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Policy Response to Pandemic Influenza: The Value of Collective Action 

Georgiy Bobashev, Maureen Cropper, Joshua Epstein, Michael Goedecke, Stephen Hutton and 
Mead Over 

 

1.  Introduction 

In the 20th century the world experienced three influenza pandemics which had 
significant economic costs, as well as causing millions of deaths and illnesses.1 The 1918 
pandemic killed an estimated 3% of the world’s population, despite being slow to spread in an 
age before air travel. With today’s global transportation network, an outbreak of influenza could 
quickly reach pandemic proportions.  The 2009 H1N1 "swine flu" pandemic and the SARS 
outbreak of 2003 remind us of the continued risks to the world should a pandemic occur.  They 
also remind us that there is relatively little cooperation and coordination between countries, and 
that wealthy nations prioritize stockpiling doses of vaccines or antivirals for their own citizens 
before considering treatment in other countries. 

Whether such an inwardly focused policy is optimal depends on the nature and 
magnitude of externalities in treating pandemic flu.  How much do policies to slow the spread of 
the flu in one county reduce attack rates in other countries?  Does treatment of infected persons 
in one country increase the marginal benefits of treatment policies in other countries (i.e., are 
there treatment complementarities?).  The overarching goal of this paper is to answer both 
questions in a realistic model of the spread of influenza through the global air transport network.   

By simulating the impact of control strategies in a global epidemiological model we are 
able to address two questions regarding international cooperation to mitigate a pandemic:  (1) Is 
it cost-effective for wealthy nations to pay for the purchase and distribution of antivirals in poor 
countries to slow the spread of the pandemic?  (2) What global allocation rules are most effective 
in reducing attack rates?  In the case where treatment with antiviral drugs alone can contain a 
potential pandemic, there is an obvious case for wealthy nations to pay for pandemic 
containment.  But what about the case where a pandemic cannot be detected early enough or 
treatment is not effective enough for containment to be possible?  Pandemic epidemiology 
involves two types of externalities that suggest that it might be in the self-interest of wealthy 
countries to fund such a scheme: The treatment policy in one country will affect the rate at which 
the pandemic spreads to other countries, so treatment provides a positive externality.  At the 
same time, the increasing marginal effectiveness of treating more people can lead to 
complementarities across countries.   The question is: how large are these effects? 

                                                            
1 These were the 1918,1957 and 1968 pandemics. 
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 Our Approach 

To investigate these issues we use a detailed Global Epidemiological Model to simulate 
influenza pandemics under a range of conditions and antivirus treatment policies.  The model 
divides the world into 106 GTAP regions and models air travel among 288 cities in these 
regions.  The flu spreads from one city to another via air travel, and from cities to a rural area in 
each region via land travel.  Within each city or rural area the flu spreads via a model in which 
people transition from susceptible to exposed to infectious to recovered or dead. The model 
distinguishes among age groups and uses age-specific contact rates to model the spread of the 
flu. The probability of infection given contact in a particular region varies with latitude (it 
decreases as one moves away from the equator) and season (it is higher during the winter than 
during the summer).   

We focus on mitigation of the spread of the flu by administering antivirals to 
symptomatic infectious individuals. In the absence of international cooperation we assume that 
antiviral stockpiles, as a percent of population, vary with per capita income.  Poor countries are 
assumed to have no stockpiles. We ask whether it pays rich countries to pay for stockpiles to be 
distributed in poor countries.  We compare two rules for rich countries distributing stockpiles in 
poor countries: one under which each country receives a fixed number of doses (in proportion to 
population) and another under which antivirals are allocated to the country in which the flu 
begins, which we assume to be a poor country.  We judge the success of a control strategy in 
terms of its impact on the attack rate (percent of the population infected) at the end of a year.  
Does it (collectively) pay rich countries to make a donation in terms of the impact it has on their 
own attack rate? 

With or without control policies, the percent of the population infected in each region 
depends on when the flu begins (influenza that peaks in Northern Hemisphere winter infects 
more people) and on the infectiousness of the flu (i.e., the reproductive rate R0, which measures 
the number of people an infectious person would infect in an otherwise totally susceptible 
population).The answers to our questions are also contingent on these parameters. 

 Preview of Results 

The benefits from collective action in the form of influenza treatment depend on the size 
of treatment externalities.  Treatment externalities are large if a pandemic can be contained in the 
source country (Ferguson, et al., 2005; Longini, et al., 2005). In the more likely case in which the 
pandemic will spread through air travel the externalities associated with anti-viral treatment are 
smaller: treating infectious people in one’s own country reduces the domestic attack rate, but has 
a proportionately much smaller impact on other countries.  The question is whether the cost of 
purchasing and distributing antivirals to other countries pays for itself in terms of reducing a 
country’s own attack rate.  
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It is always in the interest of wealthy countries to purchase and distribute antivirus doses 
in the outbreak country when doing so can contain a pandemic.  In other cases, the marginal 
private benefits from using limited antivirus supplies to treat domestic patients exceed the 
marginal benefits from donating those doses abroad. But, if wealthy countries retain a stockpile 
of antiviral drugs sufficient to treat their own cases, then they can increase their welfare by 
paying for purchase and distribution of additional doses to the outbreak source country. 

The benefits to rich countries of paying for antivirals in poor countries under "midrange" 
assumptions of influenza transmissibility cover the costs:  donation of antivirus to the outbreak 
source country reduces the number of influenza cases in rich countries after 1 year by 4.76 
million cases, at the cost of roughly 1.92 doses per case avoided.  This donation policy is 
welfare-enhancing for wealthy countries even at a zero percent case fatality rate; at any positive 
fatality rate the policy is even more valuable. 

The paper is organized as follows.  Section 2 briefly reviews the literature on policies to 
control pandemic flu.  In section 3 we discuss the dynamics of pandemic influenza in a simple 
one-city S-I-R model in which the decision maker determines the proportion of infectious people 
to treat with antivirals before the pandemic begins (and hence the size of a stockpile to hold).  
Section 4 presents the two-city case, in which the flu spreads through travel from one city to 
another.  We use this model to illustrate the nature of externalities and complementarities in 
influenza treatment.  We also contrast the Nash equilibrium in treatment strategies with the 
cooperative treatment strategy. Section 5 presents the Global Epidemiological Model that we use 
for our simulations; section 6 presents the results of simulating pandemic flu under various 
antiviral stockpile assumptions.  Section 7 concludes. 

2.  Relationship to the Literature  

Models of human transmission of influenza include both models with significant detail at 
the country level, such as the models of influenza transmission in Thailand and Southeast Asia 
(Ferguson et al. 2005; Longini et al. 2005) and the U.S. and the U.K. (Ferguson et al. 2006; 
Germann et al. 2006) and global models of influenza transmission (Rvachev and Longini 1985; 
Grais, Ellis and Glass 2003; Colizza et al. 2007; Epstein et al. 2007).  Spatially detailed models 
of avian flu transmission at the country level have been used to compare the effectiveness of ring 
quarantines, vaccination strategies and various policies for distributing anti-viral drugs—
distributing drugs to all persons in the same school or workplace as an infected person, or, 
alternately, ring prophylaxis.   

Global models, which capture the transmission of influenza through the global air 
transport network, have been used to examine the impact of restricting travel between 
countries—as a result of either government policy or private averting behavior—and traveler 
quarantines. Models of global influenza transmission have focused on the role of the air transport 
network in the spread of influenza.  These models follow the seminal work of Rvachev and 
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Longini (1985), who used a deterministic difference equation model to simulate travel within a 
network of 52 cities.  The model, which was used to replicate the spread of the 1968 influenza 
pandemic, used actual air travel data to model movement between cities.  Behavior within cities 
was modeled more simply, assuming a uniform mixing of individuals within each city, with 
disease dynamics governed by a Susceptible-Exposed-Infectious-Recovered (S-E-I-R) model.  
The subsequent literature (Grais, Ellis and Glass 2003; Hufnagel et al. 2004; Cooper et al. 2006; 
Colizza et al. 2007, Epstein et al. 2007) has used a more detailed characterization of the air 
transport network (Colizza et al. (2007) model 3,500 airports) and has introduced randomness in 
travel rates and disease transmission.  These global models have examined the impact of air 
travel restrictions and the effects of local policies to reduce disease transmission, but have not 
examined the economics of pandemic flu control, nor have they characterized the nature of 
externalities in treatment of pandemic flu. 

3.  Antiviral Usage in a Simple SIR Model 

The simplest model of influenza spread, which underlies all of our analyses, is the 
Susceptible-Infectious-Recovered (S-I-R) model. Individuals are either Susceptible, i.e., capable 
of being infected, Infectious, i.e., capable of infecting others, or Recovered (immune or dead).  
Susceptible and infectious persons are assumed to mix uniformly.  Letting S(t), I(t) and R(t) 
denote the fractions of the population in each state, the changes over time in the health of the 
population are given by: 

(1) dS(t)/dt = - βS(t)I(t) 

(2) dI(t)/dt  =   βS(t)I(t) – δI(t) 

(3) dR(t)/dt =   δI(t). 

β represents the probability of transmission conditional on exposure to an infected person, or the 
average rate of infection per susceptible.  With uniform mixing βS(t) represents the rate at which 
an infectious individual infects susceptible persons.  δ  is the rate at which an infected individual 
recovers; thus 1/δ is the average duration of the disease.  Disease prevalence increases over time 
(dI(t)/dt> 0) if and only if [β/δ]S(t) > 1.  Simply put, prevalence increases only if the number of 
infections caused by an infectious person during the time he is infectious exceeds 1 (i.e., only if 
he can replace himself).  Thus, a necessary condition for an epidemic to begin is for β/δ> 1.β/δ is 
also the average number of persons infected by an infectious person in an otherwise totally 
susceptible population (i.e., when S(0) ≈ 1) and is termed the basic reproductive rate, R0. 

Figure 1 illustrates the progression of the flu for the case of β = 0.3, δ=0.2, implying that 
the flu lasts 5 days (on average) and that R0 = 1.5.  (Initially, I(0) = 0.001.)  The flu spreads 
slowly when the stock of infectious is low, spreads more rapidly as the proportion of infectious 
rises, peaks when the proportion of susceptibles fallsbelow1/R0, and steadily declines thereafter.  
The epidemic is effectively over in less than 4 months, with only 0.01N new infectious cases 
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occurring after day 104, where N is the population size. The attack rate2R(∞), is approximately 
58%. 
 
