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Efficient markets incorporate all available information into asset prices. As a result, investors

can learn from equilibrium prices and update their expectations accordingly. But if investors

learn from equilibrium prices, anything that moves prices has an impact on expectations held by

all market participants. We explore the implications of this basic dynamic in a world in which

people are less than perfect – a world in which they have a small propensity to make correlated

errors when forming their expectations about the future.

We find that relaxing the rational paradigm in this minimal way has important consequences

for financial markets, capital accumulation, and welfare: if information is dispersed across in-

vestors, the private return to making diligent investment decisions is orders of magnitude lower

than the social return. If we allow for individuals to make small common errors in their invest-

ment decisions, information aggregation endogenously breaks down precisely when it is most

socially valuable (i.e., when private information is highly dispersed). This endogenous infor-

mational inefficiency results in increased uncertainty and socially costly distortions in capital

accumulation, labor supply, output, and consumption.

We begin by deriving the main economic insights of our analysis in a static model in which

households can store their wealth for future consumption or invest it in capital (stocks). The

number of consumption goods produced by each unit of capital depends on the realization of a

future productivity shock. When making its investment decision, each household observes the

equilibrium stock price and a private signal about this realization.

If all households are perfectly rational, the stock price is an effective aggregator of informa-

tion – it becomes perfectly revealing about all the information contained in the private signals

(Grossman, 1976). As a result, the conditional variance of stock returns is low (zero if the noise

in private signals is purely idiosyncratic), and households install the optimal amount of capital

in equilibrium.

We then show that the economy behaves very differently if households are near-rational

rather than fully rational. Near-rational households have an economically small propensity to

make small, cross-sectionally correlated, errors when forming their expectations about future

productivity. That is, they are slightly too optimistic in some states of the world and slightly

too pessimistic in others, but, on average, have unbiased expectations. Households have the

option to avoid loading on these near-rational errors by paying a small mental cost (thinking

harder), but rationally choose not to do so in equilibrium, because making small errors in the

formation of their expectations is almost costless from the perspective of an individual household.

(This result follows directly from the envelope theorem.)

A large literature in behavioral finance has developed a wide range of psychologically founded

mechanisms that prompt households to make common errors in their investment decisions.1 We

1Some examples are Odean (1998), Odean (1999), Daniel, Hirshleifer, and Subrahmanyam (2001), Barberis,
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thus remain open to many possible interpretations of the small common errors households make

in our model. The idea is simply that households make small mistakes, and the integral over

these mistakes has a non-degenerate distribution.

Although households have little incentive to avoid near-rational errors in their behavior, these

errors entail a first-order cost to society because they have an external effect on the market’s

capacity to aggregate information. When the average household is slightly too optimistic, it

wants to invest slightly more of its wealth in stocks, and the stock price must rise. Households

that observe this higher stock price may interpret it as either a result of errors made by their peers

or, with some probability, a reflection of more positive information about future productivity

received by other market participants. Rationally, households thus revise their expectations of

future productivity upwards whenever they see a rise in the stock price. As households revise

their expectations upward, the stock price must rise further, triggering yet another revision in

expectations, and so on. Small errors in the expectation of the average household may thus lead

to much larger, non-fundamental, deviations in the equilibrium stock price.

Because the stock price now transmits amplified noise, the elasticity of the stock price with

respect to information about the fundamental falls, reducing the information content of stock

prices and inhibiting the ability of all households, regardless of whether they are rational or

near-rational, to learn about the future. This rise in uncertainty affects social welfare through

three distinct channels. First, it distorts the allocation of aggregate quantities, for example, by

reducing the covariance of investment with productivity and by distorting the level of capital

accumulation. Second, it raises the level of consumption risk individual households face, by

generating a dispersion in equilibrium consumption: because the stock price no longer transmits

all available information, households differ in their equilibrium actions, adding a cross-sectional

component to consumption risk. Third, if households have a preference for early resolution of

uncertainty, it also directly lowers welfare by delaying the resolution of uncertainty.

All of these effects of near-rational behavior result from a simple information externality:

an individual household does not internalize that making a small error that is correlated with

the common error affects other households’ ability to learn about the future. We argue this

externality provides a logically coherent rationale for why equilibrium asset prices and other

economic aggregates might contain non-fundamental noise even if all economic actors appear

to act rationally and financial markets are efficient in the sense that rational investors cannot

systematically outperform the market.

The more dispersed private information is across households, the more severe are the effects

of this information externality, and the more social and private incentives diverge. Because our

model features only a single class of almost perfectly rational households, we are able to conduct

Shleifer, and Vishny (1998), Bikhchandani, Hirshleifer, and Welch (1998), Hong and Stein (1999), Allen and Gale
(2003), and Hassan and Mertens (2011).
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normative analysis and measure social incentives simply by calculating a utilitarian social welfare

function. Using this function, we can show the market’s capacity to aggregate information is

most socially valuable when private information is most dispersed (when the private signal

contains a lot of idiosyncratic noise). However, the lower the informativeness of the private

signal, the larger the weight households put on the stock price when forming their expectations,

and the larger the amplification of any given near-rational error. The market’s capacity to

aggregate information is thus most vulnerable to near-rational behavior precisely when it is

most socially valuable. By contrast, the private cost of near-rational behavior is decreasing

in the dispersion of private information, because a larger amplification of near-rational errors

makes distinguishing noise from information more difficult, and thus decreases the return to

behaving fully rationally. Making near-rational errors is thus cheapest precisely when they are

most socially harmful.

The second part of the paper quantifies the amount of non-fundamental noise and the welfare

effects near-rational behavior may entail, by introducing dispersed private information into a

state-of-the-art real business cycle (RBC) model with recursive utility, endogenous capital accu-

mulation, and flexible labor supply (Croce, 2014). At the beginning of each period, households

receive private signals about the future realization of a temporary and a persistent shock to total

factor productivity (TFP). As in the static model, households can condition their expectations

on the state of the economy (prices and macroeconomic aggregates) and make small correlated

errors when forming their expectations about the realizations of the two productivity shocks. To

distinguish the effects of amplified near-rational errors from the effects of noise induced through

the signal structure, we also allow for aggregate noise in private signals and the existence of

exogenous noisy public signals about the two shocks.

We estimate the model to match standard macroeconomic and asset-pricing moments, as

well as an additional set of moments (generated from the Survey of Professional Forecasters)

that characterize the dispersion and dynamics of expectations. The model performs well in

matching these moments and, in particular, two salient stylized facts highlighted in the recent

literature: that disagreement is counter-cyclical (Bloom, 2014; Patton and Timmermann, 2010)

and highly persistent (Yu, 2011).

The first main finding from our estimation is that most of the information about future

productivity that households receive originates from noisy private rather than public signals.

The reason is that, in the data, differences in opinion about future GDP growth are large

relative to the size of forecast errors, suggesting households differ in the signals they receive.

Prices (or other economic aggregates households may observe) thus play a potentially important

role in aggregating this information.

However our estimates also suggest that, in equilibrium, about half of the information con-

tained in private signals is driven out of asset prices by amplified near-rational errors. Neverthe-
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less, even these noisy asset prices transmit enough information to reduce the posterior variance

of the persistent and temporary shocks to TFP by 51% and 44%, respectively. By contrast,

we find that the exogenous public signals are relatively less informative (reducing the posterior

variance by 6% and 20%, respectively). Thus, most of what households learn about the future

they learn from endogenously noisy asset prices.

As they distort equilibrium asset prices, amplified near-rational errors also affect all other

household decisions, distorting the dynamics of capital accumulation, consumption, labor supply,

and output by preventing forward-looking adjustments, introducing non-fundamental variation,

and causing a dispersion in consumption and labor supply across households.

We quantify the social cost of near-rational behavior as the percentage rise in consumption

that would make households indifferent between remaining in an economy in which all other

households behave near-rationally and transitioning to the stochastic steady state of an economy

in which all other households behave fully rationally until the end of time. In our benchmark

estimation, these social costs amount to 5.31% of permanent consumption, whereas the incentive

to an individual household to avoid small common errors in its expectations is economically small

(0.13% of lifetime consumption). The majority of this social cost arises because the delayed

resolution of uncertainty directly lowers households’ utility, while the increase in consumption

risk due to dispersion in equilibrium consumption and leisure across households accounts for an

additional 1.5 percentage points of the total social cost.

We make three main caveats to our results. First, our paper offers a near-rational micro-

foundation for noisy demand. We believe this microfoundation is useful because it is broadly

applicable, facilitates welfare analysis, and makes contact with a growing behavioral finance lit-

erature. However, other modeling strategies (involving for example liquidity shocks) may yield

similar results. Second, although we refer to the information content of asset prices, we do so

mainly in keeping with a convention in the literature, where asset prices are generally regarded

as being more easily observable than other aggregate variables. In our quantitative model, how-

ever, macroeconomic quantities may transmit the same information as asset prices. In this sense,

asset prices are not special and we have no way to distinguish learning from asset prices from

learning from other aggregate variables. Third, we abstract from the possibility that households

can actively acquire information. Grossman and Stiglitz (1980) point out that noise in asset

prices may not only reduce information revelation but also improve informational efficiency by

inducing households to acquire more private information. All our results are contingent on an

exogenous signal structure and do not consider this other, potentially stabilizing, force.

Related Literature Our paper relates to a large literature on noisy rational expecta-

tions following Hellwig (1980) and Diamond and Verrecchia (1981) in which exogenous noise

trading impedes the aggregation of dispersed information.2 In particular, the information exter-

2Most closely related are Wang (1994), where noise in asset prices arises endogenously from time-varying private
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nality we identify is reminiscent of the free-rider problem in Grossman and Stiglitz (1980) where

households do not internalize all the benefits of the private information they acquire. Relative

to this literature, we make progress on two dimensions. First, the introduction of near-rational

behavior microfounds the amount of noise in asset prices in a way that is consistent with the

rational paradigm and lends itself to normative analysis. Second, we show that a given amount

of near-rational errors has a more detrimental effect on the aggregation of information when

information is more dispersed.3

A more recent literature on pathologies in information aggregation in financial markets has

focused on information externalities arising either from strategic complementarities or from

higher-order uncertainty.4 Examples of the former include Amador and Weill (2012) and Gold-

stein, Ozdenoren, and Yuan (2013) who study models in which individuals overweight public

signals, amplifying noise contained therein. Examples of the latter include Allen, Morris, and

Shin (2006), Bacchetta and Van Wincoop (2008), and Qiu and Wang (2010), where higher-order

expectations drive a wedge between asset prices and their fundamentals. Our paper highlights

a third type of information externality that arises even when no strategic complementarities are

present and first-order expectations fully determine asset prices:5 individuals do not internalize

how errors in their investment decisions affect others’ equilibrium expectations. Pathologies

similar to those outlined in this paper are thus likely to arise in any setting in which households

observe prices that aggregate dispersed information. Mertens (2009) derives policies that may

improve welfare in these settings.

We also contribute to a large literature that studies the general equilibrium effects and wel-

fare costs of pathologies in financial markets, including Stein (1987), DeLong, Shleifer, Summers,

and Waldmann (1989), Chauvin, Laibson, and Mollerstrom (2011), and Lansing (2012). A large

literature in macroeconomics and in corporate finance focuses on the sensitivity of firms’ invest-

ment to a given mispricing in the stock market (Blanchard, Rhee, and Summers, 1993; Baker,

Stein, and Wurgler, 2003; Gilchrist, Himmelberg, and Huberman, 2005; Farhi and Panageas,

2006).6 One conclusion from this literature is that the sensitivity of capital investment with

respect to stock prices is low or that the stock market is a “sideshow” with respect to the real

economy (Morck, Shleifer, and Vishny, 1990). By contrast, we show quantitatively that the so-

cial cost of a failure of information aggregation, transmitting itself through the channels outlined

investment opportunities, and Albagli (2011), where noise trader risk is amplified due to liquidity constraints on
traders.

3The notion of near-rationality is due to Akerlof and Yellen (1985) and Mankiw (1985). Our application is
closest to Cochrane (1989) and Chetty (2012), who use the utility cost of small deviations around an optimal policy
to derive ”economic standard errors.” Other recent applications include Woodford (2010) and Dupor (2005).

4For an approach to pathologies in social learning based on social dynamics rather than on information exter-
nalities, see Burnside et al. (2011).

5The provision of public information thus always raises welfare in our framework (see Appendix A.11.1).
6Also see Galeotti and Schiantarelli (1994), Polk and Sapienza (2009), Panageas (2005), and Chirinko and

Schaller (2006).
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above, is economically large even when this sensitivity is low.7

The quantitative application of our model also makes contact with an emerging literature

that strives to document and explain stylized facts concerning the dynamics and dispersion

of expectations (Patton and Timmermann, 2010; Yu, 2011; Coibion and Gorodnichenko, 2012;

Sockin, 2015).

Finally, we add to the existing literature by quantifying the effects of our information mi-

crostructure within a full-fledged dynamic stochastic general equilibrium model. Existing models

with dispersed information typically require policy functions that are (log) linear in the expecta-

tion of the shocks agents learn about (e.g., Hellwig, 2005; Lorenzoni, 2009; Angeletos, Lorenzoni,

and Pavan, 2012; and Angeletos and La’O, 2013). By contrast, in standard RBC models with

capital accumulation and decreasing returns to scale, households’ policies are non-linear func-

tions of the average expectation of future productivity. We are able solve and estimate our model

due to recent advances in computational economics. We follow the solution method in Mertens

(2009), which builds on Judd (1998) and Judd and Guu (2001) in using an asymptotically valid

higher-order expansion in all state variables around the deterministic steady state of the model

in combination with a nonlinear change of variables (Judd, 2002).

The remainder of the paper is structured as follows. Section 1 derives the main theoretical

insights of the model in a simple three-period model. Section 2 introduces our mechanism into a

quantitative RBC model with endogenous capital accumulation. Section 3 estimates the model

and presents quantitative results.

1 Static Model

The model economy exists at three time periods t = 0, 1, 2. At t = 1, an endowment of a

numéraire good can be stored until t = 2, or converted into units of capital K at adjustment

cost 1
2κK2, where κ ≥ 0. At t = 2, each unit of capital returns η units of the numéraire:

Y = ηK, η ∼ N
(
η̄, σ2

η

)
.

The capital adjustment technology is operated by an investment goods sector that performs

instant arbitrage between the price of capital traded in a Walrasian stock market at t = 1, Q,

and the number of units of capital in circulation:

max
K

Π = QK − K −
1
2κ

K2.

7This finding also relates to a large literature on the costs of business cycles. See Barlevy (2005) for a survey.
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Its first-order condition requires that it supplies

K = κ(Q − 1) (1)

units of capital to maximize arbitrage profits.

A continuum of identical households indexed by i ∈ [0, 1] populates the economy. At t = 1,

each household observes Q and receives a private signal about productivity

si = η + νi, (2)

where νi represents i.i.d. draws from a normal distribution with zero mean and variance σ2
ν .8

Given si, each household chooses to purchase zi units of capital (“stocks”) to maximize expected

utility from terminal wealth, E1i [Ui] , where

Ui = w2i −
ρ

2
V1[w2i], (3)

with risk aversion ρ > 0. V1[w2i] is the posterior variance given si and Q, and terminal wealth

is given by

w2i = zi(η − Q) + Π, (4)

where Π is a lump-sum transfer of profits from the investment goods sector.

When forming their expectation about productivity, households make a small error. This

small error shifts the posterior probability density function of η by μi (ε + ε̂i), where μi ≥ 0

measures household i’s exposure to the error ε + ε̂i. We refer to a household as near-rational if

μi > 0 and as fully rational if μi = 0. The expectational error is positively correlated across

households, where ε ∼ N(0, σε) is the common component that is the same across all households,

ε̂i ∼ N(0, μ̂σε) is the idiosyncratic component, and μ̂ calibrates the size of the correlation across

households. The expectations operator E1i is thus the rational expectations operator, except

that it allows households to make small mistakes about the conditional mean of η:

E1i [η] = E1i [η] + μi (ε + ε̂i) , (5)

where E1i [η] = E [η|Q, si] is the rational expectations operator conditional on the information

available to household i at time 1. Although near-rational households make correlated mistakes

when forming their expectations, they understand the structure of the economy, understand

the equilibrium mapping of information into Q, and have the correct perception of all higher

8In section 1.4, we show that the conclusions of our model continue to hold in more general information
environments where the noise in the private signal is correlated across households and where households observe
an exogenous public signal in addition to their private signal.
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moments of the conditional distribution of η.9 Importantly, households know they and others

load on the common error, ε.

There are many reasons why households may make small correlated errors in practice. For

concreteness, we assume households choose to load on the near-rational error with μi > 0 because

they face a small mental cost λ|Ū |(1 − μi) of behaving fully rationally, where Ū is households’

certainty-equivalent wealth in the case in which all households behave fully rationally (i.e., when

μi = 0 ∀i). The parameter λ � 1 calibrates this small mental cost of fully rational behavior as

a share of certainty-equivalent wealth. For convenience, we normalize σε such that

μi = arg max E0[Ui] − λ|Ū |(1 − μi) = 1 ∀i

in the symmetric equilibrium, and thus

E1i [η] = E [η|Q, si] + ε + ε̂i. (7)

One can show that σε is a monotonic, strictly increasing function of λ (see Appendix A.3 for

a proof). That is, the larger the mental cost of behaving fully rationally, the larger the near-

rational errors households make when forming their expectations. As a result, all comparative

statics over λ and σε are qualitatively identical, and we use them interchangeably below. In the

limit in which λ → 0, all households behave fully rationally with σε → 0.

Lastly, market clearing requires that aggregate demand for stocks is equal to the number of

units of capital in circulation: ∫ 1

0
zidi = K. (8)

1.1 Solving the Model

Plugging (4) into (3) and taking the derivative with respect to zi yields households’ optimal

demand for stocks:

zi =
E1i [η] − Q

ρV1[η]
. (9)

We can then use the market-clearing condition (8) and plug in (9) and (1) to show the market

price of capital is a linear function of the average expectation of η:

Q =

∫ 1
0 E1i [η] di + κρV1[η]

1 + κρV1[η]
. (10)

9Formally,

E1i

[
(η − E1i (η))k

]
= E1i

[
(η − E1i (η))k

]
∀ k > 1. (6)
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Households can thus directly infer the average expectation
∫
E1i [η] di from observing Q. We may

guess that the equilibrium price function is linear in η and ε:

Q = π0 + π1η + γε. (11)

Assuming this guess is correct, we can write the rational expectation of η given the private signal

and Q as

E1i[η] = α0 + α1si + α2

∫ 1

0
E1i [η] di, (12)

where the constants α0, α1, and α2 are the weights households give to the prior, the private

signal, and the average expectation, respectively. Using (7), substituting (2), and taking the

integral across individuals gives

∫ 1

0
E1i[η]di =

α0

1 − α2
+

α1

1 − α2
η +

1
1 − α2

ε, (13)

where the noise in private signals, νi, as well as the idiosyncratic errors, ε̂i, integrate to zero.

Plugging this expression back into (10) and matching coefficients with (11) verifies that the

equilibrium price function is indeed linear.

It follows that in addition to si, households can extract an independent and unbiased signal

about η, (1−α2)
α1

∫ 1
0 E1i[η]di − α0

α1
= η + 1

α1
ε, from observing Q. Bayes’ rule then implies the

posterior variance is the inverse of the sum of the precision of the prior and the two signals:

V [η|si, Q] = V1[η] =
(
σ−2

η + σ−2
ν + α2

1σ
−2
ε

)−1
. (14)

Moreover, the conditional expectation of η is the precision-weighted sum of the signals and the

prior mean divided by the posterior precision10:

E[η|si, Q] =
σ−2

η η̄ + σ−2
ν si + α2

1σ
−2
ε

(
η + 1

α1
ε
)

V1[η]−1
. (15)

Matching coefficients with (12) yields

α0 =
η̄V1(η)σ2

ε

σ2
η (α1V1(η) + σ2

ε )
, (16) α1 =

V1 [η]
σ2

ν

, (17) α2 =
α1V1(η)

α1V1(η) + σ2
ε

. (18)

Solving the system of equations consisting of the matched coefficients in (11), (14), (16),

(17), and (18) leads to expressions in terms of parameters. Because the closed-form solution

for V1[η] is somewhat cumbersome, it is convenient to rewrite the solution of all endogenous

variables as a function of V1[η] and parameters.

