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1 Introduction

Nonparametric kernel methods are advantageous in many empirical settings because they are largely

immune, relative to parametric alternatives, to concerns regarding mis-specification of functional forms.

In light of this, as well as the logic set forth in McAfee and Vincent (1992) suggesting that policy

conclusions should hinge on distribution-free methods when knowledge of the underlying distribution is

vacuous, nonparametric methods have thus become a cornerstone of structural estimation of auctions.

Despite this popularity, however, nonparametric methods possess theoretical and computational deficien-

cies; notably, the ’curse of dimensionality’ and derivations of asymptotic properties. Yet, even ignoring

these unavoidable issues, other empirical issues remain unresolved in the nonparametric estimation of

first-price auction models.

In this paper, we address two of these issues: bandwidth selection and imposition of smoothness

constraints (e.g., monotonicity). We do so in the context of the seminal first-price auction estimator of

Guerre, Perrigne, and Vuong (2000; GPV hereafter); although the methods proposed should also extend

naturally to other auction settings. Moreover, the increasing popularity of identifying and constructing

nonparametric, structural microeconometric estimators should benefit from the discussion here.

In terms of bandwidth selection, we are unaware of any automated selection procedures that have been

proposed in the structural auction literature. Even though bandwidth selection mechanisms are well-

studied in nonparametric density and regression estimation, and are considered of the utmost importance,

there is a noticeable void in the first-price auction setting (Athey and Haile 2008). There is a good

explanations for this void: the values of interest are unobserved, thus making it difficult to formulate

a criterion for smoothing the equilibrium bidding strategy. Nonetheless, we attempt to fill this void by

proposing a least-squares cross-validation procedure to obtain bandwidths. In contrast to the widely

used rule-of-thumb estimates employed in the first-price auction literature, which attempts to provide

an optimal bandwidth for the bid density, we provide a framework for automated selection of the

bandwidth for the bid-value relationship. The intuition for the proposed approach is identical to that in

the density estimation context. While the density values are unobserved (as are the underlying values in

our setting), the use of a leave-one-out estimator helps to circumvent this lack of important information

when constructing the squared error criterion. We note that the optimal bandwidth for the bid density

may not be suitable for the bid-value relationship. In fact, in our empirical example, we show how using

a rule-of-thumb bandwidth can lead to poor estimates.

The second issue we address concerns the imposition of smoothness constraints such as monotonic-

ity. In constrast to parametric alternatives, the imposition of such constraints to ensure theoretically-

consistent estimates in nonparametric settings is not straightforward. In an empirical structural auction

setting, this is a primary concern as smoothness conditions are implied by the underlying structure

of the equilibrium bidding behavior. Moreover, the underlying theory for the GPV first-price auction

estimator is but one of a number of theoretical reasons why the monotonicity assumption is important
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in a structural model, among them being the ‘single-crossing’ property recognized in Athey (2001) and

Athey and Haile (2002, 2008).

Our approach involves tilting the empirical distribution of the data by the least amount, relative to

a benchmark, to achieve the desired smoothness constraints (monotonicity in our case). This approach,

known as constraint weighted bootstrapping (Hall, Huang, Gifford, and Gijbels, 2001; Hall and Huang,

2001), is firmly entrenched in the statistics literature. Furthermore, the constrained approach proposed

here will produce a monotonically-constrained estimator regardless of the bandwidth deployed. Finally,

our proposed constrained estimator has the nice feature that it is numerically identical to the GPV

estimator when the latter is monotonic. Nonetheless, it is generally the case that the constrained

estimator will differ from that of GPV in small sample settings.

Beyond the general case of imposing smoothness constraints in a nonparametric setting, we discuss

how to impose monotonicity in auctions with differing numbers of bidders, reserve prices, and auction-

specific characteristics. We further discuss bandwidth selection with these features and believe that

our paper provides necessary tools to perform proper empirical applications of structural models. We

showcase our methods in simple settings using both simulated and experimental data. We find that

there are often finite sample gains when resorting to constrained estimation and that the constrained

and unconstrained estimators tend towards one another as the sample size increases. Specifically, our

simulated evidence shows that imposing monotonicity can produce improved estimates of the bid-value

relationship as well as policy relevant variables, such as (but not limited to) the optimal reserve price.

Moreover, using experimental auction data we show how the rule-of-thumb bandwidth can easily be

misleading relative to our data-driven approach.

Prior to continuing, it is worth re-emphasizing that our estimator should also be of interest not only

in an auction setting, but also in other areas where structural approaches are employed to recover the

primitives of economic models. For example, the ability to constrain nonparametric estimators should

prove indispensable for those who wish to use monotone comparative statics (e.g., Athey 2001, 2002) to

recover structural parameters in stochastic optimization problems or games of incomplete information.

We also show that the semiparametric, optimal reserve price estimator of Li, Perrigne, and Vuong (2003)

can be improved in certain dimensions when monotonicity is imposed on the bid-value relationship.

More generally, constrained nonparametric estimation has important implications within economics

as a whole, as there are many instances where economic theory provides some information about the

model being estimated (e.g., Hotz and Miller 1993; Olley and Pakes 1996). In addition to these appli-

cations, the approach described here should be of interest to econometricians interested in constrained

nonparametric methods (Gallant 1981; Matzkin 1994) and our approach complements recent work that

examines the imposition of curvature conditions in nonparametric settings (Beresteanu 2007; Chak,

Madras, and Smith 2005; Chernozhukov, Fernandez-Val, and Galichon 2009; Du, Parmeter, and Racine

2010). The constraint weighted bootstrapping approach advocated here is similar in spirit to the em-

pirical likelihood methods developed in Owen (1988) and the information theoretic approaches to GMM
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presented in Imbens, Spady, and Johnson (1998). In addition to the papers discussed above, a substan-

tial amount of consideration has been paid to the issue of monotonicity by statisticians; see the citations

in Henderson and Parmeter (2009).

The remainder of the paper is laid out as follows. In Section 2 we briefly review the theory underyling

the first-price auction setup within the independent private value paradigm (IPVP) as well as the

nonparametric estimator proposed by GPV. Section 3 discusses the importance of the bandwidth on the

GPV estimator and proposes a data-driven method to select the bandwidth. In Section 4 we describe

how to implement the constraint weighted bootstrapping theory developed in the statistics literature

to create a generalized estimator that imposes monotonicity. Additionally, we discuss how to extend

this methodology to a variety of auction settings likely to arise in practice. Section 5 provides a small

simulation study to illustrate that the method performs well when monotonicity is violated, as well as

simulations to showcase how estimation of the optimal reserve price can be improved when monotonicity

is imposed. A formal application of the method to experimental first price auction data that was recently

used to adjudicate opposing structural estimators is also presented to highlight the importance of which

bandwidth is used in practice. In Section 6 we emphasize the usefulness of this style of nonparametric

estimation beyond structural auctions and indicate several lines of possible future research.

