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Certain events quite within the realm of possibility, such as a major as-

teroid collision, global bioterrorism, abrupt global warming — even cer-

tain lab accidents— could have unimaginably terrible consequences up

to and including the extinction of the human race... I am not a Green,

an alarmist, an apocalyptic visionary, a catastrophist, a Chicken Little,

a Luddite, an anticapitalist, or even a pessimist. But... I have come to

believe that what I shall be calling the “catastrophic risks” are real and

growing...

— Richard A. Posner (2004, p. v)

1. Introduction

In October 1962, the Cuban missile crisis brought the world to the brink of a nuclear

holocaust. President John F. Kennedy put the chance of nuclear war at “somewhere

between one out of three and even.” The historian Arthur Schlesinger, Jr., at the time

an adviser of the President, later called this “the most dangerous moment in human

history.”1 What if a substantial fraction of the world’s population had been killed in

a nuclear holocaust in the 1960s? In some sense, the overall cost of the technologi-

cal innovations of the preceding 30 years would then seem to have outweighed the

benefits.

While nuclear devastation represents a vivid example of the potential costs of

technological change, it is by no means unique. The benefits from the internal

combustion engine must be weighed against the costs associated with pollution

and global warming. Biomedical advances have improved health substantially but

made possible weaponized anthrax and lab-enhanced viruses. The potential bene-

fits of nanotechnology stand beside the threat that a self-replicating machine could

someday spin out of control. Experimental physics has brought us x-ray lithogra-

phy techniques and superconductor technologies but also the remote possibility of

devastating accidents as we smash particles together at ever higher energies. These

1For these quotations, see (Rees, 2003, p. 26).
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and other technological dangers are detailed in a small but growing literature on so-

called “existential risks”; Posner (2004) is likely the most familiar of these references,

but see also Bostrom (2002), Joy (2000), Overbye (2008), and Rees (2003).

Technologies need not pose risks to the existence of humanity in order to have

costs worth considering. New technologies come with risks as well as benefits.

A new pesticide may turn out to be harmful to children. New drugs may have

unforeseen side effects. Marie Curie’s discovery of the new element radium led

to many uses of the glow-in-the-dark material, including a medicinal additive to

drinks and baths for supposed health benefits, wristwatches with luminous dials,

and as makeup — at least until the dire health consequences of radioactivity were

better understood. Other examples of new products that were intially thought to be

safe or even healthy include thalidomide, lead paint, asbestos, and cigarettes.

While some new technologies are dangerous, many others are devoted to sav-

ing lives. Lichtenberg (2005), for example, estimates that new pharmaceuticals ac-

counted for perhaps 40 percent of the rise in life expectancy between 1986 and

2000. MRI machines, better diagnostic equipment, and new surgical techniques

as well as anti-lock brakes, airbags, and pollution scrubbers are all examples of life-

saving technologies. How is growth theory altered when technologies involve life

and death instead of just higher consumption?

Consider what might be called a “Russian roulette” theory of economic growth.

Suppose the overwhelming majority of new ideas are beneficial and lead to growth

in consumption. However, there is a tiny chance that a new idea will be particu-

larly dangerous and cause massive loss of life. Do discovery and economic growth

continue forever in such a framework, or should society eventually decide that con-

sumption is high enough and stop playing the game of Russian roulette? How is this

conclusion affected if researchers can also develop life-saving technologies?

The answers to these questions turn out to depend crucially on the shape of

preferences. For a large class of conventional specifications, including log utility,

safety eventually trumps economic growth. The optimal rate of growth may be sub-

stantially lower than what is feasible, in some cases falling all the way to zero.

This project builds on a diverse collection of papers. Murphy and Topel (2003),
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Nordhaus (2003), and Becker, Philipson and Soares (2005) emphasize a range of

economic consequences of the high value attached to life. Murphy and Topel (2006)

extend this work to show that the economic value of future innovations that reduce

mortality is enormous. Weisbrod (1991) early on emphasized that the nature of

health spending surely influences the direction and rate of technical change. Hall

and Jones (2007) — building on Grossman (1972) and Ehrlich and Chuma (1990) —

is a direct precursor to the present paper, in ways that will be discussed in detail

below. Other related papers take these ideas in different directions. Acemoglu and

Johnson (2007) estimate the causal impact of changes in life expectancy on income.

Malani and Philipson (2011) provide a careful analysis of the differences between

medical research and research in other sectors.

The paper is organized as follows. Section 2 presents a simple model that il-

lustrates the main results. The advantage of this initial framework is its simplic-

ity, which makes the basic intuition of the results apparent. The disadvantage is

that the tradeoff between growth and safety is a black box. Section 3 then devel-

ops a rich idea-based endogenous growth model that permits a careful study of the

mechanisms highlighted by the simple model. Section 4 discusses a range of em-

pirical evidence that is helpful in judging the relevance of these results, and Section

5 concludes.

2. A Simple Model

At some level, this paper is about speed limits. You can drive your car slowly and

safely, or fast and recklessly. Similarly, a key decision the economy must make is

to set a safety threshold: researchers can introduce many new ideas without regard

to safety, or they can select a very tight safety threshold and introduce fewer ideas

each year, potentially slowing growth.

To develop this basic tradeoff, we begin with a simple two period OLG model.

Suppose an individual’s expected lifetime utility is

U = u(c0) + e−δ(g)u(c), c = c0(1 + g) (1)
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where c denotes consumption, g is the rate of consumption growth, and δ(g) is the

mortality rate so e−δ(g) is the probability an individual is alive in the second period.

A new cohort of young people is born each period, and everyone alive at a point in

time has the same consumption — this generation’s c0(1+g) is the next generation’s

c0.

To capture the “slow and safely or fast and recklessly” insight, assume δ(g) is an

increasing function of the underlying rate of economic growth. Faster growth raises

the mortality rate. In the richer model in the next section, this “black box” linking

growth and mortality will be developed with much more care. Notice, however, that

this approach incorporates the essential idea behind the Russian roulette example

in the introduction.

Each generation when young chooses the growth rate for the economy to max-

imize their expected utility in equation (1). The growth rate balances the concerns

for safety with the gains from higher consumption. The first order condition for this

maximization problem can be expressed as

u′(c)c0 = δ′(g)u(c). (2)

At the optimum, the marginal benefit from higher consumption growth, the left

hand side, equals the marginal cost associated with a shorter life, the right hand

side. This condition can be usefully rewritten as

1 + g =
ηu,c
δ′(g)

(3)

where ηu,c is the elasticity of u(c) with respect to c.

To make more progress, assume the following functional forms (we’ll generalize

later):

δ(g) = δg (4)

u(c) = ū+
c1−γ

1− γ
. (5)

Utility takes the familiar form that features a constant elasticity of marginal utility;
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the important role of the constant ū will be discussed momentarily.

2.1. Exponential Growth: 0 < γ < 1

To begin, let’s assume γ < 1 and set ū = 0. In this case, the elasticity of utility with

respect to consumption is ηu,c = 1− γ, so the solution for growth in (3) is

g∗ =
1− γ

δ
− 1. (6)

As long as δ is not too large, the model yields sustained positive growth over time.

For example, if γ = 1/2 and δ = 1/10, then g∗ = 4 and 1 + g∗ = 5: consumption

increases by a factor of 5 across each generation. This comes at the cost of a life

expectancy that is less than the maximum, but such is the tradeoff inherent in this

model.

One can check that this conclusion is robust to letting ū 6= 0. In general, that will

simply introduce transition dynamics into the model with γ < 1. The key elasticity

ηu,c then converges to 1 − γ as consumption gets large, leading to balanced growth

as an asymptotic result.

2.2. The End of Growth: γ > 1

What comes next may seem a bit surprising. We’ve already seen that this simple

model can generate sustained rapid growth for a conventional form of preferences.

What we show now is that in the case where γ is larger than one, the model does not

lead to sustained growth. Instead, concerns about safety lead growth to slow all the

way to zero, at least eventually.

