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1 Introduction

Economic researchers often work with models where the parameters are heterogeneous across the
population. A classic example is that consumers may have heterogeneous preferences over a set of
product characteristics in an industry with differentiated products. These heterogeneous parameters
are often known as random coefficients. When working with cross sectional data, the goal is often to
estimate the distribution of random coefficients. This distribution captures the essential heterogeneity
that is key to explaining the economic phenomena under study.

This paper studies estimating the distribution F (β) in the model

PA (x) =

∫
gA (x, β) dF (β) , (1)

where A is some subset of the observable outcomes y, x is a vector of covariates, β is the vector of
random coefficients, and gA (x, β) is the probability that an outcome in A occurs for an observation with
random coefficients β and covariates x. Given this structure, PA (x) is the cross sectional probability
of observing an outcome in the set A when the covariates are observed to be x. The researcher picks
gA (x, β) as the underlying model, has an i.i.d. sample of observations (yi, xi), and wishes to estimate
F (β).

Previous so-called nonparametric or flexible estimators for F (β) include the EM algorithm, Markov
Chain Monte Carlo (MCMC), simulated maximum likelihood, simulated method of moments, and min-
imum distance. As typically implemented, these estimators suffer from a key flaw: they are computa-
tionally challenging. The researcher must code some iterative search or simulation procedure. Often,
convergence may not be to the preferred, global solution. Convergence may be hard to ensure and to
detect.

Our insight is to notice that the unknown distribution F (β) enters (1) linearly. Thus, we can
exploit linearity and achieve a computationally simpler estimator than the alternatives. Fox, Kim,
Ryan and Bajari (2011), henceforth FKRB, propose dividing the support of β into a finite and known
grid of points β1, . . . , βR. Let yA equal 1 when an outcome is in A, and 0 otherwise. The researcher
then estimates the weights θ1, . . . , θR on the R grid points as the linear probability model regression
of yA on the R predicted probabilities g (x, βr). We also impose the constraints that each θr ≥ 0 and
that

∑R
r=1 θ

r = 1. Thus, the estimator of the distribution F (β) with N observations and R grid points
becomes

F̂N (β) =
∑R

r=1
θ̂r1 [βr ≤ β]

where θ̂r’s denote estimated weights. The computational advantages of the procedure are immediate.
Computationally, the estimator is linear regression (least squares) subject to linear inequality and
equality constraints. This optimization problem is globally convex and specialized routines (such as
LSSOL, built into MATLAB as the command lsqlin) are guaranteed to converge to the global optimum.

FKRB highlight the practical usefulness of the estimator by showing how it can be used in a series
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of examples of random coefficient models employed in consumer choice and other settings, including
applications with endogenous covariates handled with instruments and applications with aggregate
data. The estimator also has computational savings for complex structural models where economic
models must be solved as part of the estimation procedure. In a dynamic programming application such
as adding random coefficients to Rust (1987), the dynamic programming model must be solved only
R times, once for each random coefficient βr. These solutions occur before optimization commences,
and are not nested inside an iterative search or simulation procedure. This contrasts with competing
approaches, where multiple dynamic programs must be solved for every change in the estimation
algorithm’s guess of F (β). In this respect, our estimator shares some computational advantages with
the parametric approach in Ackerberg (2009).

A serious limitation is that the analysis in FKRB assumes that the R grid points used in a finite
sample are indeed the true grid points that take on nonnegative support in the true F0 (β). Thus,
the true distribution F0 (β) is assumed to be known up to a finite number of weights θ1, . . . , θR. This
assumption is convenient as the estimator is consistent under standard conditions for the consistency
of least squares under inequality and equality constraints (Andrews 2002). As economists often lack
convincing economic rationales to pick one set of grid points over another, assuming that the researcher
knows the true distribution up to finite weights is unrealistic.

This paper seeks to place this appealing, computationally simple estimator on firmer theoretical
ground. Instead of assuming that the distribution is known up to weights θ1, . . . , θR, we require the
true distribution F0 (β) to satisfy much weaker restrictions. In particular, the true F0 (β) can have any
of continuous, discrete and mixed continuous and discrete supports. The prior approach in FKRB is
parametric as the true weights θ1, . . . , θR lie in a finite-dimensional subset of a real space. Here, the
approach is nonparametric as the true F0 (β) is known to lie only in the infinite-dimensional space of
multivariate distributions on the space of random coefficients β.

In a finite sample of N observations, our estimator is still implemented by choosing a grid of points
θ1, . . . , θR , ideally to trade off bias and variance in the estimate F̂N (β). We, however, recognize that
as the sample increases, R and thus the fineness of the grid of points should also increase in order to
reduce the bias in the approximation of F (β). We write R (N) to emphasize that the number of grid
points (and implicitly the grid of points itself) is now a function of the sample size. The main theorem
in our paper is that, under restrictions on the economic model and an appropriate choice of R (N), the
estimator F̂N (β) converges to the true F0 (β) as N → ∞, in a function space. The topology on our
function space is induced by the Lévy-Prokhorov metric, a common metrization of the weak topology
on the space of multivariate distributions.

We recognize that the nonparametric version of our estimator is a special case of a sieve estimator
(Chen 2007). Sieve estimators estimate functions by increasing the flexibility of the approximating
class used for estimation as the sample size increases. A sieve estimator for a smooth function might
use an approximating class defined by a Fourier series, for example. As we are motivated by practical
considerations in empirical work, our estimator’s choice of basis, a discrete grid points, is justified by
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the estimator’s computational simplicity. Further and unlike a typical sieve estimator, we need to
constrain our estimated functions to be valid distribution functions. Our constrained linear regression
approach is both computationally simple and ensures that the estimated CDF satisfies the theoretical
properties of a valid CDF.1

Because our estimator is a sieve estimator, we prove its consistency by satisfying high-level con-
ditions for the consistency of a sieve extremum estimator, as given in an appendix lemma in Chen
and Pouzo (2009). We repeat this lemma and its proof in our paper so our consistency proof is self-
contained. Our estimator is not a special case of the two-step sieve estimators explored using lower-level
conditions in the main text of Chen and Pouzo. Several issues arise in proving consistency. Most inter-
estingly, under the Lévy-Prokhorov metric on the space of multivariate distributions, the problem of
optimizing the population objective function over the space of distributions turns out to be well posed
under the definition of Chen (2007). Thus, our method does not rely on a sieve space to regularize the
estimation problem to address the ill-posed inverse problem, as much of the sieve literature focuses on.

Our approach is a general, nonparametric mixtures estimator. The most common frequentist, non-
parametric estimator is nonparametric maximum likelihood or NPMLE (Laird 1978, Böhning 1982,
Lindsay 1983, Heckman and Singer 1984). Often the EM algorithm is used for computation (Dempster,
Laird and Rubin 1977), but this approach is not guaranteed to find the global maximum. The literature
worries about the strong dependence of the output of the EM algorithm on initial starting values and
well as the difficulty in diagnosing convergence (Seidel, Mosler and Alker 2000, Verbeek, Vlassis and
Kröse 2002, Biernacki, Celeux and Govaert 2003, Karlis and Xekalaki 2003).2 Further, the EM algo-
rithm has a slow rate of convergence even when it does converge to a global solution (Pilla and Lindsay
2001). Li and Barron (2000) introduce another alternative, but again our approach is computationally
simpler. Our estimator is also computationally simpler than the minimum distance estimator of Beran
and Millar (1994), which in our experience often has an objective function with an intractably large
number of local minima. The discrete-grid idea (called the “histogram” approach) is found outside of
economics in Kamakura (1991), who uses a discrete grid to estimate an ideal-point model. He does
not discuss the nonparametric statistical properties of his approach. Of course, mixtures themselves
have a long history in economics, such as Quandt and Ramsey (1978).

We prove the consistency of our estimator for the distribution of random parameters, in function
space under the weak topology. To our knowledge, many of the alternative estimators discussed above
do not have general, nonparametric consistency theorems for the estimator for the distribution of
random parameters.3 Our consistency theorem is not specific to the economic model being estimated.4

1FKRB also discuss the cases where β has continuous support and the researcher approximates the density with a
mixture of normals.