10See Appendix A.1 for a more detailed proof.
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Lemma 1.1

The unique linear symmetric equilibrium of this economy is characterized as follows:

π0 =
V1[η]

(
η̄ + κρσ2

η

)

(1 + κρV1[η]) σ2
η

, (19) π1 =
σ2

η − V1[η]

(1 + κρV1[η]) σ2
η

, (20) γ =

(
σ2

η − V1[η]
)
σ2

ν

V1[η] (1 + κρV1[η]) σ2
η

, (21)

where the conditional variance is implicitly defined by

V1[η] =

(

σ−2
η + σ−2

ν +
V1 [η]2

σ4
ν

σ−2
ε

)−1

. (22)

Proof See Appendix A.2.

These results have two immediate implications. First, note the standard deviation of the

idiosyncratic component of expectational errors, μ̂, appears in none of the solutions above and

is thus irrelevant for the stock price, the conditional variance of η, and all aggregate variables.

Second, although the sensitivity of the capital stock with respect to the stock price, κ, influences

the response of the stock price to η and ε, it does not affect households’ ability to learn about

η (the conditional variance of η in (22) is independent of κ). Similarly, plugging (17) into (15)

shows the loadings of households’ expectation operators on η and ε depend only on ση, σν , and σε,

and not on κ. How much households can learn about the future is thus unrelated to the function

linking stock prices to the real economy. We will show in section 2 that this insight carries over to

a quantitative model in which the equilibrium expectations operator continues to be a function of

the same three variables, despite much more complex and non-linear macroeconomic dynamics.

1.2 External Effect on Information Aggregation

The last two terms on the right-hand side of (13) reflect two channels through which near-

rational behavior affects equilibrium expectations. The last term shows the small common error

is amplified with the multiplier 1/ (1 − α2). Because α2 is a number between 0 and 1, the

multiplier is always larger than 1, reflecting the fact that the stock price also transmits the

common error whenever it transmits information. The extent of amplification depends on how

much households (rationally) rely on Q when forming their expectation of η. The bigger the

weight they place on the stock price, α2, the larger the amplified noise in equilibrium expectations

relative to ε. The second term on the right-hand side reflects the indirect effect of near-rational

behavior, which arises due to the fact that households optimally calculate the coefficients α1

and α2. When the market price of capital transmits an amplified common error in addition to

information about η, households rationally lower α2 and, as a result, decrease the equilibrium

information content of stock prices.
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To understand these two effects, it is useful to consider the limiting case in which all house-

holds are fully rational, which arises when the mental cost of fully rational behavior, and thus

the size of near-rational errors, goes to zero (λ → 0). In this case, the model coincides with a

standard rational expectations equilibrium in which the stock price is perfectly revealing about

future productivity (commonly referred to as the “Grossman equilibrium”). Appendix A.4 shows

that

lim
λ→0

[V1 [η]] = 0 (23)

and

lim
λ→0

[π1] = 1. (24)

In this case, households put all weight on the stock price (α2 = 1) and no weight on their

private signal (α1 = 0). In this limit, a marginally small common error is infinitely amplified,

γ = 1/ (1 − α2) = ∞. The direct effect of near-rational behavior is thus to generate large non-

fundamental errors in the market price of capital and in equilibrium expectations. The indirect

effect of near-rational behavior is households’ rational reaction to this fact. When the stock price

transmits amplified common errors, households rationally reduce α2, such that the multiplier on

ε becomes finite. However, a reduction of α2 also reduces the elasticity of the stock price with

respect to information, π1. The following proposition formalizes this intuition.

Proposition 1.2

Near-rational behavior globally decreases the elasticity of the stock price with respect to future

productivity:
∂π1

∂λ
< 0 ∀λ > 0. (25)

As the mental cost of fully rational behavior (and thus σε) approaches 0, the marginal effect of

near-rational behavior on this elasticity becomes infinitely large:

lim
λ→0

[
∂π1

∂λ

]

= −∞. (26)

Proof See Appendix A.5.

The result of this proposition can alternatively be restated in terms of the size of the errors:

∂π1/∂σε → −∞ for σε → 0. (We find an infinite, rather than just a large, multiplier at the

margin because the stock price becomes perfectly revealing of all available information when

λ → 0. If some other exogenous source of noisy demand remained even when λ = 0, this

amplification would instead be finite.)

It follows that near-rational behavior has a first-order detrimental effect on the stock market’s

capacity to transmit information. This result contrasts sharply with the utility considerations

of an individual household that loads on the small common error. By the envelope theorem, the
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first-order effect from loading on (small) near-rational errors is zero:

lim
λ→0

∂E0[Ui]
∂μi

= 0.

Both the demand schedule for stocks in (9) and the expectations operator (12) are the result of

an optimization. Near-rational errors, even if they contain a common component, represent a

small deviation from the household’s optimal program. Because the slope of the utility function

at the optimum is 0, the marginal effect of these deviations on utility is also 0.

The key to understanding this result is that a hypothetical rational household (μi = 0) that

lives in an economy populated by near-rational households
(
μj 6=i = 1

)
has no informational ad-

vantage. Near-rational households understand fully that they and other households are making

errors when forming their expectations. They react to this fact by lowering α2 in response

to a rise in the equilibrium amount of non-fundamental volatility in the stock price. Because

learning about η is isomorphic to learning about ε, near-rational households thus already do

everything possible to learn about the common component of the near-rational error.11 Absent

an informational advantage, the optimal behavior of a fully rational household is then simply

to implement the same optimal program, but without the near-rational error. The utility gain

from behaving fully rationally instead of near rationally is thus 0 at the margin.

By continuity, proposition 1.2 implies that for small σε, near-rational behavior represents

an externality that has a first-order detrimental effect on the market’s ability to aggregate

information, whereas households have only a negligible (lower-order) incentive to avoid making

these errors. The stock market thus fails to aggregate information even though it is efficient

in the sense that a fully rational household cannot systematically outperform a near-rational

household with the same information set.

We next consider the comparative static of this result when private information becomes

more dispersed in the economy.

Proposition 1.3

1. The more dispersed private information is, the more detrimental the effect of near-rational

errors on information aggregation:

∂π1

∂σν
= −

(
1 + κρσ2

η

) (
2σ2

νσ
2
εV1 [η]2 + 4V1 [η]4

)

σ2
η(1 + κρV1[η])2

(
σ5

νσ
2
ε + 2σνV1 [η]3

)






< 0 if λ > 0

= 0 in the limit λ → 0.

2. Any strictly positive mental cost of fully rational behavior may destroy the stock market’s

11From (11), knowing η and Q is clearly the same as knowing ε and Q; we could thus rewrite the entire optimal
program using a signal extraction about ε and obtain the same result.
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Figure 1: Ratio of the conditional variance of η to its unconditional variance plotted over the
level of dispersion of private information, σν/ση.

capacity to aggregate information as the dispersion of private information goes to infinity:

lim
σν→∞

[
V1 [η]
σ2

η

]

=






1 if λ > 0

0 in the limit λ → 0.

Proof See Appendix A.6.

Figure 1 illustrates this point. It plots the ratio of the conditional variance of η to its

unconditional variance over the level of dispersion of private information. To facilitate the

interpretation of the results, we scale all standard deviations with the standard deviation of the

productivity shock, ση. With this scaling, all standard deviations have a natural interpretation.

In particular, the ratio ( σν
ση

)2 measures the level of dispersion of information in the economy

as the number of individuals who, in the absence of a market price, would need to pool their

private information in order to reduce the conditional variance of η by one half. A value of 0 on

the vertical axis indicates households can perfectly predict tomorrow’s realization of η, whereas

a value of 1 indicates η is completely unpredictable.

The horizontal red line shows that when all households behave fully rationally (λ, σε = 0),

η is perfectly predictable, regardless of how dispersed information is in the economy. In this

case, the stock price perfectly transmits all available information in the economy. This situation

changes drastically when λ, σε > 0. The thick blue line plots the results for the case in which the

standard deviation of the common component of the near-rational error is 1% of the standard

deviation of η. The curve rises steeply and converges to 1. To the very left of the graph, when

the private signal is more precise and households thus rely relatively little on the stock price

when learning about the future, near-rational behavior has a relatively small detrimental effect
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on information aggregation. However, when we move to the right of the graph, households

rely more on the stock price, and near-rational behavior has a larger detrimental effect. When

private information is highly dispersed, near-rational behavior results in the total collapse of

information aggregation. This result is quite general and continues to hold in more complex

settings. In fact, our quantitative model in section 2 will produce a figure almost identical to

Figure 1.

The second statement in Proposition 1.3 implies this qualitative result does not depend on

how near-rational households are. For comparison, Figure 1 plots the comparative statics for

near-rational errors that are an order of magnitude larger ( σε
ση

= 0.1) and an order of magnitude

smaller ( σε
ση

= 0.001). In each case, the productivity shock becomes completely unpredictable if

information is sufficiently dispersed.

The implication of this finding is that information aggregation in financial markets is most

likely to break down precisely when it is most socially valuable – when information is highly

dispersed. This comparative static again contrasts sharply with the incentives an individual

household faces:

Proposition 1.4

Holding λ fixed, households make larger near-rational errors the more dispersed information is;

∂σε

∂σν
> 0.

Proof See Appendix A.7.

For a given mental cost of fully rational behavior, households make larger near-rational errors

precisely when they are more socially harmful. In other words, making mistakes of a given

magnitude σε becomes cheaper as we move from left to right in Figure 1. The reason is, again,

that learning about ε is isomorphic to learning about η. When households’ private signals are

more precise, they know more about η and thus more easily detect the common component of

the near-rational error, which makes near-rational behavior costlier (it pays to be fully rational

if you can identify and trade against ε). When private signals are noisier and information

aggregation breaks down, no one can learn much about the future. The less households can

learn about the future, the less they can distinguish movements in stock prices that are due to

η from movements that are due to ε. Making near-rational errors is thus cheaper precisely when

they are most socially harmful.

Due to this additional amplification, the deterioration in the information content of stock

prices when increasing σν is more pronounced when we hold fixedλ than if we hold fixed σε, as

illustrated in Appendix Figure 1.

A crucial feature of these results is again that any collapse in the aggregation of information
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Figure 2: Decomposition of the ratio of the conditional variance of η to its unconditional variance
plotted over the level of dispersion of private information.

affects everyone in the economy: conditional on receiving the same private signal, the difference

in the expectation of a rational and near-rational household is small, ε+ ε̂i. In fact, the posterior

variance we plotted in Figure 1 is the conditional variance of such a fully rational household:

V1 [η]
σ2

η

=
1
σ2

η

(
α2

1σ
2
ν + (1 − π1)

2 σ2
η + (γ − 1)2 σ2

ε

)
. (27)

The expression for the precision of the forecast of a near-rational household is identical, except

the third term in brackets is then γ2σ2
ε .

12

Figure 2 decomposes the conditional variance (27) into its three components. The thick blue

line in Figure 2 is the same as the thick blue in Figure 1. It plots the ratio of the conditional

variance of η to its unconditional variance over the level of dispersion of private information for

the case in which σε
ση

= 0.01. The dotted line plots the first term on the right-hand side of (27),

which is the error households make in their forecast of ηt+1 due to the noise in their private

signal. It is roughly constant throughout, reflecting the fact that households reduce α1 when

the private signal contains more noise. The broken line plots the second term, which is the

error households make in their forecast because the stock price does not reflect all information

about ηt+1 (the “indirect” effect of near-rational behavior), and the third component is the

error households make due to amplified common errors in the stock price (the “direct” effect of

near-rational behavior).

At low levels of σν , amplified small common errors are the main source of households’ forecast

12This result follows from the analysis in Appendix A.1. By “precision”of the forecasts of near-rational house-

hold, we refer to
Eit[(ηt+1−Eit(ηt+1))2]

σ2
η

. Note, however, that from (6), the near-rational household has the same

“perceived” conditional variance as a rational household,
Eit

[
(ηt+1 − Eit

(
ηt+1

)
)2
]

= Eit

[
(ηt+1 − Eit

(
ηt+1

)
)2
]
.
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errors. As private information becomes more dispersed, the amplification rises and eventually

peaks as households, confronted with noisy private signals and a noisy stock price, begin to rely

more on their priors, reducing both α1 and α2. At the same time, the information content of the

stock price begins to fall. In the region in which the broken line approaches 1, small common

errors result in a complete collapse of information aggregation, and α1, α2 → 0.

1.3 Real Effects of Near-rational Behavior

Now that we understand the aggregation of information in our model, we can ask how near-

rational behavior affects the economy as a whole. Using (11), we can write equilibrium stock

returns as

η − Q = −π0 + η (1 − π1) − γε. (28)

Near-rational behavior affects each of the three terms on the right-hand side. The third term on

the right-hand side shows that it induces non-fundamental volatility in stock returns. Equation

(25) shows that near-rational behavior reduces π1 and thus causes a rise in the volatility of

equilibrium stock returns (in the sense that the volatility of stock returns is 0 when all households

behave fully rationally, and positive if and only if λ, σε > 0). Near-rational behavior thus results

in an increase in the amount of financial risk households face in the stock market. Lastly, this

increase in financial risk in turn induces a rise in the equity premium by lowering the first term.

Taking time-zero expectations of (28) and using (19) and (20) to substitute for π0 yields

E0 [η − Q] = κρ (η̄ − 1)

(
(1 − π1) σ2

η

1 + κρσ2
η

)

.

These effects on stock returns are mirrored in distortions of aggregate quantities:

Proposition 1.5

Near-rational behavior lowers the covariance between capital accumulation and productivity and

reduces the expected level of capital accumulation and output by impeding the stock market’s

capacity to aggregate information:

∂E0 [K]
∂λ

=
∂E0 [K]

∂π1

∂π1

∂λ
< 0 and

∂Cov0 [K, η]
∂λ

=
∂Cov0 [K, η]

∂π1

∂π1

∂λ
< 0 .

Proof See Appendix A.8.

Our model allows us to assess the welfare effects of these distortions while avoiding two

common difficulties in noisy rational expectations models (e.g., Brunnermeier et al. (2014)).

First, because the model features only a single class of agents, we can calculate the ex-ante

(time zero) utility of these agents without having to consider the utility of non-maximizing

“noise” or “liquidity” traders that are commonly used as a modeling device to induce noise
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in the equilibrium stock price. Second, because near-rational households are, by definition,

“nearly” maximizing their utility, whether we consider welfare under the fully rational or the

near-rational measure is inconsequential. Because the biases in the behavior of near-rational

households are small, whether we respect them for the purposes of our utility calculations does

not matter; that is, E0 [Ui] ≈ E0 [Ui]. Using these two insights, we can show the following lemma:

Lemma 1.6

The ex-ante utilitarian social welfare function can be written as

SWF = E0 [Ui] = E0 [w2a] −
ρ

2
E0 [V1[w2i]] , (29)

where

E0 [V1[w2i]] = V0[w2a] + V0[w2i − w2a] − V0 [E1i [w2i]]

and

E0 [w2a] = (η̄ − 1) E0 [K] + Cov0 (K, η) −
1
2κ

E0

[
K2
]
. (30)

Proof See Appendix A.9.

The utilitarian social welfare function thus depends on the unconditional mean and variance

of aggregate wealth, w2a ≡ K (η − Q)+ K2

2κ , the expected dispersion of wealth across households

(reflecting the fact that cross-sectional dispersion of consumption represents a source of risk

from the perspective of the household), and the amount of information about w2i revealed at

t = 1 (reflecting a preference for early resolution of uncertainty).

Proposition 1.7

Near-rational behavior lowers welfare by lowering the level of aggregate wealth, increasing the
dispersion of wealth across households, and delaying the resolution of uncertainty. These effects
represent a negative externality of near-rational behavior that transmits itself through the effect
of near-rational errors on the stock market’s capacity to transmit information:

lim
λ→0

[
∂SWF

∂λ
−

∂E0 [Ui]

∂μi

]

= lim
λ→0

[
∂SWF

∂π1

∂π1

∂λ

]

= σ2
η

σ2
νρκ

(
1 + κρ

(
(1 − η̄)2 + σ2

η

))
+ 1

2σ2
νρ
(
1 + κρσ2

η

) lim
λ→0

[
∂π1

∂λ

]

< 0.

Proof See Appendix A.10.

By reducing the market’s capacity to transmit information, near-rational behavior thus has

a large (first-order) external effect on welfare. This effect works through three channels. First,

it lowers aggregate wealth by distorting the aggregate capital stock, output, and consumption.

Second, it increases the dispersion of wealth across households, because households differ in their

equilibrium expectations and investments when information aggregation breaks down. Third,
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it delays the resolution of uncertainty, because households know less about the future in equi-

librium. Taken together, near-rational behavior thus entails first-order social costs while it is

costless to the individual household at the margin. In the following section, we use our quanti-

tative model to gauge the overall size of these costs in the data and the relative contributions

of the three channels above.

Note, however, that even these qualitative results have implications beyond their immediate

application to the present paper: a large literature on the real effects of stock market dys-

functionality has traditionally focused on estimating either the sensitivity of capital investment

with respect to stock prices, κ, or the covariance of capital investment with non-fundamental

movements of stock prices, Cov0 (K, ε). Our results above show that neither of these quantities

are a sufficient statistic of the welfare consequences of near-rational behavior (instead, they are

at best partially informative only about the first channel). In this sense, our results show the

social costs of a dysfunctional stock market can be large even if the stock market appears as a

“sideshow” (Morck, Shleifer, and Vishny, 1990) in the sense that κ is low.

1.4 Alternative Information Environments

The key result of the analysis above is that small correlated errors in household expectations

have a lower-order effect on an individual household’s utility but a first-order external effect on

social welfare. We now show this result carries over to richer information environments in which

households are exposed to other noisy signals. We consider two alternative sources of correlated

errors in expectations.

In the first specification, households can additionally observe a noisy public signal about η,

g = η + $, (31)

where $ ∼ N
(
0, σ2

$

)
. In the second specification, we introduce aggregate noise in private

signals of the form

si = η + νi + ζ, (32)

where ζ ∼ N
(
0, σ2

ζ

)
, such that the integral over private signals is no longer perfectly revealing

about η.

Proposition 1.8

If there exists either a noisy public signal (as in (31)) or aggregate noise in the private signal

(as in (32)), the marginal effect of near-rational behavior on the elasticity of the stock price with

respect to productivity continues to become infinitely large as the mental cost of fully rational
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behavior (and thus σε) approaches zero:

lim
λ→0

[
∂π1

∂λ

]

= lim
σε→0

[
∂π1

∂σε

]

= −∞.

By contrast, the marginal effects of noise in the public signal and aggregate noise in the private

signal on this elasticity go to 0 as their standard deviations go to 0:

lim
σ$→0

[
∂π1

∂σ$

]

= 0 and lim
σζ→0

[
∂π1

∂σζ

]

= 0, respectively.

Proof See Appendix A.11.

This proposition has two direct implications. First, it demonstrates that none of our results

rely on the stock price becoming perfectly revealing of η if all households are fully rational.

Near-rational behavior continues to have a first-order effect on information aggregation even if

aggregate noise is present in the private signal or if households observe other (exogenous) public

signals aside from the stock price.

Second, near-rational errors (ε) are amplified in equilibrium while noise introduced through

the signal structure ($ and ζ) is not. To see the intuition for this result, consider the equilibrium

price function in a general model that allows for these other types of noisy signals (shown for

κ = 0):

Q =
α0

1 − α2
+

α1 + α3

1 − α2
η +

α1

1 − α2
ζ +

α3

1 − α2
$ +

1
1 − α2

ε,

where α3 is the weight households put on the exogenous public signal when forming expectations.

The result now follows from the fact that α1+α3
1−α2

= π1, α1
1−α2

, and α3
1−α2

are always numbers

between 0 and 1, whereas the coefficient on near-rational errors 1
1−α2

ranges between 1 and ∞.

Near-rational errors are amplified in equilibrium because they affect the market’s capacity to

aggregate information. By contrast, noise introduced through the signal structure merely affects

the amount of information that is available for aggregation, but does not result in the kind of

externality shown in Proposition 1.7.

Figure 3 illustrates these findings. The thick blue line plots the now familiar effect of a small

common error in household expectations with σε
ση

= 0.01. The red horizontal line plots the effect

of an identical amount of small aggregate noise in the private signal (i.e., σζ

ση
= 0.01). The red

line has an intercept of 0.012 and is perfectly horizontal. Aggregate noise in the private signal

is not amplified, and the fact that an individual household observes a signal with common noise

does not have an external effect on the market’s capacity to aggregate information. The effect

of aggregate noise in the private signal is thus invariant to how dispersed information is in the

economy. The broken lines in Figure 3 show the same comparative static, but in the presence

of large aggregate noise in the private signal ( σζ

ση
= 1). Both lines retain their shape but now
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Figure 3: Comparison of the effects of small common errors in household expectations with the
effects of small common noise in the private signal (solid lines) and large common noise in the
private signal (broken lines).

have a higher intercept, reflecting the fact that less information is now available to aggregate,

even if the stock price is fully revealing. However, for the remaining dispersed information, the

information externality of near-rational behavior operates in the same way as in Figure 1. The

externality is thus relevant whenever dispersed private information exists that is valuable for

predicting η. A key challenge for our quantitative analysis below will thus be to estimate the

degree of dispersion in private information in the data.

