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1 Introduction

A growing literature studies the importance of product creation and turnover for welfare and

macroeconomic dynamics. This research program has recently received impetus from the availabil-

ity of micro-level data sets and the development of macroeconomic frameworks that incorporate

richer micro-level product dynamics than in standard macro models.1 Thus far, however, there

has been little work on developing the implications of endogenous product variety for optimal

macroeconomic policy. This paper is an early step toward that goal.2

We characterize the long-run and short-run properties of optimal fiscal policy in an economy

in which monopolistically-competitive firms make forward-looking decisions regarding developing

differentiated products based on the prospect of earning long-lived streams of monopoly profits.

Product development is thus an investment activity. The starting point of the analysis is the

general equilibrium model of Bilbiie, Ghironi, and Melitz (2007), who study the business-cycle

implications of an endogenous, time-varying stock of differentiated product varieties. The Bilbiie,

Ghironi, and Melitz (2007) framework — hereafter, BGM — generates many empirically relevant

features of fluctuations, including the ability to match well the cyclical dynamics of profits, net

product creation, and goods market markups. Taken together, the BGM framework portrays well

the microeconomic underpinnings of product turnover and has become the basis for models studying

a growing number of macro questions.3 We first extend the BGM framework to incorporate realistic

aspects of long-run and short-run fiscal policy assuming that policy is set exogenously, which itself

contributes to the development of the BGM class of models as a positive description of U.S. business

cycles. We then endogenize tax policy using the standard Ramsey, or second-best, approach.4

There are two main results from the Ramsey analysis. First, in the long run, optimal dividend-

income taxation can be zero, positive, or negative, depending on the form of variety aggregation

in preferences. However, in the most empirically relevant and intuitively appealing version of the

model, socially efficient outcomes entail a positive dividend income tax rate in the long run —

50 percent, if the model is taken literally. Dividend taxation, which is a form of capital income

taxation, discourages inefficiently high product development.5 Second, in the short run, the optimal

1Notable contributions to the recent empirical literature include Bernard, Redding, and Schott (2010) and Broda

and Weinstein (2010). A more complete list of references is in Bilbiie, Ghironi, and Melitz (2007).
2Other early steps are Bilbiie, Ghironi, and Melitz (2008a), Bilbiie, Fujiwara, and Ghironi (2009), Faia (2009) and

Lewis (2009a), which are monetary policy applications, and Lewis (2009b), which is a fiscal policy application.
3In addition to those noted above, other recent studies that have built on the BGM framework include Stebunovs

(2008), Shao and Silos (2009), and Colciago and Etro (2011).
4This distinguishes our approach from the pure Pigovian, or first-best, fiscal policy analysis of Bilbiie, Ghironi,

and Melitz (2008b).
5Our analysis of long-run optimal policy abstracts from product creation as an engine of growth. Inclusion of

long-run, endogenous growth in the BGM framework with general preferences that we use presents challenges that
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labor income tax rate is constant (or, depending on how product varieties aggregate, very nearly

so) at all points along the business cycle. The cornerstone Ramsey insight of the optimality of tax

smoothing thus remains intact when product dynamics are modeled in a way consistent with micro

evidence. The Ramsey government uses tax smoothing to implement sharply smaller fluctuations of

capital markets and labor markets than in the benchmark exogenous policy equilibrium. Moreover,

low volatility of tax rates keeps distortions constant over the business cycle.

While the goal of optimal policy is to “smooth wedges” in equilibrium conditions just as in

standard Ramsey models, the very nature of “wedges” does depend on the nature of product

dynamics. Another contribution of our work is thus to develop a welfare-relevant notion of efficiency

for models based on the BGM framework. Efficiency concerns lie at the heart of any model studying

policy. The welfare-relevant concept of efficiency we develop is based on only the primitives of the

environment, independent of any optimization problem. This concept of efficiency is grounded

in the elementary concepts of marginal rates of substitution and corresponding, model-consistent,

marginal rates of transformation, and it makes transparent the basic Ramsey forces at work. This

clear characterization of efficiency should be helpful in interpreting other results in the literature.

It also allows us to connect easily the optimal policy results to the classic Chamley (1986) and Judd

(1985) results on capital income taxation.6

While it turns out that the basic Ramsey principles of wedge-smoothing and zero intertemporal

distortions apply in this framework, it is not obvious that they must. Albanesi and Armenter

(2007) recently provided a unified framework with which to think about capital taxation in a

variety of environments. Their central result, a set of sufficient conditions for the optimality of zero

intertemporal distortions, unfortunately does not apply to our model. The failure of the Albanesi-

Armenter sufficient conditions is due to the equilibrium increasing returns to scale in product

varieties that are inherent in standard models of product differentiation with endogenous varieties.

Application of the Albanesi-Armenter sufficient conditions requires constant returns in production

both at the level of the firm and in the aggregate. As a contribution to Ramsey theory, then,

it is important to know that empirically-appealing dynamic macro frameworks richer than “first-

generation” constant-returns, complete-markets Ramsey models also prescribe zero intertemporal

distortions as part of optimal policy.7

are beyond the scope of this paper. In a model with growth, optimal long-run policy would balance the forces at work

in this paper against the externalities at the heart of variety-driven growth. See Croce, Nguyen, and Schmid (2011)

for an early Ramsey analysis of optimal labor income taxation in a stochastic model with endogenous, variety-driven

growth and recursive Epstein-Zin (1989) preferences.
6We also discuss below the relation between the optimality of taxing capital in our environment with Judd’s (1997,

2002) result that it is optimal to subsidize capital accumulation when firms have monopoly power.
7Our paper is also related to the complete-markets Ramsey literature that began with Lucas and Stokey (1983)

and Chari, Christiano, and Kehoe (1991). We do not consider incomplete markets, a distinct branch of the Ramsey
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Related to this broadening of the scope of Ramsey principles, our work also contributes to a

recent branch of the optimal policy literature, examples of which are the monetary policy studies

in frictional labor markets by Faia (2008), Thomas (2007), and Arseneau and Chugh (2008), in

frictional monetary markets by Aruoba and Chugh (2010), and the study of labor income taxation

in frictional labor markets by Arseneau and Chugh (2010). The unifying idea of these “second-

generation” complete-markets Ramsey models is forward-looking private-sector behavior in markets

richer in detail than portrayed in standard real business cycle (RBC) or New Keynesian models.

This literature has shown that forward-looking behavior richer in micro detail than tangible capital

accumulation and pricing decisions can offer new insights on some classic questions about optimal

policy.

Finally, by placing the spotlight on fiscal policy, our paper contributes to the literature on

efficiency in product creation.8 Regulatory policy is the tool often thought to be most natural

to address inefficiencies in product development.9 However, historical evidence suggests that reg-

ulators are usually concerned only with product-development inefficiencies caused by very large

companies. By applying to the entire universe of firms regardless of size, fiscal policy can be a very

effective tool to address distortions in new product development.10

The rest of the paper is organized as follows. Section 2 describes the economic environment.

Section 3 calibrates a non-Ramsey version of the model to document its basic cyclical properties.

Section 4 studies the Ramsey equilibrium using the calibrated model. Section 5 formalizes static

and intertemporal notions of marginal rates of transformation and efficiency to parse the optimal-

policy results. Section 6 shows which features of the decentralized economy disrupt efficiency.

Section 7 uses these concepts of efficiency and distortions to inspect several aspects of the model

and results. Section 8 concludes.

2 The Model

The model features an endogenously evolving stock of differentiated product varieties that are

costly to develop and bring to market. As described above, the model is based on BGM, into which

we incorporate several realistic aspects of fiscal policy.

literature, prominent examples of which are Aiyagari, Marcet, Sargent, and Seppala (2002) and Fahri (2009).
8An incomplete list of references is Benassy (1996), Bilbiie, Ghironi, and Melitz (2008b), Chamberlin (1950), Dixit

and Stiglitz (1977), Grossman and Helpman (1991), Judd (1985), Mankiw and Whinston (1986), and Spence (1976).
9A standrd reference on regulation policy is Laffont and Tirole (1993).

10We thank Jeffrey Campbell for suggesting this point. See also Auerbach and Hines (2002) on optimal taxation

and producer entry.
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2.1 Product Turnover

To introduce some basic notation of the model, suppose that a pre-determined measure Nt of a

continuum of product varieties exists at the beginning of period t. These Nt varieties are produced

and sold on monopolistically competitive consumer markets during period t. Firms also develop new

product varieties during period t, of which there is an aggregate measure NEt. Because innovation

takes time, newly-developed varieties can only be brought to market in the subsequent period.

There is thus a time-to-build aspect of product development. Before period t+ 1 begins, a fraction

δ ∈ (0, 1) of both pre-existing and newly-developed varieties are hit by an exogenous exit shock.11

Thus, because not all newly-developed products actually make it to the consumer market, the

total measure of product varieties available in period t+ 1 is Nt+1 = (1− δ)(Nt +NEt). Figure 1

summarizes the timing of the model.

The representative household obtains utility from consuming a symmetric, homothetic variety

aggregator Ct. The aggregate Ct is defined over the set Ω of all the varieties to which the household

would like to have access. Costly product entry implies that, in equilibrium, only the subset Ωt ⊂ Ω

is available for purchase in period t; Nt is the mass of the subset Ωt.
12

2.2 Households

For periods t = 0, 1, ..., the representative household chooses state-contingent decision rules for

consumption Ct, hours worked Ht, end-of-period holdings of a complete set of state-contingent

government bonds Bj
t+1 (j indexes the possible states in period t+ 1), and end-of-period holdings

xt+1 of a mutual fund that finances firm activity in order to maximize expected lifetime discounted

utility:

E0

∞∑
t=0

βtu(Ct, Ht), (1)

subject to a sequence of flow budget constraints:

Ct + vtxt+1(Nt +NEt) +
∑
j

1

Rjt
Bj
t+1 = (1− τHt )wtHt +Bt +

[
vt + (1− τDt )dt

]
xtNt. (2)

11Specifically, the probability that a given product is hit by the exit shock is assumed to be δ, independent of

whether the product is a newly-developed or an incumbent one, or, in the case of incumbent products, how long the

product has been in the market. Exit shocks are thus a Poisson process. The simplifying assumption of exogenous

exit captures in a parsimonious, aggregative way the idea of product life cycles and is consistent with the relative

acycliacality of product destruction in Broda and Weinstein (2010) and plant exit rates in Lee and Mukoyama (2007).
12Bundling in household preferences is the formalism we use. Alternatively, one could think of a “final goods”

sector in which perfectly competitive firms bundle differentiated products into a homogenous final good, which is

then sold to consumers. In this alternative formalism, differentiated products would be labeled “intermediate goods,”

but the equilibrium of the model would be identical. We follow the consumption aggregator approach only to make

interpretation of results as similar as possible to BGM and the literature that has used the same approach.

4



The household’s subjective discount factor is β ∈ (0, 1), and u(.) is a standard within-period utility

function that is strictly increasing and strictly concave in Ct, strictly decreasing and strictly convex

in Ht, and satisfies standard Inada conditions. The notation uCt and uHt will be used to denote

the marginal utility functions, evaluated at time-t arguments.

At the start of period t, the household owns xt shares of a mutual fund of the Nt product

lines that produce in period t, each of which pays a dividend dt. The period-t market value of

the household’s start-of-period share holdings is thus vtxtNt, with vt denoting the per-share price.

During period t, the household purchases xt+1 shares in a fund of these Nt product lines as well

as the NEt new product lines created during period t, to be carried into period t+ 1. Total stock-

market purchases are thus vtxt+1(Nt + NEt). By the time period t + 1 begins, a fraction δ of

these varieties (Nt + NEt) disappears from the market. Due to the Poisson nature of exit shocks,

the household does not know which product lines will disappear from the market, so it finances

continued operations of all incumbent products as well as entry of all new products.

Following production and sales of the Nt varieties in the monopolistically competitive goods

markets, firms remit the dividend dt required by the terms of stock ownership. The household’s

total dividend income is thus Dt ≡ dtxtNt, which is taxed at the rate τDt .

The rest of the notation is standard: wt is the market real wage, which is taxed at the rate τHt ;

the household’s holdings of the state-contingent one-period real government bond that pays off in

period t are Bt; and Bj
t+1 are end-of-period holdings of government bonds that pay off in state j in

period t+ 1, which has purchase price 1/Rjt in period t. Finally, because this is a Ramsey taxation

model, there are no lump-sum taxes or transfers between the government and the private sector.13

2.2.1 Household Optimality Conditions

A standard labor supply condition

−uHt
uCt

= (1− τHt )wt (3)

and standard bond Euler conditions

uCt = βRjtuCjt+1
, ∀j (4)

result from household optimization. As usual, the complete set of bond Euler conditions (4) defines

the one-period-ahead stochastic discount factor, EtΞt+1|t ≡ βEtuCt+1/uCt. The other household

optimality condition is the stock demand equation:

vt = (1− δ)Et
{

Ξt+1|t
[
(1− τDt+1)dt+1 + vt+1

]}
. (5)

13When we consider how the model economy responds to exogenous fiscal policy in Section 3, we do temporarily

allow for lump-sum taxation because there we are not studying government financing issues. For the Ramsey analysis

in Section 4, lump-sum taxes are again fixed to zero.
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Forward iteration implies that the share price is equal to the expected present discounted value of

after-tax dividend payments, adjusted for the risk of exit.

Having optimally chosen the consumption index Ct, the household then chooses a quantity

ct (ω) of each product variety ω to minimize the total cost of purchasing Ct. With a symmetric and

homothetic aggregator over a continuum of varieties, the demand function for each variety ω is

ct (ω) dω =
∂Pt

∂pt (ω)
Ct. (6)

The specifications for the variety aggregator are described below. The nominal price of the con-

sumption index is Pt, and pt (ω) is the nominal price of symmetric variety ω. From here on, we

cast things in terms of the relative price, ρt ≡ pt/Pt, of a variety, and, anticipating the symmetry

of the equilibrium, we drop the argument ω; ρt is denominated in units of the consumption index

Ct.
14

2.3 Firms

There is a continuum of identical firms that produce and sell output, so we can restrict attention

to a representative firm. The representative firm is modeled as being a “large firm” that pro-

duces “many” varieties.15 This formulation facilitates interpretation of results and yields identical

equilibrium conditions as the formulation of BGM, who do not use the large firm approach.16

Expressed in real terms (that is, in units of the consumption index Ct), the intertemporal profit

function of the representative firm is:

E0

∞∑
t=0

Ξt|0

[
(1− τDt ) (ρt −mct) qtNt − (1− τSt )

wt
Zt
fEtNEt

]
. (7)

14The assumption of complete asset markets in government bonds allows us to focus only on real variables below,

with no concern for nominal prices — in particular, Pt.
15The firm is “large” in the sense that it produces multiple varieties, but the assumption of a continuum of firms

ensures that each is small relative to the overall economy, and hence does not internalize the effects of its decisions

on the economy’s price index Pt. With a representative firm, Pt turns out to represent also the firm’s price index in

equilibrium. Thus, we are assuming that the firm’s product creation decisions do not internalize the profit destruction

externality of new products on any existing ones within the firm. This can be rationalized by assuming that new

products are introduced by independent product line managers who communicate little with each other or are even

encouraged to compete with each other. See Stebunovs (2008) for a model in which a discrete number of financial

intermediaries can be reinterpreted as headquarters of multi-product firms that internalize the profit destruction

externality of new product introduction.
16One can view our large-firm approach as analogous to many recent general equilibrium macro models that

feature search and matching frictions in various markets. In such models, the “large firm” assumption (for example,

a representative firm that has to search individually for the “many” employees it seeks to hire) also facilitates

aggregation and ignores across- and within-firm strategic considerations.
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Because households are the ultimate owners of firms, the intertemporal discount factor the firm

applies to its profits is Ξt|0, the period-zero value to the representative household of period-t goods.17

The profit function is written in such a way that it anticipates an equilibrium that is symmetric

across all product varieties.18 We now describe the rest of the components of the profit function (7).

