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ABSTRACT

Empirical studies of the relationship between school inputs and test scores typically do not account
for the fact that households will respond to changes in school inputs. We present a dynamic household
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for optimal household responses are likely to be considerably biased if used to estimate parameters
of an education production function.
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1. Introduction 

The relationship between school inputs and education outcomes is of fundamental 

importance for education policy and has been the subject of hundreds of empirical studies around 

the world (see Hanushek 2002, and Hanushek and Luque 2003 for reviews of US and 

international evidence respectively).  However, while the empirical public finance literature has 

traditionally paid careful attention to the behavioral responses of agents to public programs1

We develop a dynamic model of household optimization that clarifies how increases in 

school-provided inputs translate into learning outcomes.  We then test the main predictions of the 

model in two very different countries – Zambia and India – using unique matched data sets of 

school and household spending, and panel data on student achievement.  A key contribution of 

this paper is our ability to measure household spending changes and student test-score gains in 

response to both unanticipated as well as anticipated changes in school funding.  The former 

measures the production function effect of increased school funding (a partial derivative holding 

other inputs constant), while the latter measures the policy effect (a total derivative that accounts 

for re-optimization by agents).   

, the 

empirical literature estimating education production functions has rarely accounted for household 

re-optimization in response to public spending.  This is a critical gap because (a) household 

responses to education policies will mediate the extent to which different types of education 

spending translate into learning outcomes, and (b) parameters of education production functions 

are typically not identified if household inputs respond to changes in school-level inputs (see 

Urquiola and Verhoogen 2009 for one such example in the context of class-size). 

The theoretical framework of a dynamic forward-looking model provides a useful guide to 

the key issues. In this framework, households' optimal spending decisions will take into account 

all information available at the time of decision making. The impact of school inputs on test 

scores depends then on (a) whether such inputs are anticipated or not and (b) the extent of 

substitutability between household and school inputs in the education production function. The 

model predicts that if household and school inputs are technical substitutes, an anticipated 

increase in school inputs in the next period will decrease household contributions that period. 

Unanticipated increases in school inputs limit the scope for household responses, leaving 

                                                 
1Illustrative examples include Meyer (1990) on unemployment insurance, Cutler and Gruber (1996) on health 
insurance, Eissa and Leibman (1996) on the EITC, Autor and Duggan (2003) on disability insurance.  See Moffitt 
(2002) for an overview on labor supply responses to welfare programs. 
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household contributions unchanged in the short run. These differences lead to a testable 

prediction: If household and school inputs are (technical) substitutes, unanticipated inputs will 

have a larger impact on test scores than anticipated inputs. We test this using data on educational 

spending for largely substitutable school inputs, such as books and writing materials in both 

Zambia and India.  

Our data from Zambia allow us to distinguish between two different types of school 

spending: a predictable and fixed rule-based school block grant and an unpredictable district-

level source of funds that varied widely across schools.  The cross-sectional variation in the per-

student rule-based grant comes from variation in school enrollment, which is instrumented for 

with the size of the catchment area (Case and Deaton 1999, and Urquiola 2006 use a similar 

instrumental variable strategy).  We find that household spending substantially offsets variations 

in predicted per-student school grants.  Evaluated at the mean, for each dollar spent on schools 

via the predictable grants, household spending on education reduces by a similar amount. In 

contrast, unpredictable grants have no impact on household spending.  We also find that student 

test scores respond positively to the unanticipated sources of funds (test scores in schools 

receiving these funds are 0.10 standard deviations (SD) higher for both the English and 

mathematics tests for a mean transfer of just under $3 per pupil), but that they do not vary with 

variations in anticipated funds.  This evidence is strongly suggestive that the two main 

predictions of the model are correct and is robust to several checks.  However, we cannot fully 

rule out all identification concerns, and therefore test the model again using experimental 

variation induced by a randomly-assigned school grant program in the Indian state of Andhra 

Pradesh.  

The Andhra Pradesh (AP) school block grant experiment was conducted across a 

representative sample of 200 government-run schools in rural AP with 100 schools selected by 

lottery to receive a school grant (also around $3 per pupil) over and above their regular allocation 

of teacher and non-teacher inputs.  The conditions of the grant specified that the funds were to be 

spent on inputs used directly by students and not on any infrastructure or construction projects.  

The program was implemented for two years. In the first year, the grant was exogenously 

assigned and a surprise for recipient schools, while in the second year, the grant continued to be 

exogenous (relative to the comparison schools), but was now anticipated by the parents and 

teachers of program schools.    
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We find that household education spending in program schools is significantly lower in the 

second year than in the first year of the program suggesting that households offset the anticipated 

grant significantly more than they offset the unanticipated grant (just like in Zambia).  Evaluated 

at the mean, the point estimates suggest that for each dollar spent in the form of the anticipated 

grant in the treatment group, household spending declines by 0.85 dollars (and we cannot reject 

that the grant is completely offset by the household).  Further, students in program schools 

perform significantly better than those in comparison schools at the end of the first year of the 

(unanticipated) school grant program, scoring 0.08 and 0.09 SD more in language and 

mathematics tests respectively for a transfer of about $3 per pupil.  In the second year of the 

program, there is no significant effect of the (anticipated) school grant on test scores.  These 

findings are again consistent with the two main predictions of the model and are virtually 

identical to those from Zambia.  The two sets of results complement each other and provide 

greater external validity to our findings.  The Zambia case offers an analysis of two sources of 

funding (rule-based and discretionary), but relies on cross-sectional data and instrument quality.  