The appendix contains several additional results. Appendix A.12 contrasts our near-rational

approach with the model of Hellwig (1980). In this model, the market’s capacity to aggregate in-

formation depends on the volatility of exogenous noise trader demand, where a separate class of

agents (“noise traders”) inelastically purchases random quantities of stocks. In Appendix A.13,

we also consider near-rational errors about the second conditional moment (the conditional vari-

ance of η), which we show to be isomorphic to the near-rational errors about the conditional

expectation in (7) under some additional assumptions. In Appendix A.14, we extend our envi-

ronment to allow rational households to obtain an informational advantage over near-rational

households by observing the error they would have made had they acted near-rationally. We

show that even using this alternative counterfactual, all the main results of our analysis go

through, provided the standard deviation of idiosyncratic errors, μ̂, is sufficiently large.

2 Quantitative Model

In this section, we set up a quantitative model that allows us to estimate the welfare effects

and the equilibrium impact of near-rational behavior. To this end, we use a decentralization

of the RBC model by Croce (2014). We choose this model for two reasons. First, it performs
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well in matching both macroeconomic and asset-pricing moments and should therefore provide

a reliable quantitative assessment of the macroeconomic effects of asset market dysfunctionality.

Second, it assumes households have recursive preferences as in Epstein and Zin (1989) that

directly price news and therefore represent a natural choice in the context of our analysis where

near-rational behavior distorts news about the future.

2.1 Setup

Technology is characterized by a linear homogeneous production function that uses capital, Kt,

and labor, Nt, as inputs:

Yt = Kα
t (eatNt)

1−α, (33)

where Yt stands for output of the consumption good. The productivity of labor, at, has a

long-run component, ω, and a short-run component, ηS :

Δat+1 = μa + ωt + ηS
t+1, (34)

where the long-run component follows

ωt = ρωt−1 + ηL
t . (35)

Both shocks to productivity, ηS and ηL, are i.i.d. normally distributed with mean zero and

standard deviations σηS and σηL, respectively.

The equation of motion of the capital stock is

Kt+1 = (1 − δk)Kt + It − GtKt,

where It denotes aggregate investment and δk is the rate of depreciation. Furthermore, there

are convex adjustment costs to capital following Jermann (1998):

Gt =
It

Kt
−

(
v1

1 − 1
ξ

(
It

Kt

)1− 1
ξ

+ v0

)

, (36)

where v1 and v2 are positive constants and the parameter ξ determines the equilibrium elasticity

of the capital stock with respect to the stock price.

A representative firm purchases capital and labor services from households. Because it

rents services from an existing capital stock, the firm’s objective collapses to a period-by-period

maximization problem:

max
Kt,Nt

Yt − dtKt − wtNt, (37)
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where Kt and Nt denote factor demands for capital and labor, respectively. First-order condi-

tions with respect to capital and labor pin down the market-clearing wage, wt, as the marginal

product of labor and the rental rate of capital, dt, as the marginal product of capital. Because

the production function is linear homogeneous, the representative firm makes zero economic

profits from producing the consumption good.

The representative firm also owns an investment goods sector that converts the consumption

good into units of capital, while incurring adjustment costs. It takes the price of capital as given

and then performs instantaneous arbitrage:

max
It

Qt (It − GtKt) − It. (38)

Taking the first-order condition of this profit function gives us the equilibrium price of capital

(Tobin’s Q), Qt = 1/1 − G′
t. Because of decreasing returns to scale in converting consumption

goods to capital, the investment goods sector makes positive profits in each period. Profits are

paid to shareholders as a part of dividends per share, Dt = α Yt
Kt

+ Qt

(
G′

t
It
Kt

− Gt

)
.13

A continuum of households on the interval i ∈ [0, 1] has Epstein and Zin (1989) preferences

over the consumption bundle C̃it:

Uit =



(1 − δ)C̃
1− 1

ψ

it − π(bit) + δEit

[
U1−γ

it+1

] 1− 1
ψ

1−γ





1

1− 1
ψ

, (39)

where the parameters ψ and γ measure the households’ intertemporal elasticity of substitution

and relative risk aversion, respectively. π(bit) is a small penalty for holding bonds that ensures

a well-defined portfolio choice at the deterministic steady state (Judd and Guu, 2001).14 The

consumption bundle C̃it is a Cobb-Douglas aggregate of consumption and leisure:

C̃it = Co
it(e

at−1(1 − nit))
1−o,

where leisure scales with aggregate productivity to ensure the existence of a balanced growth

path.

At the beginning of every period, each household receives a private signal about the shocks

to long-run and short-run productivity:

sj
it = ηj

t+1 + νj
it, j = L, S,

13Alternatively, profits may be paid to households as a lump-sum transfer; this assumption matters little for
the quantitative results of the model.

14We use the simple quadratic form π(bit) = 1
2000

e
at−1(1− 1

ψ
)
(

bit

e
at−1

)2

.
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where νj
it again represents i.i.d. draws from a normal distribution with zero mean and variance

σ2
νj , j = L, S. In some specifications, we also allow for aggregate noise in these private signals as

in (32). To further distinguish the implications of near-rational behavior from the implications

of noisy signals, we allow households to observe an exogenous noisy public signal about each of

the two shocks,

gj
t = ηj

t+1 + $j
t , j = L, S,

with $j ∼ N(0, σ$j).

Households observe all prices and aggregate state variables at time t and understand the

structure of the economy as well as the equilibrium mapping of dispersed information into prices

and economic aggregates. The rational expectations operator, conditional on all the information

available to household i at time t, is

Eit [∙] = E
[
∙|sL

it, s
S
it, g

L
t , gS

t , Qt, rt, dt, wt, Ct, Nt,Kt, Yt, It, Gt, at, ωt−1

]
, (40)

where rt is the risk-free interest rate. The only sources of uncertainty are thus the two inno-

vations, ηL
t+1 and ηS

t+1, and households must form a conditional expectation of them. As in

the model in section 1, we assume households make small common errors when forming these

expectations. The expectations operator Eit in (39) is thus the rational expectations operator

with the only exception that

Eit

[
ηj

t+1

]
= Eit

[
ηj

t+1

]
+ μj

i

(
εj
t+ε̂j

it

)
, (41)

where again εj
t ∼ N(0, σεj) and ε̂j

it ∼ N(0, μ̂σεj), j = L, S. For simplicity, we assume the

near-rational errors about the two innovations are uncorrelated with each other and i.i.d.

Given the private and public signals and their knowledge about the state of the economy,

households maximize lifetime utility (39) by choosing a time path for consumption and labor,

and their holdings of stocks and bonds {C̃it, nit, kit, bit}∞t=0. Each household’s optimization is

subject to a budget constraint:

Qtkit+1 + bit = Qt−1Rtkit + (1 + rt−1)bit−1 + Hit − Cit + wtnit, (42)

where Hit are transfers from state-contingent claims discussed below. The returns to capital are

Rt+1 =
(1 − δk)Qt+1 + α Yt+1

Kt+1
+ Qt+1

(
G′

t+1
It+1

Kt+1
− Gt+1

)

Qt
. (43)

The market-clearing conditions for the stock, bond, labor, and goods markets are

23



Kt+1 =
∫

kit+1di, (44) 0 =
∫

bitdi, (45) Nt =
∫

nitdi, (46)

and

Yt = Ct + It. (47)

Finally, the payments from contingent claims, Hit, avoid having to keep track of the evo-

lution of wealth across households.15 At the beginning of each period (and before receiving

signals), households can trade claims that are contingent on the state of the economy and on

the realization of the noise they receive in their private signals, νj
it. These claims are in zero net

supply and pay off at the beginning of the next period. Because the claims are traded before

any information about ηj
t+1 is known, their prices cannot reveal any information about future

productivity. Contingent-claims trading thus completes markets between periods, without af-

fecting households’ signal-extraction problem. In equilibrium, all households choose to hold

these securities with net payoff

Hit =






Qt−1RtKt − Qt−1Rtkit − (1 + rt−1)bit−1 if {Cit, nit, kit, bit} = arg max (39)|Hit=0

0 otherwise
,

(48)

such that all households enter each period with the same amount of wealth. From (44) and (45),

it follows immediately that these claims are in zero net supply,
∫

Hitdi = 0.

The rational expectations equilibrium is the economy in which μj
i = 0 ∀i, j = L, S, such that

the expectations operator Eit in equation (39) coincides with the rational expectation in (40).

The near-rational expectations equilibrium posits that μj
i = 1 ∀i; households make small errors

as given in (41). In Appendix B.2, we provide a formal definition of equilibrium and show the

first-order and envelope conditions.

2.2 Solving the model

We use the solution method developed in Mertens (2009) to transform the equilibrium conditions

of the model into a form we can solve with standard techniques. The key to this approach is

to show that all prices and economic aggregates are a function of the usual “macroeconomic”

state variables of the model St = {Kt, ωt−1, η
L
t , ηS

t } as well as households’ average expectation

of ηL
t+1 and ηS

t+1:

q̂j
t =

∫
Eit

[
ηj

t+1

]
di =

∫
Eit

[
ηj

t+1

]
di + εj

t for j = S,L. (49)

15See Mertens and Judd (2013) for a perturbation-based approach to solving incomplete market models with
substantial heterogeneity.
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Lemma 2.1

A recursive equilibrium exists with the following properties:

(1) A household’s optimal behavior depends on the current (commonly known) state of the econ-

omy, St, the household’s conditional expectation of next period’s innovation to long-run and

short-run productivity, Eit[η
j
t+1], and the average expectation of this innovation, q̂j

t , j = L, S.

The conditional expectation, in turn, depends on the private signal sj
it as well as q̂j

t . Individual

choices are thus determined by these state variables:

xit = x(St, q̂
L
t , q̂S

t , Eit[η
L
t+1], Eit[η

S
t+1]), x = C, n, k+1, b.

(2) All prices and economic aggregates depend on the current state of the economy and q̂j
t :

Xt = X(St, q̂
L
t , q̂S

t ), X = C,N,K+1, Y, I,G,R,Q, r, d, w.

Proof: See Appendix B.3.

Given this lemma, we can use standard perturbation methods to solve for households’ equi-

librium policies as a function of the vector {St, q̂
L
t , q̂S

t , Eit[ηL
t+1], Eit[ηS

t+1]} and for all economic

aggregates as a function of {St, q̂
L
t , q̂S

t }. In other words, we can separate the solution of the

non-linear model from the information microstructure by simply treating Eit[η
j
t+1] and q̂j

t as

state variables. The final step of the solution is then to solve for Eit[η
j
t+1].

Condition 2.2

A pair of aggregate quantities and/or prices exists that is invertible in q̂L and q̂S, conditional

on knowing all other state variables.

This condition ensures two observable variables (e.g., the returns on stocks and bonds) exist

that are strictly monotonic in average expectation about ηL and ηS but have different sensitiv-

ities, such that households can infer q̂S and q̂L from observing the two variables conditional on

the state of the economy. Learning from these variables is then just as good as directly observing

q̂S and q̂L (they span the same σ-algebra). Although we cannot solve for the mapping of q̂S and

q̂L into prices and aggregate quantities in closed form, we verify invertibility using the numerical

solution of the model.

Typically, many combinations of aggregate variables and prices meet these criteria. That

is, because households know the state of the economy, they have many ways of inferring q̂S

and q̂L, for example, by observing output and wages. In this sense, asset prices are not special

and we have no way to distinguish learning from asset prices from learning from other prices

or aggregate variables. For ease of exposition, we nevertheless follow the existing literature and

refer to this process as learning from asset prices, because asset prices may be more easily and
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frequently observable in practice—however keeping in mind that our results do not speak to the

question whether households in reality learn from asset prices versus other economic aggregates.

Given Lemma 2.1 and Condition 2.2, households’ equilibrium expectations of ηj
t+1 for j =

S,L are independent of the aggregate dynamics of the model. Due to the normality of con-

ditioning variables sj
it and q̂j

t for j = S,L respectively, the resulting conditional distributions

are Gaussian and identical to the linear setup in section 1. As a result, all the qualitative re-

sults concerning the effect of the near-rational errors on equilibrium expectations developed in

our static model readily carry over to the quantitative model. Appendix B.4 contains a formal

treatment of these statements.

3 Estimation and Results

We next quantify the implications of our model by taking it to the data, estimating the size of

near-rational errors, the dispersion in private signals, and the precision of public signals.

3.1 Estimation strategy

To focus our efforts on the novel part of the model, its information microstructure, and to

preserve a maximum of comparability with earlier work, we set all parameters not directly

related to information equal to the benchmark calibration proposed by Croce (2014). Table 1

lists these parameters. For example, the capital share, α, is set to 0.345, δk is set to match the

annualized capital depreciation rate in the US economy (6%), and the average annual growth rate

of productivity, μa, is 1.8%. Relative risk aversion and the intertemporal elasticity of substitution

are set to values of 10 and 2, respectively, and the annualized subjective discount factor, δ, is

fixed at 0.954. Crucial for the model’s capacity to match asset prices, the annualized persistence

of the long-run shock to productivity is 0.8, while the standard deviation of the long-run shock is

relatively small (11% of the standard deviation of the short-run shock). The parameters v1 and

v2 in the adjustment-cost function are set such that, at the deterministic steady state, Gt = 0

and ∂Gt/∂ (It/Kt) = 0 (implying that v0 =
(

1
1−ξ

)
(δ + eμ − 1) and v1 = (δ + eμ − 1)

1
ξ ).

We also follow Croce (2014) in calculating excess stock returns as the excess returns on a lev-

ered claim to capital that is subject to idiosyncratic cash-flow shocks: RLEV
ex,t = (Rt − rt−1 + ut)

φlev .

This practice is standard in the finance literature because, in the data, payouts to equity are

more volatile than consumption and most claims to equity are levered. We again follow Croce

(2014) by setting the annualized standard deviation of u to 6.5% (consistent with Bansal and

Yaron (2004)) and φlev = 2 (consistent with the amount of financial leverage measured by Rauh

and Sufi (2012)).
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Table 1: Calibrated Parameters

Parameter Value
Capital share α 0.345
Time discount factor δ12 0.954
Avg. productivity growth 12μa 0.018
Consumption share o 0.20
Autocorrelation of ηL ρ12 0.8
Ratio of standard dev. of ηL and ηS σηL/σηS 0.11
Capital depreciation rate 12δk 0.06
Relative risk aversion γ 10
Intertemporal elasticity of substitution ψ 2
Leverage of market return φlev 2.0
Capital adjustment cost parameter ξ 7

Notes : Calibrated parameters taken from the benchmark calibration in Croce (2014) and used
in all specifications shown in Tables 2 to 5.

We also maintain the standard practice in the long-run risk literature by using a monthly

decision horizon and then aggregating the model-implied macroeconomic and financial time

series to the annual frequency to match annual moments (Bansal and Yaron, 2004; Bansal et al.,

2012). However, note this choice of decision horizon is less innocuous in our case, because the

decision horizon also determines the horizon at which households learn about the future. That

is, in our main specification, households make decisions at the monthly frequency and receive

signals about the realization of productivity shocks one month (rather than a quarter or a year)

in the future. For this reason, we measure empirical moments disciplining the dynamics of

expectations and the amount of information available to households at the same horizon as in

the model (one month ahead), rather than at the annual frequency. In robustness checks, we

also show our main results do not change when we instead calibrate the model at the quarterly

frequency and thus allow households to observe signals about shocks one quarter ahead.

For parsimony, we set the standard deviation of the idiosyncratic component of near-rational

errors to 0 (μ̂ = 0) and estimate the standard deviation of short-run productivity shock, σηS , as

well as the six parameters governing the information microstructure (σνj , σεj , σ$j , j = S,L),

using the simulated method of moments. Our estimator of these parameters, m̂, minimizes the

distance between a vector of empirical moments, θ, and the corresponding moments generated

by the model, m, subject to the constraint that our estimates of σj
ε are small enough such that

the utility gain of behaving fully rather than near-rationally is economically small:

m̂ = arg min
m

(m − θ)′ Ω(m − θ) s.t. λ(m) < λ̄, (50)

where Ω is our estimate of the variance-covariance matrix of the empirical moments, calculated
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using a bootstrap procedure detailed in Appendix C.1, λ is the compensating variation in terms

of permanent consumption for individual i of setting μi = 0 in all future periods, and λ̄ is a

measure from the data of the minimum size of incentives required to induce households to engage

in fully rational behavior. For a given parameter vector, we create 100 synthetic time series, each

of length equal to our sample size. Following the procedure in Albuquerque, Eichenbaum, and

Rebelo (2015), we then calculate m as the probability limit of the model-implied small-sample

moments by calculating the sample moments of interest from each sample and then averaging

across samples.

Similar to the private cost of near-rational behavior, λ, we measure the social cost of near-

rational behavior as the compensating variation for individual i of setting μj = 0 ∀j 6= i. Both

calculations are performed at the stochastic steady state of the model, such that our measure

for the social cost of near-rational behavior takes into account that the abolition of near-rational

behavior today induces an adjustment process to a new stochastic steady state. See Appendix

C.2 for details on this calculation.

3.2 Data

Our target vector, θ, contains 17 empirical moments listed in the first column of Table 3. Because

our focus is on identifying the information microstructure of the model, the first five of these

targets are of particular importance—characterizing the dynamics and dispersion of expectations

using data from the Survey of Professional Forecasters 1969-2008. All of our calculations use

forecasts for the current quarter, that is, forecasts of quarterly GDP and consumption growth

made six weeks before the end of the quarter, which is the horizon closest to the one-month-

ahead forecasts households make in our model. The first two targets measure the degree of

uncertainty about future GDP growth: the variance of the average forecast of GDP growth

and the variance of the average forecast error (both normalized with the standard deviation of

GDP growth). The remaining three moments characterize the dispersion in expectations held

by individual forecasters: the time-series average of the cross-sectional standard deviation of

forecasts of GDP growth, the correlation of this dispersion with future consumption growth,

and its monthly autocorrelation. Aside from quantifying the dispersion of expectations in the

data, these latter two moments reflect two salient stylized facts about disagreement highlighted

in the literature—that disagreement is counter-cyclical (Bloom, 2014; Patton and Timmermann,

2010), and that it is highly persistent at the monthly frequency (Yu, 2011). Appendix C.1 gives

details on the construction of these moments.16

The remaining 12 entries in the target vector are standard macroeconomic and financial

moments that are typically used to discipline long-run-risk models. They include the standard

16Related to these stylized facts, Li and Li (2014) find that turnover in the stock market increases with the dis-
persion of expectations, suggesting this dispersion is driven, at least in part, by heterogenous private information.
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deviation of output, the equity premium, and the correlation of stock returns with consumption

growth. All of these moments are constructed from annual US data (1929-2008) in a manner

identical to that used by Croce (2014) (see Appendix C.3 for details).

Although the calculation of these moments is fairly straightforward and has ample prece-

dent in the literature, we are unaware of existing estimates of the minimum size of economic

incentives required to induce households to engage in fully rational behavior, λ̄. To nevertheless

discipline our choice of this parameter, we follow three alternative approaches. In our benchmark

estimation, we rely on the observation from the household finance literature that tests of ratio-

nal consumption smoothing tend to reject only in natural experiments involving small stakes,

whereas those involving large stakes tend to find evidence consistent with rational behavior. Fol-

lowing the procedure in Fuchs-Schuendeln and Hassan (2015), and using the parameters γ and ψ

from Table 1, we calculate the utility gain as a percent of permanent consumption from smooth-

ing a pre-announced income change over a year versus behaving as a hand-to-mouth consumer

for each of 17 published studies on the subject (see Appendix C.4 for details). Our results, listed

in Appendix Table 1, show that experiments corresponding to an equivalent variation of more

than 0.13% of consumption on average find evidence consistent with rational behavior, whereas

those involving smaller stakes do not. In the extremes, all experiments involving stakes smaller

than 0.01% of consumption reject rational behavior, whereas none of those with stakes larger

than 0.37% do. We thus use λ̄ = 0.13% in our benchmark calibration. In robustness checks, we

explore the entire range 0.01% to 0.37%, use alternative estimates from the rational inattention

literature (Maćkowiak and Wiederholt, 2015), and also estimate λ without a constraint.

