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ABSTRACT

To prepare for the 2008 Olympic Games, China adopted a number of radical measures to improve
air quality. Using officially reported air pollution index (API) from 2000 to 2009, we show that these
measures improved the API of Beijing during and after the Games, but 60% of the effect faded away
by the end of October 2009. Since the credibility of API data has been questioned, an objective and
indirect measure of air quality at a high spatial resolution – aerosol optimal depth (AOD), derived
using the data from the NASA satellites – was analyzed and compared with the API trend. The analysis
confirms that the improvement was real but temporary and most improvement was attributable to plant
closure and traffic control. Our results suggest that it is possible to achieve real environmental improvement
in an authoritarian regime but the magnitude of the effect and how long it lasts depend on the political
motivation behind the policy interventions.
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1. Introduction 

Air pollution is a great challenge for human health. What policy interventions are 

effective in improving air quality? How long will their effects last? The radical air-cleaning 

actions that China took before the 2008 Olympic Games provide a unique opportunity to answer 

these questions.   

Before the Games, China was often cited for elevated air pollution levels. This risked 

China‟s stake to host the 2008 Beijing Olympic Games and put China‟s air pollution under the 

world‟s spotlight. Since the primary motive of hosting the Games was to establish a positive 

image of China, improving air quality became one of the most visible tasks for the Chinese 

government. Under an authoritarian regime1, China was able to take a series of radical actions 

quickly at a large scale. These actions, including plant closure/relocation, furnace replacement, 

introduction of new emission standard, and stringent traffic control, cost over US$10 billion.2 

Plus the $42.9 billion3 spent on city infrastructure and Olympic stadiums,4 Beijing Olympics 

were arguably the largest natural experiment in air cleaning and the most expensive Games in the 

Olympic history.  

Although poor air quality in Beijing drew public attention worldwide before and during 

the Olympics, China did not allow individual researchers to access in situ measurements of air 

pollution. Given the data constraints, we rely on the official daily air pollution index (API) 

published by the Ministry of Environmental Protection of China (MEP), as well as the aerosol 

optical depth (AOD) derived using the data from the Moderate Resolution Imaging 

Spectraradiomenter (MODIS) aboard NASA's Terra and Aqua satellites (which cross China daily 

at 10:30am and 1:30pm local time, respectively).  API is a composite index of Sulphur Dioxide 

(SO2), Nitrogen Dioxide (NO2), and total suspended particles (TSP); and AOD represents the 
                                                 
1 China is classified as an authoritarian regime according to the Economist Intelligence Unit‟s Democracy Index 
(2008), accessed at www.economist.com/node/12499352?story_id=o12499352. 
2 Both UNEP (2009) and Zhang (2008) report that the planned environmental investment is $5.6 billion between 1998 
and 2002, and $6.6 billion between 2003 and 2007. According to Zhang (2008), the actual environmental investment made 
between 1998 and 2007 is $15.7 billion.  
3 According to the city government of Beijing, the total city infrastructure investment made between 2001 and 2008 is roughly 
280 billion RMB (or US$41 billion) and the total investment in Olympic stadiums is 13 billion RMB (or US$1.9 billion), see 
more details at http://finance.people.com.cn/GB/7609928.html.  
4 An official audit from the State Council of China concludes that the Olympics made a modest profit of US$145 
million with total expenditure of US$2.8093 billion and total income of $2.975 billion. However, this report does 
not include many expenditures spent by the local government in the name of the Olympic Games 
(http://www.runblogrun.com/2009/06/beijing_olympics_made_103_mill.html). Media has estimated the total 
expenditure to be $43 billion (http://www.sourcejuice.com/1183548/2009/06/19/China-announced-results-audit-
confirmed-clean-Olympics/). 

http://finance.people.com.cn/GB/7609928.html
http://www.runblogrun.com/2009/06/beijing_olympics_made_103_mill.html
http://www.sourcejuice.com/1183548/2009/06/19/China-announced-results-audit-confirmed-clean-Olympics/
http://www.sourcejuice.com/1183548/2009/06/19/China-announced-results-audit-confirmed-clean-Olympics/
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concentration of airborne solid and liquid particulates that can absorb, reflect and scatter the 

electromagnetic radiation. The credibility of API has been questioned (Andrews 2008), but AOD 

is an objective measure retrieved from satellite data and immune from any gaming incentives 

facing Chinese officials.  

Our main methodology is comparing Beijing with 28 non-Olympic cities before, during 

and after the Games while controlling for a long list of differential factors.  We also separately 

control for five cities that co-hosted the Games in other parts of China (referred to as co-host 

cities) and three cities surrounding Beijing that adopted measures to improve air quality in and 

around Beijing (referred to as neighbor cities). Time-wise, we take the one and half years before 

the setup of the Beijing Organizing Committee for the Games of the XXIX Olympiad (BOCOG) 

as the benchmark period (6/5/2000-12/12/2001) and detect treatment effects in three windows: 

the seven-year preparation period (12/13/2001-8/7/2008), the one month during the Olympic and 

Paralympic Games (8/8/2008-9/17/2008), and 13 months after the Games (9/18/2008-

10/31/2009).  

After controlling for various factors, we find that the average API of Beijing dropped 

from 109.01 in 2000 and 2001 to 76.69 during the Games. Most of the improvement did not 

occur until the Games started. After the Games ended, we estimate that the API of Beijing 

reverts to 82.52 in one month and to 96.29 ten-to-thirteen months after the Games. In 

comparison, the AOD of Beijing (which shows a positive relationship with air pollution) started 

to decline before the Games, continued to decline during the Games, and reached the lowest 

level 2-6 months after the Games. In contrast to surface measures of API, aerosol can be 

circulated in the air for a longer life span, so the delay in AOD improvement is not surprising. 

Consistent with the API findings, the improvement in AOD started to revert since Spring 2009. 

This suggests that air quality improvement in Beijing was real but temporary.  Further analysis of 

API and visibility (another official statistics related to air pollution but with less media attention) 

finds little evidence of gaming in API.  

The unique setting of Beijing Olympics allows us to compare different air cleaning 

actions. Accounting for the different timing of actions, we find that the API improvement, 

especially the improvement in TSP, is most attributable to plant closure and traffic control. More 

importantly, the fine resolution of AOD enables us to link the center of each AOD observation to 

road density and plant closure within a five-kilometer radius. As expected, we find more AOD 
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improvements in the areas with greater road density and more plant closures but all of the 

differential effects decline gradually over time. These findings are consistent with the fact that 

most plant closures and traffic controls were only effective in the periods immediately before or 

during the Games.  

The rest of the paper is organized as follows. Sections 2-4 summarize the background, the 

related literature and the data respectively. Section 5 presents the main results on API and AOD. 

Section 6 addresses the concern of data gaming from Chinese officials. Section 7 examines the 

mechanisms that can potentially contribute to the air quality improvement of Beijing. Section 8 

summarizes the main findings of this paper. 

 

2. Background 

China has been known for poor air quality. The 1996 national standard on Sulphur 

Dioxide (SO2), Nitrogen Dioxide (NO2), total suspended particles (TSP), and particulate matter 

with an aerodynamic diameter of 10 microns or smaller (PM10) were 2-7 times higher than the 

standards established by the World Health Organization (UNEP 2009). An amendment in 2000 

further weakened the Chinese standard for NO2 and Ozone. Even so, the relatively generous 

standard is hard to enforce in China. Sixteen Chinese cities appeared on the list of the world‟s 

top twenty most polluted places in 2007.5 Some athletes were so concerned about the air quality 

that they planned to either wear masks in competition or skip the Beijing Olympic Games (Los 

Angeles Times March 12, 2008; New York Times March 12, 2008). 

China adopted a number of air cleaning policies for the Olympic Games. After the 

International Olympic Committee awarded Beijing the 2008 Games on July 13, 2001, China 

established the Beijing Organizing Committee for the Games of the XXIX Olympiad (BOCOG) 

on December 13, 2001. The main responsibility of BOCOG was preparing for the 2008 Games, 

this included infrastructure development, environment improvement, public relation, and 

logistics. The three main concepts promoted by BOCOG were “Green Olympics, High-tech 

Olympics and People's Olympics”, highlighting the importance of environmental protection and 

public interests.  

We assume that December 13, 2001 was the earliest date when the Chinese government 

                                                 
5 http://www.cbsnews.com/stories/2007/06/06/eveningnews/main2895653.shtml. 
 

http://www.cbsnews.com/stories/2007/06/06/eveningnews/main2895653.shtml
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started to implement air quality improvement policies for the Olympic Games. To the extent that 

the Olympic-related air cleaning efforts started before the setup of the BOCOG, our results 

represent a conservative estimate of the overall effect. The main treatment period ranged from 

the start of the 2008 Olympic Games (8/8/2008) to the end of the Paralympic Games 

(9/17/2008). The seven year window from the setup of BOCOG to the start of the Games is 

referred to as “Games Preparation” and the 13 months after the Games (9/18/2008 to 

10/31/2009) is referred to “Post Games.” All these are compared to the “benchmark” period from 

the start of our data (6/5/2000 for API and 2/26/2000 for AOD) to the setup of BOCOG 

(12/12/2001).  

To prepare for the Games, China took most air cleaning actions in Beijing. December 31 

of 2002 marked the end of Beijing‟s Phase 8 environmental cleaning efforts (phase 1 started 

from 1998), which included conversion of 1500 coal furnaces into clean fuel, retirement of  

23,000 old automobiles, reduction in emission from the  major industrial plants by 30 thousand 

tons, and an increase of 100 km2 area under green coverage.  

In 2003 and 2004, Beijing reduced the industrial use of coal by 10 million tons, 

desulfurated the air pollutants from the YanShan Petrochemical Company, shut down coal-fired 

generators in the Capital Steel Company and Beijing Coking Plant, and closed Beijing Dyeing 

Plant. Between 2005 and 2006, China constructed desulfuration, dust removal and denitrification 

facilities in Beijing Thermal Power Plant and Power Plant of the Capital Steel. By the end of 

October 2006, Beijing renovated 100% of the furnaces for clean fuel in five districts, and 50% in 

the three other districts. The largest plant relocation – for the Capital Steel Company – started 

from 2005 and the biggest action took place toward the end of 2007, the same time as the closure 

of the Second Beijing Chemical Plant and Beijing Eastern Petrochemical Co. Ltd. Based on these 

institutions, we define October 31, 2006 as the benchmark point for furnace renovation and 

December 31, 2007 as the benchmark for plant closure.  

Beijing also attempted to control for vehicle emission by adopting new emission 

standards on March 1, 2008 (applicable to new vehicles only) and restricting on-road vehicles to 

half based on even or odd vehicle registration number  during 8/17/2007-8/20/2007 and 

7/20/2008-9/20/2008. A weaker form of traffic control continued after the Games as each 

registered vehicle was required to be off the road one weekday per week.  

