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1 Introduction

Let  = ( 0  0  0)0 denote a random vector drawn from some study population of interest

with distribution function  For some unique  0, and known function  (  ) of the same

dimension, we assume that

E [ (  0)] = 0 (1)

where E [�] denotes expectations taken with respect to the study population. If a random

sample of  is available, then consistent estimation of  0 (under regularity conditions) is

straightforward (e.g., Newey and McFadden, 1994). Many statistical models of interest can

be represented in terms of moment restrictions like (1); see Wooldridge (2002) for a textbook

exposition.

In this paper we consider estimation of  0 when a random sample of  is unavailable.

Instead two separate samples are available. The �rst is drawn from the study population

and contains  measurements of ( )  The second is drawn from an auxiliary popula-

tion (with distribution function ; E [�] denotes expectations taken with respect to this

distribution) and contains  measurements of (  )  While the variable  is common

to the two samples,  and  are not. Hahn (1998) and Chen, Hong and Tarozzi (2008)

show that identi�cation of  0 follows if (i) the conditional distributions of  given  in the

two populations coincide (although their marginal distributions for  may di¤er), (ii) the

support of  in the auxiliary population is at least as large as that in the study population

and (iii)  (  0) is separable in the components depending on the �non-common�variables

 and 

 (  0) =   (  0)¬   (  0)  (2)

Examples of statistical problems to which the above setup applies include the two sample

instrumental variables (TSIV) model of Angrist and Krueger (1992) and Ridder and Mof-

�tt (2007), the average treatment e¤ect on the treated (ATT) estimand from the program

evaluation literature (e.g., Heckman and Robb, 1985; Imbens, 2004), counterfactual earn-

1



ings/wealth decompositions as in Dinardo, Fortin and Lemieux (1996) and Barsky, Bound,

Charles and Lupton (2002), poverty mapping as in Elbers, Lanjouw and Lanjouw (2003) and

Tarozzi and Deaton (2009), direct standardization methods used in demography (e.g., Kita-

gawa, 1964), and models with mismeasured regressors and validation samples (e.g., Carroll

and Wand, 1991).

To help �x ideas consider the ATT example. Here  denotes an individual�s potential

outcome under active treatment, say earnings given participation in a job training program,

 denotes her outcome under control (earnings in the absence of training) and is a vector

of baseline covariates. Available is a random sample of ( ) from the population assigned

active treatment (i.e., �the treated�). A separate sample of measurements of (  ) is drawn

from a population of controls. The ATT,  0 = E [ ¬ ], is given by the solution to (1)

with   (  0) =  and   (   0) =  +  0.

Dehejia and Wahba (1999), revisiting earlier work by LaLonde (1986), combine two

distinct samples to estimate the e¤ect of the National Supported Work (NSW) demonstra-

tion, a labor training program, on the post-intervention earnings of trainees. Their study

sample consists of 185 NSW participants, while their auxiliary sample includes 2,490 non-

participants drawn from the Panel Study of Income Dynamics (PSID). These two samples

consist of random draws from distinct, non-overlapping, populations. The two sample feature

of their analysis distinguishes it from one seeking to estimate a population average treatment

e¤ect (ATE). In that case the researcher generally bases her analysis on a random sample

from the population of interest, where some units happen to be treated, and others not (e.g.,

Rosenbaum and Rubin, 1983). There the inferential problem is usefully conceptualized as

one of missing data and the general theory of Robins, Rotnitzky and Zhao (1994) directly

applies.

Relationship between data combination and missing data problems One perspec-

tive is that data combination problems are nothing more than a particular class of �missing
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data�problems in which the auxiliary sample is collected independently, and from a di¤erent

population than that, of the study sample. Our use of the term missing data is more tech-

nical, referring, in particular, to the family of problems analyzed by Robins, Rotnitzky and

Zhao (1994, Section 8.1). In this family both the study and auxiliary samples are random

ones from the population of interest. It turns out that this di¤erence has statistical content

with, as we emphasize here (and others have before us), implications for estimator formula-

tion and properties. In an important paper Hahn (1998) showed that while prior restrictions

on the form of the propensity score do not lower the semiparametric variance bound for

the ATE, they do lower the corresponding bound for the ATT. Chen, Hong and Tarozzi

(2008) generalize this result, showing that, unlike in the missing data context (their �verify-

in-sample�case), knowledge of the form of the propensity score is asymptotically valuable in

data combination problems (their �verify-out-of-sample�case).

Our contribution is to develop a �exible parametric estimator for general data combi-

nation problems with good e¢ ciency and robustness properties. Similar to the augmented

inverse probability weighting (AIPW) estimator for missing data problems due to Robins,

Rotnitzky and Zhao (1994), our data combination procedure is locally e¢ cient and pos-

sesses a double robustness property. This latter property, given the non-ancillarity of the

propensity score in the data combination problem, is surprising.

To our knowledge we are the �rst to propose a locally e¢ cient estimator in the data

combination context. Chen, Hong and Tarozzi (2008) propose a globally e¢ cient estimator,

but their procedure requires nonparametric modelling as opposed to the �exible parametric

approach adopted here. Our methods provide a practical alternative to theirs when is high

dimensional (cf., Firpo and Rothe, 2013). Abadie (2005) develops a parametric propensity

score reweighting (PSR) estimate of the ATT. Qin and Zhang (2008) show that Abadie�s

estimator can have low e¢ ciency in some settings and propose an alternative that uses

empirical likelihood ideas. Qin and Zhang (2008) do not characterize the semiparametric

e¢ ciency or robustness properties of their ATT estimator, nor show how to extend it to
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the wider class of problems considered here. Hirano and Imbens (2001) also propose a type

of propensity score reweighting estimator for the ATT. Their estimator exhibits a double

robustness property, but they do not consider issues of semiparametric e¢ ciency nor general

data combination problems as we do. Besides its robustness and e¢ ciency properties, our

estimator is simple to compute and is suitable for many applied problems, like the estimation

of the ATT, two sample instrumental variables and others cited above.

In Section 2 we de�ne the semiparametric data combination model. Modestly extending

the work of Chen, Hong and Tarozzi (2008) we calculate the semiparametric e¢ ciency bound

for our model. We relate our e¢ ciency bound analysis to prior work on distribution function

estimation based on a random sample from the population of interest and a second, biased,

sample from the same population (e.g., Qin, 1998; Gilbert, Lele, Vardi, 1999). This discussion

motivates the form of our AST estimator, which we introduce in Section 3, where we also

formally characterize its large sample properties. Our key results are Theorems 3.1 to 3.3

below. Section 4 provides an illustrative empirical application and reports on the results of

several Monte Carlo experiments. Proofs of our main results are contained in the Appendix.

The Supplemental Web Appendix contains additional proof details, extra examples of data

combination problems, and additional Monte Carlo results. An algorithm for computing our

estimator, that we have found to work well in practice, is also described in the Supplemental

Web Appendix.

2 Semiparametric data combination model

A formal de�nition of the data combination model is given by Assumption 2.1 below. Let

 b Rdenote a compact subset of R 

Assumption 2.1 Semiparametric Data Combination Model

(i) (Identification) For some  (  ) =   (   )¬   (   ), equation (1) holds with

E [ (  )] 6= 0 for all  6=  0  2 G b R,  2 Z b Rdim();
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(ii) (Conditional Distributional Equality)  (j) =  (j) and  (j) =

 (j) for all  2 W b Rdim( )  2 X b Rdim() and  2 Y b Rdim( );

(iii) (Weak Overlap) Let  = f :  ()  0g for  =  , then  � ;

(iv) (Multinomial Sampling) With probability 0 2 (� 1¬ �) for 0  �  1 we draw

a unit at random from  and record its realizations of  and  , otherwise we draw a

unit at random from  and record its realizations of  and  Let  = 1 if the  draw

( = 1     ) corresponds to a study population unit and  = 0 otherwise;

(v) (Propensity score model) There is a unique �0 2 D b Rdim(�) known vector  ( )

of linearly independent functions of  with a constant in the �rst row, and known function

 (�) such that (a)  (�) is strictly increasing, di¤erentiable and maps into the unit interval

with lim
!¬1

 () = 0 and lim
!1

 () = 1, (b) ()
()

= 1¬0

0

(()0�0)
1¬(()0�0)

for all  2 W, and (c)

0   (()0�) � �  1 for all � 2 D and  2 W.

