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An important service provided by financial intermediaries in the support of capital market trans-

actions is the financing of security purchases by investors. Investors can buy securities with margin,

whereby they contribute a portion of the purchase price and borrow the remainder from the intermedi-

ary in the form of a collateralized, non-recourse short-term loan. The risk of the loan depends crucially

on three factors: (1) the distribution of economic states; (2) the state-contingent outcomes for the col-

lateral value at loan maturity; and (3) the collateral haircut (or margin) between the market value of

collateral and the loan amount. The framework we propose isolates the systematic crash risk exposure

of different collateral types (equities, corporate bonds, and CDO tranches), and provides a simple mech-

anism for allocating the cost of bearing this risk between a financing intermediary (lender) and investor

(borrower), resulting in a schedule of haircuts and financing rates.

A typical loan is collateralized by the underlying security and protected by the borrower’s capital

contribution – the collateral haircut, or margin. The haircut protects the lender from changes in the

liquidation value of the collateral. Although the liquidation value of an individual security can be affected

by myriad market frictions on a day-to-day basis, our focus is on the effect of large market declines

(crashes). This approach is motivated by the notion that the intermediaries who provide financing

are likely to be well-diversified and have access to relatively efficient hedging strategies enabling them

to eliminate the effect of small (diffusive) market moves on collateral values. As such, our framework

assumes borrowers post haircuts to immunize lenders against extreme systematic price shocks, or market

crashes. This systematic credit risk channel has not been explored in the banking literature, despite the

growing role of collateralized lending (e.g. repo market) in the economy, and the widespread interest in

ensuring collateral robustness in adverse economic states.

A pervasive feature of capital markets is that extreme price drops – measured relative to recent return

volatility – occur with some regularity. Using daily value-weighted US stock market returns from 1926

through 2009, scaled by their lagged standard deviation to construct a time series of Z-scores, we find

that observations less than -6 occur every 5 years, on average. These are the economically significant

events that collateral haircuts must cover in order for the intermediary to be protected from bearing

losses on its loan, and the component of the cost of capital that we investigate.

Unlike most papers in the banking and collateralized lending literature, we specialize to the case

where there are no information asymmetries, agency concerns, differences in preferences or beliefs, or

other frictions.1 Formally, we assume that the intermediary (lender) is wholly owned by the investor

1Some prominent, early papers examining the effect of frictions include: Diamond and Dybvig (1983), Shleifer and Vishny
(1992), Holmström and Tirole (1997), Bernanke, Gertler, Gilchrist (1996, 1999), Kiyotaki and Moore (1997). Geanakoplos
(1997, 2003) emphasizes the endogeneity of haircuts and their sensitivity to perceptions of default. Gennaioli, et al. (2010)
present a model of financial innovation based on biased investor beliefs.
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(borrower), such that they share the same risk preferences (CRRA utility with a constant relative risk

aversion coefficient, γ = 2.5). We then derive a schedule of haircuts and financing rates – measured as

spreads above the risk-free rate – which represents the intermediary’s fair charge for providing leverage.

Intuitively, the derivation is an application of Modigliani’s and Miller’s (1958) Proposition Two (MM) to

an investment fund that owns securities and selects leverage (capital structure). Since the borrower will

be indifferent to the choice of capital structure when MM holds, the derived schedule can be thought of

as a shadow cost of leverage. We then also examine the borrower’s capital structure choice, if the lender

employs an imperfect financing rule (e.g. a credit-rating based spread), such that the cost of leverage is

mispriced.

Within our simple framework, spreads/haircuts for economic assets (e.g. equities, corporate bonds,

mortgages, etc.) are expected to co-move with one another and proxies for aggregate risk in the time

series. A key determinant of the financing terms extended by the lender is the rate at which the value of

the collateral declines at the point where the borrower haircut has been wiped out. Securities which have

quickly declining recovery values, are expected to: (a) be financed at higher spreads/haircuts; and, (b)

respond much more strongly to changes in state variables describing the state of the economy (market

volatility). We find that with typical haircuts (e.g. Reg T, H = 0.50) financing spreads on equities are

robustly stable across a range of equity market volatilities. Similarly, our empirical calibration shows that

spreads on highly-rated (AA-AAA) corporate bonds remain relatively unchanged, even when haircuts

are low (H < 10%). This contrasts meaningfully with the properties of many structured securities.

As documented by Coval, Jurek, and Stafford (2009a,b), structured securities can have dramatically

different systematic risk profiles (e.g. state-contingent payoffs) than similarly-rated corporate bonds. In

particular, the process of tranching can create assets whose values decline rapidly as market conditions

deteriorate. As a result, we should expect spreads/haircuts for many types of structured securities to

increase much more than for similarly-rated corporate bonds in times of market stress. These predictions

broadly parallel the empirical findings of Gorton and Metrick (2009) who examine repo market data

from 2007 and 2008. For example, consider the [7, 10] tranche referencing the Dow Jones CDX index

of investment grade debt (CDX.NA.IG), which was considered by market participants to be a roughly

AAA-rated asset. Our model indicates that this security cannot be used as collateral if we require that

the financing spread remain equal to 250 basis points (or less), as market volatilities range between

10-50%. Indeed, Gorton and Metrick (2009) report that during 2008, spreads on this type of collateral

averaged 233 basis points with an average haircut of 50%; and – at the peak of the crisis – structured

collateral could not be repo-ed at all. Consequently, the extreme change in spreads and haircuts in the

2



collateralized lending markets is not surprising, when viewed from the perspective of the rapid rise in

realized (and implied) equity volatilities.

The framework can also be used to stress test different types of collateral by examining the predicted

financing terms as market conditions change. This exercise allows us to isolate two crucial features of

the structured finance securities that contributed to their instability, when used as collateral. First,

tranche thinness leads to significant volatility in financing terms, even if tranches are backed by high-

quality collateral, such as investment grade bonds. Thick tranches (e.g. [7, 100]) backed by high-quality

collateral inherit much of the stability exhibited by standard corporate bonds. Second, due to the rapid

decline in the value of subprime mortgages as economic conditions deteriorate, they represent “poor”

collateral. Super senior claims of re-securitizations of sub-prime mortgage RMBS inherit these features,

and likewise, will behave poorly when used as repo collateral.

Finally, the framework is helpful for evaluating the notion that many securitizations experienced

an increased “information sensitivity” throughout the 2007-2008 credit crisis, leading to concerns over

adverse selection and a panicked “run on repo” (Holmström (2008), Gorton and Metrick (2009), Dang,

Holmström, and Gorton (2010)). This view is largely based on analyses that do not allow for a meaningful

systematic risk channel and therefore attribute the entirety of the observed price adjustments to market

failure. In contrast, our analysis suggests that the role for state-contingent adverse selection is limited

and likely to be diminishing relative to systematic risk exposures as price adjustments become large.

The paper is organized as follows. Section 1 presents a simple framework for valuing the risk of

market failure; section 2 empirically characterizes the crash distribution; section 3 describes the cost of

capital for specific asset classes; section 4 discusses the implications of the model; and section 5 concludes.

1 Valuing the Risk of Market Failure

In practice many transactions in capital markets bundle the purchase of an asset with the provision

of credit. The implicit loan is collateralized by a combination of the (risky) asset being purchased and

riskless collateral provided by the purchasing party, known as the haircut. In this arrangement, the lender

effectively provides financing for the difference between the purchase price and the haircut, for which he

receives a fee, paid in the form of an interest rate (or spread above the riskless interest rate). The haircut

posted by the borrower represents his equity in the transaction. Formally, the parties to the arrangement

can bargain over the terms of the loan – duration, haircut and spread – resulting in a schedule of funding
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arrangements, which effectively split the risk between the two parties to the transaction.2

To create a meaningful role for risk-sharing, we assume that the security is exposed to jumps in

the level of the aggregate equity market index. We interpret these jumps as representing the risk of

market failure. From here, to derive the schedule of funding arrangements we need three ingredients:

(1) a function describing the consequence of the market failure for the value of the asset, B(·); (2) the

frequency, λP, and cumulative distribution function, F P(·), of market failures; and (3) a utility function,

U(·), to analyze the pricing of the underlying risks in the presence of various risk-sharing arrangements.

The superscripts, P (Q), denote quantities under the objective (risk-neutral) measure.

1.1 The Model

We introduce the valuation methodology in a simple setting with no financial intermediary. This

valuation exercise simply assigns a dollar value to an insurance contract that insures the investor’s wealth

from the consequences of an x̃ percent jump in the market index. We denote the pre-jump wealth by

Wt− and the post-jump wealth by Wt(x̃), which will generally depend on the consequence function, B(x̃),

describing how the asset is exposed to the crash. To value the jump insurance, suppose there is a claim

which pays I(x̃) in the event of a jump with a price of ξ. If the agent buys η units of the claim his

terminal expected utility is:

EP
t

[
U
(
W̃t

)]
= (1− πP) · U (Wt− − q · ξ) + πP ·

∫ 1

0
U (Wt(x) + q · I(x)− q · ξ) · fP(x) · dx (1)

where πP is the probability of observing a market failure over some (short) discrete interval of time. At

the optimum the partial derivative of the expected utility with respect to q, evaluated at q = 0, has to

equal zero.3 This yields the price of insurance:

ξ = πP ·
∫ 1

0 U
′ (Wt(x)) · I(x) · fP(x) · dx

(1− πP) · U ′ (Wt−) + πP ·
∫ 1

0 U
′ (Wt(x)) · fP(x) · dx

(2)

2Geanakoplos (2003, 2010) examines equilibrium selection along this financing schedule in a setting where agents have
heterogeneous beliefs.