3.3 Results

We present the results of our estimation in the following order. First, we discuss our findings

regarding the information microstructure and relate them to the insights developed in our static

model. We then show that the model gives a good fit to the data, discuss the effects of near-

rational behavior on the economy, and show how these effects empirically identify the information

microstructure. Lastly, we probe the robustness of our results.

We first discuss and interpret the benchmark estimates in the first column of Table 2—the

best fit to the data according to (50). The estimated dispersion of private information about the

long-run and short-run shocks are σL
ν /σL

η = 23.59 and σS
ν /σS

η = 13.16, respectively, implying that

in the absence of other sources of information, 23.592 = 556 and 13.62 = 185 households would

have to pool their private signals about the two shocks to reduce their conditional variance by

one half. The standard deviation of the common error in household expectations of the long-run

shock is 0.09% of the standard deviation of the shock to long-run productivity, but is amplified

by a factor of 537, such that a one-standard-deviation shock to εL results in a 0.48 σηL rise in
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the average expectation of ηL in equilibrium. Similarly, the standard deviation of the common

error about the short-run shock is 0.42% of the standard deviation of the shock to short-run

productivity, but is amplified by a factor of 99.

As a result of this amplified noise, we find that equilibrium asset prices transmit about

as much noise as information. The noise-to-signal ratios are 0.97 and 1.28 about the long-

run and short-run shock, respectively. Nevertheless, even these noisy asset prices transmit

enough information to reduce the ratio of conditional to unconditional variance to 0.49 for the

long-run shock and 0.56 for the short-run shock. By contrast, our estimates show that both

exogenous public signals are relatively imprecise (σ$L/σηL = 3.69 and σ$S/σηS = 1.99), such

that a household observing only their private signal and the exogenous public signal would have

corresponding ratios of 0.94 and 0.79.17 Thus, most of what households learn about the future

they learn from dispersed private information that is aggregated in asset prices.

Next, we build intuition and link these quantitative estimates to the theoretical results from

our static model. Figure 4 shows the familiar comparative static over the level of dispersion of

private information, while holding constant all other benchmark estimates. The top panels again

plot the ratio of the conditional to unconditional variance of ηL and ηS . Both graphs show the

same shape as Figure 1, but they asymptote to (1+3.96−2)−1 = 0.94 and (1+1.99−2)−1 = 0.80

respectively, reflecting the fact that households can extract a small amount of information from

the exogenous public signals even when the market’s capacity to aggregate information collapses

completely. Apart from this modification, a given σεS or σεL again has a larger effect on the

stock market’s capacity to aggregate information when private information is more dispersed,

where the distance between the solid blue line and the red dashed line shows the external effect

of near-rational behavior on the average expectation held by market participants.

Equipped with these estimates of the amount of information and amplified noise contained in

asset prices, we calculate that a given household would be willing to pay 5.31% of its permanent

consumption for all other households to forgo their near-rational behavior and behave fully

rationally until the end of time. The social cost of near-rational behavior is thus an order of

magnitude larger than the private cost (0.13% of permanent consumption). The second row

in Figure 4 shows the social cost generated by this externality is monotonically increasing in

σνS and σνL, ranging up to 9.84% of consumption when all private information about ηL is

driven out of prices (σνL → ∞). The social value of the part of information aggregation that

does not get crowded out by near-rational behavior is thus equivalent to 9.84%-5.13=4.53% of

permanent consumption. By contrast, near-rational errors about ηS appear to have a much

smaller impact on welfare (we return to this observation below). Although the social cost of

near-rational behavior is economically large and monotonically increasing in σνS and σνL, the

17Using equation (14) and the numbers given in Table 2, we get (1 + 23 .59−2 + 3.96−2)−1 = 0.94 and (1 +
13.16−2 + 1.99−2)−1 = 0.79.
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Table 2: Estimation Results

Benchmark Model Aggregate Noise
(Noisy Public Signal) in Private Signal

Panel A: Parameter Estimates

Near-Rational Error
σεL/σηL(%) 0.09 0.09
σεS/σηS(%) 0.42 0.35

Noise in Private Signal
σνL/σηL 23.59 24.04
σνS/σηS 13.61 13.71

Std.dev. of productivity
σηS(%) 0.98 0.98

Noise in Public Signal
σ$L/σηL 3.69
σ$S/σηS 1.99

Aggregate Noise in Private Signal
σζL/σηL 0.00
σζS/σηS 0.11

Panel B: Implications for Information Aggregation

Conditional Variance
Vt[ηL]/σ2

ηL 0.49 0.50
Vt[ηS]/σ2

ηS 0.56 0.57
Amplification of near-rational error (1/(1 − α2))

multiplier on εL 536.75 577.86
multiplier on εS 99.02 142.99

Noise-to-signal ratios in asset prices
Noise-to-signal about ηL 0.97 1.00
Noise-to-signal about ηS 1.28 1.32

Panel C: Implications for Welfare

Private Cost 0.13 0.13
Social Cost 5.31 5.40

Notes : Panel A shows estimated parameters using the simulated method of moments. The target
and simulated moments of the estimation are shown in column 1 of Table 3. The simulated
moments are shown in columns 2 and 6, respectively. Panels B and C show the implications
of these estimates for information aggregation and welfare. The social cost of near-rational
behavior is the compensating variation for an intervention that commits all other households to
behave fully rationally until the end of time (μj = 0 ∀j 6= i.), calculated at the stochastic steady
state of the model. Similarly, the private cost of near-rational behavior is the compensating
variation for eliminating the near-rational error only from the household’s own behavior.
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Figure 4: Comparative statics over dispersion of private information about the long-run (left
column) and short-run (right column) shock to TFP growth (σνL and σνS), holding constant all
other parameters of the benchmark estimation given in Tables 1 and 2. The red dashed line shows
the results corresponding to full rationality (σεL = σεS = 0). First row: ratio of conditional to
unconditional variance of the shock; second row: social cost of near-rational behavior in percent
of permanent consumption; third row: multiplier on near-rational error in average expectation
about the shock.

private cost is smaller than 0.13% of permanent consumption over the entire range (not shown).

The last row of Figure 4 shows the multiplier on the near-rational error, 1/(1−α2). Consistent

with Figure 2 in section 1, it shows the amplification peaks around a factor of 550 and 120 for

intermediate values of σνL and σνS , respectively. The estimates from our benchmark model are

slightly to the right of the peak in both cases. As we move farther to the right in the graph,

the noise-to-signal ratio in asset prices increases to the point that households give up learning

from prices, begin to lower both α1 and α2, and instead rely on their priors. Eventually, the

coefficients α1 and α2 converge to zero, whereas the noise-to-signal ratio and the social cost

of near-rational behavior continue to increase monotonically as more and more information is

driven out of prices.

Next, we show that the model performs well in matching the dynamics of expectations
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measured in the data. Column 2 of Table 3 shows the simulated moments generated by our

benchmark estimation. In particular, the model comes close to matching the standard deviation

of the average expectation of GDP growth (0.58 vs. 0.64 in the data) and the average forecast

error of GDP growth (0.54 vs. 0.69 in the data). It also matches both stylized facts about the

dynamics of disagreement by generating a negative correlation between consumption growth

and the cross-sectional standard deviation of expectations (-0.58 vs. -0.34 in the data), as well

as high levels of persistence of this standard deviation (0.98 vs. 0.88 in the data).

The crucial feature enabling our model to match both of these stylized facts is the com-

bination of the i.i.d. Gaussian information microstructure and the non-linear dynamics of our

RBC framework. A household’s optimal consumption is a concave function of expected future

productivity. A constant dispersion in expectations about productivity thus naturally results

in higher levels of dispersion in expectations about consumption growth in a recession (when

the consumption function is steep) than in a boom (when it is relatively flat). This dispersion

in turn is highly persistent because of a high degree of persistence in the long-run shock and

the level of the capital stock. Despite these successes, more disagreement exists among fore-

casters on average than our model can rationalize—it significantly under-predicts the average

cross-sectional standard deviation of expectations (0.04 vs. 0.11 in the data). However, we may

speculate that in reality forecasters also disagree for reasons outside our model, for example due

to differences in priors (Burnside et al., 2011).

More broadly, the model also offers a good fit to the standard macro and asset-pricing

moments shown in the remainder of Table 3, matching nine of 12 moments within two standard

errors. However, it significantly under-predicts the correlation of consumption growth with

investment (0.42 vs. 0.68 in the data), the standard deviation of the risk-free rate (1.28 vs. 3.82

in the data), and the standard deviation of stock returns (13.36 vs. 21.21 in the data). All three

of these shortcomings are common in this type of long-run-risk model, and also apply to Croce

(2014). Nevertheless, the introduction of near-rational behavior moves the model closer to the

data in at least one of these dimensions, as we discuss below.

To highlight the role of near-rational behavior in generating these results, column 3 shows

the simulated moments we obtain when imposing full rationality, that is, σεL, σεS = 0, on our

benchmark estimates. Comparing columns 2 and 3 shows three sets of effects of near-rational

behavior on the economy, reminiscent of those we derived in our static model.

First, near-rational behavior generates a dispersion in equilibrium expectations: under full

rationality, all households hold identical expectations in equilibrium because asset prices per-

fectly reveal all available information about ηL
t+1 and ηS

t+1, such that all three moments relating

to the dispersion in expectations naturally degenerate.

This ability to explain disagreement among forecasters thus identifies the combined role of
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Table 3: Fit of Estimated Models

(1) (2) (3) (4) (5) (6)
Moments Data Benchmark Model Aggregate Noise

(std. err.) (Noisy Public Signal) in Private Signal
σεL, σεS = 0 σεL = 0 σεS = 0

σ(Ē[dy])/σ(dy) 0.64 0.58 0.96 0.57 0.98 0.57
(0.02)

σ(dy − Ē[dy])/σ(dy) 0.69 0.54 0.28 0.56 0.21 0.55
(0.08)

σxs(Ei[dy])(%) 0.11 0.04 0 0.04 0.01 0.04
(0.01)

cor(dc, σxs(Ei[dy])) −0.34 −0.58 N/A −0.57 0.23 −0.58
(0.14)

ACF [σxs(Ei[dy])] 0.88 0.98 N/A 0.98 0.85 0.98
(0.06)

σ(dy)(%) 3.34 3.42 3.36 3.47 3.30 3.42
(0.42)

σ(dc)/σ(dy) 0.65 0.65 0.70 0.65 0.70 0.64
(0.04)

σ(di)/σ(dy) 4.45 4.82 5.07 5.17 4.68 4.82
(0.46)

cor(dc, di) 0.68 0.42 0.24 0.28 0.38 0.42
(0.11)

cor(dc, rlev
ex ) 0.15 0.07 −0.08 0.03 −0.07 0.08

(0.17)
E(rlev

ex )(%) 3.89 4.27 3.77 4.25 3.80 4.28
(2.35)

σ(rlev
ex ) 21.21 13.36 13.21 16.18 9.55 13.37

(1.82)
E[r](%) 0.64 0.99 1.24 1.01 1.23 0.99

(0.40)
σ(r)(%) 3.82 1.28 1.90 1.28 1.91 1.27

(0.46)
ACF [rlev

ex ] 0.05 0.00 0.00 0.00 0.00 0.00
(0.13)

ACF [r] 0.7 0.67 0.50 0.67 0.50 0.66
(0.06)

ACF [dc] 0.51 0.67 0.66 0.67 0.68 0.67
(0.17)

Note: Target moments (column 1) and simulated moments from our benchmark model (column
2) and a model that allows for aggregate noise in the private signals instead of exogenous public
signals (column 6). Columns 3-5 impose full rationality (column 3) and full rationality about
only the long-run and short-run shocks to TFP growth, respectively, on the benchmark estimates.
Lowercase letters denote logs. E[.], σ(.), and cor(., .) denote means, standard deviations, and
correlations, respectively. d stands for the first difference in the time series (e.g., σ(dy) stands for
the standard deviation of output growth). ACF [.] refers to the first-order autocorrelation. Ei[.]
denotes the one-period-ahead forecast of forecaster i, Ē[.] denotes the cross-sectional average
of Ei[.], and σxs(.) denotes the time-series average of the cross-sectional standard deviation of
one-period-ahead forecasts. See section 3.2 of the main text for details on the construction of
the target moments.
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dispersed private information and near-rational errors relative to noise contained in exogenous

public signals. While both mechanisms can generate forecast errors of a given size by determining

the amount of information available, only the former can simultaneously generate disagreement.

Because the amount of disagreement we see in the data is large relative to the size of average

forecast errors, our estimator prefers very noisy (and thus useless) public signals and instead

chooses (intermediate) values of σνS and σνL that simultaneously imply large amplified near-

rational errors and a maximum of disagreement in equilibrium. (We show below that this result

continues to hold when we allow for aggregate noise in the private signal.)

Second, near-rational behavior increases the amount of risk faced by households because it

delays the resolution of uncertainty: it raises the standard deviation of average forecast errors

and lowers the standard deviation of average expectations relative to the fully rational case.

Households react to this increase in risk by demanding a higher equity premium (4.27 vs. 3.77

in the fully rational case) and more precautionary savings, lowering the average risk-free rate by

0.25 percentage points relative to the fully rational case. Both of these effects are particularly

pronounced because households have a preference for early resolution of uncertainty (ψ > 1).

Third, near-rational behavior (and the amplified errors it entails) distorts aggregate quan-

tities. Comparing the remaining moments shown in columns 2 and 3 shows the effects of these

distortions: a higher correlation between consumption growth and investment growth (0.42

vs. 0.24 in the fully rational case), a similar rise in the correlation between consumption growth

and stock returns, a fall in the relative volatility of investment growth from (4.82 vs. 5.07 in

the fully rational case), and a slight increase in the unconditional volatility of output and stock

returns. All of these effects of near-rational behavior point to misallocations that result from

changes in the aggregate dynamics of the economy.

Figure 5 illustrates the effects of these misallocations by comparing impulse-response func-

tions of our benchmark model (the solid blue lines) with those under fully rational behavior

(the red broken lines). The four columns depict responses to a two-standard-deviation shock to

ηL, εL, ηS , and εS , respectively, where ηL and ηS materialize in period 1 and households form

expectations (and make errors) in period 0.

The plots in column 1 show that learning about the shock to long-run productivity in advance

allows households to adjust their behavior ex ante (in period 0). Under full rationality, all

of this adjustment occurs in period zero, allowing households to decrease consumption and

increase investment in the period before the arrival of the long-run productivity shock. Under

near-rational behavior, information is only partially revealed in period 0 such that households

partially adjust their behavior in both periods 0 and 1. This dampening of the response of

investment and stock returns to long-run shocks is responsible for the increase in the correlation

between consumption growth and investment as well as the increase in the correlation between

consumption growth and stock returns noted above (compare columns 2 and 4 in Table 3,
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where the specification column 4 imposes σεL = 0). More generally, this dampening also tends

to decrease the unconditional volatility of other macroeconomic aggregates, such as output,

investment, and stock returns—all signs of a delayed response to persistent shocks.

By contrast, columns 3 and 4 of Figure 5 show that near-rational behavior with respect to the

short-run shock tends to increase the volatility of macroeconomic aggregates. Column 3 shows

the impulse responses of consumption and investment with respect the the short-run productivity

shock are similar, regardless of whether households are rational or near-rational. The reason

is that, due to the transitory nature of the shock, households invest relatively little even when

learning with certainty that short-run productivity will be higher next month. The amplitude

of the response to the productivity shock is thus roughly the same regardless of near-rational

behavior. However, when households are near-rational, the same aggregates also respond to the

amplified near-rational error, increasing the unconditional volatility of investment, consumption,

and stock returns (compare columns 2 and 5 in Table 3, where the specification column 5 imposes

σεS = 0).18

We draw two main conclusions about the effect of near-rational behavior on aggregate quan-

tities. First, near-rational behavior induces misallocations by delaying the response to infor-

mation, in particular about ηL, and by inducing non-fundamental volatility. Second, these

misallocations tend to have different effects on unconditional moments, contributing to the

identification of the relative size of the two types of near-rational errors. For example, near-

rational errors about ηL have a larger effect on the correlation between consumption growth and

investment because information about the long-run shock elicits a larger investment response

ex-ante. Similarly, near-rational errors about ηL tend to lower the unconditional variances of

output, stock returns, and investment while near-rational errors about the ηS tend to increase

them. The differential effect on the standard deviation of excess returns is particularly large

(16.18 when σεL = 0 vs. 9.55 when σεS = 0). Figure 6 shows comparative statics illustrating

these differential effects for two examples.

We next study the impact of the three sets of effects of near-rational behavior on welfare.

As in our static model, near-rational behavior is costly for society because it generates a dis-

persion of consumption and leisure across households, increases risk by delaying the resolution

of uncertainty about the path of future consumption, and decreases aggregate wealth due to

misallocations of consumption, labor, and investment. Although our quantitative model does

not allow a simple additive separation of these three channels similar to the one we derived

in section 1, we can gauge the relative influence of each of the three channels by calculating

compensating variations associated with two counterfactual experiments.

In the first experiment, we gauge the welfare cost of the cross-sectional dispersion in con-

18The effect on the unconditional volatility of excess stock returns is particularly large and asymmetric because
the increase in uncertainty about ηS dampens off-setting movements in the risk-free rate.
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Figure 6: Comparative statics over dispersion of private information about the long-run (left
column) and short-run (right column) shock to TFP growth (σνL and σνS). The red dashed line
shows the results corresponding to full rationality (σεL = σεS = 0). See the caption of Figure
4 for details First row: correlation of consumption growth with investment growth; second row:
standard deviation of output growth in percent;

sumption and leisure by calculating a household’s willingness to pay for receiving the mean

private signal in all periods (νit = 0 ∀t), while holding constant its policy functions and the co-

efficients in its expectations operator. The household is thus being offered to always consume at

the mean of the distribution across households, holding constant all other aspects of its behavior.

In the second experiment, we gauge the direct utility cost of the delayed resolution of un-

certainty by evaluating the stream of consumption and leisure accruing to households in our

model using a CRRA utility function with γ = 1
ψ = 10 and then calculating the social cost

of near-rational behavior in the usual way (i.e., by calculating the compensating variation for

setting μj = 0 ∀j 6= i). Because the CRRA utility function is additively separable, it is invariant

to the timing of resolution of uncertainty. Calculating the social cost of near-rational behavior

in this way may thus serve as a useful reference for the size of the welfare effects of near-rational

behavior absent its direct effect of delaying resolution of uncertainty.

Table 4 shows the results of the two counterfactual experiments. It shows that of the total

social cost of near-rational behavior (5.31%), a full 1.5 percentage points are accounted for by

the cost of dispersion in consumption and leisure across households.19 Moreover, the social

cost of near-rational behavior evaluated using the CRRA utility function is 1.06% of permanent

consumption, suggesting that about four fifths of the social cost of near-rational behavior in our

19Recall that trading in contingent claims ensures all households hold the same wealth at the beginning of each
period, such that this number reflects only the dispersion in behavior that arises within the period. In this sense,
it is a lower bound for the cost of dispersion that would arise in a model with a dynamic wealth distribution.
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Table 4: Decomposition of Welfare Losses

Benchmark Model Aggregate Noise
(Noisy Public Signal) in Private Signal

Social Cost
Total (σεL, σεS=0 ∀ j 6=i) 5.31 5.40
from errors about LRR (σεL=0 ∀ j 6=i) 5.02 5.11
from errors about SRR (σεS=0 ∀ j 6=i) 0.29 0.28
Cost of dispersion 1.50 1.50

Social Cost evaluated using CRRA (γ = 10, ψ=1/10) 1.06 1.08

Note: Implications of near-rational behavior for welfare based on the results of estimations
shown in columns 1 and 2 of Table 2, respectively. Cost of dispersion: a household’s willingness
to pay for receiving the mean private signal in all periods (νit = 0 ∀t), holding constant its
policy functions and the coefficients in its expectations operator. Social cost evaluated using
CRRA: social cost of near-rational behavior when evaluating the stream of consumption and
leisure accruing to households with γ = 1

ψ = 10. See the caption of Table 2 for details.

benchmark estimation arises due to its effect of delaying the resolution of uncertainty. The same

preference for early resolution of uncertainty that allows the model to produce a relatively large

equity premium (Bansal and Yaron, 2004) and large costs of aggregate consumption fluctuations

(Epstein et al., 2014; Croce, 2012) thus also accounts for the majority of the social cost of near-

rational behavior.

Consistent with these results, we also find that near-rational errors about long-run produc-

tivity are much more costly (5.02% of permanent consumption) than those about short-run

productivity (0.29%), because they prevent households from learning about, and reacting pre-

emptively to, the key determinant of the long-term path of their consumption.