The �rst part of Assumption 2.1 implies global identi�ability of the complete data model.

The second part implies that the distributions of ( ) and (  ) in the two populations

di¤er only in terms of their marginal distributions for the always measured variable,  .

The third part ensures that, in large samples, for each unit in the study sample there will

be matching units with similar values of  in the auxiliary sample. The fourth part of

Assumption 2.1 allows us to treat the merged sample

�
( 

0 (1¬ ) 0
 

0
 )
0	

=1


�as if�it were a random one from a pseudo merged population with distribution function 

(let E [�] denote expectations taken with respect to this distribution). The semiparametric

data combination model is typically de�ned by specifying properties of the merged popu-

lation (e.g., Hahn, 1998; Chen, Hong and Tarozzi, 2008). We prefer the formulation given

above because it (i) emphasizes that the problem is fundamentally one of combining two

datasets and (ii) in many applications the merged population does not correspond a real
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world population. Neither (i) or (ii) are features of standard missing data problems (i.e.,

Robins, Rotnitzky and Zhao (1994)). We also note that formulating a model by imposing

restrictions on a pseudo-population is somewhat awkward (cf., the discussion in Abadie and

Imbens (2006, p. 239)).

The sampling distribution induced by the multinomial scheme,  , has density

 ( ) = 
0 (1¬ 0)

1¬  ()
  ()

1¬ 

such that  (j  = 1) =  () and  (j  = 0) =  ()  Now consider the conditional

probability given  =  that a unit in the merged sample corresponds to a draw from

the study population. Let E[j = ] = 0 () denote this �propensity score�, by Bayes�

Law we can de�ne a relationship between the study and auxiliary densities of  in terms of

0 ()

 () =  ()

�
1¬ 0

0

0 ()

1¬ 0 ()

�
 (3)

Under the merged population formulation of the problem it is clear that part (i) of As-

sumption 2.1 corresponds to requiring that E [  (  0)j = 1] = 0 part (ii) to conditional

independence restrictions on the merged population distribution function of  (j  = 1) =

 (j  = 0) and  (j  = 1) =  (j  = 0)  and parts (iii) and (iv) to assuming

that 0 () is bounded away from one. Part (v) implies that the density ratio  ()  ()

takes a parametric form or, equivalently, that the propensity score is known up to a �nite

dimensional parameter.

Identi�cation of  0 follows from, using parts (ii) and (iii) of Assumption 2.1 and Equation

(3), the equality

E [ (  )] = E
�



0

  (   )

�
¬ E

�
1¬ 

0

0 ( )

1¬ 0 ( )
  (   )

�
 (4)
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which is, by part (i) of Assumption 2.1, uniquely zero at  =  0 See Lemma 3.1 of Abadie

(2005) for a formal proof.

2.1 Example: Two sample instrumental variables (TSIV)

To give some idea of the range of problems to which our methods apply, we elaborate on

one common data combination problem in detail: the two sample instrumental variable

model (TSIV). This model is widely used by empirical researchers in economics (cf., Inoue

and Atsushi, 2010). Our observation that TSIV is a special case of the model de�ned by

Assumption 2.1 is a new one, with empirically relevant implications. In particular, the

Auxiliary-to-Study (AST) estimator we propose below is both (i) more e¢ cient and (ii)

consistent under a wider, and empirically relevant, set of assumptions, than, for example,

the estimators of Angrist and Krueger (1992) and Ridder and Mo¢ tt (2007).

Additional examples of data combination problems are outlined in the Supplemental Web

Appendix. Chen, Hong and Tarozzi (2008), Ridder and Mo¢ tt (2007) and Abadie (2005)

provide further examples.

Following Ridder and Mo¢ tt (2007), consider two sample instrumental variables (TSIV)

models of the form

E [f ( ;  )¬  ( 1;  )g  ( )] = 0

with  = ( 0
0 

0
1)
0. The �rst sample consists of measurements of ( ) and the second of

(  ). They assume that both samples are random ones from the study population (i.e.,

the samples are �compatible�). This corresponds to augmenting Assumption 2.1 with the

additional requirement that  () =  ()  The TSIV model is of the form required by (2)

with   (   ) =  ( ;  )  ( ) and   (   ) =  ( 1;  )  ( ). When  ( ) =  ,

 ( ;  ) =  and  (1;  ) =  0� +  0
1� with  0 = (�0 �

0
0)
0 we have the linear model

analyzed by Angrist and Krueger (1992). Ridder and Mo¢ tt (2007) show how one may

estimate the Mixed Proportional Hazard (MPH) model under this setup, while Ichimura
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and Martinez-Sanchis (2004) discuss binary choice models.

A concrete example of a TSIV problem is provided by the work of Currie and Yelowitz

(2000), who consider the model E [ ( ¬  0�0 ¬ 0
1�0)] = 0 where  is an indicator for

whether a school-aged child has repeated a grade,  an indicator for residence in public

housing, 0 equals the number of male siblings in the household, and 1 equals the overall

number of siblings and also contains other household characteristics;  = ( 0
0 

0
1)
0. Their

interest centers on the causal e¤ect of residence in public housing on human capital acqui-

sition. The number of male siblings changes the probability of residence in public housing

since, conditional on the overall number of siblings, families with a mixture of boys and girls

qualify for larger units and hence higher (implicit) housing subsidies. Currie and Yelowitz

(2000) additionally argue that, conditional on the total number of one�s siblings, their gen-

der mix should not in�uence schooling independently of any e¤ect mediated by exposure to

public housing. Hence 0 may serve as an instrumental variable for .

Currie and Yelowitz (2000) observe  and  for a random subsample of children drawn

from the US Census. The Census, however, does not collect information on residence in

public housing, . This information is available in the US Current Population Survey

(CPS), which also includes measurements of  (but not  ). They treat both the Census

and CPS samples as random ones from their study population (school-aged children living

in the United States) and use a variant of Angrist and Krueger�s (1992) method to estimate

 0 = (�0 �
0
0)
0


In applications of the TSIV model, like Currie and Yelowitz�s (2000), it is often found that

the sample moments of the common variables  di¤er signi�cantly across the two datasets

being combined (see also Björkland and Jäntti, 1997). This suggests that full compatibility

may fail in practice (i.e.,  () 6=  ()). The estimator presented below does not require

full compatibility and is generally more e¢ cient than the one proposed by Angrist and

Krueger (1992) (compare Theorems 3.1 and 3.2 below with Angrist and Krueger (1992, p.

331) or Ridder and Mo¢ tt (2007, p. 5505)).
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2.2 E¢ ciency bound

Hahn (1998, Theorem 1) calculated the semiparametric variance bound for the special case

where  0 is the ATT and part (v) of Assumption 2.1 is not part of the prior restriction.