2 Theoretical Background and Estimation

2.1 Preliminaries

Within the IPVP each player knows his or her value of the product to be auctioned, v, but no other

player’s value. Players’ values are assumed to be independent draws from F (v) (the CDF), which is

taken as common knowledge. Players select their bidding strategy to maximize their expected payout,

given by πe(·). This leads to the following maximization problem:

max
b

πe(b) = (v − b)F (σn)n−1, (1)

where b is the player’s corresponding bid when there are n total participants in the auction and σn =

β−1
n (b) denotes the inverse of the bid function, βn(v), used by the player. The first order condition is

given by:

−F (σn)n−1 + (n− 1)(v − βn)F (σn)n−2f(σn)σ′n = 0. (2)

The assumption that the bid function is monotonic implies dσn/db = 1/β′n(v). Furthermore, with

symmetry of the bidders, β(v) = b. These features allow us to simplify the solution to

β′n +
(n− 1)f(v)

F (v)
βn =

(n− 1)vf(v)

F (v)
, (3)
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which is a linear differential equation with solution given by

βn(v) = v −

v∫
v

F (u)n−1du

F (v)n−1
, (4)

assuming the absence of a reserve price,1, where v represents the minimum of the support of the value

distribution. If we allow for a reserve price, then the differential equation has the solution

βn(v) = v −

v∫
r

F (u)n−1du

F (v)n−1
where r ≤ v. (5)

Assuming that all potential bidders place bids, the only difference between equations (4) and (5) are the

limits of integration. In essence the reserve price acts as a boundary condition in exactly the same way

that v does in the no reserve setting. Paarsch and Hong (2006) provide a more detailed description of

this derivation and the IPVP in general.

2.2 Nonparametric Estimation in First-Price Auctions

In the seminal paper on the nonparametric structural identification and estimation of a first-price auc-

tion, GPV provide a natural setting in which to think about the distribution of valuations within the

IPVP in a nonparametric framework. Their analysis spurred (perhaps started) the growth of non-

parametric structural estimation of auctions across paradigms, including affiliated private values (Li,

Perrigne, and Vuong 2002), unobserved heterogeneity with independent values (Krasnokutskaya 2009)

and conditionally independent private information (Li, Perrigne, and Vuong 2000). We describe their

method under the situation of no reserve price.

The structural equilibrium bidding strategy derived in GPV is given as

vi = bi +
G(bi)

(n− 1)g(bi)
= ξ(bi, n,G), (6)

where vi and bi are the value and bid for agent i, respectively. G(bi) is the cumulative distribution

function (CDF) of the bid density and g(bi) is the probability density function (pdf) of bids. Only the

vector of bids is observed by the econometrician. Once the functional forms of G(·) and g(·) are assumed

or estimated, then the values (vi) can be estimated along with the corresponding CDF and pdf, F (·)

and f(·), respectively.

The nonparametric estimation approach given in GPV is as follows:

1A reserve price is such that all submitted bids must be greater than this price.
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1. Estimate g(b) using kernel methods.

ĝ(b) =
1

nTh

n∑
i=1

T∑
t=1

K

(
b− bit
h

)
, (7)

where bit is the bid for agent i in auction t. Thus, we are pooling bids from multiple auctions with

the identical number of bidders to increase the sample size. K(·) is a kernel function required to be a

non-negative, bounded and symmetric density function with compact support. The bandwidth, h,

depends on the sample size and converges to zero as T goes to infinity. The standard bias-variance

tradeoff exists when considering the choice of the bandwidth.

2. Estimate G(b) using the empirical CDF

Ĝ(b) =
1

nT

n∑
i=1

T∑
t=1

1{bit ≤ b}, (8)

where 1{A} is the indicator that the event A is true.

3. Construct v̂it = ξ(bit, n, Ĝ) using the above estimates to recover the values.

4. Estimate the density and distribution of values, f(v̂it) and F (v̂it), using equations (7) and (8)

above with the same bandwidth, with bit and b replaced with v̂it and v, respectively.

The above discussion omits three important details. First, the GPV estimator needs to trim the

sample near the boundaries of the pseudo-values, v̂it; see equation (6) on page 531 in GPV). Kernel

density estimators are well known to be inconsistent near the edge of the support of the variable of

interest. This contaminates the second-stage recovery of the distribution of values. GPV propose

trimming observations that are within one bandwidth of b and b̄, the upper and lower bounds of the

support for bids. This yields a consistent estimator on the interior of I = [b, b̄]. Second, no formal

method is provided to select the bandwidth used for smoothing the bid-value function even though

it is well known in applied nonparametric research that the bandwidth employed can have a serious

impact on the results. Section 3 provides a data-driven bandwidth selection technique that is similar in

spirit to the common data-driven methods used for bandwidth selection in the kernel density estimation

literature. Third, GPV show that ξ(bi, n,G) is strictly increasing for all bit ∈ I (condition C2 of

Theorem 1 in GPV). Their nonparametric approach, however, does not formally impose this condition

in the estimation. To fill this void, Section 4 proposes a method to impose this monotonicity condition.

3 Bandwidth Choice

3.1 Monotonicity and Bandwidth Selection

To highlight the importance of bandwidth choice, we begin by showing that there exists a bandwidth

such that any estimated equilibrium bidding strategy is monotonic. Formally, our claim is that if I
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is a compact interval, then for all sufficiently large bandwidth h, ξ̂′(·|h) > 0 on int(I), guaranteeing

monotonicity of the estimated equilibrium bidding strategy. To justify this statement, we assume that

the kernel function, K(·), has two continuous derivatives in a small neighborhood of the origin, with

K ′(0) = 0.2 We note that as h→∞, the following two relations hold:

K

(
b− bit
h

)
≈ K(0) +

(
b− bit
h

)
K ′(0) + op(h

−2)

and

K ′
(
b− bit
h

)
≈ h−1K ′(0) +

(
b− bit
h2

)
K ′′(0) + op(h

−3).

Together, these relations imply

ĝ(b|h) ≈ h−1K(0)

and

ĝ′(b|h) ≈ h−3K ′′(0) · (nT )−1
n∑
i=1

T∑
t=1

(b− bit) + op(h
−3)

uniformly over b ∈ I since h→∞ implies that |bit − b|/h→ 0. From this it follows that ĝ(b)2 > |ĝ′(b)|

∀ b ∈ I for sufficiently large h. However, consistent nonparametric estimation requires that h shrinks

to zero as n gets large. Hence, we cannot choose a very large h to achieve a monotone estimation result

asymptotically.

