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1 Introduction

We consider the invertibility of a nonparametric nonseparable demand system. Invertibility

of demand is important in several theoretical and applied contexts, including identi�cation of

demand, estimation of demand systems, testing of revealed preference, and economic theory

exploiting the uniqueness of market clearing prices. We introduce the notion of �connected

substitutes�and show that this structure is su¢ cient for invertibility.

We consider a general setting in which demand for goods 1; : : : ; J is characterized by

� (x) = (�1 (x) ; : : : ; �J (x)) : X � RJ ! S (1)

where x = (x1; : : : ; xJ) is a vector of demand shifters associated with each good. All other

arguments of the demand system are held �xed. This setup nests a number of special

cases of interest. Points in S may be vectors of quantities demanded, choice probabilities,

market shares, or expenditure shares. The demand shifters x might be prices, unobserved

characteristics of the goods, or latent preference shocks. Several examples below illustrate.

The connected substitutes structure requires two conditions. First, goods must be weak

substitutes in x in the sense that when xj increases (e.g., price falls) only for a subset of

goods j, demand for the remaining goods (taken as a whole) does not increase. Second, there

must be su¢ cient strict substitution among the goods to require treating them all in one

demand system. These conditions are weaker than other notions of substitution (e.g., strict

gross substitutes) and allow us to show invertibility without functional form restrictions,

smoothness assumptions, or domain restrictions relied on previously.

Important to our approach is the explicit treatment of a �good 0�whose �demand� is

de�ned by the identity

�0(x) = 1�
JX
j=1

�j(x): (2)

The interpretation will vary with the application. When demand is expressed in shares

(e.g., choice probabilities or market shares), good 0 can be a �real�good� e.g., a numeraire
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good, an �outside good,�or a good relative to which utilities are normalized. The identity

(2) will then follow from the fact that shares sum to one. In other applications, good 0 will

be a purely arti�cial notion introduced only as a technical device (see the examples below).

It is clear from (2) that even when good 0 is a real good, (1) characterizes the full demand

system. Nonetheless, explicitly accounting for the demand for good 0 simpli�es imposition

of the connected substitutes structure on all goods. When good 0 is an arti�cial good,

including it in the connected substitutes conditions proves useful as well. As will be clear

below, it strengthens the weak substitution requirement in a natural way while weakening

the requirement of minimal strict substitution.

Invertibility is naturally considered only on the interior of S.1 In some cases, one may

wish to restrict the domain of interest further. For example, one might restrict attention to

values of x observed in a particular data set, or consider only positive prices even when �

is de�ned on RJ (e.g., multinomial logit or probit). Let X � denote the domain of interest,

where

X � � ~X �fx 2 X : � (x) 2 int (S)g :

Let

�� : X � ! � (X �) (3)

denote the restriction of � to X �. Our goal is to provide su¢ cient conditions for invertibility

of ��; i.e., such that for every s 2 int(S) there is at most one x 2 X � satisfying � (x) = s.2

Prior results on invertibility of demand have often relied on conditions that can be dif-

�cult to motivate and rule out important models of demand for di¤erentiated products. A

central result is the �univalence�theorem of Gale and Nikaido (1965), which showed global

invertibility of a di¤erentiable mapping when the domain X � is a rectangle (a product of

intervals) and the Jacobian is everywhere a P�matrix (i.e., all principal minors are strictly

1In our examples, S is either the unit J-simplex or RJ+, so int(S) excludes only points in S with zero
demand for some real good. When demand is on a boundary, invertibility will generally fail. For example,
if a good j has zero demand, an increase in its price typically will have no e¤ect. When � is di¤erentiable,
a good j with zero demand will typically have @�j(x)

@xk
= 08k, yielding a singular Jacobian matrix.

2Equivalently, such that for every s 2 � (X �) there is a unique x 2 X � satisfying � (x) = s:
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positive). These su¢ cient conditions (see also the variations in, e.g., Garcia and Zangwill

(1979) and Mas-Colell (1979)) can be problematic in applications to demand. Di¤erentia-

bility is essential, but fails in some important models. Examples include those de�ned on a

discrete domain (e.g., a grid of prices) or a random utility model with discrete distributions.

Even when di¤erentiability is assumed, the Jacobian conditions can be di¢ cult to interpret

or to derive from widely applicable primitive conditions (see the examples below). Moreover,

the Jacobian conditions can be problematic when combined with the requirement of a rectan-

gular domain.3 The Jacobian will generally be singular (and, thus, certainly not a P -matrix)

outside the set ~X (recall footnote 1). Unless ~X is a rectangle, this limits the applicability

of the Gale-Nikaido result.4 Our connected substitutes conditions avoid these limitations.

Although they rule out some models as well� most important, they require either indivisible

goods or the absence of strict gross complements� they are easily interpreted, hold in wide

range of models studied in practice, and avoid any smoothness requirement or restriction on

the shape of the set X �.

