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1 Introduction

During the three decades following Sims’s (1980) “Macroeconomics and Reality,” structural vec-

tor autoregressions (SVARs) have become an important tool in empirical macroeconomics. They

have been used for macroeconomic forecasting and policy analysis, as well as to investigate the

sources of business cycle fluctuations and to provide a benchmark against which modern dynamic

macroeconomic theories can be evaluated. The most controversial step in the specification of a

structural VAR is the mapping between reduced form one-step-ahead forecast errors and orthogo-

nalized, interpretable, structural innovations. Most SVARs in the literature have been constructed

by sufficiently imposing many restrictions such that the relationship between structural innovations

and forecast errors is one-to-one. However, in the past decade, starting with Faust (1998), Canova

and De Nicolo (2002), and Uhlig (2005), empirical researchers have used more agnostic approaches

that generate bounds on structural impulse response functions by restricting the sign of certain

responses. We will refer to this class of models as sign-restricted SVARs. They have been em-

ployed, for instance, to measure the effects of monetary policy shocks (Faust, 1998; Canova and

De Nicolo, 2002; Uhlig, 2005), technology shocks (Dedola and Neri, 2007; Peersman and Straub,

2009), government spending shocks (Mountford and Uhlig, 2008; Pappa, 2009), and oil price shocks

(Baumeister and Peersman, 2008; Kilian and Murphy, 2009).

Empirical findings about the dynamic effects of structural economic shocks are typically re-

ported in terms of (point) estimates of impulse response functions, surrounded by error bands. If

the autoregressive system is stationary and the SVAR is sufficiently restricted such that the impulse

response functions are point identified, then the reported error bands are typically interpretable

from both a frequentist as well as a Bayesian perspective. In large samples they delimit approxi-

mately valid frequentist confidence intervals and Bayesian credible sets. Since impulse responses in

sign-restricted SVARs can only be bounded, they belong to the class of set-identified or partially

identified econometric models, using the terminology of Manski (2003). As shown in detail in Moon

and Schorfheide (2009), the large-sample numerical equivalence of frequentist confidence sets and

Bayesian credible sets breaks down in set-identified models. In particular, frequentist confidence

sets tend to be substantially larger. The error bands for sign-restricted SVARs that have been

reported in the literature thus far are only meaningful from a Bayesian perspective and cannot be

interpreted as frequentist confidence intervals.

The main goal of the paper is to provide methods of constructing error bands that delimit valid
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frequentist confidence intervals.1 In this regard, the paper makes several specific contributions.

First, we demonstrate how to formulate the frequentist inference problem for impulse responses

of sign-restricted SVARs as a minimum distance problem. Second, we provide a general charac-

terization of the identified sets associated with impulse responses as well as an efficient way of

computing them. For the case of scalar point-wise responses, we show that the identified set is a

bounded interval. Third, building on recent work in microeconometrics by Chernozhukov, Hong,

and Tamer (2007, henceforth CHT), Rosen (2008), Andrews and Guggenberger (2009), and An-

drews and Soares (2010a), we propose three different methods to obtain frequentist error bands.

We prove that all three methods generate asymptotically valid confidence sets. They differ with

respect to conservativeness and computational burden - the most conservative error bands are the

fastest to compute. Fourth, in an empirical application we compare the proposed frequentist error

bands to Bayesian error bands for the effects of a monetary policy shock in a four-variable VAR.

In our application, the frequentist bands are up to twice as wide as the Bayesian bands, which is

consistent with the large sample results obtained in Moon and Schorfheide (2009).

The remainder of the paper is organized as follows. Section 2 provides a simple example of a

sign-restricted SVAR. We describe how set-identification arises in this model, discuss the commonly

used Bayesian inference in this model, outline our procedure to construct frequentist error bands,

and discuss more precisely in what dimension we modify and extend inference methods developed in

the microeconometric literature. Section 3 generalizes the setup and introduces additional notation.

In Section 4 we develop our frequentist inference procedures and provide three types of error bands

that differ with respect to conservativeness and computational burden. The section also provides

a detailed discussion of how to compute the error bands efficiently. To illustrate our methods, we

conduct a small Monte Carlo study in Section 5 and generate error bands for output, inflation,

interest rate, and money responses to a monetary policy shock in an empirical application in

Section 6. Finally, Section 7 concludes. Proofs for the two theorems stated in Section 4 are

presented in the appendix of this paper. Proofs of the lemmas that appear in the main text as

well as additional lemmas used in the proofs of Theorems 1 and 2 are relegated to a supplemental

Online Appendix. This Online Appendix also contains detailed derivations for the Monte Carlo

study presented in Section 5.

1The contribution of this paper is meant to be positive. We do not criticize the use of Bayesian inference methods

as long as it is understood that their output needs to be interpreted from a Bayesian perspective. We provide applied

researchers who are interested in impulse response error bands that are valid from a frequentist perspective with

econometric tools to compute such error bands.
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We use the following notation throughout the remainder of the paper: “
p−→” and “=⇒” denote

convergence in probability and distribution, respectively. “≡” signifies distributional equivalence.

I{x ≥ a} is the indicator function that is one if x ≥ a and zero otherwise. We use sgn(x)

to denote the sign of x and ∝ to indicate proportionality. 0n×m is a n × m matrix of zeros

and In is the n × n identity matrix. ⊗ is the Kronecker product, vec(·) stacks the columns of

a matrix, and tr[·] is the trace operator. We use diag(A1, . . . , Ak) to denote a quasi-diagonal

matrix with submatrices A1, . . ., Ak on its diagonal and zeros elsewhere. If A is a n ×m vector,

then ‖A‖W =
√
tr[WA′A]. In the special case of a vector, our definition implies that ‖A‖W =

√
A′WA. If the weight matrix is the identity matrix, we omit the subscript. A p-variate normal

distribution is denoted by Np(µ,Σ). A p× q matrix X is matrix-variate normal MNp×q(M,Q⊗P )

if vec(X) ∼ Npq(vec(M), Q⊗P ). A q×q matrix Σ has the Inverted Wishart IWq(S, ν) distribution

if p(Σ|S, ν) ∝ |Σ|−(ν+q+1)/2 exp
{
−1

2 tr[Σ
−1S]

}
. If X|Σ ∼ MNp×q(M,Σ ⊗ P ) and Σ ∼ IWq(S, ν),

we say that (X,Σ) ∼ MNIW (M,P, S, ν). If there is no ambiguity about the dimension of the

random vectors and matrices, we drop the subscripts that signify dimensions. We use χ2
m to denote

a χ2 distribution with m degrees of freedom.

2 A Simple Example

Consider a VAR in which the vector yt of endogenous variables is composed of inflation and output

growth. For simplicity, we shall assume that the VAR has lag order of zero, that is, yt = ut

where ut ∼ iidN(0,Σu). Moreover, it is assumed that the one-step ahead forecast errors are linear

functions of “structural” demand and supply shocks, stacked in the vector εt = [εD,t, εS,t]
′. Let Σtr

be the lower triangular Cholesky factor of Σu with elements Σtr
ij and Ωε an arbitrary orthogonal

matrix. Thus, yt = ΣtrΩεεt, where εt ∼ iidN(0, I). The covariance matrix of yt is by construction

invariant to Ωε. In order to restrict the set of admissible Ωε’s, one can impose the sign restrictions

that a demand shock moves prices and output in the same direction and the normalization that a

positive demand shock increases prices.

Without loss of generality, suppose that the first element of εt is the structural demand shock

and the first column of Ωε is given by the 2× 1 vector q. The object of interest, θ, is the inflation

response. Using the notation

φ = [φ1, φ2, φ3]′ = [Σtr
11,Σ

tr
21,Σ

tr
22]′, q = [q1, q2]′ = [cosϕ, sinϕ]′,
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one can express the inflation response to a demand shock and the sign restrictions on inflation and

output respectively as

θ = q1φ1 ≥ 0, q1φ2 + q2φ3 ≥ 0. (1)

We shall refer to θ as structural parameter and φ as reduced form parameter. The latter is consis-

tently estimable from the data. Since φ1 ≥ 0, we deduce that q1 = cos(ϕ) ≥ 0 and ϕ ∈ [−π/2, π/2].

The second inequality in (1) implies

q2 ≥ −
φ2

φ3
q1. (2)

For φ2 ≤ 0, this inequality is always satisfied. Using the unit length restriction on q, it can also

be verified that for φ2 < 0, the inequality (2) is satisfied whenever q2
1 ≤ φ2

3/(φ
2
2 + φ2

3). Thus,

conditional on φ, the structural parameter θ = q1φ1 has to lie in the following set:

Θ(φ) =

[
0, φ1 max

{
I{φ2 ≥ 0},

√
φ2

3

φ2
2 + φ2

3

}]
. (3)

Θ(φ) is called the identified set. Since this set is not a singleton, θ is only partially identified.

In applied work with sign-restricted structural VARs, researchers have used Bayesian inference

to obtain error bands for impulse response functions. Bayesian inference in this setting amounts

to specifying a joint prior distribution on (φ, q), which can be factorized as p(φ, q) = p(φ)p(q|φ).

Researchers typically use a prior that is uniform with respect to ϕ, which implies that q(ϕ) is

uniformly distributed on the hypersphere. This prior is then truncated to ensure that the sign

restrictions are satisfied. In the context of our example, we obtain

ϕ|φ ∼ U

[
−sgn(φ2) arccos

(√
φ2

3

φ2
2 + φ2

3

)
,
π

2

]
.

For instance, if φ2 ≤ 0, then the change of variables θ = φ1 cosϕ implies that

p(θ|φ) ∝ I {θ ∈ Θ(φ)}√
1− (θ/φ1)2

. (4)

Thus, due to the change of variables, θ is not uniformly distributed on the identified set. Since

θ conditional on φ does not enter the likelihood function, the posterior distribution of θ can be

expressed as the mixture

p(θ|Y ) =

∫
p(θ|φ)p(φ|Y )dφ, (5)

where p(φ|Y ) is the posterior of the reduced form parameter. As the sample size increases, the

posterior distribution of φ concentrates around the maximum likelihood estimate φ̂ of the reduced
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form parameter. Moon and Schorfheide (2009) show that posterior credible sets for θ can be ap-

proximated by prior credible sets obtained from p(θ|φ̂), which lie inside of the (estimated) identified

set Θ(φ̂).

The objective of this paper is to construct frequentist confidence sets for θ. The basic idea is

the following. Define the nonnegative function

Q(θ;φ,W ) = min
ϕ∈[−π/2,π/2], µ≥0

∥∥∥∥∥∥
 (cosϕ)φ1 − θ

(cosϕ)φ2 + (sinϕ)φ3 − µ

∥∥∥∥∥∥
2

W

, (6)

where W is a positive-definite weight matrix. Based on (1) it is straightforward to verify that

θ ∈ Θ(φ) if and only if Q(θ;φ,W ) = 0. We now replace φ by the maximum likelihood estimator

φ̂ and W by a data-based weight matrix Ŵ . A confidence set can then be obtained as a level set

associated with the sample analog of Q(θ;φ,W ):

CSθ =

{
θ

∣∣∣∣ θ ≥ 0 and Q(θ; φ̂, Ŵ ) ≤ c
}
, (7)

where c is a critical value that ensures that the confidence set has the desired coverage probability,

at least asymptotically, for every θ ∈ Θ(φ). Notice that for any critical value c > 0, the confidence

set has the property that Θ(φ̂) ⊂ CSθ. Thus, as explained in detail in Moon and Schorfheide

(2009), the frequentist confidence set will be asymptotically larger than the Bayesian credible set.

The computation of the confidence set essentially amounts to checking the inequality Q(θ; φ̂, Ŵ ) ≤ c

for values of θ on a suitably chosen grid.

The use of a point-wise testing procedure to construct confidence sets dates back to work by

Anderson and Rubin (1949) and is widely employed to implement identification-robust inference. It

has been used in the weak-instrument literature, e.g., Dufour (1997) and Staiger and Stock (1997),

and starting with CHT also in the literature on set-identified econometric models. While (6) resem-

bles one of the popular objective functions used in the literature on moment inequality models, two

important differences exist. First, the data enter the objective function only through the reduced

form parameter estimator φ̂. In this regard, Q(θ; φ̂, Ŵ ) is similar to an objective function for a

minimum-distance estimator, and the starting point of our analysis will be an assumption about

the limit distribution of φ̂. Second, an important difference between Q(θ; φ̂, Ŵ ) and the objective

functions studied in the moment-inequality model literature, e.g., Rosen (2008) and Andrews and

Guggenberger (2009), is the presence of the nuisance parameter q(ϕ) in (6). We shall consider two

approaches to construct confidence sets: a profile objective function in which q(ϕ) is concentrated
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out and a projection of a joint confidence set for θ and q on the domain of θ. We use insights

from Rosen (2008) to construct somewhat conservative critical values for a nuisance parameter-free

bound of the profile objective function. In the construction of joint (θ, q) confidence sets, we apply

Andrews and Soares’s (2010a) moment selection procedure. Using techniques developed in Andrews

and Guggenberger (2009) and Andrews and Soares (2010a), we prove that our confidence sets are

asymptotically valid in a uniform sense. The moment selection procedure yields less conservative

error bands but is computationally more involved. Our paper provides empirical researchers with

a menu of choices in regard to computational burden and conservativeness.