2Another drawback of NPMLE that is specific to mixtures of normal distributions, a common approximating choice,
is that the likelihood is unbounded and hence maximizing the likelihood does not produce a consistent estimator. There
is a consistent root but it is not the global maximum of the likelihood function (McLachlan and Peel 2000).

3Beran (1995, Proposition 3) provides a proof for the consistency of the minimum distance estimator of the distribution
of random coefficients in the linear regression model. However, the proof itself does not rely on properties of the linear
regression model, other than its identification.

4In an earlier version of this paper, we also provide the rate of convergence of our estimator. Many of the competing

4



Despite the presence of nonparametric estimators in the literature, they are not commonly used by
applied practitioners estimating distributions of random coefficients. Also, the theoretical results on
consistency for these other estimators are not always of the generality needed for many economic models
used in structural empirical work. By proving the nonparametric consistency of a computationally
simple estimator for general economic choice models, we hope that nonparametric methods will be
increasingly adopted by practitioners in industrial organization, marketing and other applied fields.

The outline of our paper is as follows. Section 2 reviews the general notation for the economic model
and presents five examples of mixture models. Section 3 introduces the estimation procedure. Section
4 demonstrates consistency of our estimator in the space of multivariate distributions. Section 5 argues
that our estimation problem is well-posed using the definition of Chen (2007). Section 6 extends our
consistency results to models with both random coefficients and homogeneous parameters. Section
7 verifies the primitive conditions for consistency established in Section 4 using the five examples of
mixture models in Section 2.

2 True Model and Examples

The econometrician observes a real valued vector of covariates x. The dependent variable in our model
is denoted y, which indicates an underlying random variable y∗ that takes values in the range of y∗,
Y∗. Note that y∗ is not a latent variable. Some of our examples will focus primarily on the case where
the range of y∗ is a finite number of integer values, as is customary in discrete choice models. However,
much of our analysis extends to the case where y∗ is real valued.

Let A denote a (measurable) set in the range of y∗, Y∗. We let PA (x) denote the probability
that y∗ ∈ A when the decision problem has characteristics x. Let β denote a random coefficient
that we assume is distributed independently of x. In our framework, this is a finite-dimensional, real-
valued vector. We let gA (x, β) be the probability of A conditional on the random coefficients β and
characteristics x. The CDF of the random coefficients is denoted by F (β). The function gA is specified
as a modeling primitive. Given these definitions it follows that

PA (x) =

∫
gA (x, β) dF (β) . (2)

On the right hand side of the above equation, gA (x, β) gives the probability of A conditional on x

and β. We average over the distribution of β using the CDF F (β) to arrive at PA (x), the population
probability of the event A conditional on x.

In our framework, the object the econometrician wishes to estimate is F (β), the distribution of
random coefficients. One definition of identification means that a unique F (β) solves (2) for all x and
all A. This is the definition used in certain relevant papers on identification in the statistics literature,
for example Teicher (1963).

nonparametric estimators lack results on the rate of convergence. For example, Horowitz (1999, footnote 5) writes that
“The rates of convergence of the Heckman-Singer estimators ... are unknown ...”
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2.1 Examples of Mixture Models

We will return to these five examples later in the paper. Each example considers economic models with
random coefficients that play a large role in empirical work. Some of the example models are nested
in others, but verification of the conditions for consistency in Section 7 will use additional restrictions
on the supports of x and β that are non-nested across models.

Example 1. (logit) Let there be a multinomial choice model such that y is one of J + 1 unordered
choices, such as types of cars for sale. The utility of choice j to consumer i is ui,j = x′i,jβi + ϵi,j , where
xi,j is a vector of observable product characteristics of choice j and the demographics of consumer i, βi
is a vector of random coefficients giving the marginal utility of each car’s characteristics to consumer
i, and ϵi,j is an additive, consumer- and choice-specific error. There is an outside good 0 with utility
ui,0 = εi,0. The consumer picks choice j when ui,j > ui,h ∀h ̸= j. The random coefficients logit model
occurs when ϵi,j is known to have the type I extreme value distribution. In this example, (1) becomes
for A = {j},

Pj (x) =

∫
gj (x, β) dF (β) =

∫ exp
(
x′jβ

)
1 +

∑J
h=1 exp

(
x′hβ

)dF (β) ,

where x = (x1, . . . , xJ). A similar expression occurs for other choices h ̸= j. Compared to prior
empirical work using the random coefficients logit, our goal is to estimate F (β) nonparametrically.

Example 2. (binary choice) Let J = 1 in the previous example, so that there is one inside good
and one outside good. Thus, the utility of the inside good 1 is ui,1 = ϵi + x′iβ1,i, where βi = (ϵi, β1,i) is
seen as one long vector and ϵi supplants the logit errors in Example 1 and plays the role of a random
intercept. The outside good has utility ui,0 = 0. In this example, (1) becomes for A = {1},

P1 (x) =

∫
g1 (x, β) dF (β) =

∫
1
[
ϵ+ x′β1 ≥ 0

]
dF (β) ,

where 1 [·] is the indicator function equal to 1 if the inequality in the brackets is true. Without logit
errors, the distribution of all unknowns in the model is estimated nonparametrically. In this example
and others below, we allow the case where gA (x, β) in (1) is discontinuous in β.

Example 3. (multinomial choice without logit errors) Consider a multinomial choice model
where the distribution of the previously logit errors is also estimated nonparametrically. In this case,
the utility to choice j is ui,j = x′i,j β̃i+ϵi,j and the utility of the outside good 0 is ui,0 = 0. The notation

β̃i is used because the full random coefficient vector is now βi =
(
β̃i, ϵi,1, . . . , ϵi,J

)
, which is seen as

one long vector. We will not assume that the additive errors ϵi,j are distributed independently of βi.
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In this example, (1) becomes for A = {j},

Pj (x) =

∫
gj (x, β) dF (β) =

∫
1
[
x′j β̃ + ϵj ≥ max

{
0, x′hβ̃ + ϵh

}
∀h ̸= j

]
dF (β) .

Example 4. (Cobb-Douglas production function / linear regression) Consider now a contin-
uous outcome yi from a Cobb-Douglas production function in logs, yi = β0

i + β1
i xi,l + β2

i xi,k, where i

is a manufacturing plant, yi is the log of value added output, β0
i is the log of total factor productivity,

β1
i is the input elasticity on labor (logged) xi,l, and β2

i is the input elasticity on capital (logged) xi,k.
Let xi = (xi,l, xi,k) and βi =

(
β0
i , β

1
i , β

2
i

)
. Let A = [a1, a2) be an interval in the range of yi. In this

example, (1) becomes

P[a1,a2) (x) =

∫
g[a1,a2) (x, β) dF (β) =

∫
1
[
a1 ≤ β0

i + β1
i xi,l + β2

i xi,k < a2
]
dF (β) .

The goal is to estimate the joint distribution of total factor productivity and the input elasticities of
labor and capital.

Example 5. (joint continuous and discrete demand) Consider now a model where a consumer
picks a discrete choice j and, conditional on that choice j, the researcher observes a measure of usage,
yj . For example, j could be a brand of air conditioner, some of which use less energy than others.
In this case, yj might be the observed energy consumption from the chosen air conditioner. This is a
variant of the generalized Roy selection model of Heckman (1990), as energy consumption yj is observed
only for the chosen air conditioner. Let the utility of choice j be ui,j = x̃′i,j β̃i and the utility of choice 0
be ui,0 = 0. Let the outcome for choice j be yi,j = x̄′i,j β̄i + ϵi,j , where x̄i,j is a vector of characteristics

that enters energy usage. Let xi = (x̃i,j , x̄i,j), eliminating overlap, and let βi =
(
β̃i, β̄i, ϵi,1, . . . , ϵi,J

)
.

Let A = ([a1, a2) , {j}). In this example, (1) becomes

P([a1,a2),{j}) (x) =

∫
g([a1,a2),{j}) (x, β) dF (β) =∫

1
[
a1 ≤ x̄′j β̄ + ϵj < a2

]
1
[
x̃′j β̃ ≥ max

{
0, x̃′hβ̃

}
∀h ̸= j

]
dF (β) .