The plan of the paper is as follows. In section 2 we present several examples that motivate

our interest, tie our general formulation to more familiar special cases, and provide further

connections to prior work. In section 3 we set up the model and discuss the connected

substitutes conditions. Our invertibility result is given in section 4. In section 5 we

examine a link between the connected substitutes conditions and the Jacobian condition of

Gale and Nikaido (1965) when demand is di¤erentiable.

3It is well known that the Gale and Nikaido (1965) result does not generally extend to non-rectangular
domains (e.g., Parthasarathy and Ravindran (2003), Aleksandrov (1994)).

4Consider, for example, a market with vertically di¤erentiated goods (e.g., Mussa and Rosen (1978)),
where a lower quality good has no demand unless its price is strictly lower than that of all higher quality
goods. If �x is the price vector, the domain of interest X � (e.g., ~X or the set of observed prices) generally
will not be a rectangle. Other examples in which the natural domain of interest ~X is nonrectangular include
models of spatial di¤erentiation (e.g., Salop (1979)) or the �pure characteristics�model of Berry and Pakes
(2007).
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2 Examples

Estimation of Discrete Choice Demand Models. A large empirical literature uses

random utility discrete choice models of demand to study di¤erentiated products markets,

building on pioneering work of McFadden (1974, 1981), Bresnahan (1981, 1987) and others.

Conditional indirect utilities are normalized relative to that of a good 0, often an outside

good representing purchase of goods not explicitly under study.

Much of the recent literature follows Berry (1994) in modeling price endogeneity through a

vector of product-speci�c unobservables x, with each xj shifting tastes for good j monoton-

ically.5 Holding observables �xed, �(x) gives the vector of choice probabilities (or market

shares). Typically each �j is a nonlinear function of the the entire vector of unobservables

x. Invertibility is therefore nontrivial, and it is critical to estimation approaches, including

those of Berry, Levinsohn, and Pakes (1995) and Dube, Fox, and Su (2009).6 Berry (1994)

provided su¢ cient conditions for invertibility that include linearity (the conditional indirect

utility for good j is linear in xj), di¤erentiability of �j (x), and strict gross substitutes.7 Our

result relaxes all three conditions, avoiding any functional form restriction or di¤erentiability

requirement, and imposing the weaker connected substitutes structure.

Note that a discrete choice framework can allow consumers to demand multiple indivisible

goods (including complements), since every bundle can be rede�ned as a distinct good (e.g.,

5Examples include studies of the US automobile industry (e.g., Berry, Levinsohn and Pakes (1995, 1999,
2004), Petrin (2002)), the European automobile industry (e.g., Verboven (1996), Goldberg and Verboven
(2001)), the breakfast cereal industry (e.g., Nevo (2000), Nevo (2001)), newspapers (e.g., Fan (2008)), movies
(e.g., Davis (2001), Einav (2007)), radio (Berry and Waldfogel (1999)), airlines (e.g., Berry, Carnall, and
Spiller (1996), Berry and Jia (2010)), pharmaceuticals (e.g., Azoulay (2002)), and banking (e.g., Dick (2008)).

6The Berry, Levinsohn, and Pakes (1995) estimation algorithm also exploits the fact that, in the models
they consider, � (X ) = int(S) : Given invertibility, this ensures that even at wrong values (i.e., trial values)
of the model parameters, the observed choice probabilities can be inverted. This property is not necessary
for all estimation methods or for other purposes motivating interest in the inverse. However, Gandhi (2010)
provides su¢ cient conditions for a nonparametric model and also discusses a solution algorithm.

7Although Berry (1994) assumes strict gross substitutes, his proof only requires that each inside good
strictly substitute to the outside good. Hotz and Miller (1993) provide an invertibility theorem for a similar
class of models, although they provide a complete proof only for local, not global, invertibility. Berry and
Pakes (2007) state an invertibility result for a discrete choice model relaxing some assumptions in Berry
(1994), while still assuming the linearity of utility in xj . Their proof is incomplete, although adding the
second of our two connected substitutes conditions would correct this de�ciency.
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Gentzkow (2004)). Thus, the key restriction of a discrete choice setting is the indivisibility

of goods.8 Further, anything that raises the choice probability for good (or bundle) j must

lower the aggregated choice probabilities over all other goods. Thus the restriction to weak

substitutes (Assumption 2 below) is particularly mild in a discrete choice setting.

Nonparametric Identi�cation of Discrete Choice Demand. Separate from practical

issues of estimation, there has been growing interest in the question of whether discrete choice

demand models in the spirit of Berry, Levinsohn, and Pakes (1995) are identi�ed without

the strong functional form and distributional assumptions typically used in applications.