3 General Setup and Notation

Suppose the evolution of the n× 1 vector yt is described by a p’th order difference equation of the

form

yt = Φ1yt−1 + . . .+ Φpyt−p + ut, E[ut|Ft−1] = 0, E[utu
′
t|Ft−1] = Σu, (8)

where the information set Ft−1 = {yt−1, yt−2, . . .} is composed of the lags of yt’s. Deterministic

trend terms are omitted because they are irrelevant for the subsequent discussion. (8) is a reduced

form representation of the VAR because the ut’s are simply one-step-ahead forecast errors and do

not have a specific economic interpretation. As in Section 2, it is assumed that the one-step-ahead

forecast errors are functions of a vector of fundamental innovations εt, for instance, composed of

innovations in aggregate technology, preferences, or monetary policy:

ut = Φεεt = ΣtrΩεεt, E[εt|Ft−1] = 0, E[εtε
′
t|Ft−1] = I, (9)

where Σtr is the lower triangular Cholesky factor of Σu and Ωε is an arbitrary orthogonal matrix.

Assuming that the lag polynomial associated with the VAR in (8) is invertible, one can express yt

as the following infinite-order vector moving average (VMA) process:

yt =
∞∑
h=0

Chut−h =
∞∑
j=0

ChΣtrvt−h, (10)

where vt is a n × 1 vector of standard normal variates. The matrices of the moving average

representation can be interpreted as impulse responses to the orthogonolized innovations vt:

Rvh = IE[yt+h|vt = I,Ft]− IE[yt+h|Ft] =
∂yt+h
∂v′t

= ChΣtr, h = 0, . . . ,H − 1. (11)
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The goal is to construct a confidence set for a k̃×1 vector θ of impulse responses to a structural

shock. Since such confidence sets are often presented as pointwise error bands, the case of k̃ = 1 is

of particular importance. Partial identification is achieved by restricting the signs of the responses

of a subset of the endogenous variables at particular horizons. Let H denote the set that collects

the impulse response horizons h = 0, . . . ,H − 1 and define the nH × n matrix RvH that stacks

the matrices Rvh for h ∈ H. The responses to the orthogonolized shocks vt can be converted into

responses to structural shocks εt as follows:

RεH = RvHΩε. (12)

Rather than examining responses to the full vector of structural shocks, εt, we will focus on responses

to one particular shock. Without loss of generality, we assume that the shock of interest is ε1,t and

will denote the first column of Ωε by the n× 1 unit length vector q ∈ Q.

Let S̃θ be a k̃ × nH matrix that selects and potentially transforms the structural impulse

responses RvHq into the object of interest, θ:

θ = S̃θR
v
Hq. (13)

Likewise, S̃∗R is an r̃× nH matrix that extracts the sign-restricted impulse responses such that the

full set of sign restrictions can be expressed as

S̃∗RR
v
Hq ≥ 0. (14)

Depending on whether a response is restricted to be nonnegative or nonpositive, the corresponding

entries of S̃∗R are either 1 or −1. The sign restrictions summarized with S̃∗R either affect responses

that are contained in θ, or they affect responses not contained in θ. We partition S̃∗R into an r̃1× k̃

matrix Mθ that selects the elements of θ that are sign restricted and an r̃2 × nH matrix S̃R that

selects the sign-restricted responses not contained in θ:

Mθθ = MθS̃θR
v
Hq ≥ 0, S̃RR

v
Hq ≥ 0. (15)

Finally, the m× 1 vector φ is defined as

φ = S′φvec((R
ν
H)′), (16)

where S′φ is an m× n2H selection matrix that deletes zero responses in RνH arising from the lower

triangular structure of Rν0 = Σtr. Transpose and vectorize (13), (14) as well as the second set of sign
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restrictions in (15). Since S′φ in (16) eliminates zeros from RνH, one can write vec((RνH)′) = Sφφ.

In turn, we can define the functions S̃θ(q), S̃
∗
R(q), S̃R(q), and S̃(q) = [S̃θ(q)

′, S̃R(q)′]′ such that

S̃θ(q) = (S̃θ ⊗ q′)Sφ, S̃∗R(q) = (S̃∗R ⊗ q′)Sφ, S̃R(q) = (S̃R ⊗ q′)Sφ. (17)

We will use k(q), r(q), r2(q), and l(q) to denote the row ranks of S̃θ(q), S̃
∗
R(q), S̃R(q), and S̃(q),

respectively. The following assumption states that we are focusing on the case of set-identified

impulse responses in this paper.

Assumption 1 Given a set of orthogonolized responses φ, there exist q1, q2 such that q1 6= q2,

q1 6= −q2 and S̃∗R(qi)φ ≥ 0, i = 1, 2 (set identification).

Low-level conditions for identification of structural VARs can be found in Rubio-Ramirez,

Waggoner, and Zha (2010). The identified set Θ(φ) is defined as the set of impulse responses θ that

are consistent with a particular φ. A general characterization of the identified set can be obtained

as follows. Define the nonnegative function Q(θ;φ,W )

Q(θ;φ,W ) = min
‖q‖=1, µ≥0

∥∥∥∥S̃(q)φ−
(
θ

µ

)∥∥∥∥2

W

, (18)

where W is a positive-definite matrix and µ regulates the slackness of the inequalities from the sign

restrictions on the responses not included in θ. It is straightforward to verify that

θ ∈ Θ(φ) if and only if Q(θ;φ,W ) = 0 and Mθθ ≥ 0. (19)

The following lemma states that for k̃ = 1 the identified set Θ(φ) is a bounded interval.

Lemma 1 Suppose Assumption 1 is satisfied and k̃ = 1. Then Θ(φ) is convex and bounded.

Lemma 1 is comforting from a practitioner’s perspective. Despite the lack of point-identification,

it is guaranteed that the response of the endogenous variables yt to a one-standard deviation

structural shock is bounded. Moreover, the lemma guarantees that scalar responses in this model

can be characterized by two numbers: the lower bound and the upper bound of the identified

interval.
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4 Frequentist Inference

Inference for θ is conducted in two steps. First, an estimator φ̂ of a vector of reduced form

parameters is constructed. Second, we conduct inference on θ conditional on the estimator φ̂ using

a sample analog of the objective function Q(θ;φ,W ) in (18). Since empirical researchers typically

depict error bands for impulse response functions that delimit point-wise credible or confidence

intervals, in most applications θ is a scalar, that is k = 1, representing the response of variable

i ∈ {1, . . . , n} to a shock j ∈ {1, . . . , n} at horizon h.

Rather than placing low-level restrictions on the VAR coefficient matrices Φ and Σ, as well as

the distribution of the reduced-form innovations ut, and deriving the distribution of φ̂, we directly

assume that φ̂ has a Gaussian limit distribution. It is noteworthy that this assumption requires

that all roots of the characteristic polynomial associated with the difference equation (8) lie outside

of the unit circle. Hence, we are ruling out the presence of unit roots and are implicitly assuming

that yt is trend stationary.

Assumption 2 (i) There exists an estimator φ̂ of the m × 1 vector φ such that φ̂
p−→ φ and

√
T (φ̂−φ) =⇒ N (0,Λ(φ)) uniformly for φ ∈ P. (ii) The matrix Λ(φ) is positive definite and there

exists a full-rank matrix Λmin such that Λ(φ) ≥ Λmin for all φ ∈ P. (iii) There exists an estimator

Λ̂
p−→ Λ(φ) uniformly for φ ∈ P.

For notational simplicity, the dependence of Λ on φ is suppressed, unless this dependence plays

a crucial role. The assumption that Λ is full rank does not impose serious constraints on the

applicability of our analysis. Recall that we previously eliminated the n(n− 1)/2 zero elements of

the lower triangular matrix Rv0 by appropriately defining φ. Furthermore, in practice it is possible

to delete all elements of φ that are associated with columns of zeros in the matrix S̃(q). These are

elements that do not enter the construction of the structural responses that appear in θ or that are

sign restricted.2

2Consider a 4-variable VAR(4) and suppose that the responses of 3 of the 4 variables are restricted upon impact

and for the subsequent 3 periods. Moreover, the object of interest is the response of the fourth variable at horizon

h = 9. Following the definitions in Section 3, the dimension of m = 10 · 42− 6 = 154, whereas the number of reduced

form VAR coefficients is 4 · 16 + 10 = 74, which suggests that – abstracting from the effect of nonlinearities – the

covariance matrix Λ is rank deficient. However, in order to construct the sign-restricted responses as well as θ, one

can easily reduce the dimension of φ to 4 · 3 · 4 + 4 = 52 and obtain a nonsingular covariance matrix Λ.
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Three methods of constructing confidence sets for θ are considered subsequently. All of the

methods have to deal with the unit-length nuisance parameter q. The first method (Section 4.2)

concentrates out q from the objective function that is used to construct the confidence interval. The

other two methods (Section 4.3) are based on a projection of a joint confidence interval for θ and

q. Section 4.4 provides computational details and step-by-step guidance for the implementation.

Finally, we discuss some extensions and limitations in Section 4.5. However, before we can proceed,

we need to state an assumption about the matrix S̃(q) = [S̃θ(q)
′, S̃R(q)′]′.

4.1 An Assumption About S̃(q)

While S̃∗R(q) was useful to state our assumption about set identification (Assumption 1), the most

important object for the subsequent development of inference methods for θ is the matrix-valued

function S̃(q). Although this function is continuous in q, its row rank tends to be discontinuous.

Since we will use a weight function W that is based on the inverse covariance matrix of
√
T S̃(q)(φ̂−

φ) to construct the objective function Q(θ; φ̂,W ), we have to invert the matrix S̃(q)ΛS̃′(q) and need

to pay special attention to the potential rank reduction. To fix ideas, recall the example of Section 2,

which leads to

S̃(q) = (I ⊗ q′)Sφ =

 q1 q2 0 0

0 0 q1 q2




1 0 0

0 0 0

0 1 0

0 0 1

 =

 q1 0 0

0 q1 q2



The first row of S̃(q) becomes zero if q = [q1, q2]′ = [0, 1]. The singularity arises because Sφ

eliminates the second column of the matrix (I ⊗ q′), which for q1 = 0 contains the only nonzero

entry in the first row of S̃(q).

We will now state an assumption to guarantee that row rank reductions of S̃(q) only arise from

rows of zeros. The assumption states that S̃(q) can be obtained from a matrix S̄(q) through a

series of transformations. The starting point is the matrix

S̄(q) = (InH ⊗ q′)Sφ. (20)

Equation (16) and the definition of Sφ imply that S̄(q)φ generates the structural impulse responses

of the n variables for horizons h = 0, . . . ,H − 1. Now consider the following five transformations

of S̄(q):
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1. MS,1: Multiplication of rows by (−1) to change the sign of the impulse response.

2. MS,2: Quasi-lower triangular transformations of the form MS,2
ΣΣ 0

MS,2
BΣ MS,2

BB

 ,
where MΣΣ is an n×n full rank lower triangular matrix and the submatrix MS,2

BB has full row

rank.

3. MS,3: Re-ordering of rows.

4. MS,4: Deletion of rows.

5. MS,5: Deletion of columns of zeros.

The first transformation switches signs of impulse responses, e.g., to turn a nonnegativity

constraint into a nonpositivity constraint. The second transformation can be used to generate

cumulative impulse responses, e.g., convert responses of inflation rates into responses of the log-

level of inflation, or to transform impulse responses, e.g., turn responses of log nominal output and

log prices into responses of real output. The second transformation can also be used to constrain

(backward) differences of impulse responses in order to, say, impose monotonicity restrictions. The

third transformation reorders the impulse responses, e.g., to ensure that those responses that enter

the vector θ appear first. The fourth transformation can be used to eliminate those responses

that are neither the object of interest, i.e., contained in θ, nor sign restricted. Finally, the last

transformation can be used to reduce the dimension of φ by eliminating unused reduced form

impulse responses as discussed above.3 Notice that the identity matrix is a special case of all five

transformations. In turn, we can state our assumption about S̃(q).

Assumption 3 The matrix S̃(q) = [S̃θ(q)
′, S̃R(q)′]′ can be expressed as

S̃(q) =

(
4∏

k=1

MS,k

)
S̄(q)MS,5.