In light of these findings, it is apparent that near-rational behavior and the non-fundamental

volatility it induces is socially costly even when the capital stock is relatively unresponsive to

variation in stock prices (and mispricings thus have a relatively smaller effect on the allocation

of capital). Figure 7 shows comparative statics of the social cost of near-rational behavior over

the elasticity of the capital stock with respect to stock prices, ξ, holding constant all other

parameters of our benchmark model. The figure shows results for values of ξ ranging from one

half to double its value in our benchmark model (7). The right part of the figure shows the

same comparative static for the standard deviation of investment for comparison. The plots

show the social cost of a breakdown in the market’s capacity to aggregate information is almost

completely invariant to variation in the elasticity of the capital stock with respect to stock prices

and to the size of the dynamic response of the capital stock to a given mispricing. In this sense,

stock market dysfunctionality (induced by near-rational behavior) is socially costly even if it

appears to be a “sideshow.”
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Figure 7: Comparative static of the social cost of near-rational behavior over the elasticity
of the capital stock with respect to stock prices, ξ, holding constant all other parameters of
our benchmark estimation shown in Table 2. The right part of the figure shows the same
comparative static for the standard deviation of investment growth divided by the standard
deviation of output growth for comparison.

3.4 Robustness

We next explore the robustness of our results across a range of different variations, considering

alternative sources of noise in the information environment, variation in the degree of near-

rationality, and the choice of the decision horizon.

Alternative Information Environments From the results in Table 2, we can see that the

availability of an exogenous noisy public signal has only a minor effect on our estimates. Our

benchmark estimates suggest these signals are relatively uninformative such that, in equilibrium,

households largely ignore them when forming their expectations. As a result, the noise these

exogenous signals transmit has little effect on equilibrium behavior.

Column 2 of Table 2 re-estimates a variation of our model where instead of exogenous noisy

public signals, we allow for aggregate noise in private signals as in (32) and estimate the standard

deviation of this aggregate noise along with σνj , σεj (j = S,L), and σηS . We find again that

our estimates do not load on this alternative source of noise (σζL/σηL = 0 and σζS/σηS = 0.11).

Looking across the two columns, all other estimates remain virtually unchanged, as do the

implications of these estimates: the ratio of conditional to unconditional variance is 0.50 and

0.57 for the long-run and short-run shocks, respectively, near-rational errors are amplified by

factors of 577 and 143, and the estimated social cost of near-rational behavior is now only slightly

higher at 5.40% of permanent consumption. The last column in Table 3 shows that aggregate

noise in the private signal also does not significantly affect the model’s fit to the data.

Amplified near-rational errors thus appear more relevant for fitting the data than either of

these alternative sources of noise operating through the signal structure. The reason is that, in
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the data, households make forecast errors and disagree (quite strongly) about their forecasts.

Although noise from exogenous public signals and aggregate noise in private signals can ratio-

nalize only the former, near-rational behavior (in combination with noisy private signals) can

rationalize forecast errors, disagreement, and the dynamics of this disagreement.

The Degree of Near-Rationality Because the literature has little precedent for assessing

the minimum size of economic incentives required to induce households to engage in fully rational

behavior, Table 5 probes the robustness of our results over various levels of λ̄. The first four

columns maintain the constraint λ < λ̄ on the objective function (50) and vary this limit between

0.01% and 0.37% of consumption—the lowest and highest stakes at which natural experiments

have found evidence inconsistent with rational consumption smoothing (see Appendix Table 1).

Table 5 shows that our main results are largely unaffected across these variations. Even when

we specify the private cost of near-rational behavior to be smaller than 0.01% of consumption,

the then very small near-rational errors (σεL = 0.0008σηL and σεS = 0.0001σηS) are amplified

enough to reduce the ratio of conditional to unconditional variance of the two shocks to about

one half (0.49 and 0.62, respectively), and the social cost of this near-rational behavior remains

at 5.10% of permanent consumption. As we increase λ̄, this social cost increases slightly up

to 5.75% of permanent consumption (when λ̄ = 0.37%). As the size of near-rational errors

increases, the degree of equilibrium amplification decreases, as reflected in a decrease of the

estimated idiosyncratic noise in the private signals σνL,S .

Column 2 alternatively sets λ̄ = 0.08%, consistent with estimates of the private cost of

rational inattention from Maćkowiak and Wiederholt (2015).20 The column again shows results

remarkably close to those in our benchmark calibration.

Across all the variations in columns 1-4, our estimator always picks combinations of param-

eters at the maximum allowable private cost of near-rational behavior. Column 5 shows the

results of an unconstrained estimation where we instead add the mean (0.15%) and the variance

(0.024) of the four numbers used as limits in the other columns to the target vector θ and the

weighting matrix Ω, respectively. In this case, the estimated private cost of near-rational be-

havior is even higher (0.71% of permanent consumption), but nevertheless about 8-fold smaller

than the social cost (5.55%).

Our main conclusion from this table is that the less rational we assume households to be, the

better the model tends to fit the data. Nevertheless, the central insight that the social cost of

near-rational behavior is orders of magnitude higher than the private cost appears independent

of how we specify this private cost.

20Maćkowiak and Wiederholt (2015) find that the per-period loss accruing to firms due to deviations of the
price from the profit-maximizing price equals 1/1700 of firms’ steady-state revenue and 1/5900 of steady-state
consumption (pages 3 and 31), collectively amounting to approximately 0.08% of consumption.
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Table 5: Estimation using alternative targets for private cost of near-rational behavior

(1) (2) (3) (4) (5)
λ ≤0.01 λ ≤0.08 λ ≤0.13 λ ≤0.37 unconstrained

(Benchmark)
Implications for Welfare

Private Cost 0.01 0.08 0.13 0.37 0.71
Total Social Cost 5.1 5.12 5.31 5.75 5.55

Implications for Information Aggregation
Vt[ηL]/σ2

ηL 0.49 0.49 0.49 0.5 0.41
Vt[ηS]/σ2

ηS 0.62 0.58 0.56 0.5 0.48
Estimated Parameters

σεL/σηL(%) 0.08 0.08 0.09 0.31 0.18
σεS/σηS(%) 0.01 0.34 0.42 0.92 2.31
σνL/σηL 24.35 25.82 23.6 12.82 21.42
σνS/σηS 158.87 17.74 13.61 7.39 5.35
σηS(%) 0.98 0.98 0.98 0.98 0.98
σ$L/σηL 3.00 3.00 3.69 1013 0.90
σ$S/σηS 1.53 1.53 1.99 1012 1.38

Note: Variations of the benchmark estimation from Table 2 using different constraints on the
private cost of near-rational behavior (λ). Column 3 shows the benchmark estimation for com-
parison. Column 5 shows the results of an unconstrained estimation where we instead add the
mean and the variance of the four numbers shown (0.01, 0.08, 0.13, and 0.37) to the target
vector and the weighting matrix of our estimator. See section 3.4 of the main text for details.

Choice of Decision Horizon As a final robustness check, we explore how our results change

when we use a quarterly rather than a monthly decision horizon, where households then receive

signals about long-run and short-run shocks to productivity one quarter ahead of time. To tie

our hands, we again use the quarterly calibration proposed by Croce (2014) (he simply scales

the time discount factor and the depreciation rate such that δ4 = 0.954 and 4δk = 0.06, but

sets ρ4 = 0.9), and then use the same parameters from column 1 of Table 2 while scaling up

the standard deviations of all shocks by
√

3. This calibration gives a similarly good fit to the

data and shows a social cost of near-rational behavior of 6.34% of permanent consumption. Our

results thus appear to imply only moderately larger social costs when we increase the horizon

at which households can learn about the future.

4 Conclusion

A large literature on noisy rational expectations studies markets’ capacity to aggregate dispersed

information. However, normative and quantitative applications of this literature have often faced

difficulties because they require a source of noise in demand, a role often filled by noise traders
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whose welfare is hard to evaluate, or by some other large shock to the supply of financial assets

that may be hard to rationalize in general equilibrium.

In this paper, we have proposed a microfoundation for noisy demand that is part and parcel

of the idea that prices aggregate information: an individual household does not internalize that

small errors it makes when forming expectations affect other households’ ability to learn about

the future. If these errors are, in any part, correlated across households, they amplify as house-

holds learn from equilibrium prices, leading to much larger errors in equilibrium expectations

and diminishing the market’s capacity to aggregate information. We argue that this external-

ity provides a logically coherent rationale for why equilibrium asset prices and other economic

aggregates might contain large amounts of non-fundamental noise even if all economic actors

appear to act rationally and financial markets are efficient in the sense that rational investors

cannot systematically outperform the market.

We find that the more dispersed private information is across households, the more severe this

externality is—making small mistakes is cheaper precisely when they are most socially harmful.

The social costs of this near-rational behavior result from misallocations of resources, increases

in the variance of consumption across households, and delays in the resolution of uncertainty.

A quantitative application of our model yields four main insights. First, most of the infor-

mation about future productivity that households receive originates from noisy private rather

than public signals. Markets thus play a potentially important role in aggregating this infor-

mation. The social value of aggregating all of it amounts to 9.84% of permanent consumption.

Second, amplified near-rational errors drive out about half of this information content, such that

equilibrium asset prices transmit as much amplified noise as information. Third, the reduced

information content of asset prices results in a countercyclical and highly persistent dispersion

of expectations across households, in line with salient stylized facts. It also results in a rise of

the equity premium, a fall in the risk-free interest rate, and a range of distortions in aggregate

investment, output, and consumption. Fourth, our estimates for the social cost of near-rational

behavior range between 5.1% and 5.7% of permanent consumption, whereas the private cost of

this behavior is on the order of 0.13% of permanent consumption.

We believe that the framework developed in this paper may prove useful for a normative

and quantitative evaluation of a large body of results from the market microstructure literature

(Hellwig, 1980; Kyle, 1985), studying the role of dispersed information in the economy, its effect

on macroeconomic dynamics, the cross-section of household behavior, and its interactions with

policy. Particularly interesting would be a re-evaluation of the social value of the provision of

private information (Grossman and Stiglitz, 1980). Beyond the market microstructure literature,

near-rational behavior may also provide a new approach to other contexts where agents’ ability

to infer information from prices has real effects, for example on the slope of the Philips curve

(Lucas, 1975).
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Maćkowiak, B. and M. Wiederholt (2015). Business cycle dynamics under rational inattention*.

The Review of Economic Studies , rdv027.

47



Mankiw, N. G. (1985). Small menu costs and large business cycles: A macroeconomic model of

monopoly. Quarterly Journal of Economics 100 (2), 529–537.

Mertens, T. (2009). Excessively volatile stock markets: Equilibrium computation and policy

analysis. mimeo New York University .

Mertens, T. M. and K. L. Judd (2013). Equilibrium existence and approximation for incomplete

market models with substantial heterogeneity. mimeo New York University .

Morck, R., A. Shleifer, and R. W. Vishny (1990). The stock market and investment: Is the

market a sideshow? Brookings Papers on Economic Activity 2, 157–215.

Odean, T. (1998). Volume, volatility, price, and profit: When all traders are above average.

Journal of Finance 53, 1887–1934.

Odean, T. (1999). Do investors trade too much? American Economic Review 89, 1279–1298.

Panageas, S. (2005). Neoclassical theory of investment in speculative markets. mimeo the

Wharton School .

Parker, J. A. (1999). The Reaction of Household Consumption to Predictable Changes in Social

Security Taxes. American Economic Review 89 (4), pp. 959–973.

Parker, J. A., N. S. Souleles, D. S. Johnson, and R. McClelland (2013). Consumer spending and

the economic stimulus payments of 2008. American Economic Review 103 (6), 2530–2553.

Patton, A. J. and A. Timmermann (2010). Why do forecasters disagree? lessons from the term

structure of cross-sectional dispersion. Journal of Monetary Economics 57 (7), 803–820.

Polk, C. and P. Sapienza (2009). The stock market and corporate investment: a test of catering

theory. Review of Financial Studies 22, 187–217.

Qiu, W. and J. Wang (2010). Asset pricing under heterogeneous information. mimeo MIT Sloan

School of Management .

Rauh, J. D. and A. Sufi (2012). Explaining corporate capital structure: Product markets, leases,

and asset similarity. Review of Finance 16 (1), 115–155.

Scholnick, B. (2013). Consumption Smoothing after the Final Mortgage Payment: Testing the

Magnitude Hypothesis. Review of Economics and Statistics 95 (4), 1444–1449.

Shea, J. (1995). Union Contracts and the Life-Cycle/Permanent-Income Hypothesis. American

Economic Review 85 (1), pp. 186–200.

Sockin, M. (2015). Not so great expectations: A model of growth and informational frictions.

mimeo Univerisity of Texas at Austin .

48



Souleles, N. S. (1999). The Response of Household Consumption to Income Tax Refunds.

American Economic Review 89 (4), 947–958.

Souleles, N. S. (2000). College tuition and household savings and consumption. Journal of

Public Economics 77 (2), 185 – 207.

Souleles, N. S. (2002, July). Consumer response to the Reagan tax cuts. Journal of Public

Economics 85 (1), 99–120.

Stein, J. C. (1987). Informational externalities and welfare-reducing speculation. Journal of

Political Economy 95 (6), 1123–1145.

Stephens, M. (2008). The Consumption Response to Predictable Changes in Discretionary

Income: Evidence from the Repayment of Vehicle Loans. Review of Economics and Statis-

tics 90 (2), 241–252.

Wang, J. (1994). A model of competitive stock trading volume. Journal of Political Economy 102

(1), 127–168.

Woodford, M. (2010). Robustly optimal monetary policy with near-rational expectations. Amer-

ican Economic Review 100 (1), 274–303.

Yu, J. (2011). Disagreement and return predictability of stock portfolios. Journal of Financial

Economics 99, 162–183.

49



Online Appendix

Appendix Figure 1: Ratio of the conditional variance of η to its unconditional variance plotted
over the level of dispersion of private information. The graph compares the case of an endogenous
σε with fixed λ to case of a fixed σε using κ = 2 and ρ = 5.

A Appendix to Section 1

A.1 Derivation of (14), (15), and (27)

Plugging (13) back into (10) and matching coefficients with (11) yields

π0 =
α0 + ρV1[η]κ(1 − α2)
(1 − α2)(1 + ρV1[η]κ)

, π1 =
α1

(1 − α2)(1 + ρV1[η]κ)
,

(51)

γ =
1

(1 − α2)(1 + ρV1[η]κ)
.

(52)

Using (2) and (11), the vector (η, si, Q) has unconditional expectation (η̄, η̄, π0 + π1η̄) and

the following variance covariance matrix:

Σ =






σ2
η σ2

η π1σ
2
η

σ2
η σ2

η + σ2
ν π1σ

2
η

π1σ
2
η π1σ

2
η π2

1σ
2
η + γ2σ2

ε




 .
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Thus, by the property of the conditional variance of the multi-normal distribution,

V1 [η] = σ2
η −

(
σ2

η π1σ
2
η

)
(

σ2
η + σ2

ν π1σ
2
η

π1σ
2
η π2

1σ
2
η + γ2σ2

ε

)−1(
σ2

η

π1σ
2
η

)

=
1

σ−2
η +

(
π2

1γ
−2σ−2

ε + σ−2
ν

) .

Plugging (51) and (52) into this expression gives (14).

Similarly, by the properties of the multi-normal distribution,

E[η|si, Q] = η̄ +
(

σ2
η π1σ

2
η

)
(

σ2
η + σ2

ν π1σ
2
η

π1σ
2
η π2

1σ
2
η + γ2σ2

ε

)−1(
si − η̄

Q − (π0 + π1η̄)

)

.

Replacing Q by (10) and plugging in (13) and (53) gives (15).

Matching the coefficients of (15) with (12)

(
α1

α2(1 + ρV1[η]κ)

)

=
(

σ2
η π1σ

2
η

)
(

σ2
η + σ2

ν π1σ
2
η

π1σ
2
η π2

1σ
2
η + γ2σ2

ε

)−1

,

and solving for α1, α2 yields

α1 =
γ2σ2

ησ
2
ε

γ2σ2
νσ2

ε + σ2
η

(
π2

1σ
2
ν + γ2σ2

ε

) ,

α2 =
π1σ

2
ησ

2
ν(

γ2σ2
νσ

2
ε + σ2

η

(
π2

1σ
2
ν + γ2σ2

ε

))
(1 + ρV1[η]κ)

. (54)

Combining (54) with (51), (52), and (14) yields (27).

A.2 Proof of Lemma 1.1

Use the law of total variance and (11) and (12) to get

σ2
η = V1[η] + V0[E1i[η]]

= V1[η] + V0[α1νi + (α1 + α2π1(1 + ρV1[η]κ)) η + α2γε(1 + ρV1[η]κ)]

= V1[η] + α2
1σ

2
ν + (α1 + α2π1(1 + ρV1[η]κ))2σ2

η + α2
2γ

2σ2
ε (1 + ρV1[η]κ)2.

Now note from (17) and (18) that

α2
1σ

2
ν + α2

2γ
2σ2

ε (1 + ρV1[η]κ)2 =
V1 [η]2

σ2
ν

+
V1 [η]4

σ4
νσ2

ε

=
V1 [η]2

σ2
ν

+
V1 [η]2 α2

1

σ2
ε

,
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and from (14) that α2
1

σ2
ε

= 1
V1[η] −

(
σ−2

η + σ−2
ν

)
such that

α2
1σ

2
ν + α2

2γ
2σ2

ε (1 + ρV1[η]κ)2 = V1 [η] − V1 [η]2 σ−2
η .

In addition, using (51) we can show that

(α1 + α2π1(1 + ρV1[η]κ))2 = ((1 − α2)π1(1 + ρV1[η]κ) + α2π1(1 + ρV1[η]κ))2

= π2
1 (1 + ρV1[η]κ)2 .

Substituting these two expressions back into (55) yields

σ2
η = 2V1 [η] − V1 [η]2 σ−2

η + π2
1 (1 + ρV1[η]κ)2 σ2

η.

Solving this expression for V1[η] gives

V1[η] =
σ2

η(1 − π1)

1 + κρπ1σ2
η

. (56)

Now take the market-clearing condition (8), plug in (7) and (9) on the left-hand side and (1) on

the right to get ∫ 1
0 E1i[η]di − Q + ε

ρV1[η]
= κ(Q − 1).

Take the unconditional expectation on both sides:

E0[η − Q] = ρκV1[η](E0[Q] − 1).

Now note from (11) that E0[Q] = π0 + π1η̄ and therefore:

−π0 + (1 − π1)η̄ = ρκV1[η](E0[Q] − 1).

Solving for π0 and plugging in (56) yields

π0 =
(1 − π1)(η̄ + κρσ2

η)

1 + κρσ2
η

. (57)

Similarly, from (51), (52), and (17), it follows that

γ = π1
σ2

ν

V1 [η]
. (58)
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Again plugging in (56) yields

γ =
π1σ

2
ν

(
1 + κρπ1σ

2
η

)

σ2
η(1 − π1)

.

To solve for π1, substitute (17), (18), and (58) into (51) to get

π1 = σ−2
ν

(

V1 [η]−1 −
V1 [η]2

π1σ4
νσ

2
ε

+ ρκ

)−1

.

Combining this expression with (56) and solving yields (20). Plugging (20) into (57) and (58)

separately gives (19) and (21). And substituting α1 using (17) in (14) yields (22).

A.3 Details on Amplification from Cost Function

Lemma A.1

There is a one-to-one mapping between the cost parameter λ and the size of the error σε where

the derivative dσε
dλ is strictly positive. In the limit in which λ → 0, all households behave fully

rationally with σε → 0.

To show the magnitude of near-rational errors, take the first-order condition with respect to

the optimal choice of μi
dE0[w2i]

dμi

−
ρ

2
V1[w2i] + λ|Ū | = 0

where we plug in for wealth from equation (4), use V1[w2i] = z2
i V1[η], the optimal portfolio choice

(9), and the definition of near-rational expectations (5). We arrive at

μiσ
2
ε

ρV1[η]
+

E0[E1[η]ε]
ρV1[η]

= λ|Ū |.

Now we plug in the equilibrium choice μi = 1 and recognize that

E0[E1[η]ε] =
α2

1 − α2
σ2

ε

from (12) and (13). After substituting α2 by plugging (17) into (18), we get that the size of the

errors relates to the costs via

σ2
ε =

V1[η](λ|Ū |σ2
ν − V1[η])

σ2
ν

. (59)

In a last step, we sign the derivative dσ2
ε

dλ . Therefore, we re-arrange the expression we just

derived to

ρλ|Ū | =
V1[η]2 + σ2

εσ
2
ν

V1[η]σ2
ν

(60)
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where we call c = λ|Ū |. Taking the total derivative of (59) with respect to c and recognizing

that V1[η] is a function of σ2
ε delivers the following expression

dσ2
ε

dc
=

ρV1[η]σ2
ν

2V1[η]dV1[η]
dσ2

ε
+ (1 − cdV1[η]

dσ2
ε

)σ2
ν

.