In other words, we compute the probability of the discrete choice being j and the continuous outcome
lying in the interval [a1, a2). Compared to Heckman (1990), this model rules out an additive error in
discrete choice utility (which leads to identification at infinity if included) but allows random coefficients
in both the discrete choice and continuous outcomes portions of the model, which are not allowed in
Heckman.
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3 Estimator

The researcher picks gA (x, β) as the model of interest and seeks to estimate F (β), the distribution of
heterogeneity. We assume the researcher has access to N observations on (yi, xi). Given this, we divide
the range Y of y into mutually exclusive sets A1, . . . , AJ . Let yi,j = 1 if yi ∈ Aj and 0 otherwise.

Let A = Aj and use j for Aj . Start with the model (2) and add yi,j to both sides while moving
Pj (x) to the right side. For the statistical observation i, this gives

yi,j =

∫
gj (xi, β) dF (β) + (yi,j − Pj (xi)) . (3)

By the definition of Pj (x), the expectation of the composite error term yi,j − Pj (x), conditional on
x, is 0. This is a linear probability model with an infinite-dimensional parameter, the distribution
F (β). We could work directly with this equation if it was computationally simple to estimate this
infinite-dimensional parameter while constraining it to be a valid CDF.

Instead, we work with a finite-dimensional sieve space approximation to F . In particular, we let
R (N) be the number of grid points in the grid BR(N) =

(
β1, . . . , βR(N)

)
. A grid point is a vector if

β is a vector, so R (N) is the total number of points in all dimensions. The researcher chooses BR(N).
Given the choice of BR(N), the researcher estimates θ =

(
θ1, . . . , θR(N)

)
, the weights on each of the

grid points. With this approximation, (3) becomes

yi,j ≈
R(N)∑
r=1

θrgj (xi, β
r) + (yi,j − Pj (x)) .

We use the ≈ symbol to emphasize that this uses a sieve approximation to the distribution function
F (β). Because each θr enters yi,j linearly, we estimate

(
θ1, . . . , θR(N)

)
using the linear probability

model regression of yi,j on the R “regressors” zri,j = gj (xi, β
r).

To be a valid CDF, θr ≥ 0∀ r and
∑R(N)

r=1 θr = 1. Therefore, the estimator is

θ̂ = argmin
θ

1

NJ

∑N

i=1

∑J

j=1

yi,j −
R(N)∑
r=1

θrzri,j

2

(4)

subject to θr ≥ 0 ∀ r = 1, . . . , R (N) and
R(N)∑
r=1

θr = 1.

There are J “regression observations” for each statistical observation (yi, xi). This minimization prob-
lem is a quadratic programming problem subject to linear inequality constraints. The minimization
problem is convex and routines like MATLAB’s lsqlin guarantee finding a global optimum. One can
construct the estimated cumulative distribution function for the random coefficients as

F̂N (β) =
∑R(N)

r=1
θ̂r1 [βr ≤ β] ,
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where 1 [βr ≤ β] is equal to 1 when βr ≤ β. Thus, we have a structural estimator for a distribution of
random parameters in addition to a flexible method for approximating choice probabilities.

The approach just presented has two main advantages over other approaches to estimating distri-
butions of random coefficients. First, the approach is computationally simple: we can always find a
global optimum and, by solving for zri,j = gj (xi, β

r) before optimization commences, we avoid many
evaluations of complex structural models such as dynamic programming problems. Second, the ap-
proach is nonparametric. In the next section, we show that if the grid of points is made finer as the
sample size N increases, the estimator F̂N (β) converges to the true distribution F0. We do not need
to impose that F0 lies in known parametric family.

On the other hand, a disadvantage is that the estimates may be sensitive to the choice of tuning
parameters. While most nonparametric approaches require choices of tuning parameters, here the
choice of a grid of points is a particularly high-dimensional tuning parameter. FKRB propose cross-
validation methods to pick these tuning parameters, including the number of grid points, the support
of the points, and the grid points within the support.

Example. 1 (logit) For the logit example,
exp(x′

i,jβ
r)

1+
∑J

h=1 exp(x′
i,hβ

r)
= gj (xi, β

r). Therefore, for each

statistical observation i, the researcher computes R · J linear probability model regressors zri,j =
exp(x′

i,jβ
r)

1+
∑J

h=1 exp(x′
i,hβ

r)
. This computation is done before optimization commences. The outcome for choos-

ing the outside good 0 does not need to included in the objective function, as
∑J

j=0 gj (xi, β
r) = 1.

4 Consistency in Function Space

Assume that the true distribution function F0 lies in the space F of distribution functions on the
support B of the parameters β. We wish to show that the estimated distribution function F̂N (β) =∑R(N)

r=1 θ̂r1 [βr ≤ β] converges to the true F0 ∈ F as the sample size N grows large. Most of the
competing nonparametric estimators discussed in the introduction are not only computationally more
challenging, but lack nonparametric consistency theorems for as general a class of economic models.

To prove consistency, we use the recent results for sieve estimators developed by Chen and Pouzo
(2009), hereafter referred to as CP. We define a sieve space to approximate F as

FR =

{
F | F (β) =

∑R

r=1
θr1 [βr ≤ β] , θ ∈ ∆R ≡

{(
θ1, . . . , θR

)′ | θr ≥ 0,
∑R

r=1
θr = 1

}}
,

for a choice of grid BR =
{
β1, . . . , βR

}
that becomes finer as R increases. We require FR ⊆ FS ⊂ F

for S > R, or that large sieve spaces encompass smaller sieve spaces. The choice of the grid and R (N)

are up to the researcher; however consistency will require conditions on these choices.
Based on CP, we prove that the estimator F̂N converges to the true F0. In their main text, CP study

sieve minimum distance estimators that involve a two-stage procedure. Our estimator is a one-stage
sieve least squares estimator (Chen, 2007) and so we cannot proceed by verifying the conditions in the
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theorems in the main text of CP. Instead, we show its consistency based on CP’s general consistency
theorem in their appendix, their Lemma B.1, which we quote in the proof of our consistency theorem
for completeness. As a consequence, our consistency proof verifies CP’s high-level conditions for the
consistency of a sieve extremum estimator.

Let yi denote the J × 1 finite vector of binary outcomes (yi,1, . . . , yi,J) and let g(xi, β) denote the
corresponding J × 1 vector of choice probabilities (g1 (xi, β) , . . . , gJ (xi, β)) given xi and the random
coefficient β. Then we can define our sample criterion function as

Q̂N (F ) ≡ 1

NJ

∑N

i=1

∥∥∥∥yi − ∫
g(xi, β)dF (β)

∥∥∥∥2
E

=
1

NJ

∑N

i=1

∥∥∥∥yi −∑R

r=1
θrg(xi, β

r)

∥∥∥∥2
E

(5)

for F ∈ FR(N), where || · ||E denotes the Euclidean norm. We can rewrite our estimator as

F̂N = argminF∈FR(N)
Q̂N (F ) + C · νN (6)

where we can allow for some tolerance (slackness) of minimization, C · νN , that is a positive sequence
tending to zero as N gets larger.

Also let

Q(F ) ≡ E

[∥∥∥∥y − ∫
g (x, β) dF (β)

∥∥∥∥2
E

/J

]
be the population objective function.

We state assumptions on the model first. We write P (x, F ) =
∫
g(x, β)dF (β). As a distance

measure for distributions, we use the Lévy-Prokhorov metric, denoted by dLP(·), which is a metrization
of the weak topology for the space of multivariate distributions F . The Lévy-Prokhorov metric in the
space of F is defined on a metric space (B, d). We use notation dLP(F1, F2) where the measures
are implicit. This denotes the Lévy-Prokhorov metric dLP(µ1, µ2), where µ1 and µ2 are probability
measures corresponding to F1 and F2. The Lévy-Prokhorov metric is defined as

dLP (µ1, µ2) = inf {ϵ > 0 | µ1 (C) ≤ µ2 (C
ϵ) + ϵ andµ2 (C) ≤ µ1 (C

ϵ) + ϵ for all BorelmeasurableC ∈ B} ,

where C is some set of random coefficients and Cϵ = {b ∈ B | ∃ a ∈ C, d (a, b) < ϵ}. The Lévy-
Prokhorov metric is a metric, so that dLP (µ1, µ2) = 0 only when µ1 = µ2. See Huber (1981, 2004).

