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I. Introduction

The last thirty years have witnessed great changes in the field of finance associated with
the emergence of modemn portfolio theory. A profession once populated with institutionally
oriented students has been transformed into one dominated by scholars with a more scien-
tific orientation. The Capital Asset Pricing Model (CAPM) was an outgrowth of this new
emphasis and has served as the basis of modern portfolio theory for much of this period.
The early tests of the CAPM (implemented with the equally-weighted index as a proxy
for the market portfolio) revealed few violations of the zero beta niodel which could not be
ascribed to statistical problems. In particilar, the only reliably documented evidence con-
certed the slope of the empirical security market line which appeared shallower than that
predicted by the theory. The tentative success of these initial investigations provided no
hint of the disastrous empirical failure which followed: a large body of persuasive evidence
which suggested that the dividend yields, market capitalizations, and price-earnings ratios
of common stocks were strongly related to expected returns after risk adjustments based

on the equally-weighted or value-weighted indices.

Not surprisingly, financial economists have responded to this swifeit of evidence re-
garding the inefficiency of the usual market proxies by considering aspects of the economic
environment omitted in the static CAPM. Chief aniong these are models which incorporate
intertemporal fluctuations in investment opportunities, a priors restrictions on the covari-
ance structure of security returns, and institutional characteristics such as taxation. Em-
pirical investigations of these alternative approaches have resulted in few firm conclusions
regarding their comparative merits. In particular, none of these theorics has yet proved
fully consistent with the collection of empirical regularities alluded to above.? Moreover,

Roll{1977) questioned the scientific relevance of such findings for the CAPM which implies

! The main reference on the impact of dividend taxation on asset pricing is Litzenberger
and Ramaswamy{1979) which has been criticized in Miller and Scholes{1978,1982). It
seems clear from the evidence presented in Blume(1979) and in Elton, Gruber, and Rent-
zler(1983) regarding the behavior of zero dividend stocks that the dividend effect is not
exclusively a tax-related phenomenon. There have been few tests of intertemporal asset
pricing theory. Those based on differences between equity and bond returns such as Hansen
and Singleton(1982,1983) and Mehra and Prescott(1985) sharply rejected the theory while
Marsh(1985) obtained more encouraging results in bond market data alone. The empirical
evidence on the APT has been both generally supportive of and inconclusive regarding the
implications of the theory. This will be discussed further in Section IV.




that the wnobservable market portfolio is mean-variance efficient, a prediction with little

pertinence for the behavior of the equally-weighted and value-weighted CRSP indices.

The Arbitrage Pricing Theory (APT) developed by Ross(197G,1977) represents one of
the major attempts to overcome the problems with testability and the anomalous empirical
that have plagued other theories. The main assumption of the theory i1s that returns
can he decomposed into diversifiable and nondiversifiable components and that systematic
risk can be measured as exposure to a small number of common factors. These strong «
priort restrictions on the distribution of returns lead to an approximate theory of expected
rcturns throngh thie observation that capital market equilibrium should be characterized
by the absence of riskless arbitrage opportunities.? Moreover, the APT can be applied to
large subsets of the universe of risky assets which largely mitigates the problems raised by

Roll(1977) regarding the testability of the CAPM?

The apparent simplicity of the APT conceals serious difficulties associated with its
empirical implementation. In particular, the theory cannot be tested on a given subset
of available security returns without a strategy for measuring the common factors that
are presumed to uuderlie security returns. In the absence of a theoretical specification of
the cémponents of systematic risk that can be related to observable economic data, most

investigators have turned to the statistical method of factor analysis in order to implicitly

2 There is considerable intellectua! dissension concerning the extent to which the APT
and its assumption of a linear factor model for security returns differs substantively from
the one-period CAPM or intertemporal asset pricing models such as the one developed in
Merton(1973). Pfleiderer(1983) provides a useful discussion of the nature of the differences
between equilibrium based models such as the CAPM and the more statistically-based
APT. Not surprisingly, given sufficient assumptions the predictions of these theories can
intersect. For instance, if all asset returns follow a factor structure and there is a well-
diversified portfolio on the efficient frontier, then both the APT and the CAPM will be
true and the postulated factor model can aid in the measurement of the unobservable market
portfolio. Similarly, continuous-time intertemporal asset pricing models can yield instan-
taneously linear factor pricing models that are observationally equivalent to the APT. Of
course, the APT can be valid in settings where these alternative asset pricing models are
false—that is the theories need not intersect.

3 This observation does not remove all empirical ambiguities of the type discussed in
Roll(1977). In particular, Shanken(1982,1985) has emphasized that the absence of riskless
arbitrage opportunities coupled with the linear factor model for security returns places
insufficiently exact restrictions on expected returns to lead to valid tests of the theory.
Dybvig and Ross(1983) responded to this aspect of Shanken’s criticism by noting that the
additional assumptions needed to sharpen the testable implications of the theory are both
mild and plentiful. Some of these assumptions are discussed in Section IL
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measure these unobaervab!e‘common factors. This soiution circumvents the problems con-
nected with the a priori stipulation of the sources of systematic risk by exchanging them
for severe computational problems since it is prohibitively expensive to perform maximum
likelihood factor analysis on large cross-sections. As a consequence, previous research has
taken one of two courses: () performing maximum likelihood factor analysis on subgroups
of thirty to sixty securities and then testing implications of the theory within and across
subgroups and (3z) emiploying a less efficient statistical procedure such as principal com-
ponents or instrumental variables to estimate the linear factor model in order to test the
APT in large cross-sections. Since theée procedures are not likely to yield portfolios which
mimic the common factors as well as those produced by maximum likelihood factor analy-
sis, this resolution of the problem of common factor measurement can lead to tests of the

APT that reject the theory when it is, in fact, true.

This would seem to be a moot point since most empirical investigations have generally
failed to reject various testable implications of the APT. Unfortunately, this observation
Is not cause for optimism since previous tests of the theory have suffered from two main
defects. First, the practice of splitting the available collection of securities into small
subgroups leads to weak tests of the APT both within and across subgroups. Second, all
previous research has avoided confronting the APT with the full set of empirical regularities
which have proved inexplicable by other theories. It seems fair to conclude that the current

state of empirical knowledge regarding the APT is in an unsettled state.

In this paper, we propose to remove some of the empirical ambiguity surrounding the
APT by performing comprehensive powerful tests of its implications. We can transcend
some of the limitations of previous a.ualj.rses through our ability to perform maximum
likelihood factor analysis in large cross-sections, thus avoiding the need to split the universe
of securities into subgroups or to resort to statistically inefficient estimation procedures.
Moreéver, our tests are constructed to be more powerful than those employed in previous
research, both in their statistical formulation and in the choice of empirical regularities
with which to confront the theory. As a consequence, we think that our work will provide
incisive commentary on the validity of the APT. |

The accomplishment of this ambitious task requires careful consideration of the theory

and its implications as well as the explication of a cogent strategy for its implementation
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and testing. The next section provides a brief review of the APT. The third section de-
seribes our approach to maximum likelihood factor analysis as well as our procedure for
forming portfolios which, in principle, constitute measurements of the components of sys-
tematic risk. The fourth section contains a detailed description of our tests for the validity
of the theory and its diverse implications as well as a characterization of the difficulties
associated with the determination of the number of commeon factors underlying security
returns. This discussion is marked by systematic consideration of the power of alternative
test procedures. The fifth section presents our empirical results while the final section is

devoted to concluding remarks.

Some caveats are in order concerning the intended scope of this study. This paper
provides a detailed examination of the validity of the APT and systematically ignores a
number of interesting issues associated with its empirical implementation. We have ad-
dressed a number of these questions in other papers. In Lehmann and Modest(1985a), we
compared the efficacy of a nmnber of strategies for forming portfolios to mimic the factors
postulated by the APT and determined that the method employed here performed hest.
Further evidence on this point may be found in Lehmann and Modest{1985b) which applied
these same strategies as well as the usual CAPM benchmarks to the measurement of ab-
normal performance by mutual funds. That research verified that the statistical differences
in the performance of the alternative portfolio formation strategies considered in Lehmann
~and Modest(1985a) translated into economically significant discrepancies in measured mu-
tual fund performance. Lehmarm and Modest(1985¢) analyzes the appropriate frequency
of observation for estimating factor models in order to construct portfolios to mimic the
common factors over weekly and monthly intervals. There are other interesting aspects
of the theory that have not yet been adequately dealt with. These questions include the
predictive power and stationavity of the factor model of systematic risk and the ability of
the common factors from one asset market to account for expected returns in other asset
markets. Also much work needs to be dome to link the unobservable common factors to

observable economic data.® The investigation of these issues is on our research agenda.

4 See Chen, Roll and Ross(1984) for one such preliminary investigation.
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II. The Arbitrage Pricing Theory

The arbitrage theory of capital asset pricing developed by Ross (1976,1977), has
aroused considerable interest in both the academic and business commumities as a practical
and testable alternative to the Capital Asset Pricing Model. In those papers, Ross per-
suasively argued that the key intuition inderlying the CAPM was not the preference based
analysis of Sharpe(19G4), Lintner(1965), and Mossin{1966), but rather was the distinction
between systematic and uusystematic risk inherent in the single index market model, intro-
duced by Markowitz(1952) and developed and extended by Sharpe(1963,1967). Nowhere
is this interpretation of the theory more clearly manifested than in the early efnpirical
work on the CAPM performed by Fama and his students [sce, in particular, Blume(1970)
and Jensen(1969)]. In that literature it was conventional practice to justify the use of a
proxy for the unobservable market by appealing to the ability of a well-diversified portfolio
to mimic the market with negligible error when the market model provides an adequate
description of security returns. As a consequence, tests of the CAPM using proxies for
the market portfolio such as the CRSP equally-weighted index were interpreted as joint
tests of the asset pricing theory and of the ability of the one factor model to characterize
security returns,

Ross noted that there was no particular economic Justification for the presumption
that systematic risk can be adequately represented by a single common factor such as tixe
returm on the market. Instead, he assumed that systematic risk can be aggregated into
K common factors and studied the implications of this assumption for expected returns.
Hence, the distributional basis of the APT is that security returns are generated by the

linear K factor model:

K
Riy=FE; + Z bikfee + i (1)
k=1

E[gkt] = E[Eitl5kt] =0

E; = Return on security i between time ¢ — 1 and time ¢ for i=1,...N

E; = Expected return on security i




e = Value taken by the kt* common factor { i.e source of systematic risk } between

time £ — 1 and ¢

b = scusitivity of the retwrn of security ¢ to the k" common factor { called the factor
loading } and
£, = the idiosyncratic or residual risk of the return on the i** security between time t—1

and time # which has zero mean, finite variance, d;, and is sufficiently independent

across securities for a law of large numbers to apply.

The theory of asset pricing that paturally arises from the assumed return generating
process follows from three key aspects of this formulation: (i) the lincar relationship between
individual security returns and factor and idiosyncratic risk; (ii) the number of securities
whose returns follow this linear factor model is large (tending toward infinity); and (iii) the
mumber of factors K is much smaller than the number of assets satisfying equation (1). The
first point permits the decomposition of the risk of both individual securities and portfolios
into the sum of systematic and idiosyncratic risk components. The second consideration
suggests that well-diversified portfolios (i.e. those with weights of order 1/N) will contan
negligible idiosyncratic risk.’ Finally, when the number of securities greatly exceeds the
mumber of factors, it is easy to form well diversified portfolios which have no factor risk as

well.