3Bakshi, Madan, Zhang (2006) and Bates (2008) use an indifference pricing methodology to value jump risk in credit
default swaps and equity index options, respectively.
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The price of jump insurance can also be re-written in terms of the corresponding risk-neutral quantities:

πQ = πP ·
∫ 1

0 U
′ (Wt(x)) · fP(x) · dx

(1− πP) · U ′ (Wt−) + πP ·
∫ 1

0 U
′ (Wt(x)) · fP(x) · dx

(3)

fQ(x) =
U ′ (Wt(x)) · fP(x)∫ 1

0 U
′ (Wt(x)) · fP(x) · dx

(4)

In the case were the loss conditional on a jump is equal to zero, x = 0, the risk-neutral and objective

jump probabilities are identical. Using the above expressions, the price of the jump insurance is simply

the expected value of its payoff evaluated under the risk-neutral measure:

ξ = πQ ·
∫ 1

0
fQ(x) · I(x) · dx (5)

In the presence of an intermediary, who facilitates the provision of leverage – by allowing the investor

to borrow funds to finance the purchase of the risky asset – the risk of market failure will be shared

between the two parties. The cost of capital to both parties is pinned down from the second proposition

of Modigliani and Miller, or equivalently, by valuing the cost of insuring each party against the risk of

loss. The consequence of a market failure to the borrower is described by a security-specific function,

B(x), which represents a transformation on the loss, x, resulting from the market failure (e.g. the change

in the value of a hedged option portfolio, corporate bond, etc.). If we assume that the risky asset was

purchased using financing obtained from a financial intermediary, the borrower’s equity exposure will

be limited by the magnitude of the haircut, H. Specifically, the state-contingent loss function for the

borrower is given by:

Ib(x) = min (B(x),H) =

 B(x) x < x̂

H x ≥ x̂
(6)

where x̂ = B−1(H). In other words, x̂ is the minimal equity index jump necessary to wipe out the

borrower’s equity capital, H, in the trade, and expose the lender to a loss. We will generally normalize

the consequence function and haircuts, such that they correspond to a $1 position in the risky security.

Consequently, the borrower’s leverage – or ratio of assets to equity – is given by H−1. To derive the

cost of capital for the borrower and the lender, we value the cost of insuring each party against the

losses stemming from a market failure. By MM, the sum of these dollar costs equals the cost of insuring

the unlevered strategy, (5). Therefore, the lender’s charge can be simply obtained by differencing the
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borrower’s cost of capital from (5):

ξb = πQ ·
∫ 1

0
fQ(x) · Ib(x) · dx

= πQ ·
(
H ·
(

1− FQ(x̂)
)

+ EQ [B(x) | x < x̂] · FQ(x̂)
)

(7)

ξl = ξ − ξb = πQ ·
(
EQ [B(x) | x > x̂]−H

)
·
(

1− FQ(x̂)
)

(8)

The dollar lender fee is given by the product of three terms: the probability of observing a market failure

(πQ), the likelihood that the haircut will be exhausted in the event of the market failure,
(
1− FQ(x̂)

)
,

and the expected loss to the lender as a result of the haircut being exhausted, EQ [B(x) | x > x̂]−H. The

final term is bounded between zero (no credit risk) and 1−H, where the asset loses all value conditional

on the jump, x, exceeding the threshold x̂. The latter situation describes a levered position in a binary

option (or digital tranche), where – if the index jump x causes the option to fall out-of-the-money at the

expiration date – the borrower’s capital H is wiped out, and the lender bears the remainder of the loss,

1−H.

It will also be convenient to express the lender’s fee as a percentage of the loan amount:

ξl
1−H

= πQ ·
(

1− FQ(x̂)
)
·
(
EQ [B(x) | x > x̂]−H

1−H

)
(9)

Holding risk preferences and crash distributions constant, the largest interest rate is obtained when the

third term is equal to unity. In this scenario, the lender’s charge – expressed as a continuous-time flow

rate – is given by λQ ·
(
1− FQ(x̂)

)
· dt, where λQ is the annualized risk-neutral market failure arrival

intensity. This case corresponds to financing a security that becomes worthless following a market crash

x > x̂.

To gain further intuition regarding the lender’s fee – or, equivalently, the financing rate – we can

approximate the consequence function, B(x), around the critical value, x̂, at which the borrower’s haircut

is wiped out. Assuming the consequence function is differentiable we have:

ξl ≈ πQ ·
(

1− FQ(x̂)
)
· ∂B
∂x

∣∣∣∣
x=x̂

· EQ [(x− x̂) | x > x̂] (10)

where we have made use of the fact that x̂ = B−1(H). The above approximation can also be rewritten

as:

ξl ≈ πQ · ∂B
∂x

∣∣∣∣
x=x̂

· EQ [(x− x̂)+] (11)
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This formula conveys the intuition that the lender’s exposure is captured by the likelihood of a systematic

crash, πQ, and his exposure to this crash. The exposure can be further represented as a portfolio of

call options on losses on the aggregate equity index, struck at the critical value, x̂, at which the haircut

is wiped out (third term). The “quantity” of these options is measured by the slope of the crash

consequence function, B(x), around the critical index return (second term). If the consequence function

is steep around the critical point, the lender anticipates market failures to precipitate larger losses,

resulting in commensurately higher financing rates for any given haircut level, H. As we show later,

securities such as traditional corporate bonds and structured finance securities can have significantly

different consequence function slopes around the critical point, B′(x̂), even though they share identical

credit ratings. This difference turns out to be a key ingredient in explaining the differences in the

dynamics of financing rates (and haircuts) observed for various collateral types during the credit crisis

of 2007-2008.

1.2 A convenient parametrization

In order to gain greater transparency and facilitate empirical implementation, it will be convenient

to specialize the formulas derived in the previous section to a particular case of the utility function,

U(·), and crash distribution, F P(·). Specifically, we will assume that the agent has CRRA utility with

relative risk aversion, γ, and the distribution of crashes on the market index sustained as a result of

market failure has a beta distribution with parameters (a, b). Moreover, since we have assumed that

the investor (borrower) owns the intermediary (lender) and there are no market frictions, we can carry

out valuation as if in a representative agent setting, with the agent’s wealth being wholly invested in

the aggregate wealth portfolio. With this setup, the representative agent’s wealth following a market

failure (jump), Wt(x), is given by Wt− · (1− x). The resulting risk-neutral jump probability, πQ, can be

derived by taking the expression from the previous section and dividing the numerator and denominator

by W−γ
t− to obtain:

πQ = πP ·
∫ 1

0 (1− x)−γ · fP(x; a, b) · dx
(1− πP) + πP ·

∫ 1
0 (1− x)−γ · fP(x; a, b) · dx

= πP ·
Γ(a+b)·Γ(b−γ)
Γ(b)·Γ(a+b−γ)

(1− πP) + πP · Γ(a+b)·Γ(b−γ)
Γ(b)·Γ(a+b−γ)

(12)

Conveniently, we can also show that the risk-neutral distribution of market failures is likewise a beta

distribution but with shifted parameters, (a, b− γ):

fQ(x) =
(1− x)−γ · fP(x; a, b) · dx∫ 1
0 (1− x)−γ · fP(x; a, b) · dx

=
Γ(a+ b− γ)

Γ(a) · Γ(b− γ)
· xa−1 · (1− x)b−γ−1 · dx (13)
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As a result, the mean loss in aggregate wealth resulting from the market failure can be evaluated in

closed-form under both measures from:

µP =
a

a+ b
and µQ =

a

a+ b− γ
(14)

The price of an insurance claim that completely hedges the jump risk, I(x) = x – expressed per unit

of wealth, Wt− , exposed to the jump – is given by:

ξ = πQ ·
∫ 1

0
fQ(x) · x · dx = πQ · a

a+ b− γ
(15)

A risk-averse representative agent would therefore be willing to give up a fraction, πQ ·µQ, of his wealth

to hedge the exposure to market failure risk. On the other hand, if the agent were risk-neutral the price

of jump insurance would be equal to a fraction πP · µP of total wealth, i.e. equal to the unconditional

expected loss due to market failures. The approximation of the lender’s fee, (11), can also be further

elaborated to yield:

ξl ≈ πQ · ∂B
∂x

∣∣∣∣
x=x̂

·
(

a

a+ b
·
(

1− FQ(x̂; a+ 1, b)
)
− x̂ ·

(
1− FQ(x̂; a, b)

))
(16)

2 Characterizing the Crash Distribution

The framework is based on a frictionless capital market with the exception of the crashes. In these

episodes, the market is not functioning as it normally does. The primitive feature of such an event is

that it meaningfully interferes with the market participants’ ability to dynamically eliminate their net

systematic exposure. We empirically investigate these situations from two basic perspectives. First, we

suppose that the market structure is highly robust, but information can be released overnight. While

the market is closed overnight, prices are unable to smoothly incorporate information, which creates the

possibility of a discrete move in each overnight period. This creates a type of discretization studied by

Bertsimas, Kogan, and Lo (2000, 2001) that manifests itself in hedging errors. The borrower is required

to post collateral against these hedging errors.

Second, we suppose that the market is typically robust, but that it can occasionally fail. In this

view, market failures are rare, but can be associated with large market declines.4. These are significant

4This is distinct from the “rare economic disasters” perspective of (Rietz (1988), Barro (2006, 2009)). These occur
on a considerably longer time scale than the 1-day or overnight crashes considered above, but are important in that they
significantly reduce aggregate wealth and therefore risk bearing capacity for outstanding securities. In some sense, this is
what the financial system has to survive even if the individual agents do not view this to be their own problem. Barro
(2006) estimates that the probability of these rare economic disasters is around 2% per year with a GDP contraction of

8



events because dynamic hedging strategies can be highly compromised in these situations, leading to

ruinous losses. For example, on October 19, 1987, the US value-weighted stock market index declined

17%, following a 10% decline the previous week. Many have argued that liquidity disappeared over

this period (for example, Amihud, Mendelson, and Wood (1990)), suggesting that intraday hedging was

severely impaired during this event.