The following assumptions are on the economic model and data generating process.

Assumption 1.

1. Let F be a space of distribution functions on a finite-dimensional real space B, where B is compact.
F contains F0.

2. Let {(yi, xi)}Ni=1 be i.i.d.

3. Let β be independently distributed from x.
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4. Assume the model g (x, β) is identified, meaning that for any F1 ̸= F0, F1 ∈ F , we have
P (x, F0) ̸= P (x, F1) for almost all x ∈ X̃ , where X̃ is a subset of X , the support of x, with
positive probability.5

5. Q (F ) is continuous on F in the weak topology.

Assumptions 1.1, 1.2, and 1.3 are standard for nonparametric mixtures models with cross-sectional
data. Assumption 1.4 requires that the model be identified at a set of values of xi that occurs with
positive probability. The assumption rules out so-called fragile identification that could occur at values
of x with measure zero (e.g. identification at infinity). Assumptions 1.4 and 1.5 need to be verified for
each economic model gA (x, β). We will do so for our five examples below.6

Remark 1. Assumption 1.5 is satisfied when g(x, β) is continuous in β for all x because in this case
P (x, F ) is also continuous on F for all x in the Lévy-Prokhorov metric. Then by the dominated conver-
gence theorem, the continuity of Q (F ) in the weak topology follows from the continuity of P (x, F ) on
F for all x and P (x, F ) ≤ 1 (uniformly bounded). Here the continuity of P (x, F ) on F means for any
F1, F2 ∈ F such that dLP (F1, F2) → 0 it must follow that

∣∣∫ gj(x, β)dF1(β)−
∫
gj(x, β)dF2(β)

∣∣ → 0

for all j. This holds by the definition of weak convergence when g(x, β) is continuous and bounded
and because the Lévy-Prokhorov metric is a metrization of the weak topology.

Remark 2. If the support B is a finite set (i.e. types are discrete with known support), the continuity
in the weak topology holds even when gj(x, β) is discontinuous as long as it is bounded because in
this case the Lévy-Prokhorov metric becomes equivalent to the total variation metric (see Huber 1981,
p.34). This implies

∣∣∫ gj(x, β)dF1(β)−
∫
gj(x, β)dF2(β)

∣∣ → 0 as long as gj(x, β) is bounded.

In addition to Assumption 1, we also require that the grid of points be chosen so that the grid BR

becomes dense in B in the usual topology on the reals.

Condition 1. Let the choice of grids satisfy the following properties:

1. Let BR become dense in B as R → ∞.

2. FR ⊆ FR+1 ⊆ F for all R ≥ 1.

3. R(N) → ∞ as N → ∞ and it satisfies R(N) logR(N)
N → 0 as N → ∞.

The first two parts of this condition have previously been mentioned, and ensure that the sieve
spaces give increasingly better approximations to the space of multivariate distributions. Condition
1.3 specifies a rate condition so that the convergence of the sample criterion function Q̂N (F ) to the
population criterion function Q(F ) is uniform over FR. Uniform convergence of the criterion function
and identification are both key conditions for consistency.

5This is with respect to the probability measure of the underlying probability space. This probability is well defined
whether x is continuous, discrete or some elements of xi are functions of other elements (e.g. polynomials or interactions).

6The continuity condition in Assumption 1.5 can be relaxed to lower semicontinuity. The examples we consider in
this paper satisfy the continuity condition.
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Theorem 1. Suppose Assumption 1 and Condition 1 hold. Then, dLP
(
F̂N , F0

)
p→ 0.

See Appendix A for the proof.

Remark 3. The literature on sieve estimation has not established general results on the asymptotic
distribution of sieve estimators, in function space. However, for rich classes of approximating basis
functions that do not include our approximation problem, the literature has shown conditions under
which finite dimensional functionals of sieve estimators have asymptotically normal distributions. In
the case of nonparametric random coefficients, we might be interested in inference in the mean or
median of β. For the demand estimation, say Example 3, we might be interested in average responses
(or elasticities) of choice probabilities with respect to changes in particular product characteristics. Let
ΠNF0 be a sieve approximation to F0 in our sieve space FR(N). If we could obtain an error bound for
dLP (ΠNF0, F0), we could also derive the convergence rate in the Lévy-Prokhorov metric (Chen 2007).
If the error bound shrinks fast enough as R(N) increases, we conjecture that we could also prove that
plug-in estimators for functionals of F0 are asymptotically normal (Chen, Linton, and van Keilegom
2003).7 Error bounds for discrete approximations are available in the literature for a class of parametric
distributions F , but we are not aware of results for the unrestricted class of multivariate distributions.
In an earlier version of the paper, we derived the convergence rate in the L1 metric instead.

5 Well-Posedness

Chen (2007) and Carrasco, Florens and Renault (2007) distinguish between functional (here the distri-
bution) optimization and identification problems that are well-posed and problems that are ill-posed.
Using Chen’s definition, the optimization problem of maximizing the population criterion function
Q (F ) with respect to the distribution function F will be well-posed if dLP(Fn, F0) → 0 for all se-
quences {Fn} in F such that Q(Fn) − Q(F0) → 0. The problem will be ill-posed if there exists a
sequence {Fn} in F such that Q(Fn) − Q(F0) → 0 but dLP(Fn, F0) 9 0.8 We now argue that our
problem is well-posed.

The space F of distributions on B is compact in the weak topology if B itself is compact (Assump-
tion 1.1) in Euclidean space (Parthasarathy 1967, Theorem 6.4). Also, Q (F ) is continuous on F by
Assumption 1.5. It follows that with our choice of the criterion function and metric, our optimization
problem is well posed in the sense of Chen (2007) because for every ϵ > 0 we have

inf
F∈FR(N):dLP(F,F0)≥ϵ

(Q(F )−Q(F0)) ≥ inf
F∈F :dLP(F,F0)≥ϵ

(Q(F )−Q(F0)) > 0, (7)

7We conjecture that we could prove an analog to Theorem 2 in Chen et al (2003) if we could verify analogs to
conditions (2.4)–(2.6) in that paper for our sieve space.

8Whether the problem is well-posed or ill-posed also depends on the choice of the metric. For example, if one uses
the total variation distance metric instead of the the Lévy-Prokhorov metric, the problem will be ill-posed because the
distance between a continuous distribution and any discrete distribution will always be equal to one in the total variation
metric.
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where the first inequality holds because FR(N) ⊂ F by construction and the second, strict inequality
holds as the minimum is attained by continuity and compactness and because the model is identified
(Assumption 1.4), as we argue in the proof of Theorem 1. Therefore, our optimization problem satisfies
Chen’s definition of well-posedness.

6 Consistency for Models with Homogenous Parameters

In many empirical applications, it is common to have both random coefficients β and finite-dimensional
parameters α ∈ A ⊆ Rdim(α). We write the model choice probabilities as g(x, β, α) and the aggregate
choice probabilities as P (x, F, α). Here we consider the consistency of estimators for models with both
homogenous parameters and random coefficients.

Remark 4. Estimating a model allowing a parameter to be a random coefficient when in truth the
parameter is homogeneous will not affect consistency if the model with random coefficients is identified.

Remark 5. Searching over α as a homogeneous parameter requires nonlinear least squares. The opti-
mization problem may also not be globally convex. The objective function may not be differentiable
for our examples where g(x, β, α) involves an indicator function.

Our estimator for models with homogeneous parameters is defined as (similarly to (6))

(α̂N , F̂N ) = argmin(α,F )∈A×FR(N)
Q̂N (α, F ) + C · νN ,

where Q̂N (α, F ) denotes the corresponding sample criterion function. Q(α, F ) is the population crite-
rion function based on the model g(x, β, α). An alternative computational strategy is that the estimator
can be profiled as

F̂N (α) = argminF∈FR(N)
Q̂N (α, F ) + C · νN for all α ∈ A.