How do these features translate into an asset pricing theory? It follows from the
observations made above that there are many (in the limit infinitely many) portfolios which
lave trivial (in the limit no) total risk so long as there are no taxes, transactions costs,
or restrictions on short sales. Consequently, there will also be many zero net investment
portfolios that hiave negligible total risk. As long as investors prefer more to less, these
portfolios should earn zero profits to preclude riskless arbitrage opportunities. Since the
number of arbitrage portfolios that can be formed grows without bound as the the number
of securities satisfying the factor model (1) tends towards infinity, Ross and many others

proved that the absence of riskless arbitrage oppertunities implies that expected returns

5 Note that this conclusion rests on the linearity of the return generating process as well
cince diversification need not eliminate idiosyncratic risk when returns are, for example,
nonlinear in idiosyncratic nsk.
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must satisfy (approzimately):

E; R‘S/\o‘f‘b,‘y\l + o+ b (2)
where:
Ao = the intercept in the pricing relation and
Ar = the risk premium on the £** common factor® £ =1,... K.

How are we to imterpret the pricing intercept Ag? Like the CAPM, the APT has
a zero beta and a riskless rate formulation. However, unlike the CAPM, the difference
between the two depends not on the availability of riskless borrowing and lending but on
whether or not it is possible to form portfolios that are riskless from the comutably infinite
subset of risky assets under consideration. If it is possible to construct a portfolio that
costs a dollar and has zero total risk then the intercept Ag corresponds to the riskless rate.
The only way it will not be possible to form such a portfolio is if, under an appropriate
normalization of the factor space, the factor loadings of all securities on one of the factors
(the zero beta factor) are exactly the same. This would occur, for instance, if all security
returns are equally affected by unexpected changes in a macroeconomic variable such as
inflation or GNP.7 In this case, Ag should be zero since the zero beta return is implicit
in the linear factor model for security returns. In what follows, we will consider both the
riskless rate and zero beta formulations in our empirical tests.

It is clear that the pricing relation (2) should price most assets with negligible error
but need not price all assets arbitrarily well. If the pricing errors for most assets were not
trifling, it would be easy to construct zero net investment arbitrage portfolios which were
riskless and earned nonzero profits. Unfortunately, the same argument cannot be used to
guarantee that all assets will be priced correctly since zero net investmient portfolios must
place appreciable weight on a small number of assets to exploit a few significant pricing
deviations. Consequently, these portfolios will not be well-diversified and need not have
negligible total risk. Similarly, these heuristic arguments can fail when applied to a large

but finite number of assets since the constructed arbitrage portfolios will not be entirely

® Note that, if the return on a market index were the single common factor, then Al
would be the excess return on the market above Ao.

7 Formally this condition occurs when one of the eigenvectors of the covariance matrix
of security returns contains identical elements.



riskless and very risk averse investors may not take advantage of nearly riskless arbitrage
opportunities.

Not surprisingly, many investigators have examined the circumstances in which the
pricing errors for all assets under consideration are negligible. Chamberlain and Roth-
cchiild(1983) proved that exact equality will obtain in an infinite economy setting if and
only if there is a well-diversified portfolio on the mean-variance efficient frontier based on
the (('mmtubly infinite) subset of returns which are presumed to satisfy the linear factor
model, Connor(1984) and Shanken(1983) provide examples of equilibrium settings in which
this occurs. Grinblatt and Titman(1983), Chen and Ingersoll(1983), and Dybvig(1983) pro-
vide explicit assumptions under which the equilibrium pricing errors can be computed
a finite cconomy setting. The results in these papers suggest the equilibrium pricing de-
viations will be small when the covariance between the marginal utility of wealth {or the
derived marsinal utility of wealth in an intertemporal asset pricing model) and residual
risk is negligible.®  This condition occurs if investors are not too risk averse and if the
idiosyneratic risk of the individual assets and the valne of each asset as a proportion of
total wealth are not too large, In what follows, we assume sufficient structure to ensure
that expected returns on the subset of risky securities we study (listed stocks on the New

Vork and American Stock Bxchanges) exactly satisfy the expected return condition (2).

IT1. Maximum Likelihood Factor Analysis and Basis Portfolio Formation

Tn this section we describe our approach to the estimation of the factor loadings, bik,
and the idiosynceratic variances, d;. We also detail our procedure for constructing basis
portfolios from these estimates which are, in principle, highly correlated with the common
factors that are presumed to be the dominant source of covariation among security returns.
Unfortunately, there is a bewildering variety of estimation methods and portfolio formation
procedures that have been advocated and used in the literature. In order to sort through

the myriad of possibilities, we compared the efficacy of different combinations of basis

8 The requirement that idiosyncratic risk be uncorrelated with investors’ marginal utility
of wealth is central to all utility-based asset pricing theories. In the CAPM framework,
for instance, the assumption that asset returns follow a multivariate normal distribution
or that investors have quadratic utility is the basis of the uncorrelatedness condition. In
an intertemporal asset pricing context, similar assumptions lead to a lack of correlation
between idiosyncratic risk and the derived utility of wealth.

8
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portfolio formation procedures and estimation methods in Lehmann and Modest(1985a).
We begin with a brief report on the outcome of that investigation.

In Lelimann and Modest(1985a), we sought to provide a compreliensive examination of
different basis portfolio formation strategies. The estimation methods that we considered
include maximum likelihood factor analysis, restricted maximum likelihood factor analysis,?
principal components, and instrumental variables. We also examined four basis portfolio
formation procedures: two variants of the Fama-MacBeth procedure and two versions of a
quadratic programming method. Not surprisingly, we found that the maxiimum likelihood
estimation procedures outperformed the less efficient instrumental variables and principal -
components methods. We also found that a simple variant of the Fama-MacBeth procedure
provided performance at least as good as the more complicated quadratic programming
methods and dominated the conventional Fama-MacBeth strategy. As a consequence, we
will confine our attention to maximum likelthood factor analysis and the variant of the
Fama-MacBeth procedure that produce what we refer to as minimum idiosyncratic risk
portfolios.

The basis of maximum likelihood factor analysis is an assumption about the joint
distribution of the factors and the security returns.!® Given the K factor linear return
generating process in (1), we can compactly write the demeaned returns of the N securities

in matrix forin as:

Ffo=R,—E=Bj, +¢ (3)

where 7, and R, are N x 1 vectors of security returns, F and ¢, are N x 1 vectors of expected
security returns and residual risk respectively, B is an N x K matrix of factor loadings, and

f,1s a K x I vector of the time t realizations of the common factors. Under the assumption

of joint normality of the returns f, and the factors é,, the sample covariance matrix :

PR (4)

t=1

S =

N -

® By restricted maximum likelihood factor analysis, we mean maximum likelihood es-
timation of the factor analysis model for security returns subject to the restriction that
expected returns are spanned by the factor loadings. The method is analogous to the
maximu likelihood estimation of the zero beta CAPM employed, for example, by Gib-
bons(1982) and Stambaugh(1982).

10 The basic reference on maximum likelihood factor analysis is Lawley and Maxwell
(1971).



follows a Wishart distribution whicl serves as tlie basis of the log likelihood function:

L(E(5) = i;r}: In(2x) —

va | )

T
In|Z| - ~trace(ST™1) (5)

where:

L =Elsf]=BB'+D (G)

under the usual assumptions of the statistical factor analysis model.!! Maximum likelihood
estimates of the factor loadings and idiosyncratic variances can be obtained by setting the
derivatives equal to zero:
% =-TE57 YL -8T7'B=0 5
8L _ ~TDiag[Z™ YT - §)7 =0 "
oD °
where Diag[X] is a diagonal matrix formed from the diagonal elements of X.

Due to the large number of distinct parameters in B and D [N(K +1) - K(K —1)/2],
iterative procedures for solving {7) are prohibitively costly. Conventional factor analysis
therefore proceeds using the results of Joreskog(1967) who noted that given an estimate
of D, it is possible to solve analytically for the maximum likelihood estimate of B under
the normalization that B'D~!B is diagonal (which constitute the necessary K(K — 1)/2
identifying restrictions on B). Joreskog showed that given D, the maximum likelihood
estimate of B is:

B = DY*n(e — /2 (8)

where @ is a K dimensional diagonal matrix with the K largest eigenvalues of the matrix
§* [§* = D~1/28 D=1/2] along the diagonal and @ is an N x K matrix of the corresponding
eigenvectors.’? Maximization of (5) then involves two steps : (i) given D, use the eigenvalue-
eigenvector decomposition of §* to arrive at new estimates of B and (ii) given B, solve
(6) for D usiug (7). On convergence, the estimates of B and D are the required maximum

likelihood estimates.

11 By this, we mean the assumption that the covariance matrix of the idiosyncratic dis-
turbances 1s diagonal. It is not possible to proceed with maximum likelihood estimation of
the factor analysis model without the imposition of some such constraint.

12 Joreskog moted that maximum likelihood factor analysis reduces to principal com-
ponents when the idiosyncratic variances are identical. Consequently, conditional on the
current estimate of D, the idiosyncratic variances of §* are all unity.

10
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A major shortcoming of standard maximum likelthood factor analysis is that it requires
the repeated computation of the eigenvalues and eigenvectors of the N x N matrix §*—
a computationally infeasible procedure when the number of securities N is large. As an
alternative, we employ the EM algorithin due to Dempster, Laird, and Rubiu(1977) which
was applied to factor analysis in Rubin and Thayer(1982). This procedure has the desirable
feature that it involves only simple least squares regression operations and that the largest
non-diagonal matrix inversion required is for a K x K matrix. Conscquently, the EM
algorithm can be used to haudle larger cross-sections of securities than has heretofore been

possible.

The EM algorithm follows from two simple observations. If the factors were observ-
able, maximum likelihood estimation of B and D could proceed by a simple mu‘ltivariate
regression of the demeaned returns #, on the factors §,. If instead B and D were obsery ed,
the faétors could be estimated by their conditional expectation given f,. The key insight is
that since each step is a conditionally maximizing step, iterative repetition of these steps is
guaranteed to increase the log likelihood function (5)—a fact proven in Dempster, Laird,
and Rubin(1977). This fact leads to a simple proof that the algorithm is guaranteed to

converge to a local maximum of the likelihood function.

The reason that this procedure works is that the log likelihood function (3) can be
factored into two parts corresponding to the two step iterative procedure sketched above.
This occurs because the the density of 7, is the expected value of the joint density of o

and §, which, in turn, is the expected value of the conditional distribution of §, given £y

Pr(5,|B. D) = [ Pr(z,.&18,D) d,
= [ Pr(d.Ji., B, D) Pr(z,|B, D) a7,

Under the assumption that 5_, and r, are jointly normally distributed, the conditional

11



distribution of E, is a function of the usual sufficient statistics:

F, T T
1

1o, 2y ) .
E|g 2 b | = 3 D LEA
L =1 o =1

= SA'
(10a)

e
1 = ot

E| 2 Lk
=1 -

T
=[I+B'D'B]™' + % PINFIRAN
=1
e=[I+B'D-'B|"! + ASA'
where A = [J+B'D~'B|"'B'D~! and the statistics given in (10a) follow from noting that:

E[i.l7] =E [£,] + Covid, ) [Var(z)] ™ &,

= B'L™Y,
=[I+B'D"'B|"'B'D Yy,

var(4,I,) = Var(8,) - Cov{{,.7}) [Var(i,)] ! Cov(z,.4,) (108)
=I-B'E"'B

=[I+B'D'B}™!
Elf, 4,17 = Var(d,|7,) + EI&, 5, JEILIF,)

Having computed the expected value of the likelihood function given B and D using the
sufficient statistics (10a), it is straightforward to maximize it with respect to B and D to

obtam:

- 1 T -t 1 T . =t -
B= E[Eze.a.lf.] E[;Z;M.la]
=1 =

T
b= Diag[S -B E [% ZLE:E]B']
t=1

Each iteration consists of of the evaluation of the expected value of the usual sufficient

(11)

statistics for a multivariate linear regression utilizing (10) and employing those statistics
to perform the regression as in (11}. Note that the iteration between (10) and (11) only
requires inversion of the K x K matrix [I + B'D~1B] and the diagonal matrix D. On

convergence, the estimates of B and D are the required maximum kkelihood estimates.!®

13 We define convergence as a stationary point such that the sum of the squared deriva-
tives given in (7) is less than 0.0001. We use as our starting estimates of B and D instru-
mental variables estimates based on a procedure outlined in Lehmann and Modest(1985s).