Berry and Haile (2009b, 2010) have recently provided a¢ rmative answers for nonparametric

random utility models in which each consumer�s conditional indirect utilities for the �inside

goods�have joint distribution

Fv (vi1t; : : : ; viJtjcit)

given characteristics cit of the consumer i, the goods j, and the market t. Included in cit

is a vector xt = (x1t; : : : ; xJt) of unobservables re�ecting latent tastes in market t and/or

unobserved characteristics of the goods. By conditioning out all other components of cit,

one obtains nonparametric choice probabilities of the form (1). Berry and Haile (2009b,

2010), relying on the invertibility result below, show that identi�cation can be obtained

using standard instrumental variables conditions or extensions of classical arguments for

identi�cation of supply and demand to a system of nonparametric simultaneous equations.

Inverting for Preference Shocks in Continuous Demand Systems. A recent paper

considering invertibility of a nonparametric continuous demand system is Beckert and Blun-

dell (2008). In their model, utility from a bundle of consumption quantities q = (q0; : : : ; qJ)

8In a recent working paper, Azevedo, White, and Wyl (2011) consider a setting with indivisible goods,
demand for bundles, and a continuum of consumers. They focus on existence of market clearing prices
but also consider uniqueness. They require quasilinear utility and a strong notion of �large support� for
preferences. Their uniqueness result can be interpreted as demonstrating invertibility of demand (in prices)
under linear pricing of the elementary goods� a restriction on X � in our notation. Each of those conditions
would have analogs when x is the vector of product-speci�c unobservables. Our result requires neither
quasilinearity nor large support, and does not limit attention to a set X � consistent with linear pricing (or,
analogously, linearity of bundle preferences in the product-speci�c unobservables).

5



is given by a strictly increasing C2 function u (q; �), with � 2 RJ denoting latent demand

shocks. The price of good 0 is normalized to 1 for simplicity. Given total expenditure m

and prices p = (p1; : : : ; pJ) for the remaining goods, quantities demanded are given by

qj = hj (p;m; �) j = 1; : : : ; J

with q0 = m�
P

j>0 pjqj.

Beckert and Blundell (2008) consider invertibility of this demand system in the latent

vector �, pointing out that this is a necessary step toward identi�cation of demand or testing

of stochastic revealed preference restrictions (e.g., Block and Marschak (1960), McFadden

and Richter (1971, 1990), Falmagne (1978), McFadden (2004)). They provide several in-

vertibility results. One requires requires marginal rates of substitution between good 0 and

goods j > 0 to be multiplicatively separable in �, with an invertible matrix of coe¢ cients.

Alternatively, they provide conditions (on functional form and/or on derivative matrices of

marginal rates of substitution) that imply the Gale-Nikaido Jacobian conditions.

When gross complementarities between goods can be ruled out, we provide alternative

su¢ cient conditions for invertibility that may be more widely applicable. A natural (but

hardly necessary) way to translate their model to ours is through expenditure shares. To

do this, �x p and m, let �j (�) = pjh (p;m; �) =m for j > 0, and relabel x = �. Expenditure

shares sum to one, implying the identity (2).

In the Beckert and Blundell (2008) model, the goods j = 0; 1; : : : ; J under study represent

all goods in the economy. A common alternative is to consider demand for a more limited

set of goods� for example, goods in a particular product category. In that case, there

will no longer be a good whose demand is determined from the others�through the budget

constraint. Further, here it is natural to have a demand shock �j for every good j. This

situation is also easily accommodated in our framework. Again let x denote the vector

demand shock (�1; : : : ; �J). Holding prices and all other demand shifters �xed, let �j (x) give

the quantity demand of good j, for j = 1; : : : ; J . To complete the mapping to our model,
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we let (2) de�ne the object �0 (x). A hint at the role this arti�cial good 0 plays below can

be seen by observing that a rise in �0 (x) represents a fall in the demand for goods j > 0 as

a whole.

Inverting for Prices in Continuous Demand Systems. One could instead investigate

invertibility in prices. Let xj = �pj, where pj is the price of good j. Conditional on all other

demand shifters, let �j (x) give the quantity of good j demanded for the goods j = 1; : : : ; J

under consideration. Invertibility of the demand system then implies uniqueness of market

clearing prices, an important property of demand in several contexts. For example, it is

required for Cournot competition to be well de�ned and, typically, for the derivation of

equilibrium comparative statics. Once again, the result of Gale and Nikaido (1965) has

often been employed to show uniqueness. Cheng (1985) provided more easily interpretable

conditions (and a connection to earlier results on uniqueness of Walrasian equilibrium prices,

e.g., Arrow, Block, and Hurwicz (1959)) by showing that the Gale and Nikaido (1965)

Jacobian condition holds under a standard dominant diagonal condition and a restriction

to goods that are strict gross substitutes. The limitations of requiring di¤erentiability

and a rectangular domain are again a concern.9 Further, the requirement of strict gross

substitutes (here and in several other results cited above) rules out many standard models

of di¤erentiated products, which feature substitution that is only �local�� i.e., between

goods that are adjacent in the product space (see, e.g., Figure 1 and Appendix A below).