According to Streets (2007) neighboring provinces and municipalities such as Hebei, 
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Shandong and Tianjin made a significant contribution to air pollution in Beijing. Therefore, co-

host and neighbor cities adopted the similar measures to improve air quality, but the magnitudes 

were smaller than those for Beijing. For example, Tianjin implemented the same odd-even traffic 

control but only during the Olympic Games, Shandong requested closure of 132 heavy polluting 

plants during the Games, Shenyang invested 163 million RMB to replace old buses, and 

Shanghai installed desulfuration facilities for large electricity generating plants. Given the 

limited access to time and location specific policies, we report the general API/AOD change for 

Beijing, co-host and neighbor cities, but restrict the detailed mechanism analysis to Beijing.    

While the 2008 Olympic Games triggered many new efforts for cleaning air, some 

environmental protection policies existed even before 2000. For example, the central government 

started to build the green great wall in northern China since 1978. A nationwide policy was 

adopted in 1999 to encourage farmers to convert less productive farm into green land. These 

policies targeted desertification instead of air pollution, but the two are clearly linked. A more 

direct nationwide campaign for “blue sky” started in 1997. Defining “blue sky” if API below 

100, the central government included the frequency of blue sky days as a performance measure 

reported by local officials. The 2002 amendment specified that a “model city” must have at least 

80% of days with “blue sky” in a calendar year. This standard was raised to 85% in 2008.6 To 

the extent that performance evaluation has a significant impact on local government policies, air 

quality improvements may have occurred nationwide long before the 2008 Games. In our 

analysis, we control for all the national air-cleaning policies by date fixed effects.  

Some earlier air-cleaning efforts were Beijing specific. Before the setup of the BOCOG, 

the city government of Beijing already carried out seven phases of air cleaning. Probably due to 

the increasing occurrence of sand storms, Beijing realized that its early efforts were fruitless and 

it was necessary to adopt more stringent measures to improve air quality. This led to the start of 

phase 1 cleaning on December 16, 1998.7  As time went by, the 50th National Day (10/1/1999) 

helped to further justify air cleaning, but the efforts of Beijing continued after the celebration. 

During the seven phases of air cleaning before the setup of BOCOG, Beijing adopted many 

measures, including extended use of clean fuel, introducing desulfuration of equipment, covering 

                                                 
6 For more details, see MEP documents #1997-349 (stipulated in May 1997), #2002-132 (stipulated on November 
19, 2002) and #2008-71 (stipulated on September 21, 2008, effective January 1, 2010).  
7 See Beijing municipal documents 1998 #24 (phase 1), 1999 #249 (phase 2), and 1999 #29 (phase 3) for more 
details.  
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bare land with grass and trees, enforcing the retirement of heavy-duty vehicles,  dust control on 

construction sites, and a ban on outdoor barbeques. To the extent that Beijing had specific 

reasons to adopt these policies, it was important to control for the city fixed effects and city-

specific trend.  

 

3. Literature Review  

Although researchers have attempted to investigate air quality change in response to the 

Olympic related interventions (Wang et al. 2009a; Tang et al. 2009; Yao et al. 2009; Simorich 

2009), the lack of access to in situ measurements of air pollution data has constrained 

researchers‟ ability to fully evaluate the effects of these interventions.  

Two studies have used their own measurements of air quality instead of the published 

API. Wang et al. (2009a) collected PM10 and PM2.5 data in Peking University between July 28 

and October 7, 2008. They found a significant correlation between the self-measured and 

published PM10, but the absolute level of their self-measure is 30% higher. This finding triggered 

some concerns that the official API must have been subject to manipulation, but this discrepancy 

can be attributed to sampling (through systematic bias in the locations of samplers and types of 

samplers used) and methodological differences (Tang et al, 2009, Yao et al. 2009, Simorich 

2009).  Wang et al. (2009a) also find that meteorological conditions such as wind, precipitation 

and humidity account for 40% of the total variation in PM10. This finding motivates us to control 

for meteorological conditions that can greatly influence concentration and transportation of air 

pollutants (Kumar et al. 2011).  

Wang et al. (2009b) compare the self-measured ambient concentrations of Black Carbon 

(BC) in Beijing in the summers of 2007 and 2008. Although their data covered a longer time 

span than that of Wang et al. (2009a), they do not control for the nationwide trend of air quality 

between 2007 and 2008. The main finding of Wang et al. (2009b) is that the BC concentration 

was significantly better during the traffic controls than without the traffic controls. We could not 

find a precise definition of BC particles in Wang et al. (2009b), but we also suspect BC particles 

are much correlated to diesel exhaust (either from heavy duty vehicles or  industries).  

Unlike academic researchers, United Nations published a summary report (UNEP 2009) 

based on in situ measures of CO, PM10, SO2 and NO2 from the Beijing Environmental Protection 

Bureau (EPB). Their data ranged from 2000 to 2008 including a couple of months immediately 
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after the Olympic Games.  The report examines Beijing‟s in situ measurements before, during 

and immediately after the Games while controlling for meteorological factors. As shown in 

Figure 4, the officially reported API data shows a nationwide trend toward better air. This 

implies that a simple before-after comparison within Beijing is likely to confound the nationwide 

trend with the actual air quality improvement due to the policy interventions adopted for the 

Games. We overcome this shortcoming by comparing Beijing with other big Chinese cities in the 

same time horizon.  We also employ API data until 13 months after the Games so as to better 

evaluate the fade-away effect after the Games. Like this paper, UNEP (2009) has used several 

satellite images from NASA‟s Terra and Aqua satellites for August 2008, but our resolution of 

AOD (10 km x 10 km) is much smaller than theirs (100km x 100km) and our frequency is daily 

instead of monthly. These rich details allow us to link AOD to the exact date and geographic 

location of plant closure and traffic control, a process essential to attribute air quality 

improvement to specific policy interventions.   

 Andrews (2008) suspected that Beijing may have manipulated the official API data for 

several reasons:  Beijing relocated monitoring stations over time; the 2000 MEP standard for air 

quality weakened the limits of Nitrogen Oxides and Ozone; the number of days with API 

between 96 and 100 was significantly higher than the number of days with API between 101 and 

105. Guinot (2008) suggests that it is not uncommon to add monitoring stations with economic 

and urban development and the uncertainty in the API metrics may range from 15% to 25% due 

to measurement errors. In addition to using high resolution AOD data as an objective measure of 

air quality, another novel aspect of our research is to investigate the gaming of API using API 

and visibility, another official statistics related to air pollution but with less media attention. 

A growing body of literature has attempted to evaluate the effect policy interventions on 

air quality in other developing countries.  Davis (2008) examines the traffic restrictions in 

Mexico City (forcing vehicles off the road one day per week) and finds no effect on air quality. 

He attributes the finding to more vehicles in circulation and a composition change toward high-

emission vehicles. In a similar study, Kathuria (2002) finds that the emission controls that Delhi 

adopted in 1999 to 2001 had little impact on air quality improvement for two potential reasons. 

First, more vehicles were added on the road after policy went into effect. Second, no 

supplemental policies were in place to check the traffic volume despite the fact that new vehicles 

had better emission standards. Kumar et al. (2009) examined air pollution 
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distribution/redistribution in Delhi in response to a series of air quality regulations. Two 

alarming findings emerged from this study. First, the air quality of the City improved after the 

regulations, but the effects of the regulations faded away several years after the regulations. 

Second, while the regulations improved air quality in the city, the air quality of neighboring 

areas, without the regulations in place, deteriorated. Another study by Foster and Kumar (2011) 

suggests that the improvement in air quality of the City improved respiratory health of Delhi 

residents and the deteriorated air quality in the neighboring areas is likely to have adverse health 

effects. Foster, Gutierrez and Kumar (2009) examine Mexican plants‟ voluntary participation in 

a major pollution reduction program. They find evidence that measures of voluntary participation 

are related to lower AOD and less infant mortality due to respiratory causes. 

Our research is also related to a broader literature on environmental policies. Several 

studies in the US have documented the health effects of air pollution (Chay and Greenstone 

2002, Almond et al. 2009, Currie and Neidell 2005), the effect of environmental policies on 

polluting industries (Henderson 1996, Becker and Henderson 2000, List et al. 2003), and the 

social costs of environmental policies (Hazilla and Kopp 1990). Most of these studies suggest 

that air quality improvement is a long time process and largely depends on the dynamic interplay 

of government policies and private compliance. In contrast, the actions that China undertook for 

the Beijing Olympics were largely government-driven, much more intensive, and implemented 

in a relatively short period. Not only do these features help separate the effects of the Chinese 

efforts from other confounding factors in the long run, they also help understand how much air 

quality improvement can be achieved if an authoritarian government is willing and able to 

implement intensive measures in a short time.  

More specifically, this study is likely to augment our understanding of the political 

economy of environmental protection in a socialist country. It has been argued that authoritarian 

regimes are more reluctant to protect the environment as they enjoy a greater-than-median 

income share and have a shorter-than-average time horizon than a democratic regime. Congleton 

(1992) and Murdoch and Sandler (1997) show that the democratic countries are more likely to 

support and enforce chlorofluorocarbon emissions control under the Montreal Protocol. 

However, one factor less noticed in the literature is the greater administrative power of 

authoritarians. If political opportunities motivate authoritarians to protect the environment, an 

authoritarian regime like China, may overcome industrial resistance and implement 
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environmental protection policies quicker and at a large scale. These politically motivated 

interventions set the stage for a social experiment to understand how policy interventions in an 

authoritarian regime can improve air quality and protect the environment in a relatively short 

time frame.  

 

4. Data 

 The data for this research were acquired from several sources: the official API data 

published by the MEP, visibility and other meteorological data from the China Meteorological 

Administration (CMA) and the National Climatic Data Center (NCDC 2007), and  the AOD data 

from NASA. Data from China, reported by city and day, were available from June 5, 2000 to 

October 31, 2009; AOD was extracted at 10km spatial resolution for every day within 100km 

distance to the city center for each city from February 26, 2000 to December 31, 2009.   

API Data: For each focal city, the MEP aggregates the measured intensities of NO2, SO2 

and TSP into a daily air pollution index (API) ranging from 0 to 500.8 Specifically, suppose a 

city has M stations and each station monitors NO2, SO2 and TSP for N times each day,9 MEP 

first computes the daily average of all the MxN measures for each pollutant and then translate the 

daily mean intensity into pollutant-specific API according to linear spines with the cutoff points 

defined in Table 1.10 The overall API is the maximum of all the pollutant-specific APIs. If that 

maximum is above 500, the overall API is capped at 500. An API below 50 is defined as 

“excellent” air quality, 50-100 as “good”, 100-200 as “slightly polluted”, 200-300 as 

“moderately polluted” and above 300 as “heavily pollution.” A crude categorization refers to a 

day with API at or below 100 as “blue sky.”  

 MEP reports API data by city and day, and the category of the dominant pollutant(s) if 

API is above 50.  By this definition, we can infer the absolute level of TSP for 72.9% of data 

points across all cities. For the other 19.9% of the data where API was less than 50, we knew 

TSP was upward bounded by the TSP level corresponding to the reported API. In comparison, 

                                                 
8 MEP monitors the intensity of CO, but does not include it in the current API calculation because the calculation 
formula was set ten years ago and at that time the vehicle volume in China was very low. MEP is considering adding 
CO and other pollutants for future API. Source: http://news.163.com/09/0312/11/5470SBA9000120GU.html 
9 The MEP stipulates the number of monitoring stations according to city population and the size of the established 
area. For a large city like Beijing, one monitoring station is required for every 25-30 km2 and the total number of 
stations must be at least 8.    
10For example, if the daily mean of TSP is 370 μg/m3, the corresponding API of TSP is (370-300)/(500-300)*(200-
100)+100 = 135.   

http://news.163.com/09/0312/11/5470SBA9000120GU.html
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inference on NO2 and SO2 was much more difficult because only 0.35% of city-days reported 

NO2 and 6.85% reported SO2 as the dominant pollutant. 