Chen, Hong and Tarozzi (2008, Theorem 3) include part (v) in their prior, but assume that

  (  ) = 0. The following result generalizes that of Chen, Hong and Tarozzi (2008) to

the case where the moment function is of the form given in (2). To present this result we

require some additional notation. Let E� [ j] denote the mean squared error minimizing

linear predictor of  given  and de�ne

¬0 () = E
�

 (  0)

 0

���� = 

�
 ¬0 = E [¬0 ( )]  0 () =  (()0�0)

 () = E [   (   0)j = ]   () = E [   (   0)j = ]

� (;  0) = V (   (  0)j = )  � (;  0) = V (   (   0)j = )

S� =
 ¬  (( )0�0)

 (( )0�0) [1¬  (( )0�0)]
1 (( )0�0) ( )

with 1 () =  ()  and

� ( ) =

�
0 ( )

0

�2�
� ( ;  0)

0 ( )
+
� ( ;  0)

1¬ 0 ( )
(5)

+ [ ( )¬  ( )] [ ( )¬  ( )]0
	

+E
��



0 ( )
¬ 1

�
0 ( ) f ( )¬  ( )g

0

S0�
�

�E [S�S0�]
¬1 E

��


0 ( )
¬ 1

�
0 ( ) f ( )¬  ( )g

0

S0�
�0



Theorem 2.1 (Semiparametric Variance Bound) Under Assumption 2.1 (i) the max-

imal asymptotic precision with which  0 may be regularly estimated is given by the inverse
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of I ( 0) = ¬00E [� ( )]¬1¬0 and (ii) the e¢ cient in�uence function is

�e� (  0) = ¬¬¬10 �
�



0

f  (   0)¬  ( )g

¬1¬ 

0

0 ( )

1¬ 0 ( )
f  (   0)¬  ( )g

+
0 ( )

0

f ( )¬  ( )g

+
1

0

E�
��



0 ( )
¬ 1

�
0 ( ) f ( )¬  ( )g

���� S���  (6)

Proof. The proof, which involves a modest extension of the analysis of Chen, Hong and

Tarozzi (2008, Theorem 3), is in the Supplemental Web Appendix.

It is easy to show that the information bound for  0 is smaller in the model which

leaves 0 ( ) nonparametric (i.e., where part (v) of Assumption 2.1 is not part of the prior).

Knowledge of the parametric form of the propensity score increases the large sample precision

with which  0 may be estimated. In contrast, in semiparametric missing data problems it

is well-known that parametric restrictions on the propensity score do not shift the e¢ ciency

bound (e.g., Robins, Rotnitzky and Zhao, 1994; Hahn, 1998). The value of prior restrictions

on the propensity score distinguishes the data combination problem from the missing data

one.

To understand this di¤erence, we use the well known result that a biased sample may be

combined with a random one to form a more e¢ cient distribution function estimate as long

as the biasing function is known or parametrically speci�ed. Parts (v) of Assumption 2.1

implies that we can view the auxiliary sample as a biased sampled from the study population

of interest where the biasing function is known up to a �nite dimensional parameter (cf.,

Qin, 1998; Gilbert, Lele and Vardi, 1999; Ridder and Mo¢ tt, 2007).

Here, and in what follows, we assume without loss of generality that the merged sample is

arranged such that its �rst  units correspond to study population draws, and its remaining

 units to auxiliary sample draws. Let (()0b�) denote the conditional maximum

10



likelihood estimate of the propensity score (based on the merged sample), then the estimate

b e�
 () =

X

=1

b�e� 1 ( � )  b�e� =
(()

0b�)P
=1 (()0b�)

(7)

e¢ ciently uses the information in both the study and auxiliary samples to estimate  ().

To understand (7) note that Bayes�law gives  () =  (j = 1) = 0 ()  () 0;

replacing 0 () and 0 with their maximum likelihood estimates, and  () with the

empirical measure of the merged sample, 1 , gives b () = b�e� , for b�e� de�ned in (7).

Equation (7) uses both study and auxiliary units � linked via a parametric form for the

propensity score �to e¢ ciently estimate  () 

In contrast, in missing data problems the population of interest corresponds to what we

have termed the merged population. The most e¢ cient estimate of the merged population

distribution function of is the merged sample empirical distribution function. This is true

irrespective of the form of the propensity score. This provides one intuition for why prior

knowledge of the form of the propensity score is not valuable in the missing data context

(cf., Graham, 2011).

3 Auxiliary-to-Study Tilting

In this section we present our Auxiliary-to-Study Tilting (AST) estimator and characterize its

large sample properties under di¤erent sets of assumptions. Since the parameter of interest,

 0 involves integration over the study population distributions of ( ) and (  ), these

two distribution functions must be (implicitly) estimated in order to estimate  0. The AST

estimator utilizes distribution function estimates that share a �nite number of moments of

 in common with b e�
 (). That is we calibrate our estimates of the study population

distributions of ( ) and ( ) to features of (7) (which is a semiparametrically e¢ cient

estimate of  () when the propensity score takes a parametric form). This, as we explain

below, is the source of the e¢ ciency gains associated with our procedure.

11



The idea of calibrating a distribution function estimate to information garnered from

auxiliary sources arises in other contexts. Little and Wu (1991) discuss contingency table

calibration to known margins and provide historical references (cf., Hellerstein and Imbens,

1999). Bickel, Ya�Acov and Wellner (1991) study estimation of linear functionals of proba-

bility measures with known marginals. Hirano, Imbens, Ridder and Rubin (2001) show how

calibration to marginal information from refreshment samples may be used to correct for

certain types of nonignorable attrition in panel data. In the context of average treatment

e¤ect estimation, Tan (2006) calibrates estimates of the two potential outcome distributions

to features of the empirical distribution of always observed variables (cf., Qin and Zhang,

2007; Graham, Pinto and Egel, 2012). Recently Cheng, Small, Tan, and Ten Have (2009)

apply related ideas to an instrumental variables model.

3.1 Outline of the AST estimator

Our estimator for  0, which we call the auxiliary-to-study tilting (AST) estimator, is a

sequential method of moments estimator. In the �rst step we estimate the propensity score

parameter � by conditional maximum likelihood:

1



X

=1

 ¬ 
�
 ()

0 b�

�

�
 ()

0 b�

� h
1¬ 

�
 ()

0 b�

�i1

�
 ()

0 b�

�
 () = 0 (8)

In the second step we compute a reweighting of both the study and auxiliary samples.

Let  ( ) be vector of known linearly independent functions of  with a constant 1 in the

�rst row and � and � be �tilting�parameters of the same dimension. We allow for  ( )

and  ( ) to include common elements or even coincide. Fixing � at b� and  at b we

choose b� to solve:

1



X

=1

0

@ 1¬ 

1¬ 
�
 ()

0 b� +  ()
0 b�

� ¬ 1

1

A

�
 ()

0 b�

�
b

 () = 0 (9)
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To understand this method of choosing b� its helpful to rearrange (9) to get

1



X

=1

1¬ 

b


�
 ()

0 b�

�
 ()

1¬ 
�
 ()

0 b� +  ()
0 b�

� =
1



X

=1


�
 ()

0 b�

�
 ()

b

(10)

X

=+1

b�
  () =

X

=1

b�e�  () 

for

b�
 =


�
 ()

0 b�

�
P

=1 (()0b�)

1

1¬ 
�
 ()

0 b� +  ()
0 b�

�   =  + 1     

and where the second line of (10) is equivalent to the �rst. The term to the right of the

equality in (10) is an estimate of E [ ()] �the study population mean of  () �based

on the e¢ cient distribution function estimate (7). It is consequently an e¢ cient estimate of

E [ ()]  The solution to (9) �our estimate of � �is chosen to form a reweighting of the

auxiliary sample such that
P

=1 b�
  () is numerically identical to the e¢ cient estimate of

E [ ()] based on b e�
 ().