Our formulation avoids these limitations, once again using the identity (2) to introduce an

arti�cial good 0 as a technical device capturing aggregate demand responses.

9The requirement of a rectangular domain is unstated in Cheng (1985), but required by the results relied
on in the proof (in particular, Theorem 20.4 of Nikaido (1968)).
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3 Model

3.1 Demand

Let J = f0; 1; : : : ; Jg denote the set of all goods. Recall that x 2 X � RJ is a vector of

demand shifters and that all other determinants of demand are held �xed.10 Demand for each

good is given by �j (x), j 2 J , where we impose (2). Although we postpone assumptions on

� to section 3.2, one should think of xj as a monotonic shifter of demand for good j. In the

examples above, xj is either (minus) the price of good j, the unobserved quality of good j,

or a shock to taste for good j. In all of these examples, monotonicity is a standard property.

Given (2), the demand system can be characterized by � = (�1; : : : ; �J) : X ! S. For

X � � ~X �fx 2 X : � (x) 2 int (S)g, we seek conditions such that for every s 2 int(S) there

is at most one x 2 X � satisfying � (x) = s.

Our �rst assumption is a condition on X , the set on which � is de�ned. This assumption

is required only to ensure that �(x) is de�ned at all x used in our argument. Thus, the

requirement is that X include a su¢ ciently rich set of points. Su¢ cient conditions include X

being open (in the Euclidean topology) or a Cartesian product, the latter allowing a discrete

domain.

Assumption 1. For all distinct x; x0 2 X � and all j such that xj 6= x0j, there exists �j 2 (0; 1]

such that X contains either (a) ~x, where 8k, ~xk = xk+�j
�
x0j � xj

�
1 fk = jg, or (b) ~x0, where

8k, ~x0k = x0k + �j
�
xj � x0j

�
1 fk = jg.

Leading cases satisfying Assumption 1 are when either X or X � is open (take �j su¢ -

ciently small) or when either X or X � is a Cartesian product (take �j = 1). These cases

may capture most environments of interest.11 Even if this condition fails, it may often hold

10When good 0 is an real good relative to which prices or utilities are normalized, this includes all char-
acteristics of this good. For example, we do not rule out the possibility that good 0 has a price x0, but are
holding it �xed (e.g., at 1).
11A more general su¢ cient condition, nesting these and others, is that X � � Y � X , where Y is either

open or a Cartesian product. Examples of other sets satisfying Assumption 1 include the convex cone�
x 2 [0;1)J : xj > xj�1 8j

	
, the �quarter-disk� fx : xj � 0 8j, kxk < 1g, and a rectangle with an open

hole, such as
�
x 2 [0; 1]J : kxk > 1

2

	
.
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under an extension of the domain X (e.g., to an open cover) or with a slightly smaller X �.

We contrast this assumption with Gale and Nikaido�s (1965) requirement of a rectangular

X �. Our assumption is much weaker: rectangular X � is a special case of Cartesian X �.

Further, our assumption need not place any restriction on the shape or other properties of

the set X � on which invertibility of � is considered. Finally, Assumption 1 plays the role of

a regularity condition for our result, whereas a rectangular domain is integral to the proof

strategy in Gale and Nikaido (1965).

3.2 Connected Substitutes

Our main requirement for invertibility is a pair of conditions characterizing the notion of

connected substitutes. The �rst is that the goods are weak substitutes in x in the sense that

when xj increases (e.g., price falls) for only a subset of goods j, demand for the remaining

goods, taken as a whole, does not increase.

Assumption 2. For any I � J and any x; x0 2 X such that x0j � xj 8j 2 I and x0j � xj

8j =2 I,
P

j =2I �j (x
0) �

P
j =2I �j (x).

Observe than when good 0 is an arti�cial good, its presence in J adds to the requirements

of Assumption 2 in a natural way. Taking the case where x is (minus) price, all else equal, a

fall in the price of some/all goods j > 0 cannot cause the total demand (over all goods) to

fall.

An alternative notion of weak substitution (that of weak gross substitutes) is that �k (x)

is nonincreasing in xj for all k; j 6= k. It is easy to see that this is implied by Assumption

2 (take x0j � xj, x0i = xi 8i 6= j; and I = J n fkg). In many models these conditions are

equivalent� for example, when X is a Cartesian product (see Appendix C). In a discrete

choice model, it is easily veri�ed that both notions of weak substitution are implied by the

standard assumptions that xj is excluded from the conditional indirect utilities of goods

k 6= j and that the conditional indirect utility for good j is increasing in xj.

To state the second condition characterizing connected substitutes, we �rst de�ne a
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directional notion of (strict) substitution.

De�nition 1. Good j substitutes to good k at x if �k (x) is strictly decreasing in xj.