Meteorological data from CMA are reported at 2pm each day at a fixed point in each 

city. It allows us to control for local temperature, precipitation, barometric pressure, sunshine, 

humidity and wind. The data also include visibility, the greatest distance at which an observer 

with normal eyesight can discern a dark object from the horizontal sky. Researchers have shown 

that API and visibility are negatively correlated (Che et al. 2006, Fan and Li 2008) and visibility 

is considered to be an important predictor of fine particulates (Ozkaynak et al. 1985, Huang et al. 

2009). 11 Like API, visibility is reported by Chinese officials but attracts less media attention than 

API. For this reason, Section 6 will use visibility to check the reliability and gaming of API. 

Should there be gaming of API , it should show greater improvement before, during and after the 

Games than the improvement in visibility. 

Conditional on having non-break API and visibility data, our analysis consists of 37 

cities.12 We grouped these cities into four categories: Beijing was a category by itself because 

most of the Games were held in Beijing; Qingdao, Shenyang, Tianjin, Shanghai, and 

Qinghuangdao were categorized as the “co-host” cities because they hosted some of the Games 

in the treatment period.13 BOCOG defined six cities close to Beijing as “Olympic Environment 

Protection Cities.” Our sample included the three largest neighboring cities: Taiyuan, 

Shijiazhuang, Huhehaote.14 The other 28 cities were grouped in the category of control cities. As 

shown in Figure 1, the sample covered almost every provincial capital in China and most 

treatment cities (Beijing, co-host and neighboring cities) are located in the developed parts of 

east China.  

AOD Data: The daily 10km AOD data (Level 2, collection 5.0) were acquired from 

NASA (NASA 2010).  AOD is retrieved using the data from Moderate Resolution Imaging 

Spectroradiometer (MODIS) aboard Terra and Aqua satellites. The AOD extraction procedure is 

                                                 
11 Fine particulates (PM2.5), are defined as particulates with less than 2.5µm in aerodynamic diameter. 
12 Although the MEP reports API for 86 cities and the CMA visibility data cover 69 cities, only 42 cities has API 
data in 2000 and the visibility data are incomplete for some cities between 1993 and 2009. For an unknown reason, 
the API data are missing on June 4, 2008 for all cities. So the “non-break” criterion ignores the missing data on June 
4, 2008. 
13 Qinhuangdao is the only city that violates our sampling rule because its API data is not available until 2001. We 
include it in the sample in order to cover all co-host cities. Results are robust if we exclude Qinhuangdao from the 
sample. 
14 The other three “Olympic Environment Protection Cities” are Datong, Yangquan and Chifeng. None of them is 
provincial capital.  
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available elsewhere (Chu, Kaufman et al. 2003; Levy, Remer et al. 2007; Levy, Remer et al. 

2007).  In recent years, many researchers have shown that AOD, corrected for meteorological 

conditions, can predict air quality (Gupta, Christopher et al. 2006; Kumar, Chu et al. 2011). 

Focusing on Delhi and Kanpur in India and Cleveland in US, Kumar et al. (2009; 2011) 

demonstrate how AOD can be converted to PM10 estimates. They develop an empirical 

relationship between in situ measurements of PM10 and AOD. They conclude that the AOD 

captured 70% of the variations in the PM10 (monitored on the surface) after controlling for 

meteorological conditions and seasonality. Since the in situ PM10 data were not available in 

China, this paper utilizes AOD corrected for meteorological conditions and spatiotemporal 

structure.   

 In addition to being immune to potential data manipulation from Chinese officials, AOD 

can be extracted at a high spatial resolution (~10km x 10km). This enabled us to evaluate change 

in AOD with respect to the location specific interventions of plant closure and traffic control. 

Despite these advantages, there are several concerns about the AOD data. First, without the in 

situ measurements of air pollution it is difficult to develop and validate robust air quality 

estimates. This implies that the air quality improvement detected from AOD is relative instead of 

absolute. Second, by definition, AOD captures the amount of radiation absorbed, reflected and 

scattered due to the presence of solid and liquid particulates suspended in the atmosphere 

(Kaufman, Gobron et al. 2002; Kaufman, Tanre et al. 2002). Since the sources of aerosol can be 

natural (such as dust storm, sea salt forest fire) and anthropogenic (combustion), air quality 

(PM10 concentration) predicted using AOD can vary regionally. We cannot extrapolate the PM10 

predictive model of Delhi or Cleveland to China. Third, AOD is sensitive to the point and time 

specific weather conditions, and it is not possible to retrieve AOD under cloudy conditions; 

therefore there are systematic gaps (across time and geographic space) in AOD dataset (Kumar 

2010).  

 In total, we retrieved 102,820 valid 10km AOD observations over Beijing from February 

25, 2000 to December 31, 2009. Of all the 3,596 calendar days in the time span of this study, 

only 2,297 days (64%) had valid AOD observations due to gaps in the data. On average, we had 

45 data points of AOD per day over Beijing. Similarly, the AOD data were retrieved for the 

other 36 cities, which brought the total sample of AOD to 2,614,734 data points. 

  To control for time-specific meteorological conditions at the observation time of AOD, 
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we acquired hourly global surface meteorological data from the monitoring stations in and 

around the selected cities. The details on these data are available elsewhere (NCDC 2007). These 

data were collocated with the AOD data within one hour time interval of AOD time on a given 

day. This means we assigned the same value of meteorological conditions (from the closest 

station) to all AOD values in a given city on a same day. Since there were subtle gaps in the 

meteorological and AOD data, it resulted in missing values in 6% of the sample. Therefore, 

meteorological conditions were imputed for missing days when AOD was available. The 

procedure impute was employed to estimate missing values with the aid of continuous time and 

other city specific meteorological conditions in STATA  (StataCorp 2010). 

Information about location-specific actions was collected for Beijing only. We 

overlay a 2.5km x 2.5km grid over Beijing, and define three variables for each cell of the 

grid. The first is a dummy variable that indicates whether the cell has any permanent plant 

closure at present or before the study date d (close_pergd). This was defined using the exact 

addresses and closure dates of four large plants. The second variable is also a dummy 

variable and includes information on whether the cell has any temporary plant closure 

during the study date (close_temgd). This included 20 temporary closures reported in the 

local newspapers; the plant closure dates were defined as from 7/20/2008 to 9/20/2008. The 

exact locations of permanently or temporarily closed plants are shown in Figure 2. The third 

variable is the length of major and secondary roads in cell g during 2005 (road_deng). This 

variable is time-invariant and will be interacted with the period dummies to capture policy 

interventions due to the Games. Figure 3 shows the cell-by-cell distribution of major and 

secondary roads in Beijing.   

To merge these location-specific interventions with AOD, we take the center of each 

AOD observation (by latitude and longitude) and draw a 5km radius around it. We then sum 

and average the values of all three variables (close_pergd, close_temgd  and road_deng) in all 

2.5km cells that overlap with the search radius.  

Supplemental Data: In addition to the API, meteorological and satellite data, we 

acquired data on economic development indicators, including GDP growth rate, GDP per 

capita, total industrial production, and population density by city and year from the 

statistical yearly book published by the National Statistical Bureau. These data were 

available up to 2008. In the main analysis, dummy variables were created to indicate 
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missing socioeconomic variables in 2009.  

To the extent that Beijing‟s unobservable economic growth may follow a different 

linear trend over time, it is controlled for in the city-specific trend. To further address the 

concern that Beijing may experience different economic growth in 2009, we use 2007 and 

2008 economic development data to extrapolate the 2009 data for each city separately. In 

2008, many economic activities of Beijing were Olympic specific, so this imputation tends 

to overestimate the 2009 economic growth in Beijing and therefore an analysis controlling 

for the imputed data should underestimate the fade-away effect in 2009. Our results are 

robust to the addition of the imputed data.  

Other data include the 1999 total energy consumption at the provincial level from the 

China Energy Data Book, and the 1999 total number of motor vehicles by city from the 

China Transportation Yearbook of 2000. Our analysis allows these two variables to affect a 

quadratic time trend of air pollution. We do not use the after-2000 data on energy 

consumption and motor vehicles because a couple of Olympic-motivated policies target 

them directly. A dummy of heating season is defined as one if a city has a regular heating 

supply during the winter and if the date under study is between November 15 and March 

15.15  

  

5. Main Results 

5.1  Descriptive Analysis 

            Table 2 reports the average daily API by treatment periods and city groups. Before the 

establishment of BOCOG, the average APIs of Beijing and its neighboring cities were 20-50 

points higher than that of control and co-host cities. While the API of every city group improved 

before the end of the Games, neighboring cities did not show improvement in the preparation 

period. In comparison, the improvement in Beijing was not obvious until the start of the Games. 

During the Games, the API of Beijing and its neighbor cities was better than the rest of the 

sample. After the Games, every city group reverted, but not fully to where it was before the setup 

of the BOCOG. Similar patterns appear in the absolute levels of TSP, which was inferred using 

                                                 
15 Roughly speaking, cities to the north of the Huai River have regular heating supply. More detailed city by city 
variation is borrowed from Almond et al. (2009).  November 15 to March 15 is the heating supply dates for Beijing. 
We do not know the exact heating supply dates for other cities with regular heating supply.  
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the reported API.16.    

Figure 4 shows the detailed API by date and city groups. To facilitate visual comparison, 

every data point plotted in Figure 4 represents a 40-day moving average of API surrounding a 

specific date. Over time, API is trended down for every group. There are  strong seasonal 

variations: high value in winter and low in summer.  This suggests that the better API during the 

summer Games (as shown in Table 2) could be driven by season instead of real improvement and 

a simple before-after comparison of Beijing (as in UNCP 2009) tends to overestimate the air 

quality improvement due to the Olympic Games. Across groups, control and co-host cities show 

similar fluctuations in API. In comparison, Beijing and neighboring cities are more similar to 

each other in terms of variation in API than the control and co-host cities.  

Both Table 2 and Figure 4 indicate significant variations across time, cities, and seasons. 

A pretreatment trend test, after controlling for city fixed effects and day fixed effects, still shows 

significantly different trends across the four city groups, suggesting that more specific controls 

such as city-specific trends might be needed to derive any meaningful inferences on the causal 

impact of the Olympic Games. 

 Table 3 summarizes the average visibility by city groups and treatment periods. In the 

benchmark period, Beijing‟s visibility was slightly better than that of the co-host cities but worse 

than that of control and neighboring cities.  After the setup of BOCOG, Beijing‟s visibility 

improved over time, while all other city groups reported the best visibility during the Games 

(Figure 5). Like API, visibility shows strong seasonal variation: low visibility in winter and high 

in summer. 