Figure 1: Progression of Influenza in a One-City S-I-R Model 

 

Suppose now that some proportion of infectious people can be treated with an antiviral 
drug that reduces their infectiousness.  Assume that this proportion must be chosen before the 
epidemic begins and must remain constant throughout.  Let p be the proportion of new infectious 
people receiving antiviral treatment, and assume that this reduces the untreated rate of infection, 
β°: 

(4) β = β°(1-pe), 

where e is the proportionate reduction in β° achieved by the anti-viral (e.g., e= 0.4 implies a 40% 
reduction in the infectiousness of a sick person).  Higher values of p reduce infectiousness and, 
hence, R0. 

Assume that the government chooses the proportion of infectious to treat to maximize the 
difference between the value of cases avoided and the costs of treatment.  The benefits of 
treatment equal the value per case avoided, V, times the number of people who avoid infection 
due to treatment, (S(∞,p) -S(∞,0))N.  For simplicity, we remove the -S(∞,0) term (which is a 
constant for any R0 and so drops out in all derivatives) and suppress the argument of S(∞,p).  
Assuming that the cost per antiviral dose is constant and equal to c per case treated, the 
government chooses p before the epidemic begins to maximize3 

(5)    F(p) = V[S(∞)]N – cp[1-S(∞)]N. 
                                                            
2 Technically, the attack rate is R(∞) - R(0), but we assume R(0) ≈ 0 and so refer to R(∞) throughout. 
3 This assumes that the decision maker focuses on the attack rate.  It is also true that antivirals could reduce the 
duration of illness for those who become infected.  This benefit is ignored here. 
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The relationship between p and the proportion of people never infected is given by the 
transcendental equation (Kermack and McKendrick 1927) 

(6) ln(S(∞)) = R0(S(∞)-1), 

where R0 = β°(1-pe)/δ.   

For values of R0that characterize pandemic flu, the p that maximizes equation (5) is a 
corner solution: either p=0 or p=1.  First-order conditions for the maximization of (5) call for p 
to be chosen to the point where the marginal benefits of increasing S(∞) both in terms of 
reducing the number never infected and the number of doses needed to treat the infectious, equal 
or exceed the cost of an additional dose, 

(7)        dF(p)/dp = (V + cp)[dS(∞)/dp] – c[1-S(∞)] ≥ 0. 

The second-order conditions for an interior maximum, d2F(p)/dp2< 0, are, however, not satisfied 
for pandemic flu.4  Equation (6) implies that the proportion of people never infected, S(∞), 
increases as R0 falls (i.e., as p is increased); however, for values of R0>1.05, increasing p 
increases S(∞) at an increasing rate.5Influenza pandemics have generally been characterized by 
reproductive rates greater than 1.5.6This implies that p=0 maximizes (5) if V is low relative to c, 
but p=1 maximizes (5) if V is high relative to c. To illustrate, when β° = 0.3, δ = 0.2 and e = 0.2, 
setting p = 1 is optimal if V/c> 1.2. 

When p = 1, the number of doses of antivirals used equals the attack rate times the size of 
the population, R(∞)N.  We term this the antiviral stockpile used.  In the above example (β° = 
0.3, δ = 0.2 and e = 0.2) treatment with antivirals reduces R(∞) from 0.58 to 0.33, hence the 
antiviral stockpile (the total number of doses used) = 0.33N.   

In practice, the number of doses of antivirals used will be even smaller, due to constraints 
on p.  The difficulty in identifying infectious people and treating them with antivirals implies 
that, in practice, p will be constrained to be less than 1 by the health care delivery system; 
formally, p ≤ p*.  In the United States it usually assumed that p ≤ 0.6 (Longini et al. 2005; 
Germann et al. 2006).  If p=1 is optimal in the unconstrained problem then p = p* and the 
number of antiviral doses that is used will = p*R(∞)N.  In our example with β° = 0.3, δ = 0.2 and 
e = 0.2, R0 is reduced to 1.32 if p= 0.6 (rather than 1.2 when p=1).  The attack rate will be R(∞) = 
0.45 and a stockpile = 27% of the population will be used.  If e = 0.4, R(∞) = 0.24 and the 

                                                            
4d2F(p)/dp2 = (V + cp)[d2S(∞)/dp2] + c[dS(∞)/dp] which need not be negative. 
5 A sufficient condition for d2F(p)/dp2> 0 is d2S(∞)/dR0

2> 0.  Formally, dS(∞)/dR0 = [S(∞)-1]/[ S(∞)-1 – R0]and 
d2S(∞)/dR0

2 = [ S(∞)-1 – R0]
-1 [dS(∞)/dR0] [2 + S(∞)-2[dS(∞)/dR0]]. 

This second derivative d2S(∞)/dR0
2> 0 provided 2 + S(∞)-2[dS(∞)/dR0] < 0. Equation (6) implies that this condition 

is satisfied if R0> 1.05. 

6 The R0 for the 1957 Asian flu has been estimated at 1.8 (Vynnycky and Edmunds 2008). Vynnycky et al. (2007) 
estimate an R0 of 2.4-4.3 for the 1918 Spanish flu. 
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stockpile that will be used is approximately 14.4% of the population.   
 

4. Antiviral Usage in a Two-City Model  

To illustrate the nature of externalities involved in antiviral distribution we turn to a two-
city model.  The two cities are linked by travel, and the flu spreads in each city according to an 
S-I-R model (see Figure 2).  In this example the cities are symmetric, i.e., population (N), 
transmissibility of the flu and its duration are identical in both cities, as is the rate of travel 
between cities.  The dynamics of the spread of the flu are given by equations (8)-(11) for city A 

(8) dSA/dt = - βASAIA– SMA + SMB 

(9) dIA/dt  =   βASAIA– IMA + IMB – δIA 

(10) dRA/dt =   δIA 

(11) βA= β0
A(1-pAe) 

where SA, IA, and RA are shorthand for SA(t), IA(t) and RA(t), respectively and “M” subscripts 
denote migrants.  Equations for city B are defined analogously.  We assume that a fraction α of 
infectious travel between cities and that the same number of susceptibles also travel, in order to 
keep the population constant. 

Figure 2:  Spread of the Flu in a Two-City SIR Model 

 Figure 3 illustrates disease dynamics for the two cities assuming that the flu starts in city 
A (IA(0) = .001) and moves to city B.  Figure 3 assumes that neither city uses antivirals 
(pA=pB=0) and that β0 = 0.3,δ = 0.2 and α=0.01.  The number of infectious peaks first in the 
outbreak city (city A), but the attack rates are approximately equal (58%) in the two cities. 
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Figure 3:Progression of Influenza in a Two-City S-I-R Model 

 

 How large are the externalities associated with the use of antivirals?  If city A uses 
antivirals, how much does it lower the attack rate in city B, RB(∞), and vice versa?  Table 1 
illustrates the nature of the externalities from antiviral treatment.  Specifically, the table shows 
the attack rate in each city as a function of the proportion of infectious treated by each of the two 
cities.  We maintain same parameter values as in the single city case (p* = 0.6, e = 0.4, β0 = 0.3 
and δ = 0.2), hence each city chooses to treat either 60% of its infectious or none.   

Table 1.  Externalities in Antiviral Treatment, Two-City Model 

β°  pA  pB  Attack rate in City A  Attack rate in City B 

0.3  0  0  0.588  0.579 

  0.6  0  0.301  0.563 

  0  0.6  0.565  0.296 

  0.6  0.6  0.240  0.235 

0.35  0  0  0.719  0.707 

  0.6  0  0.475  0.705 

  0  0.6  0.709  0.468 

  0.6  0.6  0.456  0.449 

0.25  0  0  0.376  0.370 

  0.6  0  0.111  0.326 

  0  0.6  0.329  0.107 

  0.6  0.6  0.012  0.005 

 

Three points about Table 1 deserve emphasis: (1) when only one city treats its infectious, 
the effectiveness of its treatment is less than in the one-city case where there is no travel; (2) 
when only one city treats its infectious, the external benefits to the no-treatment city are small;   
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(3) when both cities treat, the effectiveness of each city’s stockpile is greater than when only one 
city employs a treatment strategy.  When city A treats 60% of its infectious in isolation, the 
attack rate is reduced from 58% to 24%.  In the two-city case, the attack rate is reduced to 30%.  
People from city B continue to re-infect city A, making city A’s treatment of its infectious less 
effective.  The benefits to city B of A’s stockpile are, however, small: when city B has no 
stockpile, its attack rate is reduced by only 1.6 percentage points by virtue of the fact that A 
treats its infectious.  When both cities treat their infectious, the benefits to both cities increase, 
compared to the case in which each city acts in isolation.  When both cities treat, the attack rate 
is reduced from about 58% to 24% in each city, as in the single city case.  (In effect, the two 
cities have become a single city, employing the same treatment as in the single-city case.) 

The magnitude of the externalities and complementarities observed in Table 1 are 
affected by the transmissibility of the flu (β0/δ), the proportion of infectious who can be treated 
(p*) and by the effectiveness of treatment (e).  The benefits to the no-treatment city of antivirals 
in the treatment city are greater the less transmissible is the flu, as are the complementarities of 
treatment (see Table 1).Treatment complementarities are also greater the higher the proportion of 
infectious who can be treated (p*) and the greater the efficacy of treatment (the higher is e).  (See 
Appendix A.)  

Nash Equilibrium 

An important question is what treatment strategy each city will choose, given the 
behavior of the other city.  To examine the Nash equilibrium in treatment strategies we assume 
that each city selects the proportion of infectious it will treat so as to maximize the objective 
function in (5), modified such that Si(∞), i = A, B, depends on the proportion treated in both 
cities.  We maintain our previous assumptions that β° = 0.3, δ = 0.2,  e = 0.4, α = 0.01 and p* = 
0.6.  We begin with a case in which the value of avoiding a case of the flu is 10 times the cost of 
a course of treatment (specifically, V=100 and c=10) in both cities.  This is a “high value” 
scenario that would result in each city choosing p = p* if the city operated in isolation.    

Figure 4 displays each city’s best response function in the “high value” scenario.  The 
Nash equilibrium is pA=pB=0.6, which is also the treatment strategy that maximizes the sum of 
cases avoided minus treatment costs for the two cities combined. 
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Figure 4: Nash equilibrium, high value scenario 

 

Suppose now that city A is a poor city, where the value of avoiding a case is less than the 
cost of treatment (VA = 5, cA = 10).  The value of avoiding a case remains 10 times the cost in 
city B (VB = 100, cB = 10).  The best response functions for the poor city and rich city are 
pictured in Figure 5.  The best response for city A depends on the value of pB; at low values of pB 
city A will choose pA = 0, but at high values of pB city A will choose pA = 0.6, and the Nash 
equilibrium remains at pA=pB=0.6. 
 
