p)- (17)
c

Because 8 is p-dimensional, this second estimator also depends on the choice of p. Since ey, is
not necessarily exactly white noise, I';(#) will not be zero. However, its autocovariances can be

computed for any given 6.

We have presented two uses of the QD framework that can yield estimators that are robust to
non-stationary exogenous variables in DSGE models. The data-dependent transformations allow
us to construct moments that are uniformly bounded. Applying the central limit theorem to the

sample moments yields estimators with classical properties.

6 Simulations

We consider the finite sample properties of OLS, FQD with g fixed at the true 0(2] , and QD. Even
though the FQD estimator is infeasible in practice, it is a useful benchmark. The simulations are
based on 2,000 replications. We use the standard Newey-West plug-in estimator for the variance
of the moments. As starting values, we use 0.9 times the true values of the parameters. The QD
estimator requires evaluation of the model implied autocovariances I'j(#). This is straightforward

once a model is cast in a state space. For example, the system

Yt _ 0 Bl |ye—1 i 1 0] ey
Ty 0 «af |21 0 1] [ex
in quasi-differenced form is

K I 1 e R A
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More generally, every ARMA model has a state-space representation from which a state-space

model for the quasi-differenced data can be expressed as
wy = Dowg—1 + D1y

where w; includes e;(#) (and possibly its lags), and ¢; is the set of exogenous white noise shocks with

variance (.. The variance matrix €,,(0) = E(w;w}) can be computed by iterating the equation
Q)(0) = Doy~ (0)Dg + D102 Dy (18)

until convergence. The autocovariance matrices can then be computed as §,,(j) = DéQw (0). Now
[';(0) are submatrices of Q,(j). If we are only interested in computing the moments w C wy, we

iterate equation (18) until the block that corresponds to w{ converges, i.e. ||sz¢)z(0) —Qg;l)(O)H <ec.

Data are generated from the AR(2) model:
(1=XL)(1=XL)y: = e, & ~N(0,1).

The process can be written as

yr = Ay + Ay + &

The parameter of interest is a® = A\Y + AJ — AYAJ with 6% = A9A). The OLS estimate of o has a

non-standard distribution when the roots are unity, in which case o = 1.

We estimate an AR(2) model when A) = 0 (Table 1). Demeaned data are used to compute the
sample autocovariances in the intercept case, and linearly de-trended data are used in the linear
trend case. We report the mean of the QD, FQD, and OLS estimates when 7" = 200 and 500,
the J test for over-identifying restrictions, along with the finite sample power for one-sided ¢ tests

evaluated at a = a¥ — 0.05.

Table 1 shows that all three estimators are precise when o < 0.8. The t-statistic for the null
hypothesis that o = o for all three estimators has rejection rates close to the nominal size of 0.05
when o < 0.8. The picture is, however, very different at larger values of a”. The FQD has slightly
smaller bias but is much less efficient. While OLS has the largest bias, its root-mean-squared error
(RMSE) is much smaller than the FQD. The QD is neither the most accurate nor the most efficient,
but has RMSE closer to OLS and much smaller than the FQD, in support of Proposition 2.

Efficiency of OLS comes at the cost of size distortion, however. At T" = 200, the OLS-based t-

statistic has a rejection rate of 0.473 when o = 1 and 0.15 when o = 0.95, much larger than
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the nominal size of 0.05. Even at T = 500, the rejection rates are 0.462 and 0.127, well above the
nominal rate of 5%. The rejection rates for the FQD and QD are 0.107 and 0.08 when T = 200,
and are 0.066 and 0.076 when 7' = 500, much closer to the nominal size of 0.05. The QD has
accurate rejection rates that are always around 0.05 for all values of a’, but it has less power than
OLS. Figure 1 plots the distribution of t-statistics for QD at T=200 and T=500. The normal

approximation to the finite sample distribution is good.

We report results for over-parameterized AR(p) models in Table 2. In particular, we estimate an
AR(3) when the true model is an AR(2). We fix A9 to 0.2 and set A} such that the sum of the
AR(2) parameters is the same as in Table 1. Statistics are reported for a. The results are similar
to Table 1: the FQD is inefficient; the ¢ statistic associated with it has good size but lower power.
The OLS has large size distortion when oV is close to one, but the estimates are tightly estimated.
The QD strikes a balance between the two, and the ¢ statistic has very similar size property for all
values of [a”(1)] < 1 even when 7' = 200 in the intercept case. In the linear time trend case, the
uniform size property can be achieved with T" = 500. Importantly, the QD achieves a more accurate

0 is close to unity without sacrificing too much power outside of the persistent range.

size when «
For example, when o is 0.5, the power of OLS and QD are quite similar. The reason is that when
a? is far from the unit circle, OLS is v/T' consistent, but so is FQD and QD. Power is also fairly

similar for both the intercept only and the linear trend model.

Table 3 presents results for predictive regressions. Data for the predictive regressions are generated
as in (14a) and (14b). We let 3 = 1, 00 =1, 0¥, =1, 0233 = 0.5. The results are generally
similar to the AR(p) case. The QD is slightly less efficient than OLS when o is close to one but no
less efficient when oY is far from the unit circle. This loss of efficiency arises from the fact that at
a =1, OLS is T consistent but the QD is only v/T consistent. The benefit to this small efficiency
loss is robustness. As one can see, the size of the t test for Hy : = 8 is fairly constant around

the nominal size of 0.05, but the size of the test based on OLS varies with . Furthermore, as

0

0y, Tises, the size of the t-test based on OLS becomes increasingly distorted while QD continues to

have sizes close to nominal.