Consistent with the literature, we find a significantly negative correlation between 

visibility and API (-0.276, p-value<0.01). Regressing visibility on API and all the other 

meteorological variables by city-day, resulted in an R-square of 0.404; the coefficient of API 

was -0.059 with t-statistics equal to -5.04. The strong correlation between visibility and API 

also indicates toward the fact that 80.12% of city-days in our sample reported TSP as the 

dominant pollutant. 

Table 4 summarizes the average AOD by city groups and treatment periods. Since 

the small fraction of aerosols cycles and recycles longer (Textor, Schulz et al. 2006), policy 

interventions may have a lagged effect on AOD. Therefore, we decompose the post period 

                                                 
16 Inference is available if the API is above 50 and the dominant pollutant is TSP.  



16 
 

into 5 spans, namely 1 month, 2-3 months, 4-6 months, 7-10 months and 11-16 months after 

the Games. As shown in Table 4, the AOD of Beijing increased during the Games and the 

most significant drop of AOD appeared in 2-5 months after the Games. By spring 2009, the 

AOD of Beijing bounced back to that of the benchmark period but improved somewhat in 

the rest of 2009. Similar improvement and reversion patterns appear in Figure 7 when we 

plot the satellite based AOD over Beijing for the periods before, during, immediately after 

and one year after the Games. The plotted AOD were corrected for meteorological 

conditions and spatiotemporal trends in and around Beijing. Figure 6 shows strong 

seasonality as well as similarity across the four city groups for AOD. As we expect, AOD is 

positively correlated with API (correlation ~ 0.22) and negatively correlated with visibility 

(~ -0.47).   

 

5.2  Regression Results of API 

Defining the unit of observation as city (c) by date (d), we use the following specification 

to detect the effect of the Olympic Games on API:  

(1)                  ∑                    

                                                                        

where c denotes city fixed effects, d  denotes date fixed effects, t  denotes the day count 

between 6/5/2000 to d so that c t   captures city-specific time trend. The key variables are the 

interaction of the Beijing dummy and each treatment period. In the most basic form, {       } 

distinguishes preparation from during and post the Games. A more detailed version decomposes 

preparation into 2001-2004 and 2005-2008, and post period into 1, 2-3, 4-6, 7-10 and 11-13 

months post the Games. 

We use several sets of control cities: all the other 36 cities as control; excluding the eight 

co-host and neighbor cities; all the 36 non-Beijing cities but with the co-host and neighbor cities. 

This amounts to:  
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(2)                  ∑                    

                        ∑         

 

                 ∑           

 

                        

                                            

In both specifications (1) and (2), cdW  denotes CMA reported weather conditions, 

including rainfall, temperature, barometric pressure, sunshine, humidity (if rainfall is zero), wind 

velocity, and four dummies for wind direction (east, south, west and north) by city and date, cyX  

denotes socioeconomic factors including GDP growth rate, GDP per capita, industrial 

production, and population density by city and year, ,1999cE  denotes energy use of city c in year 

1999, ,1999cV  denotes the number of registered motor vehicles of city c in year 1999, and cdH  is 

the dummy of heating season. We use 1999 instead of yearly data on energy use and vehicle 

stock because many Olympic preparation efforts might have a direct impact on them. To account 

for their potential growth independent of the Olympic Games, we include the interactions of t2 

with the 1999 energy use and the 1999 vehicle numbers.17 The error term, cd , is clustered by 

each individual city, except that all the co-host cities are pooled as one cluster and all neighbor 

cities are pooled as another cluster. 

Table 5 presents the estimates of ,BJ x , ,cohost x  and ,neighbor x  in six columns. Columns 1-4 

contrast Beijing with all the other 36 cities. More specifically, Column 1 controls for daily 

weather city fixed effects and date fixed effects, Column 2 adds city-specific linear trends, 

Column 3 adds vehicle and energy controls which include the heating dummy and the interaction 

of t2 with energy and vehicle numbers as of 1999.  Column 4 adds socioeconomic factors. 

Column 5 uses the same specification as Column 4 but excludes the co-host and neighbor cities 

from the sample. Following specification (2), Column 6 keeps co-host and neighbor cities in the 

sample, but treats them as two separate groups with different coefficients in different periods.  

One consistent finding is that most API improvement in Beijing was recorded during and 

immediately after the Games. Specifically, Column 1 shows that Beijing‟s API was slightly 

better (-0.334, statistically insignificant) in the preparation period than the API before the birth of 

BOCOG (109.31). The effect, measured by decline in API, was the highest during the Games (a 

decline of 29.42 in API) but significantly smaller (13.21) after the Games. Both numbers were 
                                                 
17 The interactions of t*1999 energy use and t*1999 vehicle numbers are absorbed in city specific linear trends.   
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significant with 99% confidence. A similar pattern persisted when we added city-specific linear 

trend, energy and socioeconomic factors or used different sets of control cities. The only 

exception was that, with sufficient controls, the API improvement became statistically significant 

before the Games but its magnitude was still much smaller than during or after the Games.    

Our main assumption is that Beijing was comparable with the control cities without the 

Game related interventions once controlled for the city-by-city differences using the city fixed 

effects, the nationwide fluctuation by date fixed effects, the city-specific linear trend, weather 

and other observable factors. To test this assumption, we perform a pre-treatment test using data 

before the setup of BOCOG. Specifically, we divided the pre-treatment period into two: 

6/5/2000-12/31/2000 and 1/1/2001-12/12/2001. Using the first segment as benchmark, we 

regressed the pre-treatment API on the interaction of Beijing and the dummy of the second 

period, in addition to the same controls as in Columns 1-6. The F-statistics for this interaction 

coefficient, reported at the end of each column, is highly significant in Columns 1-3, but 

insignificant in Columns 4-6. This suggests that it is important to control for the city-specific 

trend, energy and socioeconomic factors before we interpret the estimated ,BJ x  as a causal effect 

of the Olympic Games on Beijing.  

In contrast, if we perform the same pretreatment test on co-host and neighbor cites, the F 

statistics are significant, suggesting that co-host and neighbor cities are not readily comparable to 

the 28 control cities and the coefficients reported in Column 6 ( ,cohost x  and ,neighbor x ) cannot be 

interpreted as the causal effect of the Olympic Games. For this reason, we believe Column 5, 

which excludes co-host and neighbor cities from the sample, yields the most robust results.18  

To further examine how the effect of the Olympic Games has changed over time, we use 

the same specification as in Table 5 Columns 4-5 but decompose the preparation period into two 

sub-periods (prepare1 for 12/13/2001-12/31/2004, prepare2 for 1/1/2005--8/7/2008), and the 

post-Games into five sub-periods (1, 2-3, 4-6, 7-10 and 11-13 months after 9/18/2008).19 Results 

reported in Table 6 suggest that the API of Beijing‟s API declined slightly in the two preparation 

                                                 
18 In an unreported table, we replaced the dependent variable with ln (API) and found similar results in all five 
columns. 
19 As a robustness check, we have examined the time-varying effects differently by singling out 2007, 2006, 2005, 
2004, and 2003 from the rest of the preparation period progressively. The API results on Beijing and neighbor cities 
are similar to what is reported in the draft. The API results on co-host cities are less stable (some coefficients 
become positive and significant), but they lead to the same conclusion that the Olympic Games do not cause any 
significant API reduction in co-host cities.   
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periods (-5.076 and -2.154), but that improvement was much lower than the reduction of API 

during the Games (32.319). Interestingly, the API improvement declined to 26.494 one month 

immediately after the Games and 12.723 eleven to thirteen months after the Games. The F-tests 

conducted at the end of Table 6 suggest that most of the reversions are statistically significant. In 

short, the biggest effect of the Olympic Games on Beijing API took place during the Games and  

roughly 60% of the effect faded away one year after the Games. 

 

5.3 Results on AOD 

 To address the concern that API may have been subject to manipulated (Andrew 2008), 

we resort to AOD as a more objective measure of air quality. Table 7 reports the regression 

results as we rerun specification (1) on AOD. Since the AOD locations are irregular (because of 

varying satellite path every day), we control for city fixed effects as well as dummies describing 

whether the distance from the center of AOD to the center of the city is less than 12.5km, 

between 12.5km and 25km, and greater than 25km. Since the point-time-specific weather 

conditions (dew point, temperature, wind speed, and relative humidity) were highly auto-

correlated, factor analysis was employed to collapse these variables into three uncorrelated 

factors.  

 Table 7 focuses on the three crude time spans: before, during and after the Games. The 

improvement of AOD (meaning declines) was not statistically significant until after the Games. 

To better understand the timing of AOD improvements, Table 8 decomposed the preparation 

period into prepare1-2 and the post period into after1-5. Like before, we added controls 

progressively from Column 1 to Column 4, excluded co-host and neighboring cities in Column 5, 

and estimated the treatment effects for co-host and neighboring cities separately in Column 6. 

Table 8 only reports the coefficients of Beijing.  

 All six columns present a consistent finding: the improvement of AOD started before the 

Games, sped up during the Games, and reached the best level in 2-6 months after the Games. 

However, by spring 2009, the AOD improvement of Beijing reverted significantly as compared 

to the best level. These estimates are greater than that reported in Table 7 because the estimation 

is somewhat sensitive to how we decompose the preparation period. Different decompositions 

imply different identification on the coefficient of city-specific time trend. We tried a number of 

divisions on the preparation periods. While the point estimates vary, we always reach the same 
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conclusion that AOD improvement was the best 2-6 months after the Games and gradually 

declined afterwards.  

The sharper reversion of API after the Games suggest that the policy interventions 

adopted may have immediate effects on the surface measurement of air quality. However, the 

best improvement in AOD that represents the optical thickness in the atmosphere and influenced 

by meteorological conditions was achieved several weeks after the Games. This suggests that 

cycling and recycling of pollutants, especially fine mode aerosols in the atmosphere may take 

several weeks before the full effects of interventions are realized in the atmosphere and on the 

surface. In the exploratory analysis, we controlled for daily weather conditions up to 10 days 

before the study time. This is the best we can do given the potential colinearity between current 

and lagged weather. Like in Table 8, significant decline of AOD did not occur in Beijing except 

for 2-6 months after the Games.  

 An alternate explanation for the reversion of air quality improvement is economic 

development in 2009. Unfortunately, the National Bureau of Statistics of China has not 

published the city-specific report for 2009. Therefore we cannot control for it directly. In the 

exploratory analysis, we make a linear projection of 2009 socioeconomic factors based on city-

specific data of 2007 and 2008. If anything, this tends to overestimate the economic development 

of Beijing in 2009 because a lot of development in 2008 was driven by one-time investment for 

the Olympic Games. With the imputed 2009 socioeconomic variable, we rerun Tables 5-10 and 

find that the results are very much similar to what is reported here. This robustness suggests that 

the reversion of air quality improvement in Beijing is unlikely driven by the unobserved 

economic development in 2009.20  

  

6. Gaming of API 

This section examines API more intensively and compares it with visibility, another 

official statistics reported by China but received with much less media attention. If the 

improvement in API was driven by gaming, visibility should not show much improvement. 