Figure 5: Nash equilibrium, City A decision depends on AV in City B 
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Now suppose that the value in city A is even lower (VA = 3), while the cost of treatment 
remains constant.  The best responses for each city are picture in Figure 6.  The Nash equilibrium 
is pA= 0,pB=0.6, whereas the treatment strategy that maximizes the sum of cases avoided minus 
treatment costs for the two cities combined is still pA=pB=0.6.  It is also the case that it pays city 
B to pay for antivirals sufficient to treat 60% of infectious in city A.  The cost of the treatment 
(10*(0.6)*0.235N) is less than the value of the resulting reduction in city B’s influenza cases 
(100*0.061N). 
 
Figure 6: Nash equilibrium, Low value in city A 

 

Whether it pays city B to pay for antiviral treatment in city A depends, however, on the 
transmissibility of the flu, the efficacy of treatment and the maximum proportion of infectious 
that can be treated.  The benefits to City B of paying for antiviral treatment in City A do not pass 
the benefit-cost test for a more readily transmissible flu (the β° = 0.35 in Table 1) when VB = 100 
and c = 10, and the benefits are lower when e=0.3 and p*=0.5 (Appendix A), even though they 
remain positive.  Given the sensitivity of the results to particular parameter values, we move to a 
model with a higher degree of descriptive realism.   

5. The Global Epidemiological Model 

While simple one- and two-city models can demonstrate the core qualitative properties of 
categorical epidemiological models, it is difficult to draw policy conclusions from these models.  
In order to simulate realistic treatment policies we have expanded and modified the Global 
Epidemiological Model (GEM) developed by Bobashev and Goedecke (Hajdin et al. 2009).  The 
GEM is a discrete time, stochastic S-E-I-R model designed to simulate the spread of a global 
pandemic. The model is based on the work of Rvachev and Longini (1985) and on the epidemic 
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model of Baroyan, Mironov, and Rvachev (1981).  The GEM extends these models by adding 
stochastic components, disease interventions, and a more detailed population structure.7 

Network structure 

The GEM tracks the spread of a pandemic through a network of 288 cities and 101 rural 
areas. The world is divided into 106 GTAP regions, each of which is an individual country or a 
group of countries.8  Every region contains at least one city, and the network is fully 
connected.9A rural area exists for every region except small islands and city states.  Rural areas 
are defined as everything that is not explicitly urban, so the “rural” areas contain the population 
of all cities in the world that are not explicitly included in the model.  Rural areas are treated the 
same as cities in the model, except that they are connected only to the cities within the same 
region, and not to cities in other regions.  (Total world population is roughly 6.4 billion, of which 
roughly 84% is allocated to a rural area.)Cities are chosen to include the 130 most populous 
cities in the world and the 130 cities with the highest average airport flows per day.10 

The cities and rural areas are connected by a daily flow between every city and its 
associated rural area, and by airline flows between cities.  It is assumed that 1% of the population 
of each urban area travels to its associated rural area each day, and an equal number travel from 
the rural area to the urban area.11  This assumption is somewhat arbitrary, but model results are 
not very sensitive to changes in travel rates.12  Cities are connected though 7,668 city-pair 
connections with a total global daily air movement of 5,035,664 people per day.  Travelers are 
randomly selected from the available pool of Susceptible, Exposed, asymptomatic-Infectious and 
Recovered cases; symptomatic Infectious cases do not travel.  This means that the pool of 
travelers (on average) is exposed or asymptomatic infectious in the same proportions as the 
general population (once symptomatic infectious and dead cases are excluded). 

Travel and population data come from a variety of sources.  Data on airline flows are 
drawn from Official Airline Guide (OAG) statistics on flight schedules provided by L. Amaral 
(Guimerà, Mossa, Turtschi, and Amaral 2005).  Numbers of passengers are based on the daily 
                                                            
7 Though the GEM is stochastic, the simulations reported here are run using a deterministic version of the model.  
There was little variation in the attack rate (our primary outcome variable) across runs of the stochastic version of 
the model. 
8 Roughly 86% of the world's population lives in a country that is its own region, the rest live in aggregate regions 
like "Rest of Caribbean," "Rest of Eastern Africa," and "Rest of Western Asia." 
9 There is a path from each node in the network to every other node. 
10 This means that we end up with many cities in rich countries, and relatively fewer cities in poorer countries.  Runs 
of the model excluding some rich country cities produced results similar to those reported below. 
11 Attempts to estimate real world land travel rates using traffic count data encountered several problems.  First, 
while data was available in many rich countries, data in developing countries was sparse.  Second, even the high 
quality developing data could be extremely misleading, as traffic count data often included significant numbers of 
commuters from areas just outside urban boundaries, leading to daily traffic flow estimates that could be as high as 
15% of the value of the urban population.  Third, it was not possible to find reliable data for non-car based travel 
numbers. 
12 Running the model with doubled and halved travel rates had no significant impact on attack rates by the end of the 
pandemic. 
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seat capacity between each pair of cities.  The raw data track only direct flights, but a proportion 
of travelers is assumed to take 2-leg, indirect flights.13 Data on regional populations come from 
the World Bank development data portal.  Data on urban metropolitan area populations are 
drawn primarily from the United Nations World Urbanization Prospects (2007), which uses 
broad definitions of urban areas.14  Rural area populations are calculated by deducting urban 
populations from regional populations. 

Disease spread dynamics 

Within each city and rural area, the progression of the flu is described by an S-E-I-R 
model.15Individuals transition from being susceptible (S) to exposed (infected) (E) to infectious 
(I) (either symptomatic or asymptomatic) to recovered (R) or dead (D).  Exposed individuals 
exhibit no symptoms (their infection is latent) and are not capable of infecting others, but will 
eventually become infectious (i.e., capable of transmitting the infection). Individuals who are 
infected and infectious are distinguished according to the number of days that have elapsed since 
they were first exposed (τ), and by whether they are symptomatic (s=1) or asymptomatic (s=0) 
(asymptomatic cases are less infectious). Thus E(τ ,t) denotes the number of people who are 
Exposed on day t who became infected on day t-τ. I(s,τ,t)denotes the number of people who are 
infectious on day t who first became infected on day t-τ. The maximum length of the latent 
period is τ1 days; the maximum length of time between first being infected and recovering or 
dying is τ2days. 

The stocks of susceptible, exposed, infectious, recovered and dead persons in city i on 
day t is given by the right-hand side of (12), which must equal the city population, N.  (From this 
point forward we suppress the city i index for notational simplicity.)  

ሺ12ሻ                    ܰሺݐሻ ൌ ܵሺݐሻ ൅ ෍ ,ሺ߬ܧ ሻݐ ൅ ෍ ෍ ,ݏሺܫ ߬, ሻݐ ൅ ܴሺݐሻ ൅ ሻݐሺܦ

ଵ

௦ୀ଴

ఛమ

ఛୀଵ

ఛభ

ఛୀ଴

 

The key equations of the model describe the change in the stock of infectious, exposed 
and susceptible people from one day to the next. Define γ(τ) as the probability that an Exposed 
case transitions to being Infectious, and σ(τ) as the probability that an Infectious person recovers.  
We assume for simplicity (following Longini et al. 2005) that 80% of Exposed cases transition to 
Infectious after 1 day and 20% after 2 days; they will become symptomatic-Infectious with 
probability 0.67 and asymptomatic-Infectious with probability 0.33.  Infectious cases either 

                                                            
13 A dataset of 10% of domestic US airline ticket coupons for 2004 is used to estimate the proportion of travelers on 
any city pair who travel through a connecting airport, rather than directly.  These estimates are then applied to the 
cities in the GEM.  On average, 68.2% of tickets are assumed to be 1-leg, and 31.8% are assumed to be 2-leg 
(though this varies across each city pair in the model). 
14 Some cities are urban agglomerations of multiple cities, like Washington DC-Baltimore. 
15 To simplify notation, we present the model for a single age category.  In the GEM all population variables vary by 
age category. 
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recover or die after 5-8 days since they became Exposed, with 30% recovering after 5 days, 40% 
after 6 days, 20% after 7 days, and 10% after 8 days.  This means τ1 = 1 and τ2 =7. 

Thus: 

ሺ13ሻ                    ߛሺ߬ሻ ൌ ൝
0.8 ݂݅ ߬ ൌ 0
1 ݂݅ ߬ ൌ 1

݁ݏ݅ݓݎ݄݁ݐ݋ 0
 

ሺ14ሻ                   ߪሺ߬ሻ ൌ

ە
ۖۖ

۔

ۖۖ

ۓ
0.3 ݂݅ ߬ ൌ 4 
0.4
0.7

݂݅ ߬ ൌ 5

0.2
0.3

݂݅ ߬ ൌ 6

1 ݂݅ ߬ ൌ 7
݁ݏ݅ݓݎ݄݁ݐ݋ 0

 

Ignoring travel between cities, the number of infectious cases in city i evolves according to 

ሺ15ሻ                  ܫሺ1, ߬, ݐ ൅ 1ሻ ൌ ,ሺ1ܫ ߬ െ 1, ሻ൫1ݐ െ ሺ߬ߪ െ 1ሻ൯ ൅ ሺ0.67ሻ ෍ ሾܧሺ݉, ሺ݉ሻሿߛሻݐ
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ሺ16ሻ                  ܫሺ0, ߬, ݐ ൅ 1ሻ ൌ ,ሺ0ܫ ߬ െ 1, ሻ൫1ݐ െ ሺ߬ߪ െ 1ሻ൯ ൅ ሺ0.33ሻ ෍ ሾܧሺ݉, ሺ݉ሻሿߛሻݐ

ఛమ
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for symptomatic and asymptomatic cases, respectively. 