In this case, the constant ū plays an essential role. In particular, notice that we’ve

implicitly normalized the utility associated with “death” to be zero. For example,

in (1), the individual gets u(c) if she lives and gets zero if she dies. But this means

that u(c) must be greater than zero for life to be worth living. Otherwise, death is

the optimal choice at each point in time. With γ > 1, however, c1−γ

1−γ is less than

zero. For example, this flow is −1/c for γ = 2. An obvious way to make our problem
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Figure 1: Flow Utility u(c) for γ > 1

u(c) = ū + c
1− γ

1−γ

for γ > 1

Consumption,  c

Utility

0

ū

Note: Flow utility is bounded for γ > 1. If ū = 0, then flow utility is negative and
dying is preferred to living.

interesting is to add a positive constant to flow utility. In this case, the flow utility

function is shown in Figure 1. Notice that flow utility is bounded, and the value of ū

provides the upper bound.2

Assuming γ > 1 and ū > 0, the first order condition in (3) can be written as

(1 + g)

(

ūcγ−1
0 (1 + g)γ−1 +

1

1− γ

)

=
1

δ
. (7)

The left-hand side of this expression is increasing in both c0 and in g. As the econ-

omy gets richer over time and c0 rises, then, it must be the case that g declines in

order to satisfy this first order condition. The optimal rate of economic growth slows

along the transition path.

In fact, one can see from this equation that consumption converges to a steady

state with zero growth. According to the original first order condition in (3), the

2As the figure illustrates, there exists a value of consumption below which flow utility is still neg-
ative. Below this level, individuals would prefer death to life, so they would randomize between zero
consumption and some higher value; see Rosen (1988). This level is very low for plausible parameter
values and can be ignored here. The role of the constant in flow utility is also discussed by Murphy
and Topel (2003), Nordhaus (2003), Becker, Philipson and Soares (2005), and Hall and Jones (2007).
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steady state must be characterized by η∗u,c = δ — that is, the point where the elas-

ticity of the utility function with respect to consumption equals the mortality pa-

rameter. More explicitly, setting g = 0 in (7) reveals that the steady state value of

consumption is given by

c∗ =

(
1

ū

(
1

δ
+

1

γ − 1

)) 1
γ−1

. (8)

Because growth falls all the way to zero, mortality declines to zero as well and life

expectancy is maximized.

To see the intuition for this result, recall the first order condition for growth:

1 + g = ηu,c/δ. When γ > 1 (or when flow utility is any bounded function), the

marginal utility of consumption declines rapidly as the economy gets richer — that

is, ηu,c declines. This leads the optimal rate of growth to decline and the economy

to converge to a steady state level of consumption.

A crucial implication of the bound on utility is that the marginal utility of con-

sumption declines to zero rapidly. Consumption on any given day runs into sharp

diminishing returns: think about the benefit of eating sushi for breakfast when you

are already having it for lunch, dinner, and your midnight snack. Instead, obtain-

ing extra days of life on which to enjoy your high consumption is a better way to

increase utility.

This point can also be made with algebra. Consider the following expression:

u(ct)

u′(ct)ct
=

1

ηu,c
= ūcγ−1

t +
1

1− γ
. (9)

The left side of this equation is based on the flow value of an additional period of

life, u(c). We divide by the marginal utility of consumption to value this flow in

units of consumption rather than in utils, so u(c)/u′(c) is something like the value

of a period of life in dollars. Then, we consider this value of life as a ratio to actual

consumption.

The right side of this equation shows the value of life as a ratio to consumption

under the assumed functional form for utility. Crucially, for γ > 1, the value of life
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rises faster than consumption. As the economy gets richer, concerns about safey

become more important than consumption itself. This is the essential mechanism

that leads the economy to tilt its allocation away from consumption growth and

toward preserving life in the model.

2.3. Generalizing

More generally, it should be clear from equations (9) and (3) that this steady-state

result would obtain with any (well-behaved) bounded utility function: in that case,

the elasticity of utility with respect to consumption falls to zero as consumption

goes to infinity, so the condition ηu,c = δ delivers a steady state.

Interestingly, this same result obtains with log utility. For γ = 1, we have u(c) =

ū + log c, and therefore ηu,c = 1/u(c). The elasticity of utility still declines to zero

as consumption gets arbitrarily large, leading to constant consumption in the long

run, even though utility is unbounded.

Alternatively, consider changing the mortality function. If we instead assume

δ(g) = δgθ with θ > 1, then the simple model leads the growth rate to slow to zero,

but only as consumption rises to infinity.3 The implication that consumption will

be constant in the long run, then, seems to be somewhat fragile. The more robust

prediction is that safety considerations may lead consumption growth to slow to

zero.

2.4. Summary of the Simple Model

This simple model is slighty more flexible than the “Russian roulette” example given

in the introduction. Rather than choosing between stagnation and a fixed rate of

growth with a small probability of death, the economy can vary the growth rate and

the associated death rate smoothly. This death rate can be given two different in-

terpretations. It may apply independently to each person in the population, so that

3The first order condition analogous to equation (3) becomes

g
θ−1(1 + g) =

ηu,c

δθ

which implies that g → 0 only occurs as ηu,c → 0 when γ > 1.
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e−δ(g) is the fraction of the population that survives to old age in each cohort. Alter-

natively, it may represent an existential risk that applies to the entire economy.

With γ < 1, the optimal tradeoff between growth and mortality leads to sus-

tained exponential growth, albeit with some positive death rate. In the idiosyn-

chratic interpretation of the death rate, life expectancy is simply less than its maxi-

mum but the economy continues forever. In the existential risk interpretation, the

economy grows exponentially until, with probability one, the existential risk is real-

ized and the economy comes to an end.

A very different result occurs when γ ≥ 1, or more generally when flow utility is

bounded. In this case, the marginal utility of consumption in any period falls rapidly

as individuals get richer. In contrast, each additional year of life delivers a positive

and growing amount of utility. The result is an income effect that favors safety over

growth. The growth rate of the economy eventually falls to zero, life expectancy rises

to its maximum, and consumption may even settle down to a constant. In the exis-

tential interpretation, the economy stops playing Russian roulette and, assuming it

did not get unlucky before reaching the steady state, goes on forever.

3. Life and Growth in a Richer Setting

The simple model in the previous section is elegant and delivers clean results for

the interaction between safety and growth. However, the way in which faster growth

raises mortality is mechanical, and it is simply assumed that the economy can pick

whatever growth rate it desires.

In this section, we address these concerns by adding safety considerations to a

standard growth model based on the discovery of new ideas. The result deepens our

understanding of the interactions between safety and growth. For example, in this

richer model, concerns for safety can slow the rate of exponential growth from 4%

to 1%, for example, but will never lead to a steady-state level of consumption. While

supporting the basic spirit of the simple model, then, the richer model illustrates

some important ways in which the simple model may be misleading.

The model below can be viewed as combining the “direction of technical change”
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work by Acemoglu (2002) with the health-spending model of Hall and Jones (2007).

That is, we posit a standard idea-based growth model where there are two types of

ideas instead of one: ideas that enhance consumption and ideas that save lives. The

key allocative decisions in the economy are (i) how many scientists to put into the

consumption versus life-saving sectors, and (ii) how many workers to put into using

these ideas to manufacture goods.

A looser interpretation of the model goes like this. New technologies have con-

sumption properties and life-related properties. Researchers must decide how much

effort to put into each dimension. For instance, a new automobile engine can be

made to be more powerful or to pollute less. Or researchers can spend their time

making a new insulating material either safer or easier to manufacture.

3.1. The Economic Environment

The economy features two main sectors, a consumption sector and a life-saving

sector. On the production side, both sectors are quite similar, and each looks very

much like the Jones (1995) version of the Romer (1990) growth model. In fact, we’ll

purposefully make the production side of the two sectors as similar as possible (i.e.

using the same parameters) so it will be clear where the results come from.

Total production of the consumption good Ct and the life-saving good Ht are

given by

Ct =

(∫ At

0
x
1/α
it di

)α

and Ht =

(∫ Bt

0
z
1/α
it di

)α

. (10)

Each sector uses a variety of intermediate goods to produce output with the same

basic production function. The main difference is that different varieties — differ-

ent ideas — are used for each sector: At represents the range of technologies avail-

able to produce consumption goods, while Bt represents the range used to produce

life-saving goods. It might be helpful to think of the zit as purchases of different

types of pharmaceuticals and surgical techniques. But we have in mind a broader

category of goods as well, such as pollution scrubbers in coal plants, seatbelts and

airbags, child safety locks, lifeguards at swimming pools, and safety regulations at

construction sites.
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Once the blueprint for a variety has been discovered, one unit of labor can be

used to produce one unit of that variety. The number of people working as labor is

denoted Lt, so the resource constraint for this labor is

∫ At

0
xitdi

︸ ︷︷ ︸

≡ Lct

+

∫ Bt

0
zitdi

︸ ︷︷ ︸

≡ Lht

≤ Lt. (11)

People can produce either goods, as above, or ideas. When they produce ideas,

we call them scientists, and the production functions for new ideas are given by

Ȧt = āSλ
atA

φ
t and Ḃt = b̄Sλ

btB
φ
t , (12)

where we assume φ < 1. Once again, notice that we assume the same parame-

ters for the idea production functions in the two sectors; this assumption could be

relaxed but is useful because it helps to clarify where the main results come from.