To empirically identify crashes from the daily data we employ a simple threshold rule based on Z-

scores. In particular, we calculate Z-scores by scaling each return by the standard deviation of lagged

returns, in order to eliminate the effects of stochastic volatility. We then use a threshold of -6 to classify

daily returns associated with a Z-score below this threshold as crashes (Aı̈t-Sahalia (2004) motivates this

cutoff rule). The idea behind using Z-scores to identify extreme events is twofold. First, this measure

captures the idea of the crash being highly unusual relative to what was expected going into the situation.

In other words, a 5% daily return is highly surprising following 3 months of 0.5% daily volatility, but not

if recent daily volatility has been 3%. Second, to the extent that this measure is stable through time,

it represents a practical method for producing a conditional forecast of the crash distribution, since the

only input is current volatility, σt.

As noted in the previous section, we rely on the beta distribution for analytical convenience.5 The

following procedure is used to estimate a conditional crash return distribution. First, we assume that

the empirical Z-score distribution, g(Z), is stable across time. Second, we convert the empirical Z-

score distribution to a conditional crash return distribution by computing the corresponding losses as,

x = 1−exp (σt · Z). Finally, we fit a beta distribution to the conditional crash return distribution, placing

particular emphasis on matching the tails. Specifically, we assume that the largest observed Z-score cor-

responds to the p-th percentile of the population crash distribution and then select the beta distribution

parameters that minimize the squared deviations between the empirical and analytical distributions at

the median and the p-th percentile. This fitting procedure mitigates the potential of standard moment-

matching methods to underestimate the true risk of severe events, due to the historically favorable

in-sample experience of U.S. equities (“peso problem”).

In order to assign a population percentile, p, to the largest observed Z-score, we draw on extreme

value theory. According to this theory, conditional on being in the tail of a distribution, returns obey a

generalized Pareto law – a prediction which has considerable empirical support in U.S. equity return data

15% to 60%
5Our results are robust to an alternative approach in which we fit a gamma distribution to the Z-scores, and subsequently

scale it by the prevailing volatility, σt, to obtain the relevant log return distribution. In fact, it is possible to show that if
crash returns are beta distributed, the corresponding Z-scores will approximately follow a gamma distribution for modest
return realizations.
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(Gabaix (2009)). Using maximum likelihood we fit the parameters of the generalized Pareto distribution

to the extreme Z-scores and then invert a likelihood ratio test to obtain the joint confidence interval

for the parameter estimates. This also yields the corresponding confidence interval for the population

percentile, p, of the largest Z-score observed in our sample. For example, in daily data the most severe

event corresponds to a Z-score of -15.5, and the estimated 95% confidence interval for p ranges from

79% to 100%. Since lower percentile values imply the population distribution assigns significantly more

weight to events even more extreme than the worse event observed the dataset, we conservatively assign

the largest Z-score observed in-sample to the 95th percentile of the fitted distribution.

2.1 Overnight Returns for the S&P 500 Index

The return data are based on high frequency (5-minute intervals) price observations on the S&P 500

Index from 1983 through 2009 (5,300 overnight observations) obtained from TickData. We define the

overnight return for day t as the difference between the log opening price on day t and the log closing

price on day t− 1. Weekend returns are identified as those having more than one calendar day between

the opening price and the previous closing price. Prior to 2008, the minimum overnight return is -2.4%

and since then it is -5.9%. This already suggests that the contribution of this phenomenon to observed

lender financing rates is likely to be small since the lender is unlikely to sustain a loss from crashes of

these magnitudes.

The overnight Z-scores are calculated by scaling the overnight return by volatility. Volatility is

calculated from the previous 390 intraday returns (5 trading days) and scaled in two ways to account

for the time elapsed overnight. The first scaling is by the square root of the elapsed calendar time in

the overnight period. The second scaling accounts for the elapsed effective time in the overnight period.

Consistent with previous research, we find that the elapsed effective time overnight is considerably

less than the elapsed calendar time (see French and Roll (1986), Amihud and Mendelson (1987), and

Lockwood and Linn (1990)). We find that, on average, roughly 30% of a trading day’s return volatility

is realized in the overnight return, while accounting for 73% of the elapsed calendar time. Despite

the additional calendar time inherent in weekends, we find that these periods contribute no more than

ordinary overnight periods to realized return volatility, on average. In our analysis we assume that the

effective time in overnight and weekend period is equal to 150 minutes, such that the equivalent of 540

minutes of trading time elapses in a trading day (time between consecutive market closings). There

are no overnight returns associated with a Z-score below -6 using either scaling rule, indicating that no

overnight crashes have been realized in the S&P 500 Index since 1983.
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2.2 Daily Returns on the Value-Weighted Market Index

The daily return data come from CRSP and are based on the value-weighted index of US stocks from

1926 through 2010 (22,527 observations). We scale each daily return by the standard deviation of the

past 63 returns (3 months) to calculate a Z-score. Again, we then use a threshold of six to classify daily

returns associated with a Z-score below this threshold as crashes.

Figure 1 displays the time series of daily returns, volatility, and Z-scores. October 19, 1987, was only

1 of 19 days where the realized daily loss on the stock market was associated with a Z-score below -6. Six

of these events have occurred in the last third of the sample period, including the most severe, consistent

with the notion that the empirical “crash” distribution is reasonably stable and not much altered in

the modern era. This empirical crash distribution implies an annual crash probability of nearly 20%

(1− (1−p)252 = 19.15%; where p = 0.0009 = 19
22527); the corresponding annualized crash intensity equals

λP = 0.2126.

The calibration, where matching the tails is given high priority, takes as inputs the empirical Z-score

distribution and the prevailing volatility. Table 1 reports the calibrated beta distribution parameters for

a range of index volatilities, set on the basis of the percentiles of the CBOX VIX index time series. By

construction, log crash returns scale linearly with the prevailing volatility in our framework. This feature

is typical of many jump-diffusion option pricing models used in the equity option literature (e.g. Bates

(2000), Pan (2002)). As a result, the standard deviation of crash losses, x, grows roughly linearly with

volatility, such that the jump share of variance is essentially constant. For moderate levels of volatility,

the 95th percentile crash size – conditional on volatility – is approximately equal to the current level of

annualized volatility. Figure 2 displays the calibrated daily crash return distribution at an annualized

volatility of 15%, which we will take as our baseline in many of the analyses that follow, as well as at

35%. For comparison, the bottom panel also displays the crash distributions obtained by applying a

standard maximum likelihood fitting procedure.

2.3 Implications for aggregate quantities

The presence of a jump component in the return dynamics in the aggregate equity index, influences

the total equity volatility and risk premium. The contribution of the shock to the instantaneous index

return variance – which is comprised of the diffusive return variance (σ2
t ) and jump return variance – is
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given by:

VarP
[
x · dJ(λP)

]
= πP ·

(
a · (a+ 1)

(a+ b+ 1) · (a+ b)

)
−
(
πP
)2
·
(

a

a+ b

)2

≈ a · (a+ 1)

(a+ b+ 1) · (a+ b)
· λP · dt (17)

As argued in the previous section, the parameters of the beta distribution, (a, b), will generally themselves

be time-varying and depend on the level of the diffusive volatility, σt. A noted earlier, the contribution of

discontinuous moves to total (instantaneous) quadratic variation – measured as a ratio of jump variance

to total quadratic variation – is roughly constant in our model (Table 1). With a diffusive volatility of

15% (35%) the total index volatility is roughly equal to 15.44% (35.89%).

In a jump-diffusion setting the total equity risk premium will be comprised of compensation for

diffusive risk, and a premium for jump risk. In a standard CAPM setting the compensation for diffusive

risk is equal to γ · σ2
t . However, since our setting focuses explicitly on jump risk, this component of the

risk premium plays no role in the paper’s results. The contribution of jumps to the equity risk premium

is measured by the difference in the expected excess return to bearing jump risk, and is given by:

φrp = πQ · a

a+ b− γ
− πP · a

a+ b
≈
(

Γ(a+ b) · Γ(b− γ)

Γ(b) · Γ(a+ b− γ)
· a

a+ b− γ
− a

a+ b

)
· λP · dt (18)

For example, with a risk aversion, γ, of 2.5, and a baseline volatility of 15%, the diffusive risk premium

would be equal to 5.62% per year, with jump risk contributing an additional 41 basis points. Unlike

the share of jumps in total variance, the contribution of the jump risk premium in the total equity risk

premium is increasing in the level of diffusive volatility (unreported results).