To better understand (10) recall that, as shown by Abadie (2005) and others, the propen-

sity score reweighting type estimator

bPSR
 ( ) =

1



X

=1

1¬ 

b


�
 ()

0 b�

�
1¬ 

�
 ()

0 b�

�1 ( �   � ) 

is consistent for the study population distribution function of (  ). Our AST estimator

replaces bPSR
 ( ) with the more e¢ cient tilted version

bAST
 ( ) =

X

=+1

b�
 1 ( �   � ) 

This tilted distribution estimate, unlike bPSR
 ( ), is guaranteed to integrate to one and

13



shares a �nite number of moment in common with b e�
 () 

We also compute an analogous tilt of the study sample

1



X

=1

0

@ 


�
 ()

0 b� +  ()
0 b�

� ¬ 1

1

A

�
 ()

0 b�

�
b

 () = 0 (11)

so that
X

=1

b�
  () =

X

=1

b�e�  ()  (12)

for

b�
 =


�
 ()

0 b�

�
P

=1 (()0b�)

1


�
 ()

0 b� +  ()
0 b�

�   = 1     

With the auxiliary and study sample tilts in hand we then choose b  to solve, holding

b� and b� �xed at their second step values,

X

=1

b�
   (  b  )¬

X

=+1

b�
   (  b  ) = 0 (13)

Inspection of (13) indicates that our estimate of  0 is based on two separate estimates of

the study population distribution function. The �rst, corresponding to the study tilt fb�
g



=1

is an estimate of the study population distribution of ( ), the second, corresponding

to the auxiliary tilt, fb�
 g


=+1

, is an estimate of the study population distribution of the

( ). Neither of these two estimates coincide with the e¢ cient estimate of the study

population distribution of  alone (i.e, with (7)), but they do share important features

with it. Speci�cally they are constructed so that the means of  ()  computed using the

two tilts, coincide with the e¢ cient estimate.

3.2 Large sample properties

Our next three results provide formal descriptions of the asymptotic sampling properties of

b  under di¤erent combinations of assumptions. We begin with a characterization of the
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sampling properties of
p

 (b  ¬  0) under our baseline model (i.e., Assumption 2.1). We

then outline our local semiparametric e¢ ciency and double robustness results.

To state our �rst result we require some additional notation. Let

� ( ) = �� ( )  � ( ) = �� ( ) 

be weighted projections of   (   0) and   (   0) onto the space spanned by  ( ) 

with projection coe¢ cients of

�� = E
�
1

¬
 ( )0 �0

�
 ( )  ( )0

�
�E

�
1

¬
 ( )0 �0

�
 ( )  ( )0

�¬1


�� = E
�

0 ( )

1¬ 0 ( )
1

¬
 ( )0 �0

�
 ( )  ( )0

�
�E

�
0 ( )

1¬ 0 ( )
1

¬
 ( )0 �0

�
 ( )  ( )0

�¬1
 (14)

Also de�ne  (  ) =  (  )¬  (  ) with

 (  ) =
1

0

��


0 ( )
¬ 1

�
0 ( ) f� ( )¬  ( )g (15)

¬E�
��



0 ( )
¬ 1

�
0 ( ) f� ( )¬  ( )g

���� S���
 (  ) =

1

0

��
1¬ 

1¬ 0 ( )
¬ 1

�
0 ( ) f� ( )¬  ( )g (16)

¬E�
��

1¬ 

1¬ 0 ( )
¬ 1

�
0 ( ) f� ( )¬  ( )g

���� S��� 

Theorem 3.1 (Asymptotic Distribution) Suppose that Assumption 2.1 and additional

regularity conditions hold, then (i) b 

!  0 (ii)

p
 (b  ¬  0)

! N
¬
0  ( 0)

¬1 + � ( 0)
�

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with

� ( 0) = ¬¬10 E
�
 (  ) (  )0

�
¬¬100

and (iii) the asymptotic e¢ ciency of
p

0 (b  ¬  0), for any vector of constants , is

bounded below by

ae
�p

0 (b  ¬  0)
�
� 0 ( 0)

¬1 

0 ( 0)
¬1  + �2

2
0
E

h
0( )

1¬0( )

i
0

¬
¬¬10 �

�¬
¬¬10 �

�0


(17)

where � = max (� �) with

� = sup
2W
k ()¬ �� ()k1  � = sup

2W
k ()¬ �� ()k1 

and k�k1 denoting the maximum absolute row sum norm.

Theorem 3.1 indicates that under Assumption 2.1 our AST estimator is consistent and

asymptotically normal, but ine¢ cient relative to a semiparametrically e¢ cient estimator (cf.,

Theorem 2.1 above). Some insight into the degree of AST�s ine¢ ciency is provided by the

bound (17). First, the term, �2, indicates that the AST estimator performs better when

 () and  () are well-approximated by a linear combination of the elements of  () 

We discuss the nature of this approximation further below. Second, the performance of the

AST estimator will, in general, be sensitive to the degree of overlap. If the expected value of

the propensity score weight, 0 ( )  (1¬ 0 ( )), used to reweight auxiliary units is large,

as may be true if �; the upper bound on 0 ( ), is close to one (cf. part (v) of Assumption

2.1), then the performance of the AST estimator may be poor (cf., Khan and Tamer, 2010).

More generally the form of  (  ) indicates that the relative e¢ ciency of b  depends

on the quality of the linear approximations  ( ) ' �� ( ) and  ( ) ' �� ( ). This

is easiest to see in the special case where  ( ) �  ( ), in which case (see (31) in Appendix

A), de�ning �
 =  ( ) ¬ �� ( )  �

 =  ( ) ¬ �� ( ) and � = (1¬ 0 ( ))�
 +
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0 ( )�
 :

� ( 0) =
1

2
0

¬¬10 E
�

0 ( )

1¬ 0 ( )
��0

�
¬¬100 

so that the degree of ine¢ ciency depends on a (weighted) expectation of the squares and

cross products of a linear combination of the approximation errors. The form of � ( 0)

indicates that b  will have high relative e¢ ciency whenever  ( ) and  ( ) are well

approximated by a linear combination of the elements of  ( )  This will be particularly

true when overlap is good such that the weight 0( )
1¬0( )

does not take on extreme values.

Our next result, which characterizes when b  will be e¢ cient, is anticipated by the

discussion above. Consider the assumption:

Assumption 3.1 (Moment CEF) For some unique pair of matrices � � and vector of

linear independent functions  ( ) with a constant in the �rst row, we have

E [   (   0)j ] = � ( )  E [   (   0)j ] = � ( ) 

Assumption 3.1 posits a working model for the conditional expectation functions (CEFs)

of   (  0) and   (  0) given  . The substantive content of this assumption is,

of course, model and application speci�c. The ATT example discussed in the introduction

provides a simple illustration. In that case Assumption 3.1 implies that the CEFs of the

potential outcomes given active and control treatment,  and , are linear in  ( ). Thus,

if the object of interest is the ATT, the analyst should pick the elements of  ( ) so as to

provide a good approximation to these two CEFs. For the two sample instrumental variables

(TSIV) model it is possible to show that the correct  ( ) is an implication of the structure

of the �rst stage relationship between the endogenous right hand side variable, , and the

instrument vector,  .

If both Assumptions 2.1 and 3.1 hold the Appendix shows that b  is asymptotically
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linear with representation

p
 (b  ¬  0) =

1p


X

=1
�e� (  0) +  (1)

from which our next Theorem directly follows.

Theorem 3.2 (Local Semiparametric Efficiency) Suppose that Assumption 2.1 and

additional regularity conditions hold, then for b  the solution to (13), b  is locally

e¢ cient at Assumption 3.1 such that
p

 (b  ¬  0)
! N

¬
0 I ( 0)

¬1� with I ( 0) as

de�ned in Theorem 2.1.

Proof. See Appendix A.