 Gaming of blue sky days: One reason that led Andrews (2008) to suspect the API data 

for Beijing was higher frequency in the range right below the cutoff for blue sky days (96-100) 

than in the range right above it (101-105). This pattern could be driven by gaming if Beijing 

                                                 
20 Results are available upon request. 
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officials systematically underreported a slightly-above-100 API than slightly below the 100 

mark. One may argue that such gaming is more likely than blatant cheating either because it is 

easier to manipulate air immediately surrounding the samplers, or because large scale 

underreporting is more likely to raise questions from the central government. However, gaming 

is not the only possibility. Besides measurement error, as argued in Guinot (2008), the density of 

the real API could have decreased between 96 and 105, even without gaming.  

We plot the kernel density of API for each city group (Beijing, co-host, neighbor and 

control) in Figures 8(a) to 8(d). Each figure presents four densities, corresponding to before the 

setup of BOCOG, the preparation period, during the Games, and post the Games. If officials 

underreported API right above the 100 mark as compared to right below the 100 mark, the 

density curve should show a bump right below the 100 mark, and a dip right above the 100 mark. 

In contrast, if API was not subject to gaming, the density plot of API should be as smooth around 

100 as in other neighborhoods.  

An abnormal bump right below 100 does show up in some periods for the co-host, 

neighbor and control cities, but the pattern is less apparent in Beijing because most times the 

mode is close to 100 in Beijing. More importantly, when the mode of Beijing API shifts to the 

left during and after the Games, we do not observe any bump in the area right below the 100 

mark. This is understandable because the goal of Beijing is not limited to the number of “blue 

sky days” and Beijing officials may be reluctant to game the system given the intensive media 

attention on Beijing preceding and succeeding the Games. In comparison, the bump right below 

100 appears in the control cities, despite the lack of connection to the Games. This suggests that, 

if the above-mentioned gaming exists in control cities, they are more likely responsive to the 

nationwide performance evaluation of local officials, rather than to the Games per se. The below-

100 bump for the co-host and neighbor cities could reflect response to both incentives.  

Gaming in the second half of month: To facilitate performance evaluation, local 

governments are required to file monthly report on the number of blue sky days achieved in a 

calendar month. This could generate extra gaming toward the end of month. To evaluate this 

possibility, Figures 9(a) to 9(d) plot the kernel density of API for each city group, for the first- 

and second-half of the month separately. These densities exclude the days during the Olympic 

Games because Olympic-related cities should have incentive to maintain good API throughout 

the duration of the Games, not just in the days towards the end of the month. 
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In Beijing, the API density for the second-half of month does not have a more apparent 

bump right below 100 and the second half of month tends to have even higher API than the first 

half. Both patterns are inconsistent with the extra gaming incentives in the second half of month. 

However, it is more difficult to rule out extra gaming in the second half of month for the other 

three cities groups. The bump below 100 is similar in the first- and second-half of month for the 

control cities, and the bump seems more likely to stand out in the second-half of the month for 

the co-host and neighbor cities.  

 To detect whether the Olympic Games generate more gaming in the second half of a 

month than in the first half, we report two sets of results. The first set focuses on an indicator of 

whether the study date falls into the second half of a month. Since this indicator alone will be 

absorbed with date fixed effects, we interact it with the dummies for the three treatment city 

groups. As reported in Column 1 of Table 9, the coefficients of these interactions are all positive, 

which is against the gaming prediction. In Column 2 of Table 9, we add to Specification (2) a 

full set of interactions between the key variables {           ,                , and 

                 } and an indicator of whether the study day falls into the second half of a 

month. The coefficients of these new variables capture the additional effect of the Games on the 

second-half of a month, relative to the first half.  If Olympic Games introduced extra incentives 

to gaming around the threshold of 100 in the second half of a month, these new coefficients 

should be significantly negative. As shown in Table 9, one out of the nine coefficients is 

significantly positive, the rest are all indifferent from zero (by 95% confidence). We take this as 

evidence that the Olympic Games do not generate more gaming of the API data in the second 

half of the month than in the first half of month. That being said, it does not rule out the 

possibility that the same amount of gaming may exist in both halves of the month, and some 

gaming around the threshold of blue sky days may have existed nationwide independent of the 

Olympic Games. 

Evidence from visibility: The CMA reported visibility data are not readily available to 

the public (we purchased them from CMA). Since visibility attracts little media attention, there 

should be little incentive to fabricate the visibility data. If the significant API improvement in 

Beijing was due to underreporting of air pollution during the Games (than before and after the 

Games) we should have observed a lower correlation between API and visibility during the 

Games. Throughout our sample, the correlation between API and visibility (by city-day) was  
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-0.2370 before the setup of the BOCOG, -0.2918 in the preparation period, -0.3903 during the 

Games, and -0.2737 after the Games. The higher correlation during the Games is at odds with the 

gaming prediction.  

More importantly, we repeat specification (1) with visibility as the dependent variable. 

Since the co-host and neighboring cities have violated the pretreatment test, Table 10 only 

reports the regression results for Beijing, either pooling the co-host and neighboring cities with 

the control cities (Columns 1-4) or excluding co-host and neighboring cities from the sample 

(Columns 5).The key assumption here is that, before the treatment, the visibility of Beijing 

follows the same fluctuation pattern as that of the control cities, once we control for the daily 

weather, date fixed effects, city fixed effects, city-specific linear trend, energy, and 

socioeconomic factors. To test this assumption, we report the pretreatment test statistics at the 

end of each column. Like API, these statistics suggest that the comparability of Beijing, and 

other cities is not justified until we control for city-specific linear trend, energy, and 

socioeconomic factors.  For this reason, we focus on Columns 4 and 5.  

 The regression results suggest that visibility made some improvement in the preparation 

period and such improvement was highest during the Games. It is tempting to interpret the 

insignificant coefficient of ,BJ x  after the Games as an abatement of visibility improvement, but 

this is not conclusive given the large standard errors. These findings are inconsistent with the 

gaming explanation of API improvements. 

One explanation for the less reversion of visibility is that gaseous pollutants captured in 

API (for example coarse particles) may not have a strong impact on visibility.21 To examine this 

explanation, we regress API on visibility, take the residual as the non-visibility component of 

API, and use the residuals as the dependent variable for the same specification as Table 10 

Column 6 (i.e. using the most extensive controls but excluding the co-host and neighbor cities 

from the sample). Results suggest that the late-occurring and short-lived effects of the Games on 

Beijing‟s API are likely driven by the non-visibility component of API.  

 Overall, all three datasets – API, visibility and AOD – suggest that Beijing witnessed real 

improvement in air quality due to the Olympic Games. However, both API and AOD data 

suggest that this improvement was short-lived and faded away significantly within one year of 

                                                 
21 Huang et al. (2009) compare visibility with the in situ measure of each pollutant, conditional on data from 
Shanghai only. They show that visibility is more correlated with fine particles (PM2.5) than with other pollutants. 
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the Games.  

 

7.  Mechanisms of air quality improvement in Beijing  

  The above analysis suggests real air quality improvement in Beijing during and after the 

Games. Before policy makers use this finding to guide future policy interventions in China and 

elsewhere,  it is important to understand which actions were most effective in improving air 

quality in Beijing. The preparation period witnessed four types of actions: plant closure, furnace 

renovation, new automobile emission standard, and traffic control. It is difficult to distinguish 

these four actions because they overlap in time and their effects may be cumulative and gradual. 

Given we have developed fine resolution data for Beijing, we present the results of  two 

investigations for Beijing. First, we examine whether the API of Beijing changed significantly 

before and after the cutoff dates corresponding to each action, and assess whether we can 

attribute these changes to a particular action depending on how large the changes were, how 

immediate the effects of the action were, and to what extent the action overlapped with other 

actions. Second, we investigate location specific AOD with respect to location and time of 

interventions. We achieve this by linking the latitudes and longitudes of AOD data with the 

timing and location of plant closures and traffic control for major and secondary roads.22 This 

approach was subject to the caveat that the effect of surface interventions on AOD may be 

delayed due to the prolonged life cycle of aerosols.  

Evidence from API: Specification (3) mimics Specification (1) but replaces the 

interaction of Beijing and the treatment periods with a set of interactions between Beijing and a 

dummy of whether the study date t is after the above-mentioned cutoff date for action a. For 

example, the dummy of plant closure is defined as one if t is after December 31, 2007 and the 

dummy of traffic control is turned on if t falls into 8/17-8/20/2007 or 7/20/2008-9/20/2008.  

(3)                                                

                                                               

                                                      

                                                                            . 

To better understand the overlap of the four actions, we first run Specification (3) with 

only one action included and then pool all four actions in the same regression. The results are 
                                                 
22 We cannot find any geographic data on furnaces in Beijing.  
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reported in Table 11. When we look at each action separately, all actions were associated with a 

significant decline in API after the corresponding cutoff date than before the cutoff. However, 

with all four actions combined, only plant closure and traffic control showed significantly 

negative coefficients. The coefficient of furnace renovation was no longer significant, and the 

coefficient of new emission standard was even positive. The counter-intuitive sign for the new 

emission standard is probably because the new standard only applies to new vehicles, which 

could have a perverse effect of encouraging more use of old vehicles. Similarly, no-effect was 

shown in Delhi, India (Kathuria 2002). 

Panels B and C examine how plant closure, traffic control, furnace renovation and new 

emission standard of Beijing correlate with the inferred TSP density and whether the reported 

dominant pollutant is SO2. We dropped NO2 because very few percent of days (0.35%) report 

NO2 as the dominant pollutant. Like Panel A, we first focus on each single action and then pool 

the four actions in the same regression.  

Panel B suggests that plant closure and traffic control accounted for the most reduction in 

the absolute density of TSP. Its similarity with the API results is not surprising because 72.9% of 

the total sample and 84.4% of the Beijing observations reported TSP as the dominant pollutant. 

Since we cannot infer the exact level of TSP when API is below 50 and API is more likely below 

50 during and after the Games, we tend to underestimate the effects of Olympic-related actions 

on TSP. According to the last column of Panel C, only furnace renovation was associated with a 

lower likelihood of SO2 being the dominant pollutant. In theory, plant closure should have had a 

similar effect on SO2 but due to its strong effect on TSP it might have reduced the chance of SO2 

being the dominant pollutant.  Like in Panel A, the introduction of new emission standard has a 

counter intuitive sign on TSP and SO2.   

Evidence from AOD and point-specific policies As described in Section 4, we 

construct variables for permanent plant closure (close_pergd ), temporary plant closure 

(close_temgd ) and road density (road_deng ) for each 2.5km cell, and aggregated them to match 

the spatial resolution of AOD (~ 10km x 10km).  To capture the policy interventions due to the 

Games, the time-invariant road_deng with seven period dummies of  preparation for the Games, 

during the Games, and 1, 2-3, 4-6, 7-10 and 11-15 months after the Games. We expected that the 

effects of the Games be greater in an area with more major and secondary roads. To capture the 

potentially time-varying effect of close_pergd  and close_temgd, we interact close_pergd  with 1, 
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2-3, 4-6, and 7+ months after the closure date and close_temgd with during, 1 month after, 2-3 

months after and 4-6 months after the temporary closure.  