Profiling gives us
α̂N = argmina∈AQ̂N

(
α, F̂N (α)

)
+ C · νN , (8)

and therefore F̂N = F̂N (α̂N ).
Using Theorem 1 of Chen, Linton, and van Keilegom (2003), below we show α̂N is consistent (so

F̂N is as well when combined with Theorem 1). We replace Assumptions 1.4 and 1.5 with Assumptions
2.2 and 2.3 below and add one restriction on g(x, β, α).

Assumption 2.

1. Let A be the parameter space of α, which is a compact subset of Rdim(α).
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2. Assume the model g (x, β, α) is identified, meaning that for any (α1, F1) ̸= (α0, F0), (α1, F1) ∈
A×F , we have P (x, F0, α0) ̸= P (x, F1, α1) for almost all x ∈ X̃ , where X̃ is a subset of X , the
support of x, with positive probability.

3. Q (α, F ) is continuous on A and is continuous on F in the weak topology.

4. Either (i) g(x, β, α) is Lipschitz continuous in α, (ii) α enters g (x, β, α) only through indicator
functions or (iii) g

(
x, β, α1, α2

)
with α = (α1, α2) is Lipschitz continuous in α1 and α2 enters

g
(
x, β, α1, α2

)
only through indicator functions.

If homogeneous parameters were added, Assumption 2.4.i would hold for Example 1, the logit model
with random coefficients. Assumption 2.4.ii would hold for Examples 2–5. Finally, Assumption 2.4.iii
would hold for a joint discrete and continuous demand model with logit errors in the discrete choice
utility and for a discrete choice demand model with logit errors and price endogeneity, both of which
are described in FKRB, Section 5.

We present the consistency theorem for the estimator of the homogenous parameters.

Corollary 1. Suppose Assumptions 1.1 through 1.3, Assumption 2 and Condition 1 hold. Then,
α̂N

p→ α0.

7 Identification and Continuity for Examples

We return to the examples we introduced in Section 2.1. We verify the two key conditions for each model
gA (x, β): Assumption 1.4, identification of F (β), and Assumption 1.5, continuity of the population
objective function under the Lévy-Prokhorov metric. Throughout this section, we assume Assumptions
1.1–1.3 hold. Note that Matzkin (2007) is an excellent survey of older results on the identification of
models with heterogeneity.

Example. 1 (logit) The identification of F (β) in the random coefficients logit model is the main con-
tent of Bajari, Fox, Kim and Ryan (2010, Theorem 13).9 Assumption 12 in Bajari et al states that “The
support of x, X contains x = 0, but not necessarily an open set surrounding it. Further, the support
contains a nonempty open set of points (open in Rdim(xj)) of the form

(
x′1, . . . , x

′
j−1, x

′
j , x

′
j+1, . . . , x

′
J

)
=(

0′, . . . , 0′, x′j , 0
′, . . . , 0′

)
.”10 Bajari et al also require the support of X to be a product space, which

rules out including polynomial terms in an element of xj or including interactions of two elements of
xj . Given this assumption, Assumption 1.4 holds. Assumption 1.5 holds by Remark 1 in the current
paper.

9Theorem 13 of Bajari et al also allows homogeneous, product-specific intercepts.
10Bajari et al discusses what x = 0 means when the means of product characteristics can be shifted.
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Example. 2 (binary choice) Ichimura and Thompson (1998, Theorem 1) establish the identification
of F (β) under the conditions that i) the coefficient on one of the the non-intercept regressors in x

is known to always be positive or negative and ii) there are large and product supports on each of
the regressors other than the intercept. This rules out polynomial terms and interactions. For i), we
formally make this “special regressor” assumption as follows. Let xi,k∗ be an element in xi and xi,−k∗

be the subvector of xi that removes xi,k∗ .

Assumption 3. (binary choice) (i) The conditional CDF of xi,k∗ given xi,−k∗ , labeled as Gxi,k∗ |xi,−k∗ ,
is continuous in xi,k∗ for almost every value of xi,−k∗ . (ii) Let the support of the coefficient βk∗ be
known to be strictly positive or negative.

If we impose the scale normalization βk∗ = ±1, Assumption 1.4 holds if we add large support
conditions on each regressor in x. It turns out that Assumption 3, without needing large support, also
ensures the continuity of Q(F ) on F , in the weak topology. The proof is in the appendix.

Lemma 1. (binary choice) Suppose Assumptions 1.1-1.3 and 3 hold. Then Q(F ) is continuous on
F in the weak topology and Assumption 1.5 holds.

An advantage of our estimator is the ease of imposing sign restrictions if necessary. Because the
researcher picks BR(N) =

(
β1, . . . , βR(N)

)
, the researcher can choose the grid so that the first element of

each vector βr is always positive, for example. Note that binary choice is a special case of multinomial
choice, so the non-nested identification conditions in example 3, below, can replace these used here.

Example. 3 (multinomial choice without logit errors) Fox and Gandhi (2010, Theorem 7.6)
study the identification of the multinomial choice model without logit errors. Our linear specification
of the utility function for each choice is a special case of what they allow. Fox and Gandhi require a
choice-j-specific special regressor along the lines of Assumption 3. On other hand, Fox and Gandhi
allow polynomial terms and interactions for x’s other than the choice-j-specific special regressors, unlike
examples 1 and 2. They do not require large support for the x’s that are not special regressors. The
most important additional assumption for identification is that Fox and Gandhi require that F (β)

takes on at most a finite number T of support points, although the number T and support point
identities β1, . . . , βT are learned in identification. The number T in the true F 0 is not related in any
way to the finite-sample R (N) used for estimation in this paper. So Assumption 1.4 holds under this
restriction on F . For the continuity Assumption 1.5, the equivalent of Assumption 3 also implies the
equivalent of Lemma 1. We omit the formal statement and proof for conciseness.

Example. 4 (Cobb-Douglas production function / linear regression) Beran and Millar (1994,
Proposition 2.2) establish identification of F (β), in a model with one regressor and one slope coefficient.
However, they use individual realizations of the continuous outcome y and not intervals such as [a1, a2).
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To implement our estimator, we discretize the outcome space Y into J intervals [aj−1, aj), j = 1, . . . , J .
The following lemma uses techniques related to Fox and Gandhi (2010) to prove that the distribution
of random coefficients is identified in an interval-censored linear regression model with any number of
regressors.

Lemma 2. (linear regression with interval censoring) Let the underlying regression model be
y = x′β where the first covariate, x1, can take on any value on R+, conditional on the other components
of x, x−k. Assume the researcher uses only data on the dependent variable yi,j = 1 [yi ∈ [aj−1, aj)] for
J intervals. Then F (β) is identified if the true distribution takes on at most an unknown, finite number
of support points. Therefore Assumption 1.4 holds.

The proof is in an appendix. As with example 4, polynomial terms and interactions are not ruled
out, except for those on x1. Note that there is no common sign restriction on the coefficient on
the regressor with large support. For the continuity Assumption 1.5, the equivalent of Assumption
3 also implies the equivalent of Lemma 1. This assumption is almost without loss of generality in
the production function example, as labor and capital have continuous supports and positive input
elasticities.

Example. 5 (joint continuous and discrete demand) Fox and Gandhi (2011) explore the identi-
fication of this selection model with random coefficients. Like in Example 3 above, a choice-j-specific
special regressor must enter the utility for each discrete choice. Also like in Example 3, F (β) takes
on at most a finite number T of support points, although to emphasize, T is learned in identification,
as are the support points. So Assumption 1.4 might hold under this restriction on F . The main new
issue is the same as Example 4: the discretization of the continuous dependent variable in our linear
probability model estimation procedure. The Fox and Gandhi result uses the non-discretized continu-
ous outcomes, and like in Example 4, to implement our estimator, we discretize the continuous portion
of the outcome space into intervals

[
ajι−1, a

j
ι

)
for each choice j. This requires a large-support regressor

in the outcome equations as well. Combining the arguments in Fox and Gandhi (2011) with similar
arguments to those in the proof of Lemma 2 shows identification of the selection model in the case of
interval censoring. For the continuity Assumption 1.5, the equivalent of Assumption 3 also implies the
equivalent of Lemma 1.