3 The Crash Risk Cost of Capital for Various Securities

This section uses the model derived in Section 1 to investigate financing arrangements – haircut and

spread pairs – for equities and fixed income securities (corporate bonds and structured finance assets). A

key ingredient in this analysis are the crash consequence functions, B(x), of these assets. These functions

describe the change in the value of the asset in response to a market decline of magnitude, x. In general,

the change in the value of the asset depends on the crash magnitude through two channels: (a) its effects

on the state-contingent payoff function; and, (2) its effect on state variables that affect state prices. In

our case, the the state variables are the equity market volatility, σm(x), the the aggregate risk aversion

(which will be held constant throughout). Therefore, a generic crash consequence function will have the
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form:

B(x) = V (t, x, σm(x), γ)− V
(
t−, x = 0, σm(x = 0), γ

)
(19)

In the case of equities, which we use to introduce the framework, we will specify the crash consequence

function directly using a market model. In the case of fixed income securities, which constitute the bulk

of the assets used in repo markets, we construct the crash consequence functions by separately describing

the asset-specific payoff functions and state prices. This allows us to investigate in greater detail, which

state-contingent payoff profiles are likely to enhance collateral stability, which we define as low volatility

in spread-haircut pairs over the range of state variables. Finally, we illustrate how the use of simple

rules of thumb – e.g. based on credit ratings – can lead to situations where securities are financed at

incorrect spreads/haircuts, creating a motive for borrowers to hold mispriced assets.

Our focus is exclusively on the robustness of the asset value to rare, but generally large, market

crashes, which we identify using the procedure in Section 2. In this setting, collateral haircuts are

applied by lenders in order to mitigate their exposure to aggregate crash risk. This contrasts with

approaches that examine collateral in the context of daily mark-to-market volatility, or liquidity risk.

Given the central role of collateralized lending in capital markets, ensuring their robustness in time of

severe market stress is likely to be of interest to regulatory agencies.

3.1 Equity

Investing in individual equities on margin represents a prototypical strategy involving lender financing

and exposure to aggregate equity risk. We describe each stock using its beta to the aggregate index, β,

which is assumed to apply identically to diffusive and jump shocks. The consequence function for a $1

investment in the equity, B(x), is given by:

B(x) = exp {β · ln(1− x)} − 1 = (1− x)β − 1 (20)

This specification preserves the limited liability of the investment in the individual security, and ensures

that a zero percent index return is equal to a zero percent return on the individual security. Moreover,

when β = 1 the equity consequence function is equal to −x, i.e. the index loss. The cost of insuring

losses on this strategy, I(x) = −B(x), is given by:

ξ = πQ ·
(

1− Γ(a+ b− γ) · Γ(b+ β − γ)

Γ(b− γ) · Γ(a+ b+ β − γ)

)
(21)
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Now suppose the investor establishes a levered position in the equity by posting collateral, H, and

borrowing the balance of the $1 purchase price from an intermediary. Given the collateral choice, H,

the critical index return at which losses on the levered equity position exceed the collateral is:

x̂ = 1− (1−H)
1
β (22)

The comparative statics for x̂ are illustrated in Figure 3. Panel A shows the critical crash size that

exhausts the borrower’s capital as a function of the underlying equity beta for three different margin

rules. Reg T margin requires a collateral haircut of 50% to initiate an equity position. Portfolio margin

requires a collateral haircut of 25% for individual equities and 10% for a broad highly capitalized equity

index. For an individual equity with a market beta of 1, a lender extending leverage under portfolio

margin is completely protected against crashes until the crash size exceeds 25%. Empirically, market

betas for individual equities are rarely reliably larger than 2. For a stock with a market beta of 2, the

lender is crash protected until the crash size exceeds 13.4%. Panel B shows how x̂ varies as a function

of the collateral haircut for three equities with different market betas. When market beta is 1, there is

a one-for-one tradeoff between collateral and crash protection for the lender. The lender is protected

against larger (smaller) crashes when the stock’s market beta is less (larger) than 1.

The cost of insuring the levered investment can be obtained by applying (7):

ξb = πQ ·
(
FQ(x̂; a, b− γ)− Γ(a+ b− γ) · Γ(b+ β − γ)

Γ(b− γ) · Γ(a+ b+ β − γ)
· FQ (x̂; a, b+ β − γ) +

+H ·
(

1− FQ (x̂; a, b− γ)
))

(23)

The (up-front) fee paid by the borrower to the lender for providing financing can then be obtained as

the difference between the cost of insuring the unlevered strategy and the cost of insuring the losses on

the levered investment, ξl = ξ − ξb. This quantity is typically quoted in term of an interest rate (or

spread), which can be obtained by expressing ξl as a fraction of the loan amount, 1−H.

In order to derive the cost of capital for the borrower and lender, we first need to compute the dollar

loss each party expects to sustain as a result of market failure. These quantities can be obtained by

using the formulas above, but setting γ = 0, since a risk-neutral agent would simply charge the expected
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loss:

ξ∗ = πP ·
(

1− Γ(a+ b) · Γ(b+ β)

Γ(b) · Γ(a+ b+ β)

)
(24)

ξ∗b = πP ·
(
F P(x̂; a, b)− Γ(a+ b) · Γ(b+ β)

Γ(b) · Γ(a+ b+ β)
· F P (x̂; a, b+ β) +H ·

(
1− F P (x̂; a, b)

))
(25)

The cost of capital to each party is then given by:

φb =
ξb − ξ∗b
H

and φl =
ξl − ξ∗l
1−H

(26)

Note that – unlike the interest rate (or spread) on the margin loan – the lender’s cost of capital is

adjusted for losses sustained due to insufficient collateral coverage. In other words, the lender must

charge a spread that grosses up the cost of capital to cover expected losses.

We now use this framework to investigate the properties of the crash component of the cost of capital

for equities. Figure 4 shows the crash component of the cost of capital for equities with various market

betas and demonstrates how the portfolio margin rule (H = 25%) adjusts the cost of capital for the

lender and the borrower. For a stock with a market beta of 1, the security-level (unlevered) cost of

capital is 39 bps and increases nearly linearly with market beta, reaching 73 bps for a stock with market

beta of 2. With this relatively high collateral haircut, the borrower bears the majority of the crash

exposure until market beta gets very high, and consequently has a relatively high cost of capital. The

borrower’s cost of capital is 154 bps for a stock with a market beta of 1 and 281 bps for a stock with

a market beta of 2. The lender’s margin loan is nearly riskfree over the empirical range of stock betas

(0-2), producing lender costs of capital of less than 1 bp for stocks with a market beta of 1 and of only

4 bps for stocks with a market beta of 2. As the market beta increases above 3, the lender bears more

of the crash risk so the borrower’s cost of capital increases slowly with beta above 3, while the lender’s

cost of capital increases more quickly.

Panel B of Figure 4 decomposes the lender’s cost of capital into an expected loss rate and a financing

spread charged on the margin loan. The idea is that to earn the cost of capital, the lender must charge

an interest rate that covers the expected losses. The plot makes clear that over the empirical range

of market betas, the lender’s margin loan is nearly riskfree, but that if a very high beta security was

available the loan would become quite risky.

In practice, it is unusual for a lender to charge interest rates for margin loans against stocks as a

function of market beta. Rather, a single margin loan interest rate applies to all stocks, subject to a

minimum collateral haircut. We can easily investigate how such a rule of thumb distorts the borrower’s
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expected return. Panel C of Figure 4 describes the borrower’s expected return in the situation where the

lender uses a rule of thumb to set the interest rate on the margin loan. Rather than properly applying

the schedule of interest rates based market beta, the lender charges a single interest rate of 25 bps for

all stocks. The effect of the constant interest rate on margin loans against stocks with different market

betas reduces the borrower’s expected return on low beta stocks and increases it on high beta stocks.

Interestingly, over the empirical range of market betas this rule of thumb is not very distortive. However,

if one was to find a very high beta stock, such a rule of thumb would provide a large financing benefit

to the borrower.

The collateral haircut governs how the cost of capital is adjusted for the lender and the borrower.

Panel A of Figure 5 shows the proper schedule of lender financing rates for stocks with various market

betas as a function of the collateral haircut. As demonstrated earlier, with a haircut of 25% margin loans

are nearly riskfree for stocks with market betas that are not too large. At this collateral level interest

rate spreads are under 50 bps even for stocks with a market beta of 2 and under 1 bp for stocks with

market beta of 1 and below. As collateral haircuts fall from this level, proper interest rates begin to

increase, more rapidly the higher the market beta. This suggests that a borrower facing a lender relying

on a rule of thumb margin loan interest rate will have a powerful incentive to negotiate slightly lower

collateral haircuts, especially for high beta securities. Panel B of Figure 5 demonstrates this effect by

plotting the borrower’s financing alpha (difference between the expected return under the lender’s rule

of thumb interest rate of 25 bps and the proper cost of capital) as a function of collateral. A very small

reduction in the collateral haircut creates a huge financing benefit for the borrower when holding high

market beta securities.

Finally, we examine the effect of changes in volatility. All of the analyses so far have relied on market

volatility of 15%. As volatility changes, the crash distribution is altered. While the crash frequency

is assumed to be constant, higher volatility increases the crash size since we assume that crashes are

constant in Z-scores. We construct a proper schedule of margin loan interest rates as a function of

volatility, holding collateral haircuts constant (Panel A of Figure 6). With Reg T haircuts, the margin

loans remain quite safe for the lender as annualized daily volatility increases to 50%. With lower collateral

haircuts the proper margin loan interest rates climb significantly with volatility. We also calculate the

schedule of proper required haircuts, holding margin loan interest rates constant (Panel B of Figure 6).