3In order to economize on the notation, we do not distinguish between the original vector φ introduced in (16)

and the vector that obtains by removing the elements that correspond to the columns of S̄(q) that get eliminated by

MS,5.
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By construction, the rows of S̄(q) are orthogonal. Since q lies on the unit-hypersphere, we can

deduce that a rank reduction of S̄(q) can only occur if one or more of the first n− 1 rows of S̄(q)

are zero. These rows contain elements of the form q1, [q1, q2]′, . . ., [q1, . . . , qn−1]′. One can verify

that the transformations MS,k, k = 1, . . . , 5 preserve the property that rank reductions are due to

rows of zeros, which lead to the following lemma.

Lemma 2 Suppose Assumption 3 is satisfied. Then for a particular value of q, a row rank reduction

of S̃(q) arises only through one or more rows of zeros.

In order to eliminate the rows of zeros in S̃(q), we introduce the selection matrices V (q), Vθ(q),

and VR(q) to define the matrices

S(q) = V (q)S̃(q), Sθ(q) = Vθ(q)S̃θ(q), SR(q) = VR(q)S̃R(q). (21)

The row dimensions of the three matrices are l(q), k(q), and r2(q), respectively. By construction,

the three matrices have full row rank.

4.2 Profile Objective Function with Fixed Critical Value

We replace φ and W in the objective function Q(θ;φ,W ), defined in (18) by φ̂ and a weight matrix

Ŵ (q) that is allowed to depend on the sample and on q. Thus,

Q
(
θ; φ̂, Ŵ (·)

)
= min
‖q‖=1, µ≥0

∥∥∥∥S̃(q)φ̂−
(
θ

µ

)∥∥∥∥2

Ŵ (q)

. (22)

The function Q
(
θ, φ̂, Ŵ (·)

)
is a profile objective function in the sense that the nuisance parameter

q has been concentrated out. As a weight matrix, we use the inverse of the asymptotic covariance

matrix of
√
T S̃(q)(φ̂− φ). In order to account for the potentially defined row rank of S̃(q), we let

Ŵ ∗(q) = TV ′(q)

(
V (q)S̃(q)Λ̂S̃′(q)V ′(q)

)−1

V (q), (23)

where Λ̂ is a consistent estimator of Λ (see Assumption 2). Using the definition Σ̂(q) = S(q)Λ̂S′(q),

the objective function can be rewritten as

Q
(
θ; φ̂, Ŵ ∗(·)

)
= min

‖q‖=1, µ≥0

(
T

∥∥∥∥V (q)S̃(q)φ̂− V (q)

(
θ

µ

)∥∥∥∥2

Σ̂−1(q)

(24)

+T
k̃∑
j=1

I
{
S̃j,θ(q) = 0 and θj 6= 0

})
.
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The penalty term ensures that the objective function takes on a large value if θ elements that

correspond to rows of zeros in S̃θ(q) are different from zero.4 The factor T is essentially arbitrary

and could be replaced by any number that exceeds the critical value used in the construction of

the confidence set.

The confidence set for θ is constructed as a level set of the profile objective function:

CSθ(1) =

{
θ

∣∣∣∣Mθθ ≥ 0 and Q
(
θ; φ̂, Ŵ ∗(·)

)
≤ c(1)

(k̃,r̃2)

}
. (25)

The critical value, denoted by c
(1)

(k̃,r̃2)
, depends on the number of elements in θ, k̃, and the number

of sign restrictions, r̃2. It is given by

c
(1)

(k̃,r̃2)
= 1− τ quantile of

 χ2
k̃+r̃2−1

+ Z2I{Z ≤ 0} if r̃2 ≥ 1

χ2
k̃

otherwise
, (26)

where Z ∼ N(0, 1) and is independent of the chi-square random variable. We follow the convention

that χ2
0 = 0. Notice that the critical value c

(1)

(k̃,r̃2)
used in the construction of the confidence set does

not depend on θ. The following theorem states that CSθ(1) is an asymptotically valid confidence

set.

Theorem 1 Suppose that Assumption 1 is satisfied for φ ∈ P and Assumptions 2 and 3 are

satisfied. Then the confidence set CSθ(1) defined in (25) is an asymptotically valid confidence set for

θ:

lim inf
T

inf
φ∈P, θ∈Θ(φ)

Pφ{θ ∈ CSθ(1)} ≥ 1− τ.

A formal proof of Theorem 1 is provided in the Appendix. The proof is based on an upper bound

of the concentrated objective function with a nuisance parameter-free limit distribution. The gist

of the argument is the following. Consider a particular θ ∈ Θ(φ). By definition of the identified set

there exists a q̃ and µ̃ such that S̃θ(q̃)φ = θ and S̃R(q̃)φ = µ̃. Using the definition in (21), replace

V (q)S̃(q) by S(q) to write the objective function as:

Q
(
θ; φ̂, Ŵ ∗(·)

)
≤ min

µ≥0

∥∥∥∥S(q̃)
√
T (φ̂− φ)− V (q)

(
0√

T (µ− µ̃)

)∥∥∥∥2

Σ̂−1(q̃)

. (27)

Notice that for θ ∈ Θ(φ) the penalty term that appears in (24) has to be zero. Now let ν =
√
T (µ−µ̃)

and Mν = [0k×r2 , Ir2 ]′. Under this reparameterization, the inequality µ ≥ 0 becomes ν ≥ −
√
T µ̃. If

4In a nutshell, we are rewriting an objective function of the form T 1
q2

(qφ̂ − θ)2 = T (φ̂ − θ/q)2 as T
(
I{q 6=

0}(φ̂− θ/q)2 + I{q = 0 and θ 6= 0}
)

to account for the case q = 0.
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we replace µ̃ on the right-hand side of the reparameterized inequality by 0, we obtain the following

bound

Q
(
θ, φ̂, Ŵ ∗(·)

)
≤ min

ν≥0

∥∥∥∥S(q̃)
√
T (φ̂− φ)− V (q̃)Mνν

∥∥∥∥2

Σ̂−1(q̃)

= Q̄
(
q̃; φ̂, Ŵ ∗(·)

)
. (28)

It turns out that the weight matrix Ŵ ∗(·), which depends on the the estimated covariance matrix Λ̂,

can be replaced by W ∗(·), which is constructed from the population covariance matrix Λ. We will

now sketch the analysis of Q̄
(
q̃; φ̂,W ∗(·)

)
for the cases l(q̃) = k̃ + r̃2 and l(q̃) < k̃ + r̃2, abstracting

from uniformity issues.

Suppose that l(q̃) = k̃ + r̃2 and k̃ ≥ 1, r̃2 ≥ 1. Thus, S̃(q̃) has full row rank and V (q̃) = I

and S(q̃) = S̃(q̃). Partition S′(q̃) = [S′1(q̃), S′2(q̃)]′, where S2(q̃) is the last row of S(q̃). Denote the

conforming partitions of Σ(q̃) by Σij(q̃) = Si(q̃)ΛS
′
j(q̃). Moreover, factorize Λ = LL′ and let ν2 be

the last element of the vector Mνν. Then, omitting the q̃ argument, we obtain

Q̄(q̃; φ̂,W ∗) ≤
∥∥∥∥S1

√
T (φ̂− φ)

∥∥∥∥2

Σ−1
11

(29)

+ min
ν2≥0

∥∥∥∥(S2 − Σ21Σ−1
11 S1)

√
T (φ̂− φ)− ν2

∥∥∥∥2

(Σ22−Σ21Σ−1
11 Σ12)−1

= ζ̂ ′PA1 ζ̂ + min
ν2≥0

∥∥∥∥A′2(I − PA1)ζ̂ − ν2

∥∥∥∥2

(A′2(I−PA1
)A2)−1

=⇒ χ2
k̃+r̃2−1

+ I{Z ≤ 0}Z2, Z ∼ N(0, 1).

The inequality is obtained by setting all but the very last element of the vector Mνν equal to

zero. The second expression on the right-hand side is obtained by defining ζ̂ = L−1
√
T (φ̂ − φ),

Ai = L′S′iD
−1/2
i , and PAi = Ai(A

′
iAi)

−1A′i. Here D
1/2
i is the diagonal matrix of standard deviations

associated with the covariance matrix Σii. Since ζ̂ converges in distribution to an m× 1 vector of

standard normals and PA1 is a projection onto a k̃ + r̃2 − 1-dimensional subspace, we obtain the

convergence of ζ̂ ′PA1 ζ̂ to a χ2
k̃+r̃2−1

. The solution to the minimization problem is

ν̂2 = I{A′2(I − PA1)ζ̂ ≥ 0}A′2(I − PA1)ζ̂,

which generates the term I{Z ≤ 0}Z2 in the limit distribution. Since PA1 ζ̂ and A′2(I − PA1)ζ̂

are asympotically uncorrelated, Z is independent of the χ2 term in the characterization of the

asymptotic distribution.

Alternatively, if l(q̃) < k̃+ r̃2, there is no need to partition S(q̃). By setting ν = 0, one obtains:

Q̄(q̃; φ̂,W ∗) ≤
∥∥∥∥S√T (φ̂− φ)

∥∥∥∥2

Σ−1

=⇒ χ2
l(q̃)−1. (30)
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Since in this case l(q̃) ≤ k̃ + r̃2 − 1, the critical value associated with (29) remains valid, though

it is conservative. The limit distribution in (29) arises commonly in multivariate generalizations of

one-sided hypothesis problems, e.g., Perlman (1969), and its quantiles are used by Rosen (2008)

to construct contour confidence sets for moment inequality models. (26) provides a convenient

characterization of the critical value associated with this limit distribution.

4.3 Projection Approach with Moment Selection

As an alternative to the fixed-critical value approach based on the profile objective function, we

consider a projection-based confidence set obtained from an objective function that does not con-

centrate out q. Let

G
(
θ, q; φ̂, Ŵ ∗(·)

)
= min

µ̃≥0
T

∥∥∥∥V (q)S̃(q)φ̂− V (q)

(
θ

µ̃

)∥∥∥∥2

Σ̂−1(q)

(31)

+T

k̃∑
j=1

I
{
S̃j,θ(q) = 0 and θj 6= 0

}
.

We maintain the choice of weight matrix Ŵ ∗ in (23) and define a joint confidence set for θ and q

as the generalized level set:

CSθ,q(2) =

{
θ, q

∣∣∣∣ ‖q‖ = 1, Mθθ ≥ 0, and G
(
θ, q; φ̂, Ŵ ∗(·)

)
≤ c(2)(q, θ)

}
. (32)

The critical value c(2)(·) is potentially a function of both q and θ. However, it turns out that

conditional on q the distribution of G
(
θ, q; φ̂, Ŵ ∗(·)

)
does not depend on θ for θ ∈ Θ(φ) because θ

does not enter the inequality conditions and therefore does not affect the slackness µ. Also, when

θ ∈ Θ(φ), the penalty term that appears in (31) has to be zero. Subsequently, the θ-argument is

dropped from the critical value function and the projection of the joint confidence set CSθ,q(2) onto

Θ takes the form

CSθ(2) =

{
θ

∣∣∣∣Mθθ ≥ 0, and min
‖q‖=1

(
G
(
θ, q; φ̂, Ŵ ∗(·)

)
− c(2)(q)

)
≤ 0

}
. (33)

Since Q
(
θ; φ̂, Ŵ ∗(·)

)
= min‖q‖=1 G

(
θ, q; φ̂, Ŵ ∗(·)

)
, we obtain the following lemma.

Lemma 3 Consider the two confidence sets defined in (25) and (33). Suppose that c(2)(q) ≤ c(1)

for all q, then CSθ(2) ⊆ CS
θ
(1).
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Lemma 3 implies that the projection-based confidence set is potentially smaller than the con-

fidence set constructed from the profile objective function. However, the disadvantage of the

projection-based approach is that the calculation of q-dependent critical values might require cum-

bersome simulations. We will discuss this trade-off in the context of the empirical application. If

one defines ϑ = [θ′, q], then the objective function G
(
θ, q; φ̂, Ŵ ∗(·)

)
has the same structure as the

objective functions considered in the literature on moment inequality models, e.g., CHT, Rosen

(2008), Andrews and Guggenberger (2009), and Andrews and Soares (2010a). The three main dif-

ferences in the VAR application are that q is a nuisance parameter, that the objective function G(·)

corresponds to a minimum-distance rather than a GMM problem, and that the q-dependent weight

matrix in the objective function G(·) could be singular for some values of q′s. In the remainder of

this subsection it is discussed how the moment selection approach of Andrews and Soares (2010a)

can be applied to obtain critical value functions c(2)(q).