This shows that the numerator of the derivative of the GPV estimator will be positive everywhere

given a sufficiently large bandwidth; the denominator is always positive. This is intuitive since h→∞

implies that ĝ(b) is flat for all b and thus the derivative is zero everywhere.3

This result is discouraging since bandwidth selection has, up to this point, been arbitrary in this

setting. While asymptotically optimal bandwidth are available for a given sample size and kernel, they

are at best ‘asymptotically’ optimal. Alternatively, the smallest bandwidth that guarantees monotonicity

could be employed. However, such arbitrary selection of the bandwidth is not suggested. Further,

choosing an arbitrarily large bandwidth to guarantee monotonicity may mask interesting and essential

information about a density. In general, most economic applications require automated criteria for

bandwidth choice and a separate means by which to impose monotonicity.

3.2 Automated Bandwidth Selection

Automated bandwidth selection in structural auction settings has been largely unexplored even though

these issues have taken place under the mantle of nonparametric density and regression estimation

(Athey and Haile 2008). It might be posited that automated selection has not been addressed because

2This property holds for all standard kernels used in the auction literature (Gaussian, Epanechnikov, and triweight).
3An alternative proof may be given by noting that ξ̂′(·) = 1+(n−1)−1 +(n−1)−1

(
Ĝ(·)ĝ′(·)/ĝ(·)2

)
, which implies that ĝ(·)

becomes flat as h→∞, meaning ĝ′(·)→ 0 so that ξ̂′(·) is positive everywhere for large h. We are indebted to an anonymous
referee for this point.
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the values, v, are unobserved, making it difficult to formulate a criterion for smoothing of the equilibrium

bidding strategy. Instead, researchers often resort to rule-of-thumb bandwidths or asymptotic bandwidth

selection criteria which are based on assumptions of the underlying distribution.

GPV use the triweight kernel, K(u) = (35/32)(1−u2)31(|u| ≤ 1), and recommend the rule-of-thumb

bandwidth 1.06σ̂b(NT )−1/5, which is optimal for estimating the density of bids if they were normally

distributed. Of first note is that this bandwidth actually leads to undersmoothing, as (4/3)1/5 is the

asymptotically optimal scale factor for the Gaussian kernel, not the triweight kernel. The asymptotically

optimal scale factor for the triweight kernel is 2.978 · (4/3)1/5 = 3.154. This scaling factor comes from

the theory on canonical kernels found in Marron and Nolan (1989). Essentially, to guarantee that the

same degree of smoothing is present when different kernels are used, the bandwidth must be adjusted by

a specific factor, in our case 2.978.4 Li, Perrigne, and Vuong (2003) advocate for this rescaled bandwidth

and apply it when studying optimal reserve price estimation.

However, even with an appropriately modified rule-of-thumb bandwidth, it is desirable to have data

driven methods to obtain the appropriate smoothness. For example, if the density of bids were log-

normally normally distributed (as in Paarsch, 1992) with unit variance as opposed to normally dis-

tributed, the optimal scale factor would then be 0.7069, which is nearly 4.5 times smaller than the

bandwidth for normally distributed data. Given the result in the previous sub-section, this is one pos-

sible explanation for why monotonicty is often found in empirical studies. A separate point of note is

that it is not clear that selection of the bandwidth based on optimal estimation for the density of bids

will necessarily be suitable for estimation of the bid-value relationship.

Although there exist many bandwidth selection criteria in both the density and regression settings,

least-squares cross-validation (LSCV) is a popular empirical choice. The idea behind the method is to

minimize the integrated square error of the estimator. For a given estimator f̂ of an unknown density

f , the integrated square error (ISE) can be written as

∫ (
f̂(x)− f(x)

)2

dx. An analog estimator is

easily constructed noting that the

∫
f(x)2dx is independent of the bandwidth. While this approach

automates the selection of the bandwidth in order to optimally smooth the bid density, it is unknown

whether this is the appropriate amount of smoothing for the equilibrium bidding strategy. Further, if we

were to smooth the CDF instead of using the empirical distribution function to estimate Ĝ(·), it is not

clear how to select a bandwidth when both the distribution and density are smoothed simultaneously

(i.e., using the same bandwidth).

Here, we argue that given the primary aim of most structural work is to recover the underlying

pseudo-values to perform policy experiments that will enable the researcher to identify the optimal

reserve price and/or auction format, the objects of interest to dictate appropriate smoothing are the

pseudo-values, v̂it = ξ̂ (bit, n,G), used to construct the density of values, a bandwidth which is optimal

for the density of bids may not be adequate for construction of the pseudo-values. As these are our

objects of interest, we choose to minimize the LSCV function focusing on the estimation of ξ(·). It may

4See equation 2.5 in Marron and Nolan (1989).
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seem that an appropriate estimator of the bandwidth for ξ̂ (bit, n,G) would be to compare the squared

differences between ξ (b, n,G) and ξ̂ (b, n,G) over all feasible bids. However, given that we do not observe

ξ (b, n,G) it would seem reasonable to replace it with a leave-one-observation or leave-one-bidder out

estimate. Unfortunately, in this context the bandwidth that minimizes this function is h = ∞ because

the differences between the actual estimator and the leave-one-out estimator diminish as the smoothness

increases.

In light of this, we propose to using the bandwidth which minimize the sample analog of the ISE,

ISE(h) =

∫ [
ξ̂ (b, n,G)− ξ (b, n,G)

]2
db

=

∫
ξ̂ (b, n,G)

2
db− 2

∫
ξ̂ (b, n,G) ξ (b, n,G) db+

∫
ξ (b, n,G)

2
db. (9)

The last term is independent of the bandwidth and so we focus on the construction of analog versions

of the first two terms in our decomposition of ISE. For the unknown ξ (b, n,G) appearing in the second

term, we replace it with a leave-one-bidder-out estimator instead of a leave-one-observation-out estimator

(i.e., we are using ξ̂−i (bit, n,G) instead of ξ̂−it (bit, n,G)).5 This gives us

ISE(h) =

∫
ξ̂ (b, n,G)

2
db− 2

∫
ξ̂ (b, n,G) ξ (b, n,G) db

=

∫ [
b2 +

2bĜ(b)

(n− 1)ĝ(b)
+

Ĝ(b)2

(n− 1)2ĝ(b)2

]
db

− 2

∫ [
b2 +

bĜ(b)

(n− 1)ĝ(b)
+

bĜ−i(b)

(n− 1)ĝ−i(b)
+

Ĝ−i(b)
2

(n− 1)2ĝ−i(b)2

]
db

=

∫ [
−b2 +

Ĝ(b)2

(n− 1)2ĝ(b)2
− 2bĜ−i(b)