This highlights the dependence of the interest rate/collateral haircut pair on volatility and may partially

explain why interest rates and haircuts increased across the board throughout 2008.
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3.2 Corporate bonds and structured collateral

In this section we consider the cost of financing the purchase of corporate bonds and corporate asset-

backed CDO tranches. In order to characterize the crash consequence functions, B(x), for these two

collateral types we require a valuation model that allows us to describe security values as a function of

the crash size, x. To do this we use a modified version of Merton’s (1974) structural model of credit,

which includes a common, market factor driving asset returns of various firms, introduced in Coval,

Jurek, and Stafford (2009a). This framework will allow us to compute the state-contingent payoffs for

bonds, bond indices, and CDO tranches, P(m,x), as a function of the level of the market index at

maturity, m, before and after a crash of size, x. To complete valuation we also require a set of Arrow-

Debreu prices (Arrow (1964), Debreu (1959)) in the pre- and post-crash states, A(m,x), against which

the state-contingent payoffs will be integrated. The crash consequence function, B(x), is then simply the

change in the asset value resulting from a market crash, x:

B(x) =

∫
P i(m,x) · A(m,x) · dm−

∫
P i(m,x = 0) · A(m,x = 0) · dm (27)

3.2.1 State prices

Coval, Jurek, and Stafford (2009a) compute a new set of state-prices for each day in their sample by

fitting implied volatilities on five-year equity index options. Their approach produces an expression that

adjusts the standard formula for Arrow-Debreu state prices (Breeden and Litzenberger (1978)) for the

existence of a implied volatility skew. Because our focus here is not a time-series analysis of the pricing

of structured products we will simplify the computation of Arrow-Debreu prices by using the formula of

Breeden and Litzenberger (1978). Given a market volatility, σm(x = 0), state-prices corresponding to

each terminal value of the equity index can be computed from:

A(mτ , x) =
e−rf ·τ · d2

σm(x) ·
√
T · emτ

(28)

where:

d1 =
−mτ + σm(x)2

2 · τ
σm(x) ·

√
τ

and d2 = d1 − σm(x) ·
√
τ (29)

To simplify notation, we have also defined the log moneyness, mτ , as the natural logarithm of the ratio

of the terminal market index level, MT , to the time t futures price, Mt · exp ((rf − δm) · τ). rf is the

risk-free rate, δm the market dividend yield, and τ the time to maturity. In our empirical calibration,
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we set τ = 5 years, matching the maturity of the Dow Jones North American Investment Grade Index,

rf = 2.5% and δm = 1.5%.

We also need a set of state prices that prevail following a crash of size, x. Since state prices are

parameterized by the level of market volatility, σm(x), this requires taking a stand on the post-crash

level of option-implied volatilities. To maintain parsimony we assume that option-implied volatilities

exhibit a constant elasticity relative to the log index return (crash), such that the post-crash volatility

is given by:

σm(x) = σm(x = 0) · exp (ζ · log(1− x)) (30)

Since the bonds and tranches we examine have maturities of approximately five years, we are interested

in estimates of the elasticity, ζ̂, of the five-year option-implied volatilities, rather than a short-dated

measure of implied volatility, such as the CBOE VIX index. Using weekly data from January 2003

through June 2009, we estimate the elasticity of the 5-year at-the-money option implied volatility to be -

0.37 (t-stat: -7.63). By comparison, the elasticity of the VIX index – which is based on short-dated equity

index options – is -2.86 (t-stat: -17.61).6 In the empirical applications we set the elasticity parameter,

ζ, equal to -0.40, and σm(x = 0) equal to the five year option-implied volatility corresponding to each

day. Whenever objective measures of long-dated volatility are required, we scale the option-implied

volatilities by 80% to remove the effect of the volatility risk premium.

3.2.2 State-contingent payoffs

To derive state-contingent asset payoffs, as a function of the aggregate equity index level, we modify

Merton’s (1974) structural model of credit to include a common factor driving asset returns of various

firms. Each firm is assumed to be characterized by a triple of parameters: the asset beta (βa), the

debt-to-asset ratio (DA ), and idiosyncratic asset volatility (σe). The state-contingent default probabilities

and expected payoffs can then be expressed as a function of the (log) terminal moneyness, mτ . With

τ = T − t periods left until maturity, the state-contingent default probability for an individual bond is

then given by:

pD(mτ ) = Prob
[
ÃT (mτ ) < D

]
= Φ [−η(mτ )] (31)

6Elasticity estimates based on daily data are -0.29 (t-stat: -14.84) for the five-year option implied volatility, and -3.23
(t-stat: -42.54) for the VIX index.
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where:

η(mτ ) = −
ln D

At
− (rf · τ + βa ·mτ )

σε ·
√
T

, (32)

Conditional on default the terminal asset value – on which the bond recovery is based – can be derived

as a function of the terminal moneyness, mτ :

Et

[
ÃT (mτ ) | ÃT (mτ ) < Di

]
= At · exp

(
rf · τ + βa ·mτ +

1

2
· σ2

ε · τ
)
· Φ [−η(mτ )− σε ·

√
τ ]

Φ [−η(mτ )]
(33)

It is common to assume that a fraction, ν, of the terminal asset value is lost to bankruptcy costs (Leland

(1994)). For example, in order to fit the data, Cremers, Driessen, and Maenhout (2009) need bankruptcy

costs to be approximately equal to 50% of the terminal asset value. Finally, we can write the expected

state-contingent payoff for an individual bond as:

PBond(mτ ) = 1−

1−
(1− ν) · Et

[
ÃT (mτ ) | ÃT (mτ ) < D

]
D

 · pD(mτ ) (34)

Tranches are derivative claims, whose payoffs derive from the value of of the underlying bond portfolio.

A tranche is characterized by two attachments points, [X,Y ]. The lower attachment, X, point defines the

largest portfolio loss that will not impair the tranche payoff; the upper attachment point, Y , describes the

portfolios loss at which the tranche value is completely wiped out. In order to derive the state-contingent

tranche payoffs we will make a convenient simplification and assume that the underlying portfolio is

infinitely diversified (N → ∞), and comprised of identical bonds. The large, homogenous portfolio

(LHP) assumption implies that the bond portfolio payoff converges in probability to the expression

derived above, and the tranche payoff can be obtained by simply applying the contractual tranche terms

to (34):

P [X,Y ] (mτ ) = 1− 1

Y −X
·
(

max
(

(1−X)− PBond(mτ ), 0
)
−max

(
(1− Y )− PBond(mτ ), 0

))
(35)

In our empirical analysis we focus on two assets: AA-rated corporate bonds – the highest rated

class on bonds for which there is a reliably broad cross-section of data available – and a [7, 10] tranche

referencing the Dow Jones North America Investment Grade index (CDX.NA.IG). The CDX.NA.IG

index is comprised of the debt of 125 issuers with an average rating between BBB+ and A-, such that

only sufficiently senior tranches are expected to garner high credit ratings. Finally, rather than calibrate

19



new model parameter values for both securities on each day we will use the time-series means reported

in Table VI of Coval, Jurek, and Stafford (2009a). In particular, we fix the parameters for a typical

AA-rated bond at βa = 0.85, DA = 0.19, and σe = 0.31; and for the “average” security in the CDX.NA.IG

index at – βa = 0.74, D
A = 0.34, and σe = 0.27.

To compute the state-contingent bond and tranche payoff functions following a crash of magnitude x,

we proceed as follows: (1) update the level of aggregate market volatility by using the constant elasticity

of volatility specification described earlier; (2) scale the idiosyncratic volatility estimate, σe, by the ratio

of the post-crash market volatility, σm(x), to the baseline volatility (0.15), in order to ensure that asset

betas remain unchanged; and, (3) compute the post-crash debt-to-asset ratio as follows:

D

At(x)
=

D

At−
· exp (−βa · log (1− x)) (36)

The updated state contingent asset payoffs, P i(m,x), are then obtained by applying the formulas, (34)

and (35), and valuation is completed using the post-crash state prices, A(m,x).

3.2.3 Calibration results

In early 2007, the credit spreads on AAA-rated corporate bonds and the [7, 10] tranche of the CDX.IG

were nearly the same. While not formally rated, the [7, 10] tranche was considered by practitioners to be

the junior most CDX tranche that would be rated AAA. The similar ratings imply that the unconditional

expected losses for these two securities are essentially the same. However, the state-contingent payoff

functions for similarly-rated bonds and tranches can be quite different. Panel A of Figure 7 displays

the calibrated state-contingent payoff functions for a corporate bond that was rated AA and the [7,

10] tranche of the CDX.NA.IG. The primary way in which these securities differ is that the tranche

concentrates its losses in worse economic states. A consequence of this state-contingent profile is that

the drop in expected payoff as economic conditions deteriorate is steeper and approaches with a smaller

shock. Therefore, the quality of the tranche as collateral against crashes is inferior to that of the bond.

For example, holding the haircut constant, the crash size that exhausts the collateral is always smaller

for this tranche than for the bond. Similarly, the necessary haircut for the lender to be protected against

a crash of size x is always larger for this tranche than for the bond, as illustrated in Panel B of Figure 7.

The different crash exposures between these two similarly-rated securities suggest that the proper

schedules of collateral haircuts/financing spreads should be different. These differences should be espe-

cially acute when financing spreads are very low or when haircuts are very low. Panel C of Figure 7 plots

the proper financing spread as a function of collateral haircut for the bond and tranche. With relatively
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high collateral levels, the margin loans supporting both the bond and tranche are close to riskfree, com-

manding negligible financing spreads. Even with very low collateral levels, the margin loan supporting

the bond is nearly riskfree. However, the margin loan supporting the tranche becomes considerably more

risky at low collateral haircuts and should command a noticably higher financing spread.

To the extent that the financing spreads for tranches are set based on the proper spreads for similarly-

rated bonds (i.e. much too low when haircuts are small) the investor in the tranche receives a highly

valuable financing benefit. As we did earlier, we calculate the borrower’s financing alpha as the difference

between the borrower’s expected return under the lender’s imperfect financing rule and the proper cost

of capital. The lender’s rule of thumb rule is to charge a single financing spread to both bond and

tranche investors based on the proper financing spread for a bond with a haircut of 10%. Panel D in

Figure 7 shows the magnitude of the borrower’s financing alpha as a function of collateral. For very low

collateral haircuts, the borrower’s expected return due to this financing benefit becomes enormous.