8 Conclusion

We analyze a nonparametric method for estimating general mixtures models. Our method allows the
researcher to drop standard parametric assumptions, such as independent normal random coefficients,
that are commonly used in applied work. Convergence of an optimization routine to the global optimum
is guaranteed under linear regression with linear constraints, something that cannot be said for other
statistical objective functions. Also, our estimator is easier to program and to use than alternatives
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such as the EM algorithm. The estimator is also useful for reducing the number of times complex
structural models, such as dynamic programs, need to be evaluated in estimation.

We explore the asymptotic properties of the nonparametric distribution estimator. We show con-
sistency in the function space of all distributions under the weak topology by viewing our estimator
as a sieve estimator and verifying high-level conditions in Chen and Pouzo (2009). Many alternative
mixtures estimators lack consistency results in such generality. We verify the conditions for consistency
for five example models, each of which is widely used in empirical work.
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A Proof of Consistency: Theorem 1

We verify the conditions of CP’s Lemma B.1 (also see Theorem 3.1 in Chen (2007)) in our consistency
proof. To provide completeness, we first present our simplified version of CP’s Lemma B.1, which does
not incorporate a penalty function. Define Q̂N (F ) = 1

NJ

∑N
i=1

∥∥yi − ∫
g (xi, β) dF

∥∥2
E

and Q(F ) ≡
E
[∥∥y − ∫

g (x, β) dF
∥∥2
E
/J

]
.

Lemma 3. Lemma B.1 of CP: Let F̂N be such that Q̂N (F̂N ) ≤ infF∈FR(N)
Q̂N (F ) + Op(νN ) with

νN → 0. Suppose the following conditions (A.3.1)-(A.3.4) hold:

• (A.3.1) (i) Q(F0) < ∞; (ii) there is a positive function δ(N,R(N), ε) such that for each N ≥ 1,
R ≥ 1, and ε > 0, infF∈FR(N):dLP(F,F0)≥εQ(F )−Q(F0) ≥ δ (N,R(N), ε) and lim infN→∞ δ (N,R(N), ε) ≥
0 for all ε > 0.

• (A.3.2) (i) (F , dLP(·)) is a metric space; (ii) FR ⊆ FR+1 ⊆ F for all R ≥ 1, and there exists a
sequence ΠNF0 ∈ FR(N) such that dLP (ΠNF0, F0) = O(ςN ) and ςN → 0 as N → ∞.

• (A.3.3) (i) Q̂N (F ) is a measurable function of the data {(yi, xi)}Ni=1 for all F ∈ FR(N); (ii) F̂N is
well-defined and measurable with respect to the Borel σ-field generated by the weak topology.

• (A.3.4) (i) Let ĉQ(R(N)) = supF∈FR(N)

∣∣∣Q̂N (F )−Q(F )
∣∣∣ p→ 0;

(ii) max
{
ĉQ(R(N)), νN , |Q (ΠNF0)−Q (F0)|

}
/δ (N,R(N), ε)

p→ 0 for all ε > 0.

Then dLP(F̂N , F0)
p→ 0.

Proof. Under condition (A.3.3) (ii), F̂N is well-defined and measurable. Then for any ε > 0,

Pr(dLP(F̂N , F0) ≥ ε) ≤ Pr( inf
F∈FR(N):dLP(F,F0)≥ε

Q̂N (F ) ≤ Q̂N (ΠNF0) +O(νN ))

≤ Pr( inf
F∈FR(N):dLP(F,F0)≥ε

{Q(F ) + (Q̂N (F )−Q(F ))} ≤ Q(ΠNF0) + (Q̂N (ΠNF0)−Q(ΠNF0)) +O(νN ))

≤ Pr( inf
F∈FR(N):dLP(F,F0)≥ε

Q(F ) ≤ 2ĉQ(R(N)) +Q(ΠNF0) +O(νN ))

≤ Pr( inf
F∈FR(N):dLP(F,F0)≥ε

Q(F )−Q(F0) ≤ 2ĉQ(R(N)) +Q(ΠNF0)−Q(F0) +O(νN ))

≤ Pr(δ(N,R(N), ε) ≤ 2ĉQ(R(N)) + |Q(ΠNF0)−Q(F0)|+O(νN ))

which goes to zero by condition (A.3.4).

Now we provide our consistency proof for the baseline estimator. Because our estimator is an
extremum estimator, we can take νN to be arbitrary small. We start with the condition (A.3.1). The
condition Q(F0) < ∞ holds because Q(F ) ≤ 1 for all F ∈ F . Next we will verify the condition

inf
F∈FR(N):dLP(F,F0)≥ε

Q(F )−Q(F0) ≥ δ(N,R(N), ε) > 0 (9)
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for each N ≥ 1, R(N) ≥ 1, ε > 0, and some positive function δ(N,R(N), ε) to be defined below. We
will use our assumption of identification (Assumption 1.4). Let m (x, F ) = P (x, F0)− P (x, F ). Note
that we have

Q(F ) = E
[
||y − P (x, F0) +m(x, F )||2E/J

]
= E

[
||y − P (x)||2E/J

]
+ E

[
||m(x, F )||2E/J

]
because E[(y−P (x))′m(x, F )] = 0 by the law of iterated expectation and E[y−P (x)|x] = 0. Therefore,
for each F ∈ F , we have

Q(F )−Q(F0) = E
[
||m(x, F )||2E/J

]
− E

[
||m(x, F0)||2E/J

]
= E

[
||m(x, F )||2E/J

]
(10)

because m(x, F0) = 0 and the condition (9) holds due to our assumption of identification as the
following argument shows.

Consider E[||m (x, F ) ||2E ], with m (x, F ) defined above, as a map from F to R+ ∪ {0}. For any
F ̸= F0, E[||m (x, F ) ||2E ] takes on positive values for each F ∈ F , because the model is identified on a
set X̃ with positive probability. Then note that E[||m (x, F ) ||2E ] is continuous in F and also note that
FR(N) is compact. Therefore E[||m (x, F ) ||2E ] attains some strictly positive minimum on {F ∈ FR(N) :

dLP(F, F0) ≥ ε}. Then we can take δ(N,R(N), ε) = infF∈FR(N):dLP(F,F0)≥εE
[
||m(x, F )||2E/J

]
> 0 for

all R(N) ≥ 1 with ε > 0.

We further claim lim infN→∞ δ(N,R(N), ε) > 0 because

δ(N,R(N), ε) = inf
F∈FR(N):dLP(F,F0)≥ε

(Q(F )−Q(F0)) ≥ inf
F∈F :dLP(F,F0)≥ε

(Q(F )−Q(F0))

= inf
F∈F :dLP(F,F0)≥ε

E[||m (x, F ) ||2E/J ] > 0,

where the first inequality holds because FR(N) ⊆ F by construction and the second, strict inequality
holds because the model is identified (Assumption 1.4).11

Next we consider (A.3.2). First note that (F , dLP) is a metric space and we have FR ⊆ FR+1 ⊆ F
for all R ≥ 1 by construction of our sieve space. Then we claim that there exists a sequence of
functions ΠNF0 ∈ FR(N) such that dLP(ΠNF0, F0) → 0 as N → ∞. First, BR(N) becomes dense in B
by assumption. Second, FR(N) becomes dense in F because the set of distributions on a dense subset
BR(N) ⊂ B is itself dense. To see this, remember that the class of all distributions with finite support
is dense in the class of all distributions (Aliprantis and Border 2006, Theorem 15.10). Any distribution
with finite support can be approximated using a finite support in a dense subset BR(N) (Huber 2004).

Next, to show (A.3.3) holds, we use Remark B.1.(1)(a) of CP. First note that FR is a compact
subset of F for each R because BR is a compact subset of B.12 Second we need to show that for any

11As we discussed in the main text the space F of distributions on B is compact in the weak topology because we
assume B itself is compact.