Finally, we consider the stochastic growth model presented in Section 5. The data are generated
as follows. We fix the true value of capital intensity v to 0.25 and o2 to 1 and consider five values
of a: 1,0.98,0.95, 0.9, 0.8. We use data on consumption to estimate 1, o« and o2 using the second
method discussed in Section 5. This consists of solving for 1, o and o from the six autocovariances

of e;(), where /5 are the parameters of an AR(3) model. For the sake of comparison, we also use
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the Kalman filter to obtain the maximum likelihood estimates. The results are reported in Table
4. Evidently, the QD estimates of ¢ are close to the true value of 0.25, and the size of the t-test is
close to the nominal value for all values of a.. In contrast, the MLE estimates are biased when « is

close to one, and the ¢ test for the null hypothesis that 1) = 0.25 is severely distorted.
7 Relation to other vT-Consistent Linear Estimators

As discussed in Section 2, one of the problems with the OLS estimator when a unit root is present
is that the moment condition at the true value /7' (o) = ﬁ Zle yi—1€¢ does not satisfy a
central limit theorem. Although y;_; is orthogonal to &, the persistence of y;_1 requires a stronger
normalization and standard distribution theory cannot be used. The thrust of QD estimator is
to use moment conditions that satisfy a central limit theorem uniformly over values of a®. The
approach can be used to estimate a broad range of models. However, for the simple AR(1) model,
the ideas underlying the QD estimation can be used to construct a two-step linear estimator. We
now show how this can be done and then relate this approximate QD estimator to other known

linear estimators of the AR(1) model with classical properties in the local-to-unity framework.

For the AR(1) model, the QD moment condition (3) replaces y;—1 with £,_;. As seen from equation
(4), the central limit theorem holds whether or not there is a unit root present. But the moment
condition can be understood in an instrumental variable setup because e;_; is uncorrelated with
¢ and is hence a valid instrument. The only problem is that ¢;_; is not observed. But aors is
consistent for all \aol < 1. Thus, let e;_1 = ¥+ — dorsy+—1, noting that generated instruments do
not require a correction for the standard errors like generated regressors do. We can now define a

(hybrid differencing) HD estimator using the following moment condition:’

T

_ N 1 - .

Jdup(@up) = T E e—k(yr — appyi—1) = 0.
t=k+1

This leads to the estimator

T o~ T o~

~ Dtk Y€k 0 D ik Ct€t—k

aHp = - =a0 + F .
Zt:k Yt—1€t—k Zt:k Yt—1€t—k

HD

We refer to a as a hybrid estimator because it is based on the covariance between the quasi-

difference of y; and a stationary random variable. Notice that the HD and QD use the same moment

9Laroque and Salanie (1997) used two OLS regressions in stationary variables to obtain a v/T-consistent estimate
of the co-integrating vector.
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condition. What distinguishes the HD from the QD is that the objective function of the HD is now
linear in . Consistency of ayp follows from the fact that % Zle et(ao)'ét,k%Eatat,k =0. It is

straightforward to show that in the local-to-unity framework,

VT (agp — o) = 2(1 + J.(1)%)7IN(0,1).

Once the HD is understood as an instrumental estimator, other possibilities arise. Instead of €;_1,
we can use any stationary series uncorrelated with the error term.! For example, using Ay;_;
would by-pass the need for a preliminary least squares estimation. The first differencing (FD)

estimator is:

T
thz Ayt— 1Yt
ZtTZQ Ayi_1Yi—1

The FD is a special case of estimators analyzed in So and Shin (1999). These authors used the sign

OFp =

of y;—1 as instrument x; to construct

T
DTty

ags = T .
Etzl TrYt—1

Another estimator with classical properties in the local-to-unity framework is that of Phillips and
Han (2008). The PH estimator, defined as

S Ay 1(28y; + Ay 1)
Zthz(Ayt—l)z

has the property that vT(apg — a®) = N(0,2(1 + o)) for all a® € (—1,1]. As shown in the

aOpH =

I

Appendix, the FD estimator is asymptotically equivalent to the PH estimator in the stationary
case when o is far from unit circle. That is, for the AR(1) model, apy = arp + O,(1/T) under
stationary classical asymptotics. However, these two estimators differ in the local-to-unity setting.
While VT (arp — a®) = 2(1 + W(1)2)7'N(0,1) when o = 1, VT(apyg — a®) = N(0,4). The FD
is thus more efficient at a® = 1. Simulations presented in Table 5 show that the QD dominates the
FD and PH, but is comparable to the HD. The simulations also support the theoretical predictions
that the FD, HD, and QD are all asymptotically normal and v/T consistent.

No estimator is perfect and QD estimation has its drawbacks. As mentioned in the introduction,

the price we pay for asymptotic normality is that agp converges at a rate of VT instead of T when

19 As suggested by a referee, E(es(er—; — et—x)) =0, 1 < j < k is also a valid moment condition.
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there is a unit root. Han et al. (2011) aggregate L stationary moment conditions and showed that
by suitable choice of L, uniform asymptotic normality can be achieved at a rate faster than /7.
Extension of their result outside of the AR(p) model is, however, not straightforward. In contrast,

the QD framework is broadly applicable.

8 Concluding Comments

In this paper, we use a quasi-differencing framework to obtain estimators with classical properties
even when the underlying data are highly persistent. Quasi-differencing can render non-stationary
processes stationary so that classical limit theorems can be applied. However, the QD estimator
is VT consistent rather than super-consistent in the local-to-unity framework. In exchange for
this slower convergence is generality, as QD estimation can be used in a broad range of linear and
non-linear models. However, there are several issues that remain to be solved. The first is allowing
J to be data dependent and increase with the sample size. The second is to allow for conditional
heteroscedasticity. Third, simulations suggest that the QD works well even when forcing process
is mildly explosive. Relaxing the assumption that the largest autoregressive root is inside the unit

disk may well be useful for practitioners. These issues are left for future investigation.

21



References
Abowd, J. M. and Card, D. 1989, On the Covariance Structure of Earnings and Hours Changes,
Econometrica 57(2), 411-445.