4 Model Implications

The contribution of this paper is to highlight how differences in systematic risk exposures and vari-

ation in the aggregate quantity of risk, can combine to produce extreme changes in the crash risk cost

of capital for a variety of common security types, and consequently to spreads and haircuts associated

with collateralized loans against these securities. These effects manifest themselves even in the absence

of asymmetric information, liquidity costs, agency concerns, or time-varying risk aversion.

Within our framework, every financing contract is characterized by a haircut, H, and a fee, ξl (or

interest rate) that has to be remitted to the lender in order to compensate him for bearing losses in

excess of the haircut. As the haircut is varied, the lending rate (or spread over the riskfree rate) adjusts

to reflect differences in risk-sharing, producing a schedule of haircut-spread pairs between which the

agents are indifferent at initiation of the loan. As the aggregate quantity of risk – the state variable –

changes over time, this financing agreement has to be renegotiated. In financial markets, renegotiation

can be accomplished relatively easily, as most collateralized lending is overnight. Although borrowers can

select from a continuum of new haircut-spread pairs, in practice, there seems to be significant interest in

contracts that do not require significant ex post adjustments to the financing terms as market conditions

change. For example, Gorton and Metrick (2009) interpret the large rise in haircuts for structured

securities during the 2007-2008 credit crisis as a panicked “run on repo,” suggesting that haircut stability

is of central importance to market practitioners. This raises the question of what constitutes “good”

collateral, and what is necessary to ensure the stability of spreads and haircuts?
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4.1 Stress tests

Our analytical framework enables us to explore how the financing terms for various types of securities

are expected to adjust in response to changes in the level of the state variables controlling the distribution

of aggregate jump sizes and their pricing. In the model, these variables are the aggregate volatility and

risk aversion (assumed to be constant). We consider two polar “stress test” scenarios: in the first, the

haircut is held fixed, and the spread is allowed to vary; in the second, the spread is held fixed, and the

haircut adjusts. To the extent that market participants wish to keep spreads low and stable, this exercise

can be used to pin down the minimal necessary haircut (e.g. to keep spreads below 50bps across the

desired state variable range).

The simplest conceivable financing arrangement occurs when the maximum crash size is bounded at

x∗. If the haircut is fixed at any value greater than or equal to B(x∗), the lender’s sensitivity is equal to

zero (i.e. he bears no risk). Portfolio margin or risk-based margin rules can be viewed as operating in this

way. For example, under portfolio margining the required haircut is assigned to all assets within a class

based on the losses expected in the event of an underlying price move of ±y%, where y is determined

based on the maximum of an absolute return shock and the return associated with some critical Z-score

value.7 More generally, when the crash magnitude is not bounded, the lender is exposed to the risk of

loss, for which he charges a spread depending on the posted haircut.

In Figure 8 we report the results of a stress test conducted on the AA-rated bond and the [7, 10]

CDX.NA.IG tranche described earlier, as well as for a hypothetical [7, 100] CDX.NA.IG tranche. The

first row of the figure plots the proper financing spreads at three different haircut levels, while the second

row shows the proper haircuts at three different financing spreads, all as a function of current annualized

stock market volatility. There are two important messages from this analysis. First, the bond represents

good collateral, while the equivalently rated [7, 10] tranche does not. In fact, the [7, 10] tranche is

expected to require a 100% haircut when volatility exceeds approximately 40%. Second, the hypothetical

[7, 100] CDX.NA.IG tranche would be good collateral.

The analysis also highlights that reliance on credit ratings as a basis for collateral haircuts is prob-

lematic, if it is desirable to have stable spreads across economic conditions. While both of the securities

in the previous analysis would have ex ante received a rating of AA, they exhibit very different financing

term dynamics. Credit ratings encourage simplified imperfect collateral haircut/spread schedules that

are likely to implicitly assume that all securities within a rating category share similar crash exposures.

7This approach parallels the intuition of portfolio value-at-risk computations. For example, under a Gaussian distribu-
tion, the 99.99% VaR corresponds to a critical Z-score value of -3.72. For index options, typical broker rules are based on
the maximum of an underlying price move y of +6%/-8%, and the return implied by a critical Z-score value of -5.
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As emphasized by Coval, Jurek, and Stafford (2009b), credit ratings do not focus on state-contingent

risk profiles. As we demonstrated above, the expected recovery value conditional on a market crash can

be highly time varying and meaningfully different across similarly-rated securities.

4.2 Financing terms during the credit crisis

Gorton and Metrick (2009) report some statistics on average repo rates and haircuts for a wide range

of securities throughout the financial crisis applicable for broker-dealers. Despite their name, the broker-

dealers were functionally the investors in these securities who largely financed themselves in the repo

market. Table 2 compares the repo spreads and haircuts for AAA-rated CDOs and corporate bonds,

as reported in Gorton and Metrick (2009), to our model-implied funding schedule. In the first-half of

2007, AAA-rated CDO tranches had a collateral haircut of 0% and a financing spread of 7 bps. This

is clearly inconsistent with the model. With no haircut, the financier is bearing the crash risk and

should be collecting the full crash risk premium. For many highly-rated CDO tranches, the unlevered

annualized crash risk premium was large. For instance, according to this analysis the [7, 10] CDX.NA.IG

tranche should have earned an average crash risk premium of 82 bps over the first half of 2007. The repo

market’s funding schedule in the pre-crisis period helps reconcile the view that some of the highly-rated

CDO tranches were simultaneously overvalued and kept on the balance sheets of the broker-dealers. The

transaction alpha of selling the overpriced securities was considerably smaller than the financing alpha

available by holding on to them.

In the second half of 2007, collateral haircuts on AAA-rated CDO tranches averaged 8.3% and the

associated financing spreads averaged 108 bps, according to Gorton and Metrick (2009). In 2008, hair-

cuts for these securities averaged 53.5% with average financing spreads of 232 bps. The large increases in

haircuts and financing spreads suggest that the effective financing rule used in repo markets is a function

of market volatility, consistent with the predictions of our framework. We can illustrate how the signif-

icant increase in volatility over this period translates into model-implied haircuts/spreads for the bond

and tranche described earlier. Specifically, we construct a proper schedule of collateral haircuts/margin

loan spreads as a function of volatility (0.8 x VIX). In Figure 9, we plot the time series of the minimum

required haircuts for the bond and tranche from 2007 through 2009 for a lender charging a constant

financing spread of either 25 bps or 250 bps. With a financing spread of 25 bps, the proper haircut for

the bond never exceeds 20%, while the proper haircut for the tranche rises from an initial level near

zero, peaking over 100% at the height of the crisis.
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4.3 Robust repo collateral

We can develop intuition for the safety of a collateralized loan from the approximation of the lender’s

dollar charge (11). This formula highlights that the slope of the crash consequence function around

the index level at which the lender sustains losses, x̂, plays a key role in determining the level – and

dynamics through time varying volatility – of borrowing rates. For equities, this slope can be linked

to equity betas, which typically range between 0 and 2; although in principle, stocks with higher betas

could be created. For credit instruments, the market practice has been to link this exposure to credit

ratings. However, as demonstrated in Coval, Jurek, and Stafford (2009a) the systematic risk profiles

of similarly-rated securities can be quite different. Unlike highly-rated corporate bonds, for which the

sensitivity, B′(x̂), is modest due to the the typically high recovery values, the slope can be very large

for many types of structured finance securities. Figure 10 plots the crash sizes at which haircuts are

exhausted (x̂) for the tranches of the CDX.NA.IG that were considered equivalent to being AAA-rated.

Only the [30, 100] tranche has lower crash exposure than the underlying asset pool. With small haircuts,

the mezzanine tranches shift much of the crash risk onto the lender. This translates into dramatically

different spread/haircut dynamics when these securities are used as collateral.

Figure 10 also plots the crash sizes at which haircuts are exhausted for various hypothetical senior

tranches. All of these represent good collateral. Because, in practice, many tranches were constructed

to be relatively thin (e.g. [7, 10] instead of [7, 100]), the rate at which the lender incurs losses after the

borrower haircut is exhausted is extremely fast. Put differently, in order to ensure stable spreads when

these types of structured securities are used as collateral, haircuts must be significantly larger than for

identically rated bonds. Another alternative is to make tranches wider to ensure that the rate at which

the lender’s loss given default grows with the crash size is mitigated.

Most of the securities for which large swing in haircuts were observed during the credit crisis of

2007-2008 – AAA RMBS/CMBS, subprime MBS, CLOs, and CDOs – have crash consequence functions

that are very steep around modest crashes, i.e. low recovery values in the event of a crash. As such, the

large increase in haircuts is not surprising when viewed from the perspective of our framework, given

the large concurrent increases in equity market volatility. In particular, we have shown that highly-

rated mezzanine tranches of a CDO consisting of investment grade corporate bonds are poor collateral,

because there is a real chance they will lose all of their value in a crash. Resecuritizing these tranches in

a second-generation CDO does not resolve this issue; a super-senior [30, 100] tranche of a re-securitized

pool of [7, 10] mezzanine tranches on investment grade corporate bonds, would be poor collateral for the

same reason. However, the stability of spreads/haircuts can be increased considerably by increasing the
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tranche width. A [7, 100] tranche could in fact be financed with a stable haircut and spread during this

period, precisely because its recovery value in the event of a crash remains high.

It is generally hard to find corporate bonds with very low expected recovery values and a high

probability of default. If these were to exist, they would likely have a systematic risk profile somewhat

similar to a mezzanine CDO tranche, where a modest economic downturn eliminates their entire value.