It is assumed 97.5% of symptomatic cases recover and 2.5% die, while 98.75% of 
asymptomatic cases recover and 1.25% die.16  This implies that the number of Recovered cases 
evolves according to: 

ሺ17ሻ                ܴሺݐ ൅ 1ሻ ൌ ܴሺݐሻ ൅ ෍ ෍ሾሺ0.975ݏ ൅ 0.9875ሺ1 െ ,ݏሺܫሻሻݏ ߬, ሺ߬ሻሿߪሻݐ
ଵ

௦ୀ଴

ఛమ

ఛୀଵ

 

while the number of Dead cases evolves according to:  

ሺ18ሻ                  ܦሺݐ ൅ 1ሻ ൌ ሻݐሺܦ ൅ ෍ ෍ሺ0.025ݏ ൅ 0.0125ሺ1 െ ,ݏሺܫሻሻݏ ߬, ሺ߬ሻߪሻݐ
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ఛୀଵ

 

A new Exposed case is the result of contact between a Susceptible person and an 
Infectious person. Groups within a city mix uniformly, so the average number of new Exposed 

                                                            
16 This assumption is highly speculative, but gross attack rates would be similar so long as case fatality rates 
remained small. 
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cases caused by one Infectious person on day t is proportional to the number of Susceptible 
individuals in the city and to the daily infectious contact rate λ, which is equivalent to the 
parameter β in the simple SIR models.  (In reality, λ varies by age group, as described below.) 
Define r(s) as the relative infectiousness of symptomatic state s, and f(t) as a seasonality factor.  
Based on Ferguson et al. (2005) and Longini et al. (2005), we assume r(s) = 1 if a person is 
symptomatic (s=1) and r(s) = 0.5 if a person is asymptomatic (s=0).  We discuss seasonality 
below. 

The number of Exposed cases in city i evolves according to: 

ሺ19ሻ  ܧሺ߬, ݐ ൅ 1ሻ ൌ

ە
۔

ሻݐሺ݂ߣۓ
ܵሺݐሻ

ܰሺݐሻ െ ሻݐሺܦ
෍ ෍ሾܫሺݏ, ߬, ሻݐ ·

ଵ

௦ୀ଴

ሻሻሿݏሺݎ

ఛమ

ఛୀଵ

, ߬ ݎ݋݂ ൌ 0

ሺ߬ܧ െ 1, ሻ൫1ݐ െ ሺ߬ߛ െ 1ሻ൯, ߬ ݎ݋݂ ൌ 1, … ߬ଵ

 

The preceding describes an S-E-I-R model with no air travel. In the model, the evolution 
of S(.), E(.), I(.), R(.) and D(.) are determined by both these equations and by travel between 
cities.  There is a fixed number of seats available Xij for travelers moving between two cities i 
and j determined either from the airline data (for city to city travel) or 1% of the urban 
population (for city to rural travel).  Each Susceptible, Exposed, Asymptomatic Infectious and 
Recovered individual has a probability of travel calculated by: 

ሺ20ሻ                   ݈݁ݒܽݎܶ݌ሺ݅, ݆ሻ ൌ  
ܺሺ݅, ݆ሻ

ܰሺ݅, ݐ ൌ 0ሻ
 

The expected number of travelers of a particular subgroup who move from i to j on a particular 
day is the product of the number of persons in the subgroup multiplied by ݈݁ݒܽݎܶ݌ሺ݅, ݆ሻ.17 

 Influenza transmissibility 

 The GEM differs from the model described above by distinguishing four population age 
groups.  Each city is divided into 4 age groups: 0 – 4 years (group 0), 5 – 14 years old (group 1), 
15 – 64 years old (group 2), and ≥ 65 years old (group 3).  Members of all age groups and 
disease states are assumed to mix randomly within a city although contact rates differ among age 
groups.  

The key parameter determining the spread of the pandemic is λijk, the (city-specific) daily 
infectious contact rate.  This parameter defines the number of new exposed cases of age k 
generated by an infectious individual of age j in city i.  The rate is determined by two 
components: the number of people contacted daily by an infectious individual, and the 
probability of transmission given contact, P(T|C).  The contact rates are described by a matrix Ci 

                                                            
17 This means that the expected number of travelers moving from i to j will be less than Xij , as long as there are any 
cases who are symptomatic infectious or dead, since these people do not travel. 
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whose elements Cijk describe the number of contacts per day that a person of age j has with 
people of age k in city i.  Cijk is modified by a factor di to reflect the higher number of contacts 
experienced by all age groups in more densely populated cities.  
 
௜௝௞ߣ (21) ൌ ݀௜ · ∑ ௜௔௞ܥ

ଷ
௔ୀ଴ · ܲሺܶ|ܥሻ, j=0, 1, 2, 3. 

The elements of the contact rate matrix are derived from data on contact rates from 
Mossong et al. (2008), as described in Appendix B. In general each age group is more likely to 
contact people of their own age than other ages: school children contact mostly other school 
children, adults contact mostly other adults, and so forth.  School age children have the highest 
contact rates, while people 65 and older have the lowest contact rates.  This pattern influences 
the incidence of influenza cases across age groups.  However, it is assumed that the total absolute 
number of contacts per day does not vary across cities based on age structure, implying that 
countries with younger populations will not have higher attack rates. Contact rates are adjusted 
across cities by urban density (for cities) and by the urbanization rate of the rural areas (see 
Appendix B for details).  This has the effect of increasing contact rates (and thus attack rates) for 
cities in lower income countries (which tend to have high density cities), and for rural areas in 
higher income countries (which have higher urbanization rates). 

The probability of transmission given contact does not vary with age, and is chosen to 
determine the reproductive rate of the virus (determined by the particular biological 
characteristics of the specific influenza strain).18 The values chosen (P(T|C) = 0.045,0.0533 and 
0.06) correspond to global attack rates (in the absence of treatment), of 28, 45 and 53 percent. 

 Seasonality of the flu 

The seasonality factor )(tfi (see equation (19)) reflects the fact that influenza infection 

rates are much higher in winter months than in summer in temperate zones, but that there is less 
seasonal variation in tropical or arctic conditions.  The mechanism for this is not well 
understood.  Biological mechanisms include the possibility that the influenza virus is more 
fragile in warmer temperatures and has lower transmission at higher humidity (confirmed in 
controlled environment tests (e.g., Lowen et al. 2008), perhaps because virus particles are coated 
in moisture and less able to infect new hosts.19All global influenza models attempt to account for 
this; most models use some kind of step function as an approximation (see, for example, 
Rvachev and Longini 1985; Grais et al. 2003, Colizza et al. 2007, Cooper et al.2006). 

                                                            
18 A simple model extension would be to allow P(T|C) to vary by age-groups, so that for example a child or elderly 
individual might be more likely to contract the virus than a healthy adult.  But reliable data on relative 
vulnerabilities is not available, and such a model change would be functionally identical to changing the elements of 
the contact matrix, since what we care about is the total effect of contact and infection. 
19 Behavioral mechanisms suggest that in winter months (particularly in higher latitudes) people spend more time 
indoors in close proximity, and so have higher contact rates and thus a higher infectiousness.  Here, we focus on 
adjusting infectiousness rates rather than contact rates. 
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The GEM incorporates seasonality through a seasonal infectiousness factor that varies by 
day of the year and by latitude of the city.20  Infectiousness is assumed to be constant in the 
tropics, and elsewhere to follow a sinusoidal pattern where it is at maximum value on January 1 
in the Northern Hemisphere (July 1 in the Southern Hemisphere) and minimum value on July 1 
in the Northern Hemisphere (January 1 in the Southern Hemisphere), as illustrated in Figure 7.  
This implies that disease transmission, and thus attack rates, are highest in the tropics, and are 
lower the further a country is from the equator (up to the polar boundary).  

Figure 7 shows the seasonality factors for Singapore (in the tropics), New York 
(temperate, Northern Hemisphere) and Sydney (temperate, Southern Hemisphere) with a 
pandemic starting on January 1 (winter in the Northern Hemisphere).  Note that New York is 
further north than Sydney is south, and so New York’s seasonality factor has higher amplitude 
and a lower mean value.  These imply that all else equal, Singapore will have a higher attack rate 
than Sydney, which will have a higher attack rate than New York. 

Figure 7: Seasonality factor for selected cities 

 

Model Runs with No Treatment 

 In our base case the pandemic is assumed to begin with 100 infectious cases on January 1 
in Jakarta. A pandemic influenza strain that mutates from an avian or other animal strain is more 
likely to occur in a country where people in rural areas live in close proximity to livestock. 
Jakarta is selected as a city in a large poor country that is well-connected to the international 
airline network. Although the model is run at a daily time-step for a 3-year period, we focus on 
the attack rate after 1 year.  This represents the time that it might take to develop, test and mass 
produce a pandemic-strain-specific vaccine.  Many of the gains from antivirus policy come from 

                                                            
20 We use the mean latitude of the modeled cities in a region for the latitude of that region’s rural area. 
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delaying the spread of the virus, and delay is valuable in part because it buys time for vaccine 
development. 

Every region in the model is assigned to an Income Group—Poor, Lower Middle, Upper 
Middle or Rich (see Table 2). Income group classifications are based on International Monetary 
Fund data on nominal 2008 GDP per capita, at 2008 exchange rates.  Poor countries are those 
with GDP per capita less than $3,000 USD, Lower Income are those with GDP per capita up to 
$10,000, Upper Middle have incomes up to $20,000 and Rich countries are those with per capita 
incomes exceeding $20,000.  For regions with multiple countries, the median income country is 
used to classify the region.  We use this classification (rather than World Bank income group 
classifications) because we feel it is more representative of public health sector infrastructure and 
therefore useful for defining antiviral scenarios where the size of the stockpile differs depending 
on the purchasing power and public health system of the country in question.   

Table 2: Distribution of population by income group and age-group 

Income 
Group Population 

Total Ages 0-4 Ages 5-14 Ages 15-64 Ages 65+ 
Poor 2,839,998,811 352,152,534 647,655,318 1,716,456,775 123,734,183
Lower 
Middle 2,156,161,724 165,680,600 361,106,698 1,473,910,542 155,463,884
Upper 
Middle 515,385,759 36,733,909 79,318,428 349,989,705 49,343,717
Rich 914,861,650 53,135,831 109,758,061 610,674,513 141,293,245
TOTALS 6,426,407,944 607,702,874 1,197,838,506 4,151,031,535 469,835,029

 

The baseline scenario assumes a "moderate" P(T|C) value of 0.05333, which results in a 
world global attack rate of 45% at the end of one year in the no-intervention case. In a global 
model the number of people that an infectious person infects in an otherwise susceptible 
population (R0) varies from one country to another, making direct comparisons between P(T|C) 
and R0in the models of sections 3 and 4 difficult.   

Figure 8shows how the pandemic progresses in the no-treatment scenario.  Panel A 
shows the number of new infectious cases on each day, by income group, for the duration of the 
pandemic, while Panel B shows the daily number of new infectious cases for the first year of the 
pandemic. Panel C shows attack rates at the end of the first year by county-income group, while 
Panel D shows first-year attack rates by age group.  The pandemic's world-wide peak occurs 
around day 200, with a secondary wave of infection occurring in the second year, peaking 
around day 400.  The second occurs as the Northern Hemisphere (where most of the world’s 
population lives) re-enters winter.  Most cases occur within a year; the 1-year attack rate is 
44.6%, rising to 49.9% after 3 years. 