Consider a decline in xj with all else held �xed. Assumption 2 implies that this weakly

raises �k (x) for all k 6= j. The goods to which j substitutes are those whose demands �k (x)

strictly rise. If xj is (minus) the price of good j, this is a standard notion of strict gross

substitution from j to k. De�nition 1 merely extends this notion to other demand shifters

that may play the role of x. Although this is a directional notion, substitution (as de�ned

here) is typically symmetric; i.e., j substitutes to k i¤ k substitutes to j. An exception is

substitution to good 0: since any demand shifters for good 0 are held �xed, good 0 does not

substitute to other goods.12

It will be useful to represent substitution among the goods with the directed graph of

the matrix � (x) whose elements are

�j+1;k+1 =

8<: 1 fgood j substitutes to good k at xg j > 0

0 j = 0:

The directed graph of � (x) has nodes (vertices) representing each good and a directed edge

from node k to node ` whenever good k substitutes to good ` at x.

Assumption 3. For all x 2 X �, the directed graph of � (x) has, from every node k 6= 0, a

directed path to node 0.

Figure 1 illustrates the directed graphs of � (x) at generic x 2 X � for some standard

models of di¤erentiated products, letting x = (�p1; : : : ;�pJ), where pj is the price of good j,

and assuming (as usual) that conditional indirect utilities are strictly decreasing in price. In

all of these models, Assumptions 2 and 3 hold. As panel f illustrates, they hold even when

12If good 0 is a real good designated to normalize utilities or prices, one can imagine expanding x to
include x0 and de�ning substitution from good 0 to other goods prior to the normalization that �xes x0. If
Assumption 3 holds under the original designation of good 0, it will hold for all designations of good 0 as
long as substitution (using the expanded vector x = (x0; : : : xJ)) is symmetric at all x 2 ��, a property that
would hold in all the examples below.
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Figure 1: Directed graphs of � (x) for x 2 ~X� (x equals minus price) in some standard
models of di¤erentiated products. Panel a: multinomial logit, multinomial probit, mixed
logit, etc.; Panel b: models of pure vertical di¤erentiation, (e.g., Mussa and Rosen (1978),
Bresnahan (1981b), etc.); Panel c: Salop (1979) with random utility for the outside good;
Panel d: Rochet and Stole (2002); Panel e: independent goods with either an outside good
or an arti�cial good 0.
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J is comprised of independent goods and either an outside good or an arti�cial good 0. Each

of these examples has an extension to models of discrete/continuous demand (e.g., Novshek

and Sonnenschein (1979), Hanemann (1984), Dubin and McFadden (1984)), multiple discrete

choice (e.g., Hendel (1999), Dube (2004)), and models of di¤erentiated products demand

(e.g., Deneckere and Rothschild (1992), Perlo¤ and Salop (1985)) that provide a foundation

for representative consumer models of monopolistic competition (e.g., Spence (1976), Dixit

and Stiglitz (1977)).13

It may be useful to compare the connected substitutes conditions to a strict gross substi-

tutes assumption, where �j (x) is strictly decreasing in xk for all k 6= j. The latter obviously

implies Assumption 2, and it further implies that every good j > 0 substitutes to every other

good at all x 2 X �� a strong su¢ cient condition for Assumption 3. In Figure 1, however,

only the models represented in panel a satisfy the strict gross substitutes condition (see also

Appendix A).

The following lemma provides a helpful interpretation of Assumption 3 and is useful

below.

Lemma 1. Assumption 3 holds i¤ for all x 2 X � and any nonempty K � J n0, there exist

k 2 K and ` =2 K such that �` (x) is strictly decreasing in xk.

Proof. (necessity of Assumption 3) Let I0 (x) � J be comprised of 0 and the indexes of all

other goods whose nodes have a directed path to node 0 in the directed graph of � (x). If

Assumption 3 fails, then for some x 2 X � the set K = J nI0 (x) is nonempty. Further, by

construction there is no directed path from any node in K to any node in I0 (x). Thus,

there do not exist k 2 K and ` =2 K such that �` (x) is strictly decreasing in xk:

(su¢ ciency) Assumption 3 implies that for all x 2 X � and any nonempty K � J n0, every

13Mosenson and Dror (1972) used a graphical representation to characterize the possible patterns of sub-
sitution for Hicksian demand. Suppose x is minus the price vector, expanded to include the price of good
zero (see footnote 12 ). Suppose further that � is di¤erentiable and represents the Hicksian (compen-
sated) demand of an individual consumer. Let �+ (x) be the expanded subsitution matrix, with elements
�+j+1;k+1 = 1 fgood j substitutes to good k at xg : Mosenson and Dror (1972) show that the directed graph
of �+ (x) must be strongly connected. This is a su¢ cient condition for Assumption 3.
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node k 2 K has a directed path in � (x) to node 0 =2 K. This is impossible unless there

exist k 2 K and ` =2 K such that good k substitutes to good `. �

Thus, Assumption 3 requires that there be no way to partition J into subsets of goods

that substitute only among themselves. Note that when good 0 is an arti�cial good, its

presence in J weakens the requirements of Assumption 3. In particular, taking the case

where x is (minus) price, when the price of some good j > 0 falls, it may be only the

demand for good zero that strictly declines.