We apply the AOD data of Beijing (at center point p date d) to the following 

specification: 

(4)              ∑                     
  

    

 ∑                       
  ∑             

        
           

 

   

 

   

 

where    represent area fixed effects for each 10km x 10km square in Beijing.   

 Under this specification, Table 12 reports four sets of results with progressive control of 

date fixed effects, area fixed effects, and weather variables. Across all columns, it is clear that 

traffic control is more effective in improving AOD in the areas with more roads. While this 

improvement started to appear right after the Games, it was the greatest 2-3 months after the 

Games and then tampered off completely within 6 months after the Games. This suggests that the 

strictest traffic control (50% of vehicles off road) was very effective in reducing AOD 

temporarily but the weaker form of traffic control that continued after the Games (vehicles off 

road one of five weekdays) was ineffective. The latter is consistent with evidence shown in 

Mexico City (Davis 2008).   

Similarly, temporary closure had the largest reduction effect on AOD one month after the 

closure and this effect declined afterwards. The effect of permanent closure was not significant 

until 4-6 months after the closure date and dropped quickly afterwards. The lack of permanent 

effects was not surprising, as temporary closure was only effective immediately before and 

during the Games and even if permanent closure had a permanent effect in ground emission, 

nearby aerosols may travel to mitigate the effects. 

The estimates reported in Table 12 allow us to compare the effectiveness of permanent 

plant closure, temporary plant closure and traffic control. The largest coefficient of permanent 

plant closure on AOD improvement suggests that closing one plant permanently will at the best 

improve the AOD within 5km radius by 0.42 units. This is an enormous effect considering the 

fact that the average AOD of Beijing was 0.53 before the setup of the BOCOG. In comparison, 

to achieve the same effect by other measures, one needs to temporarily close 1.6 plants or 

restricting on-road vehicles to half in an AOD area that has a total length of 118.25km in major 

and secondary roads. Given the fact that the road length in a typical 5km radius surrounding a 
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center point of AOD is no more than 12km, plant closure is much more effective than traffic 

control for a specific AOD area. However, traffic control can be applied to many AOD areas at 

the same time but plant closure is tied to a specific address. In this sense, the total effect of traffic 

control can be comparable or even greater than closing a single plant depending on how wide the 

traffic control is applicable. How to compare the effectiveness of these measures in light of their 

economic and social cost is a potential topic for future research.   

Overall, the detailed analysis of AOD within Beijing confirms the previous finding that 

traffic control and plant closure were most likely to be responsible for the air quality 

improvement in Beijing and their effects were temporary.  

   

8. Conclusion 

Viewing the 2008 Olympic Games as a political opportunity, China adopted a series of 

radical measures to improve air quality in Beijing. Based on the publicly reported air pollution 

index (API), we find that these actions, especially plant closure and traffic control, effectively 

reduced the API (i.e. improvement in air quality) in Beijing by 29.65% during the Games as 

compared to one year before any Olympic-motivated action.23 However, roughly 60% of this 

improvement in air quality dissipated one year after the Games.24 The satellite based AOD data, 

acquired from NASA, confirms that air quality improvement in Beijing was real but temporary.  

Our results imply that, in contrast to the common wisdom regarding the impact of 

political regime on environmental protection (Oates and Portney 2003), an authoritarian regime 

could use its administrative power to improve air (or environmental) quality but its effectiveness 

may largely depend on the underlying political motivation. Even if the regime has such 

motivation, it remains an open question as to whether the actions adopted by an authoritarian 

regime are in line with the public health and/or environmental interest in the long run. Is it 

possible that China has sacrificed other welfare-enhancing policies in order to boost its political 

image during the Games? Could it be more beneficial to the society if the same resources were 

distributed more evenly across geographic space and time? These questions, as well as the 

impact of the air quality improvement on human health and environment, call for future research.  

                                                 
23 The estimated improvement is 32.23, which is a 29.65% reduction from the absolute level of API in Beijing 
before the setup of BOCOG (109.01).   
24 The estimated improvement of API in Beijing is 32.23 during the Games, 12.723 in 11-13 months after. (32.23-
12.723)/32.23=60.5%. 
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Figure 1: The map of the 37 study cities 

 
 
Figure 2: Distribution of Permanent and Temporary Plant Closures in Beijing 

 
Data source: http://www.gov.cn/zwgk/2008-04/14/content_944313.htm  

http://www.gov.cn/zwgk/2008-04/14/content_944313.htm
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Figure 3: The distribution of major and secondary roads in Beijing, as of 2005 
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Figure 4: Time series of API by city group and treatment periods25  

 
 

Figure 5: Time series of visibility by city group and treatment periods26  

 

                                                 
25  Moving average: The API at date t is        

 

  
∑            

      
26  Moving average: The visibility at date t is               

 

  
∑                   
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Figure 6: Time series of satellite-based AOD by city group and treatment periods27 

 
  

                                                 
27  Moving average: The AOD at date t is        

 

  
∑            
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Figure 7: Satellite based AOD, corrected for meteorological conditions and spatiotemporal trends in and around Beijing. 
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Figure 8: Kernel density of API by city group and period 
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Figure 9: Kernel density of API by city group and half month 
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Table 1: MEP cutoff points for different levels of API 
 

API Pollutant intensity (μg/m3） Air 
quality 
level 

Air Quality 
condition 

Notes of health effects 

TSP SO2 NO2 

500 1000 2620 940 V Heavy 
pollution 

Exercise endurance of the healthy people 
drops down, some will have strong 

symptoms. Some diseases will appear. 
400 875 2100 750 

300 625 1600 565 IV Moderate 
pollution 

The symptoms of the patients with cardiac 
and lung diseases will be aggravated 

remarkably. Healthy people will 
experience a drop in endurance and 

increased symptoms. 
200 500 250 150 III Slightly 

polluted 
The symptom of the susceptible is slightly 
aggravated, while the healthy people will 

have stimulated symptoms. 
100 300 150 100 II Good Daily activity will not be affected. 
50 120 50 50 I Excellent Daily activity will not be affected. 

Source: The first four columns are taken from the MEP website. The last three columns are copied from 
Table 2.2 of UNEP (2009).  
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Table 2: Summary of daily average API by treatment periods and city groups 
 

API Control 
cities Beijing Co-host 

cities 
Neighbor 

cities 
Benchmark period (06/05/00-12/12/01) 76.08 109.01 88.16 126.79 
Preparation (12/13/01-08/07/08) 72.36 102.93 78.79 93.11 
  Preparation 1 (12/13/01-12/31/04) 74.91 104.02 82.82 102.90 
  Preparation 2 (01/01/05-08/07/08) 70.18  102.01 75.36 84.81 
Olympic Games (08/08/08-09/17/08) 56.16 54.88 57.34 52.47 
After Games (09/18/08-12/31/09) 65.55 81.83 70.78 73.11 
   After Games 1 (09/18/08-10/17/08) 63.58 66.63 65.93 62.16 
   After Games 2 (10/18/08-12/17/08) 73.12 89.36 76.08 86.09 
   After Games 3 (12/18/08-03/17/09) 74.13 85.07 79.60 86.99 
   After Games 4 (03/18/09-07/17/09) 61.82 81.35 67.18 70.26 
   After Games 5 (07/18/09-10/31/09) 58.82 79.62 65.84 60.35 
Total 71.96 100.84 78.9 95.7 

 
 
TSP (μg/m3) inferred from API 
(conditional on API>=50 & dominant 
pollutant=TSP) 

Control 
cities Beijing Co-host 

cities 
Neighbor 

cities 

Benchmark period (06/05/00-12/12/01) 235.57 311.47 256.63 345.97 
Preparation (12/13/01-08/07/08) 226.70 301.21 232.71 274.34 
  Preparation 1 (12/13/01-12/31/04) 234.70 305.09 243.98 294.28 
  Preparation 2 (01/01/05-08/07/08) 219.68 298.08 222.34 256.20 
Olympic Games (08/08/08-09/17/08) 179.44 178.78 182.48 161.08 
After Games (09/18/08-12/31/09) 211.04 249.81 211.99 217.60 
   After Games 1 (09/18/08-10/17/08) 201.99 226.84 202.36 209.93 
   After Games 2 (10/18/08-12/17/08) 227.41 269.48 230.84 253.31 
   After Games 3 (12/18/08-03/17/09) 234.69 266.64 238.87 244.62 
   After Games 4 (03/18/09-07/17/09) 202.04 240.30 200.11 215.95 
   After Games 5 (07/18/09-10/31/09) 192.61 243.11 202.45 187.71 
Total 225.82 295.72 233.66 279.87 
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Table 3: Summary of visibility by treatment periods and city groups 
 

Visibility (km) Control 
cities Beijing Co-host 

cities 
Neighbor 

cities 
Benchmark period (06/05/00-12/12/01) 17.85 15.77 15.15 16.35 
Preparation (12/13/01-08/07/08) 16.58 18.06 14.28 15.37 
  Preparation 1 (12/13/01-12/31/04) 16.83 17.44 14.42 15.74 
  Preparation 2 (01/01/05-08/07/08) 16.37 18.59 14.16 15.05 
Olympic Games (08/08/08-9/17/08) 19.03 20.71 16.17 15.99 
After Games (09/18/08-12/31/09) 17.33 21.24 15.78 16.78 
   After Games 1 (09/18/08-10/17/08) 17.24 19.80 17.43 14.47 
   After Games 2 (10/18/08-12/17/08) 16.69 19.33 16.07 17.48 
   After Games 3 (12/18/08-03/17/09) 14.74 21.38 14.58 14.37 
   After Games 4 (03/18/09-07/17/09) 18.50 23.70 15.41 18.91 
   After Games 5 (07/18/09-10/31/09) 18.55 19.77 16.57 16.62 
Total 16.91 18.10 14.61 15.70 

 
 
 
 
Table 4: Summary of AOD by treatment periods and city groups 
 

AOD Control 
cities Beijing Co-host 

cities 
Neighbor 

cities 
Benchmark period (02/25/00-12/12/01) 0.55 0.53 0.52 0.48 
Preparation (12/13/01-08/07/08) 0.62 0.61 0.62 0.53 
  Preparation 1 (12/13/01-12/31/04) 0.59 0.59 0.57 0.50 
  Preparation 2 (01/01/05-08/07/08) 0.64 0.63 0.65 0.55 
Olympic Games (08/08/08-9/17/08) 0.57 0.56 0.55 0.45 
After Games (09/18/08-12/31/09) 0.53 0.44 0.46 0.35 
   After Games 1 (09/18/08-10/17/08) 0.59 0.54 0.50 0.42 
   After Games 2 (10/18/08-12/17/08) 0.42 0.26 0.31 0.21 
   After Games 3 (12/18/08-03/17/09) 0.50 0.27 0.39 0.30 
   After Games 4 (03/18/09-07/17/09) 0.72 0.63 0.65 0.51 
   After Games 5 (07/18/09-12/31/09) 0.49 0.45 0.47 0.33 
Total 0.60 0.58 0.59 0.50 
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Table 5: Main results on API 
 