Even a super-senior tranche of a CDO with these types of bonds would represent poor collateral as the

entire asset pool can go to zero. While corporate bonds of this type do not exist, subprime mortgages

share many of these qualities. Highly levered home borrowing, limited prospects of paying off the

loan without continued house price appreciation, and generally large costs associated with liquidating

real estate collateral, combine to produce rapidly declining values as a function of aggregate economic

conditions. Moreover, since these loans tended to be issued in areas with relatively high price-to-rent

ratios, convergence to average price-to-rent ratios would further adversely affect the recovery value

in default (Las Vegas, Florida, and California). As a result, subprime mortgages exhibit the central

feature of unstable collateral – a steeply sloped crash consequence function even in the vicinity of small

economic shocks. Securitizations of these products (e.g. RMBS, or CDOs of subprime RMBS) inherit

these systematic risk profiles, and would also be expected to constitute unstable collateral.

4.4 State-contingent adverse selection

The striking change in repo market financing terms over the course of the credit crisis has been

attributed to an increase in the “information sensitivity” of the collateral - typically debt instruments -

which spurred concerns about adverse selection (Holmström (2008), Gorton and Metrick (2009), Dang,

Holmström, and Gorton (2010)). These authors argue that following the initial deterioration in macroe-

conomic conditions, an increased incentive to produce information led to a large decline in trade, or a “run

on repo.” This interpretation is based on the premise that the majority of the relevant state-contingent

uncertainty is idiosyncratic, and in such a setting, information asymmetry creates the potential for ad-

verse selection. However, the focus on idiosyncratic risks is more appropriate in a firm-level security

analysis, rather than for the diversified pools of assets (ABX, CDX), and derivatives thereon (CDO,

CDO-squared), that were at the center of the crisis. In the limit of complete diversification (e.g. an

index), there is no value to private information gathering and adverse selection plays no role (Sub-

rahmanyam (1991), Gorton and Pennacchi (1993)). In this case, the only remaining component is the

state-contingent mean payoff profile of the asset class (Figure 7; top left panel), reflecting its fundamental

(or systematic) risk exposure. Without explicitly accounting for the systematic risk exposures of these
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securities, claims about the relevance of state-contingent adverse selection are difficult to interpret, and

map into actual circumstances.

The analysis in this paper suggests that the highly non-linear systematic risk exposures, especially for

highly-rated mezzanine CDO tranches, can account for the dynamics of repo market haircuts, even in the

absence of any frictions. To the extent that additional asymmetric information concerns were present,

it is useful to distinguish whether they were related to idiosyncratic or systematic payoff uncertainties.

Traditionally, the domain of adverse selection is asymmetric information over idiosyncratic risks. Asym-

metric information over systematic risk exposures is better described as an investor mistake (Gennaioli,

Shleifer, and Vishny (2010)), or perhaps, ignorance. For example, Coval, Jurek, and Stafford (2009a,b)

present evidence consistent with the observation that investors did not fully appreciate the nature of the

underlying systematic risks in structured securities and the extreme sensitivity of CDO-squared struc-

tures to small changes in the underlying asset pool that the second generation CDO was referencing.

As a result of the repricing that took place during the credit crisis, many of these investors may well

have recognized their error and stepped away from trading in these securities. However, this represents

a channel distinct from the state-contingent adverse selection mechanism implicit in the claims of a “run

on repo.”

Our analysis begins with the notion that the securities used as collateral are priced correctly. An

alternative view is that some structured securities were mispriced ex ante. Because mezzanine CDO

tranches are highly-levered derivatives, they create a powerful incentive to become informed about the

assets in the underlying portfolio. If one suspected that the underlying assets were significantly mispriced,

tranches referencing this pool would inherit this mispricing, and be prone to extreme revaluations due to

their built-in leverage. For example, suppose an asset pool was priced at par, but had a true value of only

75% of par. The most junior 25% of any CDO referencing that pool would be worthless ex ante. Moreover,

the entire capital structure of a second-generation CDO built around tranches of the bottom 25% of the

initial CDO would also be worthless ex ante. An investor with private information about the value of the

collateral pool who sold the [7, 10] tranche (or any tranche of the CDO-squared), would be guaranteed

a risk-free return. In this situation, there is no role whatsoever for state-contingent adverse selection in

the subsequent revaluation of the mezzanine CDO tranche. This tranche was “informationally-sensitive”

prior to any deterioration in economic conditions. In practice, the introduction of standardized, liquid

structured products like the ABX indices likely contributed to the process of price discovery, by allowing

investors to reassess their information relative to the market. Although this contributed to improved

investor understanding of valuations of the underlying asset pools, and lead to a rapid revaluation at
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the asset class level, it had little to do with investor concerns about increased idiosyncratic risks.

The state-contingent adverse selection channel for price determination may well be important, but its

significance in explaining the large price drops and revisions in repo market financing terms is likely to be

diminished after explicitly accounting for the highly non-linear systematic risk-exposures of structured

securities.

4.5 The failure of linear inutition

The rapid revaluation of structured securities, and their associated repo financing terms, during the

fall of 2008, caught many market participants and regulators by surprise. This reaction is consistent

with an application of intuition based on linear risk models to the evaluation of non-linear securities.

To illustrate this point we examine the corporate bond and tranche from the perspective of an investor

using a linear, market factor model to project the state-contingent value of the asset.

Specifically, suppose that market participants’ expectations about future state-contingent valuations

were formed by extrapolating the consequence of market declines using a pre-crisis estimate of asset

market betas. This simple intuition would be suggested, for example, by the equity consequence function,

(20), in which the log asset return is linearly related to the log market return. Under model valuations,

the pre-crisis estimates of the market betas for the corporate bond and senior tranche would have been

0.04 and 0.45, respectively. The top panels in Figure 11 contrast the state-contingent valuations for the

AA corporate bond and the [7, 10] tranche that emerge from the naive extrapolation, with the values

obtained from the structural valuation model, as a function of the realized equity index return. To

the extent that market prices correspond to the model, the differences between the state-contingent

valuations capture the “surprise” of the market participant using the linear model. With the market

index down 40%, the user of the naive model is only slightly surprised by the price of the AA bond, but

hugely surprised by the price of the [7, 10] tranche. While the price of the corporate bond drops 5%

vis-a-vis an expectation of a price drop of 2%, the tranche price falls by 54%, relative to an expected

decline of only 24%. Furthermore, to the extent that market participants expected the tranche to behave

like the rating-matched corporate bond – i.e. move with a market beta of 0.04 – the magnitude of the

surprise would have been even greater.

The bottom panels in Figure 11 plot the state-contingent betas of the bond and tranche under both

the naive and structural models. Unlike for the corporate bond, the magnitude of the market beta of

the senior tranche changes rapidly as a function of the market index return, highlighting the large errors

that will result from value extrapolation based on a constant, pre-crisis beta. In particular, the tranche
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beta increases by a factor of ten from 0.45 to 4.5, when the market index drops 40%.

Reliance on a linear risk model for nonlinear securities will be costly when a bank (or repo market

borrower) chooses short-term financing over longer-term financing because they ex ante underestimate

their funding needs following a large systematic shock. In this situation, not only does the value of the

collateral fall more than was expected, but the subsequent financing terms will involve larger spreads

and/or haircuts to reflect the increased systematic risk of the asset. To the extent that this error is

common to many market participants, the immediate and large funding shortfall may be disruptive to

the financial system.

5 Conclusion

This paper presents a framework for understanding the contribution of systematic crash risk to the

cost of capital for a variety of different types of securities. When investors purchase securities exposed to

crash risk on margin, this risk is shared with the financing intermediary. We demonstrate that the price

of the intermediary’s crash exposure obtained through the financing arrangement can fluctuate wildly as

a function of aggregate volatility, the economic risk profile of the security, and the size of the borrower’s

collateral haircut, or margin. Importantly, similarly-rated collateral do not necessarily share the same

schedule of haircuts and financing spreads, such that if an investor was offered the same funding/leverage

schedule for a range of collateral, potentially large financing benefits would be available.

The simple framework identifies mezzanine-like collateral – assets whose value is quickly exhausted

as the consequence of a market crash – as being expected to have especially volatile haircuts/financing

spreads in the time series. In an economic environment where haircuts/spreads are expected to be stable,

these types of securities represent low quality collateral.

The primary implication of the analysis for securitization is that state-contingent analysis is required

to determine the collateral properties of assets. High recovery values in the event of crash – typical of

investment-grade bond portfolios and thick senior tranches (e.g. [7, 100] on the CDX.IG) – are necessary

for securitized products to represent stable collateral for repo markets. Without these features, haircuts

and spreads are expected to vary widely across market conditions, comoving strongly in the time series

with aggregate volatility. Given the range of observed equity volatility values, haircuts on AAA-rated

mezzanine tranche of CDOs backed by corporate bonds, can range between 0 and 100%, even in the

absence of any market frictions. While the dramatic shifts in collateral haircuts in repo markets during

2007-2008 have been described as a market “panic,” our analysis finds those events as largely justified

given the nature of much of the collateral in question.
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Table I
Calibrated Parameters of the Beta Crash Return Distribution as Volatility Changes.

The empirical Z-scores are first converted into returns, and then a beta distribution with parameters, (a, b), is
fitted to the resulting values by minimizing the squared fitting error between the empirical and theoretical cumu-
lative distribution functions (CDFs) at the 50th and 95th percentiles. The largest observed Z-score is assumed
to correspond to the 95th percentile of the population crash distribution. VIX percentiles based on data from
January 2003 - June 2009. Jump variance and risk premium computations assume an annualized crash arrival
intensity, λP = 0.20, and a coefficient of relative risk aversion, γ, equal to 2.5.