The resource constraints on scientists and people more generally are

Sat + Sbt ≤ St (13)

and

St + Lt ≤ Nt. (14)

That is, Nt denotes the total number of people, who can work as scientists or labor.

In turn, scientists and labor can work in either the consumption sector of the life-

saving sector.

Next, consider mortality. One component of mortality can be reduced by con-

suming life-saving goods:

δt = h−β
t , ht ≡ Ht/Nt. (15)

Purchases of new drugs, better surgical techniques, pollution scrubbers, and seat-

belts can save lives.

Total mortality is δ̂ + δt, which includes a parameter δ̂ that captures the funda-

mental underlying rate of mortality not susceptible to technological progress (which
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may or may not be zero). We assume an exogenous fertility rate of n̂ and let n̄ ≡ n̂− δ̂

denote the exogenous piece of population growth, apart from δt. Therefore the law

of motion for population is

Ṅt = (n̄ − δt)Nt. (16)

Finally, expected lifetime utility is given by

U =

∫ ∞

0
e−ρtu(ct)Λtdt, Λ̇t = −(δ̂ + δt)Λt (17)

where

u(ct) = ū+
c1−γ
t

1− γ
, ct ≡ Ct/Nt. (18)

Λt is the probability that an individual alive at date zero survives until date t; mortal-

ity reduces this survival probability. Flow utility takes a standard CRRA form, aug-

mented by a constant ū, which is related, as earlier, to the overall value of life versus

death.4

3.2. Allocating Resources

This economic environment features 14 unknowns —Ct,Ht, ct, ht, At, Bt, xit, zit, Sat,

Sbt, St, Lt, Nt, δt — and 11 equations — equations (10) through (15), including the

definitions for ht and ct (we are not counting lifetime utility and flow utility in this

numeration).

There are, not surprisingly then, three key allocative decisions that have to be

made in the economy, summarized by three allocative fractions st, ℓt, and σt:

1. How many scientists make consumption ideas versus life-saving ideas: st ≡

Sat/St.

2. How many workers make consumption goods versus life-saving goods: ℓt ≡

Lct/Lt. (Given the symmetry of the setup, it is efficient to allocate the xit and

the zit symmetrically across varieties, so we will just impose this throughout

the paper to simplify things.)

4As usual, ρ must be sufficiently large given growth so that utility is finite. We provide a precise
version of this condition below.
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3. How many people are scientists versus workers: σt ≡ St/Nt.

3.3. A Rule of Thumb Allocation

For reasons that will become clear, it is convenient to begin with a simple “rule of

thumb” allocation, analogous to Solow’s assumption of a fixed saving rate in his

version of the neoclassical growth model.

In particular, we consider the following rule of thumb allocation: st = s̄, ℓt = ℓ̄,

and σt = σ̄, where each of these new parameters is between 0 and 1. That is, we con-

sider putting a fixed fraction of our scientists in each research sector, a fixed fraction

of our workers in each goods sector, and let a fixed fraction of the population work

as scientists.

It is straightforward to show the following result:

Proposition 1 (BGP under the Rule of Thumb Allocation): Under the rule of thumb

allocation where st = s̄, ℓt = ℓ̄, and σt = σ̄, all between 0 and 1, there exists an

asymptotic balanced growth path such that as t → ∞, growth is given by5

n∗ = n̄, δ∗ = 0 (19)

g∗A = g∗B =
λn̄

1− φ
(20)

g∗c = g∗h = αg∗A = αg∗B = ḡ ≡
αλn̄

1− φ
. (21)

This is basically the expected outcome in a growth model of this flavor. With

labor allocated symmetrically within the consumption and life sectors, the produc-

tion functions are Ct = Aα
t Lct and Ht = Bα

t Lht. The idea production functions are

also symmetric in form. For instance, Ȧt

At
= āSλ

at/A
1−φ
t . So along a balanced growth

path, Sλ
at and A1−φ

t must grow at the same rate. Since the growth rate of scientists is

pinned down by the population growth rate, this means the growth rate of At (and

Bt) will be as well. Therefore Bt goes to infinity, which means that the mortality rate

δt falls to zero. And so on...

5These results, and indeed the results throughout the remainder of this paper, are of the following
form: limt→∞ gct = g∗c , and so on.
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The rule of thumb allocation suggests that this model will deliver a balanced

growth path with life expectancy rising to its maximum. Moreover, growth is bal-

anced in a particular way: technical change occurs at the same rate in both the

consumption and life sectors, so the relative price of the consumption and life ag-

gregates is constant. And by assumption, a constant fraction of labor and scientists

work in each sector. Of course, we could have altered some of these results simply

by making the elasticity of substitution or the parameters of the idea production

function differ between the two sectors. But that’s not where we wish to go. For the

moment, simply note that everything is nicely behaved and straightforward in the

rule of thumb allocation.

3.4. The Optimal Allocation

Somewhat surprisingly, our rule of thumb allocation turns out not to be a partic-

ularly good guide to the dynamics of the economy under the optimal allocation.

Instead, as suggested by the simple “Russian roulette” model at the start of this pa-

per, there is a sense in which consumption growth is slower than what is feasible

because of a shift in the allocation of resources when diminishing returns to con-

sumption are sufficiently strong.

There are many interesting questions related to welfare theorems in this type

of model: is a decentralized market allocation efficient? One can imagine various

externalities related to safety, particularly when “existential” risks are under con-

sideration. For now, however, we will put these interesting questions aside. Our

concern instead is with how safety considerations affect the economy even when

resources are allocated optimally.

The optimal allocation of resources is a time path for ct, ht, st, ℓt, σt, At, Bt, Nt, δt

that solves the following problem:

max
{st,ℓt,σt}

U =

∫ ∞

0
Ntu(ct)e

−ρtdt s.t. (22)
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ct = Aα
t ℓt(1− σt) (23)

ht = Bα
t (1− ℓt)(1 − σt) (24)

Ȧt = āsλt σ
λ
t N

λ
t A

φ
t (25)

Ḃt = b̄(1− st)
λσλ

t N
λ
t B

φ
t (26)

Ṅt = (n̄ − δt)Nt, δt = h−β
t (27)

This can be viewed as the problem of maximizing the representative dynasty’s utility

function (e.g. by setting N0 = 1), or it can be viewed as a social welfare function that

gives equal weight to each live person’s flow utility, regardless of age.

To solve for the optimal allocation, we define the Hamiltonian:

H = Ntu(ct) + patās
λ
t σ

λ
t N

λ
t A

φ
t + pbtb̄(1− st)

λσλ
t N

λ
t B

φ
t + vt(n̄− δt)Nt, (28)

where ct = Aα
t ℓt(1−σt) and δt = h−β

t = (Bα
t (1− ℓt)(1−σt))

−β . The costate variables

— pat, pbt, and vt — capture the shadow values of an extra consumption idea, an

extra life-saving idea, and an extra person to maximized welfare.

Using the Maximum Principle and solving the first-order necessary conditions

for the optimal allocation, we can derive several results. The most important of

these is given in the next proposition (proofs for this an the remaining propositions

are given in the appendix).

Proposition 2 (Optimal Growth with γ > 1 + β): Assume that the marginal utility

of consumption falls rapidly, in the sense that γ > 1 + β. Then the optimal alloca-

tion features an asymptotic balanced growth path such that as t → ∞, the fraction

of labor working in the consumption sector ℓt and the fraction of scientists making

consumption ideas st both fall to zero at constant exponential rates, and asymptotic

growth is given by

g∗s = g∗ℓ =
−ḡ (γ − 1− β)

1 + (γ − 1)(1 + αλ
1−φ)

< 0 (29)

g∗A =
λ(n̄+ g∗s)

1− φ
, g∗B = ḡ ≡

λn̄

1− φ
> g∗A (30)
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g∗δ = −βḡ, g∗h = ḡ (31)

g∗c = αg∗A + g∗ℓ = ḡ ·
1 + β(1 + αλ

1−φ)

1 + (γ − 1)(1 + αλ
1−φ)

< ḡ. (32)

This proposition echoes the key result from the simple “Russian Roulette” model

at the start of the paper: if the marginal utility of consumption runs into sufficiently

sharp diminishing returns, safety considerations alter the essential nature of op-

timal growth. While in the toy model, it was possible for consumption growth to

cease, the more micro-founded model given here displays a more subtle result.