Using (60) and the total derivative of (22) with respect to σ2
ε delivers the lengthy expression

dσ2
ε

dc
=

T (V1[η])

cσ2
ν

(
σ4

ησ2
νV1(η)3 + σ4

ηV1(η)4 + 2σ2
ησ4

νV1(η)2σ2
ε + σ4

ησ4
νV1(η)σ2

ε + 2σ4
ησ2

νV1(η)2σ2
ε + 2σ2

ησ6
νσ4

ε + σ4
ησ4

νσ4
ε + σ8

νσ4
ε

) (61)

where

T (V1[η]) = σ4
ηV1(η)6 + σ8

νV1(η)2σ4
ε + 4σ2

ησ6
νV1(η)2σ4

ε + 2σ4
ησ6

νV1(η)σ4
ε + 2σ2

ησ4
νV1(η)4σ2

ε + 2σ4
ησ4

νV1(η)3σ2
ε

+3σ4
ησ4

νV1(η)2σ4
ε + 3σ4

ησ2
νV1(η)4σ2

ε + 2σ2
ησ8

νσ6
ε + σ4

ησ6
νσ6

ε + σ10
ν σ6

ε

which is clearly positive.

A.4 Deriving (23) and (24)

Jointly solving (22) and (59) for V1[η] and picking the only real solution for the conditional
variance yields the two closed-form solutions

σε =
1

√
2σν

√√

σ4
η

(
λρŪ + 1

)2
(
2λρŪσ2

ησ2
ν

(
λρŪ − 1

)
+ σ4

η

(
λρŪ + 1

)2 + λ2ρ2Ū2σ4
ν

)
+ λρŪσ2

ησ2
ν

(
1 − λρŪ

)
+ σ4

η

(
−
(
λρŪ + 1

)2
)

and

V1[η] =

−

√

σ4
η

(
λρŪ + 1

)2
(
2λρŪσ2

ησ2
ν

(
λρŪ − 1

)
+ σ4

η

(
λρŪ + 1

)2
+ λ2ρ2Ū2σ4

ν

)
+ λρŪσ2

ησ2
ν

(
λρŪ + 1

)
+ σ4

η

(
λρŪ + 1

)2

2σ2
η

(
λρŪ + 1

) .

(62)

The solution for the conditional variance can be re-written as

V1[η] = −
1
2
σ2

η

√
λρŪ

(
2σ2

ησ
2
ν

(
λρŪ − 1

)
+ λρŪσ4

η + λρŪσ4
ν + 2σ4

η

)

σ4
η

+ 1 +
1
2
λρŪ

(
σ2

η + σ2
ν

)
+

σ2
η

2
.

From this form, it can be directly seen that the limit of λ → 0 results in a conditional variance

of zero. Plugging this into (20) yields (24).
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A.5 Proof of Proposition 1.2

Solve (56) for π1 and differentiate with respect to V1[η] to get

∂π1

∂V1[η]
= −

1 + κρσ2
η

σ2
η(1 + κρV1[η])2

< 0. (63)

In addition, differentiate both sides of (22) with respect to σε and rearrange to get

∂V1[η]
∂σε

=
2V1 [η]4

2σ2
εV1 [η]3 + σ3

εσ
4
ν

> 0.

Then, using Lemma 1.1, the fact that ∂π1
∂λ = ∂π1

∂V1[η]
∂V1[η]
∂σε

∂σε
∂λ yields (25), and applying (23) yields

(26).

A.6 Proof of Proposition 1.3

For the first part of the proposition, differentiate both sides of (22) with respect to σν and

rearrange to get
∂V1[η]
∂σν

=
2σ2

νσ2
εV1 [η]2 + 4V1 [η]4

σ5
νσ2

ε + 2σνV1 [η]3
> 0.

Combing this with (63) proves the first equality and the inequality for strictly positive σε. The
proof of the case λ → 0 follows directly from (23).
We start with the solution for the conditional variance in (62) and re-write it in the form

V1[η] =
1

2

(

−
√

2λρŪσ2
ησ2

ν

(
λρŪ − 1

)
+ σ4

η

(
λρŪ + 1

)2
+ λ2ρ2Ū2σ4

ν + σ2
η

(
λρŪ + 1

)
+ λρŪσ2

ν

)

. (64)

First, note that, when taking the limit, the term under the square root independent of σν can

be left out and further note that the following limit is true

lim
x→∞

a0 + a1x
2 − x

√
a3 + a2

1x
2 = a0 −

a3

2a1
.

Apply this relationship to limσν→∞ V1[η] where we plug (64) in for the conditional variance and

we get limσν→∞ V1[η] = σ2
η if λ > 0. The result from the proposition immediately follows. For

the case where λ = 0, note that the conditional variance is zero independent of information

dispersion.
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A.7 Proof of Proposition 1.4

Differentiating (59) with respect to σ2
ν and plugging in the derivative of the conditional variance

which we obtain by totally differentiating (22), we get

dσ2
ε

dσ2
ν

=
σ4

ηV1(η)7 + σ4
ησ6

νV1(η)2σ4
ε + σ4

νV1(η)3σ4
ε

(
σ2

η + σ2
ν

)
2 + 2σ2

ησ2
νV1(η)5σ2

ε

(
σ2

η + σ2
ν

)
+ σ4

ησ8
νσ6

ε

σ4
νV1(η)

(
σ4

ησ2
νV1(η)3 + σ4

ηV1(η)4 + σ4
ησ4

νV1(η)σ2
ε + 2σ2

ησ2
νV1(η)2σ2

ε

(
σ2

η + σ2
ν

)
+ σ4

νσ4
ε

(
σ2

η + σ2
ν

)
2
) .

A.8 Proof of Proposition 1.5

Plug (11) into (1) to get

K = κ (π0 + π1η + γε − 1) . (65)

Taking time-zero expectations of (65) and using (19) and (20) to substitute for π0 yields

E0 [K] = κ (η̄ − 1)

(
1 + π1κρσ2

η

1 + κρσ2
η

)

. (66)

In addition, from (65) and (28), we have

Cov0 (K, η) = κπ1σ
2
η. (67)

It follows directly that ∂E0[K]
∂π1

> 0 and ∂Cov0[K,η]
∂π1

> 0. The remainder of the proof follows from

Proposition 1.2.

A.9 Proof of Lemma 1.6

Combine (2), (5), (8), (7), (9), (12), and (17) to show that

zi − K =
νi

ρσ2
ν

.

From (1), equilibrium profits are

Π = κ
(Q − 1)2

2
. (68)

Taking (3), plugging in (4), and substituting Π using (68) and (1) yields

Ui = zi(η − Q) +
K2

2κ
−

ρ

2
z2
i V1[η].
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Replacing zi = νi
ρσ2

ν
+ K, applying the definition wa = K (η − Q) + K2

2κ , and taking time-zero

expectations on both sides yields

E0 [Ui] = E0

[
νi

ρσ2
ν

(η − Q) + K (η − Q) +
K2

2κ

]

−
ρ

2
E0

[(
νi

ρσ2
ν

+ K

)2
]

V1[η].

The second equality in (29) follows from the fact that E0 [νi] = 0 and νi is uncorrelated with η,

K, and Q. As a result, the first term in the left square brackets drops out and E0

[
2 νi

ρσν
K
]

= 0

in the right square brackets.

The first equality follows from noting that E0 [Ui] does not depend on νi. It is thus independent

of i, and we have that

SWF ≡
∫ 1

0
E0 [Ui] di = E0 [Ui] .

Finally, use (1) to substitute Q out of (4):

wa = K(η − 1) −
K2

2κ
= (Kη − E0[K]η̄) + (E0[K]η̄ − K) −

K2

2κ
.

Taking time-zero expectations on both sides yields (30).

Next we derive the different channels of utility. The utility specification in (3) embeds a

preference for early resolution of uncertainty. To see this, note that disutility from variance

stems only from conditional variance and thus the timing of the arrival of information matters

for welfare. More technically, we can write E0[Ui] = −1
ρE0 [log (E1 [exp (−ρw)])]. The con-

cave transformation through the logarithm favors volatile expectations and thus gives rise to a

preference for early resolution of uncertainty.

To show the economically relevant channels of information aggregation on welfare, we make

two rearrangements to the specification of utility. First, we apply the law of total variance to

the variance term V1[w2i] = V0[w2i] − V0[E1i[w2i]]. Second, we recognize that

w2i − w2a =
νi

ρσ2
ν

(η − Q).

and, since νi is independent of all other shocks, the covariance Cov0[w2i − w2a, w2a] is zero. As

a result,

V0 [w2i] = V0 [w2a + w2i − w2a]

= V0 [w2a] + V0 [w2i − w2a] .

The different channels by which near-rationality influences social welfare can now better been
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seen when we rearrange the second term as follows

SWF = E0[Ui] = E0 [w2a]︸ ︷︷ ︸
Level effect

−
1
2
ρV0[w2a]
︸ ︷︷ ︸

Variance effect

−
1
2
ρV0[w2i − w2a]
︸ ︷︷ ︸

Dispersion effect

+
1
2
ρV0 [E1 [w2i]]
︸ ︷︷ ︸

Early resolution of uncertainty

A.10 Proof of Proposition 1.7

It follows directly from the envelope theorem that

lim
λ→0

[

−
∂E0[Ui]

∂μi

]

= 0.

For the second and third equality, note that the social welfare function (29) depends on three

terms: the level of expected wealth, the idiosyncratic component in the expected volatility of

portfolio returns, and the aggregate component in the expected volatility of portfolio returns.

We first solve each of the three components as a function of the parameters of the model and

π1. Equating (14) and (56) gives

γ =

√
(1 − π1) π2

1σ
2
νση2

σ2
ε

(
π1σ2

ν + σ2
η (π1σ2

νκρ + (π1 − 1))
) . (69)

Squaring both sides of (65) and taking expectations gives E0[K2]. Plugging E0[K2], (66), and

(67) into (30) and substituting in (57) and (69) yields

E0 [wa] = −
1
2
κ{2η̄

(

1 −
(π1 − 1) 2

(
η̄ + κρσ2

η

)

κρσ2
η + 1

)

+
(π1 − 1) 2

(
η̄ + κρσ2

η

)
2

(
κρσ2

η + 1
)

2

+(π1 − 2) π2
1η̄

2 +
(1 − π1) π2

1σ
2
νσ2

η

π1σ2
ν + σ2

η (π1 (σ2
νκρ + 1) − 1)

+ (π1 − 2) π1σ
2
η − 1}.

We can then show that

lim
σε→0

[
∂E0 [wa]

∂σε

]

= lim
σε→0

[
∂E0 [wa]

∂π1

∂π1

∂σε

]

=
κσ2

η

2
(
1 + κρσ2

η

) lim
σε→0

[
∂π1

∂σε

]

< 0,

where the last equality uses (25). Using (25) and (63) from Proposition 1.2,

lim
σε→0

[

−
1

2ρσ2
ν

∂V1 [η]
∂σε

]

= −
1

2ρσ2
ν

lim
σε→0

(
∂π1

∂V1[η]

)−1

lim
σε→0

[
∂π1

∂σε

]

< 0.
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Similarly, taking time-zero expectations of the third term and plugging in (57), (69), and (56)
yields

E0

[
K

2
]

V1[η] = (1 − π1) κ
2
σ
2
η

σ2
η

(
κρ
(

π2
1(η̄−1)2−1

)

κρσ2
η+1

+
κρ
(
−(π1−2)π1(η̄−1)2−1

)

(
κρσ2

η+1
)
2

−
(π1−1)π2

1σ2
ν

σ2
η

(
π1
(

σ2
ν κρ+1

)
−1
)
+π1σ2

ν

+ π2
1

)

+
(η̄−2)η̄(

κρσ2
η+1

)
2

+ 1

π1κρσ2
η + 1

.

Again taking the derivative with respect to σε, taking the limit as σε goes to zero and using (25)

yields

lim
σε→0

[

−
ρ

2

∂E0

[
K2
]
V1[η]

∂σε

]

=
κ2ρσ2

η

(
(1 − η̄)2 + σ2

η

)

2
(
1 + κρσ2

η

) lim
σε→0

[
∂π1

∂σε

]

< 0

and concludes the proof.

A.11 Alternative information environments

A.11.1 Dispersed Information with an Exogenous Public Signal

This section solves the model with public signals introduced in section 1.4. We may guess that

the solution for Q is some linear function of η, $, and ε:

Q = π0 + π1η + π2$ + γε,

where the rational expectation of η given Q and the private and public signals is

Eit

(
ηt+1

)
= α0 + α1si + α2Q + α3g.

A matching coefficients approach parallel to that in section 1.1 gives

π1 =
α1 + α3

1 − α2
, π2 =

α3

1 − α2
, γ =

1
1 − α2

. (70)

The amplification of near-rational errors is thus influenced only in so far as the presence of

public information may induce households to put less weight on the market price of capital

when forming their expectations.

The vector (η, si, Q, g) has the following variance covariance matrix:









σ2
η σ2

η π1σ
2
η σ2

η

σ2
η σ2

η + σ2
ν π1σ

2
η σ2

η

π1σ
2
η π1σ

2
η π2

2σ
2
$ + π2

1σ
2
η + γ2σ2

ε π2σ
2
$ + π1σ

2
η

σ2
η σ2

η π2σ
2
$ + π1σ

2
η σ2

$ + σ2
η









.
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Appendix Figure 2: Ratio of the conditional variance of the productivity shock to its uncon-
ditional variance plotted over the level of dispersion of information, σν/ση, and for varying
precisions of the public signal. In each case, σε/ση is set to 0.01.

Solving the signal-extraction problem returns

α1 =
γ2σ2

$σ2
ησ2

ε

σ2
$(σ2

η(γ2σ2
ε+(π1−π2)2σ2

ν)+γ2σ2
νσ2

ε)+γ2σ2
ησ2

νσ2
ε

α2 =
(π1−π2)σ2

$σ2
ησ2

ν

σ2
$(σ2

η(γ2σ2
ε+(π1−π2)2σ2

ν)+γ2σ2
νσ2

ε)+γ2σ2
ησ2

νσ2
ε

α3 =
σ2

ησ2
ν(γ2σ2

ε+π2(π2−π1)σ2
$)

σ2
$(σ2

η(γ2σ2
ε+(π1−π2)2σ2

ν)+γ2σ2
νσ2

ε)+γ2σ2
ησ2

νσ2
ε

. (71)

Based on these results, Figure 1 plots the conditional variance of η for the rational and near-

rational expectations equilibrium and for varying levels of precision of the public signal.

In the absence of near-rational behavior, the provision of public information makes no dif-

ference, because households are already fully informed from the outset. When households are

near-rational, the presence of the public signal is relevant only insofar as a collapse of informa-

tion aggregation affects only the subset of information that is dispersed across households and

not the information that is publicly available. If the public information provided is relatively

precise, V1[η]
σ2

η
now converges to values less than 1 as σν goes to infinity.

A.11.2 Dispersed Information with Aggregate Noise in Private Signal

This subsection solves the model with aggregate noise in the private signal introduced in section

1.4. We may guess that

Q = π0 + π1 (η + ζ) + γε,
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where both the expectation (12) and the coefficients π0, π1, and γ are the ones given in the

main text. However, the variance-covariance matrix of the vector (η, si, Q) changes to







σ2
η σ2

η π1σ
2
η

σ2
η σ2

ζ + σ2
η + σ2

ν π1

(
σ2

ζ + σ2
η

)

π1σ
2
η π1

(
σ2

ζ + σ2
η

)
π2

1

(
σ2

ζ + σ2
η

)
+ γ2σ2

ε





 .

Applying the projection theorem yields

α1 =
γ2σ2

ησ2
ε

σ2
ζ(γ2σ2

ε+π2
1σ2

ν)+σ2
η(γ2σ2

ε+π2
1σ2

ν)+γ2σ2
νσ2

ε

α2 =
π1σ2

ησ2
ν

σ2
ζ(γ2σ2

ε+π2
1σ2

ν)+σ2
η(γ2σ2

ε+π2
1σ2

ν)+γ2σ2
νσ2

ε

(72)

and

V1 [η] =
σ2

η

(
σ2

ζ

(
γ2σ2

ε + π2
1σ

2
ν

)
+ γ2σ2

νσ2
ε

)

σ2
ζ

(
γ2σ2

ε + π2
1σ

2
ν

)
+ σ2

η

(
γ2σ2

ε + π2
1σ

2
ν

)
+ γ2σ2

νσ2
ε

.

The key insight is that aggregate noise does not get amplified. Figure 3 illustrates this

result. The thick blue line plots the now familiar effect of a small common error in household

expectations with σε
ση

= 0.01. The red horizontal line plots the effect of an identical amount of

small common noise in the private signal (i.e. σζ

ση
= 0.01). The red line has an intercept of 0.012

and is perfectly horizontal. The common noise in the private signal is not amplified, and does

the fact that an individual household observes a signal with common noise does not have an

external effect on the market’s capacity to aggregate information. The effect of common noise

in the private signal is thus invariant to how dispersed information is in the economy.

The broken lines in Figure 3 show the same comparative static, but in the presence of large

common noise in the private signal ( σζ

ση
= 1). Both lines retain their shape but now have a

higher intercept, reflecting the fact that less information is now available to aggregate, even

if the stock price is fully revealing. However, for the remaining dispersed information, the

information externality of near-rational behavior operates in the same way as in the model in

section 1. The externality is thus relevant whenever financial markets play an important role in

aggregating dispersed information, regardless of the exact information structure.
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A.11.3 Formal proof of Proposition 1.8

Since the expressions are shorter for the case of aggregate noise in the private signal, we start

with the proof for this case first. Combining (51), (52), and (72) yields

π1 = σ2
η

(
σ2

ζ + σ2
η

)−1 − 21/33−1/3σ2
ν

(
σ2

ζ + σ2
η + σ2

ν

)
σ2

εΦ
−1
ζ +

2−1/33−2/3Φζ(
σ2

ζ + σ2
η

)
3

, (73)

where

Φζ =

(

−9σ2
η

(
σ2

ζ + σ2
η

)
5σ4

νσ2
ε +

√
3

√(
σ2

ζ + σ2
η

)
9σ6

νσ4
ε

(
27σ4

η

(
σ2

ζ + σ2
η

)
σ2

ν + 4
(
σ2

ζ + σ2
η + σ2

ν

)
3σ2

ε

)
)

1/3.

Rewriting this expression in order form of σε yields

π1 = O(1) − 21/33−1/3O(1)O(σ2
ε )Φ

−1
ζ + 2−1/33−2/3O(1)Φζ

and

Φζ =
(
−9O(σ2

ε ) +
√

3 (O(σ2
ε ) + 4O(σ6

ε ))
) 1

3
= O(σε),

where we denote y = O(x) if y
x = const as σε → 0. Taking the derivative with respect to σε

yields

∂π1

∂σε
= −24/33−1/3O(σε)Φ

−1
ζ + 21/33−1/3O(σ2

ε )Φ
−2
ζ

∂Φζ

∂σε
+ 2−1/33−2/3O(1)

∂Φζ

∂σε

and
∂Φζ

∂σε
=

1
3
Φ−2

ζ

(

−18O(σε) +
1
2

(
O(σ2

ε ) + 4O(σ6
ε )
)− 1

2
(
2O(σε) + 24O(σ5

ε )
)
)

.

Cancelling coefficients and taking the limit on both sides yields the proof of the first statement:

lim
σε→0

∂π1

∂σε
= − lim

σε→0
O(σε)Φ

−1
ζ + lim

σε→0
O(σ2

ε )Φ
−2
ζ

∂Φζ

∂σε
+ lim

σε→0

∂Φζ

∂σε

= − lim
σε→0

O(σε)O(σ−1
ε ) + lim

σε→0

(
O(σ2

ε )O(σ−4
ε ) + 1

)
O(σ−2

ε )
(
−O(σε) + O(σ2

ε )
)

= −∞.

The result now follows from the chain rule since ∂σε/∂λ > 0.

Similarly, rewriting (73) in order form of σζ yields

π1 = O(1)O(σ−2
ζ ) − 21/33−1/3O(1)O(σ2

ζ)Φ
−1
ζ + 2−1/33−2/3O(σ−6

ζ )Φζ
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and

Φζ =

(

−9O(1)O(σ10
ζ ) +

√

3
(
27O(1)O(σ20

ζ ) + 4O(σ24
ζ )
)
) 1

3

= O(σ4
ζ).