20 
 

Attack rates are higher in poor countries and lower in rich countries, due primarily to the 
positive correlation of income and latitude.  Rich countries have a larger increase in attack rate 
after the first year because they are at higher latitudes, and so are more affected by seasonality.  
School-age children suffer higher attack rates than other age-groups, because of their high 
contact rates; persons over 65 suffer lower attack rates because of their relatively low contact 
rates.21 
 
Figure 8: Pandemic time path, no AV 

 

 

                                                            
21 These patterns match data on attack rates in the United States during the 3 major pandemics of the 20th century 
(Glezen 1996). 
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Attack rates and their incidence by county group are highly sensitive to the pandemic 
start date, due to the interaction of start date and seasonality assumptions.  Figure 9 compares the 
pandemic time path and attack rates for a January 1 start date (where the pandemic peaks during 
Northern Hemisphere summer) as compared to a July 1 start date (where the pandemic peaks 
during Northern Hemisphere winter).  The secondary infection wave occurs in the January 1 
scenario only because the pandemic is choked off prematurely by rising temperatures as the 
Northern Hemisphere enters summer, while in the July1 scenario Northern Hemisphere 
temperatures are cooling as the disease spreads and so the pandemic reaches a single, more 
intense peak.  The increase in the 1-year attack rate is largest for rich countries, due to their 
location. 
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Figure 9: Pandemic dynamics, sensitivity to start date 

 

 
 

The incidence of attack rates across income groups is driven primarily by the 
combination of the seasonality assumptions and the correlation between income and latitude.   
Countries more distant from the equator have lower average seasonality factors, and so lower 
attack rates; and, higher income countries lie farther from the equator.  Figure 10 displays the 
distribution of attack rates (after 3 years) by latitude across the GEM's 106 regions.  Panel A 
shows the distribution of regions across latitude by income group, and demonstrates the stylized 
fact that higher income countries lie farther from the equator.  Panel B shows attack rates under a 
January 1 start date, while Panel C shows attack rates under a July 1 start date.  The decrease in 
attack rates is larger for the Northern Hemisphere in panel B and the Southern Hemisphere in 
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panel C because of the timing of the pandemic peak relative to summer in each case (the 
seasonality factor is at a minimum in summer).  Variation in attack rates not due to latitude (the 
upward slope above ~mid 30s latitude in Panel B for example) is largely due to the structure of 
the international airline network and to variation in population density and urbanization rates 
across countries. 
 
Figure 10: Latitude by income group and effect of latitude in baseline scenario 

 

High 

Upper mid 

Lower mid 

Poor 



24 
 

 

 

A higher value of P(T|C) results in a faster pandemic and a higher attack rate (and the 
opposite for a lower P(T|C) value) while retaining similar qualitative properties (see Figure 11).  
In a "severe" pandemic with P(T|C) = 0.06 the global 1-year attack rate rises to 53.3%, while in a 
"minor" pandemic with P(T|C) = 0.045 the global 1-year attack rate falls to 28.7%. 
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Figure 11: Baseline pandemic dynamics, sensitivity to P(T|C) 

 

 

Results are generally insensitive to travel rate assumptions.  Figure 12 shows that 1-year 
attack rates for wealthier countries vary slightly with a doubling or halving of travel rates, and 
that the impact on terminal attack rates after 3 years is minimal.  Adjusting travel rates has two 
effects; a higher travel rate means a slightly faster pandemic spread (which might be expected to 
lead to higher attack rates), but a higher attack rate also shifts the season in which the pandemic 
peak occurs (which may increase or decrease attack rates depending on whether it shifts the 
pandemic peak towards or away from summer in the Northern Hemisphere).  It appears that the 
second effect dominates; attack rates are marginally lower with higher travel rates.  The apparent 
insensitivity of attack rates to travel rates implies that airline travel restrictions would be 
relatively ineffective (Epstein et al. 2007). 
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Figure 12: Sensitivity to travel rates 

 

 

6. Policy Interventions in the Global Epidemiological Model 

We use the GEM to examine the impacts of various antiviral stockpile scenarios.  In each 
scenario we allocate stockpiles to each region and assume that the antivirals are distributed until 
the stockpile runs out.  Antiviral policies are thus imposed on the model. In all scenarios, rich 
and upper middle income countries have stockpiles. Scenarios vary in the size of stockpiles 
distributed to lower middle income and poor countries. We examine the nature of externalities 
associated with stockpile use: how does the use of antivirals by one group of countries affect the 
attack rate in other groups of countries?  
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Details of Antivirus Treatment 

Antivirals (AVs) held by region r are used to treat people in all cities (including the rural 
area) within that region.  We assume that AV stockpile distribution begins in city i (or in the 
rural area) only when 1,000 people have become infectious, and then continues as needed until 
there is no AV remaining in the region.22  AVs are distributed to a proportion p* of symptomatic 
infectious people.23  In most runs, p* = 0.5, implying that 1/3 of total new infectious (including 
asymptomatic cases) are treated each day, provided the stockpile has not run out.  Treatment 
occurs after an individual has been infectious for one day. 

Following Longini et al. (2005), we assume that treating infectious cases with antivirus 
has two effects: it reduces the probability of transmission given contact by a multiplicative factor 
(1 – e) where e is the efficacy of the antivirus, and it reduces the average duration spent 
infectious by one day, by uniformly shifting the probability distribution downwards.  This means 
that an Infectious individual treated with AV will recover 4-7 days after becoming Exposed, with 
30% recovering after 4 days, 40% after 5 days, 20% after 6 days, and 10% after 7 days. In most 
runs e=0.6. 

We assume that there are no type 1 errors in treatment: AV doses are never used to treat 
non-infectious cases.  While unrealistic, this assumption is relatively harmless, since we could 
increase the stockpile size in every city by some factor and receive the same qualitative results 
(treating x cases with no type 1 error is similar to treating 1.25x cases with a 20% false positive 
rate). 

Choice of AV Scenarios 

 We focus on four AV stockpile scenarios described in the format a/b/c/d.  This notation 
indicates that all regions in the Poor income group have a stockpile size of a% of their 
population, Lower middle income regions have a stockpile size of b%, and so forth.24  The four 
scenarios are (A) 0/0/5/10; (B) 0/1/5/10; (C) 1/1/5/10 and (D) 0/1/5/10 + a 4.2% stockpile for the 
outbreak country, Indonesia, which is in the Poor income group.  The combined stockpile size of 
all rich regions is 91.5 and 25.8 million doses for all upper middle income regions (10% and 5% 
                                                            
22 This assumption is designed to model the difficulty in detecting the pandemic strain of influenza particularly 
against the “background noise” of regular seasonal influenza cases.  Sensitivity tests show that final attack rates are 
not significantly affected by changing the number of cases needed before distribution begins, except in the special 
case of low P(T|C) where early detection will significantly reduce the number of cases, particularly in the outbreak 
source country. 
23We do not consider prophylactic use of AV.  Although a Susceptible person treated with AV has a lower 
probability of being infected if contacted, the effect of being treated wears off rapidly after treatment ceases.  This 
implies that doses could be more effectively used for treating actual infectious cases. 

24Although all regions in a particular income group receive the same stockpile, as a percent of their population, it is 
possible that the stockpile may be exhausted in some regions but not in others.  This complicates interpretation of a 
change in stockpile size across an income group, since such a change may lead to additional people being treated in 
some regions but not in others. 
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of their respective populations) in all scenarios.25 The difference between scenario A and 
scenario B could be interpreted as a gift from wealthier countries of 21.5 million doses to Lower 
Middle income countries (equal 1% of their population), while the movement from B to C is 
equivalent to rich countries paying for 28.4 million doses in Poor countries(equal to 1% of their 
population).  In scenario D Lower Middle income countries have stockpiles equal to 1% of their 
populations and Indonesia has a stockpile of 9.2 million doses, which equals 4.2% of its 
population.   

 The impact of each scenario on attack rates at the end of one year depends on three 
factors: the infectiousness of the flu (i.e., P(T|C)), whether the flu starts on January 1 or July 1 
and on the effectiveness of antivirals (e).  We therefore present sensitivity analyses for all 
scenarios.  We begin by describing the impact of each scenario on world attack rates, and then on 
the distribution of attack rates across country groups. 

 Effectiveness of Antivirals on World Attack Rates 

Treatment with antivirus is highly effective in reducing pandemic attack rates.  Table 3 
shows the effect of AV treatment under scenarios A-C compared to the no-treatment scenario.  
The table also shows the impact of varying P(T|C), the starting date of the pandemic and AV 
efficacy.  Tables 4-6 show the impact of varying these parameters on the cumulative number of 
influenza cases at the end of one year.  In our standard case (medium infectiousness, January 1 
start date and reduction in infectiousness of 60%), Scenario A reduces the attack rate by 5.2 
percentage points (334 million cases); scenario B reduces the attack rate by 13.6 percentage 
points (877 million cases) and scenario C reduces the attack rate by 19.3 percentage points 
(1,237 million cases), all relative to the no-AV baseline.  Scenario A leads to an average of 2.85 
fewer cases per dose, 7.16 fewer cases per dose for Scenario B, and 8.60 fewer cases per dose for 
Scenario C. 
 
Table 3: Effect of AV on global 1‐year attack rate 

Scenario 
ID 

AV stockpile size (% 
population, by income 
group)  P(T|C) 

Start 
date 

AV 
Efficacy

Baseline 
attack rate

Attack 
rate 
with AV  Difference

A1  0/0/5/10  Low  1‐Jan 0.6 0.287 0.235  0.052

A2  0/0/5/10  Medium 1‐Jan 0.6 0.446 0.394  0.052

A3  0/0/5/10  Medium  1‐Jul 0.6 0.547 0.456  0.091

A4  0/0/5/10  Medium  1‐Jan 0.5 0.446 0.400  0.047

A5  0/0/5/10  High  1‐Jan 0.6 0.533 0.480  0.053

B1  0/1/5/10  Low  1‐Jan 0.6 0.235 0.154  0.081

                                                            
25 However, note that the entire 91.5 million doses are not always consumed, or are not always consumed within the 
first year, as some regions will not exhaust a stockpile equal to 10% of their population size.  Since 1/3 of infectious 
cases are treated, a region will not exhaust a 10% stockpile any time its attack rate is less than 0.3. 
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B2  0/1/5/10  Medium 1‐Jan 0.6 0.446 0.310  0.136

B3  0/1/5/10  Medium  1‐Jul 0.6 0.547 0.385  0.162

B4  0/1/5/10  Medium  1‐Jan 0.5 0.446 0.325  0.121

B5  0/1/5/10  High  1‐Jan 0.6 0.533 0.499  0.034

C1  1/1/5/10  Low  1‐Jan 0.6 0.235 0.000  0.234

C2  1/1/5/10  Medium 1‐Jan 0.6 0.446 0.254  0.193

C3  1/1/5/10  Medium  1‐Jul 0.6 0.547 0.301  0.246

C4  1/1/5/10  Medium  1‐Jan 0.5 0.446 0.309  0.137

C5  1/1/5/10  High  1‐Jan 0.6 0.533 0.461  0.072
Note: "Standard" assumption scenarios are in bold.  AV stockpile sizes a/b/c/d refer to Poor/LowerMiddle/UpperMiddle/Rich 

regions. Low P(T|C) = 0.045, MediumP(T|C) = 0.05333, High P(T|C) = 0.06. 