Finally, when introducing the model we suggested that xj should be thought of as a

monotonic shifter of demand for good j. The following remark shows that we have implicitly

imposed this monotonicity with the connected substitutes conditions.

Remark 1. Suppose Assumptions 2 and 3 hold. Then for all x 2 X � and j > 0, �j (x) is

strictly increasing in xj:

Proof. Take x 2 X � and x0 2 X such that x0j > xj; x
0
k = xk 8k 6= j. Assumption 2 implies

�k (x
0) � �k (x) 8k 6= j: Further, by Lemma 1, �` (x0) < �` (x) for some ` 6= j. Thus,P

k 6=j �` (x
0) <

P
k 6=j �` (x). The claim then follows from (2). �

4 Invertibility of Demand

We now establish our main result. We begin with a key lemma.14

Lemma 2. Let Assumptions 1�3 hold. If x; x0 2 X � are such that I+ �
�
j : x0j > xj

	
is

nonempty, then
P

j2I+ �j (x
0) >

P
j2I+ �j (x) :

Proof. Since 0 =2 I+, Lemma 1 ensures that for some k 2 I+ and some ` =2 I+, �` (x) is

strictly decreasing in xk. Take one such pair (k; `). Taking case (a) of Assumption 1, suppose

14If X � is open then, given Assumptions 1 and 2, Assumption 3 is necessary for the conclusion of this
lemma. Suppose Assumption 3 fails. Then by Assumption 2 and Lemma 1 there is some x 2 �� and some
nonempty K � J n0, such that �` (x) is constant in xk for all k 2 K and all ` =2 K. For some � > 0 and each
k 2 K let x0k = xk + �, while x

0
j = xj for j =2 K. Now I+ = K. For su¢ ciently small � we have x0 2 X � andP

j =2I+ �j (x
0) =

P
j =2I+ �j (x), which implies

P
j2I+ �j (x

0) =
P

j2I+ �j (x).

13



that for some � 2 (0; 1] the point ~x lies in X , where ~xj = xj + � (x0k � xk) 1 fj = kg 8j. By

Assumption 2, �j (~x) � �j (x) for all j 6= k. Further, �` (~x) < �` (x) by our choice of (k; `).

So, since ` =2 I+; X
j =2I+

�j (~x) <
X
j =2I+

�j (x) :

Assumption 2 also implies
P

j =2I+ �j (x
0) �

P
j =2I+ �j (~x), so we obtain

X
j =2I+

�j (x
0) �

X
j =2I+

�j (~x) <
X
j =2I+

�j (x)

and the result follows from (2). If ~x =2 X , so that case (b) of Assumption 1 applies,

instead take k 2 I+ and ` =2 I+ for which �` (x0) is strictly decreasing in xk (such a pair

being sure to exist by Lemma 1). For some � 2 (0; 1], the point ~x0 must lie in X , where

~x0j = x
0
j + � (xk � x0k) 1 fj = kg 8j. By a symmetric argument we obtain

X
j =2I

�j (x) �
X
j =2I

�j (~x) >
X
j =2I

�j (x
0)

and the result follows from (2). �

To demonstrate invertibility of demand under the connected substitutes conditions, we

will �rst show that �� (recall 3) is inverse isotone. Below we use � to denote the component-

wise weak partial order on Rn. Thus for y; y0 2 Rn, y � y0 i¤ yi � y0i for all i = 1; : : : ; n:

De�nition 2. A mapping F : D � Rn ! Rm is inverse isotone if for any y; y0 2 D,

F (y0) � F (y) implies y0 � y:

Theorem 1. Under Assumptions 1�3, �� : X � ! S is inverse isotone.

Proof. Take any x; x0 2 X � such that

�� (x0) � �� (x) (4)

and suppose, contrary to the claim, that the set I+ =
�
j : x0j > xj

	
is non-empty. By

14



Lemma 2 this requires X
j2I+

��j (x
0) >

X
j2I+

��j (x)

which contradicts (4). �

The following remark documents a well known connection between inverse isotone map-

pings and invertible mappings (see, e.g., Rheinboldt (1970)).15

Remark 2. If F : D � Rn ! Rm is inverse isotone, it is injective.

Proof. Suppose F (y) = F (y0) for y; y0 2 D. Since F is inverse isotone this implies both

y � y0 and y0 � y; hence y0 = y: �

Given Remark 2, our invertibility result follows as a corollary to Theorem 1.

Corollary 1. Under Assumptions 1�3, for any s 2 int(S) there is at most one x 2 X � such

that � (x) = s.

5 Connected Substitutes and the Jacobian Matrix

It is possible to provide a connection between our connected substitutes conditions and the

global Jacobian condition required by the univalence theorem of Gale and Nikaido (1965).