95th-tile Jump Jump Share in Jump Risk
Percentile 0.8 · VIX â b̂ Crash Size Variance Total Variance Premium

1 8.18% 3.82 92.35 7.68% 0.0004 5.89% 0.11%
5 8.79% 3.82 85.85 8.23% 0.0005 5.86% 0.13%
25 10.43% 3.82 72.14 9.69% 0.0006 5.79% 0.18%
50 13.30% 3.82 56.28 12.19% 0.0010 5.67% 0.30%
75 18.51% 3.82 40.07 16.55% 0.0019 5.46% 0.60%
95 36.09% 3.83 19.94 29.73% 0.0063 4.82% 2.59%
99 53.23% 3.84 12.15 40.57% 0.0122 4.30% 6.46%



Table II
Comparison of actual and model-implied haircuts for corporate bonds and CDO tranches

(2007:01-2008:12).

This table reports summary statistics for the financing spreads and repo market haircuts that applied to AA-AAA
rated collateral during 2007-2008. Panel A reports data for CDO tranches backed by corporate bonds; Panel B
reports data for corporate bonds. “Actual” values are from Gorton and Metrick (2009). Model collateral haircut
values – based on the structural valuation framework – are computed for three different financing spread levels
(25, 75, and 250bps). The model AA-AAA CDO values apply to a [7, 10] tranche referencing the CDX.NA.IG
index; all model parameter values are based on data from Coval, Jurek, and Stafford (2009a). For each day in the
time series, the market crash distribution is obtained by scaling the empirical distribution by 80% of the CBOE
VIX index. Pre-crash Arrow-Debreu state prices are computed using the 5-year at-the-money option implied
volatility for the S&P 500 index, and assume there is no volatility skew. Negative haircut values indicate the
proposed spread exceeds the risk premium applying to the crash risk exposure of the security.

Panel A: AA-AAA CDO
Actual Model (s = 25bps) Model (s = 75bps) Model (s = 250bps)

s (bps) H H H H
Whole period 130 30.00% 26.69% 20.32% 9.45%

2007 58 4.30% 11.54% 6.87% -2.38%
2008 232 53.50% 41.73% 33.61% 21.18%

2007:01-2007:06 7 0.00% 2.21% -0.27% -8.35%
2007:07-2007:12 108 8.30% 20.64% 13.79% 3.46%
2008:01-2008:06 NA NA 26.44% 18.53% 7.15%
2008:07-2008:12 NA NA 56.67% 48.35% 34.88%

Panel B: AA-AAA Corporates
Actual Model (s = 25bps) Model (s = 75bps) Model (s = 250bps)

s (bps) H H H H
Whole period 78 0.50% 1.14% -1.27% -9.52%

2007 27 0.00% -0.35% -2.49% -10.75%
2008 124 0.90% 2.63% -0.07% -8.29%

2007:01-2007:06 -2 0.00% -0.79% -2.94% -11.23%
2007:07-2007:12 55 0.00% 0.08% -2.06% -10.29%
2008:01-2008:06 - - 0.37% -1.77% -9.97%
2008:07-2008:12 - - 4.83% 1.59% -6.64%



Figure 1. Daily Value-Weighted Stock Market Index Returns from CRSP (1926 to 2010). The top
panel plots the time series of daily close-to-close returns on the CRSP value-weighted stock index from 1926:01-
2010:12 (N = 22527). The middle panel plots the annualized standard deviation of index returns computed using
a rolling 3-month window. The bottom panel the value of daily returns after they have been re-scaled by the
one-day-lagged measure of index volatility (Z-scores).
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Figure 2. Crash Return Distribution Calibration. This figure illustrates the process of calibrating the
model crash return distribution to the empirical data at two levels of index volatility, σt. The empirical Z-scores
are first converted into returns, and then a beta distribution with parameters, (a, b), is fitted to the resulting
values by minimizing the squared fitting error between the empirical and theoretical cumulative distribution
functions (CDFs) at the 50th and 95th percentiles (top row). The empirical CDF is plotted in blue, and the
fitted theoretical CDF is plotted in red; the two fitting points are highlighted with circles. The corresponding
probability distribution functions (PDFs) for the equity index crash magnitudes are plotted in the bottom row
(solid), along with PDFs based on standard maximum likelihood parameter estimates (dotted).
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Figure 3. Crash Sizes that Exhaust Collateral Supporting Equities. The left panel plots the critical
value of the index crash size, x̂, at which the lender becomes exposed to losses as a function of the equity market
beta, β, for three haircut levels, H. The right panel examines the comparative statics of x̂ with respect to the
collateral haircut holding equity beta fixed.
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Figure 4. Cost of Capital for Levered Equity Positions. This figure examines the cost of capital for an
unlevered equity position, and allocates the charge between the borrower (investor) and the lender (intermediary).
The collateral haircut is assumed to be equal, H = 0.25, and the distribution of index losses conditional on a crash
is based on an annualized market volatility of σt = 0.15. The top panel plots the expected return to the unlevered
strategy (solid), the borrower (dash dot), and the lender (dotted), as a function of the underlying equity market
beta, β. The bottom left panel further decomposes the lender’s expected return into the spread charged on the
loan and the expected loss rate due to market crashes, when the haircut is fixed at 0.25. The bottom right panel
plots the borrower’s expected rate of return stemming from exposure to market crashes. The expected return is
plotted under two financing rules: the proper rule (examined in the bottom left plot), and a simple rule-of-thumb
where the lender charges a fixed rate of 25bps independent of the equity’s market beta.
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Figure 5. The Effect of Collateral on the Equity Cost of Capital. This figure plots the lender spread
as a function of the collateral haircut (inverse of leverage). The right panel plots the proper lender spread for
three equity market beta values. The right panel plots the financing alpha obtained by the borrower if the
lender were to use a simple rule-of-thumb which fixes the loan spread at 25bps independent of the equity beta
or haircut. The financing alpha is defined as the difference between the borrower’s expected return under the
lender’s rule-of-thumb spread of 25 bps and the proper cost of capital.
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Figure 6. Effect of Volatility on Collateral Haircuts and Spreads on Equity Positions. This figure
examines the schedule of model predicted financing arrangements – spread / collateral pairs – as a function of
the level of equity market volatility. The left panel fixes the collateral haircut at one of three levels (10%, 25%,
or 50%) and forces the lender spread to adjust as volatility changes. The right panel fixes the spread at one of
three levels (25, 50, or 100bps), and plots the required collateral haircut, as a function of aggregate volatility.
The equity beta is fixed at one (β = 1).
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Figure 7. Cost of Capital for Corporate Bond and CDO Tranche. The top left panel plots the state-
contingent payoff function for a AA-rated corporate bond, and a [7, 10] tranche referencing the CDX.NA.IG index.
The top right panel plots the critical value of the index crash size, x̂, triggering a lender loss, as a function of the
collateral haircut applied to each security. The bottom left panel plots the spread charged by a lender who provides
financing for the purchase of each security, as a function of the collateral haircut. The spread-haircut pairs are set
to reflect the risk born by the lender in the transaction, creating a continuum of financing arrangements between
which the market participants are assumed to be indifferent. The bottom right panel plots the financing “alpha”
that accrues to the borrower, as a function of the collateral haircut, if the lender uses a simple rule-of-thumb
when setting the financing terms. The rule assumes that either security can be financed at the proper rate that
applies to a AA-corporate bond with a 10% collateral haircut.
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Figure 8. Security Financing Stress Test. This figure examines the schedule of model predicted financing
arrangements (spread / collateral pairs) as a function of the level of equity market volatility. The left panel plots
the financing terms for a AA corporate bond; the center panel – for the [7, 10] tranche of the CDX.NA.IG index;
and the right panel – for a hypothetical tranche of the CDX.NA.IG index with attachments points [7, 100]. The
top row fixes the collateral haircut at one of three levels (10%, 25%, or 50%), and plots the lender spread, as a
function of aggregate volatility. The bottom row fixes the lender spread at one of three levels (25, 75, or 250bps),
and plots the required collateral haircut, as a function of aggregate volatility.
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Figure 9. Model Implied Collateral Haircut for Corporate Bond and CDO Tranche. This figure
plots the times series of model implied haircuts for a AA-rated corporate bond, and a [7, 10] tranche of the
CDX.NA.IG Index, for two different lender financing spread levels. For each day in the time series, the market
crash distribution is obtained by scaling the empirical Z-score distribution by 80% of the CBOE VIX index.
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Figure 10. Collateral Fragility. This figure plots the critical index crash magnitude, x̂, at which the
borrower’s collateral is eliminated, and the lender begins to sustain a loss, as a function of the haircut. The left
panel plots x̂ for a AA-rated corporate bond, and the mezzanine and senior tranches referencing the CDX.NA.IG
index. The right panel plots x̂ for a AA-rated corporate bond, and hypothetical tranches of the CDX.NA.IG
index with attachments points [X, 100].
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Figure 11. State-contingent Asset Values. The top row plots the change in value of an AA-rated corporate
bond (left panel) and the [7, 10] tranche of the CDX.NA.IG (right panel), as a function of the index level. The
value predicted by the structural model is depicted using the solid, blue line; a naive value based on the index
return and a fixed, CAPM β estimated locally to at-the-money is depicted using the dashed, red line. The bottom
row plots the state-contingent CAPM β of the two securities as a function of the index level computed within the
structural model (solid blue), and contrasts it with the naive at-the-money estimate (dashed red).
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