Altonji, J. G. and Segal, L. M. 1996, Small-Sample Bias in GMM Estimation of Covariance Struc-
tures, Journal of Business and Economic Statistics 14(3), 353-366.

Canjels, E. and Watson, M. W. 1997, Estimating Deterministic Trends in the Presence of Serially
Correlated Errors, Review of Economics and Statistics 79(2), 184-200.

Chernozhukov, V. and Hong, H. 2003, An MCMC Approach to Classical Estimation, Journal of
Econometrics 115(2), 293-346.

Coibion, O. and Gorodnichenko, Y. 2011, Strategic Interaction Among Heterogeneous Price Setters
in Estimated DSGE Model, Review of Economics and Statistics 93(3), 920-940.

Gorodnichenko, Y. and Ng, S. 2010, Estimaton of DSGE Models When the Data are Persistent,
Journal of Monetary Economics 57(3), 325-340.

Han, C. and Kim, B. 2011, A GMM Interpretation of the Paradox in the Inverse Probability Weight-
ing Estimation of the Average Treatment Effect on the Treated, Economics Letters 110, 163—165.

Han, C., Phillips, P. C. B. and Sul, D. 2011, Uniform Asymptotic Normality in Stationary and
Unit Root Autoregression, Fconometric Theory, forthcoming.

Jansson, M. and Moreira, M. J. 2006, Optimal Inference In Regession Models with Nearly Integrated
Regressors, Econometrica 74, 681-714.

Komunjer, I. and Ng, S. 2011, Dynamic Identification of DSGE models, Econometrica, forthcoming.

Laroque, G. and Salanie, B. 1997, Normal Estimators for Cointegrating Relationships, Fconomics
Letters 55(2), 185-189.

Mikusheva, A. 2007a, Uniform Inference in Autoregressive Models, Econometrica 75(5), 1411-1452.

Mikusheva, A. 2007b, Uniform Inference in Autoregressive Models, Econometrica 75(5), Supple-
mentary Material.

Mikusheva, A. 2011, One Dimensional Inference in Autogressive Models with the Potential Presence
of a Unit Root, Econometrica. forthcoming.

Newey, W. K. and McFadden, D. 1994, Large Sample Estimation and Hypothesis Testing, Handbook
of Econometrics, Vol. 4,Chapter 36, North Holland.

Pesavento, E. and Rossi, B. 2006, Small-sample Confidence Interevals for Multivariate Impulse
Response Functions at Long Horizons, Journal of Applied Econometrics 21(8), 1135-1155.

Phillips, P. C. B. and Han, C. 2008, Gaussian Inference in AR(1) Time Series With or Without a
Unit Root, Econometric Theory 24, 631-650.

Phillips, P. C. B. and Lee, C. C. 1996, Efficiency Gains from Quasi-differencing under Nonstation-
arity, in P. Robinson and M. Rosenblatt (eds), Athens Conference on Applied Probability and
Time Series: Volume II Time Series Analysis in Honor of E.J. Hannan.

Phillips, P. C. B. and Solo, V. 1992, Asymptotics for Linear Processes, Annals of Statistics
20(2), 971-1001.

22



Phillips, P. C. B. and Xiao, Z. 1998, A Primer on Unit Root Testing, Journal of Economic Surveys
12(5), 423-469.

Pierce, D. A. 1982, The Asymptotic Effect of Substituting Estimators for Parameters in Certain
Types of Statistics, Annals of Statistics 10(2), 475-478.

Prokhorov, A. and Schmidt, P. 2009, GMM Redundancy Results for General Missing Data Problem,
Journal of Econometrics 151(1), 47-55.

So, B. S. and Shin, D. W. 1999, Cauchy Estimators for Autoregressive Processes with Applications
to Unit Root Tests and Confidence Intervals, Econometric Theory 15(2), 165-176.

Uhlig, H. 1999, A Toolkit for Analyzing Nonlinear Dynamic Stochastic Models Easily, in R. Mari-
mon and A. Scott (eds), Computational Methods for the Study of Dynamic Economies, Oxford
University Press, pp. 30-61.

23



Appendix A Proofs

The proofs proceed with the assumption that the weighting matrix Wr is an identity matrix.

Proof of Proposition 1 (i):  First, consider the problem of matching the j—th autocovariance.
That is, Q;(a) = (Fj(a) —v;())?, and @; = argmin, Q;(a). Under the assumption that « is the
true value, yo(a) = 02, and v;(a) = 0 for all j > 0. Note that

T T

~ 1 a—al a—a

’Yj(a)—%‘(a)zf Z eter—j—j ()= T Z [etyt—j—1 + €t—jyr—1]+ Z Yt—1Yt—j—1-
t=j+1 t=j+1 t=j+1

As a result, the NQD objective function is the fourth-order polynomial:

Qi(@) = QY + (a — a”)QW + (a — a%2QP + (a — QY + (a — a?)*Q\". (A1)

In the local-to-unity framework with ag = 1 + ¢/T, the following results hold as T — oo:

1 1
T Z Ei—jYi-1 = 0> +0? / Je(8)dW (s), (A.2)
0
1 1
T Zetyt,l,j = 02/ Je(8)dW (s), (A.3)
0
1 1
T2 Zyt,lyt,j,l = 02/ Jg(s)ds. (A.4)
0

It follows from equations (4) and (A.2) - (A.4) that

T T
1 1
T1/2Q§1) =-2VT T Z etet—j — (@) T Z etyt—j—1 + €t—jyr—1]
t=j+1 t=j+1

= —2¢; <02 + 20 /01 Jc(S)dW(5)> ;

T T
_ 1 1
T 1/2Q§2) =2VT T Z EtEt—j —’Yj(a) T2 Z Yt—1Yt—j—1

t=j+1 t=j+1
2
1 1 < 2 ! 2
+ﬁ Tt_Z: [etyi—j—1 + &—jye] | = 20 0 Je (s)ds;
=j+1
1 L

_ 3
00 =2 3 weweses| (5 2 b e

t=j+1 t=j+1

1
é—202/ J2(s)ds <J + 202 | Ju(s );
0 0
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T 2 1 2
1
T_2Q§'4) = (TZZyt—lyt—2> = (Uz/o Jf(s)ds) > 0,
1
where \/T(% Meter—j — ) = & = N(0,0%). To summarize:
QY = 0,171, QP = 0,1, QP = 0,1, QY =0,(T?). (A.5)
It follows that

W = <02 /01 JE(S)CLS)Q (a—a)t

uniformly over a bounded parameter space for o. As a result, o is a consistent estimate of al.