Suppose � is di¤erentiable on X � and let J� (x) denote the Jacobian matrix

26664
@�1(x)
@x1

: : : @�1(x)
@xJ

...
. . .

...

@�J (x)
@x1

: : : @�J (x)
@xJ

37775 :

Recall that a square matrix is said to be a P -matrix if all its principal minors are positive.

15Another application of Theorem 1 appears in a recent paper by Gandhi, Lu, and Shi (2011). They
exploit the inverse isotone property shown here in studying identi�cation and estimation of multinomial
choice demand models under mismeasurement of market shares.
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Theorem 2. Suppose that Assumptions 1�3 hold. Suppose further that for all x 2 X �, �

is di¤erentiable and substitution is symmetric between all goods j; k > 0. Then J�(x) is a

P -matrix for all x 2 X �.

Proof. See Appendix B. �

One would never use this result to establish invertibility� if the connected substitutes

conditions hold, Corollary 1 establishes invertibility without the additional di¤erentiability

and domain restrictions Gale and Nikaido (1965) require.16 However, Theorem 2 is useful for

understanding the relationship between the two results. Ours avoids the smoothness and

domain restrictions of Gale and Nikaido (1965) while imposing restrictions on substitution

that, given di¤erentiability and a weak symmetry condition, are su¢ cient for the Gale-

Nikaido Jacobian requirement.

Conditions ensuring that the Jacobian of �� is a P�matrix are of independent interest

as well. Berry and Haile (2010) use this result in establishing the identi�ability of supply

in di¤erentiated products markets� i.e., identi�cation of marginal costs and of the model

of oligopoly competition. In particular, the P -matrix property ensures invertibility of the

derivative matrix of market shares with respect to prices for goods produced by the same

�rm� a matrix appearing in the �rst-order conditions for each �rm. Their identi�cation

results generalize immediately to oligopoly supply models with continuous demand. The

P -matrix property can also be applied instead to the matrix of derivatives of market shares

with respect to the latent demand shocks, which is su¢ cient to ensure a key condition used

in Berry, Linton, and Pakes (2004) (and con�rmed there for special cases) to provide the

asymptotic distribution theory for a class of estimators for discrete choice demand models.

In particular, it ensures the Jacobian of demand is always full rank over X �.

16Note that Assumption 2 implies that the matrix J� (x) is of the �Leontie¤ type.� Thus, given the
connected substitutes conditions we used to show that � was inverse isotone in Theorem 1, one could use
Theorem 5 in Gale and Nikado (1965) to show this same property under the additional requirements of
di¤erentiability and rectangular domain.
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6 Conclusion

We have introduced the notion of �connected substitutes�and shown that this structure is

su¢ cient for invertibility in a large class of nonparametric nonseparable demand systems.

The connected substitutes conditions are satis�ed in a large class of models used in prac-

tice, have transparent economic interpretation, and allow us to show invertibility without

functional form restrictions, smoothness assumptions, or strong domain restrictions. We

have also provided a link between the connected substitutes conditions and the Jacobian

condition required by the classical univalence result of Gale and Nikaido (1965).
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Appendix A. An Example

Here we present a simple variation of Lancaster�s (1966) �diet example,�illustrating a contin-

uous demand system with only local substitution, with a non-rectangular domain of interest

, and where the introduction of an arti�cial good 0 is useful even though an outside good is

already modeled.

A representative consumer has a budget of y and chooses consumption quantities (q1; q2; q3)

of three goods: wine, bread, and cheese, respectively. Her preferences are given by a utility

function

u (q1; q2; q3) = ln(z1) + ln (z2) + ln (z3) +m

where (z1; z2; z3) are consumption of calories, protein, and calcium, and m is money left to

spend on other goods. The mapping of goods consumed to characteristics consumed is given

by17

z1 = q1 + q2 + q3

z2 = q2 + q3

z3 = q3:

We assume y > 3 and that prices (p1; p2; p3) are such that all goods are purchased, i.e.,

0 < p1 < p2 � p1 < p3 � p2: (5)

Since p plays the role of x here, (5) also de�nes ~X . ~X is not a rectangle; however, because

~X is open Assumption 1 holds for any X � � ~X (see footnote 11).

17Unlike Lancaster (1966), we sacri�ce accuracy of nutritional information for the sake of simplicity.
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Figure 2: The directed graph of � (x) for the �diet example.�

It is then easily veri�ed that demand for each inside good is given by

�1 (p) =
1

p1
� 1

p2 � p1
�2 (p) =

1

p2 � p1
� 1

p3 � p2
(6)

�3 (p) =
1

p3 � p2

for p 2 X �. These equations fully characterize demand for all goods. We introduce the

arti�cial quantity of �good 0�, de�ned by

q0 � 1�
3X
j=1

qj: (7)

Observe that this arti�cial good is not the outside goodm. Further, the connected substitutes

conditions would not hold if the outside good were treated as good 0:

With (6), (7) implies

�0 (p) = 1�
1

p1
:

From these equations, it is now easily con�rmed that Assumption 2 holds Further, goods 2

and 3 substitute to each other, goods 1 and 2 substitute to each other, and good 1 substitutes

to good 0. Thus, Assumption 3 also holds. Figure 2 illustrates.
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Appendix B. Proof of Theorem 2

We prove Theorem 2 by showing that, under its hypotheses, every principal submatrix of

J� (x) is invertible at all x 2 X �. We �rst review some de�nitions.