Our e¢ ciency bound calculation, Theorem 2.1, gives the information bound for  0 with-

out imposing the additional auxiliary Assumption 3.1. This assumption imposes restrictions

on the joint distribution of the data not implied by the baseline model. If these restrictions

are added to the prior used to calculate the e¢ ciency bound, then it may be possible to

estimate  0 more precisely. Our estimator is not e¢ cient with respect to this augmented

model. Rather it attains the bound provided by Theorem 2.1 if Assumption 3.1 happens to

be true in the population being sampled from, but is not part of the prior restriction used

to calculate the bound. Newey (1990, p. 114), Robins, Rotnitzky and Zhao (1994, p. 852

- 3) and Tsiatis (2006) discuss the concept of local e¢ ciency in detail. In what follows we

will, for brevity, say b  is locally e¢ cient at Assumption 3.1. The form of the variance

bound when semiparametric, or parametric (as in Assumption 3.1), restrictions on  () and

 () are maintained as part of the prior restriction is unknown. Graham (2011) studies

such restrictions in the missing data context.

Next we give our double robustness result. Here our result is slightly less general than

similar results in the missing data literature, but nevertheless may be useful in practice.

Theorem 3.3 (Double Robustness) Under parts (i) to (iv) of Assumption 2.1, b 

!
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 0 with a limiting normal distribution if either (a) part (v) of Assumption 2.1 also holds or

(b) the analyst chooses  () = exp()
1+exp()

and Assumption 3.1 holds.

Proof. See Appendix A.

Theorem 3.3 indicates that the advantage of choosing  ( ) with Assumption 3.1 in mind

is twofold. Under the baseline model de�ned by Assumption 2.1, Theorem 3.2 implies that

b  will have low sampling variation if  () = E [   (  0)j = ] and  () =

E [   (   0)j = ] are approximately linear in  () (see also part (iii) of Theorem

3.1). This is the case covered by part (a) of the Theorem. Now consider the case where

the analyst misspeci�es the propensity score model, but Assumption 3.1 holds, part (b) of

Theorem 3.3 indicates that b  will remain consistent for  0 in this case if the analyst

chooses  () to take the logit form. We emphasize that the true propensity score model

may or may not be of the logit form.

The peculiar feature of Theorem 3.3, relative to analogous results in the missing data

literature (e.g., Tsiatis, 2006), is the requirement that the assumed propensity score take the

logit form. To understand this requirement note that, in general, (7) will be an inconsistent

estimate of the study population distribution of  when the propensity score is misspeci-

�ed. Calibrating the study and auxiliary tilts to moments of this distribution will therefore

typically produce an inconsistent estimate of  0. However when condition (b) of Theorem

3.3 holds we have, from the estimating equations for the propensity score parameter,

1



X

=1

�
 ¬ 

�
 ()

0 b�

��
 () = 0 (18)

Now consider the mean of  () with respect to b e�
 (). Using (18), and the fact that

 () contains a constant so that
P

=1 (()
0b�) =

P
=1

, we have the equalities

X

=1

b�e�  () =
X

=1

(()
0b�)P

=1 (()0b�)
 () =

P
=1  ()P

=1 


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Therefore, under the conditions of part (b) of Theorem 3.3,
P

=1

b�e�  ()
! E [ ( )] irre-

spective of whether the propensity score is correctly model. This implies that the study and

auxiliary tilts will be correctly calibrated such that, when Assumption 3.1 holds, b  will

remain consistent for  0 Note that this estimate of E [ ( )] will not be e¢ cient when the

propensity score is misspeci�ed.

Although the propensity score is not ancillary in the data combination problem, our

estimator remains consistent in the presence of propensity score misspeci�cation when  ()

takes the logit form. It is an open question where there exist a locally e¢ cient and doubly

robust estimator under non-logit parametric forms for the propensity score.

The alternative estimator, which replaces maximum likelihood (ML) propensity score �t

computed in the �rst step of our procedure with the method of moments (MM) one

1



X

=1

�
 ¬ 

�
 ()

0 b�

��
 () = 0

will be double robust but not locally e¢ cient (unless a logit form for  () is maintained

as part of Assumption 2.1, in which case the ML and MM �ts coincide). More generally

there is a tension between e¢ ciency, which requires using the MLE of the propensity score

for reweighting, and robustness to propensity score misspeci�cation.

Implications for practitioners Collectively Theorems 3.1 to 3.3 suggest several useful

guidelines for empirical researchers. First, when overlap is good, or equivalently the propen-

sity score weights 0 ( )  (1¬ 0 ( )) do not take very large values, Theorems 3.1 to 3.3

provide a very strong theoretical case for using AST in practice. If Assumption 3.1 happens

to be true in the sampled populations, then AST will be more e¢ cient than the propen-

sity score reweighting approach of Abadie (2005). This result is analogous to the enhanced

e¢ ciency of the Augmented Inverse Probability Weighting (AIPW) estimator of Robins,

Rotnitzky and Zhao (1994) relative to conventional Inverse Probability Weighting (IPW)
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in the missing data context. In practice high levels of precision will be observed whenever

 () and  () are reasonably well approximated by a linear combination of the elements

of  ()  A further advantage of the AST procedure is that, if the propensity score is in-

advertently misspeci�ed, AST will nevertheless remain consistent for  0 if Assumption 3.1

holds (and the analyst works with a logit form for  ()).

In settings with poor overlap, the AST estimator may be highly variable and, in extreme

cases, may not even exist. To understand this last observation consider the case where  ()

takes the logit form. In that case the computation of the auxiliary tilt requires that the study

sample mean of  ( ) lie within the convex hull of the auxiliary sample. If the study and

auxiliary distributions of  are very di¤erent from one another, this convex hull condition

may fail in practice even if Assumption 2.1 holds in the population. We do not view this

as a weakness of our procedure, rather such situations alert the researcher to the fragility of

identi�cation when overlap is poor (cf., Khan and Tamer, 2010). When overlap is poor direct

imputation approach may be preferable (e.g., Kline, 2011; Chen, Hong and Tarozzi, 2008).

However imputation will be very sensitive to violations of Assumption 3.1; this limitation is

illustrated by our Monte Carlo experiments below.

The computational algorithm detailed in the Supplemental Web Appendix is designed

to work well in situations where the convex hull condition is "nearly" violated and we rec-

ommend its routine use. For covariance matrix estimation we recommend use the textbook

formulae for the GMM estimator based on the moment vector implied by (8), (9), (11) and

(13) above and explicitly de�ned in the Appendix.

4 Application and Monte Carlo experiments

Empirical application Neal and Johnson (1996) study the role of �pre-market�(i.e., ac-

quired prior to age 18) di¤erences in cognitive achievement in explaining di¤erences in earn-

ings between young Black and White men. Using a sample of employed Black and White
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males drawn from the National Longitudinal Survey of Youth 1979 (NLSY79), Neal and

Johnson (1996) compute the least squares �t of the logarithm of hourly wages on a con-

stant, a black dummy, age, and Armed Forces Quali�cation Test (AFQT) percentile score

measured at age 16 to 18. They �nd that the coe¢ cient on the black dummy variable drops

by two thirds to three quarters when AFQT score is included as a covariate. On the basis

of this �nding they argue that di¤erences in the rate of cognitive skill acquisition across

Blacks and White prior to age 18, due to di¤erences in family background, school quality

and neighborhood characteristics, explains a substantial portion of subsequent Black-White

wage inequality. We do not provide an assessment of this interpretation here, rather our goal

is to illustrate the use of AST in a familiar setting.

Let  denote real average wages from 1990 to 1993 for a random draw from the population

of Black men aged 16 to 18 in 1979 and residing in the United States. This population

corresponds to our study population of interest. Let  denote real wages for a random draw

from the population of White men aged 16 to 18 in 1979 and residing in the United States.