The AP case offers experimental variation in one source of funding, which changes from 

unanticipated to anticipated over time.   

There are important policy implications of our results.  The impact of anticipated school 

grants in both settings is low or zero, not because the money did not reach the schools (it did) or 

because it was not spent well (there is no evidence to support this), but because households 

realigned their own spending patterns optimally.  The replication of the findings in two very 

different settings2

                                                 
2 The two settings are similar in some ways including having high primary school enrollment but low student test 
scores and having limited funding for recurrent non-salary expenditures (Pratham 2010, Kanyika et al. 2005).  
However, at the time of the study, Zambia experienced severe declines in per-capita government education 
expenditure and a stagnant labor market, while Andhra Pradesh has been one of the fastest growing states in India 
with large increases in government spending in education over the last decade.  Our finding very similar results in a 
dynamic, growing economy and in another that was, at best, stagnant at the time of our study suggests that the 
results generalize across very different labor market conditions and the priority given to education in the 
government's budgetary framework. 

, with two different implementing agencies (the government in Zambia and a 

leading non-profit organization in AP), and in representative population-based samples suggests 

that the impact of school grant programs is likely to be highly attenuated by household 

responses. Further, we find no heterogeneity in household responses across asset-poor and asset-

rich households suggesting that school grants for learning materials may largely be viewed as 

pure income transfers to households, and that their long-term impact on learning is unlikely to be 
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higher than the income elasticity of test scores.  This has direct implications for thinking about 

the effectiveness of many such programs across several developing countries.3

The distinction between anticipated and unanticipated inputs and the differential ability of 

households to substitute across various inputs could account for the wide variation in estimated 

coefficients of school inputs on test scores (Glewwe 2002, Hanushek 2003, or Kreuger 2003), 

and our results highlight the empirical importance of distinguishing between policy effects and 

production function parameters (Todd and Wolpin 2003, and Glewwe and Kremer 2005 make 

this point theoretically). A failure to reject the null hypothesis in studies that use the production 

function approach could arise either because the effect of school inputs on test scores through the 

production function is zero or because households (or teachers or schools) substitute their own 

resources for such inputs.  While in our case the substitution takes the form of textbooks or 

writing materials, in a more general setting it may include parental time

  

4, private tuition and 

other inputs.5

The remainder of the paper is structured as follows. Section 2 describes the theoretical 

framework and develops the dynamic model which motivates our estimating equations. Section 3 

presents results from Zambia using cross-sectional variation in anticipated and unanticipated 

school funding, while section 4 presents results from the school grant experiment in India.  

Section 5 discusses robustness to alternative interpretations and section 6 concludes. 

 Our results show that the policy effect of school inputs is different from the 

production function parameters with consequences both for estimation techniques and for policy.   

 

2. Model 

The aim of this section is to offer an analytical framework to organize the empirical 

investigation and to understand the results.  Becker and Tomes (1976) provide a classic model of 

the role of parents in spending on educational inputs, but do not model the interaction of school 

and household inputs. Todd and Wolpin (2003) allow for the possible substitutability of 

household and school inputs, but do not offer an explicit optimization model to derive empirical 

predictions.  The contribution of our model is to specify the household's dynamic optimization 
                                                 
3Examples include school grants under the Sarva Shiksha Abhiyan (SSA) program in India, the Bantuan Operasional 
Sekolah (BOS) grants in Indonesia, and several similar school grant programs in African countries (see Reinikka 
and Svensson 2004 for descriptions of school grant programs in Uganda, Tanzania, and Ghana).  
4 Houtenville and Conway (2008) estimate an achievement production function that includes measures of parental 
effort and find that parental effort is negatively correlated with school resources.   
5 Of course, not all school inputs are substitutes.  As we show in Section 2, these predictions do not hold for school 
inputs that are complementary to household inputs. 
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problem, solve it subject to both budget and production function constraints, and to derive the 

Euler equation that shows the optimal growth path of test scores (based on an appropriate 

shadow price of the cost of investing in educational inputs in each period).6

A household derives (instantaneous) utility from the test scores of a child, TS, and the 

consumption of other goods, X. The household maximizes an inter-temporal utility function U(.), 

additive over time and states of the world with discount rate β(<1),  subject to an inter-temporal 

budget constraint. Finally, test scores are determined by a production function relating current 

achievement TSt to past achievement TSt-1, household educational inputs zt, school inputs

  We use this solution 

to discuss the differential impact of anticipated and unanticipated school inputs on test-score 

improvements and show how this varies based on whether school and household spending are 

substitutes or complements. 

tw , non 

time-varying child characteristics µ and non time-varying school characteristics η. We assume 

that household utility is additively separable, increasing and concave in test scores and other 

goods [A1]; and that the production function for test scores is given by 

),,z,w,TS(FTS tt1tt ηµ−=   where (.)F   is concave in its arguments [A2].   