A square matrix is reducible if it can be placed in block upper triangular form by permu-

tations of rows and columns. A square matrix that is not reducible is irreducible. A square

matrix A with elements aij is diagonally dominant if for all i

jaiij �
X
j 6=i

jaijj:

An irreducibly diagonally dominant matrix is a square matrix that is irreducible and diag-

onally dominant, with at least one diagonal being strictly dominant, i.e., with at least one

row such that

jaiij >
X
j 6=i

jaijj: (8)

A directed graph G is strongly connected if for every pair of distinct nodes (i; j) in G there

exists a directed path from i to j.

We will rely on the following well known result (see, e.g., Taussky (1949) or Horn and

Johnson (1990), p. 363).

Lemma 3. An irreducibly diagonally dominant matrix is invertible.

For nonempty K � f1; 2; : : : ; Jg, let DK(x) denote the principal submatrix of J� (x)

obtained by deleting rows r =2 K and columns c =2 K.

Lemma 4. Suppose � is di¤erentiable on X � and that Assumptions 1�3 hold. Then for all

x 2 X � and nonempty K � f1; 2; : : : ; Jg, DK(x) is diagonally dominant, with at least one

strictly dominant diagonal.

Proof. Take x 2 X �. Because
P

k2J �k (x) = 1,
P

k2J
@�k(x)
@xj

= 0. By Assumption 2 and
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Remark 1, @�j(x)
@xj

> 0 while @�k(x)
@xj

� 0 for all k 6= j. Thus, for any j 2 K,

����@�j (x)@xj

���� = X
k2K�fjg

����@�k (x)@xj

����+X
`=2K

����@�` (x)@xj

���� : (9)

which implies ����@�j (x)@xj

���� � X
k2K�fjg

����@�k (x)@xj

���� : (10)

Furthermore, since 0 =2 K, Lemma 1 implies that for some j 2 K the second sum in (9) is

strictly positive. For that j the inequality (10) must be strict. �

The following lemma states a useful elementary result in matrix theory (see, e.g., Horn

and Johnson (1990), p. 362).

Lemma 5. The directed graph of a square matrix A is strongly connected i¤ A is irreducible.

We now complete the proof of Theorem 2. Take arbitrary x 2 X � and nonempty

K �f1; 2; : : : ; Jg. We will show that DK(x) is invertible. First suppose the directed

graph of DK(x) is strongly connected. By Lemmas 4 and 5 it is then an irreducibly diag-

onally dominant matrix and, therefore, invertible by Lemma 3. So suppose instead that

the directed graph of DK(x) is not strongly connected. Since substitution is symmetric on

X �, all edges in the directed graph of DK(x) must be bidirectional. Since this graph is not

strongly connected, it must then be possible to partition it into isolated strongly connected

subgraphs, each of which corresponds to a subset of goods that substitute only among them-

selves in K. We can therefore rearrange the order of goods in K, with those in one strongly

connected subset coming �rst, another subset following, and so on. The resulting permuta-

tion of DK(x) is block diagonal, with each block being irreducible by Lemma 5. Further, by

Lemma 4, each block is diagonally dominant with at least one strictly dominant diagonal.

Therefore, by Lemma 3, each block is invertible. This implies that the entire DK(x) matrix

is invertible. Since K and x 2 X � were arbitrary, every principal submatrix of J� (x) is

invertible for all x 2 X �.
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Appendix C

We pointed out in the text that our notion of weak substitution always implies the alternative

notion, that �j (x) is weakly decreasing in xk for all k 6= j. The following result provides

one su¢ cient condition for the two notions to be equivalent.

Proposition 1. Suppose X is a Cartesian product and that for all x 2 X , �j (x) is weakly

decreasing in xk for all k 6= j. Then Assumption 2 holds.

Proof. Suppose x0j � xj for all j 2 I, while x0j � xj for all j =2 I. Let ~x be such that ~xj = xj

for j 2 I and ~xj = x0j for j =2 I. Since X is a Cartesian product, ~x 2 X . Because �j (x) is

weakly decreasing in xk for k 6= j

X
j2I

�j(~x) �
X
j2I

�j(x):

With (2), this implies X
j =2I

�j(~x) �
X
j =2I

�j(x);

Further, because �j (x) is weakly decreasing in xk for k 6= j,

X
j =2I

�i(x
0) �

X
j =2I

�i(~x)

and the result follows. �
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