There is an unbounded set of potential products. Developing a new product in period t entails

a sunk cost fEt, which is denominated in effective labor units and is identical across product

varieties.19 Measured in consumption units, the cost of developing a new product is wtfEt/Zt, with

Zt denoting the effectiveness of labor in the economy. Like fEt, Zt is independent of any particular

variety ω. The total number of new varieties developed in period t is NEt.

Product development costs are subsidized by the government at the proportional rate τSt . From

a positive perspective, product development subsidies — for example, in the form of subsidies for

research and development — are often elements of cyclical fiscal policy legislation — for example,

to combat recessions. From a model-based perspective, allowing product development subsidies

makes it easy to ensure that the tax system is complete, in the Ramsey sense that there is at least

one independent tax instrument along each unique equilibrium margin of the model — this point

is discussed further in Sections 4 and 7.

Sales of each product variety occur in a monopolistically competitive market. The demand

for each symmetric variety is denoted qt.
20 The flow profit that each variety generates is thus

(ρt −mct) qt, in which mct denotes the marginal cost of producing an existing variety, also assumed

independent of any particular variety ω. As described below, the production technology of each

variety (given that the development cost wtfEt/Zt is sunk) is constant returns, hence marginal

and average costs of production coincide.21 In equilibrium, (ρt −mct) qt is the dividend, dt, that

households receive on their stock holdings. Because households receive only the after-tax share

(1 − τDt ) and because there is no principal-agent problem between firms and households, the firm

discounts the dividends it disburses by the same after-tax rate (1− τDt ).

The profit maximization problem is analyzed in three steps. We first characterize the new

17Because Ξs|0 ≡ βsuCs
uC0

, we have that the one-period stochastic discount factor is
Ξt+1|0

Ξt|0
= Ξt+1|t =

βuCt+1

uCt
, which

will appear in the firm’s optimality conditions below.

18A priori, the profit function is
∑∞

t=0
Ξt|0

[
(1 − τDt )

∫
Ωt

(ρt (ω) −mct) q(ρt (ω))dω − (1 − τSt )wt
Zt
fEtNEt

]
.

19To the extent that fEt contains a policy-determined component, regulatory policy, in BGM’s interpretation,

would operate through fEt.
20We write qt to stand for total demand for a variety, rather than ct, because the model also features (exogenous)

government consumption. To facilitate aggregation, the bundle of differentiated varieties the government purchases

is identical to the private consumption bundle of households. Hence, qt subsumes both private and public demand

for a (symmetric) variety. The units of qt are physical units of differentiated variety.
21The assumptions of symmetric costs and a symmetric aggregator formally justify that the equilibrium will be

symmetric across product varieties.
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product creation decision, then derive the firm’s optimal pricing function, and finally describe the

production process and characterize the firm’s choice of inputs.

2.3.1 Creation of New Varieties

The representative firm takes as constraint the sequence of laws of motion for the total number of

varieties it produces and sells,

Nt+1 = (1− δ)(Nt +NEt). (8)

Optimization of (7), subject to the sequence of constraints (8), with respect to NEt and Nt+1 yields:

(1− τSt )
wt
Zt
fEt = (1− δ)Et

{
Ξt+1|t

[
(1− τDt+1)(ρt+1 −mct+1)qt+1 + (1− τSt+1)

wt+1

Zt+1
fEt+1

]}
, (9)

which we refer to as the product creation condition. Combining the product creation condition (9)

with the stock demand equation (5), and recalling that all flow profits are distributed as dividends

— i.e., dt = (ρt −mct)qt — yields the equilibrium free entry condition

vt = (1− τSt )
wt
Zt
fEt (10)

assumed in BGM and the related literature (adjusted for the product creation subsidy). Thus,

firms raise (on a per-variety basis) (1 − τSt )wtZt fEt on the stock market for product development

activities. Combined with the per-variety subsidy τSt
wt
Zt
fEt, the entirety of product creation costs

are financed.

2.3.2 Optimal Pricing

Given a number of product varieties Nt, the first-order condition for profit maximization with

respect to the relative price ρt of any given variety (see Appendix A) is:

qt + ρt
∂qt
∂ρt
−mct

∂qt
∂ρt

= 0. (11)

Defining ζt ≡ ρt
qt
∂qt
∂ρt

as the price elasticity of demand for a symmetric variety, the optimal pricing

rule can be expressed in the familiar form:

ρt =

(
ζt

1 + ζt

)
mct, (12)

which shows that the relative price of a variety is in general an endogenously time-varying markup

over real marginal cost. Denoting the gross markup by µt ≡ ζt
1+ζt

, the optimal pricing rule can be

expressed more compactly as:

ρt = µtmct. (13)

The precise expression for the markup µt depends on the specific form of the variety aggregator

that we will use below.
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2.3.3 Production, Choice of Inputs, and Labor Market Clearing

Production of each existing variety occurs using a linear-in-labor technology. Letting ht denote

labor used to produce yt units of a particular variety, the existing-goods-producing technology is

yt = Ztht, where Zt is the exogenous level of labor productivity that is common across varieties.22

Given unit production cost for an existing variety, mct = wt/Zt, the market clearing condition

yt = qt determines the quantity of labor hired for production of each variety.

Given the exogenous cost of product creation (in units of effective labor) fEt, the technology

for creation of new products is also linear and such that hEt = fEt/Zt units of labor are required

for the development of each new product. With hEt units of labor required to develop each new

variety and ht units of labor required to produce each existing variety, the total quantity of labor

hired by the representative firm is htNt + hEtNEt, which, in equilibrium, must be equal to the

quantity Ht supplied by the representative household.

2.4 Government

The government finances an exogenous stream of spending {Gt}∞t=0 by collecting labor income taxes,

dividend income taxes, and issuing real state-contingent debt. As described above, it also provides

product development subsidies. The period-t government budget constraint is

τHt wtHt + τDt dtxtNt +
∑
j

1

Rjt
Bj
t+1 = Gt +Bt + τSt

wt
Zt
fEtNEt. (14)

Government absorption Gt is of the same bundle of varieties as private consumption Ct, which

facilitates aggregation.23 The fact that the government is able to issue fully state-contingent real

debt means that none of the optimal policy results is driven by incompleteness of debt markets or

ad-hoc limits on government assets.

2.5 Competitive Equilibrium

Now that we are at the stage of constructing the equilibrium, we make explicit the equilibrium

dependence of the markup and the relative price of a given product on the total stock of products

in the economy — thus, we now explicitly write µ(Nt) and ρ(Nt) instead of µt and ρt. The analytic

forms of these functions depend on the form of the variety aggregator when we make specific

assumptions below.

As shown in Appendix B, the definition of a symmetric competitive equilibrium can be expressed

quite compactly. Specifically, a symmetric competitive equilibrium is a set of endogenous state-

22Following BGM, we assume the same exogenous productivity for labor used in production of existing varieties

and creation of new ones.
23Thus, for each variety ω, gt(ω)∂ω = ∂Pt

∂pt(ω)
Gt.
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contingent processes {Ct, Ht, Nt+1, NEt, vt, Bt+1}∞t=0 that satisfy six sequences of conditions: the

labor optimality condition

−uHt
uCt

=
(1− τHt )

µ(Nt)
Ztρ(Nt), (15)

the intertemporal product creation condition

(1−τSt )ρ(Nt)fEt = (1−δ)Et
{

Ξt+1|t

[
(1− τDt+1)

(
µ(Nt)−

µ(Nt)

µ(Nt+1)

)(
Ct+1 +Gt+1

Nt+1

)
+ (1− τSt+1)

µ(Nt)

µ(Nt+1)
ρ(Nt+1)fEt+1

]}
,

(16)

the equilibrium entry condition

vt = (1− τSt )
ρ(Nt)

µ(Nt)
fEt, (17)

the law of motion for the number of product varieties

Nt+1 = (1− δ)(Nt +NEt), (18)

the flow government budget constraint (14),24 and the consumption resource constraint

Ct +Gt + ρ(Nt)fEtNEt = ρ(Nt)ZtHt. (19)

The consumption resource constraint (19) is obtained by summing the flow household budget

constraint (2) (after imposing the equilibrium condition xt+1 = xt = 1 ∀t) and the flow government

budget constraint (14), and then substituting several equilibrium conditions; a complete derivation

appears in Appendix B. An important feature to note about this frontier is the appearance of ρ(Nt),

which represents a relative price in the decentralized economy. As is well understood in models

of monopolistic competition with endogenous variety, the relative price ρ(Nt) captures the welfare

benefit of variety embedded in household preferences; as such, it is a primitive of the economy,

which can be interpreted as a measure of increasing returns to variety.25

2.6 Welfare-Consistent versus Data-Consistent Concepts

The concepts of consumption, government expenditures, investment (in new product development),

and GDP that appear in the model description are the welfare-relevant ones; however, they are not

data-consistent concepts. As discussed in BGM, achieving comparability between the model and

the data requires measuring consumption, government expenditures, investment, and GDP in the

model as Ct
ρ(Nt)

, Gt
ρ(Nt)

, vtNEt
ρ(Nt)

, and wtHt+dtNt
ρ(Nt)

, respectively, which adjusts for the benefit of variety

24Which can be expressed in terms of only the processes listed above by substituting the equilibrium expressions

for the real wage, wt = Ztmct = Ztρ(Nt)
µ(Nt)

, and dividend payments, dt =
(

1 − 1
µ(Nt)

)(
Ct+Gt
Nt

)
.

25As noted above, an alternative formalism of the model casts product varieties as intermediate goods in production

of a homogenous final good. In this alternative setup, ρ(Nt) captures equilibrium increasing returns to variety in

production of the final good.
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(required because the data do not adjust for it).26 Thus, all results reported below are for these

data-consistent measures; we indicate these data-consistent measures with a subscript “R,” which

denotes division by ρ(Nt) to remove the variety effect.27 Being precise about welfare-consistent

versus data-consistent measures requires that the exogenous purchases component of fiscal policy

is taken to be GRt ≡ Gt
ρ(Nt)

, as described below.

3 Exogenous Fiscal Policy

Before studying the model’s implications for optimal tax policy, we study its cyclical properties

conditional on exogenous fiscal policy. Incorporating realistic features of fiscal policy adds to the

literature’s understanding of the BGM framework. The model’s dynamics conditional on exogenous

policy also provide a benchmark for understanding the optimal policy results in Section 4. In the

exogenous policy experiments here, the product development subsidy, and the dividend tax are set

to τSt = 0 ∀t and τDt = τD > 0 ∀t, respectively. To enhance comparability with the results of BGM,

parameter values and/or calibration targets are taken from their study where possible.

3.1 Calibration

For utility, we adopt a standard functional form:

u(Ct, Ht) = lnCt −
ζ

1 + 1/ν
H

1+1/ν
t . (20)

Following BGM, the Frisch elasticity of labor supply is set to ν = 4, and the scale parameter is set

to deliver a steady-state fraction of time spent working of H = 0.2 (the required value is ζ = 6.8,

given all other parameter values). The model frequency is quarterly, so the subjective discount

factor is set to β = 0.99, which delivers an annual real interest rate of approximately four percent.

We consider the variety aggregators studied by BGM: Dixit-Stiglitz (1977) preferences and the

translog expenditure function proposed by Feenstra (2003). The baseline calibration is for the case

of Dixit-Stiglitz aggregation because of its widespread use in macro models. In the Dixit-Stiglitz

case, the final consumption index Ct is composed of the underlying varieties ct (ω) according to

Ct =
[∫
ω∈Ω ct (ω)(θ−1)/θ dω

] θ
θ−1 . Dixit-Stiglitz aggregation implies a gross markup independent of

the number of product varieties, µ = θ
θ−1 , and a relative price ρt = Nµ−1

t of a symmetric variety.

As in BGM, we set θ = 3.8 as a benchmark, which implies a 35-percent average net markup.

26Note that we use the NIPA definition of GDP as total income, wtHt + dtNt, which equals the sum of private

consumption expenditure, government expenditure, and total investment expenditure, Ct +Gt + wt
Zt
fEtNEt. In our

exercises, we focus on the private portion of investment, vtNEt, which differs from the economy’s total investment

because of the product development subsidy (when it differs from zero).
27Thus, we write GDPRt to indicate wtHt+dtNt

ρ(Nt)
, CRt to indicate Ct

ρ(Nt)
, GRt to indicate Gt

ρ(Nt)
, IRt to indicate vtNEt

ρ(Nt)
,

and so on.
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The sunk cost of creating a new product is fixed at fEt = 1 and is assumed invariant along the

business cycle. As noted in the Introduction, we focus on the efficiency implications of fiscal policy

(in both the short run and the long run), rather than regulation policy, which justifies fixing fEt.

While regulation is likely to affect entry costs (for example, by reducing bureaucratic costs), it is

unlikely to do so over the cycle. Furthermore, regulation policy is likely applied heterogeneously

(as a long-run tool) across firms of different sizes, an issue beyond the scope of this paper.28 The

rate of destruction of product varieties is set to δ = 0.025, following the calibration of BGM. Given

the quarterly frequency of the model, this means roughly 10 percent of product varieties disappear

from the market every year, independent of product age.

The three exogenous processes are productivity, government spending (which, as noted above, is

measured in data-consistent units), and the labor income tax rate, each of which follows an AR(1)

process in logs:

lnZt = ρZ lnZt−1 + εZt , (21)

lnGRt = (1− ρGR) ln ḠR + ρGR lnGRt−1 + εGRt , (22)

and

ln τHt = (1− ρτH ) ln τ̄H + ρτH ln τHt−1 + ετ
H

t . (23)

The innovations εZt , εGRt , and ετ
H

t are distributed N(0, σ2
εZ

), N(0, σ2
εGR

), and N(0, σ2
ετH

) respectively,

and are independent of each other. Persistence parameters are set to ρZ = 0.979, which matches

BGM and King and Rebelo (1999), and ρGR = 0.97, as in the benchmark quantitative Ramsey

models of Chari and Kehoe (1999). The magnitudes of innovations are set to σεGR = 0.027, also

consistent with baseline Ramsey models, and σεZ = 0.0072, which is the same value as in BGM

and enables the benchmark exogenous policy model to generate GDP volatility in line with its

magnitude in U.S. fluctuations. In the exogenous policy Dixit-Stiglitz benchmark, the steady-state

level of government spending ḠR is calibrated so that it absorbs 22 percent of steady-state GDP;

the resulting value is ḠR = 0.044. However, this value is reset (to ḠR = 0.074) when we study

the Ramsey equilibrium in order to keep the steady-state GDP share of government spending, and

hence the revenue requirements of the government, constant at 22 percent.