To study the large sample properties of aj, consider the first order condition:
1 ~ 2 ~ 3 ~ 4
Q§~ )+ 2(a; — aO)Qg- )+ 3(aj — a0)2Q§- ) 4+ 4(aj — a0)3Q§» ) (A.6)

This is a cubic equation of the form az® 4 ba? + cx + d = 0, where x stands for (@; — ap) with the
obvious correspondence between the coefficients. The cubic equation may have one or three real
roots depending on the sign of the determinant:

A = 18abed — 4b°d + b*c® — dac® — 27a*d”.
Given the orders established in (A.5), it can be shown that

1 5
TN = —3201° ( / Jf(s)ds> .
0

The sign of the determinant A is asymptotically defined by the sign of §;. When the sign of A
is negative, there is a unique real root to equation (A.6); otherwise, there are three real roots.
However, in the case of three real roots, the middle one corresponds to the local maxima, while the
other two roots are the local minima of (A.1).

The next step is to work out the formulas for the roots and to check their rates of convergence
toward zero. For example, when there is only one real root, the formula is:

1 2 1 2 1
T =—= <b+ i/b3 — gabc+ §a2d+ 5 —27a?A + \3/b3 - gabch ;azd 5V 27a2A) .

3a

Using the asymptotic orders of the terms in (A.5) and after tedious algebra, we can deduce that
Tz1 = Opy(1) (that is T(a; —a®) = O,(1)). Similarly, using the explicit formula for cubic roots and

denoting the two non-central roots by 9 and z3, we can deduce that when A > 0, T3/%zy = O,(1)
and T%4x3 = O,(1) (that is, T3/4(@; — a®) = O,(1) in this case).

To find the asymptotic distribution of these roots, we start with the case of one root. Because T'(&;—

a®) = 0,(1), some terms in equation (A.6) are asymptotically negligible. Thus, asymptotically we
have le) +2(a; — aO)Q§2) = 0. Equivalently,

(1) 2 2 1
: 2 Je(s)d
T(@; = a) = =T QJ(Q) top(1) = T2 o Jele)duls)
2Q; 202 [ J2(s)ds
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Similarly, for the case of two local maxima T%/4(@; — a®) = O,(1) and asymptotically 2(a; —
aO)Q§2) + 4(a; — a)3 Q(4) = 0. Equivalently,

(2)
T3/2 Q; N =&
2Q§4) o2 fol J2(s)ds

TS/Q(aj o aO)Q _

The equation has a solution only when &; < 0. As shown above, this is the condition for the
cubic equation to have three roots. Thus, we proved that equation (6) holds for a; with K = 1.

Analogous arguments hold in the general case ax ngp = argmin, ZJK:1 Qj(c) with &; replaced

by Zszl ¢;/K ~ N(0,0*/K). This also shows that in AR(1) case, matching more than one auto-
covariance leads to increase in efficiency. O

Proposition 1 (ii) and Proposition 2 are special cases of Proposition 3. Observe that

9;rop(B8) = Ajrqp + (8° — B)'Bjrqp + (8° — 8)'Cjren(8° — B),

where A; rop, Bj,rop and Cj pgp are defined in equations (11)-(13). The following three lemmas
will be used to prove Proposition 3.

Lemma A-1 (Uniform Law of Large Numbers) Let ¢, = (¢41,£¢2)" be martingale- difference
sequence with Q@ = E(ee}|Fi—1) and finite fourth moments, Q@ = (0 ;) and n,; = ZJ o CjEt—j,i for
1 =1,2. Uniformly over the set of all sequences c} satisfying Z?’;O ]c;\ < C for some constant C,

T

1
T Z N2 =P Elngan,2).
t=1

Proof of Lemma A-1 Notice first that

o0
G102 _ ) ) = g (SR D)
V= coV(Niys Mt jyia) = Tiy o E Cn+35Cn
n=0

and for any i1 and iz, D72 |y Zl’22| < |1€2||C?%. Furthermore,

1,2 1,2 21 1,1 22
Eneantansinneriel = (07 +777% 7+ + E(ed 65, Zci ChejCn o -
n=0

As a result,

o0
1,2 21 1,1 22
Cov(Meame2, M ja i) =% 0 7707 + E(e165,) Y cheny jcnchy
n=0

and

[e.e]

2
(o)
> cov((mam2), (Merjaee)) < 2(QUPCH + E(e7 167 ) <Z lencn > < (2190 + E(e71¢7,)) C*
j=1 n=0

Chebyshev’s inequality implies the statement of the Lemma. O
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Lemma A-2 The following three statements hold asymptotically uniformly over Rs and uniformly
over 1l <j< K

(a) \/T(Al,FQD7"'7AK,FQD), = (& — &, &k — &), where (&,&1, .., &) is a normally dis-
tributed random vector with mean zero and diagonal covariance matriz, B3 = 4, E{? =gt

foralll <j < K;
(b) Bjrgp =" aj = E[(Xtqj + Xi—j — 2Xp)et);
(¢) Cjrop = Op(1).