This corresponds to our auxiliary population. Let  be a vector including year of birth

and AFQT score (We transform the percentile scores used by Neal and Johnson (1996) onto

the real line using the inverse standard normal CDF). We compare features of the observed

distribution of Black wages with those of a hypothetical White population whose age and

AFQT distribution coincides with that of the Blacks (i.e., with study population�s). These

types of hypothetical comparisons underlie Oaxaca decompositions, as used in labor and

health economics, and similar exercises undertaken in demography (e.g., Kitagawa, 1964).

Barsky, Bound, Charles and Lupton (2002) and Fortin, Lemieux and Firpo (2010) survey

the application of decomposition methods in economics.

Our sample closely resembles that used in Johnson and Neal (1998). It includes 1,371

measurements of real wages, race, age and AFQT scores drawn from the NLSY79. Through-

out we replace the empirical measure of our sample with the NLSY79 base year sampling

weights (although this adjustment has little e¤ect on our results). The age distributions
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for Blacks and Whites in the merged sample are, as would be expected, quite similar. The

distribution of AFQT scores across the two groups are quite di¤erent. The mean Black score

is approximately one standard deviation lower than the mean White score. The two distri-

butions also substantially di¤er in their second, third and fourth moments (not reported).

Panel A of Table 1 reports estimates of mean log Wages for Blacks (Column 1), as well as

the Black-White average di¤erence (Column 2). On average, Blacks earn almost 28 percent

less per hour than Whites in our sample. Panel A also reports estimates of the CDF of

the Black wage distribution at selected points, and the corresponding Black-White CDF

di¤erences. For example, while over 45 percent of Blacks earn less than $7.50 per hour in

our sample, fewer than 30 percent of Whites do (Table 1, Row 3). Inspection of the CDF

di¤erences indicates that, while the distributions are most di¤erent at the lower wage levels,

di¤erences exist across the entire support of wages.

Panel B of Table 1 reports average wage di¤erences between Blacks and a hypothetical

population of Whites whose distribution of age and AFQT score coincides with the Black

distribution. This allows for a comparison between Black and White wages that �exibly

controls for di¤erences between the two populations in age and AFQT score.

In Column 1 of Panel B we report age- and AFQT-adjusted di¤erences in mean wages and

wage CDFs based on the conditional expectation projection (CEP) estimator of Chen, Hong,

and Tarozzi (2008). Our implementation of their procedure models the conditional expecta-

tion functions (CEFs) of  and  given  as a separable functions of a constant, two year

of birth dummies, a quadratic polynomial in transformed AFQT score, and twelve dummy

variables for the transformed AFQT score lying respectively below ¬2¬175     025 05

Let  ( ) be the vector containing all these functions of  . In principle, if the dimension

of the approximating model is allowed to grow with the sample size, the Chen, Hong, and

Tarozzi (2008) estimator is consistent for, and e¢ cient under, all data generating processes

satisfying parts (i) to (iv) of Assumption 2.1. In small samples the performance of the

estimator is heavily dependent on the quality of the two CEF approximations.
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Table 1: Raw and adjusted di¤erences in Black versus White hourly wages
Panel A Panel B

(1)
Black

(2)
B¬W

(1)
CEP

(2)
PSR

(3)
AST

Average (log(Wage))
6749
(0021)

¬0279
(0026)

¬01108
(00348)

¬01072
(00303)

¬01052
(00298)

Pr (Wage � $500)
00801
(00125)

00566
(00135)

00243
(00216)

00246
(00193)

00278
(00187)

Pr (Wage � $750)
04505
(00244)

02948
(00275)

01780
(00391)

01737
(00355)

01757
(00350)

Pr (Wage � $1000)
06590
(00244)

02691
(00300)

00987
(00406)

00964
(00358)

00903
(00353)

Pr (Wage � $1250)
08020
(00198)

02001
(00265)

00417
(00328)

00386
(00288)

00348
(00284)

Pr (Wage � $1500)
08896
(00153)

01426
(00219)

00176
(00238)

00129
(00203)

00109
(00202)

Notes: Results based on an extract of 1,371 Black and White men ages 16 to 18 in 1979 from the
NLSY79. Estimated standard errors, which account for within-household dependence in outcomes
across siblings, are reported in parentheses.

Column 2 of Panel B implements the propensity score reweighting (PSR) estimator of

Hirano and Imbens (2001) and Abadie (2005). We model the propensity score as a logit

function with an index linear in  ( ) as de�ned above for the CEP estimator. The PSR

estimates are very close in magnitude and precision to the CEP estimates.

Column 3 of Panel B implements our AST procedure using the same choice of  ( )

and  ( ) =  ( )  This choice ensures that the study and auxiliary sample tilts share

the following features with the e¢ cient distribution function estimate of  : (i) the mar-

ginal year of birth distributions coincide, (ii) the means and variances of the transformed

AFQT score coincide, (iii) the probability masses assigned to the intervals de�ned by the

¬2¬175     025 05 grid of AFQT score intervals coincide. Figure 1 plots undersmoothed

kernel density estimates of the actual Black and White AFQT score densities; the two distri-

butions are very di¤erent from one another. The �gure also plots a density estimate based

on the auxiliary sample tilt. This corresponds to the AFQT score density in the hypothetical

comparison population of Whites. As is evident from the �gure, our choice of  ( ) is rich
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Figure 1: AFQT Densities
Notes: The �gure plots kernel density estimates of the actual Black and White AFQT score
distributions as well as an estimate based on the auxiliary sample tilt. A Gaussian kernel is
used with a bandwidth equal to 1/2 of Silverman�s �rule-of-thumb�choice. Undersmoothing
highlights the ability of the auxiliary tilt to match local features of the Black AQFT density.

enough to closely match this density with its target Black one.

After adjusting for age and AFQT di¤erences we �nd that, while a Black-White residual

log wage CDF gap remains at middle parts of the wage distribution, it disappears at the low

and high ends of this distribution. The average log wage gaps falls, after adjusting for age

and AFQT di¤erences, from ¬0279 to ¬0111.

While the AST point estimates are similar to the corresponding CEP and PSR ones, their

estimated sampling precision is uniformly superior (as Theorem 3.2 would suggest). The

close correspondence between the CEP, PSR and AST point estimates in our application

likely re�ects a combination of two factors. First, while the AFQT distributions across Blacks

and Whites di¤er dramatically, the support of the Black distribution is clearly contained

within that of the White distribution. Hence part (iii) of Assumption 2.1 is well satis�ed.

Second the approximating models underlying each of the estimators are quite �exible. In

settings where overlap is weaker, and/or the approximating models more parsimonious (as

would be required when the dimension of  is large), we would expect the three estimators

to more often yield di¤erent point estimates depending on the true data generating process.

25



Table 2: Parameter values for Monte Carlo experiments
Design (1) (2) (3) (4)
�2 1 23 1 23
�2 34823 26590 17496 09253
�2 0 0 ¬1 ¬1

Monte Carlo We now report on a number of Monte Carlo experiments we conducted to

verify the theoretical properties described in Theorems 3.1 to 3.3. In particular we wish

to assess the relevance of our theoretical robustness and e¢ ciency results. To do this we

consider a stylized program evaluation setting. The analyst wishes to estimate the average

treatment e¤ect on the treated (ATT).

In each of our �rst set of experiments we assume that  is distributed according to a

truncated normal distribution, with support [¬ ]  in both the study (treated) and aux-

iliary (control) populations. The location and scale parameters of these two distributions,

respectively (��
2
) and (��

2
), may di¤er. We assume a multinomial sampling scheme:

with probability 0 = 12 a draw of ( ) is taken at random from the study (treated)

population, otherwise a draw of (  ) is taken from the auxiliary (control) population.

Finally we assume that  and , which play the roles of the outcome under treatment and

control, are generated according to

 j  � N
¬
0�2

�
j  � N

�
�0 + �1

¬
 ¬ � j=1

�
+ �2

h¬
 ¬ � j=1

�2 ¬ �2 j=1

i
�2

�


where � j=1 and �
2
 j=1 are the study population mean and variance of  (which di¤er

from � and �
2
 due to truncation).