The parameterization of the labor income tax process is taken from Arseneau and Chugh (2010),

who use the methodology of Jones (2002) to construct an empirical measure of the average U.S.

labor income tax rate from 1947:Q1-2009:Q4.29 The mean labor income tax rate over this period is

about 20 percent. In terms of its cyclical properties, the first-order autocorrelation is 0.66, and the

28BGM discuss the consequences of “universal” deregulation (a permanent decline in fEt). See also Cacciatore and

Fiori (2009).
29The source data are the NIPA accounts of the U.S. Bureau of Economic Analysis, and the methodology to

construct the tax rate series is described in detail in Appendix B of Jones (2002).
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standard deviation of the cyclical component of the tax rate is 2.8 percent, which means that the

standard deviation of the level of the tax rate is about 0.70 percentage points around its mean of

20 percent. Matching the persistence and volatility of this empirical tax rate series requires setting

ρτH = 0.87 and σ
ετ
H = 0.037.

Finally, the dividend income tax rate is assumed to be a constant τD = 0.30 in every period,

which is representative of the average U.S. corporate (including both federal and state) tax rate.

For the exogenous policy experiments only, the government is assumed to have available a lump-

sum tax/transfer vis-a-vis households in order to balance its budget, which allows us to ignore

government financing issues. When we move to the Ramsey analysis, the lump-sum tax is dropped

and the government instead has one-period state-contingent debt as a policy tool (in addition

to its proportional tax instruments τH , τD, and τS).30 In the Ramsey analysis, the steady-state

government debt-to-GDP ratio (at an annual frequency) is calibrated to 0.5, in line with the average

U.S. post-war government debt.

When we move to translog preferences, we adjust the calibration so that the model hits the

same long-run targets. Doing so requires appropriately setting one new parameter the translog

aggregator introduces and resetting only two parameters from above. The translog primitive is the

expenditure function across varieties. BGM and Feenstra (2003) provide detailed analysis; here,

we simply note that in the translog case, the markup is given by µt = 1 + 1
σNt

, with σ > 0, and the

relative price of a symmetric variety is ρ(Nt) = exp
(
−1

2
Ñ−Nt
σÑNt

)
, with the parameter Ñ interpreted

as the mass of the potential set of varieties that ever could exist, Nt of which actually exist and

are produced in period t.31 As shown in BGM, it is possible to set σ so that the translog case

results in the same steady-state markup and number of products as the Dixit-Stiglitz case — given

our parameterization, this requires σ = 1.932 The long-run level of government absorption must be

reset (to ḠR = 0.035) to keep its share in GDP fixed at 22 percent in the translog case — and,

just as noted above for the Dixit-Stiglitz case, is reset again (to ḠR = 0.087) when we study the

30In the exogenous policy experiments, the (endogenous and state-contingent) lump-sum tax allows us to ignore

the nature and dynamics of government debt in the data, i.e., is it state-contingent debt? what are the fiscal rules

by which debt is stabilized? etc. These are interesting questions, not only for our study but the broad fiscal policy

literature, but beyond the scope of our paper.
31The translog specification has the intuitively appealing property that an increase in the number of varieties

available in the economy is associated with an increase in the degree of substitutability between any given pair of

varieties. This aspect of aggregation is absent in the most commonly used specification of the Dixit-Stiglitz aggregator,

which assumes a constant elasticity of substitution across varieties even if their number is endogenous.
32The parameter Ñ is set very loosely, Ñ = 109, which represents the idea that there is an unbounded number of

varieties in the potential product space. BGM show that Ñ drops out of a log-linear approximation of the model’s

dynamics. As noted below, we compute dynamics using a level-linear approximation, in which the parameter Ñ does

not drop out, hence our need to choose a numerical value; the value Ñ = 109 is orders of magnitude larger than

needed so that its precise setting does not affect the model’s steady state or dynamics.
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translog Ramsey equilibrium.

The deterministic steady-state equilibrium is computed using a nonlinear numerical solver. To

study dynamics, we compute a first-order approximation of the equilibrium conditions around the

deterministic steady state.33 We use the first-order accurate decision rules to simulate time paths

of the equilibrium in response to productivity, government spending, and labor tax realizations,

the shocks to which we draw according to the parameters of the laws of motion described above.

We conduct 500 simulations, each 200 periods long. For each simulation, we then HP filter (using

quarterly smoothing parameter 1,600), compute second moments of interest, and report the medians

of these moments across the 500 simulations.

3.2 Results

Figure 2 presents, for both Dixit-Stiglitz and translog preferences, impulse responses of GDP, prod-

uct creation, markups, and aggregate profits (which are four key measures whose cyclical dynamics

the baseline BGM model reproduces well) to one-time, one-standard-deviation positive shocks to

productivity (first row), government spending (second row), and the labor income tax rate (third

row). Conditional on productivity shocks, the impulse responses are similar to those in BGM. All

differences (in magnitudes and persistence) compared to BGM are due to the presence of long-run

distortions induced by fiscal policy, distortions that are absent in the BGM analysis.34 Differences

between the Dixit-Stiglitz and translog cases are due to the aggregator-specific behavior of product

substitutability and markups. While markups are constant with Dixit-Stiglitz preferences, translog

preferences generate procyclical substitutability and hence countercyclical markups. As a conse-

quence, ceteris paribus, the benefit to consumers of additional variety and the profit incentive for

firms to develop new products decrease (increase) over time during expansions (contractions). Thus,

fluctuations in product entry are dampened in the translog case compared to the Dixit-Stiglitz case.

Regarding fiscal policy, the responses to a government spending shock (second row) are qualita-

tively similar to those to a productivity shock. Consumption (not shown) declines as it is crowded

out by increased government absorption, a standard counterfactual prediction due to Ricardian

consumer behavior.35 A one-time increase in the labor income tax rate (third row) leads to a rela-

tively large output contraction, due mainly to a sharp decline in new product development, which

33Our numerical method is our own implementation of the perturbation algorithm described by Schmitt-Grohé and

Uribe (2004).
34We have confirmed this result by also computing impulse responses to productivity for the parameter values

ḠR = τH = τD = 0, a point noted again below.
35Recall that a lump sum tax is present for the exogenous policy experiments, which generates Ricardian equiv-

alence. This counterfactual prediction would be easily fixed by introducing a set of non-Ricardian consumers, as is

common in the literature, but this is beyond the scope of the paper.
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falls roughly ten percent on impact under both forms of variety aggregation. A higher tax rate

causes a roughly two percent decline in aggregate hours (not shown) for both forms of preferences.

Because the setup cost fE of developing new products requires labor, hours worked in the product

development sector also fall sharply.

To provide more quantitative detail on the model’s cyclical dynamics, especially those due to

shifts in taxes, Table 1 presents simulation results. The upper panels display results when all three

exogenous processes are active, and the lower panels display results conditional on shocks to only

productivity and government spending, holding constant the labor income tax rate at 20 percent.

Fluctuations in Z and G are the inputs to the dynamic Ramsey analysis in Section 4, hence the

lower panels of Table 1 provide a benchmark.

Three main aspects of the simulation results are worth highlighting, each of which contributes

to the development of the BGM class of models as a positive description of U.S. business cycles.

First, regardless of the form of variety aggregation, the volatility of aggregate hours is virtually

identical to the volatility of output, in line with the relative volatility of hours in U.S. macro

data. However, if τH is constant over the business cycle (the lower panels of Table 1), the relative

volatility of total hours is about 0.6, just as in the baseline BGM model without fiscal shocks. The

results in Table 1 show that incorporating realistic tax fluctuations is a step in the right direction

by substantially improving the model’s relative volatility of hours. Successfully reproducing the

dynamics of labor-market outcomes is a long-standing central issue in macroeconomic modeling.36

Second, the volatility of investment in product creation is about six times the volatility of GDP

when fluctuations are driven by shocks to all three exogenous processes, which is roughly double

the relative volatility of investment in U.S. data. When it is only shocks to productivity and

government absorption that cause cycles (the lower panels of Table 1), this relative volatility falls

to between four to five. However, note that overall volatility, as measured by the volatility of GDP,

also falls quite sharply when τH is constant — from about 2.5 percent to less than 1.5 percent.

Fluctuations in tax rates thus contribute quantitatively significantly to the magnitude of overall

fluctuations, in both absolute and relative terms.

Third, volatility falls further if it is only productivity shocks that are active, as Table 2 shows.

The model’s GDP volatility conditional on shocks to only Z is smaller than found in BGM, which is

due to the long-run distortionary effects of fiscal policy. Indeed, if we assume no distortions what-

soever by setting ḠR = τ̄H = τD = 0, the dynamics of the model conditional on only productivity

shocks (shown in the lower panels of Table 2) are identical to those in BGM.

Overall, Tables 1 and 2 document that the business cycle properties of the BGM model are

36BGM show that inclusion of physical capital as a factor of production also improves the model’s performance

along this dimension. Shao and Silos (2009) and Cacciatore and Fiori (2009) introduce unemployment in the BGM

framework by incorporating matching frictions in the labor market.

15



noticeably different once realistic features of fiscal policy are incorporated. At the center of the

mechanism is the dynamic behavior of the within-period deviation, or “wedge,” between the house-

hold’s marginal rate of substitution between consumption and labor and the “effective” marginal

product of labor in producing consumption, ρ(Nt)Zt, that appears in the consumption resource

frontier (19). Figure 3 illustrates this point with an impulse response of the within-period wedge

(defined from the labor optimality condition (15) as 1− −uHt/uCtZtρ(Nt)
) to a positive shock to the labor

tax rate. The wedge fluctuates sharply and, together with the results shown in (the third row of)

Figure 2, is clearly countercyclical. The dynamics of the wedge conditional on exogenous tax policy

are important for understanding the Ramsey equilibrium.37

4 Optimal Fiscal Policy

With the baseline calibration and dynamics established, we now discard the exogenous process (23)

for the labor income tax rate and instead endogenize tax policy (labor income taxes, dividend

taxes, and product development subsidies).38 While taxes are now optimally chosen by the Ramsey

government, government purchases continue to follow the exogenous process (22).39

4.1 Ramsey Problem

A standard approach in Ramsey models based on neoclassical markets is to capture in a single,

present-value implementability constraint (PVIC) all equilibrium conditions of the economy apart

from the resource frontier. The PVIC is the key constraint in any Ramsey problem because it

governs the welfare loss of using non-lump-sum taxes to finance government expenditures.40

We can construct a PVIC starting from the household flow budget constraint (2) and using the

household optimality conditions (3), (4), and (5). However, because of the forward-looking aspects

of firm optimization, the PVIC does not capture all of the model’s equilibrium conditions.41 Derived

37Table 1 reports also the properties of the model-generated, data-consistent price of capital in the model, which

will also be useful to understand the Ramsey equilibrium.
38We also return to the case of zero lump-sum taxes, required for a Ramsey analysis.
39Thus, we follow the standard convention in Ramsey analysis that spending is exogenous but the revenue side of

fiscal policy is determined optimally.
40See, for example, Ljungqvist and Sargent (2004, p. 494) for more discussion. The PVIC is the household (equiv-

alently, government) budget constraint expressed in intertemporal form with all prices and policies substituted out

using equilibrium conditions. In relatively simple models, the PVIC encodes all the equilibrium conditions that must

be respected by Ramsey allocations in addition to feasibility. In complicated environments that deviate substantially

from neoclassical markets, however, such as Schmitt-Grohé and Uribe (2005), Chugh (2006), and Arseneau and Chugh

(2008), it is not always possible to construct such a single constraint.
41A very similar, in form, construction of the Ramsey problem arises in Arseneau and Chugh (2010), who study

optimal fiscal policy in a model with labor market frictions.
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in Appendix C is the PVIC:

E0

∞∑
t=0

βt (uCtCt + uHtHt) = uC0[v0 + (1− τD0 )d0]N0 + uC0B0. (24)

Because the number of product varieties is a state variable, the household’s ownership, via share

holdings, of the initial stock of varieties, N0, is part of its time-zero assets, as the right-hand side

of (24) shows. In this sense, the initial stock of varieties acts like the initial stock of physical capital

in a Ramsey analysis of the baseline RBC model.

However, unlike in a standard model, the PVIC (24) does not capture all equilibrium conditions,

so the Ramsey problem cannot be cast in the standard pure “primal” form. In particular, Ramsey

allocations must also respect the intertemporal product creation condition (16) and the entry

condition (17). The appearance of (expectations of) future tax rates in the product creation

condition prevents formulation in pure primal form because there is no way to eliminate the future

tax rates from the Ramsey problem. Hence, we directly compute Ramsey first-order conditions with

respect to the product creation subsidy and (with a caveat discussed next) the dividend income

tax to characterize their optimal settings.

Two novel issues regarding the nature of available tax instruments and how they can be used

to decentralize Ramsey allocations require discussion. First, as just noted, Ramsey first-order

conditions with respect to the product creation subsidy and the dividend income tax directly must

be computed. However (considering the period-t competitive equilibrium), it is only the period-t+1

dividend tax that appears in the period-t equilibrium conditions. The realized period-t dividend

tax does not directly affect the period-t competitive equilibrium due to the forward-looking nature

of product development decisions.42 In principle, this requires computing a Ramsey first-order

condition with respect to τDt+1 as part of the period-t Ramsey first-order conditions. This would pose

no problem if the environment were deterministic. However, with uncertainty, τDt+1 is indeterminate

with respect to the period-t information set of the economy. This indeterminacy requires setting

up the Ramsey problem in a novel way.