Proof of Lemma A-2: Part (a) follows from applying the Central Limit Theorem (4) to the
sums of €7 — 02 and g6 for 1 < j < K. For (b) we need to show that the Uniform Law of Large
Numbers holds for

T T—j
1 1
Bj,FQD :T E A (Xtét_j + Xt_ja?t — 2Xt5t> = T E ‘ (Xt+j + Xt_j — 2Xt) Et + Op(l/vT),
t=p+j+1 t=p+j+l1

where the O,(1/v/T) term appears due to the change of limits of summation by a finite number
of summands. To apply Lemma A-1, we need to show that the process X;y; + X;_; — 2X; has

absolutely summable MA coefficients. From Lemma S8 in the web Appendix of Mikusheva (2007b),
the process Z; = X; — X;_1 has absolutely summable MA coefficients uniformly over fRs. Now

J j—1
Xewj+ Xoej =2Xe =Y Zivi— D Do
k=1 k=0

Our process of interest is the sum of a finite number of processes each with summable MA coeflicients
and thus its MA coefficients are absolutely summable. Lemma A-1 implies that uniformly over R

Bjrop =" E [(Xt—i-j + X - 2Xt> et] = a;.

Turning to (c), the object of interest is the p X p matrix:

T
1 / ! /
Cj.roD =07 t:];pﬂ (Xe X[+ X X — 2X, X)) , (A7)

where all elements except possibly the top-left element satisfy the uniform Law of Large Numbers,
and thus are of order O,(1). Now the last p—1 elements of X; are Ay;_1, ..., Ay;—pt1. From Lemma
S8 in Mikusheva (2007b), they have absolutely summable MA coefficients uniformly over 2R5. Thus,
the elements of the right-bottom (p—1) x (p — 1) sub-matrix satisfy conditions of Lemma A-1. The
elements in the first row and the first column (except the top-left element) are of the form

T T
1 1
2T Z (Ye—121—j + Yt—1—j2 — 2ys—121) = o7 Z (Y1145 + Ye-1-5 — 20-1) 21 + Op(1/VT),
t=j+p+1 t=j+1
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where z; is one of Ay;_1, ..., Ay;—p+1. From the proof of (b), the series y;—14+; + yi—1—j — 241 also
has absolutely summable MA coefficients. Thus, the conditions of Lemma A-1 are satisfied.

It remains to consider the top-left element of the matrix C; pgp which is given by

T
1
(Cirep) = 7 > e o1 — v
t=jt+p+1

If the largest (in absolute value) root A, is not real, then by definition of Rs, it is less than
d < 1 in absolute value, and the process y; is uniformly stationary. Thus (C}jrgp),, satisfies
the conditions of Lemma A-1. Assume now that the largest root ), is a real number. We have

1—al - Z?;} b;LI(1 — L) = (1 — A\,)B(L), where all inverse roots of B(L) are strictly inside the
circle of radius 4.

Let uy = y¢ — A\pyr—1 and thus B(L)uy = &;. Now wu; has absolutely summable MA coefficients
uniformly over fR;.

1 T 1 T ‘ j—1
T > way = T S g Ny D> A1) =

t=j+1 t*j+1 k=0
=N Zyt 1+Z)\k Z Yt—j—1Ut—k—1-
t=7+1
As a result,
T
(Cjrop)yy = —(1 = M) = Zyt 1+Z)\k 12 Z Yij1t—p—1 + Op(T 72,
t=1 = t Jj+1

again the O, term appears due to change of summation bounds. First, observe that

= =
r <T > ytut+k> =Var (T Z)\Zut—sut+k> =
t=1 t=1 s=0

—j t

Z cov(Upik, u—s) < Var(uy) < const(9).
s=0

~

HH
1 M

The variance of wu; is umformly bounded because all roots of this process are uniformly separated

from the unit circle. That is, & Zt 7yt = Op(1) uniformly over 8% € Rs and for all 1 < k <
J< K.

Next, consider the term (1— ) )7 ZtT L y? 1. From Theorem 1 in Mikusheva (2011), (1—\,) = Zthl i)
is uniformly approximated by fo J2(t)dt, where g(c) = E fo J2(t)dt, where J.(t) is the Ornstein-
Uhlenbeck process and ¢ = Tlog(|)\p|) It follows from Lemma 4( ) and Lemma 10 in Mikusheva
(2007a) that fo J2(t)dt is uniformly bounded in probability over ¢. Summing up, Cjrop is
asymptotlcally unlformly Op(1) over R and the proof of Lemma A-2 is complete. O
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Lemma A-3 Under assumptions of Proposition 3 the estimator BK,FQD is consistent for any
K > p.

Proof of Lemma A-3 Let f(z) = (fi(z), ..., fp+1(x)), where f;(z) = 2’B; rop + 2'C; ropx and
Qx) = Z]K:1 ij (). Any K > p+ 1 suffices for consistency of Sk, rgp, though additional moments

may improve efficiency. For any bounded set C' in the parameter space, and by Lemma A-2, it
holds that:

K 2

sup |Q(8° — 8) = Y (Gj.ren(B))”| = op(1).

peC o

Since Q(0) = 0, for consistency of BK,FQD, it is enough to show that for any ¢ > 0, there is € > 0
such that

lim P(inf Q(z) >¢) =1, (A.8)

T—o0 lz|>¢

where z = 8% — 3. Since B° € ;5 and B belongs to bounded neighborhood of s, z is bounded.
There are two cases to consider: |\,| < 01 < 1, and A\, > 6.