Under [A1] and [A2] the household problem is 

0
 ),,,,(

 )).(1(..

)]()([

1

1

1

),(

=
=

−−++=

+=

+

−

+

−

=
∑

T

tttt

tttttt

tt
t

T

t
zX

A
zwTSFTS

zXPyArAts

XvTSuEUMax
tt

ηµ

β τ

τ
ττ

 

(1) 

(2) 

(3) 

(4) 

Here  u   and  v   are concave in each of their arguments. The inter-temporal budget constraint, 

Equation (2), links asset levels 1+tA  with initial assets  At, private spending on educational inputs  

zt, income yt and the consumption of other goods, Xt. The price of educational inputs is the 

numéraire, the price of other consumption goods is Pt and r is the interest rate. The production 

function constraint, Equation (3) dictates how inputs are converted to educational outcomes, and 

the boundary condition, Equation (4) requires that at t=T, the household disposes of all 

remaining assets so that all loans are paid back and there is no bequest motive. 

    We treat test scores as the observable measure of human capital.  The latter is what parents 

                                                 
6This relates closely to the discussion on durable goods and inter-temporal household optimization; see Deaton and 
Muellbauer (1980), Jacoby and Skoufias (1997), Foster (1995) and Dercon and Krishnan (2000). 
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care about, while the former is what they observe and optimize with respect to. The formulation 

can be seen as a short-cut for an alternative set up in which parents derive future utility from the 

flow of returns to the child’s stock of human capital, as in a more standard human capital 

investment model. As we are mainly interested in deriving the optimal dynamic path for reaching 

the desired stock of human capital considering the costs and benefits of boosting test scores in 

current and future periods, the insights gained from using a human capital investment model are 

going to be similar, given the other assumptions made, especially the concavity of the period-by-

period production function.7

In this formulation, credit markets are perfect so that there are no bounds on 

   

1+tA apart from 

Equation (4).8
tw Moreover, households choose only the levels of Xt and zt so that school inputs,  

are beyond its control.  In the contexts studied here, this is a reasonable assumption since school 

resources are allocated at state or federal levels and are not tied to a local property tax that 

residents may choose (unlike in the US). At the time the household makes its decision, it knows 

the underlying stochastic process governing tw but not the actual level; we assume that school 

inputs are a source of uncertainty in the model—for simplicity, the only source. 

 Maximization of Equation (1) subject to Equations (2) and (3) provides a decision rule 

related to tTS , characterizing the demand for test scores.  Since test scores are a stock, we define 

a per-period price for test scores as the user-cost of increasing the stock in one period by one 

unit, i.e., the relevant (shadow) price in each period for the household. As in the durable goods 

literature (Deaton and Muellbauer 1980), the user cost, evaluated at period t is (see Das et al. 

(2004) for its derivation):                                                                                                       

(.)F)r1(
(.)F

(.)F
1

1t

t

t z

TS

z
t

+
+

−=π     (5) 

 Here, the first term measures the cost of taking resources at t and transforming them into one 

extra unit of test scores. When implemented through a production function, the cost of buying an 

extra unit is the inverse of the marginal product of spending, (.)
tzF .  However, since TS is 

durable, increasing TS in period t, reduces the cost of acquiring TS in period t+1 proportional to

                                                 
7 Further, we assume that households care about the level of educational achievement, a stock. Results are 
unaffected if households care about the (instantaneous) flow from educational outcomes, provided that the flow is 
linear in the stock. 
8It is straightforward to incorporate imperfect credit markets in this framework (see Das et al. 2004).  
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tTSF  and the second term thus measures the present value of this reduction in cost in the next 

period, expressed in monetary terms.9

 

 Given the user cost, the first-order Euler condition 

determines the optimal path of educational outcomes between period t-1 and t as:  

                      (6)                   

 

This is a standard Euler equation stating that along the optimal path, test scores will be 

smooth, so that the marginal utilities of educational outcomes will be equal in expectations, 

appropriately discounted and priced.  Finally, the concavity of the production function in each 

time period will limit the willingness of households to boost education fast since the cost is 

increasing in household inputs.10

Under the further assumptions that household utility is additively separable and of the CRRA 

form, and that marginal utility is defined as

 Starting from low levels in childhood, the optimal path will be 

characterized by a gradual increase in educational achievement over time. 

ρ−
tTS ,  (ρ the coefficient of relative risk aversion), 

Equation (6) can be rewritten as:  

(7) 

   

Where et is an expectation error, uncorrelated with information at t-1. Taking logs and expressed 

for child i, we obtain the optimal growth path:  

   (8) 

 

which is determined by the path of user-costs, and a term capturing surprises. 