For each θ ∈ Θ(φ), we define the set Q(θ, φ) =
{
q
∣∣ ‖q‖ = 1, S̃θ(q)φ = θ, S̃R(q)φ ≥ 0

}
as well

as the function µ̃(q, φ) = S̃R(q)φ. Let Σ̂(q) = S(q)Λ̂S(q)′ and decompose the covariance matrix

into

Σ̂(q) = D̂1/2(q)Ω̂(q)D̂1/2(q),

where Ω̂ is a correlation matrix and D̂1/2 is a diagonal matrix of standard deviations. Let Mµ =

[0k̃×r̃2 , Ir̃2 ]′ and consider a θ ∈ Θ(φ) and a q ∈ Q(θ, φ). Then, using the fact that the penalty term

is zero for θ ∈ Θ(φ) and q ∈ Q(θ, φ), we can rewrite (31):

G
(
θ, q; φ̂,W ∗T (·)

)
(34)

= min
µ̃≥0

∥∥∥D̂−1/2S(q)
√
T (φ̂− φ)− D̂−1/2V (q)Mµ

√
T (µ̃− µ̃(q, φ))

∥∥∥2

Ω̂−1(q)
.

Recall that V (q) eliminates elements of the vector Mµµ̃, corresponding to rows of zeros in S̃(q).

Moreover, the matrix D̂−1/2 is diagonal. Thus, we define the r2(q) × 1 vectors µ and µ(q, φ) as

transformation of µ̃ and µ̃(q, φ) in which the elements corresponding to rows of zeros in S̃R(q) have

been eliminated. Let D̂R be the submatrix of D̂ that is conformable with the SR(q) partition of

S(q) and define the r2(q)×1 vector ν =
√
TD̂

−1/2
R (µ−µ(q, φ)). Moreover, define the matrix Mν by

deleting unnecessary columns from the matrix V (q)Mµ to make it conformable with ν.5 In turn,

the objective function can be expressed as

G
(
θ, q; φ̂,W ∗T (·)

)
= min

ν≥−
√
TD̂
−1/2
R µ(q,φ)

∥∥∥D̂−1/2S(q)
√
T (φ̂− φ)−Mνν

∥∥∥2

Ω̂−1(q)
. (35)

5When S(q) = Sθ(q), one can set Mν = 0.
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The moment selection approach of Andrews and Soares (2010a) amounts to raising the lower bounds

for νj to zero if the slackness (
√
TD̂

−1/2
jj,R µj(q, φ)) is small and setting them to infinity if the slackness

is large.

Define the standardized slackness in inequality moment condition j = 1, . . . , r2(q) as

ξ̂j,T (q) = D̂
−1/2
jj,R (q)

√
Tµj(q, φ̂).

A moment condition is deemed nonbinding if ξ̂j,T (q) exceeds the threshold κT , where κT is a

diverging sequence, e.g., κT = 1.96 ln(lnT ). Thus, estimates of the number of nonbinding and

binding moment conditions are given by

r̂22(q) =

r2(q)∑
j=1

I{ξ̂j,T (q) ≥ κT } and r̂21(q) = r2(q)− r̂22(q). (36)

Recall that l(q) is the row rank of matrix S(q) and k(q) = l(q)− r2(q). Now define the r2(q) vector

ϕ̂T (q) with elements

ϕ̂j,T (q) =

 ∞ if ξ̂j,T (q) ≥ κT
0 otherwise.

(37)

Using this notation, we obtain the following approximate upper bound for G
(
θ, q; φ̂,W ∗T (·)

)
:

Ḡ
(
θ, q; φ̂,W ∗T (·)

)
= min

ν≥−ϕ̂T (q)

∥∥∥D̂−1/2S(q)
√
T (φ̂− φ)−Mνν

∥∥∥2

Ω̂−1(q)
. (38)

Thus, whenever ϕ̂j,T (q) = 0, the lower bound for νj is raised to zero, and whenever ϕ̂j,T (q) = ∞,

the constraint on νj is eliminated. Let Â(q) = L̂′S′(q)D̂−1/2 and define the submatrices Âb, Mνb ,

νb, and Ω̂b by deleting the rows and columns corresponding to ϕ̂j,T = ∞ (nonbinding moment

conditions), then the distribution of the upper bound can be approximated by

Ḡ
(
θ, q; Ω̂b

)
= min

νb≥0

∥∥∥Â′b(q)Zm −Mνbνb

∥∥∥2

(Â′b(q)Âb(q))
−1
, Zm ∼ N(0, Im). (39)

This representation highlights that the moment selection approach reduces the degrees of freedom

in the distribution of the bounding function.

Confidence sets for θ of the form (33) can now be constructed by using a fixed critical value or

a simulated critical value:

ĉ(21)(q) = c
(1)
(k(q),r̂21(q)) (40)

ĉ(22)(q) = 1− τ quantile of Ḡ
(
θ, q; Ω̂b

)
.
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The first critical value is obtained from an argument similar to the one in Section 4.2 and can be

easily computed based on (26). Notice that either k(q) or r̂21(q) could be equal to zero. If both

are zero, then Ḡ
(
θ, q; φ̂,W ∗T (·)

)
= 0 and the critical value c

(1)
(0,0) = 0, which implies (θ, q) ∈ CSθ,q(2)

as required. The second critical value, ĉ(22)(q), is potentially less conservative than the first, but

requires the simulation of a stochastic quadratic programming problem.

Theorem 2 Suppose that Assumption 1 is satisfied for φ ∈ P and Assumptions 2 and 3 are

satisfied. Then the confidence set CSθ(2), defined in (33) with one of the two critical values in (40),

is an asymptotically valid confidence set for θ:

lim inf
T

inf
φ∈P, θ∈Θ(φ)

Pφ{θ ∈ CSθ(2)} ≥ 1− τ,

where 0 < τ < 1/2.

A formal proof of Theorem 2 is provided in the Appendix and closely follows the proof of

Theorem 1 in Andrews and Soares (2010a). However, a number of modifications are required to

account for the potential rank reduction of S̃(q).

To construct a confidence set for θ, one could consider various alternatives by choosing different

objective functions and different moment selection rules, and by employing different approximation

methods for the critical values. We leave it as a future research topic to consider the alternative

approaches and compare them with the methods in the paper. For more details on the potential

alternative approaches, readers can refer to Andrews and Soares (2010a) and the references therein.

4.4 Implementation

The computation of frequentist error bands based on the confidence sets constructed in Sections 4.2

and 4.3 involves the discretization of the impulse response domain and the point-wise inversion of

test statistics based on potentially simulated critical values. Since error bands in the VAR literature

predominantly depict point-wise confidence sets, we focus on the computation of Θ(φ̂) as well as the

confidence sets CSθ(1) and CSθ(2) for k = 1. This computation has to be repeated for every response

∂yi,t+h/∂ε1,t of interest. Here i potentially ranges from i = 1, . . . , n and h = 0, 1, . . . , hmax. In

order to compute the confidence intervals, we start from a preliminary interval and then expand

or contract the boundaries of this preliminary interval until we have found the boundaries of Θ(φ̂)
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or CSθ(i). According to Lemma 1 it is guaranteed that the set Θ(φ̂) is a bounded interval. The

following lemma states that the confidence sets CSθ(i) are also bounded.6

Lemma 4 Suppose that Assumption 1 is satisfied and k̃ = 1. Then CSθ(1) and CSθ(2) defined in (25)

and (33) are bounded.

The computation of the confidence sets involves minimizations with respect to q, where q is

restricted to lie on the unit hypersphere. We start by randomly generating a set of q’s as follows:

let Z(s), s = 1, . . . , smax, be a sequence of n× 1 vectors of standard normal random variables and

define q(s) = Z(s)/‖Z(s)‖. It is well known, e.g., James (1954), that qs is uniformly distributed on

the unit-hypersphere defined by ‖q‖ = 1. Now define the grid Q = {q(1), . . . , q(smax)}.

Computing a Preliminary Interval Iθ for Θ(φ̂). A preliminary interval can be obtained as

follows:

1. Compute the estimator φ̂.

2. For each q(s) ∈ Q determine whether the responses θ(s) = S̃θ(q(s))φ̂ and S̃θ(q(s))φ̂ satisfy the

sign restrictions.

3. Define the boundaries of Iθ as the min and the max of the θ(s) responses that do satisfy the

sign restrictions.

Computing the Boundaries of Θ(φ̂). By construction, Iθ ⊆ Θ(φ̂). Thus, in order to find the

boundaries of Θ(φ̂), one can raise (lower) the upper (lower) bound of Iθ in a step-wise fashion, where

the step size δθ can be chosen as a fraction of the length of Iθ. Thus, assuming that θj−1 ∈ Θ(φ̂),

iteration j in the construction of the upper bound for Θ(φ̂) takes the following form:

1. Let θ(j) = θ(j−1) + δθ.

2. Compute Q(θ(j); φ̂,W ).

3. If Q(θ(j); φ̂,W ) = 0, then proceed to iteration j + 1. If Q(θ(j); φ̂,W ) > 0, then terminate the

iterations and set the upper bound of Θ(φ̂) to θ(j−1).

6Since the weight matrix W ∗(·) used in the construction of the confidence sets is a function of q, the proof of

Lemma 4 is not general enough to establish the convexity of the confidence interval.
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The lower bound of Iθ can be found in a similar manner. The objective function Q(θ(j); φ̂,W ) is

given in (18). While at this point W could be any positive-definite weight matrix, for the empirical

analysis in Section 6 we set W = Ŵ (q) and replace the threshold of zero by ε = c
(1)

k̃,r̃2
/106. Recall

from Section 4.3 that we can express the objective function Q(θ; φ̂, Ŵ ∗) as

Q(θ; φ̂, Ŵ ∗) = min
‖q‖=1

G
(
θ; q; φ̂, Ŵ ∗

)
,

where

G
(
θ; q; φ̂, Ŵ ∗

)
= min

µ≥0

∥∥∥∥S̃(q)φ−
(
θ

µ

)∥∥∥∥2

Ŵ ∗
+ T

k̃∑
j=1

I
{
S̃j,θ(q) = 0 and θj 6= 0

}
.

A parametric bootstrap procedure is used to estimate the covariance matrix Λ̂, which enters the

weight matrix. A standard quadratic programming procedure can be used to evaluate the function

G
(
θ; q; φ̂, Ŵ ∗

)
. The minimization of G

(
·
)

with respect to q is carried out in two steps. First, we

conduct a grid search over q ∈ Q. As soon as we find a value q∗ such that G
(
θ; q∗; φ̂, Ŵ

∗) < ε,

the grid search at iteration j can be terminated. In this case we reorder Q such that q∗ appears

first. If none of the q(s) ∈ Q satisfies the condition G
(
θ; q; φ̂, Ŵ ∗

)
< ε, we use the minimizing

q(s) as a starting value for a gradient-based minimization of the G(·) function. To conduct the

gradient-based minimization, q is transformed into spherical coordinates.

Computing a Preliminary Interval Cθ for CSθ(i). If the sampling variability of φ̂ is small

compared with the size of the estimated interval Θ(φ̂), then Θ(φ̂) is a reasonable choice as a

preliminary interval for the CSθ(i) confidence sets. If the sampling variability of φ̂ is relatively large

compared with the length of Θ(φ̂), then it might be preferable to start from a Bayesian credible

set for θ. Posterior computations under a conjugate MNIW (see the definition in Section 1) prior

distribution for the reduced form parameters and a prior distribution for q that is uniform (on

the unit hypersphere that is truncated to ensure that the sign restrictions are satisfied) are fairly

straightforward and described in detail in Uhlig (2005).

Computing the Boundaries of CSθ(i). The boundaries of CSθ(i) can be obtained by expanding

or contracting the boundaries of the preliminary interval Cθ in a step-wise manner. We have the

following ordering of the sets:

Θ(φ̂) ⊆ CSθ(2)(ĉ22) ⊆ CSθ(2)(ĉ21) ⊆ CSθ(1),

where ĉ22 is the simulated critical value and ĉ21 is the more conservative fixed critical value described

in Section 4.3. The computational strategy is similar to the one used for Θ(φ̂). Two differences
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are noteworthy. First, we use grid search only over Q to carry out minimizations with respect to

q. For all practical purposes, this grid search seemed to be sufficient in the empirical application.

Second, the computational time for the three confidence intervals decreases drastically with con-

servativeness. In applications with large numbers of inequality constraints, the simulated critical

value ĉ22 might take a very long time to compute. While we did not attempt to measure CPU time

carefully, it turned out that for the empirical analysis in Section 6.2, the computation of the CSθ(1)

error bands took a few hours, whereas the computation of the CSθ(2) error bands with simulated

critical values based on restrictions over horizons h = 0, . . . , 8 took several days on a multi-processor

computer. Thus, we strongly recommend to start the empirical analysis by computing CSθ(1) first.

This interval can then subsequently be refined by switching to the projection-based approach.

4.5 Discussion

We will subsequently provide a brief discussion of extensions and limitations of the results obtained

in Sections 4.2 and 4.3.

Profile versus Projection Approach. According to Lemma 3, the confidence set constructed

based on the projection approach (in conjunction with the selection of potentially binding moments)

weakly dominates the confidence set obtained with the profile approach. The main appeal of the

profile approach is that it is faster to compute CSθ(1) than CSθ(2). While the evaluation of r̂21 is

fairly straightforward, the calculation of the critical value c(2)(q̃) is very time consuming.