 (1) (2) (5) (6) (7) (8) 
VARIABLES API API API API API API 

BJ×Preparation -0.334 -2.928 -4.922* -5.085** -6.353** -5.455** 
 (2.193) (1.842) (2.640) (2.467) (2.578) (2.535) 

BJ×During -29.423*** -34.820*** -34.335*** -34.905*** -37.642*** -36.888*** 
 (3.611) (2.346) (2.260) (2.428) (2.813) (2.397) 

BJ×After -13.208*** -19.173*** -19.643*** -22.035*** -23.580*** -22.593*** 
 (2.632) (1.857) (1.780) (3.399) (3.995) (3.589) 

Co-host×      -1.087 
Preparation      (1.514) 
Co-host×      -1.973 
During      (2.054) 

Co-host×After      3.842* 
Games      (1.930) 

Neighbor×      -15.701*** 
Preparation      (2.340) 
Neighbor×      -20.677*** 

During      (2.904) 
Neighbor× After       -7.838** 

Games      (3.042) 
Weather Y Y Y Y Y Y 
City FE Y Y Y Y Y Y 
Date FE Y Y Y Y Y Y 

City-specific 
linear trends 

 Y Y Y Y Y 

Energy&Vehicle
*date^2 

  Y Y Y Y 

Heating   Y Y Y Y 
Socioeconomic 

factors 
   Y Y Y 

Co-host and 
neighbor cities 

included included included included excluded included 

Observations 126688 126688 126688 126688 99584 126688 
R-squared 0.416 0.433 0.439 0.439 0.430 0.440 

Pretreatment test 
for Beijing F-stat 

(p-value) 

22.46 
(0.0000) 

35.13 
(0.0000) 

24.17 
(0.0000) 

0.37 
(0.5484) 

0.29 
(0.5927) 

0.73 
(0.3988) 

Pretreatment test 
for co-host and 
neighbor cities 

(p-value) 

     12.54 
(0.0001) 

 

 

Note: Clustered standard errors in parentheses. ***p<0.01, **p<0.05, *p<0.1. Socioeconomic factors include 
GDP growth rate, average GDP, industrial production and population density by city and year. Weather 
includes rainfall, temperature, barometric pressure, sunshine, humidity if rainfall is zero, wind velocity, four 
dummies for wind direction (east, south, west and north) by city and date. 
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Table 6: Time varying effects of the Olympic Games on API 
 after1 is the first month after Olympics 
 after2 is 2-3 months after the Olympics 
 after3 is 4-6 months after the Olympics 
 after4 is 7-10 months after the Olympics 
 after5 is the rest. 
 
 
 (1) (2) (3) (4) 
VARIABLES API API API API 
BJ×Prepare -5.085**  -6.353**  
 (2.467)  (2.578)  
BJ×Prepare1  -3.572  -5.076** 
  (2.316)  (2.446) 
BJ×Prepare2  0.073  -2.154 
  (2.573)  (2.972) 
BJ×During Games -34.905*** -28.462*** -37.642*** -32.319*** 
 (2.428) (2.872) (2.813) (2.720) 
BJ×After -22.035***  -23.580***  
 (3.399)  (3.995)  
BJ×After1  -22.965***  -26.494*** 
  (2.983)  (2.737) 
BJ×After2  -15.382***  -18.497*** 
  (3.058)  (4.475) 
BJ×After3  -22.997***  -26.444** 
  (6.676)  (9.846) 
BJ×After4  -10.423**  -12.329** 
  (5.071)  (5.600) 
BJ×After5  -10.252*  -12.723** 
  (5.502)  (5.953) 
Weather Y Y Y Y 
City FE Y Y Y Y 
Date FE Y Y Y Y 
City-specific linear trends Y Y Y Y 
Energy&Vehicle*date^2 Y Y Y Y 
Heating Y Y Y Y 
Socioeconomic factors Y Y Y Y 
Co-host and neighbor 
cities 

included included Excluded Excluded 

Observations 126688 126688 99584 99584 
R-squared 0.439 0.439 0.430 0.430 

Note: Clustered standard errors in parentheses. ***p<0.01, **p<0.05, *p<0.1. Socioeconomic factors include GDP 
growth rate, average GDP, industrial production and population density by city and year. Weather includes rainfall, 
temperature, barometric pressure, sunshine, humidity if rainfall is zero, wind velocity, four dummies for wind 
direction (east, south, west and north) by city and date.  
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Table 6-continued: F test for the decreasing effect 
 
 Cells marked yellow imply that the effect in the latter period (column) is significantly smaller than the effect in 

the former (row) period. 
 Cells marked green imply that the effect in the latter period (column) is significantly larger than the effect in the 

former (row) period. 
 
F test for column 2 of table 6: test whether the effect is decreasing 

F-stat (p-
value) 

BJ×After1 BJ×After2 BJ×After3 BJ×After4 BJ×After5 

BJ×During 18.09*** 
(0.0002) 

26.06*** 
(0.0000) 

0.72 
(0.4029) 

15.85*** 
(0.0004) 

13.17*** 
(0.0010) 

BJ×After1  8.39*** 
(0.0070) 

0.00 
(0.9961) 

7.37** 
(0.0109) 

6.64** 
(0.0151) 

BJ×After2   2.88 
(0.1002) 

2.04 
(0.1640) 

1.95 
(0.1726) 

BJ×After3    10.34*** 
(0.0031) 

16.45*** 
(0.0003) 

BJ×After4     0.01 
(0.9214) 

 
F test for column 4 of table 6: test whether the effect is decreasing 

F-stat (p-
value) 

BJ×After1 BJ×After2 BJ×After3 BJ×After4 BJ×After5 

BJ×During 13.62*** 
(0.0010) 

10.59*** 
(0.0030) 

0.34 
(0.5641) 

17.00*** 
(0.0003) 

11.72*** 
(0.0019) 

BJ×After1  3.81* 
(0.0609) 

0.00 
(0.9960) 

8.38*** 
(0.0073) 

6.09** 
(0.0199) 

BJ×After2   1.55 
(0.2231) 

2.65 
(0.1150) 

2.62 
(0.1168) 

BJ×After3    4.08* 
(0.0530) 

5.78** 
(0.0230) 

BJ×After4     0.04 
(0.8490) 
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Table 7: Main results on AOD 
 (1) (2) (3) (4) (5) (6) 
VARIABLES AOD*1000 AOD*1000 AOD*1000 AOD*1000 AOD*1000 AOD*1000 
Beijing_prepare 15.309 -27.909** -27.405 -35.567 -31.456 -44.025* 
 (10.395) (11.204) (20.910) (22.319) (27.206) (24.308) 
Beijing_during 41.065** -37.943 -39.418 -45.037 -38.270 -55.132 
 (19.713) (27.908) (28.474) (28.946) (37.173) (33.974) 
Beijing_after -22.236 -99.916*** -96.803*** -125.392*** -130.247*** -163.467*** 
 (16.763) (30.641) (30.420) (31.304) (37.851) (35.335) 
Co-host_prepare      -13.867 
      (16.706) 
Co-host_during      -49.676 
      (47.491) 
Co-host_after      -70.148 
      (55.799) 
Neighbor_prepare      -37.613** 
      (17.045) 
Neighbor_during      -11.749 
      (27.824) 
Neighbor_after      -82.243* 
      (43.240) 
Weather Y Y Y Y Y Y 
City FE Y Y Y Y Y Y 
Date FE Y Y Y Y Y Y 
City_specific linear trend  Y Y Y Y Y 
Energy&Vehicle*date^2   Y Y Y Y 
Heating   Y Y Y Y 
Socioeconomic factors    Y Y Y 
Co-host and neighbor cities included included included included excluded included 
Observations 2614734 2614734 2614734 2614734 1892832 2614734 
R-squared 0.422 0.424 0.425 0.425 0.444 0.425 
Pretreatment test for Beijing  
F-stat (p-value) 

3.00 
(0.0916) 

3.95 
(0.0544) 

4.17 
(0.0485) 

1.79 
(0.1896) 

2.72 
(0.1100) 

2.33 
(0.1359) 

Pretreatment test for Co-
host and Neighbor cities  F-
stat (p-value) 

     8.23  
(0.0011) 

Note: Clustered standard errors in parentheses. ***p<0.01, **p<0.05, *p<0.1. Dummies for three distance categories 
are controlled for in all columns. Weather of point p in city c at date d and time t includes three factors: tr_fac1, 
tr_fac2 and tr_fac3. Energy includes 1999 energy*date quadratic, 1999 vehicle*date quadratic, heating*dummy of 
Nov 15-Mar 15. Socioeconomic factors include GDP growth rate, average GDP, industrial production and population 
density by city and year. 
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Table 8: Time-varying results on AOD 
 
 (1) (2) (3) (4) (5) (6) 
VARIABLES AOD*1000 AOD*1000 AOD*1000 AOD*1000 AOD*1000 AOD*1000 
Beijing_prepare1 4.989 -38.608*** -40.850* -51.349** -53.292* -60.503** 
 (8.671) (10.887) (20.638) (23.879) (29.644) (25.954) 
Beijing_prepare2 22.776 -72.386*** -74.200** -90.637*** -108.690** -102.836*** 
 (13.711) (17.069) (27.482) (32.890) (40.704) (36.593) 
Beijing_during 41.173** -89.594*** -92.019*** -109.326*** -128.030*** -124.411*** 
 (19.764) (28.283) (30.901) (35.304) (41.445) (40.267) 
Beijing_after1 -51.921** -176.215*** -180.495*** -198.082*** -226.313*** -243.896*** 
 (23.875) (36.645) (38.431) (42.056) (55.393) (46.113) 
Beijing_after2 -57.941** -186.188*** -178.617*** -196.663*** -255.381*** -241.003*** 
 (24.272) (38.736) (40.113) (42.905) (47.763) (42.163) 
Beijing_after3 -68.475*** -196.045*** -179.386*** -225.735*** -240.056*** -263.987*** 
 (21.986) (32.596) (34.771) (45.843) (57.076) (50.921) 
Beijing_after4 17.415 -119.584*** -121.364*** -181.546*** -183.402*** -238.637*** 
 (18.555) (29.430) (29.226) (54.645) (62.567) (60.759) 
Beijing_after5 28.634 -115.711*** -113.751*** -174.321*** -175.329*** -204.781*** 
 (17.871) (32.906) (32.904) (50.565) (61.413) (57.103) 
Weather Y Y Y Y Y Y 
City FE Y Y Y Y Y Y 
Date FE Y Y Y Y Y Y 
City_specific linear trend  Y Y Y Y Y 
Energy   Y Y Y Y 
Socioeconomic factors    Y Y Y 
Co-host and neighbor cities included included included included excluded included 
Observations 2614734 2614734 2614734 2614734 1892832 2614734 
R-squared 0.422 0.424 0.425 0.425 0.444 0.425 

Note: Clustered standard errors in parentheses. ***p<0.01, **p<0.05, *p<0.1. Dummies for three distance categories 
are controlled for in all columns. Weather of point p in city c at date d and time t includes three factors: tr_fac1, 
tr_fac2 and tr_fac3. Energy includes 1999 energy*date quadratic, 1999 vehicle*date quadratic, heating*dummy of 
Nov 15-Mar 15. Socioeconomic factors include GDP growth rate, average GDP, industrial production and population 
density by city and year. 
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Table 8-continued: F test for after-Olympic periods 

 
 Cells marked yellow imply that the effect in the latter (column) period is significantly smaller than the 

effect in the former (row) period. 
 Cells marked green imply that the effect in the latter (column) period is significantly larger than the effect 

in the former (row) period. 
 