12Alternatively we can also see that FR is compact because the simplex, ∆R(N), itself is compact as we argue below.
For any given R and BR, consider two metric spaces, (FR, dLP) and (∆R, || · ||E). Then we can define a continuous map
ψ : ∆R → FR because any element in ∆R determines an element in FR. The map is continuous in the sense that for
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data {(yi, xi)}Ni=1, Q̂N (F ) is lower semicontinuous on FR for each R ≥ 1. Since FR is compact, this
lower semicontinuity or continuity means our estimator is well defined as the minimum in (6). Note∫
g (x, β) dFl =

∑R
r=1 θ

r
l g (x, β

r) for Fl ∈ FR, l = 1, 2. Then, for any F1, F2 ∈ FR(N), applying the
triangle inequality, we obtain

|Q̂N (F1)− Q̂N (F2)| ≤ 2
∑N

i=1

∑dim(yi)

j=1
yi,j

∣∣∣∣∫ gj(xi, β)(dF1 − dF2)

∣∣∣∣ /NJ

+
∑N

i=1

∑dim(yi)

j=1
{
∫

gj(xi, β)(dF1 + dF2)}
∣∣∣∣∫ gj(xi, β)(dF1 − dF2)

∣∣∣∣ /NJ

≤ 4
∑N

i=1

∑dim(yi)

j=1

∣∣∣∣∫ gj(xi, β)(dF1 − dF2)

∣∣∣∣ /NJ,

where the second inequality holds because yi,j , gj(xi, β), and
∫
gj(xi, β)dF (β) are uniformly bounded

by 1 for all j and xi. Then because gj(xi, β) is uniformly bounded by 1 and F1 and F2 are discrete
distributions with the finite support BR, in this case weak convergence implies that almost surely
Q̂N (F ) is continuous on FR, i.e. for any F1, F2 ∈ FR such that dLP (F1, F2) → 0, it follows that
|Q̂N (F1)− Q̂N (F2)| → 0 almost surely.13 Continuity is stronger than lower semicontinuity. Therefore
(A.3.3) holds by Remark B.1.(1) (a) of CP.

Next there are two conditions to verify in (A.3.4). We first focus on the uniform convergence of
Q̂N (F ) to Q(F ) for F ∈ FR(N), supF∈FR(N)

|Q̂N (F ) − Q(F )| p→ 0. It is convenient to view Q̂N (F )

and Q(F ) as functions of θ ∈ ∆R(N) and then write them as Q̂N (θ) and Q(θ), respectively. Then the
uniform convergence condition to verify becomes

sup
θ∈∆R(N)

|Q̂N (θ)−Q(θ)| p→ 0. (11)

Using measures of complexity of spaces, let N(ε, T , || · ||) denote the covering number of the set T with
balls of radius ε with an arbitrary norm || · || and let N[](ε, T , ∥·∥) denote the bracketing number of
the set T with ε-brackets. Define for any R, the class of measurable functions

GR = {l(y, x, θ) = ||y −
∑
r

θrg(x, βr)||2E/J : θ ∈ ∆R}. (12)

any sequence θn → θ in ∆R we have ψ(θn) → ψ(θ) in FR. Then it is a simple proof to show that if ∆R is compact, then
FR = {ψ(θ) : θ ∈ ∆R} is also compact.

Proof. Consider an arbitrary sequence {Fn}n∈N ⊆ FR. Since Fn ∈ {ψ(θ) : θ ∈ ∆R} for all n ∈ N, we know that there
exists θn ∈ ∆R with ψ(θn) = Fn for all n ∈ N. Then {θn}n∈N ⊆ ∆R. Next note that since ∆R is compact, there exists
some subsequence {θln}n∈N with θln → θ̄ ∈ ∆R. Since the map ψ is continuous, it follows that ψ(θln) → ψ(θ̄). And
because ψ(θln) = Fln , then Fln → ψ(θ̄) ∈ FR because θ̄ ∈ ∆R. Therefore, we conclude FR is also compact when ∆R is
compact.

13Note that
∣∣∫ gj(xi, β)(dF1 − dF2)

∣∣ ≤ ∑R
r=1 |θ

r
1 − θr2| → 0 as dLP (F1, F2) → 0 for any finite R.
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Note (i) Q̂N (θ) = N−1
∑N

i=1 l(yi, xi, θ), (ii) {(yi, xi)}Ni=1 are i.i.d., and (iii) E[supθ∈∆R(N)
|l(y, x, θ)|] ≤

1 < ∞. Then by Pollard (1984, Theorem II.24) (also see Chen (2007, Section 3.1, page 5592) for
related discussion), the uniform convergence (11) holds if and only if logN(ε,GR, || · ||L1,N )/N

p→ 0 for
all ε > 0, where || · ||L1,N denotes the L1(PN )-norm and PN denotes the empirical measure of the data
{(yi, xi)}Ni=1.

The term l(y, x, θ) is Lipschitz in θ, as

|l(y, x, θ1)− l(y, x, θ2)| ≤ 1

J

dim(y)∑
j=1

(2yj
∑
r

gj(x, β
r)|θr1 − θr2|+

∑
r

gj(x, β
r)(θr1 + θr2)

∑
r

gj(x, β
r)|θr1 − θr2|)

≤ M(·)
∑R

r=1
|θr1 − θr2| ≤ M(·)

√
R||θ1 − θ2||E

with some function E[M(·)2] < ∞. The first inequality is obtained by the triangle inequality and
the third inequality holds due to the Cauchy-Schwarz inequality. We also know ∆R is a compact
subset of RR. Now take M(·) = 4, noting that yj , gj(·), and

∑R
r=1 gj(x, β

r)θr are uniformly bounded
by 1. Then from Theorem 2.7.11 of van der Vaart and Wellner (1996), we have N[] (2ε,GR, ∥·∥) ≤

N
(

ε
4
√
R
,∆R, ∥·∥E

)
=

(
4
√
R

ε

)R
for any norm ∥·∥. Therefore as long as R(N) logR(N)/N → 0, the

uniform convergence condition holds because N
(
ε,GR, ∥·∥L1,N

)
≤ N[]

(
2ε,GR, ∥·∥L1,N

)
≤

(
4
√
R

ε

)R

(van der Vaart and Wellner 1996, page 84).
To satisfy the second condition in (A.3.4), we need to bound all three terms in the max{·} function.

We have shown the uniform convergence of the sample criterion function (this also satisfies the first
condition in (A.3.4.)) and we can take νN to be small enough. We also have |Q(ΠNF0)−Q(F0)| → 0,

which is trivially satisfied by the continuity of Q(F ) in F and dLP (ΠNF0, F0) → 0. Therefore because
lim infN→∞ δ (N,R(N), ε) > 0, the condition (A.3.4) is satisfied.

We have verified all the conditions in Lemma 3 (Lemma B.1 of CP) and this completes the consis-
tency proof.

A.1 Proof of Corollary 1

We verify corresponding conditions in Theorem 1 of Chen, Linton, and van Keilegom (2003). Although
their Theorem 1 is written in terms of moment based estimations, it can be easily modified to “M-
estimators” that include our estimator (as noted in their footnote 3).

Condition (1.1) (extremum estimator) is satisfied by definition of our estimator as an extremum
estimator in (8). Condition (1.2) (identification) is satisfied by Assumption 2.2 because

inf
α∈A:||α−α0||E≥ϵ

(Q(α, F0(α))−Q(α0, F0)) > 0

where F0(α) = argminF∈FQ(α, F ) (which is well defined and exists because F is compact and Q(α, F )

is continuous on F), F0 = F0(α0), and again the minimum is attained because Q(F, α) is continuous
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in α and F and A×F is compact.
Condition (1.3) (continuity) holds by Assumption 2.3. Condition (1.4) (consistency for the non-

parametric component) holds by our main Theorem 1, where we treat F0(α) as the true parameter for
each α ∈ A.