12
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The cstimation of the factor loadings and idiosyncratic variances is only half of the
usual two-step procedure for testing the APT. Following estimation, it is conventional prac-
tice to construct portfolios whose returns are, in principle, Lighly correlated with the fac-
tors. For example, niost studies perform a series of cross-scctional regressions by-weighted
least squares at cach date ¢ of security returns on the estimated factor loadings using the
estimated idiosyncratic vartances as weights. The time scries of coefficients from these re-
gressions can be nterpreted as the returns on portfolios which are Lighly correlated with
the wmobservable common factors. The procedure that we have fonud to work best is a
variant, of the usual Fama-MacDBeth cross-sectional regression procedure. In the jargon of .
optimal portfolio formation, our method, which produces what we call minimum idiosyn-
cratic risk portfolios, involves choosing the N portfolio weights w; to mimic the 7% factor
so that they:

n‘},ipm,-'D&J- (12)

subject to:
wib =0 ik
(13)
wie=1

where b, is the k** column of the factor loading matrix B, D is the diagonal matrix
consisting of the variances of the idiosyucratic disturbances, and ¢ is a vector of ones.!4

How do these portfolios differ from the more familiar Fama-MacBeth portfolios? The
answer lies in the scaling of the two portfolios. Fama-MacBeth portfolios are the sam-
ple minimum idiosyncratic rigk portfolios which have a loading of one on one factor and
loadings of zero on the other factors (pfior to rescaling to unit net investment), Minimum
idiosyncratic risk portfolios also are constructed to have sample loadings of zero on the
same factors, but their only other requirement is that they cost a dollar. As a consequence,
minimumn idiosyncratic risk portfolios need not have any particular loading on the factor
being mimicked.

In Lehmann and Modest{1985x) we denionstrated that if the population values of

B and D are used to construct the basis portfolios then, under mild assumptions, the

!¢ This estimator can be computed as follows. Let B = (b,05...8,) and suppose we
are interested in mimicking the j** factor. The minimum idiosyncratie risk estimator

is D‘IB*[B*'D‘lB*]‘IgJ- where B* = (bb,...1...8;), ¢ is a vector of ones in the j*%

column, and ¢; is a vector of zeros except for a one in the 7** position.

13



Fama-MacDBeth reference portfolios will do a better job of mimicking the factors than the
minimum tdiosyncratic risk portfelies in that the Fama-MacBeth portfolios will be more
highly correlated with the true unobservable factors. Of course, in actual practice we
must substitute estimates of B and D for the corresponding population values to form
basis portfolios. In tlis case, the Fama-MacBeth portfolios need not do a superior job of
mimicking the factors and, i fact, the minimum idiosyncratic risk portfolios may be more
highly correlated with the factors.

Why might this occur? The answer lics in the requircment that Fama-MacBeth port-
folios have a sample loading of one on the factor being mimicked. The Fama-MacBeth
procedure thus tends to place relatively large weight on securities with large factor load-
ing estimates and less weight on those with small sample factor loadings. H there is little
measurenient error in the sample factor loadings, this procedure will yield good basis port-
folios since the returns of securities with large factor loadings are more informative about
fluctuations in the underlying common factors. Unfortunately, in the presence of mea-
surement error, large factor loading estimates can reflect large measurement error wlile
small factor loading estimates can occur when measurement error offsets otherwise large
true factor loadings. Hence, the Fama-MacBeth procedure need not place the appropriate
weights on mdividual securities in the presence of measurement error. In contradistinction,
the minimum idiosyncratic risk procedure is unaffected by the presence of measurement

15

error in the factor loadings. The comprehensive evidence presented in Lehmann and

Modest(1985a} suggests that measurement error in the loadings is sufficiently pernicious to

warrant employment of the minimumn idiosyncratic risk procedure.!®

15 It might appear that both methods would be quite sensitive to measurement error in the
factor loadings due to their common requirement that the portfolio weights be orthogonal to
the sample loadings of the other factors [i.e. Q}Qk =0 V¥j # k|. Fortunately, this condition
imposes no real constraint; rather it merely helps to determine a particular sample rotation
or normalization of the factor estimates. Both procedures can be sensitive to measurement
error in the idiosyncratic variances. We have ignored this problem because we surmise that
the application of weighted least squares when the weights are measured with error will still
typically yield good basis portfolios, an intuition that is based on conventional econometric
wisdom surrounding heteroskedastic regression models.

8 One other problem with thie Fama-MacBeth procedure is worth noting. In factor model
estimation, 1t is conventional practice to normalize the factors so that they are uncorrelated
and have unit variances and to normalize the factor loadings so that B’ D~ !B is diagonal.
This practice yields typical factor loading estimates that are much less than one-on the
order of .001 to .0001 in daily data. As a consequence, to ensure that g;.ﬁj =1 and
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Finally, the implenwntétiou of the riskless rate version of the APT requires the mea-
surement of portfolios that are orthogonal to the common factors. Such portfolios should
earn the riskless rate if this version of the APT is true. Not surprisingly, we will choose
the N portfolio weights #,; to mimic the approximately riskless portfolio of risky assets
so that they:

ming,.f'f)g,f (14)

W.r

subject to:
[
i (15)
Q:—;E =1
where, again, b, is the &** column of the factor loading matrix B, D is the diagonal matrix
consisting of the variances of the idiosyncratic disturbances, and & is a vector of ones. This

is precisely the portfolio for the intercept that is produced by the Fama-MacBeth style

cross-sectional regression on a constant and the factor loadings.

IV. Hypothesis Testing Procedures

A. Previous Tests of the APT

Before outlining our proceduves for testing the APT, it is certainly worth reflecting
on the procedures used in previous studies to assess the validity of the theory. The main
purpose of this review is to obtain some guidance regarding the power of different testing
strategies. As a consequence, we simply sketch some of the procedures employed by others
and suggest reference to the original sources for more detailed discussion. |

Since the APT only requires that security returns satisfy an approximate rather than
an exact factor structure, all of the testable implications of the theory (in a finite sample

of securities) lie in the restriction given by equation (2) that expected retumns are spanned

g}ék =0 Vj # k the Fama-MacBeth procedure must place large positive and negative
weights on at least some securitics. For instance, we have found that the Fama-MacBeth
procedure frequently produces portfolio weights in excess of one hundred percent in absolute
value. Thus straightforward application of the Fama-MacBeth strategy under the conven-
tional normalization of the factor model can yvield poorly diversified portfolios. Clearly
this problem can amplify the impact of even otherwise trivial measurement error in the
factor loadings. In Lehmann and Modest(1985a), we provide an alternative normalization
which mitigates this particular problem. Unfortunately, it does not resolve the difficulties
discussed in the text.
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by the factor loadings. Previous tests of this mean restriction have typically taken three
forms: (i} tests for the equality of intercepts across small subgroups of securities, (ii) tests
for the joint siguificance of the factor risk premia in each subgroup and (i) tests for the
insignificance of nonfactor risk mcasures in explaining cxpected returns. The first two
types of tests involve cross-sectional weighted least squares regressions of the returns of
tlie securities in each subgroup on a constant and the estimated factor loadings using the
estimated idiosyncratic variances as weights. If the APT is true, then the time series means
of the intercepts from these regressions should, apart from sampling error, be identical
across groups aud equal to the riskless rate if the riskless rate version of the theory is correct
or equal to zero when the zero beta formulation is appropriate. In addition, the factor risk
preniia in each group should be jomtly significantly different from zero in large samples.!”
The third type of test usnally takes the form of a similar cross-sectional regression in which
the returns in each subgroup are regressed on the factor loading estimates and either the
estimated idiosyncratic or total standard deviation of individual security returns. If the
APT is true, then the time series mean of the coefficients on the nonfactor risk term should

be insignificantly different from zero.

Most of the existing empirical literature on the validity of the APT has failed to pro-
vide substantive evidence against the theory. Unfortunately, this body of work suffers in
large part from a serious problem: the tests often lack the power to reject the theory when
it is false. Some of the problems with earlier tests are a consequence of the techmological
necessity of dividing the universe of securities into small groups to perform maximum like-
lihood factor analysis with conventional software packages.!® This forced reliance on small
cross-sections lhias two deleterious consequences. First, it results in imprecise estimates
of the p1-ici1_1g intercepts Ag and the factor risk premia A that render statistical tests m-

volving these quantities particularly susceptible to Type II errors. Second, the reliance

17 Ginee the factors are not observable, most studies begin by performing factor analysis
on each subgroup of securities. Unfortunately, the sample rotation of the factors may not
be the same across different factor analysis runs. Consequently,there is no prediction that
the factor risk premia should be equal across groups and the only testable restriction across
groups is whether the intercepts are equal.

18 This is especially true of most of the studies which have performed factor analy-
sis on numerous subgroups of thirty to sixty securities, including Roll and Ross(1980),
Hughes(1982), Brown and Weinstein(1983), Dhrymes, Friend, and Gultekin(1984), and
Dhrymes,Friend, Gultekin, and Gultekin(1985).
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on small cross-sections prevents the implementation of tests that have proven powerful in

the CAPM context—such as the examination of the risk-adjusted returns on portfolios

sorted on the basis of some chawracteristic such as dividend yield, price-carmngs ratio, or
size.!® Finally, there are more substantive problems reflecting the difficulty i coustructing

powerful mean-variance efficiency tests given the large variability in equity returns.

In the first comprehensive empirical investigation of the APT, Roli and Ross(1980)
performed all three types of tests. Like many subsequent authors, they tested for the equal-
ity of the intercepts across subgroups and failed to reject the null hypothesis of cquality.
As noted by Roll and Ross(1980), however, these tests have little power since the sampling .
variation i the estimated intercepts is so large that it would be difficult to reject almost
any reasonable hypotliesis about them. In their test for the significance of at least one of the
factor risk premia, Roll and Ross found 88.1% of the portfolios had at least one significant
factor risk premium at the 5% significance level.2® This, however, is not really a test of the
APT in that it is an implication that is consistent with many other asset pricing theories
as well. Roll and Ross also performed the third type of test and examined the impact of
unsystematic risk (represented by own variance) on the pricing of assets in addition to the
effect of systematic risk exposure captured by the APT factor loadings. In this test, they
also failed to reject the null hiypothesis. Once again the problem is that we kuow‘this test
has little power. Fama and MacBeth(1973) studied whetler idiosyncratic variance had an
additional impact on expected returns over the explanatory power of beta in their CAPM
tests. If the multi-factor APT is true as postulated by Roll and Ross(1980), Fama and
MacBeth(1973) should liave rejected the adequacy of the single index market model since
the estimated idiosyncratic variances should have reflected, in part, the loadings on the
omitted factors. Of course, Fama and MacBeth(1973) failed to reject the mean-variance

efliciency of the equally weighted index using just such a test.