Table 4: Reduction in global influenza cases from AV, sensitivity to virulence 

  P(T|C) = 0.045  P(T|C) = 0.05333  P(T|C) = 0.06 

Scenario  Δ 
Attack 
rate 

Δ Cases 
(billions) 

Cases 
reduced 
per AV 
dose 

Δ 
Attack 
rate 

Δ Cases 
(billions)

Cases 
reduced 
per AV 
dose 

Δ 
Attack 
rate 

Δ Cases 
(billions) 

Cases 
reduced 
per AV 
dose 

Baseline 
(no AV)  0  0    0 0   0  0   

Scenario A  0.052  0.333  2.836 0.052 0.334 2.848 0.053  0.341  2.906

Scenario B  0.132  0.850  6.946 0.136 0.877 7.163 0.034  0.219  1.793

Scenario C  0.286  1.839  12.773 0.193 1.237 8.594 0.072  0.466  3.235
Note: Change in attack rate and number of cases refer to the reduction relative to the no‐AV baseline (so a positive value 

indicates fewer people infected).  All figures are for the point 1 year after the pandemic commences. 

Table 5: Reduction in global influenza cases from AV, sensitivity to AV efficacy 

  e = 0.6   e = 0.5 

Scenario  Δ Attack 
rate 

Δ Cases 
(billions) 

Cases reduced 
per AV dose 

Δ Attack 
rate 

Δ Cases 
(billions) 

Cases reduced 
per AV dose 

Baseline (no 
AV)  0  0    0 0  

Scenario A  0.052  0.334  2.848 0.047 0.299 2.550

Scenario B  0.136  0.877  7.163 0.121 0.779 6.360

Scenario C  0.193  1.237  8.594 0.137 0.879 6.104
Note: Change in attack rate and number of cases refer to the reduction relative to the no‐AV baseline (so a positive value 

indicates fewer people infected).  All figures are for the point 1 year after the pandemic commences. 
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Table 6: Reduction in global influenza cases from AV, sensitivity to start date 

  January 1 start  July 1 start 

Scenario  Δ Attack 
rate 

Δ Cases 
(billions) 

Cases reduced 
per AV dose 

Δ Attack 
rate 

Δ Cases 
(billions) 

Cases reduced 
per AV dose 

Baseline (no 
AV)  0  0    0 0  

Scenario A  0.052  0.334  2.848 0.091 0.585 4.993

Scenario B  0.136  0.877  7.163 0.162 1.041 8.508

Scenario C  0.193  1.237  8.594 0.246 1.581 10.984
Note: Change in attack rate and number of cases refer to the reduction relative to the no‐AV baseline (so a positive value 

indicates fewer people infected).  All figures are for the point 1 year after the pandemic commences. 

Increasing the infectious of the flu (P(T|C) = 0.06) reduces the effectiveness of AVs, 
while a lower value of P(T|C) makes containment of the flu possible under scenario C.  Scenario 
C allocates AV to all poor countries, including the outbreak source (Indonesia), and the low 
P(T|C) value implies that treatment in Indonesia is able to reduce the R0 value below 1, and 
prevent a pandemic.  But containment is not possible in other scenarios.  Reducing the 
effectiveness of the AV dose from e=0.6 to e=0.5 reduces the number cases reduced per dose of 
AV from 2.85 to 2.55 in scenario A, from 7.16 to 6.36 in scenario B, and from 8.60 to 6.10 in 
scenario C. 

The impact of AVs on the global attack rate is also affected by the start date of the 
pandemic.  AVs are more effective in reducing attack rates, in both absolute and in percentage 
terms, if the pandemic starts on July 1.  Note that most of the world's population lives in the 
Northern Hemisphere. Our seasonality assumptions imply that infectiousness in non-tropical 
regions is highest in winter and lowest in summer.  This means that AV policies that slow the 
pandemic will tend to increase the average seasonality factor for a January 1 start date (which 
peaks in June, when the Northern Hemisphere seasonality factor is near minimum), and decrease 
the average seasonality factor for a July start date (which peaks in December, when the Northern 
Hemisphere seasonality factor is near maximum).  Thus, the net impact of an AV policy is 
caused by both its direct effect from reducing infectiousness, and its indirect effect via the 
change in seasonality factor. 

Figure 13 shows how AV treatment delays the pandemic (shifting the distribution 
rightwards).  With a January 1 start date, delay blunts the effectiveness of AV in reducing the 
attack rate, because it pushes the pandemic peak towards Northern Hemisphere winter.  With a 
July 1 start date, delay augments the effectiveness of AV in reducing the attack rate, because it 
pushes the pandemic peak away from Northern Hemisphere winter. 
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Figure 13: GEM pandemic dynamics with AV treatment 

 

 

  Effect of Antiviral Usage in One Region on Other Regions  

In one and two-city SIR models, most of the gains from AV treatment accrued to the 
region in which the treatment was taken, but there were some positive spillover effects. These 
results also hold in the full GEM.  Table 7shows the reduction in attack rates across income 
groups for the base case assumptions, as well as variation in transmissibility of the flu and start 
date.  Moving from no AV to the 0/0/5/10 scenario in the base case, there is a large reduction in 
attack rate in Rich regions and in Upper Middle income regions, and negligible impacts in Lower 
Middle and Poor income regions.26Adding a stockpile in Lower Middle income regions 
                                                            
26 In fact, there is a very small increase in attack rate in Poor and Lower Middle income regions.  This is due to 
interaction with seasonality effects: AV in wealthier countries delays the pandemic slightly, which means that 
Northern Hemisphere countries (including India and China) have slightly higher average seasonality factors. 

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350

N
u
m
b
e
r 
o
f 
n
e
w
 in
fe
ct
io
u
s 
ca
se
s 

(m
ill
io
n
s)

Days since January 1

Panel A: Jan 1 start date

Baseline

0/0/5/10

0/1/5/10

1/1/5/10

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350

N
u
m
b
e
r 
o
f 
n
e
w
 in
fe
ct
io
u
s 
ca
se
s 

(m
ill
io
n
s)

Days since July 1

Panel B: July 1 start date

Baseline

0/0/5/10

0/1/5/10

1/1/5/10



32 
 

significantly reduces their attack rate while causing a small reduction in Rich country attack rates 
but a larger reduction in attack rates in Upper Middle income countries.27Moving to 1/1/5/10 
adds an AV stockpile in poor countries, leading to a large attack rate reduction in poor countries 
and moderate benefits elsewhere.  

Table 7: Impact of AV on 1-year attack rate, incidence by income group, standard parameters 

AV scenario 
#AV doses 

World Poor 
Lower 
middle 

Upper 
middle Rich 

Jan 1 start date, Medium P(T|C)  

Baseline (no AV) 0.0 0.446 0.528 0.401 0.397 0.325 

Scenario A 117.3 0.394 0.529 0.403 0.210 0.059 

Scenario B 138.8 0.310 0.525 0.169 0.166 0.052 

Scenario C 167.2 0.254 0.458 0.121 0.051 0.045 

Jan 1 start date, Low P(T|C)  

Baseline (no AV) 0.0 0.287 0.353 0.226 0.285 0.225 

Scenario A 117.3 0.235 0.351 0.223 0.010 0.027 

Scenario B 138.8 0.154 0.343 0.003 0.003 0.010 

Scenario C 167.2 0.000 0.001 0.000 0.000 0.000 

Jan 1 start date, High P(T|C)  

Baseline (no AV) 0.0 0.533 0.631 0.492 0.473 0.362 

Scenario A 117.3 0.480 0.630 0.487 0.299 0.102 

Scenario B 138.8 0.499 0.627 0.547 0.299 0.102 

Scenario C 167.2 0.461 0.606 0.458 0.302 0.108 

July 1 start date, Medium P(T|C)  

Baseline (no AV) 0.0 0.547 0.546 0.536 0.617 0.538 

Scenario A 117.3 0.456 0.544 0.532 0.268 0.110 

Scenario B 138.8 0.358 0.542 0.331 0.249 0.102 

Scenario C 167.2 0.301 0.484 0.183 0.183 0.077 
Note: Results are for a January 1 start date, and AV efficacy 0.6 

The small external benefits to Rich countries of Lower Middle and Poor countries having 
stockpiles still holds when the flu starts on July 1, assuming it is moderately transmissible.  A 
highly transmissible flu, however, sharply reduces the benefits to Rich countries of stockpiles in 
Lower Middle income and Poor countries, because a small stockpile is rapidly exhausted under a 
virus with a high reproductive rate.  Indeed, in the January 1, High Transmissibility case Rich 
countries are slightly worse off in Scenario C compared to Scenario B.  The fact that Lower 
Middle income countries themselves are worse off when using AVs (118 million additional cases 
relative to no treatment) in the High transmissibility scenario with the January 1 start date 

                                                            
27 The latter effect is due primarily to a reduction in attack rates in Russia (which constitutes a sizeable proportion of 
the Upper Middle income population), which is at high latitude and so gains a large amount from delaying the 
pandemic peak past winter, given our seasonality assumptions.  
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follows largely from a higher attack rate in China, where the slight delay from a 1% stockpile 
pushes the pandemic peak towards winter (and so increases China's average seasonality factor).   

 It seems unlikely poor and lower middle income countries will purchase and maintain 
their own stockpiles of antivirus for use in the course of a pandemic.  But the external benefits to 
rich countries suggest that there may be scope for a Pareto-improvement; rich countries may find 
it in their interest to pay for the costs of acquiring and distributing antivirals in poor countries.  
As discussed more fully below, Table 7 implies that the reduction in number of influenza cases 
in rich countries per AV dose administered in poor or lower middle income countries is 1/3 or 
more when the transmissibility of the flu is low to moderate.    