We resolve the indeterminacy by assuming that the Ramsey government chooses a state-

contingent schedule of one-period-ahead dividend tax rates, one for each of the possible realized

states. We use the notation τDt+1|t to denote this state-contingent schedule, which is in the private

sector’s period-t information set. Thus, in conducting the Ramsey optimization, we replace τDt+1

with τDt+1|t in the product creation condition (16), along with the auxiliary assumption that the

Ramsey government always implements its one-period-ahead state-contingent “announcements” of

dividend taxes.43 That is, the Ramsey government optimally chooses the schedule τDt+1|t in period

42Inspecting (14)-(19) shows that only τDt+1 appears in the period-t equilibrium conditions.
43Formally, this means that the period t+ 1 dividend tax rate can be taken out of the expectation operator in the

product creation condition (16); note, however, that this does not make the product creation condition deterministic.
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t, and then implements with certainty the particular value of τDt+1|t that the schedule specificies as

the actual τDt+1 in period t + 1. This is a novel type of “one-period commitment” on the part of

the Ramsey government, but we view it as compatible with (and weaker than) the maintained as-

sumption of commitment to policy functions from period zero onwards that is a defining feature of

Ramsey analysis. From here on, we use the phrase “optimal dividend income tax” when discussing

the Ramsey equilibrium, recognizing that, outside the deterministic steady state, what the Ramsey

government chooses is a state-contingent one-period-ahead schedule.44

The second novel issue is also one of indeterminacy, although between tax instruments in a

given time period rather than for a given tax instrument across time periods. The product devel-

opment decision (16) is affected by both development subsidies and (the state-contingent schedule

of) dividend taxes. Because neither policy instrument appears in any other period-t private-sector

equilibrium condition, an infinite combination of pairs (τSt , τ
D
t+1|t) induces identical product devel-

opment decisions. This is a standard form of Ramsey indeterminacy, and the Ramsey equilibrium

can endogenously pin down only one, but not both, of the instruments τDt+1|t and τSt ; this point is

elaborated further in Section 7 in the context of a broader discussion of the nature of the assumed

tax system. In the Ramsey results reported below, the indeterminacy is resolved by fixing, in turn,

one of the tax instruments to zero and optimizing with respect to the other; we refer to the former

as the “inactive” instrument and the latter as the “active” instrument.45

The Ramsey problem is thus to choose state-contingent processes for {Ct, Ht, Nt+1, NEt}∞t=0

and either {τSt }∞t=0 or {τDt+1|t}
∞
t=0 to maximize (1) subject to the PVIC (24), the product creation

condition (16), the entry condition (17), the law of motion for the measure of product varieties (18),

and the resource constraint (19). Finally, as is standard in Ramsey taxation problems and implicit

in the discussion above, the Ramsey government is assumed to fully commit to time-invariant policy

functions as of period zero. Thus, none of the results is driven by the use of a discretionary policy.46

4.2 The Timeless Perspective and Computational Issues

The first-order conditions of the Ramsey problem are assumed to be necessary and sufficient, and

all allocations are assumed to be interior. As in the exogenous policy baseline, a nonlinear numeri-

cal solution algorithm is used to compute the deterministic Ramsey steady-state equilibrium. As is

44We thank Marco Bassetto for suggesting this approach. In the context of an incomplete-markets Ramsey model,

Fahri (2009) uses a similar approach in choosing the one-period-ahead (non-state-contingent) capital income tax rate;

doing so retains the incomplete-markets nature of his analysis. Analogously, allowing the choice of the one-period-

ahead state-contingent dividend income tax retains the complete-markets nature of our analysis.
45Alternatively, we could fix the inactive instrument to any arbitrary value, both in the long run and along the

stochastic fluctuations of the Ramsey equilibrium, but there is little basis for preferring one decentralization over

another.
46The stock nature of product varieties is what allows scope for use of a discretionary policy.
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common in the Ramsey literature, when characterizing asymptotic policy dynamics (that is, the dy-

namics implied by the Ramsey t > 0 first-order conditions), we also make the auxiliary assumption

that the initial state of the economy is the asymptotic Ramsey steady state, which is tantamount

to adopting the “timeless perspective” common in Ramsey-based quantitative analysis.47

More precisely, to study dynamics, we compute a first-order approximation of the Ramsey first-

order conditions for period t > 0 around the deterministic steady state of these conditions. We

then use the first-order accurate decision rules to simulate the Ramsey equilibrium in the face of

productivity and government spending realizations. The productivity and government spending

realizations used to conduct the Ramsey simulations are the same as those in the exogenous policy

experiments in Section 3, which means that any differences between the Ramsey equilibrium and

exogenous policy equilibrium are attributable entirely to the dynamics of tax policy.

4.3 Long-Run Optimal Policy

The first main result is that the long-run Ramsey equilibrium achieves efficiency along the product

creation margin. Efficiency can be decentralized by an appropriate dividend income tax or product

creation subsidy, depending on which instrument is active. Regardless of which instrument is active,

its precise setting depends on the particular form of variety aggregation in preferences.

Before presenting results, it is useful to define the welfare benefit of variety in elasticity form:

ε(Nt) = ρ′(Nt)
Nt

ρ(Nt)
. (25)

As noted above, the relative price ρ(Nt) measures the (welfare) return to product variety, to which

we refer as the “variety effect.”48 The elasticity ε(Nt) turns out to be a convenient way of charac-

terizing the variety effect.49

4.3.1 Dividend Taxation

First suppose that dividend income taxes are active, and product development subsidies are inactive

(τS ≡ 0).

Proposition 1. Optimal Long-Run Dividend Income Tax. In the deterministic steady state

of the Ramsey equilibrium in which only dividend income taxes are active, the optimal dividend

income tax rate is characterized by:

1− τD =
ε(N)

µ(N)− 1
, (26)

47Among other references, see Khan, King, and Wolman (2003).
48Symmetry across varieties implies Ct +Gt = ρ(Nt)ZthtNt (recall that ht is the labor used to produce yt units of

a particular variety). Abstracting from Gt, ρ(Nt) captures the additional welfare gain of consuming the output Ztht

of each of the Nt varieties. This role of ρ(Nt) was also made apparent in the resource constraint (19).
49The notation ρ′(Nt) recognizes that, for all preference specifications we use, ρt is indeed a function only of Nt.
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and this tax supports long-run efficiency of product creation.

Proof. See Appendix D.

For the BGM environment, the pure social planning allocations and the corrective Pigovian

taxes needed to support them were developed by Bilbiie, Ghironi, and Melitz (2008b). Their

results provide the analytical basis for the results we obtain regarding long-run Ramsey taxation.

Of particular importance for our work here is that Bilbiie, Ghironi, and Melitz (2008b) — hereafter,

BGM2 — determined the constellations of conditions for the markup incentives governing product

development and the variety effect on welfare that are important for efficiency. It is the tradeoff of

these two forces that shapes the long-run optimal dividend income tax.

A striking aspect of the Ramsey-optimal long-run dividend income tax is that it is identical

to the Pigovian tax derived by BGM2. In particular, the goal of dividend taxation is to align the

beneficial effects of product variety with net monopoly markups. As (26) shows, this alignment is

accomplished with no need for taxation if and only if ε(N) = µ(N) − 1. The analysis in BGM2

is about efficiency (Pigovian) taxes because it abstracts from public finance considerations by

assuming the availability of lump-sum taxation. Proposition 1 shows that endogenizing public

finance considerations does not affect this normative result.

Further discussion of the result that the Ramsey equilibrium achieves efficient product creation

is deferred until Section 7. In the rest of this section, we consider the implications of Proposition 1

for the precise value of τD. Given the normalization τS = 0 for the analysis here, the detail of the

economic environment that matters for the precise value of τD is the form of variety aggregation. As

described above, we study the Dixit-Stiglitz and translog aggregators for the quantitative analysis.

For the analytical result here, however, we also consider the Benassy (1996) generalization of the

Dixit-Stiglitz aggregator, which disentangles the variety effect from the monopoly markup. Table 3

presents functional forms for markups and variety effects for each of the three aggregators; for the

intuitive discussion here of the Benassy aggregator, let κ govern the variety effect, and θ continue

to govern the markup as in the standard Dixit-Stiglitz aggregator.50

50Formally, the Benassy aggregator is

Ct = N
κ+1− θ

θ−1
t

[∫
ω∈Ω

ct (ω)(θ−1)/θ dω

] θ
θ−1

, (27)

with κ ≥ 0. With Benassy aggregation, the markup of a symmetric variety is µ = θ
θ−1

, just as in the Dixit-Stiglitz

case, but the relative price of a symmetric variety is given by ρt = Nκ
t . The Dixit-Stiglitz specification is recovered if

κ = θ
θ−1

− 1. The Benassy case is omitted from the dynamic stochastic analysis below due to lack of reliable ways of

calibrating κ, and because the quantitative implications are very similar to the Dixit-Stiglitz case for all scenarious

we tried (results are available upon request). We discuss the Benassy case for the steady state, however, because it

yields qualitatively different results regarding optimal policy than Dixit-Stiglitz aggregation. Further details are in

BGM2 and Benassy (1996).
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With these three aggregators, the optimal dividend income tax can be positive, negative, or

zero. Specifically, based on the functional forms of ε(N) and µ(N) in Table 3, the optimal long-run

dividend income tax rate in the Dixit-Stiglitz aggregation is

τDDS = 1−
θ
θ−1 − 1
θ
θ−1 − 1

= 0; (28)

in the Benassy aggregation is

τDBENASSY = 1− κ
θ
θ−1 − 1

= 1− κ(θ − 1); (29)

and in the translog aggregation is

τDTRANSLOG = 1−
1

2σN
1
σN

= 0.5. (30)

The intuition for why the variety aggregator clearly matters for the optimal long-run dividend

income tax is that with zero dividend taxation and either translog aggregation or Benassy ag-

gregation featuring a sufficiently small variety effect, the monopoly incentives governing product

development are stronger than the beneficial effects of increased product variety on welfare. Too

many products are thus developed in equilibrium. A dividend income tax, which effectively taxes

monopoly profits, corrects this distortion by reducing household incentives to finance product cre-

ation. In the Dixit-Stiglitz case, the product development incentive of profits and the variety effect

exactly balance each other, which thus calls for a zero dividend tax. In the Benassy aggregation,

optimal dividend income taxes can be either positive or negative, depending on which of the two

effects is stronger. Taken together, the results suggest that the optimal dividend income tax in the

long run is not likely to be zero, unless one is committed to the Dixit-Stiglitz knife-edge case.

Unless one believes literally in the translog aggregator, it is difficult to offer a precise numerical

target for the long-run dividend income tax because there is little empirical evidence about the

magnitude of the variety effect. Nonetheless, based on the success of the basic BGM model in

reproducing a number of business cycle facts with translog aggregation, one may lean toward that

as the most favored model with which also to consider optimal taxation. Furthermore, as shown

in Table 3, translog aggregation has a-priori appeal because it captures the idea that the larger

the mix of available products, the closer substitutes they are, an idea captured by neither the

Dixit-Stiglitz nor Benassy specification.

4.3.2 Product Development Subsidies

Suppose instead that dividend taxes are inactive (τD ≡ 0), and product creation subsidies are

active.
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Proposition 2. Optimal Long-Run Product Creation Subsidy. In the deterministic steady

state of the Ramsey equilibrium in which only product creation subsidies are active, the optimal

product creation subsidy is characterized by:

1− τS =
µ(N)− 1

ε(N)
, (31)

and this tax supports long-run efficiency of product creation.

Proof. See Appendix D.

This result is also identical to BGM2. With only τS active, Dixit-Stiglitz aggregation requires

τS = 0 in the long run, while translog aggregation requires τS = −1 (a 100 percent tax on the entry

cost) in the long run. Intuitively, the optimal τS achieves the same objective as the optimal τD

of aligning the welfare benefit of variety (and the associated household incentive to finance entry)

with the markup (and the associated firm incentive to create products). With translog aggregation,

a dividend tax achieves the objective by cutting in half the dividends received by households, while

a tax on product creation does so by doubling firms’ creation costs. We comment further on the

redundancy of τD and τS with respect to each other in Section 7.

4.4 Short-Run Optimal Policy

For the rest of the analysis, we return to considering only the Dixit-Stiglitz and translog cases.

Table 4 presents short-run optimal policy results. As discussed above and further in Section 7,

only one of the two instruments, τDt+1|t or τSt , can be uniquely determined in the Ramsey equilib-

rium. Given this indeterminacy, Table 4 divides results for each form of variety aggregation into

those conditional on an optimally chosen time-varying dividend income tax or an optimally-chosen

product development subsidy. There are three main results to highlight regarding the Ramsey

dynamics.

First, the volatility of optimal tax rates is very small. The labor income tax rate is constant

in the Dixit-Stiglitz case and very nearly constant in the translog case. Regardless of whether it

is τDt+1|t or τSt that is the active instrument, it also has zero volatility in the Dixit-Stiglitz case

and near-zero volatility in the translog case. Tax smoothing is thus the optimal policy, as in

baseline Ramsey models. Slightly different from baseline Ramsey models, however, is the “joint”

nature of tax smoothing, in which both the labor income tax and the instrument operating on the

intertemporal margin (τDt+1|t or τSt ) have zero or near-zero volatility; in baseline Ramsey models,

“tax smoothing” entails only the former.

Second, labor market fluctuations are much smaller in the Ramsey equilibrium than in the

exogenous policy equilibrium: The relative volatility of total hours is about one third smaller, as

comparison of Table 4 with the lower panels of Table 1 shows.
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Third, in the translog case, the relative volatility of the stock price vR is smaller in the Ramsey

equilibrium than in the exogenous policy equilibrium. For Dixit-Stiglitz aggregation, vR does

not fluctuate in any equilibrium, Ramsey or non-Ramsey, as implied by rearranging the entry

condition (17). Recall from Section 2 that vR is the data-consistent measure of the stock price. The

welfare-relevant stock price v (not shown), however, does fluctuate in equilibrium, and fluctuations

in v are much smaller in magnitude in the Ramsey equilibrium than in the non-Ramsey equilibrium.

Stock prices govern investment in new product development, and the Ramsey equilibrium also

displays smaller fluctuations in investment. At face value, an objective of the Ramsey government

appears to be to implement much more stable capital markets in terms of both prices and quantities.

Achieving smaller (relative) fluctuations of both labor and capital markets are only reduced-

form “objectives,” however, not the primitive objective of the Ramsey equilibrium. A precise

explanation of the incentives that shape Ramsey outcomes, as well as how they are decentralized,

requires introducing several new concepts, which is done in Sections 5 and 6. Section 7 then uses

these concepts to explain the optimal policy results in a way that connects naturally to the Ramsey

literature.

5 Efficiency

Ramsey allocations trade off efficiency against market decentralization. Characterizing efficient

allocations is thus a necessary first step for understanding the optimal policy results. As proven

in Appendix E, efficient allocations {Ct, Ht, NEt, Nt+1}∞t=0 are characterized by four (sequences of)

conditions:

−uHt
uCt

= Ztρ(Nt), (32)

ρ(Nt)fEt = (1− δ)Et
{
βuCt+1

uCt

[
ε(Nt+1)

(
Ct+1 +Gt+1

Nt+1

)
+ ρ(Nt+1)fEt+1

]}
, (33)

Ct +Gt + ρ(Nt)fEtNEt = ρ(Nt)ZtHt, (34)

and

Nt+1 = (1− δ)(Nt +NEt). (35)

The efficiency conditions (32) and (33) are obtained by maximizing household welfare, given

by (1), subject to the technological frontier defined by the sequence of consumption resource con-

straints (34) and laws of motion for variety (35).

Condition (32) is a static dimension of efficiency and is analogous to static consumption-leisure

efficiency in the RBC model. Condition (33) is an intertemporal dimension of efficiency, and it

corresponds to the RBC model’s Euler equation for efficient capital accumulation. Even though

the model does not have “physical capital” in the strict RBC sense, the creation of new product
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varieties is an investment activity that yields a long-lasting asset, as BGM emphasize. Taken

together, conditions (32) and (33) define the two “zero-wedge” benchmarks for Ramsey allocations.

To highlight this “zero-wedges” aspect, it is useful to restate efficiency in terms of marginal

rates of substitution (MRS) and corresponding marginal rates of transformation (MRT).51 For the

intertemporal condition, this restatement is most straightforward for the non-stochastic case, which

allows an informative disentangling of the preference and technology terms inside the expectation

operator in (33).

Proposition 3. Efficient Allocations. The MRS and MRT for the pairs (Ct, Ht) and (Ct, Ct+1)

are defined by:

MRSCt,Ht ≡ −
uHt
uCt

, MRTCt,Ht ≡ Ztρ(Nt),

IMRSCt,Ct+1 ≡
uCt

βuCt+1
, IMRTCt,Ct+1 ≡

(1− δ)
(
ε(Nt+1)

(
Ct+1+Gt+1

Nt+1

)
+ ρ(Nt+1)fEt+1

)
ρ(Nt)fEt

.

Static efficiency (32) is characterized by MRSCt,Ht = MRTCt,Ht, and (for the non-stochastic case)

intertemporal efficiency (33) is characterized by IMRSCt,Ct+1 = IMRTCt,Ct+1.

Proof. See Appendix E.

Each MRS in Proposition 3 has the standard interpretation as a ratio of marginal utilities. By

analogy, each MRT has the interpretation as a ratio of the marginal products of an appropriately

defined transformation frontier.52 Elementary economic theory prescribes that efficient allocations

are characterized by an MRS = MRT condition along each of the static and intertemporal optimiza-

tion margins, implying zero distortion on each. These efficiency conditions are the welfare-relevant

ones for the Ramsey government. However, rather than taking the efficiency conditions as prima

facie justification that the expressions in Proposition 3 are properly to be understood as MRTs,

each can be described conceptually from first principles, independent of the characterization of

efficiency. Formal details of the following mostly intuitive discussion appear in Appendix E.