Chen(1983) avoided the problems associated with sphtting the universe of securities

mto subgroups by employing an inexpensive instrumental variables estimator to obtain es-

19 See. for instance, Cannistraro(1973), Basu(1977), Litzenberzer and Ramaswamy(1979),
Banz(1981), and Reinganum(1981a).

% These findings have been challenged by Dlirymes, Friend, Gultekin and Gultekin(1985)
wlio, using basically the same techniques and data set, found only three of forty-two port-
folios with significant premia.
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timates of the factor loadinugs.?! His testing procedure was quite simple: divide the universe
of securities into two groups after ranking on some characteristic and form portfolios from
these groups with identical estimated factor loadings. If the APT is true, these pairs of
portfolios should have identical mean returns. Chen rejected the hypothesis that the factor
loading adjusted portfolios have identical mean returns in one of the four (four year) sub-
periods based on both firm size and previous period return and found no rejections based
on own variance. These results were interpreted to be largely supportive of the APT. The
problem with this test is again one of power. Even when no adjustment was made for nsk,
the differences in the mean returns on cqually weighted portfolios from both tle high and
low firm size and own variance groups are statistically significant in only two of four subpe-
riods.®® The insignificance of the mean return differences of these pairs of portfolios stands
in sharp contrast to the corresponding differences we found in mean returns of portfolios
constructed from the first and fifth size or variance quintiles. The mean return differences
based on these extreme quintiles are statistically significant in all subperiods perhaps due
to the nonlinearity of the own variance or size effects. Chen was aware of this potential
problem and reported that the results were similar when the significance tests were based
on the top and bottom deciles of firm size and own variance.>®> Nevertheless, the possible

difficulties suggest considerable caution n the choice of a testing strategy.

B. Testing the APT

We employ conventional multivariate test statistics to test the APT. For reasons out-
lined above, care must be taken to insure that the tests have adequate power. Our maximum
likelihood factor analysis procedure permits us to estimate factor models for large cross-
sections of security returns. As a consequence, we can obtain efiicient estimates of factor
loadings and idiosyncratic variances without suffering from the technological necessity of

splitting the cross-section mto thirty to sixty security subgroups or resorting to meflicient

21 These estimates are less efficlent than those obtained from maximum likelihood factor
analysis of the same cross-section but Chen presumed that the loss in efficiency was small
relative to the gain associated with working with substantially larger cross-sections than
had previously been possible.

22 The comparable information is not available for the previous period return results.

23 However, this claim stands in sharp contrast to our results discussed below where
the conelusions are quite sensitive to whether five, ten, or twenty portfolios are used. In
addition, we find significantly different risk adjusted returns between the top and bottom
firm size deciles 1n each of our five year periods.
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estimation procedures. This ability to perform maximuin likelihood factor on large subsets
of securitics then allows to perforin relatively cfficient tests of the APT mean restriction
using sorted portfolios based on characteristics that have proven to be effective in ana-
lyzing the mean-variance efficicncy of the standard CAPM benchmarks and to avoid the
problems associated with testing for the equality of intercepts or the significance of factor
risk premia across small subgroups that have plagued previous studies. To guard against
the potential nonlinearity of the dividend yield, own variance and size eflects and any pos-
sible adverse power consequences, we group securities into different numbers of portfolios
based on these characteristics. In addition, we provide further information concerning the
power of our tests by using similar procedures to test the mean-variance efficiency of the
equally-weighted and value-weighted CRSP indices. For example, the failure to reject
the APT and sinultaneous rejection of the mean-variance efficiency of the usual market
proxies would suggest that our tests have zood power against reasonable alternatives and
should be taken as serious evidence in favor of the APT.

We implement the tests in the following manner. First, we estimate a factor model
for security returns using the method of maximum likelihood and then employ the mini-
mum idiosyncratic risk procedure to form basis portfolios. Second, we form portfolios of
securities ranked on characteristics such as firm size, dividend yield, and own variance.
We consistently formed five, ten, and twenty such portfolios for testing purposes to guard
against potential power difficulties although we do not report the ten portfolio results to
conserve space. We then run the regression of raw or excess portfolio returns on the corre-
sponding basis portfolio returns and a constant. The usnal F test for the hypothesis that
the intercepts for each portfolio are jointly insignificantly different from zero provides a test
of either the riskless rate or zero beta version of the APT.

More formally, let Ept be the vector of excess returns on the sorted characteristics
portfolios when the riskless rate version of the APT is true and be the corresponding raw
returns when the zero beta version is appropriate. Similarly, let Emt be the corresponding
returns on the basis portfolios. Consider the fitted multivariate regression of Ept on i-émt
and a constant term:

Ept = é—p + épﬁmt + ﬁpt (16)

where @, is the estimated constant term vector, Bp is the estimated factor loading matrix,
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and ¢, is the fitted residual vector. If the APT is true and the basis portfolios are measured
without error, then &, should be statistically insignificantly different from zero. On the
assumption that Emt and f_ﬂp, are both normally distributed random vectors, the usual F

statistic for testing this hypothesis is:

6,076, [T(T-K-N
—EE B [ ( )] ~ F(N, T — K- N) (17)
1+ R, ER'E, \NT-K-1)
where flp is the sample residual covariance matrix of £,,, Em 15 the vector of sample mean

returns on the basis portfolios, and &, is the sample covariance matrix of their returns.
This is our basic APT test—all variations we perform provide informal checks on the power
of the tests.??

Of course, a critical assumption is that the basis portfolios are measured without
error, an assumption that is only correet as the number of securities in the first stage factor
analysig tends toward infinity. Fortunately, the large number of securities in our cross-
sections suggests that the measurement error in our basis portfolios is likely to be small.2®
Moreover, any measurement error causes these I statistics to be biased toward rejection
when the APT is true, although the magnitude of this bias is likely to be trivial relative
to the measurement error in QP.

It is worth mentioning an alternative stratery which partially mitizates the effects of

2% The tests employed here for the mean-variance efficiency of the usual CAPM indices
differ somewhat from (17). We employ Shanken’s{1984) multivariate test statistic which
is of the form of (17) with K = 1 and where N is replaced with N — 1. There is a more
substantive difference in the computation of &,. For the mean-variance efficiency tests, &,
is the vector of residuals from the cross-sectional regression of the portfolio market model
intercepts on one minus their estimated betas. See the discussion below for an indication
of a possible reduction in the power of the tests associated with the estimation of the zero
beta rate from the sorted portfolios.

*% Tt is worth noting that we can provide large sample estimates of the measurement
error covariance matrix of our basis portfolios in order to get a feel for the likely severity
of this problem. TFrom the solution to equation {14), the idiosyncratic risk component

) ; . ) ) . . n b e
in the 7** basis portfolio has the approximate variance: #? s e.(B* D~1B*)" !¢, where
P PP 7 7 rl

B* is the matrix with the estimated factor loadings in each column except for the jt*
column, which is a column of ones, D™! is the diagonal matrix of estimated idiosyncratic
variances, and the approximation arises because we are using estimates instead of the true
values of the relevant parameters. We have examined these approximate variances and the
associated covariances and have found that these mumbers are uniformly trivial across both
time periods and factor models. Hence, it seems reasonable to conclude that measurement
error is not a particularly serious problem in our large cross-sections.

20




(®

measurement error that we have chosen to ignore due to its deleterious impact on the power
of our tests. We could estimate the basis portfolio returns by straightforward application
of the Fama-MacBeth style generalized least squares cross-sectional regression of the sorted
portfolios” returns on a constant and their estimated factor loadings from the first stage
factor analysis at cach date t. The analogue to &, can then be computed from the time
series mean of the residuals. This would tend to alleviate the measurement error problem
discussed above since the measurement error in the factor loadings of the sorted portfolios
should be much smaller than the typical error in the loadings of the individual sccurities,
given that the portfolios are well diversified and not fornied on the basis of their sample -
loadings. Followiug the analysis in Shanken(1984), we could then construct the large sample
F statistic just as in (17) above with two main modifications: (£) the sample mean vector
and covariance matrix of the cross-sectional regression cocfficients replace those of R_, and
(42) the degrees of freedom in the numerator of the F statistic are reduced by K + 1 due
to the estimation of the factor risk premia. ?®

Why do we eschew this seemingly superior statistical procedure? The reason is once
again a matter of power. The problem with this procedure is that it involves estimation
of the factor risk premia using the portfolios formed from well-known enipirical anomalies.
Suppose that the APT is false and we construct the test statistics in this revised fashion.
The generalized least squares cross-sectional regressions will choose estimates of the factor
risk premia which minimize the weighted sum of squared residuals. This, in turn, will tend
to make the F statistic small and, hence, can cause a failure to reject the null hypothesis
when it is false.?” In our procedure, we estimate the factor risk premia from the whole
sample of securities underlying the factor analysis, a sample that is not biased with regard
to firm size, dividend yield, or own variance. These premia are then used to estimate a,
and to test its significance. If the APT is false, our procedure will not bias the estimates

of @, toward acceptance of the null hypothesis,

?% The only modification to Shanken’s analysis involves the fact that the factor loadings
are not coefficients from a linear regression as in the case of market model estimates but
rather are estimates of factor loadings from a nonlinear maximum likelihood procedure.
We doubt that this would affect the analysis appreciably, especially in large samples.

2T This reduction in power will not occur when the multiple correlation between the
sorting characteristics and the factor loadings and a vector ones is zero. This cannot occur
in our samples since our anomalies are non-negative and, hence, will at least be correlated
with the intercept.
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This would seem to be a trivial debating point except for the fact that we have en-
countered precisely this problem in testing the mean-variance efficieney of the usual market
proxies. If, by analogy with Fama and MacBeth(1973), we estimate the zero beta CAPM
by regressing portfolio returns on portfolio betas plus an intercept, we often fail to re-
ject the mecan-variance efficiency of either CRSP index using Shanken’s multivariate test
statistic. If we follow Black, Jensen, and Scheles{1972) and perform a cross-sectional re-
gression of the portfolio intercepts from market model time series regressions on one minus
their corresponding sample betas, we typically sharply reject mean-variance efficiency at
extremely low marginal significance levels using the appropriate variant of Shanken’s test
statistic. Similarly, we would never reject the APT in our samples if we estimated the
factor risk premia from cross-sectional regressions of the characteristics-based portfolios to
construct the relevant test statistics. Consequently, we have chosen to ignore the impact
of measurement error on our test statistics due to their greater power.

C. Comparing the Riskless and Zero Beta Versions of the APT

If the riskless rate formulation of the APT is true, then security returns satisfy:
Ee —iRp = B(Emt - tRp) + ¢, (18)

where Ry, is the return on the limiting riskless portfolio of risky assets whose mean return

is Ag. If the zero beta version of the APT is true, then security returns satisfy:
Et = BEmt + & (19)

since the zero beta portfolio corresponds to one of the common factors underlying security
returns.

How can we distinguish the two versions of the APT? The simplest answer involves
asking under what circumstances the two equations for returns are identical. Evidently,

the riskless rate and zero beta models are the same when:
Br=1 (20)

that 1s, when the sum of the factor loadings for each security is one. This conclusion follows

from simple efficient set reasoning as well: since the basis portfolios Emt span the eflicient

22




sct when the zero beta formulation is correct, the sum of the factor loadings must be one
because, under appropriate rotation, the factor loading corresponding to a zero beta factor
is 1 = § and the remainder sum to # when appropriately weighted so that the remaining
factors add up to an efficient portfolio.

As a consequence, a first test of the zero beta APT is to see whether the sum of the
coefficients in either equation {18) or {19) is unity. This is difficult if we try to aggregate the
test statistics from individual sccurity regressions due to the presence of industry effects
in the residual covariance matrix. While we could try to account for this problem in
constrﬁcting the aggregate test statistic, it is simpler to perform the test on portfolios
instead. There is a potential loss of power associated with moving from individual securities
to portfolios. Iortunately, there is a gain in precision in estimating portfolio loadings as
well as the sum of the portfolio loadings which should permit reasonably powerful tests.
On the assﬁmption that B_, and EP, are both normally distributed random vectors, the

usual F statistic for testing this hypothesis is:

(Bpy — 1) 051 (Boy ~ 1) [T -K— N]

~ ~ F(N,T - K — N) (21)

Liﬁalﬁk
where ép is the matrix of estimated portfolio factor loadings, flp 1s the sample residual
covariance matrix of the regression residuals, and i, and i, are vectors with K and N
unit elements respectively. We perform this test on both the excess retum and raw retum
regressions to guard against possible differences in the powers of the two test formulations.