(n− 1)ĝ−i(b)
− 2Ĝ−i(b)

2

(n− 1)2ĝ−i(b)2

]
db. (10)

The first term in ISE(h) also does not depend upon the bandwidth and so our final decomposition of

the integrated squared error becomes

ISE(h) =

∫ [
ξ̃(b, n,G)2 − 2bξ̃−i(b, n,G)− ξ̃−i(b, n,G)2

]
db, (11)

where ξ̃(b, n,G) = Ĝ(b)
(n−1)ĝ(b) and ξ̃−i(b, n,G) = Ĝ−i(b)

(n−1)ĝ−i(b)
. Data-driven bandwidths can then be obtained

via

min
h

n∑
i=1

T∑
t=1

[
ξ̃(bit, n,G)2 − 2bitξ̃−i(bit, n,G)− ξ̃−i(bit, n,G)2

]
. (12)

The benefit of using estimated values is that these bandwidths also control the smoothing of the density

of the bids. However, it is not näıve to the fact that we must also calculate the distribution of the bids

and then use both of these estimates to obtain the values. Hence, we are able to use a data driven

5This is a common approach when dealing with panel type data (e.g., Henderson, Li, and Carroll 2008; Kneip and Simar
1996).
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approach to obtain estimates of our objects of interest.

This type of approach could be used to select bandwidths in other auction settings where the values

are not observed. This would include the nonparametric estimator of the affiliated private value auction

proposed in Li, Perrigne, and Vuong (2002). In fact, for any of the nonparametric estimators proposed

that involve the standard first order differential equation as in GPV equation (3), it is hypothesized

that a similar type of LSCV criteria could be constructed to obtain data-driven bandwidths focused on

estimation of the unknown values.

4 Monotone Estimation of the Bid Function

4.1 Baseline Case

Once an automated procedure is used to choose the bandwidth, there is no guarantee that the GPV esti-

mator will produce a monotonic result. Rather than reverting to parametric methods in such instances,

we instead show how a modified version of the GPV estimator can be constrained to be monotonically

increasing. To do so, we utilize the constraint weighted bootstrap technique from the statistics literature.

In this literature, it is becoming commonplace to impose monotonicity when estimating survival

functions. Noting that ξ(·) is similar to a survival function, our approach is as follows:

1. Estimate g(b) as

ĝ(b|p) =
1

h

n∑
i=1

T∑
t=1

pitK

(
b− bit
h

)
, (13)

where the pit are observation-specific weights. Note, the GPV estimator is a special case of our

estimator where each weight is set equal to 1/nT .6

2. Estimate G(b) as

Ĝ(b|p) =

b∫
−∞

ĝ(u|p)du. (14)

Thus, we are not constructing the CDF of the bids using the empirical distribution function. To

ensure that our CDF corresponds to the pdf estimated in equation (13), we need to integrate the

pdf as opposed to simply estimating the CDF by the empirical distribution function. This step is

not done in GPV, nor is it a common approach in studies that use both a CDF and a pdf in the

estimation.7 One may think that the reason for this is twofold. First, the asymptotic arguments are

most likely easier to prove given widely known properties of the empirical distribution estimator.

6The terminology constraint weighted bootstrap stems from the fact that we are introducing probability weights to shift the
true observations so that the constraint(s) of interest are satisfied. This is consistent with the notion of biased bootstrapping.
Even though no resampling is occurring, the weights act as though the data have been resampled in a manner which delivers
the constrained surface. We mention here that this methodology also has intimate links with empirical likelihood. We elect
to use the terminology constraint weighted bootstrapping for the remainder of our discussion.

7See Martins-Filho and Yao (2008) for a recent example that does.

10



Second, the empirical distribution estimator is easier to construct than an integral of an estimated

probability density.8

3. Construct v̂it = ξ̂(bit, n,G|p) using equation (6) to recover the values. Employ the truncation

strategy of GPV (page 531, equation (6)).

4. Estimate the density and distribution of values, f(v̂it) and F (v̂it), using equations (7) and (8) above,

with v̂it and v in the place of bit and b, respectively. Note, because we have a two-step estimator,

the recovery of the density and distribution of the values does not require the incorporation of any

constraint weights. This is because monotonicity has been imposed on the estimator of the bid

function which is used to create the pseudo-values; the resulting pseudo-values can then be treated

as they are in GPV.

The crucial feature of our estimator is that the weights, pit, are selected to ensure that the esti-

mated values are monotonically increasing in the bids. To select the vector of weights, we choose p =

{p11, p12, . . . , p1T , p21, . . . , pnT } to minimize a distance metric subject to the constraint that ξ̂′(bit, n,G|p) ≥

0 on I. If we desire to impose strict monotonicity, ξ̂′(bit, n,G|p) > 0 on I, then we need to pick some

small number δ such that ξ̂′(bit, n,G|p) > δ on I so that this becomes computationally feasible.9 We

also impose the regularity conditions pit ≥ 0 ∀i, t and
n∑
i=1

T∑
t=1

pit = 1. These conditions make the weights

act as though they are drawn from a density and will prove useful when making comparisons to the

uniform weights, 1/nT , used in GPV. For simplicity, we choose to impose our nonnegativity constraint

on

ξ̂1 = nĝ(b|p)2 − Ĝ(b|p)ĝ′(b|p). (15)

Noting that ξ̂′/ξ̂1 is always nonnegative, this implies that both have the same sign.

Our distance metric is the power divergence measure introduced in Cressie and Read (1984) and

proposed in Hall, Huang, Gifford, and Gijbels (2001) for monotone estimation of a hazard rate.10 The

power divergence measure is

Dρ(p) =
1

ρ(1− ρ)
[nT −

n∑
i=1

T∑
t=1

(nTpit)
ρ], −∞ < ρ <∞. (16)

where ρ 6= 0, 1. We need to take limits for ρ = 0 or 1. They are given as

D0(p) = −
n∑
i=1

T∑
t=1

log(nTpit); D1(p) =

n∑
i=1

T∑
t=1

pit log(nTpit). (17)

8This does not preclude the use of kernel estimation of the CDF. See Bowman, Hall, and Prvan (1998) or Li and Racine
(2007) for a discussion of CDF estimation via kernel methods. Additionally, this approach may allow us to avoid numerical

integration all together as the integration sign can be brought inside the summations and typically
b∫
−∞

K(u)du is known. We

thank an anonymous referee for making this computational connection.
9This is also suggested in Hall and Huang (2001).