F test for column 4 of table 10: test whether the effect is decreasing 

F-stat (p-
value) 

BJ×After1 BJ×After2 BJ×After3 BJ×After4 BJ×After5 

BJ×During 15.00*** 
(0.0004) 

14.42*** 
(0.0005) 

27.48*** 
(0.0000) 

3.76* 
(0.0602) 

5.27** 
(0.0276) 

BJ×After1  0.00 
(0.9569) 

1.07 
(0.3078) 

0.16 
(0.6930) 

0.55 
(0.4635) 

BJ×After2   1.19 
(0.2819) 

0.11 
(0.7477) 

0.40 
(0.5299) 

BJ×After3    2.20 
(0.1468) 

9.62*** 
(0.0037) 

BJ×After4     0.16 
(0.6923) 

 
F test for column 4 of table 6: test whether the effect is decreasing 

F-stat (p-
value) 

BJ×After1 BJ×After2 BJ×After3 BJ×After4 BJ×After5 

BJ×During 6.55*** 
(0.0162) 

20.84*** 
(0.0001) 

15.76*** 
(0.0005) 

1.89 
(0.1807) 

1.63 
(0.2128) 

BJ×After1  0.57 
(0.4569) 

0.17 
(0.6862) 

1.03 
(0.3178) 

1.91 
(0.1774) 

BJ×After2   0.26 
(0.6152) 

4.75** 
(0.0380) 

4.92** 
(0.0348) 

BJ×After3    4.54** 
(0.0420) 

8.33*** 
(0.0074) 

BJ×After4     0.18 
(0.6729) 
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Table 9: API results by first and second half of a month 
 

Dependent variable = API, Observation = 126688 
 (1) (2) 
BJ x second half month 1.767*** -0.859 
 (0.233) (1.091) 
BJ×preparation  -7.237** 
  (2.837) 
BJ×preparation x second half month  3.751*** 
  (1.265) 
BJ×during Games  -36.960*** 
  (2.442) 
BJ×after Games  -22.281*** 
  (3.553) 
BJ×after Games x second half month  -0.594 
  (1.613) 
Co-host x second half month 0.541** 1.698* 
 (0.237) (0.953) 
Co-host×preparation  -0.520 
  (1.832) 
Co-host×preparation x second half month  -1.230 
  (1.095) 
Co-host×during Games  -1.844 
  (2.093) 
Co-host×after Games  4.974** 
  (2.262) 
Co-host×after Games x second half month  -2.397 
  (1.477) 
Neighbor x second half month 0.541** -0.946 
 (0.241) (1.065) 
Neighbor ×preparation  -16.595*** 
  (2.322) 
Neighbor ×preparation x second half month  1.894 
  (1.187) 
Neighbor ×during Games  -20.749*** 
  (2.911) 
Neighbor ×after Games  -8.293*** 
  (2.889) 
Neighbor ×after Games x second half month  0.974 
  (1.515) 
Observations 126688 126688 
R2 0.44 0.44 

Note: Clustered standard errors in parentheses. ***p<0.01, **p<0.05, *p<0.1. All the coefficients are obtained 
in one regression with city fixed effects, day fixed effects, city-specific linear trend, energy, socioeconomic 
factors, and weather. Energy includes 1999 energy* date quadratic, 1999 vehicle*date quadratic, 
heating*dummy of Nov 15-Mar 15. Socioeconomic factors include GDP growth rate, average GDP, industrial 
production and population density by city and year. Weather includes rainfall, temperature, barometric 
pressure, sunshine, humidity, wind velocity, four dummies for wind direction (east, south, west and north) by 
city and date. 
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Table 10: Regression results on visibility 
 

 (1) (2) (3) (4) (5) (6) 
VARIABLES Visibility Visibility Visibility Visibility Visibility API residual 
BJ×Preparation 3.195*** 1.359*** 0.867** 0.721 0.934* -5.234** 
 (0.217) (0.207) (0.406) (0.431) (0.495) (2.544) 
BJ×During  4.477*** 1.120*** 1.058*** 0.933** 0.994** -36.451*** 
 (0.429) (0.337) (0.367) (0.374) (0.466) (2.857) 
BJ×After  4.522*** 0.869** 0.806** 0.721 0.933 -22.463*** 
 (0.390) (0.348) (0.344) (0.656) (0.773) (3.795) 
Weather Y Y Y Y Y Y 
City FE Y Y Y Y Y Y 
Date FE Y Y Y Y Y Y 
City-specific 
linear trends 

 Y Y Y Y Y 

Energy&Vehicle
*date^2 

  Y Y Y Y 

Heating   Y Y Y Y 
Socioeconomic 
factors 

   Y Y Y 

Co-host and 
neighbor cities 

included included included included excluded excluded 

Observations 126688 126688 126688 126688 99584 99584 
R-squared 0.569 0.573 0.574 0.575 0.587 0.418 
Pretreatment test 
for Beijing F-stat 
(p-value) 

9.46 
(0.0044) 

63.12 
(0.0000) 

45.06 
(0.0000) 

2.54 
(0.1218) 

2.56 
(0.1206) 

0.01 
(0.9246 ) 

Note: Clustered standard errors in parentheses. ***p<0.01, **p<0.05, *p<0.1. Socioeconomic factors include 
GDP growth rate, average GDP, industrial production and population density by city and year. Weather 
includes rainfall, temperature, barometric pressure, sunshine, humidity if rainfall is zero, wind velocity, four 
dummies for wind direction (east, south, west and north) by city and date. 
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Table 11: Mechanism detection using API data 
 (1) (2) (3) (4) (5) 
Panel A: Dependent  Variable = API 
BJ×Plant Closure -13.886***    -32.940*** 
 (3.878)    (3.772) 
BJ×Furnace Rennovation  -6.918**   -1.645 
  (3.331)   (2.462) 
BJ×New Emission   -7.521*  24.170*** 
   (3.782)  (3.910) 
BJ×Traffic Control    -17.341*** -14.527*** 
    (3.196) (3.885) 
Observations 99584 99584 99584 99584 99584 
R2 0.43 0.43 0.43 0.43 0.43 
Panel B: Dependent Variable = Inferred TSP in μg/m3 (conditional on API>=50 & dominant 
pollutant=TSP) 

BJ×Plant Closure -27.740***    -77.646*** 
 (9.621)    (7.533) 
BJ×Furnace Rennovation  -13.623   -4.381 
  (8.562)   (6.757) 
BJ×New Emission   -14.429  60.397*** 
   (9.711)  (9.338) 
BJ×Traffic Control    -32.899*** -27.624*** 
    (7.721) (8.739) 
Observations 71173 71173 71173 71173 71173 
R2 0.42 0.42 0.42 0.42 0.42 
Panel C: Dependent Variable = Dummy of SO2 being the dominant pollutant 
BJ×Plant Closure 0.066**    -0.033 
 (0.024)    (0.042) 
BJ×Furnace Rennovation  -0.019   -0.044* 
  (0.025)   (0.023) 
BJ×New Emission   0.089***  0.129** 
   (0.027)  (0.050) 
BJ×Traffic Control    0.046** 0.007 
    (0.020) (0.019) 
Observations 99584 99584 99584 99584 99584 
R2 0.21 0.21 0.21 0.21 0.21 
City FE Y Y Y Y Y 
Date FE Y Y Y Y Y 
City-specific linear trends Y Y Y Y Y 
Weather Y Y Y Y Y 
Energy & Vehicle*t^2 Y Y Y Y Y 
Socioeconomic factors Y Y Y Y Y 
Co-host and neighbor cities excluded excluded excluded excluded excluded 

Note: Clustered standard errors in parentheses. ***p<0.01, **p<0.05, *p<0.1. Weather includes rainfall, 
temperature, barometric pressure, sunshine, humidity, wind velocity, four dummies for wind direction (east, 
south, west and north) by city and date. 
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Table 12: Mechanism detection using AOD data and location-specific policies  
 
 (1) (2) (3) (4) 
VARIABLES AOD*10^6 AOD*10^6 AOD*10^6 AOD*10^6 
Road length*     

Preparation for Games -0.123* -0.097*** 0.090*** 0.085*** 
 (0.066) (0.027) (0.022) (0.022) 

During the Games -0.484*** -0.340*** -0.020 -0.037 
 (0.111) (0.075) (0.046) (0.046) 

1 month after Games -0.835*** -0.589*** -0.248*** -0.265*** 
 (0.114) (0.054) (0.042) (0.043) 

2-3 months after Games -0.967*** -0.834*** -0.347*** -0.354*** 
 (0.090) (0.049) (0.048) (0.048) 

4-6 months after Games -1.179*** -1.109*** -0.335*** -0.299*** 
 (0.133) (0.085) (0.074) (0.070) 

7-10 months after Games -0.302*** -0.076 0.085** 0.082** 
 (0.105) (0.048) (0.041) (0.041) 

11-15 months after Games -0.524*** -0.407*** -0.147*** -0.146*** 
 (0.125) (0.051) (0.043) (0.043) 
Permanent closure*     

1 month after closure 370832.547 298758.406** 138565.670 137525.013 
 (318199.715) (132060.006) (125869.322) (124835.985) 

2-3 months after closure 78030.001 147721.110*** 21077.080 19783.409 
 (78360.028) (44625.879) (44526.709) (44943.191) 

4-6 months after closure -183015.200*** -12341.830 -41435.026* -41859.605** 
 (51085.653) (28451.278) (21553.660) (21242.877) 

7+ months after closure 84565.870*** 63411.523*** -18219.266* -16803.589* 
 (29437.937) (14766.186) (9746.093) (9737.749) 

Temporary closure *     
During closure -81231.537** 9499.631 17981.410 18566.090 

 (34284.373) (16587.897) (14662.832) (14744.359) 
1 month after closure -75328.125** -27882.007** -25173.525** -25978.657** 

 (33585.856) (13764.728) (11877.424) (12190.489) 
2-3 months after closure -77613.787*** -34092.672*** -13638.940* -13266.406* 

 (13316.433) (7155.813) (7825.291) (7801.435) 
4-6 months after closure -64615.638*** -26413.263** -21949.223** -20069.643** 

 (18004.374) (10749.104) (8570.402) (8461.783) 
Date FE  Y Y Y 
10kmx10m area FE   Y Y 
Weather    Y 
Observations 102820 102820 102820 102820 
R-squared 0.100 0.839 0.885 0.886 
 
Note: Clustered standard errors (by 10kmx10km area) in parentheses. ***p<0.01, **p<0.05, 
*p<0.1. Linear date count is controlled for in the first column. Weather of point p at date d 
includes three independent factors derived from the raw data on temperature, humidity, etc. 
 

 

 