First, the economy optimally settles down to an asymptotic balanced growth

path, but along this path, consumption grows at a rate that is slower than what is

feasible. This can be seen by comparing the consumption growth rates for the rule

of thumb allocation in (21) and the optimal allocation in (32): when γ − 1 > β,

g∗c < ḡ.

Second, the proximate cause of this slower growth is an exponential shift in the

allocation of resources. In particular, both the fraction of scientists and the fraction

of workers engaged in the consumption sector — st and ℓt — fall exponentially over

time along the BGP. To see how this slows growth, recall the production functions

for ideas

Ȧt = āsλt σ
λ
t N

λ
t A

φ
t and Ḃt = b̄(1− st)

λσλ
t N

λ
t B

φ
t .

The share 1 − st in the life-saving sector converges to one, leading to the expected

result that g∗B = λn̄/(1 − φ). However, the share st in the consumption ideas pro-

duction function falls exponentially toward zero. The exponential shift of scientists

out of this sector slows gA relative to gB , ultimately slowing consumption growth as

well.

A very nice feature of this result is that it makes a clear prediction: we should

see the composition of research shifting over time away from consumption ideas

and toward life-saving ideas if the model is correct and if the marginal utility of

consumption falls sufficiently fast. We will provide empirical evidence on this pre-

diction later on in the paper.

To understand the underlying reason for this structural change in the economy,
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consider the following equation, which is the first-order condition for allocating la-

bor between the consumption and life sectors:

1− ℓt
ℓt

= β
δtvt

u′(ct)ct
(33)

The left-side of this equation is just the ratio of labor working in the life sector to la-

bor working in the consumption sector. This equation says that the ratio of workers

is proportional to the ratio of what these workers can produce. In the numerator is

the death rate δt multiplied by the value of a life in utils, vt: this is the total value of

what can potentially be gained by making a life-saving good. The denominator, in

contrast, is proportional to what can be gained by making consumption goods: the

level of consumption multiplied by the marginal utility of consumption to put it in

utils, like the numerator.

In the analysis of this equation, it turns out to be useful to define ṽt ≡ vt
u′(ct)ct

— the value of a life in consumption units as a ratio to the level of consumption.

The allocation of workers then depends on the product δtṽt. In fact, as shown in

the appendix, the allocation of scientists depends on exactly this same term — see

equation (42).

Over time, the fraction of deaths that can potentially be avoided, δt, declines.

However, the value of each life rises. When γ > 1, the value of life rises even as a

ratio to consumption, so ṽt rises. Then, it is a race: δt falls at a rate proportional to

β, while ṽt rises at a rate proportional to γ − 1. Hence the critical role of γ − 1 − β.

In particular, when γ is large, as in the proposition we’ve just stated, the value of

life rises very rapidly, so that δtṽt rises to infinity. In this case, the optimal allocation

shifts all the labor and scientists into the life sector: the value of the lives that can

be saved rises so fast that it is optimal to devote ever-increasing resources to saving

lives.

3.5. The Optimal Allocation with γ < 1 + β

What happens if the marginal utility of consumption does not fall quite so rapidly?

The intuition is already suggested by the analysis just provided, and the result is
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given explicitly in the next proposition.

Proposition 3 (Optimal Growth with γ < 1+β): Assume that the marginal utility of

consumption falls, but not too rapidly, in the sense that γ < 1 + β. Then the optimal

allocation features an asymptotic balanced growth path such that as t → ∞, the

fraction of labor working in the life sector ℓ̃t ≡ 1 − ℓt and the fraction of scientists

making life-saving ideas s̃t ≡ 1 − st both fall to zero at constant exponential rates,

and asymptotic growth is given by

g∗A =
λn̄

1− φ
, g∗B =

λ(n̄+ g∗s̃)

1− φ
< g∗A

g∗c = ḡ, g∗δ = −βg∗h,

and the exact values for g∗s̃ and g∗h depend on whether γ > 1 or γ ≤ 1.

In particular, if 1 < γ < 1 + β:

g∗s̃ = g∗
ℓ̃
=

−ḡ (β + 1− γ)

1 + β(1 + αλ
1−φ)

< 0 (34)

g∗h = ḡ ·

(

1 + (γ − 1)(1 + αλ
1−φ)

1 + β(1 + αλ
1−φ)

)

< ḡ. (35)

While if γ ≤ 1:

g∗s̃ = g∗
ℓ̃
=

−βḡ

1 + β(1 + αλ
1−φ)

< 0 (36)

g∗h = ḡ ·

(

1

1 + β(1 + αλ
1−φ)

)

< ḡ. (37)

This proposition shows that when γ < 1 + β, the results flip-flop. That is, there

is still a trend in the allocation of scientists and workers, but the trend is now away

from the health/life sector and towards the consumption sector. In this case, the

death rate falls faster than the value of life rises. Looking back at equation (33), the

denominator u′(ct)ct rises faster than the numerator: the greater gain is in providing

consumption goods rather than in saving lives. We once again get an unbalanced

growth result, but now it is the consumption sector that grows faster.
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3.6. “Interior” Growth when 1 < γ = 1 + β

Proposition 4 (Optimal Growth with 1 < γ = 1 + β): Assume that the marginal

utility of consumption falls rapidly (γ > 1) and assume the following knife-edge con-

dition relating preferences and technology: γ = 1 + β. Then the optimal allocation

features an asymptotic balanced growth path such that as t → ∞, the key allocation

variables ℓt and st settle down to constants strictly between 0 and 1, and asymptotic

growth is given by

g∗A = g∗B =
λn̄

1− φ

g∗c = g∗h =
αλn̄

1− φ
= ḡ, g∗δ = −βḡ.

This is the one case where growth is “balanced” in the sense that the consump-

tion and life sectors grow at the same rate and labor and scientists do not all end up

in one sector. But, as stated above, this requires a somewhat arbitrary knife-edge

condition relating technology and preferences.6

3.7. Discussion

The simple toy model at the start of the paper and the richer model developed sub-

sequently lead to slightly different conclusions. In the simple model, consumption

growth falls to zero when the marginal utility of consumption diminishes rapidly,

while in the richer model the growth rate is only slowed by some proportion. Why

the difference?

The answer turns on functional forms and modeling choices about which we

have relatively little information. In the simple model, the mortality rate depends

on the growth rate of the economy rather than on the level of technology in the life-

saving sector, and this difference is evidently quite important. One can imagine a

more sophisticated version of the simple model that would preserve its stronger re-

sults. For example — along the lines of the Russian roulette example from the intro-

duction — suppose that most ideas are safe, but some ideas are dangerous and kill

6It turns out that even γ = 1 + β is not enough to get balanced growth when γ < 1. In this case, all
the workers and scientists still end up moving to the consumption sector, as in Proposition 3.
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off a fraction of the population. If each idea raises consumption by a constant pro-

portion (as in many Schumpeterian quality-ladder models like Aghion and Howitt

(1992)), it seems likely that growth would optimally cease if the marginal utility of

consumption falls rapidly.

The general result of this paper, then, is that concerns for safety can slow growth,

with the precise nature of the slowdown depending on modeling details.

4. Empirical Evidence

A useful feature of the main model in this paper is that it makes stark predictions

regarding the composition of research. Depending on the relative magnitudes of

γ − 1 and β, the direction of technical change should shift either toward or away

from life-saving technologies. In particular, if γ is large — so that the marginal util-

ity of consumption declines rapidly — one would expect to see the composition

of research shifting toward life-saving technologies, thereby slowing consumption

growth.

In this section, we discuss a range of evidence on β, γ, and the composition of

research. While not entirely decisive, the bulk of the evidence is very much consis-

tent with the first case we considered, where there is an income effect for live-saving

technologies and consumption growth is slowed.

4.1. The Composition of Research

One might think the main prediction on the composition of research would be an

easy prediction to test: surely there must be readily-available statistics on research

spending by the health sector of the economy. Unfortunately, this is not the case.

The main reason appears to be because both the spending and performance of

health research is done in several different organizations in the economy: indus-

try, government, non-profits, and academia. Thus, the construction of such num-

bers requires merging the results of different surveys, being careful to avoid double

counting, considering changes in the surveys over time, and so on. Between the
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Figure 2: The Changing Composition of U.S. R&D Spending
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Note: The graph shows the rise in the share of R&D spending in the United States
that is devoted to health, according to several different measures. See the Data
Appendix for sources and methodology.