10It is also used in Hall and Huang (2001) for nonparametric monotone estimation of a regression function.
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A value of ρ = 0.5 corresponds to Hellinger distance. Note, for all ρ we have Dρ(p) ≥ 0 ∀p and

Dρ(p) = 0 if and only if pit = 1/nT ∀i, t. This suggests that departures from uniformity of the weights

will correspond to a positive divergence measure, indicating the presence of regions of non-monotonicity.

Regardless of the sampling distribution for the values of the players across auctions and the choice

of I, it is entirely plausible that ξ̂1 will have a zero crossing on I. An example can easily be constructed

where a point lies both a bandwidth away from the boundary and from its nearest point. The probability

of this event is strictly positive given minimal assumptions about the bid density. Fortunately, data sets

that produce this event or a similar event are pathological in nature. Even if we cannot find a set of

weights that guarantees a monotonic estimator, this should pose no problem. In fact, we can view this

event as providing information about the true equilibrium bidding strategy or as evidence that other

features of the auction are being ignored by the econometrician (Athey and Haile 2008).

While it may be argued that this procedure is entirely heuristic given the fact that many papers

have confirmed monotonicity between bids and values, the ability to easily impose this condition when

estimating models using auction data is important from an economic standpoint.11,12 Indeed, even if the

weights are uniform, the researcher can be confident that the estimated equilibrium bidding strategy is

monotonic. This is more formal than visual inspection of the estimated surface. Additionally, while it

may appear that monotonicity holds unconditionally between bids and values, the presence of covariates

renders visual inspection useless in higher dimensions.

Theoretically, this estimator (ignoring truncation) is consistent following only minor modifications

of the proof in Hall, Huang, Gifford, and Gijbels (2001). Given that the pseudo-values are constructed

identically to GPV, the theoretical properties of the value density estimator should follow directly. We

do not consider asymptotic normality of this estimator and leave that for future research.

4.2 Heterogeneous Auctions and Reserve Prices

Many auctions are characterized by differing numbers of bidders, the use of reserve prices, and auction-

specific heterogeneity. We discuss an extension to the baseline case encapsulating all of these features

to highlight the ease by which the constraint weighted bootstrap technique discussed above may be

generalized. The GPV estimator in this auction setting relies on the following first order condition

(written in terms of the actual bids):

vit = bit +
1

N − 1

{
G(bit|Xt)

g(bit|Xt)
+

H(rt|Xt)

[1−H(rt|Xt)]g(bit|Xt)

}
, (18)

where N is the number of potential bidders, rt is the reserve price in auction t, and Xt is a d× 1 vector

of auction-specific observables.

11We note that this confirmed monotonicity may have been arrived at by employing a rule-of-thumb bandwidth that was
too large.

12See Figure 2 of Li, Perrigne, and Vuong (2000) for an example where ξ̂(·) is locally but not globally monotonic in outer
continental shelf wildcat auctions.
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Within the IPVP, the number of actual bidders in auction t, nt, has a binomial distribution with

parameters N and 1−H(rt|Xt). A natural candidate estimator for N is (GPV; Paarsch and Hong 2006)

N̂ = max
t=1,...,T

nt. (19)

Our approach to estimating H(rt|Xt) follows GPV and uses the fact that H(rt|Xt) = 1−E[nt|Xt]. To

that end, we use the standard local-constant kernel estimator

Ĥ(rt|Xt) = 1− 1

N̂T (h1 · · ·hd)

T∑
t=1

ntAt(x), (20)

where

At(x) =
Kh(x,Xt)
T∑
t=1

Kh(x,Xt)

(21)

and hl, l = 1, ..., d, is the bandwidth associated with the lth element in X.

Before proceeding to estimation, we mention that the observed bids, bit, must be transformed as

sit =
√
bit − rt (see GPV) due to the proportionality between the actual bid density, g(b), and 1/

√
b− r

as b approaches r. This transformation prevents the density of bids from becoming unbounded near the

reserve price. Using this transformation, we can write the first order condition in equation (18) as

vit = rt + s2
it +

2sit
N − 1

{
G∗(sit|Xt)

g∗(sit|Xt)
+

H(rit|Xt)

(1−H(rit|Xt))g∗(sit|Xt)

}
= ξ(sit,N , G∗, rt, Xt), (22)

where G∗(·) and g∗(·) are the CDF and pdf, respectively, of the transformed bids. The GPV estimator

then follows by pooling bids across auctions and estimating the unobserved valuations using the following

algorithm:

1. Estimate N and H(rt|Xt) as indicated above. The bandwidths used to construct H(rt|Xt) can be

obtained via standard least-squares cross-validation.

2. Estimate g∗(s|x) as

ĝ∗(s|p, x) =
1

hs

T∑
t=1

nt∑
i=1

pitK

(
s− sit
hs

)
At(x). (23)

3. Estimate G∗(s|x) as

Ĝ∗(s|p, x) =

T∑
t=1

nt∑
i=1

pitK̃

(
s− sit
hs

)
At(x), (24)

where K̃ is the corresponding CDF kernel. For example, the CDF kernel corresponding to the

triweight kernel, K(u) = (35/32)(1− u2)31(|u| ≤ 1), is

K̃(u) = (35/32)(1 + u)4(16/35− (29/35)u+ (4/7)u2 − (1/7)u3)1(|u| ≤ 1). (25)
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Notice that we are not integrating the estimated pdf as we did in the baseline auction setting.

Due to the smoothing of the auction covariates, we can select a CDF kernel whose derivative

is equivalent to the kernel we use to construct our conditional pdf. Thus, we have exactly the

definition of a conditional pdf, f(u|w) = ∂F (u|w)
∂u .

4. Construct v̂it = ξ̂(sit,N , G∗, rt, Xt|p) using the above estimates to recover the values following the

truncation strategy of GPV (page 550).

5. Estimate the density and distribution of values, f(v̂it|Xt) and F (v̂it|Xt), as in GPV (page 550).

To minimize the computational burden in selecting the weights, we choose to impose our non-

negativity constraint on

ξ̂1 = 2sN̂ ĝ∗(s|p, x)2 + sĜ∗(s|p, x) (1− 2ĝ∗′(s|p, x)) + Ĥ(r|x)s(ĝ∗(s|p, x)− 2)/(1− Ĥ(r|x)). (26)

We also maintain the regularity conditions pit ≥ 0 ∀i, t and
n∑
i=1

T∑
t=1

pit = 1, consistent with use of the

power divergence metric.

Finally, this approach could be extended to allow for differing reserve prices across auctions or to

map the arguments here to other auction settings such as the affiliated private values paradigm where

Li, Perrigne, and Vuong (2002) developed a similar nonparametric estimator. Again, their estimator

must be monotonic in the bids (see their Proposition 1). Applying our methodology to this estimator

is straightforward given that it has the same form, but involves a multivariate density as opposed to a

univariate one.