The target parameter is  0 = E [ ¬ ] = �0. The propensity score induced by these

designs is of the logit form with an index quadratic in  :

0 () =
�
1 + exp

¬
¬�0 ¬ �1 ¬ �2 2

��¬1

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where �0, �1 and �2 are functions of (��
2
) and (��

2
) (cf., Anderson, 1982). When

the study and auxiliary population distributions of  have di¤erent means, but a common

variance, the logit index will be linear in  . When both the means and variances di¤er,

then the index will generally be nontrivially quadratic in  .

Across all designs we assume a sample size of  = 1 000 and set � = 0 �2 = 1 � =

¬12 �0 = 0 �1 = 12, �2 = 1 and  = 3We vary �2 and �2 across designs to, respectively,

induce nonlinearity in the (index of) the propensity score and E [   (  0)j ] =  ( ).

We vary �2 across designs to keep the variance bound �xed. Across each of our designs

an e¢ cient estimator (under Assumption 2.1) will have an asymptotic standard error of
q
I ( 0)

¬1 1000 = 110

Table 2 gives the parameter con�gurations for each of four Monte Carlo designs. In the

�rst design both the propensity score, 0 (), and  () are �linear�in  (for 0 () �linear�

means linear in the logit index). In the second design the propensity score is quadratic in

, while  () remains linear. In Design three the reverse is true, while in Design four both

objects are �quadratic�. Across each design we implement the AST estimator with  (�) being

the logit function and  ( ) =  ( ) = (1  )0. For the conditional expectation projection

(CEP) estimator we proceed �as if�E [j ] were linear in  , while our implementation of

propensity score reweighting (PSR) uses a logit propensity score with a linear index.

Our AST estimator is consistent for  0 in designs 1 through 3. CEP is consistent in

designs 1 and 2, but inconsistent in design 3. The PSR estimator is consistent in designs

1 and 3, but inconsistent in design 2. All estimators are inconsistent in design 4 due to

the nonlinearity of both 0 () and  (). Table 3 reports the results of our experiments.

Column 1 lists a �pencil and paper�asymptotic bias calculation, while Column 2 gives the

median bias across 5,000 Monte Carlo replications (in both cases bias is scaled by the �pencil

and paper�asymptotic standard error reported in Column 3). As predicted, AST is median

unbiased (up to simulation error) in designs 1 through 3. In contrast, PSR is severely biased

in design 2 and CEP in design 3. As expected, all estimators perform poorly in design
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Table 3: Monte Carlo results
(1)

Asym.
Bias

(2)
Med.
Bias

(3)
Asym.
SE.

(4)
Median
SE.

(5)
Std.
Dev.

(6)
Cov. of
95% CI

(7)
RMSE

Design 1: 0 () linear,  () linear
CEP 0.0000 0.0097 0.0997 0.0996 0.0986 0.9526 0.0986
PSR 0.0000 0.0164 0.1007 0.1006 0.1005 0.9506 0.1005
AST 0.0000 0.0055 0.0100 0.0998 0.0998 0.9540 0.0997

Design 2: 0 () quadratic,  () linear
CEP 0.0000 0.0137 0.0925 0.0924 0.0947 0.9480 0.0947
PSR 0.5053 0.5437 0.0905 0.0911 0.0912 0.9126 0.1039
AST 0.0000 0.0169 0.0941 0.0931 0.0941 0.9470 0.0942

Design 3: 0 () linear,  () quadratic
CEP -1.6125 -2.0082 0.1309 0.1296 0.1627 0.6204 0.3111
PSR 0.0000 -0.0137 0.1063 0.1037 0.1068 0.9420 0.1068
AST 0.0000 -0.0266 0.1076 0.1054 0.1081 0.9416 0.1081

Design 4: 0 () quadratic,  () quadratic
CEP -4.6038 -6.7095 0.1192 0.1157 0.1728 0.0010 0.8196
PSR -3.0049 -3.1031 0.0847 0.0821 0.0858 0.1694 0.2670
AST -2.8789 -2.9313 0.0941 0.0873 0.0953 0.1726 0.2908

4. These bias properties are re�ected in the coverage of standard, Wald-based, 95 percent

con�dence intervals for  0 (Column 6). By comparing columns 1 and 2 and columns 3 and

5, we see that �for the designs considered here �the �nite sample distributions of all of the

estimators are very well approximated by their asymptotic counterparts.

5 Summary

When the propensity score is parametrically speci�ed information in both the study and

auxiliary samples may be used to form an e¢ cient estimate of  , the variable common to

both datasets. An intuition for this insight follows from recognizing that, under part (v)

of Assumption 2.1, the auxiliary sample is equivalent to a biased sample from the study

population with the biasing function known up to a �nite dimensional parameter. Using

this e¢ cient distribution function estimate we tilt the propensity score reweighting (study
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population) distribution function estimates of (  ) and (  ) so that they share certain

moments in common. By choosing these moments carefully (i.e., with reference to Assump-

tion 3.1) we can produce a locally e¢ cient estimate of  0 Even if the parametric relationship

between the study and auxiliary populations, as embodied in the propensity score model, is

misspeci�ed, AST remains consistent for  0 if Assumption 3.1 holds.

To our knowledge we are the �rst to propose a locally e¢ cient estimator for the class

of data combination problems de�ned by Assumption 2.1. Our procedure also has a double

robustness property. Our results provide a useful complement to the work of Robins, Rot-

nitzky and Zhao (1994), Tan (2006) and others for missing data problems. Relative to Chen,

Hong and Tarozzi (2008), who do provide explicit results for data combination problems

(their so called �verify-out-of-sample� case), our approach may be useful when  is high

dimensional such that their method, which requires nonparametric estimation of  () and

 (), is impractical.

In future work it would be useful to study data dependent methods for choosing  ( ) 

Similarly it would be interesting to construct a locally e¢ cient estimator with minimal

variance across all estimators based on the linear approximating models  ( ) ' � ( )

and  ( ) ' � ( )  In the missing data context such estimators are called "improved

locally e¢ cient" (e.g., Tan (2010)).

A Proofs

Proof of Theorem 3.1: The AST procedure coincides with a just identi�ed GMM estima-

tor based on the dim ( ( ))+2 dim ( ( ))+dim ( 0) vector of moment functions ( �0)
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with � = (�0�0�
0
  

0)
0
 This vector of moment functions is composed of the subvectors:

1 ( �0)
dim(( ))�1

=
 ¬ 

¬
 ( )0 �0

�


¬
 ( )0 �0

�¬
1¬ 

¬
 ( )0 �0

��1

¬
 ( )0 �0

�
 ( )

2 ( �0�0)
dim(( ))�1

=
1

0

0

@ 1¬ 

1¬ 
�
 ( )0 �0 +  ( )

0
�0

� ¬ 1

1

A 
¬
 ( )0 �0

�
 ( )

3 ( �0�0)
dim(( ))�1

=
1

0

0

@ 


�
 ( )0 �0 +  ( )

0
�0

� ¬ 1

1

A 
¬
 ( )0 �0

�
 ( )

4 ( �0�0�0  0)
dim( 0)�1

=


0


¬
 ( )0 �0

�

�
 ( )0 �0 +  ( )

0
�0

�   (  0)

¬1¬ 

0


¬
 ( )0 �0

�
1¬ 

�
 ( )0 �0 +  ( )

0
�0

�   (   0) 

Let  = E [ ( �0) �0] ; a standard argument (e.g., Newey and McFadden, 1994)

gives, under regularity conditions, the asymptotically linear representation

p

�
b� ¬ �0

�
= ¬¬1

 
1p


X

=1

 ( �0)

!
+  (1)  (19)

The in�uence function for b  corresponds to the last  elements of (19). By tedious, but

straightforward, calculation we can show that this subvector equals

p
 (b ¬  0) =

¬¬1
44p



X

=1

�
4 ( �0�0�0  0)¬41

¬1
11 1 ( �0) (20)

+42
¬1
22

¬
21

¬1
11 1 ( �0)¬2 ( �0�0)

�
+43

¬1
33

¬
31

¬1
11 1 ( �0)¬3 ( �0�0)

�	
+  (1) 

where  equals the expected value of the derivative of the  subvector of  ( �) with

respect to the  subvector of � evaluated at � = �0.