1970s and the early 1990s, the NIH undertook this calculation and reported a health

research number. But, unfortunately, I have not been able to find any other source

that does this for the last twenty years.

As an imperfect substitute, I have put together some of the numbers myself. I’m

far from an expert on these surveys, so the numbers I discuss below are surely im-

perfect and do not adequately address the concerns outlined above. For this reason,

I do not report a single time series, but rather show results from a number of differ-

ent calculations. Fortunately, these all strongly point in the same direction, so while

we do not end up with a precise time series for health R&D, I think we do end up

with consistent evidence that speaks to the topic of this paper.

The details of my calculations are discussed in the Data Appendix, and the re-

sults are provided in two figures. Figure 2 documents the changing composition of

R&D spending in the United States. Four different time series are shown, includ-

ing the original NIH estimates and a long time series on non-commercial health

app:data
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Figure 3: The Changing Composition of OECD R&D Spending
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Note: The trend toward health is apparent in OECD measures of R&D expendi-
tures as well. The OECD estimate reported here includes data from the United
States, Canada, France, Germany, Italy, Japan, Spain, and the United Kingdom.
See the Data Appendix for sources and methodology.

research from the National Health Expenditure Accounts of the Centers for Medi-

care and Medicaid Services (CMMS). The remaining two time series add estimates

of commercial research to the CMMS estimate, using two different collections of

surveys by the National Science Foundation. The fact that the NIH series and the

CMMS+NSF series coincide during overlapping years is somewhat reassuring.

The message from Figure 2 is quite clear. Whether we look at non-commericial

research or the broader estimates for total research, the composition of R&D ap-

pears to be shifting distinctly toward health over time. For example, the earliest es-

timates from 1960 suggest that the health sector accounted for only about 7 percent

of all R&D, while the most recent estimates from 2007 are around 25 percent.

Of course, life-saving technologies are invented around the world, not just in the

United States. Figure 3 uses OECD sources to study how the composition of R&D

is changing internationally. This data is only available since 1991 but tells the same
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basic story: the composition of research is shifting distinctly toward health. In 1991,

around 9 percent of OECD research spending was on health, and this share rose to

16 percent by 2006. The figure also shows the corresponding share for the United

States (estimated using slightly different assumptions with these OECD sources),

confirming the sharp rise that we saw earlier in Figure 2.

This evidence on the composition of research is helpful in that it addresses one

of the clear predictions of the model. Of course, this is not an entirely compelling

test of the model, as there are other possible explanations for the changing com-

position of research. For example, perhaps the rise in the share of health spending

in the economy is due to other factors, and health research is simply responding to

these factors as well. Also, health research is an imperfect proxy for efforts devoted

to life-saving technologies; research on pollution scrubbers and highway safety will

not be included, for example.

4.2. Empirical Evidence on β

The parameter β is readily interpreted as the elasticity of the mortality rate with re-

spect to real health expenditures. A plausible upper bound for this parameter can

then be obtained by considering the relative trends in mortality and health spend-

ing: this calculation would attribute all the decline in mortality to health spending,

which is surely an overestimate given the likely importance of other factors.

According to Health, United States 2009, age-adjusted mortality rates fell at an

average annual rate of 1.2% between 1960 and 2007, while CPI-deflated health spend-

ing rose at an average annual rate of 4.1%.7 The ratio of these two growth rates

gives an estimate of the upper bound for β of 0.291. Hall and Jones (2007) con-

duct a more formal analysis along these lines using age-specific mortality rates,

age-specific health spending, and allowing for other factors to enter. For people

between the ages of 20 and 80, they find estimates for this elasticity ranging from

0.10 to 0.25.

7See Tables 26 and 122 of that publication, available at http://www.cdc.gov/nchs/hus.htm.

http://www.cdc.gov/nchs/hus.htm
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4.3. Estimates of γ

Given the upper bound for β just reported, life considerations will dominate in the

model if γ is larger than about 1.3. In the most common way of specifying pref-

erences for macro applications, the coefficient of relative risk aversion, γ in our

notation, equals the inverse of the elasticity of intertemporal substitution. Large

literatures on asset pricing (Lucas 1994) and labor supply (Chetty 2006) suggest that

γ > 1 is a reasonable value, and values above 1.5 are quite common in this literature.

Evidence on the elasticity of intertemporal substitution, 1/γ in our notation, is

more mixed. The traditional view, supported by Hall (1988), is that this elasticity

is well below one, consistent with the case of γ > 1.3. This view is supported by

a range of careful microeconometric work, including Attanasio and Weber (1995),

Barsky, Juster, Kimball and Shapiro (1997), and Guvenen (2006); see Hall (2009) for a

survey of this evidence. On the other hand, Vissing-Jorgensen and Attanasio (2003)

and Gruber (2006) find evidence that the elasticity of intertemporal substitution is

greater than one, suggesting that γ < 1 could be appropriate.

4.4. Empirical Evidence on the Value of Life

Direct evidence on how the value of life changes with income — another way to

gauge the magnitude of γ — is surprisingly difficult to come by. Most of the em-

pirical work in this literature is cross-sectional in nature and focuses on getting a

single measure of the value of life (or perhaps a value by age); see Ashenfelter and

Greenstone (2004), for example. There are a few studies that contain important

information on the income elasticity, however. Viscusi and Aldy (2003) conduct a

meta-analysis and find that across studies, the value of life exhibits an income elas-

ticity below one. On the other hand, Costa and Kahn (2004) and Hammitt, Liu and

Liu (2000) consider explicitly how the value of life changes over time. These stud-

ies find that the value of life rises roughly twice as fast as income, consistent with

γ > 1.3.
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4.5. Evidence from Health Spending

The key mechanism at work in this paper is that the marginal utility of consump-

tion falls quickly if γ > 1, leading the value of life to rise faster than consumption.

This tilts the allocation in the economy away from consumption growth and toward

preserving lives. Exactly this same mechanism is at work in Hall and Jones (2007),

which studies health spending. In that paper, γ > 1 leads to an income effect: as

the economy gets richer over time (exogenously), it is optimal to spend an increas-

ing fraction of income on health care in an effort to reduce mortality. The same

force is at work here in a very different context. Economic growth combines with

sharply diminishing marginal utility to make the preservation of life a luxury good.

The novel finding is that this force has first-order effects on the determination of

economic growth itself.

What evidence is there for an income elasticity of health spending larger than

one? Figure 4 shows some international evidence. Health spending as a share of

GDP is rising in many countries of the world, not only in the United States. Indeed,

for the 19 OECD countries reporting data in both 1970 and 2006 (many not shown),

all experienced a rising health share.

Acemoglu, Finkelstein and Notowidigdo (2009a) estimate an elasticity of hospi-

tal spending with respect to transitory income of 0.7, less than one, using oil price

movements to instrument local income changes at the county level in the south-

ern part of the United States. While useful, it is not entirely clear that this bears on

the key parameter here, as that paper considers income changes that are temporary

(and hence might reasonably be smoothed and not have a large effect on health

spending) and local (and hence might not alter the limited selection of health in-

surance contracts that are available).

4.6. Growth in Health and Non-Health Consumption

The results from our model suggest that, apart from a knife-edge case, the compo-

sition of research will shift toward either the consumption sector or the life-saving

sector. Moreover, at least insofar as the parameters of the idea production function
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Figure 4: International Evidence on the Income Effect in Health Spending
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Note: Data are from OECD Health Data 2009 and are reported every 10 years, except for
the last observation from 2006.

are similar in those two sectors (and we have no real evidence pushing us one way

or the other on this), the sector that sheds its researchers will grow more slowly in

the long run.

This prediction prompts us to look at the historical evidence on the growth of per

capita consumption for both the health and non-health sectors, respectively. Fig-

ure 5 shows this evidence, taken from the National Income and Product Accounts

for the United States.

The figure shows two lines for each sector, differing according to which price de-

flators are used. The “official” lines report the results using the official BEA deflators

for health and non-health consumption. These results already suggest faster growth

in health than in consumption, consistent with the evidence on the composition of

research.