This test does not exhaust the differing implications of the riskless rate and zero beta
models. Each version of the APT places different restrictions on Aq—the intercept in the
pricing equation. The riskless rate formulation suggests that Ap is equal to the riskfree
rate while the zero beta version implies that Ag is zero. In this spirit, we report Summary
statistics for the orthogonal portfolios with weights w,s defined in (14) and (15) above.
We simply test whether the mean return on this portfalio and whether the mean difference
in return between this portfolio and the riskfree asset are significantly different from zero
to compare the two models in this other dimension. Of course, previous examinations of
returns on these orthogonal portfolios have typically failed to reject both hypotheses but we
are confident that our large cross-sections will permit us to measure the mean returns on

these orthogonal portfolios with considerable precision. This test also provides another test
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of the APT: both versions of the theory will be rejected if mean retums on the orthogonal
portfolios are significautly larger than the riskless rate or significantly negative. The fact
that estimated zero Deta rates are typically significantly greater than the riskfree rate
in CAPM studies such as Black, Jensen, and Scholes(1972), Fama and MacBeth(1973),
Litzeuberger aud Ramaswamy(1979), Gibbons(1982), and Stambaugh(1982) suggests that
tlis is not an umlikely possibility.

It is worth noting that measurement error has a greater effect on tests involving or-
thogonal portfolios than it does on the F tests for the APT itself. The problem is that the
basis portfolics will tend to mimic some rotation of the factor space even if it is not the
one that was assumed for the purposes of estimation. This occurs because idiosyncratic
risk is likely to De virtually eliminated in well diversified portfolios of large numbers of
securitics while sensitivity to all of the common factors is likely to remain in each basis
portfolio as long as the individual loadings contain some measurement error. In a similar
vein, the orthogonal portfolios are conmstructed to have weights orthogonal to estimated
factor loadings, but they are not necessarily orthogonal to the true loadings. Thus to the
extent that measurement error i1s present i the factor loading estimates, some factor risk
is likely to remain in these orthogonal portfolios as well.

The one factor case provides a convenient setting for analyzing the potential impact

of measurement error. In this case, security returns satisfy:
R, =Ry + B(Rme — Rpe) + &, (22)

assuming the riskless rate version of the theory is appropriate. Unfortunately, we do not
know the betas and instead must estimate them. Let the measured betas be unbiased
estimates of the true betas so that:
b=f+2 (23)
where the elements of the measurement error vector v llave zero mean and fnite variances
and covariances. We assume that the factor loadings have been normalized so that §'b = §'s.
For simplicity, we also assume that the sample mean of the measurement errors across beta
estimates is zero [i.e. = & S v 0.
What happens if we use the estimated betas in an attempt to mimic the approximately

riskless portfolio of risky assets? If we assume for simplicity that the idiosyncratic variances
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arc identical [i.e. D = Z1], then the portfolio weights which solve (14) and (13) are:

. ,
W,y = N—(E__—uf) (b —¢) {24)

where b is the average sample beta. It is straightforward to verify that this portfolio contains

factor risk since its true loading is:"8

= (25)

where o = * f-\;l(ﬂ.- ~ )2 is the sample variance of the true betas. Given the ad-

ditional assumption that 7{, v'B is approximately zero (a reasonable assumption in large

cross-sections), this approximately simplifies to:

2 2 _ .2

ﬂrf ~b+ = (26)

b—1  b-1

which will be positive.2? As a consequence, the mean return on this portfolio will be biased
ilpward in periods when the sample market risk premium is positive and will be biased
downward in periods when the average market risk premium is negative.

This conclusion is not surprising: it is well known in a regression setting that, if the
independent variable is measured with error, the slope coefficient is biased downward and
the mtercept is biased in the direction of the sign of the mean of the independent variable.
It is equally clear that, in this example, the magnitude of the bias can be quite serious,
depending on how close b is to one (i.e. how close the dispersion in the elements b; are
to zero). Of course, the magnitude of the bias depends on additional considerations in a
multifactor setting with nontrivial industry effects in the residual risks. Nevertheless, this
example suggests that we should interpret any rejections of this formulation of the APT

with considerable caution.
D. Determining the Number of Factors Underlying the APT

Surprisingly, the most difficult empirical problem in the APT is the determination of

the number of factors underlying security returns. The problem: is insidious: the test which

28 This expression uses the assumption that b ~ f made above (v = 0).
% This expression is positive since 0 < b < 1 under the normalization #'6 = §"s to insure
that o7 > 0, and o > ar;f, when J—t,—g'é = 0.



iz powerful can reject the hypothesis that there are K pervasive sources of risk even when
it is true while thie remaining tests have little power to reject the null hypothesis when it
is false. We will examine several possible tests for the number of factors and will catalomae
the weaknesses of the various approaches.

The most obvious approach is to use the likelihood ratio test statistic for the number
of factors that is widely employed in the psychometric literature. This test statistic was
studied by Bartlett(1950) and was the subject of a Monte Carlo investigation by Geweke and
Singleton(1980). The test is simple—under the assumption that the stationary statistical
factor analysis model describes security returns (i.e. that there is no correlation among the
idiosyncratic disturbances), the covariance matrix of security returns, £, can be written as
in (6) [© = BB'+ D] where D is diagonal while under the alternative hypothesis T has no
particrula.r structure. The null hypothesis may be tested by minus twice the logarithm of

the likelihood ratio for this hypothesis:
x%(q) = T[ln|BB' + D| + trace[S(BB' + D)"!] - In|§| - N] (27)

which, in large samples, is approximately distributed as ¥? with q degrees of freedom where
g=1](N- K).z — (N + K)]/2. Bartlett(1950) showed that the distribution of the likelihood

ratio statistic was more nearly x> when the test statistic is modified to be:

X(ghess = x()1 - N F 2T, (28)
which is the form of the test statistic produced by most software packages. Geweke and
Singleton(1980) found that the chi-squared approximation {28) is quite good and that the
statistic hias good power even in modest sample sizes. Most empirical examinations of the
APT have employed one of the forms of this test statistic.

The problem with the likelihood ratio statistic is that it tests the appropriateness of

the statistrcal factor analysis model and not that of the approzimate factor structure:
T=BB'+Q (29)

where {) need not be diagonal due to the presence of residual correlations such as industry

effects. The statistical factor analysis model with the diagonal covariance matrix for the
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idiosyncratic disturbances réquircrs that eny source of covariation among security returns

be classified as a factor while the APT counts as factors only those which are pervasive

and affect many security returns. The likelihood ratio statistic cannot distinguish between

correlated idiosyneratic risks which are irrelevant for pricing and common factors which

Lelp explain expected returns,®°

Formally, the difficulty with the likelihood ratio statistic is that the ratio:
|BB'+ D| _|D||II+ B'D~'B|

= 30
[BB'+ Q| ~ |Q|I + B'(1-1B! (30)

is not one. As a consequence, the noncentrality parameter of the test statistic (28) is not
equal to zero which causes the statistic to take on larger values than would be expected
from a x? random variable. The following simple numerical example illustrates the potential
severity of the problem. Suppose that there are K common factors and that the economy
consists of many industries, each consisting of two firms. For simplicity, both firms within an
industry are assuined to have identical factor loadings, idiosyncratic variances of unity, and
ccﬁrrelation between their idiosyncratic disturbances of p. The idiosyncratic disturbances
are presumed to be uncorrelated across industries and the value of g is taken to be identical

for each. In this example, the ratio (30) takes on the value:3!

IBB'+ D| _ 1+ X, BZ) N 1 (o)
BB +0] T (1= ANATIE 1+ ims v, 52) (1= 272 8)

If the number of firms in the sample is 750 (the cross-section sizes that we work with)

‘and the correlation between the idiosyncratic disturbances within industries is 0.9 the ratio

is virtually infinite (our computer reports that its inverse is zero in double precision),
suggesting that we would nearly always reject the null hypothesis that K common factors
underlie security returns. Even if the typical industry effect correlation were only 0.1,
the ratio would be 43.33 which is large enough to lead to frequent rejection of the null
hypotlhesis. -

Of course, this discussion does not suggest that the number of factors cannot be de-

termined by statistical means but rather that this test cannot provide a reliable answer to

30 This is the essence of the exchange on this subject between Dhrymes, Friend, and
Gultekin(1984) and Roll and Ross(1984).

31 We have implicitly assumed the factor loadings have been normalized so that B'B is
a diagonal matrix.
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this question. The number of factors can, in principle, be inferred from the tests of the
APT —these tests are joint tests of the ability of the theory to explain expected returns and
the hypothesis that there are K common factors. If the model is rejected with K* factors
but is not rejected based on K > K* factors,®?it secws reasonable to conclude that the
APT is true and that there are X common factors. Unfortunately, such a test may not be
powerful in reality but it suggests that the inability of the likelihood ratio test to correctly
detect the number of factors in the presence of residual correlations such as industry effects
is not fatal. We will find, in fact, that this joint test does not provide much information on

the number of factors underlying seccurity returns.

The empirical content of the APT lies in the restriction that all securities and port-
folios expected returns are spanned by their factor loadings. This suggests a simple test
of the appropriateness of a K factor model of security returns as opposed to a K* factor
model where K* > K. Consider regressing the returns on the K™* basis portfolios ﬁ:nt
on the K basis portfolios R_, and a constant term. If the APT is true and there are K
common factors, the intercepts should be insignificantly different from zero. If, on the other
hand, the APT is true and there are K* factors, the returns on the K™ basis portfolios
E:nt will embody priced risk factors not contained in Emt and hence a joint test that all

the intercepts are zero should be rejected. Consequently, our final test will be this test on

the intercepts in the following multivariate regression:

* ad - -~
R, =& +B'R, ., +¢ (32)
where &* is the vector of intercepts in this regression. B* is the matrix of factor loadings
and ¢} is the associated vector of idiosyncratic disturbances which have covariance matrix
{1*. We will presume that Q* is nonsingular, an assumption which may not be reasonable
im all circumstances, If Emt and £; are jointly normally distributed, the null hypothesis

that the estimates &* are insignificantly different from zero can be tested by the usual F

statistic:
P
&* Q* & T(T-K-K*)
= = ~F(K*T-K—-K* 33
L ESeE KT -1) e ) (53)

32 Assuming the appropriate in-sample and out-of-sample tests are conducted to guard
against overfitting.
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under the assumption that the returns Z{m, on the K basis portfolios are measured without
error.

What are the power characteristics of this test for the number of factors? Unfortu-
nately, they are not good when the basis portfolios contain some, but not much, idiosyn-
cratic risk, the case that is probably the most likely to occur in practice. The problem is
most easily seen in the case where the true number of factors is K* and the basis portfolios
I]’,:n, are measured without error. In this case, the true relationship Letween R me alld R
is given by:

where Bp, is a matrix of factor loadings and ¢, is the associated vector of idiosyncratic
disturbances which are assumed to have nonsingular covariance matrix Q,,. If this is the

correct model, then the intercepts a in (32) satisfy:

={I-TLB ©-'B. IR (35)

mTm=m

As a consequence, the quadratic form which is of central interest will satisfy:

_ =
1 +3: B Q7 B, T | 1R (36)

- m[ m m m

What happens when the elements of (1,, are small as is likely to be the case when

the R, are the returns on well-diversified portfolios? In this circumstance, the inverse

of {1 is' likely to be large relative to the other parameters. Hence, the guadratic form

(36) will tend to be small, rendering unlikely the rejection of the null hypothesis when it
is false. In consequence, this test, like the likelihood ratio test, is not likely to provide
reliable information regarding the number of factors underlying security returns. If there
1s a superior procedure, however, for ascertaining the true number of factors, we have not

yet found it.