Following our earlier approach in the simple auction setting, a bandwidth can be obtained for the

bids in the heterogenous auction setting. This would follow from:

LSCV (hs) =

∫ (
ξ̂(s,N , G∗, r,X)− ξ(s,N , G∗, r,X)

)2

ds.

This estimator represents a trivial extension beyond the homogeneous auction setting given that the

bandwidths for the covariates are obtained prior to construction of ξ̂(·). However, an alternative strategy

would be to select the bandwidths for X simultaneously with the smoothing parameter for the bids.

This can be handled by minimizing LSCV (h) over both hs and the vector of smoothing parameters for

the covariates.

4.3 Optimal Reserve Price

The optimal reserve price is one of the few pieces of an auction that a seller can manipulate (outside of

improving the quality of the product being auctioned) to increase revenues. This optimal reserve price

is important to learn from a policy standpoint. Let f(v) continue to denote the pdf of values for the

bidders with CDF F (v). The seller places value v0 on the good to be auctioned. The optimal reserve

price, r∗, is determined by maximizing total expected revenue (utility), which for an auction with n
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bidders is

Π(r) = v0F (r)n + n

v̄∫
r

[vf(v) + F (v)− 1]F (v)n−1dv (27)

where v̄ represents the maximum of the support of f(v).13 The first term in Π(r) is the expected value

the seller obtains if no bids are placed which exceed r. The second term is the expected revenue from

each bidder submitting a bid higher than r so that the object is sold.

To find the optimal reserve price, we differentiate total expected revenue with respect to r to obtain14

nv0F (r)n−1f(r)− n [rf(r) + F (r)− 1]F (r)n−1(r) = 0. (28)

Solving (28) for the optimal reserve yields:

r∗ = v0 +
1− F (r∗)

f(r∗)
. (29)

While this is a simple and elegant solution to determining the optimal reserve price, it depends upon

the unknown distribution and density of values. In empirical settings, only the bids are observed.

Recently, Li, Perrigne and Vuong (2003) propose a semiparametric estimation method to determine

the optimal reserve price that depends upon the observed bids as opposed to the unobserved values.

We briefly describe their method here. As is typical, we will have observations for T auctions and will

observe bids bit for bidder i in auction t. Let Bit = max
j 6=i

bjt denote the largest bid in auction t not equal

to the bid by agent i. Corollary A.1 in Li, Perrigne, and Vuong (2003) shows that the optimal reserve

price satisfies r∗ = ξ(x0) where x0 maximizes expected profit, defined as:

Π(x) = E [v01 {B1 ≤ x} 1 {b1 ≤ x}

+n

[
b1 + (ξ(x)− x)

(
G(x)

G(b1)

)n−1
]

1 {B1 ≤ b1} 1 {b1 ≥ x}

]
. (30)

Note that for any given reserve price x, the seller’s expected profit is composed of the likelihood that

the reserve price is higher than any bids submitted, resulting in the value of the good being auctioned

off as the profit, while the second piece is the value in excess of the initial value of the good that results

from the reserve price being set so that qualifying bids are placed generating additional value. x0 is the

value which will maximize the overall sum of these pieces.

13We assume here that the reserve price does not cause bidders to exit the auction.
14The derivative of the integral was determined via Leibniz’s rule:

d

dα

b(α)∫
a(α)

f(x, α)dx =
db(α)

dα
f(b(α), α)− da(α)

dα
f(a(α), α) +

b(α)∫
a(α)

∂

∂α
f(x, α)dx.
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Replacing ξ(x) with its formal definition in (6) we have

Π(x) =E [v01 {B1 ≤ x} 1 {b1 ≤ x}

+n

[
b1 +

(
G(x)

(n− 1)g(x)

)(
G(x)

G(b1)

)n−1
]

1 {B1 ≤ b1} 1 {b1 ≥ x}

]
=E [v01 {B1 ≤ x} 1 {b1 ≤ x}

+n

[
b1 +

(
G(x)n

(n− 1)g(x)G(b1)n−1

)]
1 {B1 ≤ b1} 1 {b1 ≥ x}

]
. (31)

The insight of Li, Perrigne, and Vuong (2003) is to replace G(x) and g(x) with nonparametric

estimates. Thus, determination of x0 requires an analog estimator for expected profit. Using the density

and distributional estimators proposed earlier, we can average over all bids in all auctions to construct

an estimated profit function for which the maximum can be easily determined given the one dimensional

nature of the problem. We have

Π̂(x) =
1

nT

n∑
i=1

T∑
t=1

(v01 {Bit ≤ x} 1 {bit ≤ x}+ nbit1 {Bit ≤ bit} 1 {bit ≥ x}

+
nĜ(x)n

(n− 1)ĝ(x)Ĝ(bil)n−1
1 {Bit ≤ bit} 1 {bmax − h ≥ bit ≥ x}

)
. (32)

Trimming is introduced for the last term since, as noted by Li, Perrigne and, Vuong (2003), ĝ(x) is not

well estimated near b̄. Here, h is the bandwidth used to construct the kernel density estimator of g(·).

Li, Perrigne, and Vuong (2003, Corollary A.2) show that any x̂0 ∈ [bmin + h, bmax − h] which maximizes

expected profit Π̂(x), is a consistent estimator for x0.

The beauty of determining the optimal reserve price is that this can be done after monotonicity of the

equilibrium bid-value relationship is imposed. In this case, the weights can be used in the construction

of both ĝ(·) and Ĝ(·) prior to creating the expected profit function from which x̂0 will be determined.

5 Empirical Demonstration

To illustrate our approach, we begin by examining simulated data where we specify the exact form

of the value distribution and create corresponding equilibrium bids. Next, we show that for certain

distributions the monotonically-constrained GPV estimator can result in improved performance of the

optimal reserve price in small settings. We then assess experimental data obtained from a laboratory

setting to see if monotonicity arises in an artificial setting where bids are submitted by participants.

This is useful because we know both the value distribution and the actual values, and can therefore more

adequately address the criticisms of detecting monotonicity raised in Athey and Haile (2002, 2008).
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5.1 Simulated Data

5.1.1 Estimation of the Bid-Value Relationship

Our simulation experiments examine monotonic distributions that are theoretically consistent with an

equilibrium bidding strategy. We consider T = 100 auctions, each with n = 5 bidders, yielding 500

observed bids. We replicate each scenario 100 times.

We choose the true distribution of private values to be either log-normal with parameters zero and

one or gamma with parameters one and three. For the log-normal case, we follow the truncation strategy

in GPV, discarding those value draws that are below 0.055 and above 2.5. Similarly, for the gamma

distribution, we discard values that are below 0.0455 and above 4.982. For every replication, we first

draw nT values from the truncated distribution. We then compute the bids, bit, using

bit = vit −
1

F (vit)n−1

vit∫
v

F (u)n−1du, (33)

where v is the smallest value drawn from the truncated distribution for the given replication.