There is ample evidence, however, that serious measurement problems asso-

ciated with quality change plague the construction of these deflators. Triplett and
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Figure 5: Health and Consumption
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Note: The plot shows real per capita consumption expenditures for health and non-health
in the United States. Two different methods are used to deflate nominal expenditures.
The “official” lines are deflated by the price indices constructed by the BEA, which show
more rapid price increases in the health sector. The “pce” lines are both deflated by the
overall deflator for personal consumption expenditures, implicitly assuming that techni-
cal change in the two sectors occurs at the same rate (a conservative assumption given the
general empirical evidence reported in this paper).

Bosworth (2000), for example, show that they imply negative labor productivity growth

in the health sector, a finding that rings hollow given the rapid technological ad-

vances in that sector. Many case studies of particular health treatments find that

quality-adjusted prices are actually falling rather than rising relative to the CPI.8

The “pce” measures in Figure 5 therefore deflate both nominal health spending and

8Cutler, McClellan, Newhouse and Remler (1998) find that the real quality-adjusted price for treat-
ing heart attacks declines at a rate of 1.1 percent per year between 1983 and 1994. Shapiro, Shapiro

and Wilcox (1999) examine the treatment price for cataracts between 1969 and 1994. While a CPI-like
price index for cataracts increased at an annual rate of 9.2 percent over this period, their alternative
price index, only partially incorporating quality improvements, grew only 4.1 percent per year, falling
relative to the total CPI at a rate of about 1.5 percent per year. Berndt, Bir, Busch, Frank and Normand
(2000) estimate that the price of treating incidents of acute phase major depression declined in nomi-
nal terms by between 1.7 percent and 2.1 percent per year between 1991 and 1996, corresponding to a
real rate of decline of more than 3 percent (though over a relatively short time period). Lawver (2011)
obtain similar results using a structural model and more aggregate data.
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nominal consumption spending by the overall NIPA deflator for personal consump-

tion expenditures, implicitly assuming rates of technological change are the same

in the two sectors. Of course, given the changing composition of research, even this

correction arguably falls short. Nevertheless, one can see that it suggests a large dif-

ference in growth between the two sectors, with growth in health averaging 4.67%

per year between 1950 and 2009, versus only 1.84% for per capita consumption.

If the economy were already in steady state, the growth rates reported in Figure 5

would be direct evidence on the magnitude of the “growth drag” associated with life

considerations, and this drag is substantial: 1.84/4.67 ≈ 0.4, for example, suggesting

that consumption growth is reduced to only 40% of its feasible rate because of the

rising importance of life.

Unfortunately, the evidence on the composition of research suggests the econ-

omy is far from its steady state, since the research share is well below one. This

evidence on the growth drag, then, is only suggestive. However, as the next section

shows, one can calibrate the model to get an estimate of the growth drag that is in

the same ballpark as this historical evidence.

4.7. Calibrating the Growth Drag

We have discussed a range of evidence in this section — the shift in the composi-

tion of research toward health, empirical estimates of β and γ, how the value of life

changes with income, the rise in health spending as a share of GDP, and the histor-

ical evidence on the growth rates of health spending versus non-health consump-

tion. While none is entirely decisive, the evidence suggests that the possibility of an

income effect favoring life-saving technologies should be considered carefully. The

case studied in Proposition 2 where γ − 1 > β may be the relevant one.

Here, we follow this logic and, using a range of parameter values consistent with

the evidence just discussed, report the magnitude of the “growth drag” that is im-

plied. More precisely, recall that according to Proposition 2, long-run growth rates
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in the two sectors are given by

g∗h =
αλn̄

1− φ
= ḡ (38)

g∗c = ḡ ·
1 + β(1 + αλ

1−φ)

1 + (γ − 1)(1 + αλ
1−φ)

< ḡ. (39)

That is, when γ − 1 > β, the consumption sector grows more slowly than the health

sector — and more slowly than what is feasible — by a factor that is given in the last

equation.

To estimate this factor, we require estimates of γ, β, and αλ
1−φ . We’ve already dis-

cussed evidence on the first two of these above. Notice from equation (38) that the

last is just given by the factor by which the long-run growth rate of the health sector

is “marked up” over the rate of population growth. Estimates of this factor for the

economy as a whole are discussed in Jones and Romer (2010); a broad but plausi-

ble range for this factor is [1/2, 2]; larger values would simply make the growth drag

even more dramatic.

Table 1 reports estimates of the “growth drag” factor in equation (39). These

factors range from a low of 0.33 to a high of 0.79, with the mean value equal to 0.56.

That is, according to the mean value, long-run growth in the consumption sector is

only 56% of its feasible rate in the optimal allocation. It would be feasible to keep

the research shares constant and let consumption grow much faster, but the rising

value of life means this is not optimal.

This growth drag calculation illustrates a deeper conceptual point about the

model. The standard interpretation of semi-endogenous growth models (like this

one) is that conventional policies cannot affect the long-run growth rate. However,

that is incorrect in this case. Policies that alter the rate at which the consumption

sector sheds researchers can change the magnitude of the growth drag and hence

affect the long-run growth rate of consumption.
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Table 1: The Growth Drag

β = .25 β = .10

αλ
1−φ γ = 1.5 γ = 2 γ = 1.5 γ = 2

0.50 0.79 0.55 0.66 0.46

1.00 0.75 0.50 0.60 0.40

2.00 0.70 0.44 0.52 0.33

Note: The table reports the ratio of gc to gh in steady state according to Proposition 2
for various values of the parameters. That is, it reports the factor by which consump-
tion growth gets reduced because of the trend in the research share. The factor is

1+β(1+ αλ
1−φ

)

1+(γ−1)(1+ αλ
1−φ

)
. The mean across the various estimates is 0.56.

4.8. A Future Growth Slowdown?

Close to the balanced growth path, the share of research devoted to health would

be close to one, so that the percentage increases in the health research share would

be small and not contribute significantly to growth. In contrast, the percentage

declines in the consumption research share would be large, significantly slowing

growth in that sector. In recent decades, however, the economy appears to be far

enough from steady state that the opposite is still occuring: a growing health re-

search share boosts growth in that sector. Similarly, the percentage decline in the

consumption share of research is relatively modest, which means that consumption

is growing faster than its long run rate.

To get a rough sense of the magnitudes involve, recall that the health share of

research in Figure 2 is estimated to have risen from about 7% to about 25% between

1960 and 2007. This corresponds to an average annual growth rate of about 2.7%,

which is large relative to the overall growth rate of R&D. In constrast, the consump-

tion research share has fallen from 93% to 75% over the same period, corresponding

to an average annual growth rate of -0.46%. This is more in line with calibrated val-

ues of the long-run decline in the consumption research share.
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The implication of this argument is that some of the hypothetical growth drag

that we have calculated applies to future growth, particularly in terms of the pro-

duction of life-saving goods. That is, this channel provides a mechanism through

which health spending growth — which makes up an increasing portion of GDP

growth — would be predicted to slow in the future. The magnitudes computed for

the growth drags suggest that this slowdown could be substantial.

4.9. Sustainable Growth and the Environment

This paper is also related to the literature on sustainable growth and the environ-

ment; for example, see Solow (1974), Stiglitz (1974), Gradus and Smulders (1993),

and Aghion and Howitt (1998, Ch. 5). Particularly relevant are Stokey (1998) and

Brock and Taylor (2005), who study the environmental Kuznets curve in which pol-

lution first rises and then falls with economic development. In these papers, pol-

lution enters the utility function as a cost in an additively separable fashion from

consumption. These models feature an income effect for γ > 1 because the utility

from growing consumption is bounded. This leads to a “growth drag” from the en-

vironment: growth is slower than it would otherwise be because of environmental

concerns. While the key issues here are very distinct — the utility costs of pollu-

tion in one case versus the loss of life associated with dangerous technologies in the

other — it is interesting that the curvature of marginal utility plays a central role in

both and can slow growth.

One of the ways in which pollution has been mitigated in the United States is

through the development of new, cleaner technologies. Examples include scrub-

bers that remove harmful particulates from industrial exhaust and catalytic con-

verters that reduce automobile emissions. Researchers can spend their time mak-

ing existing technologies safer or inventing new technologies. Rising concerns for

safety lead them to divert effort away from new technologies, which may slow growth.

Acemoglu, Aghion, Bursztyn and Hemous (2009b) explore this kind of directed tech-

nical change in a model of growth and the environment.
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5. Conclusion

Technological progress involves life and death, and augmenting standard growth

models to take this into account leads potentially to first-order changes in the the-

ory of economic growth. This paper explores these possibilities, first in a simple

“Russian roulette” style model and then in a richer model in which growth explicitly

depends on the discovery of new ideas. The results depend somewhat on the details

of the model and, crucially, on how rapidly the marginal utility of consumption de-

clines. It may be optimal for consumption growth to continue exponentially despite

the presence of life-and-death considerations. Or it may be optimal for growth to

slow to zero, even potentially leading to a steady-state level of consumption.