In this paper, we do not aim to use the structural dynamic model to estimate an impulse-

response function over time to an unexpected change in inputs (the data requirements for that 

                                                 
9 In the durable goods literature, the user cost per period is derived by assuming that the good is sold in the second 
period.  Though there is no “second hand market” for test scores, the shadow price for consuming a unit of test 
scores derived above is similar to those derived in the durable goods literature (see Foster 1995 for a similar 
derivation of the rental-equivalent price of boosting nutritional status in one period).  
10 The "per-period" concavity of the education production function can be motivated in several ways, the most 
intuitive of which is the existence of limits to how much a student can learn in a given period of time.  While the 
unit of time is not specified in the model (as in the consumption smoothing literature in general), it is natural to 
consider the unit to be one year in the context of education, since decisions regarding education are typically made 
prior to the start of the school year.  If an additional school grant arrives after this initial spending and is spent on 
learning materials, households are unlikely to be able to sell materials already purchased and we assume that they 
will only re-optimize at the start of the next school year. 
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exercise are beyond any education data set we know of).  However, we can use this theoretical 

model to derive an empirical model that nests some key predictions on how anticipated and 

unanticipated inputs affect the path of test scores. To derive these, assume that school resources 

are not known with certainty until households make decisions regarding their own inputs. Let 

)( u
t

a
t ww  be inputs at time t that were anticipated (unanticipated) at t-1. For unanticipated 

increases in school inputs, households are unable to respond till the next time period and are 

therefore pushed off the optimal path (see footnote 10). The increase in educational achievement 

in period t is given by u
tw dwF

t
, and the change in the growth path is given by )FwTSln( w

u
tt +

which is strictly positive. 

In the case of anticipated increases, the effect on the path of outcomes will depend on the 

impact on the user-cost of educational achievement at t, since there is no direct impact on the 

budget constraint at t (all information related to the anticipated inputs, including the budget 

constraint, will have been incorporated into the programming problem at t-1). Using the implicit 

function theorem with Equation (5) and assuming ),,,()1( 1 ηµδ tttt zwFTSTS +−= −   where the 

Hessian of (.)F   is negative semi-definite,  

 

              (9) 

The change in the optimal growth path is given by  

 

                             (10) 

 

 

If household and school inputs are technical substitutes so that 0<
ttwzF , anticipated 

increases in school inputs at t increase the relative user-cost of boosting TS at t, resulting in lower 

growth of test scores, ceteris paribus, between t and t-1.11

                                                 
11 In other words, if 

 Households have (price) incentives to 
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shift resources for educational spending to t-1, boosting educational achievement at t-1 in 

anticipation of the higher resources at t, and also to take advantage of the higher overall 

resources for educational inputs that allow them to spend relatively less on educational inputs 

compared to other commodities. Thus, the effect of an unanticipated change is higher than that of 

an anticipated change: household spending on educational inputs at t is unchanged, as 

households cannot move some of their spending to t-1, or to other commodities, as they could 

with anticipated increases of government spending.12,13

Assuming identical risk preferences, an empirical specification consistent with (8) is: 

  

 

(11) 

 

Here, a
itw  and u

itw   are anticipated and unanticipated changes in school inputs, measured in this 

paper by the flows of funds, while tX∆ reflects all other sources of changes in the user cost 

between t and t-1. The core prediction is that the marginal effect of anticipated funds is lower 

than that of unanticipated funds when household and school inputs are substitutes.  Finally, it is 

easy to see that if a portion of what the econometrician regards as unanticipated was anticipated 

by the household (or was substitutable even after the 'surprise' arrival of the school grant), then 

the estimate of α2 will be a lower bound of the true production function effect (see section 5.4). 

 

 

 

 

                                                                                                                                                             
the use of the grants (to hire teachers for instance), an inability to exploit scale economies (for instance, to improve 
infrastructure), or parental preferences expressed through school committees to spend on substitutable items). 
12 If school and households inputs are technical complements, increasing school inputs at t will increase the 
marginal productivity of household inputs at t, and through the decline in user-costs lead to higher growth in test 
scores along the optimal path between t and t-1. Anticipated lower user costs for educational inputs at t relative to t-1 
create incentives to shift resources from t-1 to t, leading to a higher growth of test scores between t and t-1. Whether 
this reduces spending and therefore test scores at t-1 depends on preferences, as households have incentives to keep 
the optimal path of test scores smooth, while taking advantage of the additional government spending at t to spend 
more on other commodities. 
13 The model above is written as if there is only one type of school and household inputs. It is straightforward to 
allow for multiple inputs, taking w and z as vectors of educational inputs in the model. Different inputs could have 
different cross-derivatives, implying different degrees of technical substitutability, so that the extent to which the 
household may substitute for school spending on particular inputs may differ.  We return to this issue in section 5. 
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3. Zambia  

3.1 Background and Context 

The educational system in Zambia is based on public schools (less than 2 percent of all 

schools are privately run) and the country has a history of high primary enrollment rates. Teacher 

salaries are paid directly by the central government, and account for the majority of spending on 

school-level resources; schools receive few other resources from government.  Districts receive 

some discretionary funding for non-salary purposes from the central government and aid 

programs.  However, since the 1990s, these sources were highly unreliable and unpredictable, 

partly due to the operation of a "cash budget" in view of the poor macroeconomic situation, and 

partly due to the irregularity of much of the aid flows to the education sector (Dinh, et al. 2002).  