An alternative is for rich countries to donate AV directly to the outbreak source.  
Consider a scenario in which rich countries donate one tenth of their stockpile directly to 
Indonesia.28  Table 8 shows the effect of this policy when combined with a 0/1/5/10 scenario.  In 
nearly every case, the donation policy reduces the global attack rate and the attack rate in rich 
countries.  In a few cases attack rates are increased, due to the seasonality effect.  With the 
January 1 start date, slowing the pandemic spread increases the average seasonality factor in the 
Northern Hemisphere.  The gain from donation is largest in the low P(T|C) scenarios, because in 
these cases donation to the outbreak source reduces the R0 below 1 and the pandemic is 
contained.  The gains are also large with a July 1 start date, where delay is more valuable due to 
the interaction with seasonality.  The external benefits of providing AV are lower when the AV 
efficacy is lower, which contributes to the negative impact of donation in the low AV efficacy 
scenario. 
 
Table 8: Impact of AV on 1‐year attack rate: Scenario D 

P(T|C) 
Start 
date 

AV 
efficacy 

Attack 
rate for:

Policy: No 
donation 

Policy: Donation 
to Indonesia  Difference 

Low  1‐Jan  0.6  World  0.178 0.001 0.176 

Low  1‐Jan  0.6  Rich  0.015 0.001 0.014 

Medium  1‐Jan  0.6  World  0.310 0.289 0.021 

Medium  1‐Jan  0.6  Rich  0.052 0.047 0.005 

Medium  1‐Jan  0.5  World  0.310 0.319 ‐0.009 

Medium  1‐Jan  0.5  Rich  0.052 0.068 ‐0.016 

Medium  1‐Jul  0.6  World  0.450 0.328 0.122 

Medium  1‐Jul  0.6  Rich  0.111 0.081 0.031 

High  1‐Jan  0.6  World  0.489 0.468 0.021 

High  1‐Jan  0.6  Rich  0.103 0.108 ‐0.005 

                                                            
28 Nearly all rich regions do not consume their entire 10% stockpile (assuming Moderate P(T|C)) at all or within 1 
year, and so the net effect of this policy is almost identical to one where rich countries simply paid for the additional 
doses in Indonesia. 
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Which strategy is more effective for rich countries: paying for AV doses to be divided 
among poor countries in proportion to population, or paying for AV doses to be targeted to the 
outbreak country?  Under what circumstances will welfare in rich countries be increased by 
providing AVs to low income countries?  Table 9 compares the effectiveness of purchasing 
doses for low income countries in general to the effectiveness of purchasing doses for the 
outbreak source country.  Neither strategy is effective in reducing the number of cases in rich 
countries for a high virulence pandemic (P(T|C) = 0.06).  But in all other cases, targeting the 
outbreak source is dramatically more cost effective than spreading doses throughout Poor or 
Lower middle income regions. 
 
Table 9: Number of Rich country cases reduced per dose purchased for low income countries 

Scenario transition:  P(T|C) 
Start 
date 

Rich country cases reduced 
per extra AV dose purchased 

Scenario A ‐>Scenario B  Low  1‐Jan 0.74 

Scenario A ‐>Scenario B  Medium 1‐Jan 0.31 

Scenario A ‐>Scenario B  Medium 1‐Jul 0.33 

Scenario A ‐>Scenario B  High  1‐Jan 0.00 

Scenario B ‐>Scenario C  Low  1‐Jan 0.29 

Scenario B ‐>Scenario C  Medium 1‐Jan 0.22 

Scenario B ‐>Scenario C  Medium 1‐Jul 0.83 

Scenario B ‐>Scenario C  High  1‐Jan ‐0.17 

Scenario B ‐>Scenario D  Low  1‐Jan 1.42 

Scenario B ‐>Scenario D  Medium 1‐Jan 0.52 

Scenario B ‐>Scenario D  Medium 1‐Jul 3.06 

Scenario B ‐>Scenario D  High  1‐Jan ‐0.51 

 

  

 Table 9 suggests that providing AVs to developing countries in the event of a pandemic 
may pass a benefit-cost test.  Although the percentage reduction in cases from providing AVs is 
small, millions of cases of the flu in rich countries would thereby be avoided, at a cost of 3-4 
doses of antivirals per case avoided.  Even at a cost of $25-$30 per course of treatment, this 
would likely pass a benefit-cost test, even without any fatalities.  Sander et al. (2008) predict the 
economic cost of an influenza epidemic in the U.S. at $187 per person, based on a 50% attack 
rate.  Keogh-Brown et al. (2010) suggest that a mild influenza pandemic in the UK (similar to 
the 1957 or 1968 pandemics) would reduce GDP by 0.58% over the course of year; a more 
severe pandemic (with a case fatality rate of 1%) would reduce GDP by 4.5% over the course of 
a year.  Typical estimates of the value of a statistical life in rich countries are in the millions of 
dollars, and so even a very low but positive case fatality rate would lead to a large value from 
reducing cases. 
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 Sensitivity of Results to Proportion Treated in Poor Countries 

The effectiveness of using AV to mitigate pandemics is a function of the effectiveness of 
the public health infrastructure in each country, and its ability to rapidly and accurately identify 
infectious individuals and provide them with AV treatment.  In the primary simulation runs, we 
assume that 50% of symptomatic cases could be reached within a day, in any country that has a 
stockpile.  These assumptions are arguably too optimistic, particularly for developing countries, 
though they are more pessimistic than the assumptions used in Colizza et al. (2007).  By 
weakening these assumptions and reducing the proportion of symptomatic infectious cases who 
receive treatment, we examine the sensitivity to these assumptions.   

Table 10 presents simulations based on a weak health infrastructure scenario in which 
only 30% of symptomatic infectious cases can be treated in poor and lower middle income 
countries, 40% in upper middle income countries, and (as before) 50% in rich countries. The 
effect of reducing the proportion who are treated is dramatic, both on the direct value of antiviral 
treatment in countries that have a stockpile, and on the external benefits to rich countries from 
providing antiviral doses to poorer countries.  In terms of direct effects, the marginal benefit (in 
terms of world cases reduced) from an AV stockpile in upper middle and rich countries is 
reduced from 5.2 percentage points to 4.8 percentage points.  The marginal benefit from adding a 
1% stockpile to lower middle income countries is reduced from 8.4 percentage points to 2.5 
percentage points.  The marginal benefit from adding a 1% stockpile to poor countries is reduced 
from 5.6 percentage points to 1.3 percentage points.   
 
Table 10: Attack rate after 1 year, standard vs. reduced proportion of infectious treated 

Strong health 
infrastructure

Weak health 
infrastructure 

World  Baseline (no AV)  0.446 0.446

Scenario A  0.394 0.398

Scenario B  0.310 0.373

Scenario C  0.254 0.360

Poor  Baseline (no AV)  0.528 0.528

Scenario A  0.529 0.529

Scenario B  0.525 0.525

Scenario C  0.458 0.518

Lower middle  Baseline (no AV)  0.401 0.401

Scenario A  0.403 0.403

Scenario B  0.169 0.336

Scenario C  0.121 0.314

Upper middle  Baseline (no AV)  0.397 0.397

Scenario A  0.210 0.254



36 
 

Scenario B  0.166 0.248

1/1/5/10  0.051 0.224

Rich  Baseline (no AV)  0.325 0.325

Scenario A  0.059 0.061

Scenario B  0.052 0.058

Scenario C  0.045 0.055
Note: Strong health infrastructure means 50% of new symptomatic infectious cases are treated (in regions that have an AV 

stockpile); weak health infrastructure means that 30% of cases are treated in poor and lower middle income regions, 40% in 

upper middle income regions, and 50% in rich regions. All scenarios have January 1 start date. 

The benefits to rich countries from treatment in poor and lower middle income countries 
are also significantly reduced in the weak (compared to the strong) health infrastructure 
scenarios. The marginal reduction in the attack rate in rich countries from adding a 1% stockpile 
for lower middle income countries falls from 0.7 percentage points to 0.3 percentage points.  
Similarly for adding a 1% stockpile to poor countries, the benefit falls from 0.7 to 0.3.  These 
results follow from the basic "increasing returns" property of the core SIR model; with a lower 
percentage of people treated, the effect of AV on reducing the reproductive rate is diminished 
proportionally, which has a greater than proportional impact on the benefits of AV from reducing 
attack rates. 

These results suggest that if the weak health infrastructure parameters are a more accurate 
description of the real world, the benefits to rich countries of providing AVs to poor countries, 
based on self-interest, are greatly reduced, a result that is confirmed by Table 11.  The results 
suggest, however, that investments that increase the number of infectious people than can be 
treated in poorer countries will have large benefits, and will be complementary to policies that 
provide antiviral doses to poor countries. 
 
Table 11: Number of Rich country cases reduced per AV dose purchased in poor countries, sensitivity 

to weak health infrastructure 

Scenario Transition:  P(T|C) 
Start 
date 

Rich country cases reduced per 
extra AV dose purchased 

Strong health 
infrastructure 

Weak health 
infrastructure 

Scenario A ‐>B  Medium  1‐Jan 0.31 0.12

Scenario B ‐>C  Medium  1‐Jan 0.22 0.09

Scenario B ‐>D  Medium  1‐Jan 0.52 0.21
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7. Conclusions 

 Treating infectious individuals with antiviral drugs may be an effective method for 
mitigating the consequences of an influenza pandemic. While most of the benefits from a 
country choosing to treat its population with antivirals will accrue to that country, there are some 
positive externalities.  This implies that, in a world in which poor countries are unlikely to hold 
stockpiles of antiviral drugs, it may be in the self-interest of wealthy countries to (collectively) 
pay for purchase and distribute antivirals to poor countries, even without any altruistic or 
humanitarian motivations. 

 The payoff to providing antiviral doses to poor countries is illustrated by a simple, two-
country SIR model. In that model there are significant externalities and complementarities in 
antiviral treatment: when one country treats more of its population this both reduces the attack 
rate in the other country and increases the marginal benefit from additional treatment in the other 
country.   

 It would, however, be misleading to draw policy conclusions from a simple two-country 
model.  In reality, influenza spreads through a complex network of air- and land-based travel.  
The spread of the flu and the effectiveness of treatment policies depend on seasonal factors—
e.g., whether the flu peaks in Northern Hemisphere winter or Northern Hemisphere summer.  
And, the number and distribution of poor v. rich countries differs significantly from the 
symmetric two-region SIR model. We simulate the spread of the flu in a more descriptively 
realistic global epidemiological model in order to capture the impact of these features on the 
effectiveness of treatment policies.   