Case (i) |\p| < d1: We will show that for any fixed 0 < 6; < 1 statement (A.8) holds uniformly
over 3% € Rs N {|N\y]| < 61}

Since K > p, Q(x) > f(z)'f(x). For any orthonormal transformation A, Q(z) > (Af(z))' (Af(z)) >
(Af(x))2, where (Af); is the first component of vector Af(z). Consider a linear transformation,
the first component of which is

p—1
(AF@)1 = Upss = %l = 3 i1~ fyi))-

j=1

where a = /1 + (a® +b9)2 + (] — b0)2 + ... is a (non-zero) multiplier that normalizes the linear

transformation. Let A(L) =1 — oL — Z?;% b?Lj(l — L) be a lag operator. Given the definition

of f; and linearity of the transformation,

(Af@) = A fyir = — (&' (A()Byar ) + (AL Cpinrgn)a) . (A9)

From (b) of Lemma A-2, Bj pop —* aj = E[X;1j&;]. From (10) and the definition of X,
A(L) Xtipi1 = [Etapt1, Altipits o Aetio] = Erppit. (A.10)
Since Eeiip1165 = 0 for any s <1,
A(L)Bpt1,rQp =7 A(L)E[Xyyjei] = E[A(L) Xy jet] = El€rypr1e] = 0.

Thus, uniformly over all z in a bounded set,

(Af@)1 = - (&(A(L)Cpir p)e) + 0p(1). (A11)
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It follows from (13) and (A.10) that

T T
A(L)Cpy1,rQD = % Z (gt+p+1X£ + tht-s-p-f-l) - A(l)% Z Xth + op(1), (A.12)
t=p+1 t=p+1
where o0,(1) appears from change in the bounds of summation. Since |Ay| < d; by assump-
tion, the process is stationary. Thus %Z?:p 11 €t4pr1X; —P 0 uniformly over |[\,| < d1 and
A1) 7 ZtT:p 11 X¢X{ is uniformly positive definite. This gives us the needed bound in (A.8) for
processes with |A,| < di.

Case (ii) |A\,| > 61: To show that for §; < 1 close enough to the unity, (A.8) holds uniformly
over 3% € Ry N {|A\,| > 81}, we divide the area |z| > ¢ from (A.8) into two regions: I = {x : |z| >
S |lz1| > <1} and Is = {z : |z| > ¢, |z1]| < <1}, where 0 < ¢1 <.

Consider x € I;. We will prove that for any fixed ¢; > 0, one can choose §; close enough to the
unity such that uniformly over 3° € |sN{|\,| > 1}, an analog of (A.8) holds where the infinimum
is taken over x € I3.

Applying the arguments and transformation as in (A.9), it can be shown that equations (A.11) and
(A.12) hold. Since A(1) converges to zero as d; converges to 1, one can choose ¢; close enough to 1

to make all terms except the (1,1)-th element of .A(l)% ZtT:p .1 X X| sufficiently small, and all but
the (1,1)-th element of % ZtT:p 1 €t4p+1X; converge in probability to its expected value of zero. In
consequence, the following holds uniformly over 8% € Rs N {|\p| > 61} and z € I :

T T
1 1
2 2
13/-/4(1/)C}TH—LFQDﬂl7 =T T t_§p+1 Et+p+1Yt—1 — A(l)f t_§p+1 Yi—1 | + Op(l) + Op(l — 61).

It remains to show that % Zthp 11 (Et4pr1 — A(1)ye—1) yi—1 satisfies the uniform Law of Large Num-
bers, and thus converges uniformly to a non-zero constant. To do so, we use the decomposition as

in Phillips and Solo (1992)) that €44 p+1 —A(1)yi—1 = us —us—1, where u; is a series with absolutely
summable MA coefficients. Since %(ut — Up1)Yt—1 = —%(yt —Y—1)up + Op(l/\/T), Lemma A-1
applies, and % ZtT:p 11 (Et4pr1 — A(1)yi-1) y—1 converges in probability to its expectation. Since

#E ZtT:p 41 y? , is uniformly different from zero, this implies that for any fixed ¢; > 0 there

exists d; < 1 such that uniformly over |\,| > d; an analog of (A.8) holds where the infinimum is
taken over x € I.

Consider now x € I5. One can choose ¢; small enough and §; close enough to the unity such that
uniformly over 3° € Rs N {|A,| > 81}, an analog of (A.8) holds, where the infinimum is taken over
x € Iz. Given that Bj pop and Cj pgp are uniformly bounded,

fi@) =2l Bj 1+ 21 ,Cj 31 + op(ar).

where z_1 = (z2,...,2p) is (p — 1) x 1 sub-vector of x, and Bj _; and C; _; are the (p — 1) x 1 and
(p —1) x (p — 1) sub-matrixes of B; pgp and Cj pgp corresponding to the last p — 1 components

of 3.
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Let Zy = (Ayp—1, .o, AYt—py1) and Zy = (Ye—1 — A\pYt—2, s Yt—p+1 — AplYt—p)’ be two (p — 1) x 1
uniformly stationary vector-processes. Note that the matrices B; _; and (1 satisfy equations

analogous to (12) and (13) with Z; in place of Xi. Similarly, Ej and C; are defined as in (12) and
(13) with Z; in place of X;. Observe that Z/ = Z/ — (1 — Ap)(Yt—2, ..., Yyt—p). It is easy to see that

fi(x) =2’ Bj + 2" Cja_1 + 0p(1 — 81) + 0p(s1).
The function E = o 1§j + 2’ 15]-37_1 corresponds to that of the uniformly stationary process

Yt — Apys—1 with all roots smaller than ¢ in absolute value. The rest of the proof follows arguments
as in Case i. O

Proof of Proposition 3 (i):  To establish the asymptotic distribution of B\ K,FQD, consider first
order condition:

99, r
9, rop(Br.rop) —L-2 % P (Bx.rqn) = 0.

||Mx

From Lemma A-2 and consistency of ﬂ K,FQD,

Jg
J(;;QD (Bx.rop) = —Bj.rop + 0p(1) = a;,

and uniformly over Rs:

VTG, rop(Br,rap) = VT A; rop + diVT(Br,rop — 8°) + 0p(1).