5.1 Static MRT

To understand the static MRT, MRTCt,Ht , in Proposition 3, consider how the economy can trans-

form a unit of leisure in period t into a unit of output, and hence consumption, in period t. By

construction, this within-period transformation holds fixed all allocations beyond period t. The

51This approach of casting efficiency and optimal-policy results in models with fundamental frictions in terms of

appropriately defined MRS and MRT concepts was first developed by Aruoba and Chugh (2010).
52We have in mind a very general notion of transformation frontier as in Mas-Colell, Whinston, and Green (1995,

p. 129), in which every object in the economy can be viewed as either an input to or an output of the technology to

which it is associated. Appendix E provides formal details.

24



transformation is described in terms of leisure because leisure is a good (and hence gives positive

utility), while labor effort is a bad (and gives disutility); we proceed by describing transformation

as occurring between goods.

A unit reduction in household leisure allows a unit increase in aggregate hours Ht, which

can be devoted to production of existing varieties (Ntht) or creation of new ones (NEthEt). The

technology frontier (34) implies that labor is transformed into consumption-unit resources at the

rate ρ(Nt)Zt, where ρ(Nt) captures the return to variety. Hence, the overall within-period MRT

between leisure and consumption-unit output is ρ(Nt)Zt, as shown in Proposition 3, and efficiency

requires MRTCt,Ht = ρ(Nt)Zt.

5.2 Intertemporal MRT

Now consider the intertemporal MRT (IMRT) in Proposition 3. The IMRT measures how many

additional units of Ct+1 the economy can achieve if one unit of Ct is foregone. By construction,

this transformation across periods t and t+ 1 holds fixed all allocations beyond period t+ 1.

If Ct is reduced by one unit, 1
ρ(Nt)fEt

additional new varieties can be produced, holding fixed

total consumption-unit output, as (34) shows. Due to product destruction, this addition to the

flow of period-t new product development increases the stock of existing varieties in period t + 1,

Nt+1, by 1−δ
ρ(Nt)fEt

.

In period t+1, the additional 1−δ
ρ(Nt)fEt

varieties can be transformed into consumption-unit output

through two channels. First, they yield consumption units directly at the rate ρ(Nt+1)fEt+1, as

shown by the technology frontier (34) (this is simply the inverse of the transformation that occurred

in period t).

Second, each of the additional 1−δ
ρ(Nt)fEt

varieties in period t+1 further increases period t+1 con-

sumption by a net ρ′(Nt+1) (Zt+1Ht+1 − fEt+1NEt+1) units, based on the period t+1 consumption

resource constraint. This expression can be rewritten in several steps,

ρ′(Nt+1) (Zt+1Ht+1 − fEt+1NEt+1) = ρ′(Nt+1) (Zt+1Ht+1 − Zt+1hEt+1NEt+1)

= ρ′(Nt+1)Zt+1ht+1Nt+1

= ρ′(Nt+1)Nt+1qt+1

= ρ′(Nt+1)Nt+1

(
Ct+1 +Gt+1

ρ(Nt+1)Nt+1

)
= ε(Nt+1)

(
Ct+1 +Gt+1

Nt+1

)
, (36)

in which the first line uses the definition hEt = fEt/Zt; the second line uses the labor market

equilibrium condition Ht = htNt+hEtNEt; the third line uses the variety-level equilibrium condition

qt = Ztht; the fourth line uses the condition Ct+Gt = ρ(Nt)Ntqt; and the fifth line uses the definition
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ε(Nt) = ρ′(Nt)Nt
ρ(Nt)

. The overall addition to period-t+ 1 consumption through this second channel is

thus
(1−δ)ε(Nt+1)

(
Ct+1+Gt+1

Nt+1

)
ρ(Nt)fEt

.

Putting together this logic leads to the IMRT shown in Proposition 3. The fully stochastic

intertemporal efficiency condition can thus be represented as:

1 = Et

βuCt+1

uCt

(1− δ)
(
ε(Nt+1)

(
Ct+1+Gt+1

Nt+1

)
+ ρ(Nt+1)fEt+1

)
ρ(Nt)fEt

 = Et

{
IMRTCt,Ct+1

IMRSCt,Ct+1

}
.

(37)

In the deterministic steady state, intertemporal efficiency is characterized by:

1

β
= (1− δ)

ε(N)
(
C+G
N

)
+ ρ(N)fE

ρ(N)fE

 . (38)

6 Equilibrium Wedges

With the model-appropriate characterizations of static and intertemporal efficiency just developed,

equilibrium wedges are defined as the deviations of MRS from MRT that arise in the decentralized

economy. These wedges measure inefficiencies. Understanding the determinants and consequences

of these inefficiencies provides the foundation for understanding optimal policy.

6.1 Static Distortion

Proposition 4. Static Wedge. In the decentralized economy, the within-period (static) equilib-

rium margin can be expressed as

−uHt
uCt

=

(
1− τHt
µ(Nt)

)
Ztρ(Nt). (39)

The term in parentheses measures the static distortion.

Proof. Compare the efficiency condition (32) with the equilibrium condition (15).

From Proposition 4, it is clear that a sufficient condition for the decentralized economy to achieve

static efficiency is τHt = 1−µ(Nt). This is a standard result in models of monopolistic competition

with endogenous labor supply — efficiency requires a subsidy to labor income to offset markup

distortions.53 However, with government spending that requires financing and no lump-sum taxes,

as in our Ramsey analysis, static efficiency cannot be achieved.54

53As discussed in BGM2, monopoly power implies no static distortion if labor supply is inelastic.
54In a Ramsey taxation problem, τH ≤ 0 can only occur if the initial assets of the government are so large, either

by assumption or via an effective initial lump-sum levy on existing private assets, that the government never needs

to impose distortionary taxes. As usual in the Ramsey literature, we rule out these possibilities because they assume

away the nature of the Ramsey problem.

26



6.2 Intertemporal Distortion

Proposition 5. Intertemporal Wedge. In the decentralized economy, the intertemporal equilib-

rium margin can be expressed as

1 = Et

βuCt+1

uCt

(1− δ)
(
(1− τDt+1|t)

(
µ(Nt)− µ(Nt)

µ(Nt+1)

) (
Ct+1+Gt+1

Nt+1

)
+ (1− τSt+1) µ(Nt)

µ(Nt+1)ρ(Nt+1)fEt+1

)
(
1− τSt

)
ρ(Nt)fEt

 .
(40)

Comparing the term in square brackets with the term in square brackets in the intertemporal effi-

ciency condition (37) implicitly defines the intertemporal distortion.

Proof. Rewrite the equilibrium condition (16).

Substituting the optimal long-run dividend tax (26) from Proposition 1 (along with τS = 0)

in the deterministic steady-state version of (40) confirms that the Ramsey equilibrium achieves

long-run intertemporal efficiency.55

Regarding stochastic fluctuations, however, we cannot prove analytically that the optimal trade-

off between static and dynamic distortions will result in intertemporal efficiency along the busi-

ness cycle. The numerical results presented next show that zero intertemporal wedges are indeed

achieved by the Ramsey equilibrium at all points along the business cycle.

7 Discussion

Based on the welfare-relevant concepts of efficiency and wedges developed in Sections 5 and 6, it

is now straightforward to explain the optimal policy results through the lens of Ramsey theory as

well as discuss a few other related points.

7.1 Short-Run Optimal Policy

7.1.1 Wedge Smoothing

A basic result in dynamic Ramsey analysis is that the least distortionary way for a government

to collect a present value of revenue through proportional taxes is to maintain low volatility of

distortions — “wedge smoothing” — across time periods. Keeping distortions constant (or nearly

constant) over time is the basic insight behind Barro’s (1979) partial equilibrium tax-smoothing

result, which carries over to quantitative general equilibrium models, as first shown by Chari,

Christiano, and Kehoe (1991) and recently by Werning (2007).

This basic Ramsey insight also applies to our model. Table 5 compares the exogenous policy

case of Section 3 to optimal policy and shows that the latter maintains zero volatility of both

55The same result is also achieved by substituting τD = 0 and τS that satisfies 1 − τS = µ(N)−1
ε(N)

.
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static and intertemporal distortions. In the translog case especially, distortions are fairly volatile

under exogenous policy: the volatility of the intertemporal wedge conditional on exogenous policy

is 20 times larger than in the Dixit-Stiglitz case, which itself is non-zero.56 Whether in the long

run or in the short run, intertemporal distortions reduce welfare. We proved in Section 4 that

the Ramsey equilibrium eliminates long-run intertemporal distortions. Table 5 shows that even

seemingly “small” fluctuations of intertemporal distortions are completely eliminated in the Ramsey

equilibrium. Fluctuations of static wedges are simultaneously also completely eliminated. This

latter result connects back to the impulse responses presented in Figure 3 of the static wedge to a

labor income tax shock in the exogenous policy analysis; as we anticipated there, the heart of the

Ramsey equilibrium is in designing the behavior of wedges.

Supporting perfect wedge stabilization along both the static and dynamic margins requires

no adjustment in tax rates at all in the Dixit-Stiglitz aggregation. With translog aggregation,

the dynamics of labor and dividend tax rates that support perfect wedge smoothing are shown

in Figure 4. In response to positive productivity and government spending shocks, the labor tax

rate displays a slow (albeit small) rise that mirrors the slow decline in the markup shown in

Figure 5. This dynamic response is intuitive: The only way for the wedge in the within-period

equilibrium condition (15) to remain constant following a shock is if the labor tax rate perfectly

offsets movements in the markup. Confirming this, the simulation-based correlation between the

Ramsey-optimal labor tax rate and the induced markup is indeed -1 with translog aggregation.

7.1.2 Dynamics of Product Development, Markups, and Profits

One of the most appealing features of the baseline BGM framework is its ability to reproduce

quantitatively the business cycle properties of not only standard macro quantities such as GDP,

consumption, and investment in response to productivity shocks, but also of procyclical product

entry, procyclical profits, and (in the translog case) countercyclical goods markups. Figure 2 showed

that the introduction of distortionary fiscal policy does not disrupt these central predictions of

the model. Figure 5 confirms that the Ramsey equilibrium also preserves these predictions: The

impulse responses in Figure 5 (which are plotted assuming the dividend tax is active and the

product creation subsidy is inactive, but the results are very similar for the opposite case) have

very similar profiles as those in Figure 2, but, as suggested by the discussion above, are smaller in

magnitude than in the non-Ramsey equilibrium.

56The unit of measure in Table 5 is consumption because both the static and intertemporal MRSs and MRTs are

in units of consumption.
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7.2 Long-Run Optimal Policy

7.2.1 Relation to Capital Taxation Literature

Proposition 1 stated that the long-run optimal dividend tax supports long-run efficiency in product

creation, which is the economy’s intertemporal margin. As noted in the Introduction, Albanesi

and Armenter (2007) recently generalized the well known zero-capital-taxation results of Chamley

(1986) and Judd (1985) by developing a set of sufficient conditions for a wide class of models that

guarantee the optimality of zero intertemporal distortions. Their sufficient conditions require con-

stant returns to scale in production. The aggregate production function of the BGM model displays

increasing returns to scale in product variety, thus the Albanesi-Armenter sufficient conditions do

not apply. Moreover, existing analytical results regarding zero intertemporal distortions apply only

to the steady state, as does our Proposition 1. The preceding numerical results showed, however,

that Ramsey optimal policy achieves intertemporal efficiency not only in the long run, but also at

all points along the business cycle.

Our model does not include physical capital in the strict sense, but intertemporal efficiency

is nonetheless a primary concern of policy due to the asset nature of product varieties. In the

aggregate, variety is a form of capital. As Proposition 3 implies, product development is in fact

the means by which consumption is transformed across time and hence the means by which the

economy saves. The intertemporal efficiency insight of Ramsey analysis is thus not limited to a

narrow notion of physical capital, but instead applies to any accumulation decision.57 Thus, the

analogy offered by BGM and BGM2 that the stock of varieties is akin to the stock of capital in an

RBC economy is helpful not only for understanding positive business cycle analysis (as in BGM),

but also for understanding normative taxation analysis.

7.2.2 Relation to Optimal Investment in Monopolistic Models

With the preceding analogy, our results on long-run taxation of accumulation decisions in models of

monopolistic competition can be tightly related to the analysis of the optimal quantity of research

and development (R&D) by Benassy (1998) and the optimality of subsidizing capital accumulation

in Judd (1997, 2002). Benassy (1998) applied his own (Benassy, 1996) variety aggregator to the

Romer (1990) endogenous growth model to ask whether too much or too little R&D occurs in the

decentralized economy relative to the social optimum. The answer was that it depends on whether

the variety effect is stronger than or weaker than the markup effect, and he concluded that there

57An early example of the generality of zero intertemporal distortions is Jones, Manuelli, and Rossi (1997), who

show that the insight also applies to human capital accumulation. Another recent example in which intertemporal

efficiency is a central goal of policy, despite the absence of physical capital, is the search-and-matching model of labor

markets in Arseneau and Chugh (2010).
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is no basis for offering normative prescriptions due to lack of empirical evidence about the variety

effect. The BGM framework is based on the Romer (1990) endogenous growth environment, with

zero long-run growth. So, although Benassy (1998) does not go all the way to drawing policy

prescriptions and does not consider a business cycle analysis, our long-run results can be viewed as

a detrended version of his. If we were limited to the Benassy aggregation in forming our conclusions,

we would agree that there is no basis for recommending even a sign for the optimal dividend income

tax because the sign of τDBENASSY = 1 − κ(θ − 1) depends on parameters. While plausible values

for θ can be pinned down by data, no such evidence exists for κ.

Judd (1997, 2002) finds that it is optimal to subsidize capital accumulation when firms have

monopoly power. This prescription seems to conflict with our result that it is likely optimal to

tax accumulation of product varieties by monopolists. Judd’s finding is a consequence of the

familiar result that monopoly power implies a mark-down of the marginal q of capital relative

to the perfectly competitive outcome. A monopolistic firm has an incentive to underaccumulate

capital to reduce output supply and increase its price relative to perfect competition (Hayashi,

1982). In the BGM model, accumulation of products can exceed its welfare benefit, requiring a tax

to correct the distortion. Optimal policy may be turned in the direction of a subsidy if we assumed

a discrete set of firms that internalize the effect of their product creation on the price index (i.e., if

each firm internalized the profit destruction externality of new products). Much as in the capital

accumulation story, this would imply a mark-down in the valuation of additional products to the

firm (see Stebunovs, 2008). Because firms would, however, not also internalize the welfare benefit

of products, this would push results towards the optimality of a subsidy as in Judd (1997, 2002).58

7.2.3 Static Distortion

Much of our focus has been on the ability of the Ramsey government to implement intertemporal

efficiency, with particular emphasis on achieving efficient fluctuations. This does not mean that

Ramsey equilibria achieve the efficient level of activity. Figure 6 plots a few indicators of the long-

run inefficiency of Ramsey equilibria, which is unavoidable because the Ramsey government must

raise revenue using distortionary taxes. For brevity, results are shown only for the Dixit-Stiglitz

aggregation. The long-run outcomes in Figure 6 are traced out as the parameter θ varies between 3

and 20 (recall the benchmark setting was θ = 3.8), which achieves variation in the markup between

50 percent and 5 percent.