Using these generated data, we apply our estimation procedure to each replication. We use (13)

and (14) to estimate the density and distribution of the bids for a given set of weights. We employ the

triweight kernel with the rule-of-thumb bandwidth using the triweight scaling (as opposed to the 1.06

normal reference scaling) to speed up computing time. The weights are determined using ρ = 0, 0.5,

and 1 and are found using the sequential quadratic programming routine SQPSolve in the programming

language GAUSS 8.0. While our problem is not a quadratic programming problem, this type of solver

uses a modified quadratic program to find the step length for moving in the direction of a minimum.

As expected, each iteration takes longer to run than GPV. In addition to computation time issues, one

problem that we encountered several times was that the program would not return feasible results. This

was easily remedied, however, by changing the starting values.15

The simulation results are given in Figures 1 and 2. Panel (a) of each figure plots the true equilibrium

bidding strategy along with the estimates from the GPV estimator and our estimator. The curves

correspond to the 95th percentile of the distance metric. Panel (b) of each figure depicts the envelope-

curves of the weights after the constraints have been achieved. It is clear that the true data generating

process provides a monotonic equilibrium bidding strategy. However, the finite sample results of the

GPV estimator show regions where the derivative is negative. Our estimator corrects for these regions

of non-monotonicity by changing the weights. In Panel (b) of each figure we see that the corresponding

weights deviate from 1/nT in the bid region where the GPV estimator is non-monotonic.

Of particular interest is whether or not the constrained estimator provides finite sample gains relative

to the unconstrained GPV estimator. It turns out that the fit improves when the unconstrained function

15Our starting values were selected at random from a uniform distribution and divided by the sum of the starting values to
preserve the summation constraint.
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deviates further from monotonicity. For example, in the figures corresponding to the 95th percentile of

the distance metric, the median value for the ratio of the absolute bias between the unconstrained and

constrained estimators is greater than unity. Specifically, in the log-normal case, this ratio is 1.0011

when ρ = 0, 1.0013 when ρ = 0.5, and 1.0176 when ρ = 1. While this is a relatively minor improvement,

in the gamma case the ratios are 1.1311, 1.2907 and 1.2145 for ρ = 0, 0.5, and 1, respectively. This

limited evidence shows that the constrained estimator is at least as good as the unconstrained estimator

and sometimes better in terms of bias.

5.1.2 Estimation of the Optimal Reserve Price

While it may be interesting from an econometric standpoint that the bias of the bid-value relationship

is smaller with the constrained estimator, it may not be overly important from an economic standpoint.

It is perhaps more important to discuss whether or not gains are made with respect to the estimation of

a parameter of economic interest. Here, we consider estimation of the optimal reserve price by both the

unconstrained and constrained estimators. Specifically, we again generate data from a log-normal and

gamma distribution, but also consider data generated from a negatively skewed distribution, Beta(5,1).

The purpose for the last distribution is that we expect the reserve price to lie in a region with fewer

data points and hence we should get additional finite sample gains for the constrained estimator.

Table 1 presents the results of this exercise. We calculate the optimal reserve price as in Section 4.3

for both the unconstrained and constrained estimators. Given that Li, Perrigne, and Vuong (2003) prove

theoretically that the estimates of the optimal reserve price are consistent as the number of auctions

tends towards infinity, we start with relatively small numbers of auctions (t = 5 and 10). Even though

the number of observations is relatively small in each run as compared to the previous sub-section,

auctions of this size are common in the literature. We carry over the remaining settings from Section

5.1.1, but only report the results for ρ = 0.5 as the results for other values of this parameter did not

qualitatively alter the results.

Although it is not obvious from the table, we did find that as the number of auctions increased,

the bias, variance, and MSE decreased substantially. Hence, we find evidence to suggest that their

asymptotic results hold. With respect to our table, we look at the median value for the ratio of the

absolute bias, variance, and MSE between the unconstrained and constrained estimators. Values greater

than unity suggest that the constrained estimator has finite sample gains.

Overall, the results are consistent with the fact that the constrained estimator can produce gains in

the optimal reserve price estimator in small samples. However, we do not witness uniform gains across

the three distributions because, as dictated by Theorem 4.3 of Hall and Huang (2001) and Theorem

2.2 of Du, Parmeter, and Racine (2010), outside of a diminishing interval, the GPV estimator and

the constrained GPV estimator are exact. If the reserve price happens to fall in these areas, then

the estimators produce identical results. What is interesting is that while there are minimal gains to

estimating the bid-value relationship for the log-normal case in our earlier simulations, we see that the
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bias of the optimal reserve price is considerably lower.

Examining the individual results, we find that each of the three different distributions gives a different

result. For the log-normal distribution, there are large gains in bias at a cost of an increase in the

variance for the constrained estimator. The MSE, however, is close to unity and each number tends

towards unity as the number of auctions grows (as hypothesized). For the gamma distribution, there

are improvements in variance at a (very minor) cost of bias and the MSE for the constrained estimator

appears to be worse as compared to the unconstrained estimator, but this (and the other measures)

tend towards one as the number of auctions increases. Finally, for the negative skewed, Beta (5,1))

distribution, we see improvements in bias, variance, and MSE, but these improvements are relatively

small and the ratio tends towards unity as the number of auctions increases.

Table 1: Ratio of median bias, variance and MSE between unconstrained versus constrained estimator.
A value above unity implies that the constrained estimator has a better finite sample performance at the
median value.

Log-Normal Gamma(1,3) Beta(5,1)

n = 5, t = 10
Bias 1.2210 0.9888 1.0139
Variance 0.9513 1.0332 1.0092
MSE 0.9917 0.9782 1.0283

n = 5, t = 20
Bias 1.1154 0.9897 1.0025
Variance 0.9734 1.0292 1.0016
MSE 1.0061 0.9793 1.0045

5.2 Experimental Data

Our experimental data were originally collected by Dyer, Kagel, and Levin (1989). Since the data are

used in Bajari and Hortaçsu (2005) and are discussed there as well, we provide only limited details.

MBA students at the University of Houston participated in a series of first-price sealed bid auctions over

the course of two hours. Subjects submitted contingent bids based on the number of other bidders in

the auction (either 2 or 5). However, we are treating the submitted bids (with either 3 or 6 bidders) as

the actual bids for our purposes. Values were drawn from a U [0, 30] density. As in Bajari and Hortaçsu

(2005), we drop the submitted bids for the first five auctions of a given run of the experiment. This

leaves us with 23 auctions over three experimental runs. We have a total of 414 bids, regardless of

the number of bidders, since we are ignoring the contingent bidding aspect of the experiment. In our

analysis, we focus on the six bidder case.