In 2002, the year of our survey, less than 24 percent of all schools received such discretionary 

grants and conditional on receipt, there was considerable variation with some schools receiving 

30 times as much as others. Few resources were distributed in kind to schools during the year of 

the survey (see Das et. al 2003). Overall, the share of discretionary resources was only about a 

tenth of the share of the teacher salary bill. 

Parental involvement in schools is high with parents traditionally expected to contribute 

considerably to the finances of the school via fees paid through the Parent Teacher Association 

(PTA).  Limited direct government funding for non-salary purposes during economic decline put 

pressure on parents to provide for inputs more usually provided by government expenditure. This 

customary arrangement regarding PTA fees changed in 2001; following an agenda of free 

education, all institutionalized parental contributions to schools, including formal PTA fees were 

banned in April 2001.  At the same time, this put further pressure to complement school finances 

by further direct private parental spending on education. 

In 2001 the year preceding our survey, a rule-based cash grant through the government's 

Basic Education Sub-Sector Investment Program (BESSIP) was provided to every school to 

reverse some of the pressure on school finances arising from a persistent economic decline. 

These grants were fixed at $600 per school ($650 in the case of schools with Grades 8 and 9) 

irrespective of school enrollment to exclude any discretion by the administration. The grant was 

managed via a separate funding stream from any other financial flows, and directly delivered to 

the school, via the headmaster. Spending decisions were made at the Annual General Meeting, 

before the start of the school year.  The share of this funding in overall school funding was 
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considerable: for 76% of schools it was the only public funding for non-salary inputs, while its 

average share in total school resources was 86%.  The scheme also attracted much publicity, 

increasing its transparency; combined with the simplicity of the allocation rule, this ensured that 

the grants reached their intended recipients. Disbursement was fast and reliable and 95 percent of 

all schools had received the stipulated amounts by the time of the survey and the remainder 

within 1 month of survey completion (Das et al. 2003).14

Therefore, we expect that in the year of the survey the fixed cash grants would be anticipated 

by households making their educational investment decisions for the year, contrary to 

discretionary sources, which had become highly unpredictable and therefore unanticipated. 

Furthermore, because the grants were fixed in size, there was considerable variation across 

schools in per-student terms due to underlying differences in enrollment. We use the variation in 

per-student amounts to examine the crowding-out of household expenditures, a strategy 

discussed further below.  

  

3.2 Sampling and Data 

We collected data in 2002 from 17215

To supplement these data, we also collected information for 540 households matched to a 

sub-sample of 34 schools identified as "remote" using GIS mapping tools (defined as schools 

where the closest neighboring school was at least 5 kilometers away).   From these schools, the 

closest village was chosen and 15 households were randomly chosen from households with at 

least one child of school-going age. The restriction of the household survey sample to 34 remote 

schools allows us to match household and school inputs in an environment where complications 

arising from school choice are eliminated.  We use the entire sample of 172 schools to estimate 

 schools in 4 provinces of Zambia (covering 58 percent 

of the population), where the schools were sampled to ensure that every enrolled child had an 

equal probability of inclusion. The results are therefore externally valid within the 4 provinces of 

the study. The school surveys provide basic information on school materials and funding as well 

as test scores for mathematics and English for a sample of 20 students in grade 5 in every school, 

who were tested in 2001 as part of an independent study and were then retested in 2002 to form a 

panel.  

                                                 
14This contrasts with the early experience in Uganda (Reinnika and Svensson 2004).   
15 The initial sample contained 182 schools, although 2 yielded only incomplete information, 5 were private schools 
not covered in this paper and 3 could not be matched to the test scores data from the Examination Council of 
Zambia. 
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the relationship between test scores and cash grants to schools (rule-based and discretionary). We 

use the sub-sample of 34 schools matched to 540 households to estimate the relationship between 

rule-based cash grants to schools and household expenditures on education.  

Table 1 presents summary statistics separately for rural and urban schools, as well as for 

schools that are in our "remote" sample and matched to households.  As might be expected, there 

are significant differences between rural and urban areas, with the latter having a better-off 

student body, but not necessarily better school supplies per student.  Our sample of "remote" 

schools is not significantly different from rural schools on most measures, but they attract poorer 

students than the other rural schools, and have relatively more books and desks per student 

(though each desk or textbook is still shared by two students).  Per student funding from the 

predictable rule-based grant increases as we go from urban to rural to remote schools, which is 

consistent with a fixed rule-based grant being distributed among fewer students in rural and 

remote areas.  