V. Empirical Results

A. Data Considerations

The following subsections detail our results regarding the validity of the APT, the

comparative merits of the zero beta and riskless rate formulations, and the evidence on the
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mumber of factors underlyiug sccurity returns. However, first we briefly describe our choices
concerning the appropriate data for estimation and testing purposes. In particular, we must

confront interesting tradeoffs in the choice of the appropriate observation frequency.

The CREP files provide two sets of equity returns: daily returns on all stocks listed
on the New York and Awmerican Stock Exchanges since July 1962 and monthly returns on
all securities listed on the New York Stock Exchange since 1926. The potentiol benefit
associated with the use of daily data in the estimation of variauces and covariances is
enormous since the precision with which these parameters are estimated hinges on the
frequency of observation. Of course, enthusiasm for daily data must be tempered by the
well-known problems of nontrading and thin trading which bias the estimates of these
moments. As shown by Blume and Stambaugh{1983) and Roll(1983), for instauce, the
secrmingly trivial bid-ask spreads in equity returns lead to serious biases In mean returns
and, sadly, this bias is directly related to the frequency of observation. Moreover, daily
data provides no such advantages when estimating inean returns whose precision depends

on the length of the estimation interval and not on the frequency of observation.

These observations have obvious relevance for estimating factor models for secunity
returns and for testing the APT. Greater precision in the estimates of variances and
covariances confers corresponding improvements in the precision of the estimated factor
loadings and idiosyncratic variances, the basic inputs into the subsequent analysis. Biases
in mean returns can lead to incorrect inferences regarding the validity of the theory. We
opted for a compromise solution in the choice of an observation frequency. Following RRoll
and Ross(1980) and most subsequent empirical investigators, we estimated our factor mod-
els for security returns with daily data since we surmised that the gain in precision offset
the thin trading biases in the estimation of covariance matrices.*® The estimated loadings
and idiosyncratic variances were then used to form the portfolio weights of the requisite
basis portfolios as described in Section IIL

We test the theory and its various aspects using weekly returns data which we formed

by continuously compounding daily returns from Wednesday to Tuesday. Consequently, ba-

33 As a check, we also present results based on factor models estimated with weekly and
monthly returns. Currently, in Lehmann and Modest(1985¢), we are performing a more
thorough examination of the appropriate periodicity for estimating factor models and the
issues associated with thin trading and temporal aggregation bias.
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sis portfolio returns were coinputed by multiplying the portfolio weights by the correspond-
ing weckly returns on individual securities. Similarly, our testing strategy required returns
on the usual market proxics and so we computed weekly returns on the CRSP equally-
weighted and value-weighted indices by continuously compounding their daily returns in
the same fashion. Note that this means that the market proxies that we use contains both
NYSE and AMEX securities unlike the versions which appear on the monthly returns
file, which contain only NYSE stocks. All of the relevant test statistics were constructed
utilizing these weckly returns with one exception.®* The tests comparing the returns on
the orthogonal equity portfolios and the riskfrce rate were performed in monthly data since
we were unable to obtain returns on one week Treasury bills on a Wednesday to Tuesday

basis.

Two other important choices involve the length of the estimation interval and which
firms to include in our sample. As noted above, increasing the estimation interval leads to
greater precision of the estimated mean returns. However, longer estimation intervals render
more unreasonable the assumption of constant factor loadings that is typically required for
testing. As a consequence, we assumed stationarity over five year subperiods and divided
the time interval covered by the CRSP daily returns file into four periods: 1963 — 1967,
-1968 — 1972, 1973 — 1977, and 1978 — 1982. Within each period, we excluded securities
which were not continuously listed or which had missing returns and ignored the possible
selection bias inherent in this strategy. The remaining securities numbered 1001 in the first
period, 1359 in the second period, 1346 in the third period, and 1281 in the final five year
rperiod. The number of daily observations in these samples totalled 1259, 1234, 1263, and
1264, respectively, while there were 260 weekly observations in each five year perilod. The
CRSP daily file (with few exceptions) lists securities in alphabetical order by their most
recent name. We randonily reordered the securities in each subperiod to guard against any
biaées induced by the natural progression of letters (IBM, International Paper, etc.). The
usual sample covariance or correlation matrix of these security returns provided the basic
input to our subsequent analysis. Each period we estimated five, ten, and fifteen factor

models using the first 750 securities in our randomly reordered data file.

3 We repeated many of our tests in monthly data and verified that the conclusions
reported here are robust with respect to this choice.
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B. Tests of the APT

Dacs the APT provide a comprehensive explanation of the expected returns of se-
curities listed on the NYSE and the AMEX? This important question remains unset-
tled despite the empirical work of many investigators, including Gehr(197G), Roll and
Ross(1980), Reinganum(1981b), Hughes(1982), Brown and Weinstein(1983), Chen(1983),
Gibbons(1983), Dhrymes, Friend, and Gultekin(1984) and Dhrymes, Friend, Gultekin and
Gultekin(1985). A reasonable characterization of the evidence in these papers is that they
are, in ceneral, supportive of the APT although they are far from conclusive or uniform in
this regard. Some of the reasons for the remaining ambiguities were detailed In Section IV
along with our solutions to some of the problems with previous tests. As a comsequence,
we surmise that our more powerful tests will resolve some of the outstanding disputes
concerning the validity of the theory.

As noted in the previous section, our strategy for testing the APT involves examina-
tion of the ability of the theory to account for well-documented empirical anomalies which
provide the basis for the rejection of the mean-variance efficiency of the usual market prox-
jes. Tables 1 throush 6 provide tests based on three such anomalies: (i) firm size, (i)
dividend yiecld, and (#i1) own variance. Table 1 reports on tests using portfolios formed on
the basis of market capitalization. The portfolios were formed by ranking the stocks in our
sample by the magnitude of their equity market values at the end of the period preceding
the test period, splitting the ranked securities into either five or twenty groups consisting of
(approximately) equal numbers, and then constructing equally weighted portfolios from the
stocks in each group.®® Tables 2 and 3 provide the same information as Table 1, but serve
as checks that the results in Table 1 do not hinge on peculiarities involving thin trading
or January. The sole difference between Tables 1 and 2 is that Table 2 presents results
when the factor models were estimated using weekly and monthly data as inputs rather
than daily data. In a similar spirit, the tests in Table 3 are based on returns that exclude
those occurring in January to ensure that we are not convolving the turn of the year and
size effects. Table 4 is similar to the first three except that portfolios were formed on the

basis of dividend yield in the year preceding the test period. The ranking procedure was

35 We also performed tests based on ten such portfolios but the results were similar to
those obtained with either the five or twenty portfolios and so we omitted them in the
interest of space conservation.
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somewhat different as well since we formed an equally weighted portfolio of the firms that
paid zero dividends and then formed the remaining four or nineteen portfolios by ranking
the remaining dividend-paying stocks in the same fashion as described alove.*¢ Table 5
reports on the tests based on the variauces of the returns in the year preceding the test
period (compnted from daily data) with portfolios formed as outlined above. Recall that
all tests were based on weekly returns with our weeks running from Wednesday to Tuesday
in order to insure that they did not begin and end on nontrading days too often and to
mitigate biases caused by the day-of-the week effect. This means that all tests are based
on 260 observations except for the sizc related tests which exclude January returns, which
imvolve 235 observations. -

Table 6 merits separate comment. Their appears to be widespread concern that the
APT cannot be rcjected given the freedom to extract an arbitrary number of factors. While
the statement is trivially true if we extract almost as many factors as the number of secu-
rities in the analysis, it is false when the number of factors is small since the APT predicts
that only covariance risk measures explain expected returns not other security character-
istics such as firm size, dividend yield, and own variance. Nevertheless, the reasonable
question implicit in the concern involves the potential problem of overfitting returns by
testing the APT with the same securities used to estimate the factor model for security
returns. In order to guard against this possibility, we conducted tests similar to those re-
ported above using only securities which were not used to estimate the factor models. This
means we formed portfolios based on firm size, dividend yield, and own variance from 251
securities mn the first period, 609 securities in the second period, 596 securities in the third
period, and 531 securities in the final period. Table 6 only reports results for five portfolios
formed from these securities and omits the results for the size tests which exclude J anuary
returns as well in order to conserve space.

Each table reports the F statistics for both the riskless rate and zero beta formula-
tions of the APT and for five, ten, and fifteen factor models. In addition, they present the
large sample F statistics for the mean-variance efficiency of the CRSP equally-weighted
and value-weighted indices of NYSE and AMEX stocks.?” The first half of each table

¢ We also carried out tests by ranking on dividend yield without special treatment of
the zero dividend group. The results were very similar to those reported here.
%7 Note that these statistics are formed from the sorted portfoiios and are subject to
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reports the results based on five sorted portfolios and the sccond half presents those based
on twenty such portfolios. The first four rows of each half of the table provide the relevant
F statistic for each of the four five year periods: 1963 — 19067, 1968 — 1972, 1973 — 1977,
and 1978 — 1082. The subscquent row of each table provides an approximate x* statistic
testing the joint significance of the four F statistics. The aggregated statistics are obtained
by multiplying the individual F statistics by their numerator degrees of frecdom and sum-
ming these quantities over the four periods. The resulting test statistic is approximately
distributed x2 with degrees of freedom equal to the sum of the numerator degrees of free-
dom of the individual period F statistics. The nuinber reported under each test statistic
is the marrinal significance level of the test statistic under the null hypothesis (i.e. the
probability of obtaining a test statistic at least as large as that obtained when the null

hypothesis is true).

The five size-related tests provide sharp evidence against the APT. The aggregate x>
statistic for the joint siguificance of their intercepts across sample periods have marginal
significance levels below 1072 across both APT formulations and the number of factors.
Examination of Tables 2 and 3 confirms that this phenomenon does not arise solely from
thin trading or January returns since the marginal significance levels are less than 5% in
all cases. Perusal of the subperiod results reveals considerable uniformity in the results—
virtually all of the corresponding subperiod F statistics which include January returns or
correct for thin trading are large enough to reject the APT at conventional significance
levels irrespective of the number of presumed factors or of the version of the theory and
many such statistics computed excluding January returns are large enough to reject in the

subperiods as well.

It is also worth noting that these results are mot just reflections of unusually large
intercepts for the smallest firm (i.e. fifth quintile) portfolio. To be sure, this portfolio has
large and-positive alphas in all four periods. However, the size effect is not limited to the
smallest firms: the fourth quintile appears to plot above the security market hyperplane
and the largest firm portfolio consistently plots below the security market hyperplane. This

large firm effect receives striking confirmation in regressions of the value-weighted index

the power difficulties discussed in the text. This does not seem to be a problem in this
application.
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on the basis portfolios which yield highly significant negative intercepts on the order of
2.6% and 4.5% per ycar for all but the first five year period. While some of this effect
may be attributable to nonstationarity associated with the changing weights of the value-
weighted index, the effect remains (albeit with lesser magnitude) when we use a fixed weight
large firm portfolio. The nature of the small firm effect is further illuminated by similar
regressions—the equally-weighted index composed of NYSE and AMEX stocks has large,
positive, and significant alphas in all periods and, in monthly data, the equally-weighted
index comprising only NYSE securities has economically and statistically insignificant
intercepts in all but the second five year period. Not surprisingly, the small firm effect is

concentrated in the small firms trading on the AMEX.