Union of Identified Sets. A conceptually straightforward approach of constructing a valid

confidence set for partially identified parameters is to take the union of identified sets Θ(φ) over

all values of φ in a 1 − τ confidence set CSφτ . According to Assumption 2, one can obtain an

asymptotically valid confidence set for the reduced form parameter as follows:

CSφ =

{
φ ∈ P

∣∣∣∣ T∥∥φ̂− φ∥∥2

Λ̂−1 ≤ c(χ2
m)

}
,

where c(χ2
m) is the 1− τ quantile of a χ2 distribution with m degrees of freedom. Then,

CSθU =
⋃

φ∈CSφ
Θ(φ). (41)

This confidence set is valid because

lim inf
T

inf
φ∈P,θ∈Θ(φ)

Pφ{θ ∈ CSθU} ≥ lim inf
T

inf
φ∈P

Pφ{φ ∈ CSφ} ≥ 1− τ.

The following lemma provides a convenient representation for CSθU .
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Lemma 5 Suppose Assumption 2 is satisfied. Then the confidence set constructed by taking unions

of the identified-sets, CSθU , defined in (41) can be represented as

CSθU =

{
θ

∣∣∣∣Mθθ ≥ 0 and Q
(
θ; φ̂, Ŵ ∗(·)

)
≤ c(χ2

m)

}
, (42)

where Ŵ ∗(·) is defined according to (23).

Lemma 5 implies that CSθ(1) defined in (25) and CSθU are identical except for the critical value

that is used to construct the level set. Since k̃ + r̃2 < m, the confidence set constructed by taking

unions of the identified-sets is more conservative than our proposed confidence sets based on the

profile and the projection approach.

Cumulative Impulse Responses. As in Section 2, consider a bivariate VAR composed of in-

flation and output growth, but now with nontrivial dynamics. Suppose that the sign restrictions

are specified as follows: in response to a positive demand shock, the log level of prices and output

will be nonnegative in periods 0 and 1. This case can be handled by defining the cumulative re-

sponses. It can be verified that the cumulation of responses is a special case of the quasi-triangular

transformation MS,2. Thus, Assumption 3 is satisfied.

Sign Restrictions Combined with Zero Restrictions. In our framework it is straightforward

to sharpen the identified set by combining sign restrictions with more traditional exclusion restric-

tions. Zero restrictions, e.g., on the impact or long-run effect of the shock of interest on the variables

yt could be imposed in one of two ways. First, in applications in which the zero restrictions are

imposed upon the impact effect of the shock and the variables yt are ordered appropriately, the zero

restrictions easily translate into domain restrictions for q. For instance, in the application presented

in Section 6 below, we consider a four-variable VAR and can impose the equality restrictions of

interest by setting the first two elements of q equal to zero. Second and more generally, one can

modify the function Q(θ;φ,W ) in (18) as follows:

Q(θ;φ,W ) = min
‖q‖=1, µ≥0

∥∥∥∥∥∥∥∥∥


 S̃θ(q)

S̃eq(q)

φ−
 θ

0


S̃R(q)φ− µ


∥∥∥∥∥∥∥∥∥

2

W

,

where S̃eq(q)φ corresponds to the responses that are restricted to be zero. Since the construction

of our confidence sets is based on a point-wise testing procedure that conditions on θ ∈ Θ(φ), the

inclusion of the equality restrictions essentially amounts to augmenting S̃θ(q) by S̃eq(q) and θ by a

vector of zeros. Thus, the results in Theorems 1 and 2 are directly applicable.
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Identifying Multiple Shocks. Some authors use sign-restricted SVARs to identify multiple

shocks simultaneously. For instance, Peersman (2005) considers a n = 4 dimensional VAR, com-

posed of oil price inflation, output growth, consumer price inflation, and nominal interest rates.

He uses sign restrictions to identify an oil price shock, aggregate demand and supply shocks, and a

monetary policy shock. To identify n shocks, the unit vector q has to be replaced by an orthogonal

matrix, and the restrictions will take the form

S̃θ(Ω)φ = θ and S̃R(Ω)φ ≥ 0

for suitably defined functions S̃θ(Ω) and S̃R(Ω). While all our results easily generalize to multiple

shocks (just replace q by Ω in the equations in Section 4.2), the implementation becomes compu-

tationally more difficult because the objective function G(θ,Ω; φ̂, Ŵ ∗(·)) now has to be minimized

over the domain of Ω rather than the unit hypersphere.

Variance Decompositions and Dynamic Correlations. Faust (1998) was not interested in

the impulse responses to a monetary policy shock. Instead his goal was to measure the fraction

of the variance of output explained by monetary policy shocks. Canova and De Nicolo (2002) did

not restrict the sign of impulse responses. Instead they restricted the sign of dynamic correlations

generated by structural shocks to attain partial identification. Both variance decompositions and

dynamic correlations involve objects of the form

H∑
h=0

ChΣtrqq
′Σ′trC

′
h+j ,

where H is potentially infinite. Thus, our linear function S̃(q)φ would have to be replaced by a

nonlinear function of the form S̃(q, φ), which in turn needs to be approximated with a first-order

Taylor expansion. Since most of the recent empirical literature focuses on impulse responses, we

do not pursue the extension to nonlinear functions S̃(q, φ) in this paper.

Nonstationary VARs. Some authors, e.g., Uhlig (2005), specify the VAR in terms of variables

that exhibit (near) nonstationary dynamics, such as the log level of GDP, or the log levels of

consumer or commodity price indices. We assumed that φ̂ has a Gaussian limit distribution.

This assumption is violated in VARs with nonstationary endogenous variables, see Phillips (1998).

However, an extension of our analysis to VARs with unit roots or cointegration restrictions is beyond

the scope of this paper because even the construction of a uniformly valid confidence interval for φ

in such an environment is very challenging, e.g., Mikusheva (2007).
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Error Bands versus Point Estimates. In addition to error bands, authors in practice often

report median or mean response functions for sign-restricted VARs. While these median or mean

responses are well defined in a Bayesian framework – as mean or median of the posterior distribution,

which asympotically concentrates on the identified set – they are not meaningful objects in a

frequentist framework. If θ is a scalar and hence interval-identified, one could construct a point

estimator from a minimax decision problem:

θ̂ = argminθ̃∈Θ(φ) max
θ∈Θ(φ)

L(θ̃ − θ).

If the error loss function is symmetric and Θ(φ) is an interval, then it is optimal to choose the mid

point of the interval. A general analysis of minimax decision problems in interval identified models

is provided by Song (2009).

5 Monte Carlo Illustrations

In this section we conduct two Monte Carlo experiments to illustrate the properties of our proposed

confidence sets. The first experiment is based on the simple example of Section 2. For the second

experiment we introduce some autoregressive dynamics to examine the effect of serial correlation

on the estimation of the reduced form parameters as well as the impulse responses. The simulation

designs, summarized in Table 1, are obtained by fitting a VAR(0) to data on U.S. inflation and

GDP growth (Section 5.1) and fitting VAR(1)s to inflation and either output growth or linearly

detrended log GDP (Section 5.2).

We also provide a comparison between frequentist confidence sets and Bayesian credible sets.

The Bayesian credible sets are based on a Gaussian VAR that can be written as a linear regression

model of the form

y′t = x′tΦ + u′t, ut ∼ N (0,Σ). (43)

Here x′t = [y′t−1, . . . , y
′
t−p] and Φ = [Φ1, . . . ,Φp]

′. The matrices Φ and Σ collect the reduced-form

parameters of the VAR. We now introduce an unnormalized vector q̃ such that q = q̃/‖q̃‖. If

q̃ ∼ N(0, In), then q is uniformly distributed on the hypersphere. Following Uhlig (2005), we use

an improper prior of the form

p(Φ,Σ, q̃) ∝ |Σ|−(n+1)/2 exp{−q̃′q̃/2}I{(Φ,Σ, q̃) ∈ S}. (44)
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S denotes the set of triplets (Φ,Σ, q̃) such that the impulse responses of the corresponding structural

VAR satisfy the sign restrictions:

S =

{
(Φ,Σ, q̃)

∣∣∣∣ ∃ θ ∈ Θ s.t. S̃θ(q̃/‖q̃‖)φ(Φ,Σ) = θ, S̃∗R(q̃/‖q̃‖)φ(Φ,Σ) ≥ 0

}
.

Draws from the posterior distribution of (Φ,Σ, q̃) can be easily generated with the acceptance

sampler described in Uhlig (2005). These draws can then be converted into impulse responses and

credible sets can be computed from the impulse response draws.

5.1 Experiment 1

The first Monte Carlo experiment is based on the simple example discussed in Section 2: yt = ut

where ut ∼ iidN(0,Σu). The parameterization of the data generating process is provided in Table 1

in the column labeled Design 1. The goal is to obtain a confidence set for the response of y1,t to

ε1,t, denoted by θ. According to our simulation design, the identified set for θ is Θ(φ0) = [0, 0.578].

The objective function for the construction of the confidence set is given by (6), where the generic

weight matrix W is replaced by the optimal weight matrix W ∗(q) in (23). The computation of

W ∗(q) requires an estimate of the asymptotic covariance matrix Λ. To obtain this estimate we

use a parametric bootstrap to approximate the sampling distribution of φ̂.7 Since r2 = 1 and the

objective function incorporates only one inequality condition - which is binding at the boundary of

the confidence interval - we only compute the profile-objective-function based confidence set CSθ(1)

with critical value c
(1)
1,1 = 3.82. The lower bound of the confidence set is equal to zero, and we find

its upper bound by step-wise expansion of the upper bound of Θ(φ0). To conduct the Monte Carlo

experiment, the following steps are repeated nsim times:

1. Generate a sample of size T from the data generating process.

2. Compute φ̂, Λ̂, and the upper bound of Θ(φ̂).

3. Compute the upper bound of the 90% frequentist confidence interval CSθ(1).

4. Compute a 90% Bayesian credible set for θ based on the Bayesian VAR given by (43) and (44).

7Conditional on the estimate Σ̂tr we generate bootstrap samples from y∗t = Σ̂trv
∗
t where v∗t ∼ N(0, I2). For each

bootstrap sample, we compute φ̂∗ and estimate Λ̂ as the covariance matrix of φ̂∗ across bootstrap samples.
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The results for nsim = 10 and T = 100 are plotted in Figure 1. The x − axis denotes the

iteration of the simulation algorithm. Since the lower bounds of Θ(φ0), Θ(φ̂), and the frequentist

confidence intervals are zero, our discussion focuses on the upper bound. We reordered the simula-

tions according to the upper bound of Θ(φ̂). In about half of the simulations, the upper bound of

Θ(φ̂) exceeds that of Θ(φ0). In 9 out of 10 repetitions, each value θ ∈ Θ(φ) is contained in the fre-

quentist confidence set CSθ(1). The upper bound of the Bayesian credible sets essentially coincides

with the upper bound of Θ(φ̂). This is consistent with the formula for p(θ|φ) in (4), which implies

that in this stylized model the prior density is increasing in θ, and conditional on the reduced form

parameters, peaks at the upper bound of Θ(φ). The lower bounds of the Bayesian intervals are

strictly greater than zero, which means that for our relatively large sample the Bayesian credible

intervals lie inside Θ(φ̂), a point emphasized in Moon and Schorfheide (2009).

If we increase the number of repetitions to nsim = 1, 000, then the upper bound of the identified

set is covered by the frequentist interval in 93% of the repetitions and by the Bayesian interval only

in 40% of the repetitions. Detailed results for the frequentist confidence interval are summarized

in Table 2. At a sample size of T = 5, 000, the actual coverage probability of the reduced-form

parameter confidence set CSφ equals the nominal coverage probability of 90%. The actual coverage

probability of CSθ(1) for the upper bound of Θ(φ), on the other hand, is 95% instead of 90%. Since

the critical value that we use to construct the impulse response confidence interval CSθ(1) is based

on an upper bound of the criterion function in which we replace the argmin with respect to q

by a specific value q̃, see (28), the resulting confidence interval is conservative. In this particular

design with k̃ = 1 and r̃2 = 1, there is no gain from the moment-selection approach and the

simulation of q-specific critical values, because at the upper of the identified set the one and only

moment inequality is binding. Thus, CSθ(1) = CSθ(2) and the discrepancy between actual and

nominal coverage probability can also be interpreted as conservativeness induced by the projection

approach.

For smaller sample sizes of T = 100 and T = 500, the coverage probability of CSφ is 82%

and 94% and thus deviates from the desired nominal size. Since CSθ(1) is conservative, a fairly low

coverage probability for φ at T = 100 still translates into a confidence interval for θ that exceeds

the nominal coverage probability. The average length of CSθ(2) shrinks from 0.64 for T = 100 to 0.59

for T = 5, 000. Thus, as the sample size increases, the length of the confidence interval approaches

the length of the identified set. As a comparison, the 90% Bayesian credible sets have an average

length of 0.5, which is less than the length of the identified set. From a frequentist perspective, the
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Bayesian intervals have a coverage probability of about 45%.