Consistent with the preceding analysis, the upper left and upper middle panels of Figure 6 show

that long-run inefficiencies are loaded entirely on the static margin. This amounts to a distortion

in the long-run equilibrium quantity of labor; the inefficiently large quantity of labor in the Ramsey

58For instance, a subsidy (rather than τD = 0) would become optimal in the Dixit-Stiglitz case.
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equilibrium (upper right panel) causes inefficient overproduction of varieties (lower middle panel).

However, the investment-to-GDP ratio (lower left panel) in the Ramsey equilibrium is efficient, and

this is the essence of maintaining zero distortions along the intertemporal product creation margin.

Finally, for completeness, the lower right panel of Figure 6 shows the Ramsey optimal labor income

tax as a function of θ.

7.3 Optimal Taxation Issues

7.3.1 Completeness of Tax System

An important issue in models of optimal taxation is whether or not the available tax instruments

constitute a complete tax system. The tax system is complete in our model. Establishing this

is important for two reasons. First, at a technical level, proving completeness reaffirms that the

Ramsey problem as formulated in Section 4 is indeed correct. As shown by Chari and Kehoe

(1999, p. 1680), Correia (1996), Armenter (2008), and many others, incompleteness of the tax

system requires imposing additional constraints that reflect the incompleteness. Second, it is well

understood in Ramsey theory that incomplete tax systems can lead to a wide range of “unnatural”

policy prescriptions in which the use of some instruments (in either the short run or the long

run) proxy for other, perhaps more natural, instruments. Demonstrating completeness therefore

establishes that none of our results is due to any policy instrument serving as an imperfect proxy

for other, unavailable, instruments.

As Chari and Kehoe (1999, pp. 1679-1680) describe, an incomplete tax system is in place if,

for at least one pair of goods in the economy, the government has no policy instrument that, in

the decentralized economy, uniquely creates a wedge between the MRS of those goods and the

corresponding MRT. Based on the model-appropriate concepts of MRTs and wedges developed

in Sections 5 and 6, it is trivial to show that the set of instruments (τHt , τ
D
t+1|t, τ

S
t ) constitutes a

complete tax system. Indeed, they constitute an “overcomplete” tax system.

The argument is as follows: Proposition 3 proved that there are two margins of adjustment

in the economy. Completeness thus requires at least two policy instruments whose joint setting

induces a unique wedge in each of the two margins. The labor tax τHt coupled with either the state-

contingent one-period-ahead schedule τDt+1|t or τSt do exactly this. The labor tax appears only in

the static wedge (39), hence it uniquely creates a static distortion. Stated instead in terms of the

inverse mapping, τHt is uniquely determined given the Ramsey allocation. The two instruments

τDt+1|t and τSt both appear only in the intertemporal wedge (40), hence an infinite number of pairs

of values for the two create a given intertemporal distortion. Stated instead in terms of the inverse

mapping, one of the two must be fixed arbitrarily in order for the other to be uniquely determined

by the Ramsey allocation.
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A consequence of this “over-completeness” of the tax system is that the introduction of any

additional tax instruments into the environment necessarily implies (further) indeterminacy of the

decentralization of Ramsey allocations. From the point of view of theory, and putting aside positive

considerations, this may raise the question of why both the (state-contingent, one-period-ahead)

dividend tax and the development subsidy were both included in the first place. We allowed for

both as a check on the novel way in which we conducted the Ramsey optimization with respect to

dividend taxes, in which the ex-ante schedule τDt+1|t was technically the policy instrument, rather

than an ex-post value for τDt itself. As Table 4 showed, the Ramsey allocations were identical

in the Dixit-Stiglitz case. However, for translog preferences, even though the main insights carry

over from the Dixit-Stiglitz case, the Ramsey allocations were not identical under the two active

instruments. We discuss this point next.

7.3.2 Taxation of Initial Wealth and Dimensions of Transformation

Despite the completeness of the tax system, the fact that two distinct instruments are allowed to

tax (one at a time) the creation margin raises another subtle optimal taxation issue. As discussed in

Section 4, we adopted the timeless perspective, in which the deterministic Ramsey allocation before

period one (i.e., in periods zero and earlier) is assumed to be identical to the limiting (t → ∞)

Ramsey allocation. The practical consequence of this, which is standard when applying the timeless

concept, is that the initial wealth of households that appears in the PVIC (24) is endogenous to

the Ramsey solution,

However, for the case of translog preferences, the long-run Ramsey allocation is not invariant

to which of the two instruments, τD or τS , is active. The two instruments affect the initial value of

wealth in different ways, which in turn leads to tax-specific values of the multiplier on (24) in the

Ramsey solution. If the dividend tax is active, it affects initial wealth by reducing the dividend flow

that households receive (provided τD > 0, as we showed in Section 4.3 for the translog Ramsey

equilibrium). If the product creation instrument is active, it affects initial wealth by increasing

(ceteris paribus) the market value of stock (provided τS < 0, as is the case in the translog Ramsey

equilibrium) because v = (1− τ s) ρ(N)
µ(N)fE .

These two channels for affecting initial wealth are not isomorphic. Intuitively, one (τS) influ-

ences the value of owning a stock, whereas the other (τD) influences a one-time (period zero) flow

generated by the stock. These two channels by which the Ramsey government can influence initial

wealth imply different long-run Ramsey allocations, which is the reason why the results presented

in the lower panels of Table 4 depend on which instrument is active.

An alternative to the timeless perspective would be to suppose that the government confiscates

ownership of the entire initial variety stock N0. Such a one-time confiscation is indeed optimal from
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the capital taxation perspective, the connections to which we emphasized above. If we use this as

the initial setting for policy (that is, effectively set N0 = 0 in the PVIC (24)), rather than the

timeless setting, the long-run allocations for the translog case are identical under either τD or τS

being active, and both Propositions 1 and 2 remain intact. Moreover, the fluctuations of Ramsey

allocations are then also identical under the two alternative active instruments in this case.

This issue is not about an insufficiently rich set of tax instruments in a completeness sense. As

argued above, the tax system is complete in the usual sense understood in the Ramsey literature

that there is at least one unique tax instrument per independent margin of adjustment in the

private economy. Instead, the crux of the issue is that the initial wealth of the economy is not a

margin of adjustment for the private economy. However, initial wealth is a margin of adjustment

for the Ramsey government when it chooses the best equilibrium. Quantitatively, our main results

are affected very little by this issue. Nonetheless, a broader issue this observation raises for Ramsey

analysis of models that feature primitive frictions is that it may not be just whether an equilibrium

margin is affected uniquely by a given tax, but also how an equilibrium margin is affected by a

given tax that matters.

Digging into this a bit based on the efficiency analysis in Section 5, it may be informative to think

in terms of “multidimensionality” in the IMRT. To see this, note how τDt+1|t and
{
τSt , τ

S
t+1

}
affect

differently the components of the expression in square brackets in equation (40). This defines the

market-valued transformation of current consumption into future consumption. At market values,

foregoing one unit of consumption today yields (1−δ)µ(Nt)

(1−τSt )ρ(Nt)fEt
new market-valued products, which

can be transformed directly back into consumption at the rate (1 − τSt+1) ρ(Nt+1)
µ(Nt+1)fEt+1 in period

t + 1. Moreover, the monopoly market valuation of additional consumption in t + 1 generated

by these products happens at rate (1 − τDt+1|t)
(
1− 1

µ(Nt+1)

) (
Ct+1+Gt+1

Nt+1

)
. These different ways in

which policy instruments affect different dimensions of the IMRT (the investment flow to create

the stock and the dividend generated by the stock) determine their different impacts on the PVIC.

Further exploration of the policy implications of “multidimensional” IMRTs is an interesting topic

for future research.59

8 Conclusion

In this paper, we studied optimal fiscal policy in an environment in which product varieties are the

result of purposeful, forward-looking investment decisions by firms. One main result is that the

long-run optimal dividend income tax rate is positive in the most empirically relevant and intuitively

appealing version of the model. Depending on the form of variety aggregation, it is also possible

59Note that such “multidimensionality” does not arise in the basic RBC model, in which the only endogenous

component of intertemporal transformation is the marginal product of capital.
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that a long-run dividend income subsidy is instead optimal; however, the optimality of a strictly

zero dividend tax is non-generic. In all cases, dividend taxes support zero intertemporal distortions.

The second main result is that keeping labor income tax rates constant (or virtually constant) at all

points along the business cycle is optimal. The Ramsey policy keeps static distortions completely

constant and intertemporal distortions exactly zero over time. Thus, the Ramsey principles of tax

and wedge smoothing apply, in ways that we established analytically and quantitatively. Together,

these results extend basic Ramsey principles beyond “first-generation” complete-markets Ramsey

models.

A methodological contribution of the analysis was to develop precise characterizations of static

and intertemporal efficiency for models based on the framework in Bilbiie, Ghironi, and Melitz

(2007). As this framework continues to be applied to a wider array of macro questions, especially

policy questions, the efficiency templates we developed should help guide understanding of the

results that emerge.
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Period t-1 Period t+1Period t
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realized

Nt Nt+1
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δ(Nt +NEt) varieties

exit market
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available in period t+1:

Nt+1 = (1-δ)(Nt + NEt)

Government 
provides 
product 
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Firms raise 
funds for new 

product 
development on 

stock market

New product 
development

Production occurs, 
goods markets and 

labor markets 
(subject to labor 

taxes) clear

Firms remit 
dividends 

Figure 1: Timing of events.
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Figure 2: Impulse responses in exogenous policy model. First row: positive shock to productivity. Second

row: positive shock to government spending. Third row: positive shock to labor income tax rate. Dotted

lines denote Dixit-Stiglitz preferences, dashed lines denote translog preferences. Horizontal axes plot number

of quarters. Vertical axes plot percentage deviations from respective long-run allocation.
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τH GDPR CR N NE vR IR H

All shocks

Dixit-Stiglitz aggregation

Mean 20% 0.19 0.13 1.20 0.03 0.74 0.02 0.20

Volatility (SD%) 0.56% 2.44 1.00 1.12 16.09 0 16.09 2.63

Relative Volatility — 1 0.41 0.46 6.60 0 6.60 1.08

Autocorrelation 0.65 0.63 0.74 0.93 0.61 — 0.61 0.60

Correlation with GDPR 0.78 1 0.74 0.03 0.97 — 0.97 0.94

Translog aggregation

Mean 20% 0.20 0.13 1.30 0.03 0.72 0.02 0.20

Volatility (SD%) 0.56% 2.15 1.20 0.81 12.39 0.23 12.36 2.32

Relative Volatility — 1 0.56 0.38 5.76 0.11 5.74 1.08

Autocorrelation 0.65 0.62 0.79 0.92 0.57 0.92 0.57 0.59

Correlation with GDPR 0.77 1 0.70 0.14 0.93 0.14 0.94 0.92

Shocks to Z and GR

Dixit-Stiglitz aggregation

Mean 20% 0.19 0.13 1.20 0.03 0.74 0.02 0.20

Volatility (SD%) 0 1.41 0.82 0.53 6.89 0 6.89 0.93

Relative Volatility 0 1 0.58 0.37 4.87 0 4.87 0.66

Autocorrelation — 0.66 0.73 0.94 0.64 — 0.64 0.66

Correlation with GDPR — 1 0.72 0.11 0.96 — 0.96 0.88

Translog aggregation

Mean 20% 0.20 0.13 1.30 0.03 0.72 0.02 0.20

Volatility (SD%) 0 1.30 0.92 0.37 5.19 0.11 5.18 0.86

Relative Volatility 0 1 0.70 0.28 3.98 0.08 3.97 0.66

Autocorrelation — 0.66 0.76 0.93 0.60 0.93 0.60 0.65

Correlation with GDPR — 1 0.66 0.24 0.92 0.24 0.93 0.82

Table 1: Business cycle dynamics in exogenous policy model. The “R” subscript denotes division by ρ to

remove the variety effect. Volatilities computed as standard deviation of cyclical components of HP-filtered

simulated data, except for tax rates, for which volatilities are reported in percentage points. Top panels:

shocks to productivity, government absorption, and labor income tax rate. Bottom panels: shocks only to

productivity and government absorption.
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τH GDPR CR N NE vR IR H

Shocks only to Z

Dixit-Stiglitz aggregation

Mean 20% 0.19 0.13 1.20 0.03 0.74 0.02 0.20

Volatility (SD%) 0 1.26 0.80 0.51 6.62 0 6.62 0.61

Relative Volatility 0 1 0.64 0.40 5.26 0 5.26 0.48

Autocorrelation — 0.66 0.73 0.94 0.64 — 0.64 0.64

Correlation with GDPR — 1 0.95 0.11 0.98 — 0.98 0.93

Translog aggregation

Mean 20% 0.19 0.13 1.30 0.03 0.72 0.02 0.20

Volatility (SD%) 0 1.10 0.90 0.34 4.77 0.10 4.77 0.42

Relative Volatility 0 1 0.82 0.31 4.37 0.09 4.37 0.39

Autocorrelation — 0.66 0.76 0.93 0.60 0.93 0.60 0.61

Correlation with GDPR — 1 0.94 0.24 0.94 0.24 0.95 0.84

Shocks only to Z, with ḠR = 0, τH = 0, τD = 0

Dixit-Stiglitz aggregation

Mean 0 0.19 0.16 1.60 0.04 0.74 0.03 0.20

Volatility (SD%) 0 1.60 0.70 0.54 6.74 0 6.74 0.99

Relative Volatility 0 1 0.44 0.33 4.21 0 4.21 0.62

Autocorrelation — 0.67 0.74 0.95 0.66 — 0.66 0.66

Correlation with GDPR — 1 0.95 0.09 0.98 — 0.98 0.98

Translog aggregation

Mean 0 0.19 0.16 1.53 0.04 0.75 0.03 0.20

Volatility (SD%) 0 1.42 0.82 0.40 5.40 0.10 5.39 0.73

Relative Volatility 0 1 0.57 0.28 3.79 0.07 3.78 0.51

Autocorrelation — 0.67 0.77 0.94 0.62 0.94 0.62 0.62

Correlation with GDPR — 1 0.93 0.22 0.95 0.22 0.95 0.95

Table 2: Business cycle dynamics in exogenous policy model conditional on shocks only to productivity.