Under part (v) of Assumption 2.1 the Information Matrix equality gives11 = ¬E [S�S0�].
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Calculation gives 41 equal to

41 =
1

0

E
�

1¬ 

1¬ 0 ( )
  (   0) S0�

�
 (21)

Using this result, iterated expectations and part (ii) of Assumption 2.1 we then get

¬41
¬1
11 1 ( �0) =

1

0

E�
�

1¬ 

1¬  ( )
 ( )

���� S�� 

Evaluating 21 yields, after some manipulation,

21 = ¬
1

0

E
��

1¬ 

1¬ 0 ( )
¬ 1

�
0 ( )  ( ) S0�

�
 (22)

where 0 ( ) = 
¬
 ( )0 �0

�
= 

¬
 ( )0 �0 +  ( )0 �0

�
 These results imply that

21
¬1
11 1 ( �) =

1

0

E�
��

1¬ 

1¬ 0 ( )
¬ 1

�
0 ( )  ( )

���� S�� 

Similar calculations give

31 = ¬
1

0

E
��



0 ( )
¬ 1

�
0 ( )  ( ) S0�

�
 (23)

yielding

31
¬1
11 1 ( �0) =

1

0

E�
��



0 ( )
¬ 1

�
0 ( )  ( )

���� S�� 

Evaluating 22 and 42 yields

22 =
1

0

E
�

0 ( )

1¬ 0 ( )
1

¬
 ( )0 �0

�
 ( )  ( )0

�
(24)

42 = ¬ 1

0

E
�

0 ( )

1¬ 0 ( )
1

¬
 ( )0 �0

�
  (   0)  ( )0

�
 (25)
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Using (24) and (25) and iterated expectations we get

42
¬1
22 = ¬E

�
0 ( )

1¬ 0 ( )
1

¬
 ( )0 �0

�
 ( )  ( )0

�
�E

�
0 ( )

1¬ 0 ( )
1

¬
 ( )0 �0

�
 ( )  ( )0

�¬1

= ¬��

as de�ned in (14) of the main text.

Now consider 33 and 43; we have

33 = ¬ 1

0

E
�
1

¬
 ( )0 �0

�
 ( )  ( )0

�
(26)

43 = ¬ 1

0

E
�
1

¬
 ( )0 �0

�
  (  0)  ( )0

�
 (27)

Using (26) and (27) and iterated expectations we get

43
¬1
33 = E

�
1

¬
 ( )0 �0

�
 ( )  ( )0

�
�E

�
1

¬
 ( )0 �0

�
 ( )  ( )0

�¬1 
= ��

also as de�ned in (14) of the main text.

Recalling the de�nitions, � ( ) = �� ( ) and � ( ) = �� ( )  substituting the

expressions derived immediately above into (20), and rearranging, yields the form of the

in�uence function stated in the theorem.

Now recall the de�nitions of  (  ) and  (  ) given in (15) and (16) of the main

text. By the de�nition of the LP operator we have that E [ (  ) S0�] = E [ (  ) S0�] =

0 This follows since  (  ) and  (  ) are linear prediction errors, with S� the vec-

tor of predictors. The conditional mean zero property of the score function also yields the

restrictions E [ (  )j ] = E [ (  )j ] = 0 From these properties, and direct
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calculation, we have that

E
�
�e� (  0) f (  )¬  (  )g

�
= 0

from which the claimed form of the asymptotic variance of  0 follows.

Let  be a vector of constants. By linearity of the LP operator, the Cauchy-Schwartz

inequality, and recalling that  (  ) =  (  )¬  (  ), we have that

0V ( (  )) 

� 0V
�

1

0

�
1¬ 

1¬ 0 ( )
¬ 1

�
0 ( ) f� ( )¬  ( )g

+
1

0

�


0 ( )
¬ 1

�
0 ( ) f� ( )¬  ( )g

�


This bound will hold with equality if  ( ) �  ( ) since, by the de�nitions of �� and �
�
,

we will have (in that case) the zero covariance results

E
�
( ( )¬ � ( ))

0 ( )

1¬ 0 ( )
1

¬
 ( )0 �0

�
 ( )0

�
= 0 (28)

E
�
f� ( )¬  ( )g1

¬
 ( )0 �0

�
 ( )0

�
= 0

Iterated expectations and (28) then give

E
��



0 ( )
¬ 1

�
0 ( ) f� ( )¬  ( )gS0�

�
= E

�
f� ( )¬  ( )g1

¬
 ( )0 �0

�
 ( )0

�
= 0 (29)

and also

E
��

1¬ 

1¬ 0 ( )
¬ 1

�
0 ( ) f� ( )¬  ( )gS0�

�
= ¬E

"
f� ( )¬  ( )g ( ¬ 0 ( ))2

(1¬ 0 ( ))2
1

¬
 ( )0 �0

�
 ( )0

#
= 0 (30)
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Equations (29) and (30) imply that, if  ( ) �  ( ), then, after manipulation,

V ( (  )) =
1

2
0

E
�

0 ( )

1¬ 0 ( )
��0

�
 (31)

with the right-hand-side of (31) an upper bound otherwise. Recalling the de�nition of � given

in the statement of the Theorem, and making use of the various compact support conditions

embedded in Assumption 2.1, we get the bound

0V ( (  ))  � �2

2
0

E
�

0 ( )

1¬ 0 ( )

�
0��0

from which (17) follows directly.

Proof of Theorem 3.2: Under Assumption 3.1, we have that �� = � and �� = �.

This implies that  (  ) and  (  ) are identically equal to zero. The result then

follows directly from Theorem 2.1.

Proof of Theorem 3.3: Asymptotic normality follows from standard results. Consistency

under part (a) is a consequence of Equation (4) in the main text. Showing consistency under

part (b) is more complicated. Denote the probability limits of b�, b�,and b� when part (v) of

Assumption 2.1 fails to hold by, respectively ��, ��, and ��. Let � ( ) = 
¬
 ( )0 ��

�
and

 ( ) = 
¬
 ( )0 �� +  ( )0 ��

�
for  =  . If  (�) takes the logit form, then � ( )

will satisfy the population restriction E [1 ( ��)] = E [( ¬ � ( ))  ( )] = 0 so that,

using iterated expectations and rearranging, we have the equality.

E [ ( )j = 1] = E
�
� ( )

0

 ( )

�
 (32)
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We also have E [2 ( ����)] = E [3 ( ����)] = 0, which, respectively multiplying by

� and � (using Assumption 3.1), gives the additional equalities:

E
�

1¬ 

1¬  ( )
� ( )  ( )

�
= E [� ( )  ( )] (33)

E
�



 ( )
� ( )  ( )

�
= E [� ( )  ( )]  (34)

Using (32), (33), (34), Assumption 3.1, iterated expectations, and part (ii) of Assumption

2.1 yields

E [4 ( ������  )] = E
�
� ( )

0

f ( )¬  ( )g
�

= (� ¬ �)E
�
� ( )

0

 ( )

�
= E [ ( )¬  ( )j = 1]

= E [  (  )j = 1] 

which by part (i) of Assumption 2.1 is uniquely zero at  =  0.
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