As a result, the following holds uniformly:

K
VT Bk rop — 8°) Z a;jaj Y ai(& =) | = N0,k rop),
=1

where G = (ZJK:1 ajag) - , and Y pop = 01G + G (Z] La ) (Zf:l aj>/G.

Proof of Proposition 3 (ii): The proof proceeds by treating QD as a two-step estimator. First,
note that

T
1
P d Y = K (XY e
t=p+1

Theorem 1 in Mikusheva (2011) shows that the statistic (3, Xier)' (32, Xe X)) 71 (X, Xier) is uni-

. .. . c - 2 c _ JI@)dw(t) .
formly approximated by the distribution (t“+ N (0,p—1))*, where t¢ = VIR
limit of a t-statistic, and ¢ = T'log(|A,|) . Given that ¢¢ is uniformly bounded in probability over
all possible values of ¢ < 0, the following holds uniformly over fRs:

is a local-to-unity

§ = %Zef +0,(1/T). (A.13)
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Since g, op(8) = 9;,rop(B) — 10 + 5%,
9i.0p(B8) = Ajop + (8° = B)Bjop + (B = 8)'Ciap(8° = B),

where A;op = Ajrop + s? — o2, Bjop = Bjrgp and Cjgop = Cjrgp. A result analogous
of Lemma A-2 holds for A;gp, Bjop and Cjgp with one correction: \/T(ALQD, - Argp) =
(&1, ..,&K). This gives us consistency and asymptotic normality of 3 K,Qp With asymptotic covari-
ance matrix Yg gp = oiG. O

The following lemma will be used to prove Proposition 4.

Lemma A-4 Uniformly over all possible values of 0,

(a) VT(4;+9Q°) = & — &o;

(b) VT(A; +5) = &;

(¢) Bj1 —P Elei(xp—j—1 —x4-1)] = 0;
(d) Bj2 =" Elzi1(e1-j — )] = aj;
(¢) Cj=0p(1).

where ﬁ ZtT:jH atag_j = & and & is a 2 X 2 matrix with normally distributed components such
that for any non-random vector a the vector {;a is normally distributed with variance-covariance
matriz Q%a’Q%a. We also have ﬁ ZtT:jH ey = & where & is a 2 X 2 matriz with normally

distributed components such that for any non-random vector a, the vector {ya is normally distributed
with variance-covariance matriz E [(52&)2&82]. The variables &; are independent for any j > 0.

Proof of Lemma A-4 Result (a) follows from Central Limit Theorem. To prove (b), note that

= l - I _ l# (25 Ezvs-xsfl)Z (ZS Exsxsfl)(zsg sTs—1)
o= T tzlgtgt Tzs m§—1 < (ZS 6?/5‘7:5—1)(25 ‘C:J»‘st—l) (ZS €y5$5_1)y2 )

Yo CasTso1
T 2
25:1 Ccs—l

Z?—l Eys$371 . . . .
sum ===LY""°— has a bounded second moment since €,s2s—1 is martingale-difference sequence
VEL, Ba? Y ’
s=1 %51

and thus it is uniformly bounded by Chebyshev’s inequality. Lastly,

Now = t¢ uniformly over o’ € (=146, 1], and the family ¢¢ is uniformly bounded. The

> 1Ta
POHIN Ex?_,
arated from zero, a result that follows from Lemma 4(h) and Lemma 10 in Mikusheva (2007a).

Summing up, we have S = % Zthl stsg—I—Op(%). As aresult, VT (A;+S9) = % EtT:jH eter_; = &j-

is uniformly sep-

The proof of part (c) follows from Lemma A-1, since we show in the proof of Proposition 3 that
x4—j—1 — T¢—1 has absolutely summable MA coefficients uniformly over .
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To prove (d), re-write

T T 2j T+j
B ! Z (e et)’ ! ( )er + = € ! £
2 = 7 Ti—1\Et—5 — &) = =7 Z Ti4j—1 — Tt—1 = Z Tt—1€t—j — Z Tt—1€t—j-
J T : J T : +7 t T : J T J
t=j+1 t=j+1 t=j+1 t=T+1

The terms % Zfij_H Ti—1€¢—; and % ZtT:JEZH xt—1€¢—j both have j summands each of which are of
order O,(v/T). This means that for any j < K where K is fixed, the following holds uniformly:

T
1 1
Biy = — E Tipio1 — Tp—1)e; + Op(—=).
7,2 Tt:j+1( t+j—1 t 1)t p(\/T)

The rest of the proof is the same as for part (c). Part (e) follows from Proposition 3.(c).0

Proof of Proposition 4: Note first that

T
Bj(0)~To6) = 7 > eal®)er—s(0) — er(0))
t=j+1

T
1
- T Z ((90 —0)zi1 + Et)((eo - 9)(33t—j—1 —xp-1) + Et—j — 51;)'
t=j+1
= A;+ Bja(6° —0) + (6° — 0)Bya + (6° — )C;(6° — )’

where
1 & 1 &
Aj = T Z 5t(5tfj — 5t)/;Bj,1 = T Z Et(l'tfjfl — $t71);
t=j+1 t=j+1
1 & 1 &
Bjo = T Z z1(e—j — &) Cj = T Z i1 (T—j—1 — Te—1).
t=j+1 t=j+1

Lemma A-4 showed that uniformly over a:

IT5(0) = To(6) + Q°Y13 = [1(6° = 0)Bj2 + C;(6° — 0)(6° — 0)'[13 + 0, (1),
and R R

IT3(8) = To(8) + SII5 = 1(6° — 8) Bjz + C;(8° — 0)(8° — 0)'[13 + 0p(1).