The “R” subscript denotes division by ρ to remove the variety effect. Volatilities computed as standard

deviation of cyclical components of HP-filtered simulated data, except for tax rates, for which volatilities are

reported in percentage points. Top panels: ḠR, τH , and τD held constant at their long-run values. Bottom

panels: ḠR = τH = τD = 0.
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Figure 3: Response of within-period wedge (defined as 1 − −uHt/uCt
Ztρ(Nt)

) to one-time, one-standard-deviation

positive shock to labor income tax rate. Dotted lines denote Dixit-Stiglitz preferences, dashed lines denote

translog preferences. Horizontal axes plot number of quarters. Vertical axes plot percentage deviations from

respective long-run allocation.
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Dixit-Stiglitz Benassy Translog

µ(Nt) = µ = θ
θ−1 µ(Nt) = µ = θ

θ−1 µ(Nt) = 1 + 1
σNt

ρ(Nt) = Nµ−1
t = N

1
θ−1
t ρ(Nt) = Nκ

t ρ(Nt) = exp
(
−1

2
Ñ−Nt
σÑNt

)
, Ñ ≡ Mass(potential products)

ε(Nt) = µ− 1 ε(Nt) = κ ε(Nt) = 1
2σNt

= 1
2(µ(Nt)− 1)

Table 3: The markup, relative price of symmetric variety, and love of variety as functions of the number of

product varieties for the Dixit-Stiglitz, Benassy, and translog variety aggregators.
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τH τD τS GDPR CR N NE vR IR H

Dixit-Stiglitz aggregation (τD active, τS inactive)

Mean 28.2% 0 — 0.34 0.21 2.87 0.07 0.74 0.05 0.36

Volatility (SD%) 0 0 — 0.99 0.38 0.15 3.57 0 3.57 0.34

Relative Volatility 0 0 — 1 0.38 0.15 3.58 0 3.58 0.34

Autocorrelation — — — 0.69 0.72 0.95 0.68 — 0.68 0.69

Correlation with GDPR — — — 1 0.79 0.06 0.96 — 0.96 0.82

Dixit-Stiglitz aggregation (τS active, τD inactive)

Mean 28.2% 0 — 0.34 0.21 2.87 0.07 0.74 0.05 0.36

Volatility (SD%) 0 0 — 0.99 0.38 0.15 3.57 0 3.57 0.34

Relative Volatility 0 0 — 1 0.38 0.15 3.58 0 3.58 0.34

Autocorrelation — — — 0.69 0.72 0.95 0.68 — 0.68 0.69

Correlation with GDPR — — — 1 0.79 0.06 0.96 — 0.96 0.82

Translog aggregation (τD active, τS inactive)

Mean 14.7% 50% — 0.36 0.25 1.54 0.04 0.75 0.03 0.37

Volatility (SD%) 0.43% 0.32% — 0.93 0.48 0.15 3.76 0.04 3.76 0.42

Relative Volatility — — — 1 0.52 0.16 4.05 0.04 4.05 0.45

Autocorrelation 0.74 0.64 — 0.69 0.73 0.94 0.64 0.94 0.64 0.70

Correlation with GDPR 0.58 0.82 — 1 0.58 0.21 0.86 0.21 0.86 0.57

Translog aggregation (τS active, τD inactive)

Mean 19.8% — -100% 0.35 0.24 1.52 0.04 1.50 0.06 0.36

Volatility (SD%) 0.41% — 0.14% 0.93 0.49 0.15 3.72 0.05 3.78 0.43

Relative Volatility — — — 1 0.52 0.156 4.00 0.06 4.06 0.46

Autocorrelation 0.74 —- 0.74 0.69 0.72 0.94 0.64 0.64 0.64 0.70

Correlation with GDPR 0.56 — 0.49 1 0.56 0.21 0.85 0.79 0.85 0.57

Table 4: Optimal policy. The “R” subscript denotes division by ρ to remove the variety effect. Volatilities

computed as standard deviation of cyclical components of HP-filtered simulated data, except for tax rates, for

which volatilities are reported in percentage points. Shocks are to productivity and government purchases.
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SD(%) of static wedge SD(%) of intertemporal wedge Optimal tax dynamics

Aggregation Exog. policy Opt. policy Exog. policy Opt. policy Vol. of τHt Vol. of τDt+1|t (τSt )

Dixit-Stiglitz 1.13 0 0.004 0 0 0 (0)

Translog 1.20 0 0.083 0 0.41% 0.32% (0.14%)

Table 5: Volatility of static and intertemporal wedges in exogenous policy equilibria and Ramsey equilibria,

and volatility of taxes in Ramsey equilibria. Volatility of taxes reported in percentage points, volatility of

wedges reported as percentage deviation from long-run level. For exogenous policy results, shocks are to

productivity, government purchases, and labor income tax rate. For optimal policy results, shocks are to

productivity and government purchases.
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Figure 4: Impulse responses of Ramsey-optimal labor tax rate and dividend tax rate. First row: positive

shock to productivity. Second row: positive shock to government spending. Dotted lines denote Dixit-Stiglitz

preferences, crossed lines denote translog preferences. Horizontal axes plot number of quarters. Vertical axes

plot percentage point deviations from respective long-run policy rates.
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Figure 5: Impulse responses in Ramsey equilibrium with dividend tax active and product creation subsidy

inactive. First row: positive shock to productivity. Second row: positive shock to government spending.

Dotted lines denote Dixit-Stiglitz preferences, crossed lines denote translog preferences. Horizontal axes plot

number of quarters. Vertical axes plot percentage deviations from respective long-run allocation.
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A Derivation of Pricing Equation

Denominated in units of consumption, the representative firm’s profit function is:

max
ρt,Nt+1,NEt

E0

∞∑
t=0

Ξt|0
[
(1− τDt )(ρt −mct)Ntqt − (1− τSt )mctfEtNEt

]
, (41)

in which ρt is the relative price of a symmetric variety, qt is the demand function, and we used

mct = wt/Zt. In period t, the firm faces the law of motion for the number of varieties it produces

and sells:

Nt+1 = (1− δ)(Nt +NEt). (42)

The first-order condition with respect to the relative price ρt of a symmetric variety is

(1− τDt )Ntqt + ρt(1− τDt )Nt
∂qt
∂ρt
−mct(1− τDt )Nt

∂qt
∂ρt

= 0, (43)

from which a simple representation of the optimal pricing condition for a symmetric variety can be

obtained. Canceling the (1− τDt )Nt terms and rearranging gives

ρt
∂qt
∂ρt

= mct
∂qt
∂ρt
− qt. (44)

Isolating ρt,

ρt = mct −
1

1
q(ρt)

∂qt
∂ρt

. (45)

Multiplying and dividing the denominator of the second term on the right hand side by ρt,

ρt = mct −
1

ρt
q(ρt)

∂qt
∂ρt

1
ρt

. (46)

Rewriting,

ρt = mct −
ρt

ρt
q(ρt)

∂qt
∂ρt

. (47)

Defining ζt ≡ ρt
q(ρt)

∂qt
∂ρt

as the price elasticity of demand for a symmetric variety, we have

ρt

(
1 +

1

ζt

)
= mct. (48)

The optimal relative price of a symmetric variety is thus

ρt =

(
ζt

1 + ζt

)
mct, (49)

which is in general an endogenously time-varying markup over real marginal cost. Denoting by µt

the gross markup, µt ≡ ζt
1+ζt

,

ρt = µtmct. (50)
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B Competitive Equilibrium

The most straightforward definition of equilibrium is that it is a set of 15 endogenous equilib-

rium processes {Ct, Ht, hEt, ht, Nt+1, NEt, wt, vt, µt, ρt, ξt,mct, qt, dt, Bt+1}∞t=0, for given processes

{Zt, Gt, τHt , τDt , τSt , fEt}, that satisfy the conditions listed below. The equilibrium conditions are

the consumption-leisure optimality condition:

−uHt
uCt

= (1− τHt )wt; (51)

the relation between the marginal cost of production and the real wage:

mct =
wt
Zt

; (52)

the stock demand condition:

vt = (1− δ)Et
{

Ξt+1|t
[
(1− τDt+1)dt+1 + vt+1

]}
, (53)

where Ξt+1|t ≡
βuCt+1

uCt
; the optimal pricing condition for a symmetric variety:

ρt = µtmct; (54)

the relation between the gross markup and the price elasticity of demand:

µt =
ξt

1 + ξt
; (55)

the product creation condition:

(1− τSt )
wt
Zt
fEt = (1− δ)Et

{
Ξt+1|t

[
(1− τDt+1) (ρt+1 −mct+1) qt+1 + (1− τSt+1)

wt+1

Zt+1
fEt+1

]}
; (56)

the law of motion for the number of product varieties:

Nt+1 = (1− δ)(Nt +NEt); (57)

total consumption output:

Ct +Gt = Ntρtqt; (58)

the aggregate consumption-units resource constraint:

Ct +Gt + ρtNEtfEt = ρtZtHt; (59)

the condition that pins down hours worked in the product development sector:

hEt =
fEt
Zt

; (60)
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labor-market clearing:

Ht = hEtNEt + htNt; (61)

per-variety dividends:

dt = (ρt −mct) qt; (62)

and the government budget constraint (in which the market clearing condition xt = 1 is substi-

tuted):

τHt wtHt + τDt dtNt +Bt+1 = Gt +RtBt + τSt
wt
Zt
fEtNEt. (63)

Assumptions on exogenous processes were described in Section 3 in the text, and the parametric

forms adopted for the variety aggregator, which determine the functional relationship between Nt

and ρt and µt, appear in Section 4.3. From here on, we emphasize this relationship by writing

ρ(Nt) and µ(Nt).

B.1 Compact Representation of Equilibrium

To characterize the equilibrium in the compact form presented in Section 2.5, combine the above

conditions as follows. Conditions (53) and (56) imply vt = (1 − τ st )wtZt fEt, which from here on

replaces (53) in our analysis; this justifies the inclusion of condition (17) as part of the definition

of competitive equilibrium in the text.

Next, substitute qt = Ct+Gt
Ntρ(Nt)

in the product creation condition to express it as:

(1− τSt )
ρ(Nt)

µ(Nt)
fEt = (1− δ)Et

{
Ξt+1|t

[
(1− τDt+1)

(
ρ(Nt+1)−

ρ(Nt+1)

µ(Nt+1)

)(
Ct+1 +Gt+1

Nt+1ρ(Nt+1)

)
+ (1− τSt+1)

ρ(Nt+1)

µ(Nt+1)
fEt+1

]}
,

(64)

in which we have also made the substitution mct = ρ(Nt)
µ(Nt)

. Canceling ρ(Nt+1) terms on the right-

hand side, we have

(1−τSt )
ρ(Nt)

µ(Nt)
fEt = (1−δ)Et

{
Ξt+1|t

[
(1− τDt+1)

(
1− 1

µ(Nt+1)

)(
Ct+1 +Gt+1

Nt+1

)
+ (1− τSt+1)

ρ(Nt+1)

µ(Nt+1)
fEt+1

]}
.

(65)

Multiplying by µ(Nt), we have a compact representation of the product creation condition

(1−τSt )ρ(Nt)fEt = (1−δ)Et
{

Ξt+1|t

[
(1− τDt+1)

(
µ(Nt)−

µ(Nt)

µ(Nt+1)

)(
Ct+1 +Gt+1

Nt+1

)
+ (1− τSt+1)

µ(Nt)

µ(Nt+1)
ρ(Nt+1)fEt+1

]}
,

(66)

which is condition (16) in the text.

To obtain the static equilibrium condition, use the relation wt = Ztmct in the consumption-

leisure optimality condition, and then use the relation mct = ρ(Nt)
µ(Nt)

to eliminate marginal cost. The

resulting expression for the equilibrium consumption-leisure margin is

−uHt
uCt

=
(1− τHt )

µ(Nt)
Ztρ(Nt), (67)

which is condition (15) in the text.
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B.2 Consumption Resource Constraint

To derive the representation of the aggregate consumption-units resource constraint above and

presented in (19), sum the flow household budget constraint and the flow government budget

constraint, which gives

Ct +Gt + τSt
wt
Zt
fEtNEt + vtNEt = wtHt + dtNt. (68)

Substitute into this expression the equilibrium expression for (per-product) dividends, dt = (ρt −
mct)qt,

Ct +Gt + τSt
wt
Zt
fEtNEt + vtNEt = wtHt + (ρt −mct)qtNt. (69)

Next, use qt = Ct+Gt
Ntρt

; canceling terms leaves

Ct +Gt + τSt
wt
Zt
fEtNEt + vtNEt = wtHt + (ρt −mct)

(
Ct +Gt
ρt

)
. (70)

Next, using the condition vt = (1− τSt )wtZt fEt,

Ct +Gt +
wt
Zt
fEtNEt = wtHt + (ρt −mct)

(
Ct +Gt
ρt

)
; (71)

and substituting wt/Zt = mct = ρ(Nt)/µ(Nt):

Ct +Gt +
ρ(Nt)

µ(Nt)
fEtNEt = wtHt +

(
ρ(Nt)−

ρ(Nt)

µ(Nt)

)(
Ct +Gt
ρ(Nt)

)
. (72)

Canceling terms on the right hand-side:

Ct +Gt +
ρ(Nt)

µ(Nt)
fEtNEt = wtHt +

(
1− 1

µ(Nt)

)
(Ct +Gt) ; (73)

and canceling the (Ct +Gt) that appears on both sides:

1

µ(Nt)
(Ct +Gt) +

ρ(Nt)

µ(Nt)
NEtfEt = wtHt. (74)

Next, recognize that wt = Ztmct = Zt
ρ(Nt)
µ(Nt)

, which gives:

1

µ(Nt)
(Ct +Gt) +

ρ(Nt)

µ(Nt)
NEtfEt = Zt

ρ(Nt)

µ(Nt)
Ht. (75)

Finally, multiplying by µ(Nt) gives:

Ct +Gt + ρ(Nt)NEtfEt = ρ(Nt)ZtHt, (76)

which emphasizes that ρ(Nt) is a primitive of the economy.
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C Derivation of Present-Value Implementability Constraint

The derivation of the present-value implementability constraint (PVIC) follows that laid out in

Lucas and Stokey (1983) and Chari and Kehoe (1999). Start with the household flow budget

constraint:

Ct + vtxt+1(Nt +NEt) +
∑
j

1

Rjt
Bj
t+1 = (1− τHt )wtHt +Bt + [vt + (1− τDt )dt]xtNt. (77)

Multiply each term by βtuCt (which, in equilibrium, is the shadow value to the household at time

zero of a unit of period-t wealth) and, conditional on the information set at time zero, sum the

sequence of budget constraints from t = 0...∞ to arrive at:

E0

∞∑
t=0

βtuCtCt + E0

∞∑
t=0

βtuCtvtxt+1(Nt +NEt) + E0

∞∑
t=0

∑
j

βtuCt
1

Rjt
Bj
t+1

= E0

∞∑
t=0

βtuCt(1− τHt )wtHt + E0

∞∑
t=0

βtuCtRtBt + E0

∞∑
t=0

βtuCt[vt + (1− τDt )dt]xtNt.

Now begin to impose equilibrium conditions on this present-value budget constraint. For ease of

notation, drop the E0 term, but it is understood that all terms are conditional on the information

set at time zero. First impose the sequence of stock-market clearing conditions xs = 1 ∀s, which

gives:

∞∑
t=0

βtuCtCt +
∞∑
t=0

βtuCtvt(Nt +NEt) +
∞∑
t=0

∑
j

βtuCt
1

Rjt
Bj
t+1

=
∞∑
t=0

βtuCt(1− τHt )wtHt +
∞∑
t=0

βtuCtBt +
∞∑
t=0

βtuCt[vt + (1− τDt )dt]Nt.

Next, in the third summation on the left-hand side, substitute the sequence of state-contingent

bond Euler equations, uCs = βRjsuCjs+1
, ∀j, s:

∞∑
t=0

βtuCtCt +
∞∑
t=0

βtuCtvt(Nt +NEt) +
∞∑
t=0

∑
j

βt+1u
Cjt+1

Bj
t+1

=
∞∑
t=0

βtuCt(1− τHt )wtHt +
∞∑
t=0

βtuCtBt +
∞∑
t=0

βtuCt[vt + (1− τDt )dt]Nt.