The intuition for the slowing of growth turns out to be straightforward. For

a large class of standard preferences, safety is a luxury good. The marginal util-

ity associated with more consumption on a given day runs into sharp diminish-

ing returns, and ensuring additional days of life on which to consume is a natural,

welfare-enhancing response. When the value of life rises faster than consumption,

economic growth leads to a disproportionate concern for safety. This concern can

be so strong that it is desirable that growth slow down.

This paper suggests a number of different directions for future research on the

economics of safety. It would clearly be desirable to have precise estimates of the

value of life and how this has changed over time; in particular, does it indeed rise

faster than income and consumption? More empirical work on how safety stan-

dards have changed over time — and estimates of their impacts on economic growth

— would also be valuable. Finally, the basic mechanism at work in this paper over

time also applies across countries. Countries at different levels of income may have

very different values of life and therefore different safety standards. This may have

interesting implications for international trade, standards for pollution and global

warming, and international relations more generally.
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A Appendix: Derivations and Proofs

This appendix contains outlines of the proofs of the propositions reported in the

paper.

As a prelude to these propositions, we first consider the optimal allocation prob-

lem in equations (22) through (27). Using the Hamiltonian in (28) and applying the

Maximum Principle, the first-order necessary conditions for a solution are

1− st
st

=
pbtḂt

patȦt

(FOC: s)

1− ℓt
ℓt

= βδt ·
vt

u′(ct)ct
(FOC: ℓ)

σt
1− σt

=
λ(patȦt + pbtḂt)

Nt(u′(ct)ct + βδtvt)
(FOC: σ)

ρ =
v̇t
vt

+
1

vt

[

u(ct) + patλ
Ȧt

Nt
+ pbtλ

Ḃt

Nt
+ vt(n̄− δt)

]

(FOC: N )

ρ =
ṗat
pat

+
1

pat

[

Ntu
′(ct)α

ct
At

+ patφ
Ȧt

At

]

(FOC: A)

ρ =
ṗbt
pbt

+
1

pbt

[

pbtφ
Ḃt

Bt
+ αβvtNt

δt
Bt

]

(FOC: B)

plus the three standard transversality conditions.

It will be convenient, for reasons discussed in the main text, to define

ṽt ≡
vt

u′(ct)ct
.

This variable denotes the ratio of the value of life to consumption per person.

Proof of Proposition 2. Optimal Growth with γ > 1 + β

The essence of the result is that the key allocation variables st and ℓt decline

exponentially to zero at a constant rate. This exponential shift of scientists toward

the life sector slows the growth rate of consumption ideas. To derive the result, we



LIFE AND GROWTH 35

use the various first order conditions for the optimal allocation.

1. Look back at the first-order condition characterizing the allocation of scien-

tists, equation (FOC: s). To solve for this allocation, we need to solve for the

relative price of ideas, pb/pa. From equations (FOC: A) and (FOC: B), we have

pat =
αNtu

′(ct)ct/At

ρ− gpat − φgAt
and pbt =

αβNtvtδt/Bt

ρ− gpbt − φgBt
. (40)

A condition on the parameter values (basically that ρ is sufficiently large) keeps

the denominators of these expressions positive.

This means that the relative price satisfies

pbtBt

patAt
= βδtṽt ·

ρ− gpat − φgAt

ρ− gpbt − φgBt
. (41)

2. Substituting this expression into (FOC: s) yields

1− st
st

= βδtṽt ·
ρ− gpat − φgAt

ρ− gpbt − φgBt
·
gBt

gAt
. (42)

Recall from (FOC: ℓ) that 1−ℓt
ℓt

= βδtṽt, so both of these key allocation variables

depend on δtṽt, that is, on the race between the decline in the mortality rate

and the possible rise in the value of life relative to consumption. The next

several steps characterize the behavior of δtṽt, which we will then plug back

into this expression.

3. First, we study ṽt. Using (FOC: N ) and (40), we obtain

ṽt =

u(ct)
u′(ct)ct

+ αλgAt

ρ−gpat−φgAt

ρ− gvt − nt −
αλβgBtδt

ρ−gpbt−φgBt

. (43)

This is a key expression: the value of having an extra person in the economy

(as a ratio to consumption) depends crucially on the extra utility that person

enjoys — that’s the first term in the numerator and the one that matters most

in what follows. The second term in the numerator reflects the additional con-

sumption ideas that an extra person will generate. The denominator essen-
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tially converts this flow dividend (the numerator) into a present discounted

value. Notice that the discount rate is reduced by the additional health ideas

that the person will generate, which lets the person live longer to enjoy more

utility and produce even more ideas in the future.

4. Now recall that given our CRRA form for flow utility,

u(ct)

u′(ct)ct
= ūcγ−1

t +
1

1− γ
.

Since γ > 1, along an asymptotic balanced growth path where ct → ∞,

gṽ = (γ − 1)gc. (44)

5. Now let’s guess that the solution for the asymptotic balanced growth path

takes the following form: st and ℓt fall toward zero at a constant exponential

rate, while σt → σ∗ and nt → n̄. We’ll see that the key condition delivering this

result will be γ > 1 + β.

6. Under this proposed solution, consumption growth is

gc = αgA + gℓ = αgA + gs (45)

where the last equality comes from observing that along our proposed asymp-

totic BGP, gℓ = gs since both st and ℓt are inversely proportional to δtṽt —

see (42) above.

7. A number of other growth rates follow in a straightforward way from the var-

ious production functions. Most important of these is the growth rate of At.

Recall Ȧt = āsλt σ
λ
t N

λ
t A

φ
t and Ḃt = b̄(1 − st)

λσλ
t N

λ
t B

φ
t . The exponential de-

cline in st will then crucially distinguish the growth rates of At and Bt, since

1− st → 1 will be asymptotically constant, while st falls exponentially. There-

fore, taking logs and derivatives of these equations, their asymptotic growth

rates must satisfy

gA =
λ(n̄+ gs)

1− φ
and gB =

λn̄

1− φ
. (46)
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8. Combining (44), (45), and (46), gives

gṽ = (γ − 1)

(
αλ(n̄ + gs)

1− φ
+ gs

)

. (47)

9. So to get the growth rate of δtṽt, we now need an expression for gδ. Recall

δt = (Bα
t (1− ℓt)(1 − σt))

−β . Since 1− ℓt converges to one while σt → σ∗,

gδ = −αβgB . (48)

10. Now, finally, look back at (42) and consider the asymptotic growth rate of each

side of the equation. Along our proposed balanced growth path, 1 − st con-

verges to one, so its growth rate converges to zero. The share st falls exponen-

tially, leading the left side to grow, while the right side of the equation grows

as δtṽt. Using our last two results in (47) and (48), taking growth rates of (42)

gives

−gs = −αβgB + (γ − 1)

(
αλ(n̄+ gs)

1− φ
+ gs

)

. (49)

Solving for gs then gives

gs =
−αgB(γ − 1− β)

1 + (γ − 1)(1 + αλ
1−φ)

. (50)

Under our key assumption that γ > 1+β, this solution for gs is negative, as we

conjectured earlier.

11. For completeness, one can also solve for σ∗, the share of the population that

becomes scientists. Using (FOC: σ) and making some natural substitutions,

we find
σ∗

1− σ∗
=

αλgB
ρ− gpb − φgB

(51)

where, from (40), gpb = n̄− gs + (γ − 1)gc > 0. This means that for the denom-

inator in (51) to be positive, we require

ρ− n̄+ gs − (γ − 1)gc − φgB > 0, (52)
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which, given the solutions for gs, gc, and gB implicitly provides the condition

on ρ needed for utility to be finite and for this general problem to be well-

defined.

Proof of Proposition 3. Optimal Growth with γ < 1 + β

The first part of the proof follows exactly what we did earlier in proving Proposi-

tion 2. In particular, steps 1 through 3 are identical.

4. Here things start to change, depending on whether γ ≤ 1 or 1 < γ < 1 + β.

Notice that
u(ct)

u′(ct)ct
= ūcγ−1

t +
1

1− γ
.