We minimize the sum of such functions for j =1, ..., K. Obviously, the minimized function is non-
negative and one of its minimal value of zero is achieved at § = °. The question is whether there
are any other minima. For this, there should exist 6 such that ||(6°—60)B; 2+ C;(6° —0)(6° —6)'|| is
zero for all j. For a given j, the only non-trivial null of function ||(6° —8)Bj 2+ C;(6° —6)(0° —0)'||2
implies 6; = 6° + C%Bj’g which is asymptotically different for different j. This implies that for
K > 2 no other asymptotic null of the objective function other than 6 = #° exists, and thus §K, FQD
and 0k gp are consistent.
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To derive the limit distribution of §K7 FQD, We use the fact that the first order condition must be
satisfied at 0 = 0k rop. Now the first order condition is

VoIl (6)) — To(6) + 2|3
=2 (Aj + »o + Bj’1(90 — 9), + (90 — Q)Bjjg + Cj(ﬁo — (9)((90 — 9)/) (B;',l + Bj72 + QC]‘(GO — 0)’)/ .
Since we proved that §K7 rop is uniformly consistent, and given statements (d) and (e),
Bj,g + 20j(90 - é\K,FQD)/ —P a;.
Furthermore,
VT <Aj +Q°+ B;1(6° — Ok rqp) + (0° — Ox,rop) Bj2 + C5(6° — O pqp) (6° — é\K,FQD)/>
= \/T(A] + QO) + \/T(QO - é\K’FQD)CLj + Op(l).

As a result,

K

LS - )

\/T(é\KfQD — 90) = K
Zj:l a0 =1

uniformly over «. Similarly,

K
~ 1
VT(QKQD—90)2>7 ga
5 K 7+
Zj:l aja; ]gl

The last two formulas lead to the conclusion of Lemma 4.

Relation between PH and FD: Observe that

T T T
Z(Aytfl)Q = Z Ay 1yt-1 — E(ytfl — Yt—2)Yt—2
t=2 t=2 t=2
T T T
= Ayaya+ Y v = Yi2) — Yo T Uy =2 Ay 1y — Y1 + %5
=2 =2 t=2

Thus if [a?| < 1 is fixed and T — oo,

T T
1 1
T > (Ayea)’ = 2= > A1y + Op(1/T).

t=2 t=2
Similarly,
T T T T
DAY 20y + Aye1) =2 Ayaye — 2 Ayeayia + Y (Aya)’ =
=2 =2 t=2 t=2
T
=2 Z Ay 1y — e + %
=2
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and

T T

1 1

T Z Ayi1(2Ay + Ayp1) = 27 Z Ay 1y + Op(1/T).
t=2 t=2

This leads us to the result that apy = arpp + Op(Tfl) under stationary asymptotics.
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Table 4. DSGE model, capital intensity .

QD MLE
T P mean  rmse t-test J-test | mean rmse t-test

size power size size power

(1) (2) (3) 4) (5) (6) (RN C)) 9)
Panel A: Intercept model
200 1.00 | 0.255 0.122 0.077 0.245 0.088 | 0.181 0.117 0.309 0.577
200 0.98 | 0.255 0.120 0.098 0.259 0.085 | 0.220 0.094 0.142 0.409
200 0.95 | 0.268 0.133 0.076 0.238 0.095 | 0.246 0.094 0.076 0.294
200 0.90 | 0.284 0.147 0.066 0.201 0.094 | 0.266 0.114 0.065 0.235
200 0.80 | 0.289 0.144 0.046 0.148 0.079 | 0.285 0.131 0.065 0.184
500 1.00 | 0.260 0.072 0.050 0.304 0.049 | 0.173 0.110 0.517 0.830
500 0.98 | 0.261 0.071 0.059 0.322 0.053 | 0.231 0.058 0.151 0.626
500 0.95 | 0.262 0.073 0.066 0.331 0.049 | 0.245 0.054 0.076 0.522
500 0.90 | 0.266 0.082 0.052 0.306 0.043 | 0.253 0.062 0.053 0.428
500 0.80 | 0.281 0.110 0.035 0.197 0.035 | 0.270 0.096 0.062 0.315
Panel B: Linear trend model

200 1.00 | 0.255 0.123 0.088 0.264 0.093 | 0.223 0.094 0.153 0.399
200 0.98 | 0.267 0.128 0.075 0.222 0.090 | 0.243 0.091 0.102 0.315
200 095 | 0.272 0.138 0.085 0.233 0.090 | 0.257 0.097 0.065 0.249
200 0.90 | 0.282 0.145 0.066 0.204 0.083 | 0.273 0.113 0.057 0.205
200 0.80 | 0.298 0.146 0.053 0.130 0.081 | 0.296 0.135 0.057 0.150
500 1.00 | 0.259 0.071 0.050 0.308 0.041 | 0.209 0.079 0.324 0.730
500 0.98 | 0.262 0.072 0.057 0.309 0.040 | 0.237 0.059 0.139 0.593
500 0.95 | 0.263 0.073 0.058 0.315 0.039 | 0.250 0.056 0.069 0.477
500 0.90 | 0.268 0.082 0.042 0.280 0.034 | 0.259 0.064 0.042 0.387
500 0.80 | 0.284 0.108 0.024 0.162 0.028 | 0.277 0.097 0.053 0.295

Note: The true value of capital intensity is ¥» = 0.25. The observed series is consumption. QD uses OLS estimate of
the standard deviation of innovations consumption for QD estimation. M LE corresponds to the maximum likelihood
estimation (Kalman filter) of the structural parameters. Three autocorrelation coefficients (i.e, the fitted model is
AR(3)) and six autocovariances are used in QD estimation. T-test and J-test sizes are for 5 percent level. Power of

the t-test is computed for the null of Hy : ¢ = 9 — 0.1.
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Figure 1: Distribution of the t-statistic for the largest autoregressive root in the intercept-only
model with a® = 1. See Table 1 and the text for more details.
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