The last condition we need to verify is their Condition (1.5) (uniform convergence of the sample
criterion function). We have verified the uniform convergence of the sample criterion function over
FR(N) in the proof of Theorem 1. Here we need to verify the uniform convergence over A×FR(N) such
that

sup
(α,F )∈A×FR(N)

∣∣∣Q̂N (α, F )−Q(α, F )
∣∣∣ p→ 0. (13)

For this purpose define for any R, the class of measurable functions (similar to (12))

Gα
R = {l(y, x, θ, α) = ||y −

∑
r

θrg(x, βr, α)||2E/J : (α, θ) ∈ A×∆R}

and note that Q̂N (α, F ) = N−1
∑N

i=1 l(yi, xi, θ, α). Then again by Pollard (1984, Theorem II.24), the
uniform convergence (13) holds if and only if the entropy satisfies logN(ε,Gα

R, || · ||L1,N ) = op(N) for
all ε > 0. Note that the entropy measure of Gα

R is bounded by the sum of two entropies, one associated
with FR(N) and the other one associated with A. We have shown that the former is op(N) in the proof
of Theorem 1. We also note that the latter satisfies the entropy condition (and so is op(N)) under
Assumption 2.4 by Theorem 2.7.11 of van der Vaart and Wellner (1996) (for the Lipschitz case) and
because the class of indicator functions belong to the Vapnik-Červonenkis class and has a uniformly
bounded entropy (Theorem 2.6.7 of van der Vaart and Wellner 1996).

B Proof of Lemma 1

To establish continuity we need to show that for any F1, F2 ∈ F such that dLP (F1, F2) → 0 we have
|Q(F1)−Q(F2)| → 0. Obtain for any F1, F2 ∈ F using a similar derivation to (10)

|Q(F1)−Q(F2)| = |Q(F1)−Q(F0)− {Q(F2)−Q(F0)}| (14)

=

∣∣∣∣∣E
[{∫

g1 (xi, β) (dF1 − dF0)

}2

−
{∫

g1 (xi, β) (dF2 − dF0)

}2
]∣∣∣∣∣

=

∣∣∣∣E [{∫
g1 (xi, β) (dF1 + dF2 − 2dF0)

}∫
g1 (xi, β) (dF1 − dF2)

]∣∣∣∣ .
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By Assumption 1.3 (independence of random coefficients from xi), applying the law of iterated expec-
tation, we can rewrite

E

[{∫
g1 (xi, β) (dF1 + dF2 − 2dF0)

}∫
g1 (xi, β) (dF1 − dF2)

]
= E

[∫ {∫
g1

(
xi, β̃

)
(dF̃1 + dF̃2 − 2dF̃0)

}
g1 (xi, β) (dF1 − dF2)

]
=

∫
E

[{∫
g1

(
xi, β̃

)
g1 (xi, β) (dF̃1 + dF̃2 − 2dF̃0)

}]
(dF1 − dF2) (15)

≡
∫

h(β)dF1 −
∫

h(β)dF2, (16)

where we use β̃ instead of β to emphasize that β̃ is not subject to the outer integral in (15) and
we use (F̃1, F̃2, F̃0) = (F1, F2, F0) to emphasize that β is not subject to the inner integral inside the
expectation in (15).

Now we further analyze the expectation function denoted by h(β) as a function of β in (15). Below
we will show that this function h(β) is continuous in β and is also bounded. Therefore by weak
convergence, for any F1, F2 ∈ F such that dLP (F1, F2) → 0, we also have |Q(F1)−Q(F2)| → 0 by (14)
and (16). This will complete the proof of the continuity of Q(F ) on F in the weak topology.

By Assumption 1.3 (independence of random coefficients from xi) and Assumption 3, applying the
law of iterated expectation several times and assuming (w.l.o.g.) that the support of βk∗ is known to
take strictly positive values (or normalize the coefficient to be 1), we can write

h(β) = Exi,−k∗

[
Exi,k∗ |xi,−k∗

[∫
g1

(
xi, β̃

)
g1 (xi, β) (dF̃1 + dF̃2 − 2dF̃0)

]]
= Exi,−k∗

[∫
Exi,k∗ |xi,−k∗

[
g1

(
xi, β̃

)
g1 (xi, β)

]
(dF̃1 + dF̃2 − 2dF̃0)

]
=

∫
support(xi,−k∗ )

∫
G̃xi,k∗ |xi,−k∗ (dF̃1 + dF̃2 − 2dF̃0)dGxi,−k∗ (17)

where we denote14

G̃xi,k∗ |xi,−k∗ = Pr
(
x′iβ ≥ 0 and x′iβ̃ ≥ 0

∣∣∣xi,−k∗

)
= Pr

(
xi,k∗ ≥ max

{
−x′i,−k∗β−k∗/βk∗ ,−x′i,−k∗ β̃−k∗/β̃k∗

})
= 1−Gxi,k∗ |xi,−k∗

(
max

{
−x′i,−k∗β−k∗/βk∗ ,−x′i,−k∗ β̃−k∗/β̃k∗

})
and Gxi,−k∗ denotes the CDF of xi,−k∗ . Note that G̃xi,k∗ |xi,−k∗ is continuous in β for given others (xi,−k∗

and β̃). Then note that because the function (integrand) inside the inner integral in (17) is measurable
in xi,−k∗ , continuous in β, and bounded, the inner integral itself has these properties itself. Therefore,

14Let the support of xi,k∗ be support(xi,k∗) = [xk∗ , x̄k∗ ] (which can also depend on xi,−k∗). Then we let
Gxi,k∗ |xi,−k∗ (c) = 0 for c < xk∗ and Gxi,k∗ |xi,−k∗ (c) = 1 for c > x̄k∗ .
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applying the dominated convergence theorem we conclude that the function h(β) is continuous in β

and bounded. This completes the proof.

C Proof of Lemma 2

Fox and Gandhi (2010, Theorem 3.3 and Lemma 5.1) prove that the distribution F0 (β) is identified in
the sense of Assumption 1.4 whenever the following two conditions hold (using the notation of interval
censored regression):

1. For any finite set of distinct random coefficients S =
{
β1, . . . , β|S|}, |S| < ∞, there exists a pair

(j, x) such that exactly one β ∈ S satisfies x′β ∈ [aj−1, aj).

2. There is a neighborhood X̃ of x such that the first condition holds.

By the continuity of the term x′β in x, it is clear that the second condition holds whenever the first
condition holds. Therefore, we focus on verifying the first condition. In the first condition, S is not
the true set of types in the data generating process, but any arbitrary, finite set of types.

Let S be given and focus on the lowest interval, [a0, a1). We start with a point x⋆ where at least
one β ∈ S satisfies (x⋆)′ β ∈ [a0, a1). Linearity implies such a point exists. If there is only one β ∈ S

that satisfies (x⋆)′ β ∈ [a0, a1), we are done. So consider the case where two or more β ∈ S satisfy
(x⋆)′ β ∈ [a0, a1).

Divide x = (x1, x−1) into the first x1 and all other covariates x−1. Let

x̃1 (a1, x−1, β) ≡
1

β1

(
a1 − x′−1β−1

)
be the value of x1, for β ∈ S and x−1, that makes x′β = a1 and hence makes β take on a value
outside the interval [a0, a1). As any two β ∈ S differ by definition, x̃1 (a1, x−1, β) is a distinct, linear
function of x−1 for every β. By the properties of linear or, more generally, multivariate real analytic
functions, there exists a point x⋆⋆−1 in a neighborhood of x⋆−1 where x̃1

(
a1, x

⋆⋆
−1, βs

)
̸= x̃1

(
a1, x

⋆⋆
−1, βt

)
for all βs ̸= βt ∈ S (Krantz and Parks 2002). Set β̄ = argminβ∈S x̃1

(
a1, x

⋆⋆
−1, β

)
and

x⋆⋆1 = min
β∈S

x̃1
(
a1, x

⋆⋆
−1, β

)
− ϵ

for sufficiently small ϵ > 0 when β̄1 > 0 and sufficiently small (in absolute value) ϵ < 0 when β̄1 < 0.
Then only β̄ satisfies (x⋆⋆)′ β ∈ [a0, a1) for β ∈ S at the point x⋆⋆ =

(
x⋆⋆1 , x⋆⋆−1

)
. Thus, the first

condition above is satisfied.
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