We employ the triweight kernel as advocated in Guerre, Perrigne, and Vuong (2000) using both

the rule-of-thumb bandwidth and the data-driven selection method described above. The rule-of-thumb
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bandwidth is 7.044, whereas our method provides a bandwidth of 1.522. The gross difference in the

bandwidths is most likely due to the fact that a rule-of-thumb bandwidth is arrived at assuming the

unknown density is that of a normal random variate. However, given the experimental nature of the

data, we know that the underlying value and bid distributions are both uniform. Thus, it is quite natural

that our bandwidths differ.

The magnitude of the rule-of-thumb bandwidth produces a globally monotonic bid-value relation-

ship (the dotted line in Panel (a)), whereas our data-driven method yields a non-monotonic relationship

(the solid line in Panel (a)). This appears to be a case where previous research would suggest that a

constrained estimator is unnecessary. However, we see that the ability to impose monotonicity here is

important. Using ρ = 0.5, we obtain a distance metric of 0.870. Our estimated bid-value relationships

are provided in Figure 3, Panel (a). The true relationship, plotted as the dashed-dotted line, is reason-

ably tracked by both our data-driven estimated relationship as well as the monotonically-constrained

relationship (dashed line) for values approximately less than 20. The rule-of-thumb bandwidth produces

an estimated bid-value relationship that is clearly infeasible.

We see that the use of the rule-of-thumb bandwidth produces a very inaccurate bid-value relationship

compared to the true uniform relationship. While this estimator does a poor job of tracking values, it

does produce a linear relationship, consistent with the true shape of the bid value relationship. The

curve using the data-driven bandwidth does a better job tracking values for low values, but is less reliable

for high values, producing a curve that is non-monotonic and swoops away from the true values near the

upper end of the plot. Our constrained estimator fixes the pockets of non-monotonicity that appear for

the unconstrained estimator and appears to almost exactly mimic the unconstrained curve for low value

draws. The allure of the procedures outlined here is that the user has two avenues which to impose

smoothness on the underlying bid-value relationship, the bandwidths as well as the constraint weighting

to ensure a monotonic relationship. The rule-of-thumb approach precludes this second option.

Panel (b) plots the uniform and constraint weights used in the analysis. We see that for values away

from the regions of non-monotonicity, the constraint weights are constant and almost identical to the

uniform weights, whereas the weights near the regions of non-monotonicity fluctuate around the uniform

weights. A similar pattern is observed in the examples in Hall, Huang, Gifford, and Gijbels (2001).

6 Conclusion

In this paper, we extend a nonparametric method originally proposed for estimating a survival function

that can accommodate theoretical restrictions, such as monotonicity, to structural auction settings. The

flexibility of the approach permits estimation using data drawn from heterogenous auctions and auctions

with reserve prices and differing numbers of bidders. We further extend the method by introducing an

automated bandwidth selection process for each of these settings. This is particularly important given

that we show that monotonicity, in an empirical auction setting, is directly linked to the bandwidth used
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in current nonparametric approaches. This lends further support to the argument that is well-known

throughout the statistics and econometrics literature: bandwidth selection is critical, regardless of the

setting.

Our work also reveals that errors in bidding by experimental subjects can yield theoretically-inconsistent

conclusions. Specifically, applying our estimator, along with our proposed data-driven bandwidth al-

gorithm, to the data collected in Dyer, Kagel, and Levin (1989) yields several small, non-monotonic

portions of the estimated equilibrium strategy. At the same time, when using a rule-of-thumb band-

width, the estimator produces a bid-value relationship which is linear, consistent with the true shape

of the bid-value relationship. Unfortunately, this bandwidth also produces a very inaccurate estimate.

The primary reason for this difference is that the rule-of-thumb bandwidth assumes that the unknown

density is normally distributed.

As stated above, we believe that both the automated bandwidth selection and the ability to im-

pose theoretical constraints on the estimated bidding relationship have value beyond that of structural

auctions. Given the importance of monotone comparative statics in economics (Athey 2001, 2002),

these techniques should prove indispensable in the application of nonparametric estimation to structural

settings.

While we have laid out the framework for constrained nonparametric analysis of auctions, much

remains to be done. Future research is needed to extend these methods both within the IPVP, as well as

beyond. Within the IPVP, the methods need to be augmented to allow for auction-specific heterogeneity

in terms of risk aversion and learning. Outside of the IPVP, these methods can be tailored to the affiliated

private value, common value, and conditionally independent private information paradigms that have

been developed.

21



References

[1] Athey, S., 2001. Single crossing properties and the existence of pure strategy equilibria in games of

incomplete information. Econometrica 69, 861-890.

[2] Athey, S., 2002. Monotone comparative statics under uncertainty. Quarterly Journal of Economics

108, 187-223.

[3] Athey, S., Haile, P.A., 2002. Identification of standard auction models. Econometrica 70, 2107-2140.

[4] Athey, S., Haile, P.A., 2008. Nonparametric approaches to auctions, in Handbook of Econometrics,

Volume 6, edited by J.J. Heckman and E. Leamer. Elsevier: Amsterdam.

[5] Bajari, P., 2001. Comparing competition and collusion: A numerical approach. Economic Theory

18, 187-205.
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Figure 1: Monotonization for data simulated from a truncated log-normal distribution. Panel (a) represents
the 95th percentile of D0(p̂) = 1.811407, the long-dashed line, the GPV estimator, the solid line, as well
as the constrained GPV estimator for the same dataset with ρ = 0.5, D0.5(p̂) = 1.846482 represented by
the short-dashed line, and with ρ = 1, D1(p̂) = 0.003746 represented by the dotted line. Panel (b) depicts
the envelope curves of the values of p̂ after the monotonicity constraint had been achieved with ρ = 0, 0.5,
and 1, again with the respective line types.
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Figure 2: Monotonization for data simulated from a truncated gamma distribution. Panel (a) represents
the 95th percentile of D0(p̂) = 0.615096, the long-dashed line, the GPV estimator, the solid line, as well
as the constrained GPV estimator for the same dataset with ρ = 0.5, D0.5(p̂) = 0.622522 represented by
the short-dashed line, and with ρ = 1, D1(p̂) = 0.001259 represented by the dotted line. Panel (b) depicts
the envelope curves of the values of p̂ after the monotonicity constraint had been achieved with ρ = 0, 0.5,
and 1, again with the respective line types.
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Figure 3: Plots of the Dyer, Kagel, and Levin (1989) first price auction experimental data with six bidders.
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