5.2 Experiment 2

We now add first-order autoregressive terms to the simulation design to introduce persistence in

the endogenous variables:

yt = Φ1yt−1 + ut, ut ∼ iidN(0,Σu).

Our choices for Φ1 and Σu are summarized in Table 1 under the headings Design 2, Design 3, and

Design 4. The designs differ with respect to the persistence of the vector autoregressive process.

Design 2 is the least persistent. The eigenvalues of Φ1 are 0.871 and 0.231. Design 4 is the most

persistent with eigenvalues 0.955 and 0.498. We focus on responses at horizon h = 1, which can

be obtained from Rv1 = ΦΣtr. The structural parameter of interest, θ, is defined as ∂y1,t+1/∂ε1,t

and we impose the sign restrictions that both θ as well as ∂y2,t+1/∂ε1,t are nonnegative. To

simplify the computations, in particular the evaluation and minimization of the objective function

G
(
θ, q; φ̂, Ŵ ∗(·)

)
, we do not impose sign restrictions on the responses at impact or at horizons

greater than h = 1. We follow the steps outlined in Section 5.1 to implement the Monte Carlo

experiment. A simplified representation for the objective function G
(
θ, q; φ̂, Ŵ ∗(·)

)
can be found

in the Appendix.

The simulation results for confidence intervals with a nominal coverage of 90% are summarized

in Table 2. We consider sample sizes T = 100 and T = 500. As for the VAR(0), the confidence

intervals for the impulse response are generally conservative. The coverage probabilities reported

in the table refer to the upper endpoint of the identified interval Θ(φ0). The actual coverage

probabilities range from 92% to 98% and reflect the somewhat distorted coverage probabilities of

CSφ, which range from 83% to 95%. However, due to the conservativeness of the critical values

that are used to construct CSθ(1), its actual coverage probability never falls below 90%. The average

length of the confidence sets under Design 2 and Design 3 drops by about 10% as the sample size

is increased from 100 to 500 observations. For Design 4 the reduction is slightly larger than 20%.

For T = 500 the confidence intervals are about 10% longer than the identified sets.

6 Empirical Illustration

We now apply the previously developed methods to a four variable VAR. The vector of observables

consists of real GDP, inflation, a nominal interest rate, and real money balances. We will consider
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two partial identification schemes for monetary policy shocks and compare the typically computed

Bayesian credible bands with the proposed frequentist error bands.

6.1 Data

The construction of the data set follows Aruoba and Schorfheide (2011). Unless otherwise noted,

the data are obtained from the FRED2 database maintained by the Federal Reserve Bank of St.

Louis. Per capita output is defined as real GDP (GDPC96) divided by civilian noninstitutionalized

population (CNP16OV). The population series is provided at a monthly frequency and converted to

quarterly frequency by simple averaging. We take the natural log of per capita output and extract

a deterministic trend by OLS regression over the period 1959:I to 2006:IV. The deviations from

the linear trend are scaled by 100 to convert them into percentages. Inflation is defined as the log

difference of the GDP deflator (GDPDEF), scaled by 400 to obtain annualized percentage rates.

Our measure of nominal interest rates corresponds to the federal funds rate (FEDFUNDS), which is

provided at monthly frequency and converted to quarterly frequency by simple averaging. We use

the sweep-adjusted M2S series provided by Cynamon, Dutkowsky and Jones (2006). This series is

recorded at monthly frequency without seasonal adjustments. The EVIEWS default version of the

X12 filter is applied to remove seasonal variation. The M2S series is divided by quarterly nominal

GDP to obtain inverse velocity. We then remove a linear trend from log inverse velocity and scale

the deviations from trend by 100. Since our VAR is expressed in terms of real money balances, we

take the sum of log inverse velocity and real GDP. Finally, we restrict our quarterly observations

to the period from 1965:I to 2005:I. All VAR’s are estimated with p = 2 lags.

6.2 Pure Sign Restrictions

In order to make inference about the effects of a contractionary monetary policy shock, the following

sign restrictions are used to bound the identified set: in periods h = 0, 1 (i) the inflation response

is nonpositive; (ii) the interest rate response is nonnegative; (iii) real money balances do not rise

above their steady state level. Figure 2 depicts three bands: (point-wise) 90% frequentist confidence

intervals, estimated sets Θ(φ̂), and (point-wise) 90% Bayesian credible sets. The confidence intervals

are the ones obtained from the projection-based approach, using the Andrews and Soares (2010a)

moment selection with simulated critical values, denoted by CSθ(2)(ĉ22) in Section 4. The two most

notable features of the error bands are that the frequentist error bands (solid) are substantially
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wider than the Bayesian error bands (short dashes) and that the Bayesian error bands approximately

coincide with the estimated set Θ(φ̂). As explained in detail in Moon and Schorfheide (2009), in

a large sample (a sample in which uncertainty about φ is small compared with the size of Θ(φ))

the Bayesian intervals lie inside the estimated set Θ(φ̂) because in the limit essentially all the

probability mass is concentrated on Θ(φ̂) and a 90% credible interval is always a subset of the

support of the posterior distribution. The frequentist interval, on the other hand, has to extend

beyond the boundaries of Θ(φ̂) because it has to have, say, 90% coverage probability for every

element of the identified set Θ(φ), including the boundary points. From a substantive perspective,

the use of sign restrictions leaves the direction of the output response undetermined.

Figure 3 compares the profile-objective-function-based confidence set CSθ(1) of Section 4.2 with

the two projection-based sets CSθ(2)(ĉ21) and CSθ(2)(ĉ22) of Section 4.2. As discussed previously, the

three sets are nested, which is also apparent from the figure. In the top panel, the sign restrictions

are imposed over the horizons h = 0 and h = 1. It turns out that the error bands are very

similar because the moment selection procedure only eliminates very few inequalities, or, in other

words, most of the inequalities seem to be binding at the boundary of the confidence sets. In

the bottom panel of Figure 3, the sign restrictions are imposed at horizons h = 0, 1, . . . , 8, which

increases the number of inequality restrictions from 6 to 27. While the gain from eliminating

nonbinding moment conditions in itself is relatively small, i.e., CSθ(1) and CSθ(2)(ĉ21) are quite

similar, replacing the conservative critical value ĉ21 by the simulated critical value ĉ22 generates

substantially smaller bands. A comparison of the CSθ(2)(ĉ21) intervals for output in the top and the

bottom panel of Figure 3 suggests that expanding the horizon over which the sign restrictions are

imposed increases the uncertainty. However, the widening of the error bands is due to an increase

in the conservativeness of the confidence intervals. It turns out that the use of simulated critical

values corrects the paradoxical feature: as we expand the horizon, the CSθ(2)(ĉ22) bands indeed

shrink.

6.3 Combining Sign Restrictions and Zero Restrictions

A commonly used identification assumption for monetary policy shocks is that private sector vari-

ables such as output and inflation cannot respond within the period, see for instance Boivin and

Giannoni (2006). Since the initial impact of the monetary policy shock is given by Σtrq and we

ordered the elements of yt such that output and inflation appear before interest rates and real

money balances, the identification condition implies that the first two elements of the vector q have
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to be equal to zero. Thus, we can express q = [0, 0, cosϕ, sinϕ]′, where ϕ ∈ [0, 2π]. The zero

restriction on the instantaneous inflation response replaces the sign restriction used in Section 6.2.

We maintain the other sign restrictions used previously, that is, the inflation response in period

h = 1 as well as the real money balance responses in periods h = 0 and h = 1 are nonpositive and

the interest rate responses for h = 0 and h = 1 are nonnegative.

Impulse response bands are depicted in Figure 4. The first panel compares the frequentist

bands CSθ(2)(ĉ22), Bayesian credible bands, and the estimated sets Θ(φ̂). A comparison of Θ(φ̂)

in Figures 2 and 4 indicates that the use of zero restrictions reduces the size of the identified set

drastically. For instance, if the zero restrictions are imposed, the inflation response is essentially

point identified for horizons exceeding 8 quarters. As a consequence, for output as well as medium-

and long-run inflation responses, the width of the frequentist and Bayesian error bands is now much

more similar than under the pure-sign-restriction scenario. However, some differences remain with

respect to the short-run inflation response. For the first two years, the frequentist intervals cover

both positive and negative inflation responses, whereas the Bayesian credible intervals suggest that

the inflation response is negative. With the zero restrictions imposed, the direction of the output

response is no longer ambiguous – it is negative over the first two years.

The bottom panel of Figure 4 provides a comparison of the three different frequentist confidence

intervals considered in Sections 4.2 and 4.3. It turns out that the two projection-based confidence

intervals are essentially indistinguishable, which means that there is no gain from simulating the

critical values. However, the projection-based intervals are noticeably narrower than the profile-

objective-function based bands. It turned out that the sign restrictions imposed on the real money

balance response (not shown in the figure) are not binding. Thus, the moment selection procedure

is able to produce somewhat sharper inference.

7 Conclusion

This paper develops methods to construct error bands for impulse responses in VARs that are

identified based on sign restrictions. The error bands that have been reported in the literature

thus far were only meaningful from a Bayesian perspective. Our empirical application illustrates

that in partially identified VARs, frequentist error bands can be substantially wider than Bayesian

error bands. The impulse response confidence intervals are constructed through a point-wise testing

procedure, which is a technique that is widely used in models that are either weakly or only partially
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identified. We consider three different intervals. The most conservative one is based on a profile-

objective function that concentrates out the nuisance parameter q, which maps the orthogonolized

shocks into the structural shock of interest. The advantage of this confidence set is that it is easy

to compute because it relies on an asymptotic critical value that is nuisance parameter free. The

sharpest confidence intervals are obtained by a projection-approach that combines the Andrews and

Soares (2010a) moment selection procedure with simulated critical values that depend on q. Its

disadvantage is that it takes a long time to compute because each simulated critical value requires

the solution of thousands of quadratic programming problems. As a by-product, we also provide

a procedure to compute the set Θ(φ̂) for impulse responses conditional on the estimated reduced

form parameters. Since in a Bayesian analysis, the prior distribution of the impulse response

functions conditional on the reduced form parameters does not get updated, it is useful to report

the identified set conditional on some estimate, say, the posterior mean of Φ and Σ so that the

audience can judge whether the conditional prior distribution is highly concentrated in a particular

area of the identified set.
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A Proofs of Main Theorems

This section provides proofs for Theorems 1 and 2. The proofs make use of various lemmas that are

stated and proved in the Online Appendix that accompanies this paper. The proof of Theorem 2

closely follows the proofs provided in Andrews and Soares (2010b). However, several modifications

are needed to account for the potential row rank reduction of the matrix S̃(q).

Proof of Theorem 1: Define CPT (φ, θ) = Pφ{θ ∈ CSθ(1)} and

AsyCP = lim infT inf
φ∈P, θ∈Θ(φ)

CPT (φ, θ).

Then there exists a sequence {φT , θT } such that θT ∈ Θ(φT ) and

AsyCP = lim infT CPT (φT , θT ).

Furthermore, there exists a subsequence {T ′} ⊆ {T} such that

AsyCP = lim
T ′

CPT (φT ′ , θT ′).

Recall the definition Σ(q) = S(q)ΛS(q)′. We will use the decompositions Λ(φ) = L(φ)L′(φ) and

Σ(q) = D1/2(q)Ω(q)D1/2(q), where D1/2(q) is a diagonal matrix of standard deviations and Ω(q)

is a correlation matrix. Without loss of generality we can choose a further subsequence {T ′′} ⊆

{T ′} such that the following conditions are satisfied: (i) φT ′′ −→ φ and Λ(φT ′′) −→ Λ(φ). (ii)

r2(qT ′′) = r2, k(qT ′′) = k, and l(qT ′′) = k + r2. (iii) A(qT ′′) = [D−1/2(qT ′′)S(qT ′′)L(qT ′′)]
′ −→ A

and Ω(qT ′′) −→ A′A > 0. Condition (ii) can be satisfied because the row dimensions are integer

valued. Condition (iii) is a consequence of Lemma B 5. Along the T ′′ sequence, the rank of S(qT ′′)

stays constant.