If γ ≤ 1, this ratio (the value of a year of life relative to consumption) will

converge to a constant as ct → ∞, whereas if γ > 1, the ratio will grow to

infinity. This turns out not to matter very much in what follows. In particular,

we will focus on the γ > 1 case below, so that

gṽ = (γ − 1)gc. (53)

(To consider the case where γ < 1, simply replace the (γ−1) terms below with

a zero, reflecting the appropriate value of gṽ.)

5. Now we guess that the solution for the asymptotic balanced growth path takes

the following form: s̃t ≡ 1 − st and ℓ̃t ≡ 1 − ℓt fall toward zero at a constant

exponential rate, while σt → σ∗ and nt → n̄. That is, the allocation of scientists

and workers shifts away from life and toward the consumption sector.

6. Under this proposed solution, consumption growth is

gc = αgA (54)

while growth of the life-saving aggregate is

gh = αgB + gℓ̃ = αgB + gs̃. (55)
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The last inequality comes from noting that gℓ̃ = gs̃ from step 2 in the proof of

Proposition 2; see the discussion surrounding equation (42) above. In fact, it

is helpful to repeat that equation here, written in terms of the tilde variables:

s̃t
1− s̃t

= βδtṽt ·
ρ− gpat − φgAt

ρ− gpbt − φgBt
·
gBt

gAt
. (56)

7. A number of other growth rates follow in a straightforward way from the var-

ious production functions. Most important of these is the growth rate of Bt.

Recall Ȧt = ā(1 − s̃t)
λσλ

t N
λ
t A

φ
t and Ḃt = b̄s̃λt σ

λ
t N

λ
t B

φ
t . The exponential de-

cline in s̃t will then crucially distinguish the growth rates of At and Bt, since

1− s̃t → 1 will be asymptotically constant, while s̃t falls exponentially. There-

fore, taking logs and derivatives of these equations, their asymptotic growth

rates must satisfy

gA =
λn̄

1− φ
and gB =

λ(n̄ + gs̃
1− φ

. (57)

8. Combining (53), (54), and (57), gives

gṽ = (γ − 1)ḡ. (58)

9. So to get the growth rate of δtṽt, we now need an expression for gδ. Recall

δt = (Bα
t ℓ̃t(1 − σt))

−β . Therefore, gδ = −β(αgB + gℓ̃). Using this and the fact

that gℓ̃ = gs̃ gives

gδ = −β

(
αλ(n̄+ gs̃)

1− φ
+ gs̃

)

. (59)

Combining (58) and (59) leads to

gδ + gṽ = −(1 + β − γ)ḡ − βgs̃

(

1 +
αλ

1− φ

)

. (60)

10. Now, look back at (56) and consider the asymptotic growth rate of each side of

the equation. Along our proposed balanced growth path, 1 − s̃t converges to

one, so its growth rate converges to zero. The share s̃t falls exponentially, while

the right side of the equation grows with δtṽt. Using our last several results
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in (58), (59), and (60) gives

gs̃ = −(β + 1− γ)ḡ − βgs̃

(

1 +
αλ

1− φ

)

. (61)

Solving for gs̃ then gives

gs̃ =
−ḡ (β + 1− γ)

1 + β(1 + αλ
1−φ)

. (62)

Under our key assumption that γ < 1+β, this solution for gs̃ is negative, as we

conjectured earlier.

11. Substituting this result into (55) then gives the growth rate of the life-saving

aggregate:

g∗h = ḡ ·

(
1 + (γ − 1)(1 + αλ

1−φ)

1 + β(1 + αλ
1−φ)

)

< ḡ. (63)

Proof of Proposition 4. Optimal Growth with 1 < γ = 1 + β

The proof here is straightforward and follows from the earlier proofs. For exam-

ple, since γ = 1 + β, one can see from equation (50) that gs = 0. The key growth

rates of the economy are then equal to ḡ immediately.

B Data Appendix

This appendix describes the construction of the data on the fraction of R&D expen-

ditures associated with health. Two separate efforts are made, one using U.S. data

and the other using OECD data. These are discussed in turn.

B1. United States

Several main sources are used to construct the US data underlying Figure 2. A

spreadsheet available from the data section of my web page called NSF-AllYears-IndustrialRND.xls

contains the detailed calculations.

First, for the years 1971 to 1993, various issues of the NIH Data Book report a

time series for the key variable in which we are interested: the fraction of R&D re-

http://www.stanford.edu/~chadj/NSF-AllYears-IndustrialRND.xls
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lated to health. In particular, we use the NIH Data Books for 1982, 1989, and 1994,

splicing together these series during overlapping years to construct our first mea-

sure of health R&D. Unfortunately, these data do not appear to be available online,

so I used physical copies of the data books.

Our other measures are obtained from a more involved calculation using the

following sources:

• Centers for Medicare and Medicaid Services, National Health Expenditure Ac-

counts, 1960–2009. This data source provides an extensive account of health

expenditures, including a “research” category. However, because the purpose

is to provide an accounting of health expenditures, the research category only

includes non-commercial research. As stated on page 26 of National Health

Expenditure Accounts: Definitions, Sources, and Methods 2009,

Research shown separately in the NHEA is that of non-profit or gov-

ernment entities. Research and development expenditures by drug

and medical supply and equipment manufacturers are not shown

in this line, as those expenditures are treated as intermediate pur-

chases under the definitions of national income accounting; that is,

the value of that research is deemed to be recouped through product

sales.

• National Science Foundation IRIS data, 1953–1998, Table H-25. From this

source, we obtain “Company and other (except Federal) funds for industrial

R&D performance, by industry” for 1953–1998. In particular, we sum three in-

dustries to get commercial health research: “drugs and medicines” (SIC 283),

“health services” (SIC 80), and then a fraction of “optical, surgical, photo-

graphic, and other instruments” (SIC 384-387). This fraction is equal to 0.569,

which is obtained by using the average ratio of health R&D on “medical equip-

ment and supplies” for 1997 and 1998 (the two overlapping years) from our

next source.

• National Science Foundation, Research and Development in Industry, vari-

ous issues (2000, 2002, 2003, 2004, 2005). This source reports “Company and

https://www.cms.gov/nationalhealthexpenddata/02_nationalhealthaccountshistorical.asp
http://www.nsf.gov/statistics/iris/start.cfm
http://www.nsf.gov/statistics/iris/excel-files/historical_tables/h-25.xls
http://www.nsf.gov/statistics/industry/


42 CHARLES I. JONES

other nonfederal funds for industrial R&D performance” for various years us-

ing the NAICS industry classification. We sum three industries to get commer-

cial health research: Pharmaceuticals and medicines (3254), Medical equip-

ment and supplies (3391), and Health care services (621-623). Raymond Wolfe

kindly provided the 2006 and 2007 versions of this data.

• Finally, total spending on R&D is obtained from the National Science Founda-

tions, National Patterns of R&D Resources: 2008 Data Update, which reports

data for 1953–2008.

Notice that our measures of commericial/industry R&D exclude federal funds

but do include non-profit or state and local funding for R&D. This may result in

some double counting. The comparison of the NIH Data Book numbers to those

that I construct from the NSF sources suggests that this is not a large problem —

see Figure 2 in the paper.

B2. OECD

The OECD (and US) data underlying Figure 3 are taken from the OECD iLibrary. A

spreadsheet available from the data section of my web page called STAN-HealthRND.xls

contains the detailed calculations.

Two sets of data from the OECD iLibrary are used:

• Government budget appropriations or outlays for RD: This source provides

government spending on R&D for health and overall from 1981 to 2007 in cur-

rent PPP-adjusted US dollars.

• STAN R&D Expenditure in Industry (ISIC Rev. 3) ANBERD ed2009: This source

provides spending on R&D by industry. Because of a relatively limited industry

breakdown, our health measure is the sum of spending in the pharmaceutical

industry (C2423) and 0.5 times the spending in the “medical, precision and

optical instruments” industry (C33); this weight of 0.5 is obviously arbitary

but was suggested by calculations using the U.S. sources discussed earlier.

From this data, we calculate the health share of R&D for both the United States

and for a set of OECD countries. For government R&D, our OECD aggregate in-

http://www.nsf.gov/statistics/natlpatterns/
http://www.stanford.edu/~chadj/STAN-HealthRND.xls
http://dx.doi.org/10.1787/strd-data-en
http://stats.oecd.org/Index.aspx?DataSetCode=ANBERD_REV3
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cludes the United States, the United Kingdom, France, Germany, Italy, Japan, and

Canada. For some reason, the industry data for France and the United Kingdom are

not available, so these countries are not included in the industry component.
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