Substantial parts of school spending are suitable for substitution by parents. On average 54% 

is spent on books, chalk (for slates), stationary and other school materials by the school while 

23% is spent on sports materials and equipment. About 19% is spent on utilities, maintenance 

and infrastructure, and only 3% is spent on allowances and other costs linked to teachers.16

3.3 Empirical Methodology 

   

We first test whether there is crowding out of household educational spending in response to 

anticipated grants. We estimate a cross-section demand model for the 1195 children (from 540 

households) matched to 34 schools in which household spending on school-related inputs is 

regressed on anticipated and unanticipated grants with and without a set of controls for child, 

household and school-level variables:   

jii4
u
j3

a
j2i1ij XwlnwlnAzln εεββββα ++++++=            (12) 

where ijz is the spending by the household on child i enrolled in school j, a
jw  and u

jw are 

respectively anticipated (rule-based) and unanticipated (discretionary) grants per student in 

school j that matches to child i, and iX are other characteristics of child i including assets owned 

                                                 
16 Looking at average spending shares by households, 27% is on books and stationary, and other materials for school 
while 19% is spent on cash contributions of various forms (although PTA fees were formally abolished) and other 
direct cash payments to the school. The remainder, 54% of household expenditure, is on school and sport uniforms 
and shoes, and for sports activities at school. 
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by the household. We test  032 =< ββ  , i.e., households respond negatively to the pre-

announced, anticipated rule-based grants at the school level by cutting back their own funding, 

but are unable to respond to cash grants that are unanticipated. 

To address the concern that a
jw captures unobserved components of household demand 

operating through an enrollment channel, we use the size of the eligible cohort in the catchment 

area as an instrument for school enrollment and therefore the level of per-student cash grants. 

This instrumentation strategy is similar to Case and Deaton (1999), Urquiola (2006) in the case 

of class-size and more recently by Boonperm et al. (2009) and Kaboski and Townsend (2008) in 

the context of large fixed grants to villages in Thailand.  Using the size of the eligible cohort as 

an instrument for enrollment is especially credible in this context since we use only a sample of 

remote schools and can abstract away from issues of school choice. We also confirm that there is 

no correlation between the instrument and iX . 

We explore the impact of different spending types using Equation (13), based on (11), 

modeling changes in standardized test-scores TS between t and t-1 regressed on anticipated and 

unanticipated spending, and a set of controls at t-1 capturing sources of heterogeneity and 

differences in user costs.  

it1t3
u
it2

a
it1oit XwlnwlnTS εαααα∆ ++++= −  (13) 

The prediction is that α1 < α2: unanticipated spending will have a larger effect on test scores than 

anticipated spending.17

 

  

3.4 Results 

3.4.1 Household Spending 

The results of estimating (12) are presented in Table 2, showing results without and with 

controls, and using the size of the eligible cohort in the catchment area as an instrument.18

                                                 
17 In one specification shown, Xt-1 will include the lagged dependent variable TSit-1 as a further control for 
heterogeneity in the path of test-scores over time. 

 The 

results are consistent with the predictions from our model: across all specifications, the estimated 

elasticity of substitution for anticipated grants (𝛽̂2) is always negative and significant and ranges 

18 We can reject the hypothesis that the instrument is weak: the F-statistic of the first stage regression is above 10. 
The impact of an extra child in the catchment area on enrollment is 0.68 – which is close to the actual enrollment of 
about 80% in the sample. 
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from -0.72 to -1.12 while the coefficient of unanticipated grants (𝛽̂3) is small and insignificant.19

One concern may be that households in larger villages (which have smaller per capita 

anticipated funding) have a different overall demand for education.  We address this concern by 

comparing household expenditure across schools with different levels of rule-based grants. We 

divide schools into two categories - those receiving less than the median per-child rule-based 

grant ("low rule-based grant schools) and those receiving more than the median ("high rule-based 

grant schools) - and Table 3 shows school and household expenditure for these two types of 

schools.  As expected, we find that the per-student grant is significantly lower in the "low rule-

based grant" schools.  However, household spending on education is significantly higher in these 

schools.  Most importantly, there is no significant difference in total expenditure per child across 

these two school types. This suggests that overall demand for education is similar across the 

households in the sample, and that they compensate/offset for lower/higher spending at the 

school level.

  

Evaluated at the mean we cannot reject the hypothesis that for each dollar spent on the rule-based 

grant per student, households reduce school expenditure by one dollar, while there is no 

substitution of discretionary, unanticipated spending.  