Before proceeding with the proof, it is instructive to consider the following example. Suppose

q = [q1, q2]′,

S(q) =

 q1 0 0

0 q1 q2

 , L(φ) =


1 0 0

φ 1 0

0 0 1

 , Σ(q) =

 q2
1 φq2

1

· (1 + φ2)q2
1 + q2

2

 .
Thus,

D1/2(q) =

 q1 0

0
√
q2

1(1 + φ2) + q2
2

 , Ω(q) =

 1 φq1√
q21(1+φ2)+q22

· 1

 .
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Now consider a sequence of the form (dropping the primes) qT = [c/T, 1− c/T ]′, T = 1, 2, . . ., with

limT−→∞ qT = q̄ = [0, 1]′. Notice that although the row rank of S(q̄) is one and Σ(qT ) converges

to the reduced rank and noninvertible matrix Σ(q̄), the rank of S(qT ) is l(qT ) = 2 for every T and

the following limits are well defined:

lim
T−→∞

D−1/2(qT )S(qT )L(φT ) =

 1 0 0

0 0 1

L(φ̄) = I2 = A′, lim
T−→∞

Ω(qT ) = I2 > 0.

For notational convenience from now on we denote {T ′′} as {T}. For each φT and θT ∈ Θ(φT ),

there exist qT and µT such that ‖qT ‖ = 1, S̃θ(qT )φT = θT and S̃R(qT )φT = µT . Recall that for

θ ∈ Θ(φ) the penalty term that appears in (24) has to be zero. The starting point for the remainder

of the proof is the bounding function obtained in (28):

Q̄
(
q̃; φ̂, Ŵ ∗(·)

)
= min

ν≥0

∥∥∥∥S(qT )
√
T (φ̂− φT )− V (qT )Mνν

∥∥∥∥2

Σ̂−1(qT )

(45)

= min
ν≥0

∥∥∥∥S(qT )
√
T (φ̂− φT )− V (qT )Mνν

∥∥∥∥2

Σ−1(qT )

+ op(1)

= min
ν≥0

∥∥∥∥D−1/2(qT )S(qT )L(φT )ζ̂T − V (qT )Mνν

∥∥∥∥2

Ω−1(qT )

+ op(1).

According to Lemma B 1 we can replace Ŵ ∗(·) by W ∗(·), which leads to the second equality. The

final equality is based on the definition ζ̂T =
√
TL−1(φT )(φ̂− φT ).

For brevity, let ST = S(qT ), LT = L(φT ), ΩT = Ω(qT ), DT = D(qT ), and AT = A(qT ). We

consider the following three cases: (i) r2 ≥ 1, (ii) k = 1 and r2 = 0, and (iii) l = k = r2 = 0.

Case (i): r2 ≥ 1. Partition S′T = [S′1,T , S2,T ]′, where S2,T is the last row of ST . Since r2 ≥ 1, it is

guaranteed that S2,T is nonempty. (When k = 0, we set ST = S2,T and there is no partition.)

Denote the conforming partitions of ΣT by Σij,T = Si,TΛTS
′
j,T . Moreover, let ΩT be composed

of Ωij,T = D
−1/2
i,T Si,TΛS′j,TD

−1/2
j,T and Ai,T = L′TS

′
i,TD

−1/2
i,T , i, j = 1, 2. Finally, define the projection

matrix PAi,T = Ai,T (A′i,TAi,T )−1A′i,T and denote the last element of V (qT )Mνν by ν2. Then, using

a similar argument as in the main text

min
ν≥0

∥∥∥∥D−1/2
T STLT ζ̂T − V (qT )Mνν

∥∥∥∥2

Ω−1
T

(46)

≤
∥∥∥∥A′1,T ζ̂T∥∥∥∥2

(A′1,TA1,T )−1

+ min
ν2≥0

∥∥∥∥A′2,T (I − PA1,T
)ζ̂T − ν2

∥∥∥∥2

(A′2,T (I−PA2,T
)A2,T )−1

=⇒ χ2
k+r2−1 + I{Z ≤ 0}Z2.
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The inequality is obtained by setting all but the very last element of the vector V (qT )Mνν equal

to zero. Due to the projection, Z ∼ N(0, 1) is independent of the χ2
l−1 random variable in the limit

distribution. Let c
(1)
l be the 1− τ critical value associated with the limit distribution χ2

l−1 +I{Z ≤

0}Z2. Since l = k + r2 ≤ k̃ + r̃2, we obtain c
(1)
(k,r2) ≤ c

(1)

(k̃,r̃2)
and can deduce from (45) and (46) that

AsyCP = lim
T

PφT

{[
min
ν≥0

∥∥∥∥D−1/2
T STLT ζ̂T − V (qT )Mνν

∥∥∥∥2

Ω−1
T

]
≤ c(1)

k̃+r̃2

}

≥ lim
T

PφT

{[∥∥∥∥A′1,T ζ̂T∥∥∥∥2

(A′1,TA1,T )−1

+ min
ν2≥0

∥∥∥∥A′2,T (I − PA1,T
)ζ̂T − ν2

∥∥∥∥2

(A′2,T (I−PA2,T
)A2,T )−1

]
≤ c(1)

l

}
= 1− τ.

Case (ii): k = 1 and r2 = 0. In this case, V (qT )Mν = 0 and

min
ν≥0

∥∥∥∥D−1/2
T STLT ζ̂T − V (qT )Mνν

∥∥∥∥2

Ω−1
T

=

∥∥∥∥D−1/2
T STLT ζ̂T

∥∥∥∥2

Ω−1
T

=⇒ χ2
1.

Since c
(1)
(1,0) ≤ c

(1)

(k̃,r̃2)
, we have

AsyCP = lim
T

PφT

{[
min
ν≥0

∥∥∥∥D−1/2
T STLT ζ̂T − ν

∥∥∥∥2

Ω−1
T

]
≤ c(1)

(k̃,r̃2)

}

≥ lim
T

PφT

{[
min
ν≥0

∥∥∥∥D−1/2
T STLT ζ̂T − ν

∥∥∥∥2

Ω−1
T

]
≤ c(1)

(0,1)

}
= 1− τ,

as required for Case (ii).

Case (iii): l = k = r2 = 0. In this case the objective function is zero for θT ∈ Θ(φT ) and it is

guaranteed that θT is included in the confidence set. This completes the proof of the theorem. �

Proof of Theorem 2: According to Lemma B 6 it suffices to show that CSθ,q(2) is a valid 1 − τ

confidence set. Denote CPT (φ, θ, q) = Pφ{θ ∈ CSθ,q(2)} and

AsyCP = lim inf
T

inf
φ∈Φ

inf
θ∈Θ(φ)

inf
q∈Q(θ,φ)

CPT (φ, θ, q).

Then, there exist sequences {φT , θT , qT } such that θT ∈ Θ(φT ), qT ∈ Q(θT , φT ), and

AsyCP = lim inf
T
CPT (φT , θT , qT ).



37

Furthermore, there exists a subsequence of T , {T ′} ⊂ {T}, such that

AsyCP = lim
T ′
CPT ′(φT ′ , θT ′ , qT ′).

In what follows, we show that there exists a second subsequence {T ′′} ⊂ {T ′} such that

lim
T ′′

CPT ′′(φT ′′ , θT ′′ , qT ′′) ≥ 1− τ, (47)

which proves the theorem.

Since qT ′ ∈ Q (θT ′ , φT ′) , we have θT ′ = Sθ (qT ′)φT ′ . Moreover, the penalty term that appears

in (24) is equal to zero. Define µ (qT ′ , φT ′) = SR (qT ′)φT ′ . Then, by Lemma B 2, we have

G
(
θT ′ , qT ′ ; φ̂, Ŵ

∗(·)
)

= G
(
θT ′ , qT ′ ; φ̂,W

∗(·)
)

+ op(1),

where

G
(
θT ′ , qT ′ ; φ̂,W

∗(·)
)

= min
v≥−

√
Tµ(qT ′ ,φT ′ )

∥∥∥S (qT ′)
√
T ′
(
φ̂− φT ′

)
−Mvv

∥∥∥2

Σ−1(qT ′ )

= min
v≥−

√
TD
−1/2
R µ(qT ′ ,φT ′ )

∥∥∥D−1/2S (qT ′)
√
T ′
(
φ̂− φT ′

)
−Mvv

∥∥∥2

Ω−1(qT ′ )
.

Here we used the notation that Σ(q) = S(q)ΛS(q)′ with the factorization Σ(q) = D1/2(q)Ω(q)D1/2(q),

where Ω is a correlation matrix and D1/2 is a diagonal matrix of standard deviations that can be

partitioned into diag(D
1/2
θ , D

1/2
R ). The partitions conform with S(q) = [S′θ(q), S

′
R(q)]′.

The subsequence T ′′ is chosen such that the following conditions are satisfied: (i) φT ′′ −→ φ

and Λ(φT ′′) −→ Λ. (ii) k(qT ′′) = k, r2(qT ′′) = r2, l(qT ′′) = l. (iii) For j = 1, . . . , r2 the slackness in

inequality j converges to

√
T ′′µj(q

′′
T , φ

′′
T ) −→ hj (48)

κ−1
T ′′D

−1/2
jj,R (qT ′′)

√
T ′′µj(q

′′
T , φ

′′
T ) −→ πj . (49)

such that one of the following is true: (a) hj < ∞ and πj = 0; (b) hj = ∞ and πj < ∞; (c)

hj < ∞ and πj = ∞. Roughly speaking, in case (a) the slackness is small and the selection

criterion regards the inequality asymptotically as binding. In case (c) the slackness is large and

the selection criterion regards the inequality as nonbinding. (iv) [D−1/2(qT ′′)S(qT ′′)L(φT ′′)]
′ −→ A

and the correlation matrix Ω(qT ′′) −→ A′A > 0. Condition (ii) can be satisfied because the row
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dimensions are integer-valued. Lemma B 5 guarantees the existence of the full rank matrix A in

condition (iv).

We now reorder the rows of S(qT ′′) such that πj = 0 for rows j = 1, . . . , r21 and πj > 0 for

rows j = r21 + 1, . . . , r2. Under this ordering, the moment-selection procedure will eventually

eliminate the last r22 = r2 − r21 rows of S(qT ′′). For notational convenience, instead of using the

subsubsequence notation T ′′, we shall use T from now on. Moreover, we denote µT = µ(qT , φT ),

LT = L(φT ), DT = D(qT ), and ΩT = Ω(qT ).

In what follows we distinguish three cases: (i) l > 0 and l > r22. When l > r22, along the

sequence qT , either the selection criterion picks up at least one inequality as binding (i.e., r21 ≥ 1),

or Sθ(q) is not zero (i.e., k ≥ 1). (ii) l = r22, which implies that k = 0 and r12 = 0. (iii) Finally,

we consider l = 0.

Case (i): l > 0, and l > r22. We consider the fixed asymptotic critical value approach and the

simulated critical value approach separately.

Fixed Asymptotic Critical Value Approach: Conformable to the dimensions r21 and r22,

partition

µT = [µ′1,T , µ
′
2,T ]′, ν = [ν ′1, ν

′
2]′, SR,T = [S′1,R,T , S

′
2,R,T ]′.

Moreover, let

S1,T = [S′θ,T , S
′
1,R,T ]′, and S2,T = S2,R,T .

and partition

ΣT =

 Σ11,T Σ12,T

Σ12,T Σ22,T

 , ΩT =

 Ω11,T Ω12,T

Ω12,T Ω22,T

 .
Notice that when r21 = 0, then S1,T = Sθ,T . If r22 = 0, then the S2,T partition is empty. According

to Lemma B 7 we can use the following approximation:

G
(
θT , qT ; φ̂,W ∗(·)

)
= G1

(
θT , qT ; φ̂,W ∗(·)

)
+ op(1),

where

G1

(
θT , qT ; φ̂,W ∗(·)

)
= min

ν1≥−
√
Tµ1,T

∥∥∥S1,T

√
T (φ̂− φT )−Mν1ν1

∥∥∥2

Σ−1
11,T

.

Using an argument similar to the one used in the proof of Theorem 1, we deduce

lim
T

PφT

{
G1

(
θT , qT ; φ̂,W ∗(·)

)
≤ c(1)

(k,r21)

}
≥ 1− τ. (50)
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Then along the sequence qT , we have

AsyCP = lim
T

CPT (φT , θT , qT )

= lim
T

PφT

{
G
(
θT , qT ; φ̂,W ∗(·)

)
≤ c(1)

(k(qT ),r̂21(qT ))

}
≥ lim

T
PφT

{
G
(
θT , qT ; φ̂,W ∗(·)

)
≤ c(1)

(k(qT ),r̂21(qT )), c
(1)
(k,r21) ≤ c

(1)
(k(qT ),r̂21(qT ))

}
≥ lim

T
PφT

{
G
(
θT , qT ; φ̂,W ∗(·)

)
≤ c(1)

(k,r21), c
(1)
(k,r21) ≤ c

(1)
(k(qT ),r̂21(qT ))

}
≥ lim

T
PφT

{
G
(
θT , qT ; φ̂,W ∗(·)

)
≤ c(1)

(k,r21)

}
+

[
1− lim

T
PφT

{
c

(1)
(k,r21) ≤ c

(1)
(k(qT ),r̂21)

}]
= lim

T
PφT

{
G
(
θT , qT ; φ̂,W ∗(·)

)
≤ c(1)

(k,r21)

}
= lim

T
PφT

{
G1

(
θT , qT ; φ̂,W ∗(·)

)
≤ c(1)

(k,r21)

}
≥ 1− τ.