Taking the derivative with respect to σζ yields

∂π1

∂σζ
= −O(1)O(σ−3

ζ ) − 24/33−1/3O(1)O(σζ)Φ
−1
ζ + 21/33−1/3O(1)O(σ2

ζ)Φ
−2
ζ

∂Φζ

∂σζ

−22/331/3O(σ−7
ζ )Φζ + 2−1/33−2/3O(σ−6

ζ )
∂Φζ

∂σζ

and

∂Φζ

∂σζ
=

1

3
Φ−2

ζ

(

−90 O(1)O(σ9
ζ) +

√
3

2

(
27 O(1)O(σ20

ζ ) + 4 O(σ24
ζ )
)−1/2 (

540 O(1)O(σ19
ζ ) + 96O(σ23

ζ )
)
)

.

The proof of the second statement follows from applying L’Hopital’s rule to this expression.

Because the analytical expressions become rather cumbersome, we refer the reader to the Math-

ematica file provided on the authors’ websites for the remainder of the proof of the second

statement.

For the case of the public signal, we start by combining (71) and (70) to get

π1 =27σ6
ζσ6

ησ2
νΦ3

$ + 2σ2
ε

(
σ2

ζΦ$
(
σ2

η + σ2
ν

)
+ σ2

ησ2
νΦ$

)
3 + 2σ4

ε

(
σ2

ζ

(
σ2

η + σ2
ν

)
+ σ2

ησ2
ν

)
6

×

3
√

2
√

3σζσ2
ησ4

νσ
4/3
ε

(
2 3
√

2
√

3Φ2
$ + 2

(√
3 + 3i

)
σ

4/3
ε

(
σ2

ζ

(
σ2

η + σ2
ν

)
+ σ2

ησ2
ν

)
2
)

Φ7
$

(
27σ6

ζσ6
ησ2

ν + Φ3
$ + 2σ2

ε

(
σ2

ζ

(
σ2

η + σ2
ν

)
+ σ2

ησ2
ν

)
3
)

where

Φ$ = 3

√√
√
√3σ3

ζσ3
ησν

(√

81σ6
ζσ6

ησ2
ν + 12σ2

ε

(
σ2

ν

(
σ2

ζ + σ2
η

)
+ σ2

ζσ2
η

)
3 − 9σ3

ζσ3
ησν

)

− 2σ2
ε

(
σ2

ζ

(
σ2

η + σ2
ν

)
+ σ2

ησ2
ν

)
3.

The remaining steps mirror those of the proof for the case with aggregate noise in the private

signal. In either case, the expressions are long and we refer the reader to the Mathematica file

provided on the authors’ websites.

A.12 Comparison with Noise-Trader Model

Consider two modifications to the model in section 1: First, households have rational expecta-

tions:

μi = 0 ∀i.
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Second, in addition to the unit interval of rational households, the economy is inhabited by a unit

interval of noise traders j ∈ [0, 1] inhabit the economy. Noise traders are identical to rational

households in that they have the same preferences (3), budget constraint (4), and information

set (they receive the signal (2) and observe the equilibrium stock price Q). However, when

making their portfolio decisions, noise traders do not maximize their utility but exogenously

and inelastically demand

zj = μjϑ, (74)

where ϑ ∼ N
(
0, σ2

ϑ

)
. This behavior makes the supply of stocks stochastic from the perspective

of rational households.

Because κ = 0 implies K = 0, market clearing requires that the sum of rational households’

and noise traders’ stock demands equals zero:

∫ 1

0
zidi +

∫ 1

0
μjϑ dj = 0, (75)

where μj = 1 ∀j.

Proposition A.2

Shocks to noise-trader demand lower the utility of noise traders but raise the welfare of ratio-

nal households. Noise traders’ demand shocks thus represent a positive externality on rational

households:
∂SWF

∂σϑ
> 0 ∀σϑ > 0 and

∂E0[Uj ]
∂μj

< 0 ∀μj > 0.

Proof See Appendix A.12.1.

The intuition behind this result is a redistribution of wealth between the two types of agents

in the model. Although rational households incur some losses due to the increased variability of

their portfolios, the market compensates them for the higher risk they take in the form of a higher

risk premium. Their welfare increases because they can “lean against” noise traders’ demand

and thus earn higher expected returns on their investments.21 Noise-trader demand shocks thus

represent a positive rather than negative externality on the welfare of rational households.

In addition, the size of this externality shrinks to 0 in the limit in which noise-trader demand

shocks become small.

Proposition A.3

As the standard deviation of noise-trader demand approaches 0, its marginal effect on the elas-

21With endogenous capital accumulation (κ > 0), there also exist parameter combinations for which the dead-
weight loss from distortions in the capital stock outweighs the redistribution of wealth from noise traders to
rational households such that the marginal effect on rational households’ utility becomes negative.
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ticity of the stock price with respect to productivity goes to 0

lim
σϑ→0

∂π1

∂σϑ
= 0.

Proof See Appendix A.12.2.

To see the intuition for this result, replace K with ϑ in (1.4). Noise-trader demand shocks

are multiplied with ρV1[η]
1−α2

. For small σϑ, both the numerator and the denominator go to 0,

such that the fraction as a whole remains a finite number. (In Appendix A.12.2, we show

that the multiplier on noise traders’ demand shocks is always strictly smaller than ρσ2
ν .) Small

common shocks to noise traders’ demand thus have no first-order effect on the equilibrium

informativeness of stock prices. As a result, they affect neither noise traders’ own utility nor the

welfare of rational households. We show in the appendix that

lim
σϑ→0

[
∂SWF

∂σϑ

]

= lim
σϑ→0

[
∂E0[Uj ]

∂μj

]

= 0.

Small shocks to noise traders’ demand thus do not give rise to the type of externality we derive

in section 1. In addition, allowing for large shocks to noise-trader demand actually gives rise to

a positive rather than a negative externality.

A.12.1 Proof of Proposition A.2

Because households are now fully rational, their demand schedule is

zi =
E1i[η] − Q

ρV1[η]
. (76)

Taking time-zero expectations of (3), plugging in (4) and (76), and simplifying by law of iterated

expectations yields

E0 [Ui] = E0

[
E1i[η − Q](η − Q)

ρV1[η]

]

−
ρ

2
E0

[
(E1i[η − Q])2

ρ2V1[η]

]

=
1
2
E0

[
(E1i[η − Q])2

ρV1[η]

]

=
1

2ρV1[η]

(
V0 [E1i[η − Q]] + (E0 [η − Q])2

)
,

where we have used that Π = 0 when κ = 0. Using the law of total variance, we can then replace

V0 [E1i[η − Q]] = V0 [η − Q] − V1 [η] and simplify to get

E0 [Ui] =
(E0[η − Q])2 + V0[η − Q]

2ρV1[η]
−

1
2ρ

= SWF,
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where the second equality uses the fact that E0 [Ui] is no longer a function of i and thus SWF =
∫

E0 [Ui] di = E0 [Ui].

Plugging in (11) and the expressions from (77) yields

SWF =
1
2
σ2

νσ2
ϑρ −

1
2

σ6
νσ4

ϑρ3

σ4
νσ2

ϑρ2 + σ2
η

(
σ2

νσ2
ϑρ2 + 1

) .

It follows immediately that

∂SWF

∂σϑ
=

σ8
νσ5

ϑρ6σ2
η + σϑσ4

η

(
σ3

νσ2
ϑρ3 + σνρ

)2

ρ
(
σ2

η

(
σ2

νσ
2
ϑρ2 + 1

)
+ σ4

νσ2
ϑρ2
)

2
> 0.

To calculate expected utility of noise traders, again take time-zero expectations of (3), plug in

(4) and (74), and simplify to get

E0[Uj ] = E0

[
μjϑ(η − Q)

]
−

ρ

2
E0

[
μ2

jϑ
2
]
V1 [η]

= −μjγσ2
ϑ −

ρ

2
μ2

jσ
2
ϑV1 [η] .

Taking the derivative with respect to μj yields

∂E0[Uj ]
∂μj

= −γσ2
ϑ − ρμjσ

2
ϑV1 [η] < 0.

A.12.2 Proof of Proposition A.3

Substituting E1i[η] in (76) with E1i[η] = α0 + α1si + α2Q and (2), plugging the resulting

expression into (75), and simplifying yields

α0 + α1

(

η +
∫ 1

0
νidi

)

+ (α2 − 1) Q = ρV1[η]ϑ.

Solving this expression for Q and matching coefficients with (11) yields

π0 =
α0

1 − α2
, π1 =

α1

1 − α2
, γ =

ρV1[η]
1 − α2

.

Note that the expressions π0 and π1 are identical to (A.1) and (51). Similarly, repeating the

steps in section 1.1, we find that the expressions for (16), 17, and (18) are identical to those in

the near-rational model. However, the expression for γ is now multiplied with ρV1[η] relative to
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its counterpart in (52). Solving the system yields

π0 =
σ−2

η η̄

σ−2
η + σ−2

ν + ρ−2σ−2
ϑ σ−4

ν
, π1 =

σ−2
ν + ρ−2σ−2

ϑ σ−4
ν

σ−2
η + σ−2

ν + ρ−2σ−2
ϑ σ−4

ν
, γ = ρσ2

νπ1. (77)

Taking the derivative of π1 with respect to σϑ in (77) and simplifying yields

∂π1

∂σϑ
= −

2σ4
νσϑρ2σ2

η(
σ2

η

(
σ2

νσ
2
ϑρ2 + 1

)
+ σ4

νσ2
ϑρ2
)

2
.

As σϑ approaches 0 the denominator approaches σ4
η while the numerator approaches 0.

A.13 Errors about Higher Moments

Rather than making near-rational errors about the conditional mean of η, we may consider a

model identical to the one in section 1, but in which households make a small common error

about the second conditional moment rather than about the first conditional moment. We could

then rewrite the market clearing condition as

α0 + α1

∫
sidi + α2Q − Q

ρV1[η] + εV
= K.

Solving for Q yields
α0 − KρV1[η]

1 − α2
+

α1

1 − α2
η −

K

1 − α2
εV = Q.

In a model with an exogenous and strictly positive supply of capital, near-rational errors about

the first and second conditional moments are thus isomorphic. However, with an endogenous

capital stock, errors about the second conditional moment break the Gaussian structure of the

model and are more complicated to analyze.

A.14 Benefits of Observing Mistakes

A guiding principle in our analysis of a near-rational household’s incentive to become fully

rational in section 1 was that households have the same information set, regardless of whether

they behave fully rationally or near-rationally. In particular, a rational household can condition

its decisions on si and Q, but does not know the small correlated error it would have made, had

it been near-rational.

We can relax this assumption by considering the willingness to pay of a rational household at

t = 0 for observing ε+ ε̂i at t = 1. A rational household can benefit from observing this error by

extracting the information it conveys about η (and equivalently about the common component
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in the error, ε). Using (11), we can define

ŝi ≡
Q − γ (ε + ε̂i) − π0

π1
= η −

γε̂i

π1
, (78)

where ŝi is the un-biased signal about η conveyed by ε + ε̂i.

Proposition A.4

As the standard deviation of the near-rational error goes to 0, a rational household’s willingness

to pay to observe the near-rational error it would have made had it been near-rational goes to

lim
σε→0

[
E0

[
Ui|μi=0,ŝi

]
− E0

[
Ui|μi=0

]]
=

1

2μ̂2 . (79)

Proof See Appendix A.14.1.

The potential gain of observing this additional signal thus goes to one half of the ratio of

common variance to idiosyncratic variance in the error in household expectations. Since none

of the results in section 1 place restrictions on μ̂, the potential incentive to observe ε+ ε̂i is thus

small for a large range of plausible parameters.

A.14.1 Proof of proposition A.4

Lemma A.5

A rational household would pay

E0

[
Ui|μi=0,ŝi

]
− E0

[
Ui|μi=0

]
=

π2
1

(
((π1 − 1) η̄ + π0) 2 + γ2σ2

ε + (π1 − 2) π1σ
2
η + σ2

η

)

2γ2σ2
ε μ̂

2 (80)

to observe the near-rational error it would have made, had it been near-rational.

Proof First, a household using additional signal ŝi has a conditional variance of

V [η|si, Q, ŝi] ≡ V̂1[η] =
(
σ−2

η + σ−2
ν + π2

1γ
−2σ−2

ε

(
1 + μ̂−2

))−1
(81)

and holds the posterior expectation

E[η|si, Q, ŝi] ≡ Êi1[η] =
σ−2

η η̄ + σ−2
ν si + π2

1σ
−2
ε γ−2(η + γ

π1
ε) + π2

1σ
−2
ε γ−2μ̂−2ŝi

V̂1[η]−1
. (82)

Second, plugging (4) into (3), taking time-zero expectations, and rearranging yields

E0

[
Ui|μi=0,ŝi

]
= E0 [zi(η − Q) + Π] −

ρ

2
E0

[
z2
i

]
V̂1[η],
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where zi = Ê1i[η]−Q

ρV̂1[η]
from (9). It follows that a rational household’s willingness to pay to observe

ŝi is

E0

[
Ui|μi=0,ŝi

]
− E0

[
Ui|μi=0

]
= E0

[
Ê1i [η] − Q

ρV̂1[η]
(η − Q) + κ

(Q − 1)2

2

]

−
ρ

2
E0





(
Ê1i [η] − Q

ρV̂1[η]

)2


 V̂1[η]

−

(

E0

[
E1i [η] − Q

ρV1[η]
(η − Q) + κ

(Q − 1)2

2

]
−

ρ

2
E0

[(
E1i [η] − Q

ρV1[η]

)2
]

V1[η]

)

.

Plugging in (2), (11), (14), (15), (78), (81), and (82) and applying the expectations operator

yields the expression in the proof. Note that this calculation is somewhat involved.

Using this lemma, we now proof the Proposition. From (56), we have

1 − π1 =
V1[η]

(
κρσ2

η + 1
)

σ2
η (κρV1 [η] + 1)

. (84)

Solving (22) for V1[η] yields three roots, one of which is real and in the interval [0, σ2
η]:

V1[η] =

3
√

2
(
9σ6

ησ4
νσ2

ε +
√

3
√

σ6
ησ6

νσ4
ε

(
27σ6

ησ2
ν + 4σ2

ε

(
σ2

η + σ2
ν

)
3
))

2/3 − 2 3
√

3σ2
ησ2

νσ2
ε

(
σ2

η + σ2
ν

)

62/3σ2
η

3

√

9σ6
ησ4

νσ2
ε +

√
3
√

σ6
ησ6

νσ4
ε

(
27σ6

ησ2
ν + 4σ2

ε

(
σ2

η + σ2
ν

)
3
)

. (85)

From (85), we have

V1 [η] =
O(σ2

ε )
O(σε)

− O(σε) = O(σε). (86)

Combining (84) and (86) yields 1 − π1 = O(σε). Thus, using (57) and (69), we have

π0 = O(1 − π1) = O(σε),

γ = O(

√
π1(1 − π1)

σ2
ε

) = O(
√

π1σε

σ2
ε

) = O(π
1
2
1 σ

− 1
2

ε ).

With these two facts, taking the limit of (80) of Lemma A.5 as σε → 0 yields

lim
σε→0

[
E0

[
Ui|μi=0,ŝi

]
− E0

[
Ui|μi=0

]]
= lim

σε→0

π2
1

(
O
(
σ2

ε

)
+ (π1 − 2) π1σ2

η + σ2
η

)

2 O
(

π1
σε

)
σ2

ε μ̂2
+ lim

σε→0
π2

1

1

2μ̂2

= lim
σε→0

π2
1

O
(
σ2

ε

)

2 O(π1σε)μ̂
2

+ lim
σε→0

π2
1

(π1 − 2) π1σ2
η + σ2

η

2 O(π1σε)μ̂
2

+ lim
σε→0

π2
1

1

2μ̂2

Then using (24) and simply plugging in π1 = 1 gives (79).
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B Appendix to Section 2

B.1 Equation of Motion for Capital

Plugging (48) into (42) and integrating over individuals on both sides with market-clearing

conditions (44), (45), and (46) gives

QtKt+1 = Qt−1RtKt − Ct + wtNt.

Plugging in (97), (43), and (47) yields

Kt+1 = (1 − δk)Kt + It − GtKt.

B.2 Deriving the Equilibrium Conditions

Definition B.1

Given a time path of shocks
{

ηj
t , ε

j
t , $

j
t{ν

j
it, ε̂

j
it : i ∈ [0, 1]} : j = L, S

}∞

t=0
, an equilibrium in this

economy is a time path of quantities {{Cit, bit, nit, kit : i ∈ [0, 1]}, Ct, Nt,Kt, Yt, It, Gt, Rt, at, ωt}∞t=0,

signals {sj
it, g

j
t : i ∈ [0, 1]}∞t=0, and prices {Qt, rt, dt, wt}∞t=0 with the following properties:

1. {{Cit} , {bit} , {nit} , {kit}}
∞
t=0 maximize households’ lifetime utility (39) given the vector of

prices, and the random sequences
{

εj
t , $

j
t , {ν

j
it, ε̂

j
it}
}∞

t=0
;

2. The demand for capital and labor services solves the representative firm’s maximization

problem (37) given the vector of prices;

3. {It}∞t=0 is the investment goods sector’s optimal policy, maximizing (38) given the vector

of prices;

4. {wt}∞t=0 clears the labor market, {Qt}∞t=0 clears the stock market, {rt}∞t=0 clears the bond

market, and {dt}∞t=0 clears the market for capital services;

5. {Yt}∞t=0 is determined by the production function (33), and {Kt}∞t=0, {Gt}∞t=0, {at}∞t=0,

{Rt}∞t=0, and {ωt}∞t=0 evolve according to (B.1), (36), (34), (43), and (35), respectively;

6. {Ct, Nt}
∞
t=0 are given by the identities

Xt =
∫ 1

0
Xitdi , X = C,N. (87)
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After taking the ratio of the first-order conditions with respect to labor and consumption,

we get the marginal rate of substitution between labor and consumption:

1 − o

o

(1 − nit)−1

C−1
it

= wt. (88)

The optimal choice of stock holdings is determined by the familiar asset-pricing equation,

Eit[Mit+1Rt+1] = 1, (89)

where the stochastic discount factor Mi,t+1 is given by

Mit+1 = δ

(
Cit+1

Cit

)−1
(

C̃it+1

C̃it

)1− 1
ψ






Uit+1

Eit

[
U1−γ

it+1

] 1
1−γ






1
ψ
−γ

, (90)

and returns Rt+1 are defined in (43).

Similarly, by combining the first-order and envelope conditions for bonds, the optimal choice

of bonds holdings is determined by

Eit[Mit+1](1 + rt) −
π′(bit)

o(1 − δ)(1 − 1
ψ )C̃

1− 1
ψ

it C−1
it

= 1. (91)

Given these conditions of optimality, capital and labor markets clear when conditions (44) and

(46) hold, and the optimal consumption follows from the household’s budget constraint (42).

B.2.1 Detailed Derivation

Agents maximize utility (39) subject to budget constraint (42). State variables in individual

optimization are the holdings of capital and bonds, namely, Uit = Uit(kit, bit−1). We denote the

derivatives of the value function with respect to kit and bit−1 by Uikt and Uibt respectively. Thus

the first-order conditions and envelope conditions are as follows:

First-order condition with respect to consumption:

(1 − δ)C̃
− 1

ψ

it C̃itoC
−1
it = δEit

[
U1−γ

it+1

] γ− 1
ψ

1−γ
Eit[U

−γ
it+1Uikt+1

1
Qt

]. (92)

First-order condition with respect to bonds:

δEit[U
1−γ
it+1]

γ− 1
ψ

1−γ Eit

[

U−γ
it+1

(

Uikt+1
1
Qt

− Uibt+1

)]

+ (1 −
1
ψ

)−1π′(bit) = 0. (93)
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First-order condition with respect to labor:

(1 − δ)C̃
− 1

ψ

it C̃it(1 − o)(1 − nit)
−1 = δEit

[
U1−γ

it+1

] γ− 1
ψ

1−γ
Eit[U

−γ
it+1Uikt+1

wt

Qt
]. (94)

Envelope condition for capital:

Uikt = U
1
ψ

it δEit

[
U1−γ

it+1

] γ− 1
ψ

1−γ
Eit[U

−γ
it+1Uikt+1

Qt−1

Qt
Rt]. (95)

Envelope condition for bonds:

Uibt = U
1
ψ

it δEit

[
U1−γ

it+1

] γ− 1
ψ

1−γ
Eit[U

−γ
it+1Uikt+1

1
Qt

(1 + rt−1)]. (96)

Taking the ratio of first-order conditions with respect to labor (94) and consumption (92) gives

(88), where wt is given by

wt = (1 − α)
Yt

Nt
. (97)

The first-order condition with respect to capital pins down the rental rate as

dt = α
Yt

Kt
.