20

3.4.2 Test Scores 

   

Tables 4A and 4B show the results for English and Mathematics for different specifications 

where all estimations are at the school level, based on equation (13). The high variability in 

discretionary funding, with less than a quarter of the school sample receiving any fund, and other 

schools receiving very high levels, encourages us to explore two specifications for discretionary 

funding. Table 4A shows the results, expressing discretionary funding as dummy variable, while 

in Table 4B, we introduce both the level and the square of discretionary funding. In each table, 

we show two specifications for test-score results for English and for Mathematics. In a first 

specification, we only include some geographical characteristics (rural/urban and province 

dummies). The second is our key result, and includes also changes in other school level 

characteristics that change over time in the data (changes in head teacher, changes in chair of the 

                                                 
19 Only 4 schools (or 12%, with about 150 students in total) in this sample received discretionary funding, possibly 
weakening this test. 
20 In a parent’s succinct summary: "The school had no textbooks this year, so we had to buy our own". 
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Parent-Teaching Association, and changes in fees for this association).21

For all specifications, the coefficient on anticipated grants is small and insignificant: there is 

no improvement in test-scores from these rule-based grants. Adding higher order terms for 

anticipated grants does not make any difference. For English, there consistently is an impact 

from discretionary funds received by the school. When expressed in levels and squares (in table 

4B), the overall effect is significant at 10% (in column 2).

 Other school-level 

controls did not affect the results.  

22

One key threat to identification in the results above is the possibility that the 

discretionary/unanticipated grants may have been targeted to areas with the most potential 

improvement in test scores.  Alternatively, parents and communities that care enough to obtain 

these funds for their schools may also be motivated to increase test scores in other ways.   We 

address this concern by comparing the characteristics of schools that do and do not receive these 

discretionary funds and find that there is no significant difference between these types of schools 

(Table 5).  In this table, as column [3] shows, we find no difference in initial levels of test scores, 

other school performance indicators, location or wealth characteristics between these two types 

of schools. Column [4] shows OLS results when using these characteristics to try to explain 

whether discretionary funding was received, and we reject the joint significance of these 

characteristics.  At least on the basis of observables, there is no evidence of differences between 

these two types of schools that are correlated with the trajectory of test score of gains. 

 When added as a dummy in table 

4A, the effect is significant at 5% (in column 2). For Mathematics, the effect of discretionary 

funds is only significant when added as a dummy (at 10%, see column 3 in table 4A).  

Nonparametric investigation of the relationship between levels of discretionary funds and test 

score gains suggested a highly non-linear relationship for both English and Mathematics (not 

shown). Consistent with table 4A, a positive relationship with discretionary funds exists for both 

subjects, but table 4B suggests that a simple (quadratic) parametric formulation is only sufficient 

to capture this relationship for English. Focusing on the results in table 4A (columns 2 and 4), we 

find that on average, receiving discretionary funds adds 0.10 of a SD of test-scores, in both 

English and Mathematics; in contrast, and consistent with the predictions of the model, there is 

no impact from rule-based, anticipated school grants.  

                                                 
21 These controls could be thought of as potentially changing the benefits of spending on schooling by parents (i.e. 
the user costs).  
22 Although the squared term is negative, for all observed values in the sample, the overall effect is still positive. 
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3.4.3 Limitations 

     These results are strongly suggestive of the processes outlined in the theory: household and 

school-level funds are technical substitutes in the production function of test scores and when 

school-level funding increases, it crowds out private spending within the household.  

Consequently, such grants have little (if any) impact on the path of test-scores. We are also able 

to show that the lack of a relationship between test-scores and school-level funding is not 

because such funds have no effect through the production function—when households are 

“surprised” and cannot adjust their own expenditures, test-scores increase with school funding.  

However, there are a few caveats to the estimates presented from Zambia.  First, our 

household substitution results are only valid for the “remote” rural sample and while we can 

show that household spending offsets variation in anticipated funding, our test of the hypothesis 

that it does not respond to unanticipated funding is based on a small sample (only 4 of the 34 

linked schools in the remote sample reported any unanticipated funding at all).   Second, while 

standard in the literature, we cannot rule out that the size of the catchment area (used as an 

instrument for school-level enrollment) could be correlated to returns in the labor market or 

historical levels of education in the population. These in turn may be directly correlated to 

educational investments thus biasing downwards our estimates of crowding-out.  Third, 

unanticipated funds could have been targeted in unobservable ways to schools where parental 

substitution would be less and where test-scores were more likely to increase even in the absence 

of funding.  

While the patterns of observed characteristics and the stability of the results to the use of 

credible instrumental variables suggest that these are not serious concerns, we cannot fully rule-

out these alternate explanations.  We therefore present results from a field experiment in the 

Indian state of Andhra Pradesh designed to specifically determine the pattern of crowd-out and 

we show that the results obtained are virtually identical across these different contexts.  The 

randomized school grants address the second and third caveats above, while the first limitation is 

addressed by collecting spending data from a large sample of households at multiple points in 

time (both when the grants were a surprise, and later when they were expected), which allows us 

to test differential household responses to anticipated and unanticipated funds across a large 

representative sample of schools.  
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4 Andhra Pradesh, India 

4.1   Background and Context 

Andhra Pradesh (AP) is the 5th largest state in India, with a population of over 80 million, 

73% of whom live in rural areas.  AP is close to the all-India average on various measures of 

human development such as gross enrollment in primary school, literacy, and infant mortality, as 

well as on measures of service delivery such as teacher absence. There are a total of over 60,000 

government primary schools in AP and over 70% of children in rural AP attend government-run 

schools (Pratham 2010).   