 We find that, under our base case assumptions of moderate transmissibility of the flu, the 
distribution of antiviral stockpiles from rich countries to poor and lower middle income countries 
may indeed pay for itself: providing a stockpile equal to 1% of the population of poor countries 
will reduce cases in rich countries after 1 year by about 6.13 million cases at a cost of 4.62 doses 
per rich-country case avoided.  Concentrating doses on the outbreak country is, however, even 
more cost-effective: in our base case it reduces the number of influenza cases by 4.76 million 
cases, at the cost of roughly 1.92 doses per case avoided.  

 These results are, however, dependent on the transmissibility of the flu, its effectiveness 
in reducing infection and on the proportion of infectious who can realistically be identified and 
treated.  Our simulations reveal that reducing the proportion of symptomatic infectious that can 
be treated from 50% (our base case assumption) to 40% in lower middle income countries and 
30% in poor countries more than doubles the number of doses required to reduce a case of the flu 
in rich countries. Providing stockpiles to poor countries may still pass the “selfish” benefit-cost 
test.  But, our results suggest that improving the delivery of health services in poor countries will 
complement policies to treat pandemic flu, in addition to yielding other health benefits. 
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Appendix A: Results for 2-city model, sensitivity to key parameters 

β°  e  Α  pA  pB  Attack rate in City A  Attack rate in City B 

0.3  0.4  0.01  0  0  0.588  0.579 

      0.6  0  0.301  0.563 

      0  0.6  0.565  0.296 

      0.6  0.6  0.240  0.235 

0.35  0.4  0.01  0  0  0.719  0.707 

      0.6  0  0.475  0.705 

      0  0.6  0.709  0.468 

      0.6  0.6  0.456  0.449 

0.25  0.4  0.01  0  0  0.376  0.370 

      0.6  0  0.111  0.326 

      0  0.6  0.329  0.107 

      0.6  0.6  0.012  0.005 

0.3  0.3  0.01  0  0  0.588  0.579 

      0.6  0  0.381  0.569 

      0  0.6  0.573  0.376 

      0.6  0.6  0.353  0.348 

0.3  0.5  0.01  0  0  0.588  0.579 

      0.6  0  0.224  0.555 

      0  0.6  0.557  0.220 

      0.6  0.6  0.090  0.083 

0.3  0.4  0.01  0  0  0.588  0.579 

      0.7  0  0.249  0.558 

      0  0.7  0.559  0.244 

      0.7  0.7  0.145  0.138 

0.3  0.4  0.01  0  0  0.588  0.579 

      0.5  0  0.355  0.567 

      0  0.5  0.570  0.349 

      0.5  0.5  0.318  0.313 

0.3  0.5  0.015  0  0  0.587  0.580 

      0.6  0  0.318  0.555 

      0  0.6  0.557  0.314 

      0.6  0.6  0.239  0.235 

0.25  0.5  0.005  0  0  0.588  0.579 

      0.6  0  0.278  0.572 

      0  0.6  0.574  0.271 

      0.6  0.6  0.240  0.234 
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Appendix B:  Derivation of the Contact Rate Matrix 

This section describes the derivation of the matrix of contact rates Ci based on data from 
Europe, which is adjusted to fit other cities by accounting for differences in age structure and 
population density. 

The 4x4 contact rate matrix with elements Cijk describes the number of contacts per day 
that an Infectious person of age-group j has with individuals in age-group k in city i.  Following 
Hethcote and Yorke (1984) and Over and Piot (1993), decompose this matrix into two parts: a 
4x4 mixing matrix Mi and a 4x1 contact vector Ai, such that 

௜ܥ ൌ ௜ܯ · ସܫ ·  ௜ܣ

where I4 is the 4x4 identity matrix. 

The vector Ai gives the absolute number of contacts per day for each age group; so for 
example AJakarta'= [7.29, 9.45, 6.41, 3.98] means that, in Jakarta, each Infectious case with age 
group a=0 has 7.29 contacts per day, each Infectious case with a=1 has 9.45 contacts per day, 
and so forth.  Define the 4x1 vector ni as containing the proportion of the population in each age 
category, so the elements of ni sum to 1.  The total number of contacts per person per day in city i 
is given by the product ni'Ai.  For example, in Indonesia, 9.64% of the population are in age 
group 0, 18.75% are in age group 1, 66.09% are in age group 2 and 5.52% are in age group 3, so 
the total contacts per day is the product nJakarta'AJakarta = 6.94. 

The mixing matrix Mi describes the relative mixing rates between age groups. Each row 
of the M matrix sums to 1, so the element Mijk describes the proportion of an individual in age-
group j's contacts that occur with age group k.  For example, if the jth row of Mi were [0.25, 
0.25, 0.25, 0.25] then age group j individuals in city i would contact equal numbers of all four 
age groups each day.   

C, M and A have i subscripts because these vary across cities, although all cities within a 
region are assumed to have the same values of C, M, A and n.  Values for A and M are generated 
based on mixing data from Mossong et al. (2008) and from data on population density and 
urbanization rates.  Mossong et al. measure physical contact rate matrices for eight European 
countries for ten age categories from self-reported contacts across 7,290 individuals.29  Their 
data provides the equivalent of a C-matrix for each of the 8 countries.  The goal is to use these 
data to extract an underlying set of "core behavior" that can be assumed to hold in all countries, 
and will allow reconstruction of a C-matrix for every region in the GEM. 

The Mossong data are used to estimate the absolute number of contacts in each city, and 
the relative mixing rates of one age group with another.  A-vectors are defined for each region 
such that ni'Ai = 6.94 in every region, where 6.94 is the weighted-average absolute contact per 

                                                            
29 The countries are Belgium, Germany, Finland, Great Britain, Italy, Luxembourg, the Netherlands and Poland. 
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day across the 8 Mossong countries and across all age-groups.30  The M matrix reflects the age 
structure of each area; hence it is inappropriate to use the M matrices reported in Mossong 
directly in the GEM. 

An M matrix for each region of the model by is estimated by assuming a structural form 
for the matrix, and then using the 8 Mossong matrices to estimate an underlying mixing matrix 
stripped of the country-specific n-vectors.  Following Hethcote and Yorke (1984), define a 4x1 
vector Bi: 

௜௝ܤ ൌ
௜௝݊௜௝ܣ

∑ ௜௠݊௜௠ܣ
ସ
௠ୀଵ

 

and a 4x4 matrix G whose elements are defined by: 

௜௝ሺ1ܤ െ ௜௝௞ሻܩ ൌ  ௜௝௞ܯ

where Gijk is the (j,k) element of the B matrix for city i, and Mijk is the (j,k) element of the M 
matrix for city i.  Bij is the jth element of the B-vector in city i, and can be interpreted as the 
proportion of contacts that would be with age-group j city i under random mixing.  The G-matrix 
is what allows us to move away from random mixing, and captures the more complex structure 
where people can have differential mixing rates across age-groups. 

Assume a structural form for the G-matrix where Gijk = Gij, i.e., all elements of the same 
row have the same value.31 That is, each age-group is assumed to have the same relative 
preference for mixing with its own age-group as for all other age-groups.  Estimate the G-matrix 
that minimizes the sum of squared residuals across the 8 Mossong countries to find an “optimal” 
G matrix, G*.  M, and hence C matrices, for every region in the model are then reconstructed by 
substituting G* and the region-specific age structures from real world population data into the 
equations above. 

Contact rates are adjusted for population density, recognizing that areas with higher 
population density have higher contact rates.  Every city and rural area is assigned to one of four 
categories; relative density d=1 for rural areas with residual urbanization <40%,d=1.1 for rural 
areas with residual urbanization >40%;d = 1.3 for low density urban areas (cities with density < 
1,000 people per square kilometer); and d=1.4 for high density urban areas(for cities with density 
> 1,000 per square kilometer).  In general, rural areas in high income countries have high 

                                                            
30 This crucial assumption, made for simplicity, implies that there is no variation in total contacts per day by age-
structure; it will not be the case that the pandemic spreads faster in countries with younger populations merely 
because young people have higher contact rates.  An alternative structure that would have this property could be 
generated by fixing the individual elements Ai across countries, but that would lead to very large variation in contact 
rates (and thus attack rates) across countries. 
31 Tested alternative forms showed that moving from a 16-unique-element G-matrix to a 4-unique element G-matrix 
had very little impact on the fit to the Mossong data, but that moving from a 4-element G-matrix to a 1-element G-
matrix significantly worsened the fit. 
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residual urbanization while those in low income countries have low residual urbanization, and 
cities in high income countries have low population densities while those in low income 
countries have high population densities. 
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Appendix C:  List of Regions in the GEM, by Income Group 

Regions in the Poor Income Group: 

Bangladesh, Bolivia, Cambodia, Egypt, Georgia, India, Indonesia, Kyrgyz Republic, 
Madagascar, Malawi, Morocco, Mozambique, Nicaragua, Nigeria, Pakistan, Paraguay, 
Philippines, Senegal, Sri Lanka, Tanzania, Uganda, Viet Nam, Zambia, Zimbabwe, Rest of 
Central Africa, Rest of East Asia, Rest of Eastern Africa, Rest of Former Soviet Union, Rest of 
Oceania, Rest of South African Customs Union, Rest of South America, Rest of South Asia, Rest 
of South-Central Africa, Rest of Southeast Asia, Rest of Western Africa,  

Regions in the Lower Middle Income Group: 

Albania, Argentina, Armenia, Azerbaijan, Botswana, Brazil, Bulgaria, China, Colombia, 
Ecuador, Iran, Kazakhstan, Malaysia, Mauritius, Peru, Romania, South Africa, Thailand, 
Tunisia, Ukraine, Rest of Central America, Rest of Eastern Europe, Rest of Europe, Rest of 
North Africa, Rest of Western Asia 

Regions in the Upper Middle Income Group: 

Chile, Croatia, Estonia, Hungary, Latvia, Lithuania, Mexico, Poland, Republic of Korea, Russian 
Federation, Slovak Republic, Taiwan, Turkey, Uruguay, Venezuela, Rest of the Caribbean 

Regions in the Rich Income Group: 

Australia, Austria, Belgium, Canada, Cyprus, Czech Republic, Denmark, Finland, France, 
Germany, Greece, Hong Kong S.A.R. of China, Iceland, Ireland, Israel and Arabia, Italy, Japan, 
Luxembourg, Malta, Netherlands, New Zealand, Portugal, Singapore, Slovenia, Spain, Sweden, 
Switzerland, United Kingdom, United States of America, Rest of EFTA, Rest of North America 

 