The term
∑
j uCjt+1

Bj
t+1 can be expressed as the payoff of a synthetic risk-free bond, uCt+1Bt+1,

which then allows canceling terms in the third summation on the left-hand side with their counter-

part terms in the second summation on the right-hand side, leaving only the time-zero bond-return

term:

∞∑
t=0

βtuCtCt +

∞∑
t=0

βtuCtvt(Nt +NEt) =

∞∑
t=0

βtuCt(1− τHt )wtHt +

∞∑
t=0

βtuCt[vt + (1− τDt )dt]Nt + uC0B0. (78)
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Next, in the first summation on the right-hand side, use the sequence of consumption-leisure opti-

mality conditions, −uHs = uCs(1− τHs )ws, ∀s, and move this summation to the left-hand side:

∞∑
t=0

βtuCtCt +

∞∑
t=0

βtuHtHt +

∞∑
t=0

βtuCtvt(Nt +NEt) =

∞∑
t=0

βtuCt[vt + (1− τDt )dt]Nt + uC0B0. (79)

Next, use the sequence of stock demand conditions, vs = (1−δ)Es
{
βuCs+1

uCs

[
(1− τDs+1)ds+1 + vs+1

]}
,

∀s, to substitute out the uCsvs terms in the third summation on the left-hand side, which yields:

∞∑
t=0

βtuCtCt +
∞∑
t=0

βtuHtHt

+(1− δ)
∞∑
t=0

βt+1uCt+1

[
vt+1 + (1− τDt+1)dt+1

]
(Nt +NEt) =

∞∑
t=0

βtuCt[vt + (1− τDt )dt]Nt + uC0B0.

Substituting the sequence of equilibrium laws of motion Ns+1

1−δ = Ns + NE,s, ∀s, in the third sum-

mation on the left-hand side gives:

∞∑
t=0

βtuCtCt +

∞∑
t=0

βtuHtHt +

∞∑
t=0

βt+1uCt+1

[
vt+1 + (1− τDt+1)dt+1

]
Nt+1 =

∞∑
t=0

βtuCt[vt + (1− τDt )dt]Nt + uC0B0. (80)

Canceling terms in the third summation on the left-hand side with their counterpart terms in the

summation on the right-hand side leaves only the time-zero stock-payoff term:

∞∑
t=0

βtuCtCt +
∞∑
t=0

βtuHtHt = uC0[v0 + (1− τD0 )d0]N0 + uC0B0. (81)

Re-introducing the expectation E0 operator, the PVIC is:

E0

∞∑
t=0

βt (uCtCt + uHtHt) = uC0[v0 + (1− τD0 )d0]N0 + uC0B0, (82)

which is condition (24) in the main text.
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D Optimal Long-Run Policy

Here we prove Propositions 1 and 2. As stated in Section 4.1, the Ramsey problem is to maximize:

E0

∞∑
t=0

βtu(Ct, Ht) (83)

subject to the sequence of consumption resource constraints:

Ct +Gt + ρ(Nt)NEtfEt = ρ(Nt)ZtHt, (84)

laws of motion for the measure of product varieties:

Nt+1 = (1− δ)(Nt +NEt), (85)

the sequence of equilibrium product creation conditions:

(1−τSt )ρ(Nt)fEt = (1−δ)Et
{

Ξt+1|t

[
(1− τDt+1|t)

(
µ(Nt)−

µ(Nt)

µ(Nt+1)

)(
Ct+1 +Gt+1

Nt+1

)
+ (1− τSt+1)

µ(Nt)

µ(Nt+1)
ρ(Nt+1)fEt+1

]}
,

(86)

and the PVIC:

E0

∞∑
t=0

βt (uCtCt + uHtHt) = uC0[v0 + (1− τD0 )d0]N0 + uC0R0B0. (87)

The Ramsey choice variables are Ct, Ht, Nt+1, NEt, and either τDt+1|t (refer to the discussion in

Section 4.1) or τSt for t > 1. Associate the sequences of multipliers λ1,t, λ2,t, λ3,t with the first

three sequences of constraints, and the multiplier ξ with the PVIC. Although we of course must

consider the fully dynamic Ramsey problem to consider any aspect of the Ramsey equilibrium, our

analytical results are only for the deterministic Ramsey steady state. Thus, here we can suppose

the environment is deterministic and drop all expectation operators.

The first-order condition with respect to either τDt+1|t or τSt (again recall that only one of these

two instruments can be active) immediately implies that λ3 = 0 in the deterministic Ramsey steady

state. This is a very useful result because it greatly simplifies the analysis of the rest of the Ramsey

steady state. Intuitively, the result λ3 = 0 says that in the Ramsey equilibrium (though, note,

not in any arbitrary equilibrium), the product creation condition does not constrain the allocation.

Stated another way, the Ramsey government ensures efficiency in the long run along the product

creation margin. We rely on the long run result that λ3 = 0 in what follows.

To prove results for the long-run optimal dividend income tax and product creation subsidy,

we need to consider only the Ramsey first-order conditions with respect to Nt+1 and NEt. These

first-order conditions are, respectively:

−λ2,t + β
[
λ1,t+1ρ

′(Nt+1) (Zt+1Ht+1 −NEt+1fEt+1) + (1− δ)λ2,t+1
]

= 0 (88)
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and:

−λ1,tρ(Nt)fEt + (1− δ)λ2,t = 0. (89)

We have ignored any derivatives through the product creation condition because, as just shown,

the Lagrange multiplier on this constraint is zero in the deterministic steady state. Then, using

exactly the same set of algebraic manipulations as in Appendix E, these two conditions can be

expressed as:

λ1,tρ(Nt)fEt = β(1− δ)
{
λ1,t+1

[
ε(Nt+1)

(
Ct+1 +Gt+1

Nt+1

)
+ ρ(Nt+1)fEt+1

]}
. (90)

In the deterministic steady state, we have that the Ramsey-optimal level of product creation is

characterized by:

1

β
= (1− δ)

ε(N)
(
C+G
N

)
+ ρ(N)fE

ρ(N)fE

 , (91)

which is the long-run efficiency condition (38) that appears in the main text. Thus, the Ramsey

equilibrium achieves the Pareto optimum along the product creation margin in the long run.

To decentralize this, refer to the deterministic steady-state version of the product creation

condition:

1

β
= (1− δ)

(1− τD)(µ(N)− 1)
(
C+G
N

)
(1− τS)ρ(N)fE

+ 1

 . (92)

If the product creation subsidy is inactive (τS = 0), comparison of these last two expressions implies

that the long-run optimal dividend income tax rate is characterized by

1− τD =
ε(N)

µ(N)− 1
, (93)

or

τD = 1− ε(N)

µ(N)− 1
. (94)

This proves Proposition 1.

Alternatively, if the dividend tax is inactive (τD = 0), comparison of the two expressions implies

that the long-run product creation subsidy rate is characterized by

1− τS =
µ(N)− 1

ε(N)
, (95)

or

τS = 1− µ(N)− 1

ε(N)
. (96)

This proves Proposition 2.
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E Efficient Allocations

The social planning problem is to choose state-contingent functions for {Ct, Ht, Nt+1, NEt} to max-

imize

E0

∞∑
t=0

βtu(Ct, Ht) (97)

subject to

Ct +Gt + ρ(Nt)NEtfEt = ρ(Nt)ZtHt (98)

and

Nt+1 = (1− δ)(Nt +NEt). (99)

The social planner internalizes the effect of the number of varieties on the relative price.

Let φt denote the Lagrange multiplier on the consumption-units resource constraint and µt

denote the Lagrange multiplier on the law of motion for the number of product varieties. The

first-order conditions with respect to Ct, Ht, NEt, and Nt+1 are, respectively,

uCt − φt = 0, (100)

uHt + φtρ(Nt)Zt = 0, (101)

−φtρ(Nt)fEt + (1− δ)µt = 0, (102)

and

−µt + βEt
{
φt+1ρ

′(Nt+1) [Zt+1Ht+1 −NEt+1fEt+1] + (1− δ)µt+1
}

= 0. (103)

Conditions (100) and (101) imply

−uHt
uCt

= Ztρ(Nt). (104)

This is the efficiency condition (32) that appears in the main text.

Solving condition (102) for µt and substituting φt = uCt from condition (100), we have

µt =
uCtρ(Nt)fEt

1− δ
. (105)

Using the time-t and time-t+ 1 versions of this expression in condition (103) gives

uCtρ(Nt)fEt = (1− δ)βEt
{
uCt+1

[
ρ′(Nt+1) (Zt+1Ht+1 −NEt+1fEt+1) + ρ(Nt+1)fEt+1

]}
. (106)

Next, apply several definitions and identities to simplify this expression. Using hEt = fEt/Zt, this

can be re-written as

uCtρ(Nt)fEt = (1− δ)βEt
{
uCt+1

[
ρ′(Nt+1) (Zt+1Ht+1 −NEt+1Zt+1hEt+1) + ρ(Nt+1)fEt+1

]}
.

(107)
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Next, by the condition Ht = htNt + hEtNEt, this can be re-written as

uCtρ(Nt)fEt = (1− δ)βEt
{
uCt+1

[
ρ′(Nt+1)Zt+1Nt+1ht+1 + ρ(Nt+1)fEt+1

]}
. (108)

in which, recall, ht is the labor hired per product in the goods producing sector. Next, use the

goods production technology and market clearing, qt = Ztht, to express this as

uCtρ(Nt)fEt = (1− δ)βEt
{
uCt+1

[
ρ′(Nt+1)qt+1Nt+1 + ρ(Nt+1)fEt+1

]}
. (109)

Next, using the per-variety relationship qt = Ct+Gt
Ntρ(Nt)

, the preceding can be expressed as

uCtρ(Nt)fEt = (1− δ)βEt
{
uCt+1

[
ρ′(Nt+1)

(
Ct+1 +Gt+1

Nt+1ρ(Nt+1)

)
Nt+1 + ρ(Nt+1)fEt+1

]}
. (110)

The variety effect expressed in elasticity form is ε(Nt) ≡ ρ′(Nt)
Nt
ρ(Nt)

; using this, we can again

re-express the preceding as

uCtρ(Nt)fEt = (1− δ)βEt
{
uCt+1

[
ε(Nt+1)

(
Ct+1 +Gt+1

Nt+1

)
+ ρ(Nt+1)fEt+1

]}
. (111)

Dividing by uCt, we have

ρ(Nt)fEt = (1− δ)Et
{
βuCt+1

uCt

[
ε(Nt+1)

(
Ct+1 +Gt+1

Nt+1

)
+ ρ(Nt+1)fEt+1

]}
. (112)

which is the intertemporal efficiency condition (33) that appears in the main text.

E.1 MRS-MRT Representation of Efficiency

The efficiency conditions (104) and (112) can be described in terms of appropriately defined concepts

of marginal rates of substitution (MRS) and corresponding marginal rates of transformation (MRT).

Defining MRS and MRT in a model-appropriate way allows us to describe efficiency in terms of

the basic principle that efficient allocations are characterized by MRS = MRT conditions along all

optimization margins.

Consider the static efficiency condition (104). The left-hand side is clearly the within-period

MRS between consumption and labor (leisure) in any period t. The right-hand side is thus the

corresponding MRT between consumption and labor.

We can similarly define MRS and MRT relevant for intertemporal efficiency. To do so, first

restrict attention to the non-stochastic case because it makes clearer the separation of components

of preferences from components of technology (due to endogenous covariance terms implied by the

expectation operator). The non-stochastic intertemporal efficiency condition can be expressed as
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The left-hand side of (113) is clearly the intertemporal MRS (abbreviated IMRS) between Ct and

Ct+1. We claim that the right-hand side is the corresponding intertemporal MRT (abbreviated

IMRT). Applying this definition to the fully stochastic condition (112), we can thus express in-

tertemporal efficiency as
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Rather than take the efficiency conditions (104) and (113) as prima facie evidence that the

right-hand sides must be, respectively, the static MRT and intertemporal MRT, these MRTs can be

derived from the primitives of the environment (i.e., independent of the context of any optimiza-

tion), to which we now turn.

E.2 Proof of Proposition 3: Transformation Frontier and Derivation of MRTs

Based only on the primitives of the environment — that is, independent of the context of any

optimization — we now prove that the right-hand sides of (104) and (113) are, respectively, the

model-appropriate concepts of the static MRT and deterministic IMRT. Doing so thus proves

Proposition 3 in the main text.

Consider the period-t consumption resource constraint and law of motion for variety: Ct+Gt+

ρ(Nt)fEtNEt = ρ(Nt)ZtHt and Nt+1 = (1 − δ)(Nt + NEt). Solving the former for the number of

new products created, NEt = ρ(Nt)ZtHt−Ct−Gt
ρ(Nt)fEt

, and substituting in the latter gives

Υ(Ct, Ht, Nt+1; .) ≡ Nt+1 − (1− δ)Nt −
(1− δ) (ρ(Nt)ZtHt − Ct −Gt)

ρ(Nt)fEt
= 0, (115)

which is defined as the period-t transformation frontier. The function Υ(.) is a more general

notion of a transformation, or resource, frontier than either the goods resource constraint or the

law of motion for variety alone because Υ(.) jointly describes two technologies in the economy: the

technology that transfers variety over time and, conditional on the stock of varieties, the technology

that creates output, in the form of existing goods and new ones. The dependence of Υ(.) on (among

other arguments) Ct and Ht is highlighted because the period-t utility function is defined over Ct

and Ht.

By the implicit function theorem, the static MRT between consumption and leisure is thus

−ΥHt

ΥCt

= Ztρ(Nt), (116)

which formalizes, independent of the social planning problem, the notion of the static MRT on the

right-hand side of the efficiency condition (104) and presented in Proposition 3.
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For use in deriving the IMRT below, note that the implicit function theorem also allows us to

compute ∂Nt+1

∂Ct
= − ΥCt

ΥNt+1
. The partials are ΥCt = 1−δ

ρ(Nt)fEt
and ΥNt+1 = 1. Thus,
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= − 1− δ
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which gives the marginal effect on the period-t + 1 stock of varieties of a change in period-t con-

sumption. This effect has intertemporal consequences because Nt+1 is the stock of varieties entering

period t + 1; because (115) cannot be solved explicitly for Nt+1, the effect must be accounted for

implicitly.

Next, define the transformation frontier that links period t and period-t+ 1

Γ(Ct+1, Nt+2, Ct, Nt+1; .) = Nt+2 − (1− δ)Nt+1 −
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(118)

In form, the function Γ(.) is the same as the function Υ(.), but, for the purpose at hand, it is useful

to view it as a generalization of Υ(.) in that Γ(.) is explicitly viewed as a function of period t and

period t+ 1 allocations.60 The two-period transformation frontier Γ(.) has partials with respect to

Ct+1 and Ct
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
60Rather than as a function of only period-t allocations, as we viewed Υ(.). Note also that, as must be the case, we

could use Γ(.), rather than Υ(.), to define the within-period MRT between consumption and labor. By the implicit

function theorem, the within-period MRT (for period t + 1) is −
ΓHt+1

ΓCt+1
= Zt+1ρ(Nt+1), obviously identical to the

static MRT (116) derived above.
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the fifth line makes use of the definition of the variety effect expressed in elasticity form, ε(Nt) ≡
ρ′(Nt)Nt
ρ(Nt)

, and the last line follows from substituting (117).

By the implicit function theorem, the IMRT between Ct and Ct+1 is thus

ΓCt
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)
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, (120)

which formalizes, independent of the social planning problem, the notion of the IMRT on the

right-hand side of the (deterministic) efficiency condition (113) and presented in Proposition 3.

With the static MRT and IMRT defined from the primitives of the environment, the efficiency

conditions (104) and (113) are indeed interpretable as appropriately-defined MRS = MRT condi-

tions.
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