The five portfolio tests of the mean-variance efficiency of the equally-weighted and
value-weighted indices provide similarly striking documentation of the magnitude of tle
size effect. ‘The aggregate y? statistic rejects the mean-variance efficiency of the equally-
weighted index at marginal significance levels below 10~? while the same statistic con-
structed excluding January returns rejects at marginal significance levels below 10™%. The
analogous aggregate marginal significance levels for the tests of the mean-variance efficiency
of the value-weighted index are below 102 for the whole sample and at the 6% level when
January returns are excluded. Once again, there is considerable uniformity in the subperiod
results since the mean-variance efficiency of both indices is rejected in all but the second
period in the whole sample and in the first and fourth periods when J anuary returns are

excluded.

The size-related results based on twenty portfolios tell a somewhat different story. The
mean-variance efficiency of the usual market proxies is rejected in aggregate at marginal
significance levels below 10~4 for the equally-weighted index and at the 5% level for the
value-weighted index in the whole sample while only the equally-weighted index is rejected
{at the 2% level) when January returns are excluded. In contradistinction, only the zero
beta version of the five factor model is rejected at the 5% level in the whole sample and
no version of the APT is rejected when January returns are excluded. Examination of the
individual period results suggests that the failure to reject the APT is no accident since in
all but the second five year period no F statistic attains a marginal significance level below

20%.
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Fxamination of the individual portfolio intercepts does reveal interesting patterns.
As would be cxpected from the regressions of the CRSP indices on the basis portfolios
sugwests, the size cffect is concentrated in the extreme size portfolios in all five year periods.
Of course, the smallest firm portfolio has nmch larger positive intercepts in all periods
but tlhe small firm effect extends to between three and five other small firm portfolios.
Similarly, the large firm effect typically covers the three largest firm portfolios. The APT
is not rejected with twenty size portfolios because the size effect is concentrated in the
largest and smallest firms. This contrasts with the intercepts associated with the CRSP
indices for which the size effect affects many of the twenty portfolios. This explains why

the mean-variance efficicucy of both indices is rejected in the twenty portfolio case.8

It is also worth noting that our concern over the adverse power consequences associ-
ated with basing our tests on different mumbers of characteristics-based portfolios seems
warranted. Our failure to reject the APT based on twenty size portfolios after we rejected
the theory based on five size portfolios is suggestive in this regard. Our examination of
the individual intercepts confirms the appropriateness of the rejections—there appear to
be both small and large firm effects that are not accounted for by our basis portfolios.
Moreover, we also experimented with similar tests to those reported for the CRSP indices
wlere we estimated the APT risk premia with cross-sectional regressions of the size port-
folios on the portfolio factor loadings and then employed a large sample F statistic to test
the joint significance of the time series intercepts of the size portfolios. In no case were
we able to reject the APT with this procedure with either ten or twenty size portfolios.
Considerable cauticn is clearly warranted in implementing mean-variance efficiency tests.

Our final observation on size-related tests involves the results reported in Table 6
which exclude the 750 securities which were used to construct the basis portfolios. The
mean-variance efficiency of both indices is rejected in this smaller sample of securities with
aggregate marginal significance levels less than 10~% for the equally-weighted index and

less than 10~2 for the value-weighted index. By contrast, only two APT formulations are

38 Ag noted in Section IV, our results differ markedly from those obtained in Chen(1983).
It is possible that this is a consequence of the elastic programming algorithm Chen employed
to produce portfolios of small and large firms which had identical sample factor loadings. If
the algorithm produced portfolios which placed relatively small weight on the very smallest
and largest firms in bis sample, the discussion in the text suggests that these portfolios
would not exhibit a very large size effect. -
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rejected at conventional significance levels: the five factor zero beta model was rejected at
an aggregate marginal significance level near 2% while the five factor riskless rate version
was marginally rejected at just over the 9% level. The rejections of the CRSP indices
verify that the good performance of the basis portfolios is not duc to the absence of power
to reject reasonable hypotheses in this sample. The results are probably more a consequenice
of the size of this sample—tlere are fewer very large and very small market capitalization

firms 1n these subsamples with which to reject the theory.

The tests for the two CRSP indices based on dividend-sorted portfolios reject their
mean-variance efficiency as would be expected from the earlier work of Litzenberger and
Ramaswamy(1979), Blume(1979), and Elton, Gruber, and Rentzler(1983). The ageregate
x? statistics based on five portfolios record rejections of the meau-variance eflicicucy of
the equally-wceighted index at a marginal significance level below 10~1® and of the value-
weighted index at just below the 2% level. The corresponding individual period results
confirm the aptness of these rejections since the large sample F statistics reject the null
hypothesis for both indices at conventional significance levels for all but the second five year
period. The mean-variance efficiency of the equally-weighted index is also sharply rejected
in the twenty portfolio tests and in the subsample tests reported in Table 6. The tests fail
to rcject the mean-variance efficiency of the value-weighted index in the twenty portfolio
case and marginally reject in the subsample results reported in Table 6. Our examination of
the individual portfolio intercepts reveals a well-known pattern: significant positive alphas
for the zero dividend and high dividend groups and negative intercepts for the remaining

portfolios.

The dividend-related tests lead to very different conclusions regarding the validity
of the APT. There is very little evidence in Table 4 against the theory. Only the ten
and fifteen factor zero beta models are nearly rejected at the 5.5% and 7.6% marginal
significance levels, respectively, using five dividend-related portfolios. The only evidence
against the theory in the individual subperiods occurs in the first subperiod: both versions
of the ten and fifteen factor models are rejected at marginal significance levels between 2%
and 4% with five dividend-sorted portfolios. There is no evidence against the APT in the
remaining five portfolio results and no evidence at all in the twenty portfolio test statistics

or those in Table 6 which exclude the 750 securitics used to create the basis portfolios.
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Morcover, examination of the portfolio intercepts provides little suggestion that the test

statistics are missing an important dividend effect.®®

The results for portfolios based on own variance mirror those obtained in the dividend
yicld case. The mean-variance efficiency of the CRSP indices is rejected at almost identical
marginal significance levels in most cases and more sharply for some of the remaining
statistics, particularly those relating to the value-weighted index. The APT basis portfolios
do not y‘ield intercepts that are significant over the whole sample with the exception of the
five factor zero beta model which receives a marginal rejection at the 9% level. In addition,
many of the F statistics are marginally significant (between the 6% and 10% level) in the
first five year period although the remaining test statistics are typically grossly insignificant
{many at the 90% level and larger). Once again, the information in the test statistics 1s a
reliable guide to the behavior of the individual portfolio intercepts. The basic message is
similar: the rejections of the mean-variance efficiency of both CRSP indices suggests that
the own variance portfolios have power against reasonable alternatives and the failure to
reject the APT suggests that the theory provides an adequate account of their risk and

return.
C. Comparison of the Riskless Rate and Zero Beta Models

In this section we compare the riskless rate and zero beta formulations of the APT.
As noted in Section IV, our tests examine two dimensions along which these models differ:
(i) the riskless rate interpretation predicts that the orthogonal portfolios constructed from
the factor models should earn the rizskfree rate while the zero beta model implies that these
portfolios should have zero returns and (ii) the sum of the loadings of both individual
securities and portfolios should be one if the zero beta formulation is appropriate. The first
implication also provides a test of the APT itself since these orthogonal portfolios could
earn significant negative returns or returns significantly greater than the riskiree rate in
violation of the theory. It is certainly true that estimated zero beta rates in a CAPM

setting are usually significantly greater than the riskiree rate.

39 Tn particular, there is some evidence of positive (but usually insignificant) intercepts
for the zero dividend and high dividend portfolios. In contrast to the CAPM results, the
intercepts for the remaining portfolios sometimes have mixed signs and are typically eco-
nomically and statistically insignificant. We plan to investigate this further in subsequent
research.
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Table 7 reports summary statistics regarding the sample behavior of the orthogonal
portfolios constructed from five, ten, and fifteen factor models as well as those pertaining
to ﬂuctuntio_ns in the one month Treasury billr rate. Recall that the data underlying this
Table are monthly in contrast to the remaining results in this paper. For each orthogonal
portfolio, we report the mean return, the standard deviation of its return, and the t-statiatic
for the hypothesis that the mean return is significantly different from zero as well as the
difference in mean return between this portfolio and the one month Treasury bill rate and
the -statistic for this mean return difference. The marginal gignificance levels of the two
t-statistics are reported as well, These statistics are presented for each of the four five year
periods in the first four rows. The final row presents two approximate x? statistics along
with their marginal significance levels. 4 The first such statistic is for the Joint hypothesis
that the mean returns on the orthogonal portfolic were Jointly significantly diflerent from
%ero across the four periods while the second x? statistic provides the analogous test for
the difference in mean returns between the orthogonal portfolios and one month Treasury
bills. Finally, we report summary statistics describing the bebavior of the riskless rate. For
each of the four subperiods, Table 7 gives the mean, standard deviation, and t statistic
(along with its marginal significance level) of returns on one month Treasury bills while the
final row provides the approximate x? statistic for the hypothesis that the mean returns
are jointly significantly different from zero.

The results in Table 7 suggest considerable uniformity in the behavior of the orthogonal
portfolios from the five, ten, and fifteen factor models. The ¢-statistics for the mean returns
on the orthogonal portfolios of all three factor models are highly significant in the final three
subperiods although they are insignificant in the first period. The x? statistics for the joint
significance of the mean returns for each orthogonal portfolio across the four sample periods
have ma.rgihal significance levels below 10~° for each factor model. In contradistinction,
the corresponding t-statistics for the differences in mean returns between these portfolios
and the one month Treasury bill are insignificant in each subperiod with two exceptions:
in the second subperiod, the mean return difference for the orthogonal portfolio from the

ten factor model is marginally significant at the 7.5% level while that from the fifteen

4% Jt proved to be convenient with our software to produce these approximate y? gtatistics
instead of the usual F statistics. Fortunately, with these sample sizes the difference in
marginal significance levels would only show up in inconsequential decimal places.

39




factor model is sienificant at the 2.7% level. In addition, these mean return differences
have mixed signs, negative in the first and fourth periods and positive in the middle two
periods. Morcover, the aggregate x2 statistics for the joint significance of the mean return
differences Liave marginal significance levels of 0.19 for the five factor model, 0.17 for the
ten factor model, and 0.092 for the fifteen factor model. Only the fifteen factor results
reflect a marginal rejection of the riskless rate model, a rejection attributable solely to the

results from the second subperiod.

The statistics reported in Table 7 provide support for the riskless rate interpretation
of the APT. The zero beta model receives no such support—the mean returns on the
orthogonal portfolios are jointly and, in three of four periods, individually significantly
different from zero at low marginal significance levels. The riskless rate interpretation
scems to be quite consistent with the data since the only evidence against the model is
from the second period for the orthogonal portfolios from the ten and fifteen factor models.
Of course, these results may only reflect power problems with these t-statistics although
this interpretation appears to be difficult to sustain due to the apparent precision of the
estimated means for the final three periods. Similarly, one might be tempted to reject the
APT since these orthogonal portfolios are not riskless, their sample standard deviations
are typically ten to twenty times those of returns on one month Treasury bills. This could
oceur because the APT is false or because 750 securities is insufficient to eliminate both
factor risk and idiosyncratic risk as discussed in Section IV. In addition, note that our tests
are considerably more powerful and more consistent with the riskless rate version of the
APT than the mixed results obtained by previous authors. Moreover, these results stand
in sharp contrast to those obtained in studies of the zero beta CAPM, where the estimated

zero beta rates are typically significantly greater than the riskless rate.