In the preceding inequalities the critical value based on the estimated number of potentially binding

moment conditions, c
(1)
(k(qT ),r̂21(qT )), is replaced by the critical value that depends on the number of

binding moment conditions along the qT sequence, c
(1)
(k,r21). The fifth line holds since P (A ∩ B) =

P (A)−P (A∩Bc) ≥ P (A)−P (Bc) and the sixth line is a consequence of Lemma B 8. Finally, the

last equality follows from (50). Then, we have the required result for (47).

Simulated Critical Value Approach: We start with the simple case when r2 = 0. In this case,

since Mν = 0, we have

G
(
θ, q; φ̂,W ∗T (·)

)
=
∥∥∥D̂−1/2S(q)

√
T (φ̂− φ)

∥∥∥2

Ω̂−1(q)
⇒ χ2

k. (51)

and ĉ(22)(q) is the (1 − τ) quantile of Ḡ
(
θ, q; Ω̂b

)
, where Ḡ

(
θ, q; Ω̂b

)
=
∥∥∥Â′Zm∥∥∥2

(Â′Â)−1
∼ χ2

k, as

required.

Now suppose that r2 ≥ 1. Given q and the slackness measure ξT (q), define

ϕj,T (q) =

 ∞ if ξj,T (q) ≥ κT
0 otherwise

(52)

for j = 1, . . . , r2(q). Let ϕT (q) = [ϕ1,T (q), . . . , ϕr2(q)(q)]
′, and define ϕ̂T (q) by replacing ξj,T (q)

in (52) with ξ̂j,T . Recall that the critical value ĉ(22)(q) in Section 4.3 (using slightly different

notation) was defined as

ĉ(22)(q) = 1− τ quantile of

(
min

ν≥−ϕ̂T (q)

∥∥∥Â′(q)Zm −Mνν
∥∥∥2

(Â′(q)Â(q))−1

)
.
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We will proceed by defining two additional critical values, denoted by ĉ∗(22)(q) and c∗(22). Let

ϕ∗j,T (q) =

 ϕj,T (q) if πj = 0

∞ otherwise

for j = 1, . . . , r2(q) and collect the individual elements in the vector ϕ∗T (q). Similarly, define ϕ̂∗j,T (q)

and ϕ̂∗T (q). Notice that by construction ϕ̂∗T (q) ≥ ϕ̂T (q). Define ĉ∗(22) as

ĉ∗(22)(q) = 1− τ quantile of

(
min

ν≥−ϕ̂∗T (q)

∥∥∥Â′(q)Zm −Mνν
∥∥∥2

(Â′(q)Â)−1(q)

)
. (53)

By construction ĉ∗(22)(q) ≤ ĉ(22)(q). Now consider a sequence {φT , θT , qT } satisfying the above

convergence assumptions and define

π∗j =

 0 if πj = 0

∞ otherwise

Moreover, collect the π∗j elements in the vector π∗ and define the third critical value c∗(22) as

c∗(22) = 1− τ quantile of

(
min
ν≥−π∗

∥∥A′Zm −Mνν
∥∥2

(A′A)−1

)
. (54)

Along the sequence {T}

AsyCP = lim
T

CPT (φT , θT , qT )

= lim
T

PφT

{
G
(
θT , qT ; φ̂, Ŵ ∗(·)

)
≤ ĉ22(qT )

}
= lim

T
PφT

{
G
(
θT , qT ; φ̂,W ∗(·)

)
≤ ĉ22(qT )

}
≥ lim

T
PφT

{
G
(
θT , qT ; φ̂,W ∗(·)

)
≤ ĉ∗22(qT )

}
.

The second equality is a consequence of Lemma B 2. The inequality follows from ĉ∗(22) ≤ ĉ(22). By

using a similar argument as in Andrews and Guggenberger (2009), it can be shown that

G
(
θT , qT ; φ̂,W ∗(·)

)
= min

ν≥−D−1/2
R,T

√
TµT

∥∥∥D−1/2
T STL

√
TL−1(φ̂− φT )−Mνν

∥∥∥2

Ω−1
T

=⇒ min
ν≥−h

∥∥A′Zm −Mνν
∥∥2

(A′A)−1

≤ min
ν≥−π∗

∥∥A′Zm −Mνν
∥∥2

(A′A)−1 .

The last inequality holds because along the {T} sequence h ≥ π∗. Recall that πj = 0 implies

hj <∞ and π∗j = 0. πj > 0, on the other hand, implies that hj = π∗j =∞.
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According to Lemma B 9 ĉ∗22(qT )
p−→ c∗(22) and we obtain

AsyCP ≥ PφT

{
G
(
θT , qT ; φ̂,W ∗(·)

)
≤ ĉ∗22(qT )

}
−→ P

{
min
ν≥−h

∥∥A′Zm −Mνν
∥∥2

(A′A)−1 ≤ c∗(22)

}
≥ P

{
min
ν≥−π∗

∥∥A′Zm −Mνν
∥∥2

(A′A)−1 ≤ c∗(22)

}
= 1− τ.

In the limit provided in the second line we have replaced ĉ∗22(qT ) by c∗22 using the fact that c∗(22) > 0

and that the distribution function of

min
ν≥−π∗

∥∥A′Zm −Mνν
∥∥2

(A′A)−1 (55)

is continuous near the 1 − τ ’th quantile. The inequality c∗(22) > 0 and the continuity near the

1− τ ’th quantile of the distribution in (55) can be established as follows. Since it is assumed that

l > r22 and r2 ≥ 1, we have k + r21 ≥ 1. Also, it is assumed that τ < 1/2. If k ≥ 1, then the

distribution of (55) is continuous with support R+. If k = 0 and r21 ≥ 1, the distribution of (55)

is continuous around the 1 − τ ’th quantile, since there exists at least one zero element in π∗ and

τ < 1/2. Therefore, we have the desired result for the case of r2 ≥ 1.

Combining the results for r2 = 0 and r2 ≥ 1, two cases, r2 ≥ 1 and r2 = 0, we have established

the validity of the simulated critical values for Case (i).

Case (ii): l = r22. In this case, we have k = 0 and r21 = 0. Also, hj → ∞ and πj > ∞ for all

j = 1, ..., r2. When ĉ(2)(q) = ĉ(21)(q) (the fixed asymptotic critical value approach), by Lemma B 8

we have ĉ(21)(qT ) = ĉ
(1)
(k(qT ),r̂21(qT )) ≥ c

(1)
(k,r21) with probability approaching one. Also, by definition

we have c
(1)
(k,r21) = c

(1)
(0,0) = 0. Then, as in the Case (i) of the fixed asymptotic critical value approach,

we have

AsyCP = lim
T
CPT (φT , θT , qT )

= lim
T
PφT

{
G
(
θT , qT ; φ̂, Ŵ ∗ (·)

)
≤ ĉ(1)

(k(qT ),r̂21(qT ))

}
= lim

T
PφT

{
G
(
θT , qT ; φ̂,W ∗ (·)

)
≤ ĉ(1)

(k(qT ),r̂21(qT ))

}
by Lemma B 2

≥ lim
T
PφT

{
G
(
θT , qT ; φ̂,W ∗ (·)

)
≤ c(1)

(k,r21) = 0
}
.

When ĉ(2) (q) = ĉ(22) (q) (the simulated critical value approach), since πj > ∞ for all j =

1, ..., r2, we have ϕ̂∗T (qT ) = ∞ for all T and π∗ = ∞. Set ĉ∗(22) (qT ) = 0 for all T and c∗(22) = 0.
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Then,

AsyCP = lim
T
CPT (φT , θT , qT )

= lim
T
PφT

{
G
(
θT , qT ; φ̂, Ŵ ∗ (·)

)
≤ ĉ(22) (qT )

}
= lim

T
PφT

{
G
(
θT , qT ; φ̂,W ∗ (·)

)
≤ ĉ(22) (qT )

}
by Lemma B 2

≥ lim
T
PφT

{
G
(
θT , qT ; φ̂,W ∗ (·)

)
≤ ĉ∗(22) (qT )

}
= lim

T
PφT

{
G
(
θT , qT ; φ̂,W ∗ (·)

)
≤ c∗(22) = 0

}
,

where the inequality holds since ĉ(22) (qT ) ≤ ĉ∗(22) (qT ) .

By using the same argument used in (S1.23) on page 7 of Andrews and Soares (2010b), we can

deduce that

lim
T
PφT

{
G
(
θT , qT ; φ̂,W ∗ (·)

)
≤ 0
}
≥ 1− τ,

as desired for Case (ii).

Case (iii): l = 0 In this case the objective function is zero, which means that θT is included in any

confidence set with a nonnegative critical value. �
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Table 1: Monte Carlo Design

Design 1 Design 2 Design 3 Design 4

VAR(0) VAR(1) VAR(1) VAR(1)

Σ11 0.356 0.087 0.080 0.044

Σ21 -0.122 -0.027 -0.023 -0.009

Σ22 0.701 0.640 0.674 0.296

Φ11 0.873 0.806 0.450

Φ12 0.003 0.032 0.014

Φ21 -0.229 -0.278 0.060

Φ22 0.230 0.985 0.953

λ1(Φ1) 0.871 0.89− 0.03i 0.955

λ2(Φ1) 0.231 0.89 + 0.03i 0.498

Notes: Designs are obtained by estimating a VAR(0) or VAR(1) of the form yt = Φ0 + Φ1yt−1 +ut,

IE[utu
′
t] = Σu. We use OLS estimates, Φ entries refer to elements of Φ1 and Σij entries refer to

the (nonredundant) elements of Σu. λi(Φ1) is the i’th eigenvalue of Φ1. y1,t is the log difference of

U.S. GDP deflator, scaled by 100 to convert into percentages. y2,t is either the log difference of the

U.S. GDP or deviations of the log GDP from a linear trend, scaled by 100. Design 1: inflation and

GDP growth, 1964:I to 2004:IV. Design 2: inflation and output deviations from trend, 1964:I to

2006:IV. Design 3: inflation and output growth, 1964:I to 2006:IV. Design 4: inflation and output

deviations from trend, 1983:I to 2006:IV.
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Table 2: Monte Carlo Results for 90% Nominal Coverage Probability

Design 1 Design 2 Design 3 Design 4

Sample Size Sample Size Sample Size Sample Size

100 500 5,000 100 500 100 500 100 500

CSφ Coverage 82 94 90 83 90 80 95 86 86

CSθ(1) Coverage 93 99 95 95 96 92 96 98 96

CSθ(1) Length 0.64 0.61 0.59 0.31 0.28 0.27 0.25 0.16 0.11

Θ(φ) Length 0.58 0.58 0.58 0.26 0.26 0.23 0.23 0.09 0.09

Notes: The coverage probability entries are measured in percent. Length refers to the average

length of the confidence interval or credible set across Monte Carlo repetitions.



45

Figure 1: Frequentist and Bayesian Interval Estimates of θ (Design 1), T = 100
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Notes: The graph depicts results from 10 replications of the Monte Carlo exercise described in

Section 5.1. The replications (x-axis) are sorted with respect to the upper bound of Θ(φ̂). The

figure depicts the upper bounds of the identified set Θ(φ0), the estimated identified set Θ(φ̂), the

frequentist confidence sets CSθ(1), as well as the boundaries of Bayesian credible intervals.
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Figure 2: Impulse Responses Based on Pure Sign Restrictions

Notes: The figure depicts 90% frequentist confidence sets CSθ(2)(ĉ22) (blue, solid); estimated sets

Θ(φ̂) (green, long dashes); and 90% Bayesian credible intervals (red, short dashes).



47

Figure 3: Comparison of Frequentist Error Bands

Sign Restrictions Imposed over Horizons h = 0, 1

Sign Restrictions Imposed over Horizons h = 0, 1, . . . , 8

Notes: The figure depicts 90% frequentist confidence sets: CSθ(1) (red, short dashes), CSθ(2)(ĉ21)

(green, long dashes), and CSθ(2)(ĉ22) (blue, solid).
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Figure 4: Combining Zero and Sign Restrictions

Frequentist Error Bands vs. Θ(φ̂) vs. Bayesian Error Bands

Comparison of Frequentist Error Bands

Notes: The top panel depicts 90% frequentist confidence sets CSθ(2)(ĉ22) (blue, solid); estimated sets

Θ(φ̂) (green, long dashes); and 90% Bayesian credible intervals (red, short dashes). The bottom

panel depicts 90% frequentist confidence sets: CSθ(1) (red, short dashes), CSθ(2)(ĉ21) (green, long

dashes), and CSθ(2)(ĉ22) (blue, solid).