Plugging the first-order condition with respect to consumption (92) into the right-hand side

of the envelope condition for capital (95) gives

Uikt = U
1
ψ

it (1 − δ)C̃
1− 1

ψ

it oC−1
it Qt−1Rt. (98)

Iterating (98) to t+1, plugging Uikt+1

Qt
into the first-order condition with respect to consumption

(92), and rearranging yields

C̃
− 1

ψ

it C̃itoC
−1
it = δEit

[
U1−γ

it+1

] γ− 1
ψ

1−γ
Eit[U

−γ
it+1U

1
ψ

it+1C̃
1− 1

ψ

it+1 oC−1
it+1Rt+1]. (99)

Using (90) in (99) yields (89).

Analogously, for bond holdings, combining first-order conditions with respect to bonds (93)

and consumption (92) gives

(1 − δ)C̃
− 1

ψ

it C̃itoC
−1
it = δEit[U

1−γ
it+1]

γ− 1
ψ

1−γ Eit

[
U−γ

it+1Uibt+1

]
−

π′(bit)

1 − 1
ψ

. (100)

Combining the first-order condition with respect to consumption (92) and the envelope condition
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for bond holdings (96) gives

Uibt = U
1
ψ

it (1 − δ)C̃
1− 1

ψ

it oC−1
it (1 + rt−1). (101)

Substituting (101) into (100) for Uibt+1 simplifies to (91).

B.3 Proof of Lemma 2.1

We proceed in three steps that demonstrate the consistency of the two statements in Lemma

2.1. To economize on notation, we show the equations in this section only for learning about

one type of shock. The analysis readily extends to learning about short-run and long-run risk

as carried out in our estimation.

First, individual state variables are functions of the set of commonly known state variables

St as they would be in a representative agent economy. Furthermore, households form beliefs

about next period’s innovation to productivity using their private signal and the market price

of capital. Any individual choice by households xi (where x can be consumption c, labor n, or

capital holdings k′) is thus a function of the state space xi(Sit), where Sit =
{
St, q̂t, Eit[ηt+1]

}
.

Plugging this structure into our equilibrium condition results in a form

gl(Sit) = Eit [gr(Sit, Sit+1)] . (102)

Note here that Sit contains all possible state variables in period t, and hence aggregate variables

can be determined by a subset of this state vector as well.

Now we show that given the structure on the right-hand side of the equation, the left-hand

side is a function of the state space Sit. We replace the function inside the expectation on the

right-hand side by its Taylor series:

gr

[
Sit,Kt+1, ωt, ηt+1, ϕt+1, q̂t+1, Eit+1

]

=
∑

ι

cι(Sit)
ι!

(Kt+1 − K0)
ι1ωι2

t ηι3
t+1ϕ

ι4
t+1q̂

ι5
t+1E

ι6
it+1,

where K0 is the level of capital at the deterministic steady state, Eit = Eit[ηt+1], cj(Sit) denotes

the (state-t dependent) coefficients of the Taylor series, and ι = (ι1, ι2, ι3, ι4, ι5, ι6) a multi-index

for the expansion.

Now we take near-rational expectations conditional on sit and q̂t. As Lemma B.2 shows,

the conditional expectation is a sufficient statistic for the entire posterior distribution due to

normality and a constant conditional variance. The terms depending on Kt+1 and ωt are known

at time t and can thus be taken outside the expectations operator. Moreover, we get a series

73



of terms depending on the conditional expectation of ϕt+1. Because ϕt+1 is unpredictable for

an investor at time t and all shocks are uncorrelated with each other, the first-order term is

0, and all the higher-order terms depending on Eit[ϕt+1] are just moments of the unconditional

distributions of ϕ. The same is true for the terms depending on q̂t+1, and Eit+1. The only terms

remaining inside the expectations operator are then those depending on ηt+1. We can thus write

Eit [gr[Sit, Sit+1]] =
∞∑

ι=0

ĉι(Sit,Kt+1, ρωt−1 + ηt)
ι!

Eit[ηt+1]

= gl(Kt, ωt−1, ηt, ϕt, q̂t, Eit),

where the coefficients ĉι(Sit,Kt+1, ωt) collect all the terms depending on the Kt+1, ωt, and

higher moments of the shocks ηt+1 and Eit+1. The third line follows from the second since

all expectations of higher-order monomials of ηt+1 are known. This step again follows from the

conditional normality with constant variance and known (deterministic) higher moments. Hence

we only need to keep track of the expectation of the innovation to productivity but its higher

conditional moments are constant.

Finally, in deriving the set of individual state variables, we notice that contingent-claims

trading eliminates any meaningful distribution of capital across time, and thus show the consis-

tency of the individual state space.

Second, we show that aggregate quantities depend on known state variables as well as the av-

erage expectation of next period’s innovation to productivity q̂. Therefore, consider an aggregate

variable of the form

X̄(S̄) =
∫

xi(Si)di, (103)

where X̄ can represent labor (as in (46)), consumption (87), or capital (44). Again, we plug in

the Taylor series representation for individual state variables:

∫
xi(Si)di =

∫ ∑

ι

cι
ι!

(Kt − K0)
ι1ωι2

t−1η
ι3
t ϕι4

t q̂ι5
t E ι6

it di.

Only the last term differs across households, and thus all other variables can be taken outside

the integral. Integrating over individual expectations can be rewritten as

∫
E ι

itdi =
∫

(Eit − q̂t + q̂t)
ιdi =

ι∑

k=0

(
ι

k

)∫
(Eit − q̂t)

kdiq̂ι−k
t .

Again, all moments of Eit − q̂t, which only depends on νit, are known and thus the integral only

depends on q̂. Therefore, equation (103) holds.
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Using these insights, we solve the model using standard perturbation techniques. Pertur-

bation methods approximate equilibrium policy functions by their Taylor series around the

deterministic steady state. To arrive at the coefficients of the Taylor series, we bring all equilib-

rium conditions into the appropriate form shown in equation (102). Successively differentiating

the equation, evaluating at the steady state, and solving the resulting system of equations for

the coefficients in the Taylor series delivers the approximate solutions for the equilibrium policy

functions and prices.

B.4 Details on Signal Extraction

Lemma B.2

Given Lemma 2.1 and Condition 2.2, households’ equilibrium expectations of ηj
t+1 for j = S,L

are independent of the aggregate dynamics of the model. Due to the normality of conditioning

variables sj
it and q̂j

t for j = S,L respectively, the resulting conditional distributions are Gaussian

and identical to the linear Gaussian setup in section 1.

Proof Given Lemma 2.1 and Condition 2.2, households infer q̂S
t and q̂L

t from asset prices

and macroeconomic quantities. It follows immediately that

Eit

[
ηj

t+1

]
= E

[
ηj

t+1|s
S
it, s

L
it, St

]
= E

[
ηj

t+1|s
j
it, q̂

j
t

]
for j ∈ {S,L},

where q̂j
t is defined by (49).

We can thus guess that the rational expectation of ηj
t+1 is the linear function

Eit[η
j
t+1] = αj

0 + αj
1s

j
it + αj

2q̂
j
t ,

where αj
0, αj

1, and αj
2 are the optimal weights on the prior, the private signal, and the average

expectation, respectively. Substituting in (49), taking the integral across individuals, and solving

for
∫

Eit

[
ηj

t+1

]
di gives

∫
Eit[η

j
t+1]di =

αj
0

1 − αj
2

+
αj

1

1 − αj
2

ηj
t+1 +

αj
2

1 − αj
2

εj
t .

Adding εj
t on both sides of the equation, substituting (49) and simplifying yields

1 − αj
2

αj
1

q̂j
t −

αj
0

αj
1

= ηj
t+1 +

1

αj
1

εj
t .

Thus with the normality of the fundamental shock εj
t and the demand statistics q̂j

t , the forms
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for expectations and conditional variances following from Bayes’ rule are identical to the linear

setup.

C Appendix to Section 3

C.1 Moment Generation and Standard Errors

For the macroeconomic and financial moments listed in Table 3 we use annual data from 1929 to

2008. For the first five moments , concerned with the dynamics of expectations, we use quarterly

data from 1969 to 2008.

In Table 3, E[.], σ(.), and cor(., .) denote time-series means, standard deviations, and cor-

relations, respectively. d stands for the first difference in the time series (e.g., σ(dy) stands for

the standard deviation of output growth). ACF [.] refers to the first-order autocorrelation. Ei[.]

denotes the one-period-ahead forecast from forecaster i, Ē[.] denotes the cross-sectional average

of Ei[.], and σxs(.) denotes the time-series average of the cross-sectional standard deviation of

one-period-ahead forecasts.

Fore example, σxs(Ei[dy]) is the time-series average of the cross-sectional standard deviation

in forecasted GDP growth one period ahead. Because forecasts in the data are for the current

quarter rather than the current month we divide these series by factor three for consistency.

This scaling is not an issue for the remaining variables as they are all calculated as ratios or

correlations.

Standard errors of the moments and moment ratios are calculated by block-bootstrapping the

truncated dataset from 1969 to 2008 times across years (following defaults of Stata’s “bootstrap”

command). In robustness checks we have also experimented with GMM standard errors and

obtained similar results.

C.2 Welfare Calculations

Lemma C.1

The share increase in lifetime consumption that makes a household indifferent with respect to

the implementation of a given policy experiment at time 0 can be written as

λ =
log
(
Û0

)
− log

(
Ū0

)

o
,

where Û0 = E0

[
U
({

Ĉit, n̂it

}∞

t=1

)]
, Ū0 = E0

[
U
({

C̄it, n̄it

}∞
t=1

)]
, and the sequences

{
Ĉ, n̂

}

refer to the household’s sequences of consumption and labor if the policy is implemented, and
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{
C̄, n̄

}
are the corresponding sequences if the policy is not implemented.

Proof First note that the utility function (39) is homogeneous of degree o in consumption:

U
({

eλCit, nit

}∞

t=1

)
= eoλU ({Cit, nit}

∞
t=1) .

Using this property, it follows that the share increase in consumption, λ, that compensates the

household for not adopting the policy can be written as

Û0 = eoλŪ0.

The lemma follows from solving this equation for λ.

C.3 Data Sources

Consumption (Ct). Per-capita consumption data are from the National Income and Prod-

uct Accounts (NIPA) annual data reported by the Bureau of Economic Analysis (BEA). The

data are constructed as the sum of consumption expenditures on nondurable goods and services

(Table 1.1.5, Lines 5 and 6) deflated by corresponding price deflators (Table 1.1.9, Lines 5 and 6).

Physical Investment (It). Per-capita physical investment data are also from the NIPA tables.

We measure physical investment by fixed investment (Table 1.1.5, Line 8) minus information-

processing equipment (Table 5.5.5, Line 3) deflated by its price deflator (Table 1.1.9, Line 8).

Information-processing equipment is interpreted as investment in intangible capital and is there-

fore subtracted from fixed investment.

Output (Yt). It is the sum of total consumption and investment, that is, Ct + It. We exclude

government expenditure and net export because they are not explicitly modeled in our economy.

Labor (Nt). It is measured as the total number of full-time and part-time employees as reported

in the NIPA Table 6.4. Data are annual.

Stock market return (Rt) and Risk-free rate. (rt) The stock market returns are from the

Fama-French dataset available online on K. French′s webpage at

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-F Research Data Factors.zip.

The nominal risk-free rate is measured by the annual three-month T-bill return. The real stock

market returns and risk-free rate are computed by subtracting realized inflation (annual CPI

through FRED) from the nominal risk-free rate.
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Tobin′s Q (Qt). Data on Tobin′s Q are from the Flow of Funds (FoF) and are obtained

directly from the St. Louis Fed by dividing the variable MVEONWMVBSNNCB (Line 35 of

Table B.102 in the FoF report) by TNWMVBSNNCB (Line 32 of table B.102 in the FoF report).

Forecast Data GDP and consumption forecast data for the period 1969-2010 are down-

loaded from the Survey of Professional Forecasters provided by the Philadelphia Federal Reserve

at https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-

forecasters/historical-data/individual-forecasts We construct our forecasted GDP and consump-

tion growth rates using the forecast for the current quarter, i.e. the quarter when the survey

is conducted. The survey’s questionnaires are usually sent out at the end of the first month of

each quarter (after NIPA advance report), and the associated response deadlines are the second

to third week of the middle month of each quarter. As a result the forecasters are essentially

providing a 6-week ahead forecast. For more detail please see the documentation listed on the

above URL. The forecast file contains data from many forecasters that appear to forecast only

on an occasional basis and in particular these forecasts often appear highly volatile. To screen

out these, potentially less serious, forecasters we consider only data from forecasts that are in

the sample for at least 80 consecutive quarters and fulfill the basic requirement of a rational fore-

caster that over a long horizon the variance of the forecast be strictly smaller than the variance

of the forecasted variable. These criteria leave us with a total of 38 time series of forecasts.

C.4 Estimating λ̄ using tests of the Permanent Income Hypothesis

Fuchs-Schuendeln and Hassan (2015) argue that although many studies reject the Permanent

Income Hypothesis (PIH), it appears that households behave more rationally when the stakes are

high. Specifically, when the welfare loss (as measured by equivalent variation) is economically

large, studies tend to find support for the PIH. Fuchs-Schuendeln and Hassan (2015) calculate

this equivalent variation by comparing two households. The first rationally smooths a pre-

announced income change (such as a bonus paid in December) over the course of the entire

year. The second has the same baseline consumption, but consumes the extra income in the

same period it is received. The equivalent variation is defined as the additional consumption

amount that would have to be given to the second household to make it as well off as the first,

expressed as a fraction of baseline consumption. In this appendix we replicate Fuchs-Schuendeln

and Hassan’s calculations using the same Epstein and Zin (1989) utility function used in the

main text (39) and an intertemporal elasticity of substitution of ψ = 2 as in Table 1.
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The first household’s utility is given by:

U rational =

(

(1 − δ)
11∑

t=0

δt(y +
x

12
)1−

1
ψ + δ12

(
U rational

)1− 1
ψ

) 1

1− 1
ψ

Where y is the baseline consumption level and x is the extra amount of consumption received in

a natural experiment. The second household has the same baseline consumption, but consumes

the extra income in the same period it is received (December). Thus, its utility is given by:

Uhand−to−mouth =

(

(1 − δ)

(
10∑

t=0

δt(y + z)1−
1
ψ + δ11(y + x + z)1−

1
ψ

)

+ δ12
(
Uhand−to−mouth

)1− 1
ψ

) 1

1− 1
ψ

where z is the additional amount of consumption we would have to give to the “hand-to-mouth”

consumer such that U rational = Uhand−to−mouth and the equivalent variation as a percentage of

permanent consumption is z/y × 100.

In some studies, the increases in income are assumed to be permanent. In these cases we

assume the change occurs in the middle of the year and the additional income x accrues in the

last six months. In some other cases the additional income is paid over two or three months. In

each case we assume that these payments are made at the end of the year.

The results of these calculations are given in Table 1. For each of 17 published studies it

gives the size of the change in income (x), the baseline income (y), as well as the horizon over

which the additional income is paid. The last two columns show whether the study rejects the

PIH as well as the equivalent variation as a percentage of y.

Below we list for each study how the values for x and y are calculated (see Fuchs-Schuendeln

and Hassan (2015) for additional details).

• Parker (1999) (social security tax):

Assume there is a permanent change in the social security tax rate in the middle of the

year.

x = 34.06 (Table 2, this is the average individual tax rates times the pre-tax monthly

income of 2241 times six to calculate the value for half of a year)

y=1449 (Table 2, average monthly expenditures of a household)

• Shea (1995):

x = 83.88 (Table 2, expected wage growth due to education times annual income divided

by two to give increase to income in the middle of the year)

y = 2330 (Table 2, average annual household income deflated to 1982 US-dollars)

• Souleles (2002):
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Appendix Table 1: Studies of the Permanent Income Hypothesis (PIH) Sorted by Equivalent
Variation (EV) as a Percentage of Permanent Consumption

Paper x y Paid over Reject PIH EV (%)
Parker (1999) (social security tax) 34.06 1449 6 months yes 0.00
Shea (1995) 83.88 2330 6 months yes 0.00
Souleles (2002) 234 3587

2 6 months yes 0.00
Aaronson et al. (2012) 474 2154 6 months yes 0.01
Agarwal and Qian (2014) 511 6644 1 month no 0.01
Johnson et al. (2006) 480 47021

12 1 month yes 0.03
Agarwal et al. (2007) 300 1635 1 month yes 0.06
Broda and Parker (2014) 898 537000

133 1 month yes 0.09
Stephens (2008) 2436 3325 6 months yes 0.09
Scholnick (2013) 4508.76 5379.58 6 months yes 0.11
Parker et al. (2013) 970.8 10601

3 1 month yes 0.13
Coulibaly and Li (2006) 1662 1785 6 months no 0.14
Parker (1999) (social security cap) 990 1449 3 months yes 0.22
Souleles (1999) 874 3587

2 1 month yes 0.37
Browning and Collado (2001) 817232

7 222674 2 months no 0.76
Souleles (2000) −1960 777.79 6 months no 1.40
Hsieh (2003) 2048 1786 1 month no 1.63

x = 234 (Average change of quarterly withholding using the WHOLDP measure times

two)

y = 3587/2 (Table 1, real gross households earnings in 1983 dollars)

• Aaronson, Agarwal and French (2012):

x = 474 (The permanent wage change increases earning by 237 dollar per quarter and we

assume the consumer receives the wage increase in the middle of the year)

y = 6462/3 (Table 2, average quarterly spending in 2006 dollars)

• Agarwal and Qian (2014):

x = 511 (Table 1, Panel A, average monthly benefit of treatment group in experiment)

y = 6644 (Table 1, Panel A, average monthly income of treatment group in 2016 dollars)

• Johnson and Parker (2006):

x = 480 (Table 1, tax rebate for consumers with a positive tax rate)

y = 47021/12 (Table 1, annual income divided by twelve)

• Agarwal, Liu and Soulles (2007):

x = 300 (page 1, average monthly income for singles)

y = 327 * 5 (The average consumer in this study uses 327 dollars of credit per month, but

the authors cite Chimerine 1997 to indicate that credit is about 20 percent of spending)
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• Broda and Parker (2014):

x = 898 (Table 2, average tax rebate given the rebate is greater than zero)

y = 179*30/7*100/19 (Table 2, average weekly spending multiplied by 30/7 to compute

monthly spending. Y is scaled by 100/19 to adjust for the fact that data from the Nielson

Consumer Panel does not capture all consumption goods)

• Stephens (2008):

x = 2436 (Table 1, value of six months of vehicle loan payments)

y = 3325 (Table 1, average annual after tax income per consumer paying off vehicle loan)

• Scholnick (2013):

x = 4508.76 (Table 1, value of the average final mortgage payment times six)

y = 5379.58 (Online Appendix, average income of treatment group families)

• Parker, Souleles, Johnson and McClelland (2013):

x = 970.8 (Table 6, average tax rebate given the rebate is greater than zero)

y = 10601/3 (Table 6, average quarterly consumption divided by three)

• Coulibaly and Li (2006):

x = 1662 (Table 1, average payment multuplied by six to compute half a year of payments)

y = 1785 (Table 1, average consumption from sample)

• Parker 1999 (Social Security Cap):

Assume the household reaches the social security cap in the last three months of the year

and does not pay any social security tax.

x = 990 (The temporary increase in income for the last three months of the year)

y = 1449 (Table 2, average monthly expenditures of a household)

• Souleles (1999):

x = 874 (Table 1, Mean real refund for households in CEX data in 1982-1984 dollars)

y = 3587/2 (Real gross annual earnings divided by twelve to compute monthly value from

Souleles (2002))

• Browning and Collado (2001):

x = 408616*4/14 (Table A2, a bonus of 1/14 of annual earnings is paid twice a year, so

there are two months where 1/7 of annual income is received)

y = 668022/2 (Table A2, total quarterly expenditures divided by 3)

• Souleles (2000):

x = -1960 (Household expeditures for college when it is positive)

y = 777.79 (There is an absence of expenditure and income data in the paper, so we

calculate the equivalent variation using average quarterly spending from Johnson, Parker,

and Souleles (2006).)
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• Hsieh (2003):

x = 2048 (Table 1, Alaska bonus in 1982-1984 dollars)

y = ((713 + 1107) + (643 + 1109)/2) (Table 1, average monthly spending over two periods

of time provided by author)
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