Of course, there is a second test for the validity of the zero beta APT —tests of the
hypothesis that the loadings of individual securities or portfolios sum to one. This test could
lead to different conclusions than those that follow from Table 7 so that it can shed light on
the validity of the APT as well. Table 8 reports the relevant test statistics for the hypothesis
that the portfolios formed on the basis of firm size, dividend. yield, and own variance have
loadings that sum to unity. Attention is restric ted to the results based on five such portfolios

in order to conscrve space which involves little sacrifice since the results for ten and twenty -
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portfolios were mucli less favorable to the zero beta formulation. As noted in Section 4,
we present Fostatistics based on both raw return and excess return regressions. The first
four columus present the relevant F statisties for the four subperiods and their marginal
significance levels. The final column presents the approximate x? statistic, comstructed
along the lines of the analogous statistic in Section V.B above, for the joint siznificance of

the four subperiod F statistics along with its marginal significance level.

Tle results in Table 8 suggest overwhelming rejection of the zero beta formulation of
the APT. The aggregate test statistics based on excess return regressions reject the null
hypothesis at marginal significance levels below 10727 and the least significant subperiod
F statistic has a marginal significance level of 2.3%. The hypothesis fares only slightly
better in the raw return regressions—the aggregate test statistics for the loadings of the
five size portfolios have marginal significance levels of 0.11 and 8.12 for the ten and fifteen
factor models, respectively, while that associated with own variance and fifteen factors is
significant at the 11% leve] as well. Of course, the remaining marginal significance levels
of the aggregate test statistics indicate overwlhelming rejection at conventional significance
levels as do many of the subperiod results. Moreover, these results are the most favorable
to the zero beta model—we would have made no such caveats had we chosen to report the
twenty portfolio results. It is certainly Lard to imagine a more complete rejection of the

zero beta version of the APT.
D. Assessing the Number of Factors

The final question we consider involves the number of factors underlying security re-
turns. Our evidence on this question is presented in Tables 9 and 10. As expected, the
results are inconclusive. Panel A of Table 9 contains summary x? statistics for the joint
significance of the mean returns of the basis portfolios constructed from different factor
models. These x? statistics are of potential interest for at least two reasons: one having
to do with the validity of the APT and the other with the number of factors. First, 1t is
an implication of the APT that at least one of the factor risk premia should be different
from zero. As is readily apparent, our large cross-sections yielded basis portiolios which
had highly significant mean returns in aggregate and in most of the individual subperiods
as well. This is in sharp contrast to the frequently insignificant mean returns of basis port-

folios constructed from smaller cross-sections in other studies. The second reason these
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statistics may be of interest is that the marginal significance levels of the x? statistics have

some potential for shedding light on the number of factors that embody priced risk.

Why should this be truc? Suppose that we estimate two factor models for security
returns with K and K* factors with associated returns R,,, and E:M Assume K* is the
true number of factors. The key insight is that the noncentrality parameter associated the
usual y? statistic for testing that the mean returns on the K basis portfolios are jointly
zero ig less than the noncentrality parameter associated with testing that the mean returns
on the K* basis portfolios are significantly different from zero.4! Since the noncentrality
parameter of the true basis portfolios is larger, the x2 test statistic of the K* portfd-lias-
chould typically be farther out in the tails of its distribution than that of the K portfolios.
In consequence, the marginal probabilities of the test statistic for the hypothesis that the
mean returns on E;, are zero ought to be smaller than the corresp onding numbers for the
lmean returns on _R:m,. Of course, more precise statements are not possible in this setting
in the absence of a more detailed characterization of the joint distribution of the two sets
of basis portfolios. Moreover, the ranking of the marginal probabilities need not obtain in
any period due to sampling error. Nevertheless, aggregation of the relevant test statistics
might mitigate some of the harmful effects of sampling error and might yield insights into
the number of factors underlying security returns.

Unfortunately, the x2 statistics for the hypothesis that basis portfolio mean returns are
jointly significantly different from zero are inconclusive. While the aggregate x? statistics
suggest that the ten factor model yields the basis portfolios with the most significant mean
returns, examination of the subperiod results shows that the basis portfolios constructed
from the five factor model had the most significant mean returns in the first two subperiods
and those associated with the ten factor model had the lowest marginal significance levels
in the latter two five year periods. This may be interpreted as very weak evidenée in favor
of a ten factor model.

The remaining results are equally uninformative. Panel B of Table 9 displays the

. . ! = . .
4! In terms of the notation of Section IV.C, B_T_'R_ is the noncentrality parameter

—! —
of the K basis portfolios which can be rewritten as Ry, B! [BmIf Bl + 0] 'BnE,,
—! —1,7 11— . . .
=Ek_[o* + (B 0. Bn) 1] E._ . The noncentrality parameter of the K™ basis portfolios
. —! -1 —
s B T RE,..
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usual likelihood ratio statistics for the number of factors. As anticipated, the likelihood
ratio statistics for the number of factors overwhelmingly reject the hypothesis that five,
ten, or fifteen factors are sufficient to explain covariation among security returns when the
idiosyncratic disturbances are presumed to be uncorrelated across securities. Finally, our
tests in Table 10 for the joint sigmificance of the intercepts from the regression of one set
of basis portfolios on another provides no evidence against the riskless rate version of the
APT coupled with any number of factors from five to fifteen. Only the joint hypothesis
that the five factor zero beta model is correct is rejected at the 3.7% level by the basis
portfolios from the ten factor model.

Tables @ and 10 are, in some respects, the least satisfying in the paper. They provide
very little information regarding the number of factors which underlie the APT. As the
analysiz in Section IV.D suggests, our tests have little power to discriminate among models
with different numbers of factors. The likelihood ratio cannot tell the difference between
pervasive common factors and nonpriced industry effects and so the sharp rejections may
reflect the inadequacy of these models or the inappropriateness of the assumption that the
idiosyncratic disturbances of different firms are uncorrelated. The marginal differences in
the marginal significance levels of basis portfolio mean returns seem to be equally uninfor-.
mative. The regression tests provide no evidence against any of the factor models but the
analysis in Section IV suggests that the tests have little power.

As a consequence, there are two plausible readings of the evidence we have examined.
One is that there is no real evidence against a five factor model providing an adequate
empirical basis for the APT. The other interpretation is that there is no adequate basis
for choosing among factor models and we instead must rely on intuitions regarding the
comparative performance of different factor models. Our hunch is that, if a five factor
model is not appropriate, a ten factor model is sufficient and that there is no need to move

to fifteen factors.

V1. Conclusion

This paper has been devoted to the accumulation of facts and the sifting of evidence
regarding the validity of the APT in its various incarnations. In this pursuit, we have

reached several firm conclusions and have left some issues largely unresolved. In particu-
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lar, our empirical implementation of the theory proved incapable of explaining expected
returns on portfolios composed of securities with different market capitalizations although
it provided an adequate account of the expected returns of portfolios formed on the basis
of dividend yicld and own variance. In addition, it appears that the zero beta version of
the APT is sharply rejected in favor of the riskless rate model and that there is little basis
for discrimimating among five and ten factor versions of the theory.

The sharpest evidence we obtained concerns the comparative merits of the zero beta
and riskless 1'at.elvcrsi0ns of the APT. The implications of the two models differ in two
dimensions: (¢} the zero beta model requires the factor loadings of both securities and
portfolios sum to one and (s7) the riskless rate formulation predicts that the intercept in the
APT pricing relation is the riskless rate while the zero beta version implies that it is zero.
Our tests of the first implication sharply reject the hypothesis that the loadings of portfolios
based on firm size, dividend yield, and own variance sum to unity at arbitrarily low marginal
significance levels. Moreover, our examination of the intercept Ag in the pricing relation
confirmed the appropriateness of these rejections as they proved to be significantly different
from zero at low marginal significance levels in three of four periods and in aggregate. The
APT and, in particular, the riskless rate version of the model received additional support
In these tests in that these intercepts proved to be insignificantly different from the riskfree
rate in aggregate and in all but one subperiod. This is somewhat surprising given that zero
beta rates in CAPM studies are typically significantly greater than riskfree rates.42

Considerable ambiguity remains regarding the number of common factors underlying
security returns. This is not surprising in that the analysis in Section IV failed to turn
up a test which could reliably discriminate among alternative factor models. The evidence
presented in Section V is consistent with either the five, ten or fifteen factor model. In .
light of the similar performance of the ten and fifteen factor models in most instances, we
conjecture that five or ten factors is sufficient if the APT is true.

By far the most interesting results in the paper concern the validity of the APT
itself. The APT fared well when confronted with the strong relationship between average
returns and dividend yield and own variance. The APT provides an adequate account

of their risk and return where risk adjustment with the CAPM with the usual market

42 Of course, this does not constitute cvidence against the zero beta CAPM.
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proxies fails. This is noteworthy since the APT provides a risk hased explanation of these
phenomena in contrast to the usual tax related explanation of the dividend effect and the
transactions cost account of the relationship between own variance and average returns.4®
In contradistinction, the tests based on market capitalization provide sharp evidence against
the APT, althiough the formn of the size effect appears different from that documented in
CAPM studies.

How shiould we interpret this failure to account for the size effect? One possibility is
that despite our cantious attentivenecss to the statistical underpinnings of this analysis, our
procedures proved incapable of overcoming measurement error caused by our inadequate
sample size, asynchronous trading, or any of the other problems discussed m Section TV.
We are persuaded, though, that the large cross-sections that we employ largely mitigate
the impact of measurement error. Similarly, the thin trading corrections made in Section V
yicld no suggestion that the size-related results are attributable to this problem. Moreover,
the sharpuess of the rejections reported in Tables 1 — 3 suggests that they cannot be
attributed to peculiar small sample properties of the test statistics such as those that might
result, for example, from non-normality. These considerations suggest that the failure of

the APT to account for the size effect is credible.

The most obvious interpretation is that we have sharply rejected the APT. The ability
of a measure of unsystematic risk to successfully explain risk-adjusted returns violates the
theory. The analysis above suggests that the rejections are both sharp aud believable. This

represents a clear failure of our empirical implementation of the APT.

The concentration of the size effect in the very smallest and largest firmns, however,
suggests an alternative explanatiori of these results. Suppose that there iz a smell firm
factor in that the business cycle risk of small capitalization firms is much greater than that
of better capitalized firnus. In addition, sﬁppose that the exposure to this source of risk i=
small for listed equities but that the risk premium for this factor 18 large. In particular,
suppose that the firms which suffer from significant exposure to this source of systematic

risk are primarily traded over the counter or are closely held. In these circumstances, our

43 1t is possible that the absence of a measured dividend effect in our APT results is
consistent with the tax story. This could occur, for example if one of the risk factors
reflected random marginal tax rates impinging on asset pricing and the correqpondlnﬂ
factor loadings are the dividend yields of the individual securities.
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factor analysis would fail to measure this factor well since few firms in our cross-section
would be matenally affeeted by it. Similarly, our rejections of the APT are consonant with
the smallest market capitalization firms having smiall positive loadings and the large firms
having small negative loadings coupled with a large risk premium for the factor. 44 Hence,
this account of the size effect involves measurement error in the factors, measurement error
that follows from the assets sclected for the analysis rather than as a consequence of our
statistical procedures.

The size and the turn-of-the-year effect have thus far evaded a satisfactory risk based
explanation. It is worth emphasizing that our size effect is largely concentrated in the
firms with the largest and smallest market capitalizations which suggests that the APT
1s pricing most listed equities with little error. To paraphrase Henry IV of France to the
ambassador Don Pedro of Spain, “Do you mean to say your theory hasnt enough virtues

to afford some faults?”

“ It is suggestive to note that business failure rates rise sharply during recessions and
that few of these failures occur among firms listed on the NYSE and AMEX. This could
oceur if, for example, credit rationing occurs during recessions and the capitalization of
listed equities and their access to credit is sufficient to ride out most recessions. We would
expect very large firms to have negative loadings in these circumstances since they could
potentially profit from acquisitions obtained during recessions.
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