The average rural primary school is quite small, with total enrollment of around 80 to 100 

students and an average of 3 teachers across grades one through five.23  Teachers are well paid, 

with the average salary of regular civil-service teachers being over Rs. 8,000/month and total 

compensation including benefits being over Rs. 10,000/month (per capita income in AP is 

around Rs. 2,000/month).  Regular teachers' salaries and benefits comprise over 90% of non-

capital expenditure on primary education in AP, leaving relatively little funds for recurring non-

teacher expenses.24

Some of these funds are used to provide schools with an annual grant of Rs. 2,000 for 

discretionary expenditures on school improvement and to provide each teacher with an annual 

grant of Rs. 500 for the purchase of classroom materials of the teachers’ choice.  The 

government also provides children with free text books through the school.  However, compared 

to the annual spending on teacher salaries of over Rs. 300,000 per primary school (three teachers 

per school on average) the amount spent on learning materials is very small.  It has been 

suggested therefore that the marginal returns to spending on learning materials used directly by 

children may be higher than more spending on teachers (Pritchett and Filmer 1999).  The AP 

School Block Grant experiment was designed to evaluate the impact of providing schools with 

grants for learning materials, and the continuation of the experiment over two years (with the 

provision of a grant each year) allows us to test the differences between unanticipated and 

anticipated sources of school funds. 

    

 

                                                 
23 This is a consequence of the priority placed on providing all children with access to a primary school within a 
distance of 1 kilometer from their homes. 
24 Funds for capital expenditure (school construction and maintenance) come from a different part of the budget. 
Note that all figures correspond to the years 2005 - 07, which is the time of the study, unless stated otherwise.  
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4.2  Sampling, Randomization, and Program Description  

The school block grant (BG) program was evaluated as part of a larger education research 

initiative (across 500 schools) known as the Andhra Pradesh Randomized Evaluation Studies 

(AP RESt), with 100 schools being randomly assigned to each of four treatment and one control 

groups.25

  The school year in AP starts in mid June, and baseline tests were conducted in the 500 

sampled schools during late June and early July, 2005.

  We sampled 5 districts across each of the 3 socio-cultural regions of AP in proportion 

to population. In each of the 5 districts, we randomly selected one administrative division and 

then randomly sampled 10 mandals (the lowest administrative tier) in the selected division.  In 

each of the 50 mandals, we randomly sampled 10 schools using probability proportional to 

enrollment.  Thus, the universe of 500 schools in the study was representative of the schooling 

conditions of the typical child attending a government-run primary school in rural AP.   

Experimental results in this sample can therefore be credibly extrapolated to the full state of 

Andhra Pradesh. 

26

Since no school received more than one treatment, we can analyze the impact of each 

program independently with respect to the control schools without worrying about any 

confounding interactions.  The analysis in this paper is based on the 200 schools that comprise 

the 100 schools randomly chosen for the school block grant program and the 100 that were 

randomly assigned to the comparison group.  Table 6 shows summary statistics of baseline 

  After the baseline tests were evaluated, 

2 out of the 10 project schools in each mandal were randomly allocated to one of 5 cells (four 

treatments and one control).  Since 50 mandals were chosen across 5 districts, there were a total 

of 100 schools (spread out across the state) in each cell.  The geographic stratification allows us 

to estimate the treatment impact with mandal-level fixed effects and thereby net out any common 

factors at the lowest administrative level of government, and also improve the efficiency of the 

estimates of program impact.   

                                                 
25 The AP RESt is a partnership between the government of AP, the Azim Premji Foundation (a leading non-profit 
organization working to improve primary education in India), and the World Bank.   The Azim Premji Foundation 
(APF) was the main implementing agency for the study.  The details of the other interventions are provided in 
Muralidharan and Sundararaman (2010, 2011). 
26 The selected schools were informed by the government that an external assessment of learning would take place 
in this period, but there was no communication to any school about any of the treatments at this time.  
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school and student characteristics for both treatment and comparison schools and the null of 

equality across treatment groups cannot be rejected for any of the variables.27

As mentioned earlier, the block grant intervention targeted non-teacher and non-

infrastructure inputs directly used by students.  The block grant amount was set at Rs. 125 per 

student per year (around $3) so that the average additional spending per school was the same 

across all four programs evaluated under the AP RESt.

   

28

APF field coordinators also informed the schools that the program was likely to continue for 

a second year subject to government approval.  Thus, while program continuation was not 

guaranteed, the expectation was that it was likely to continue for a second year.  Schools were 

told early in the second year (June 2006) that they would continue being eligible for the school 

grant program and the same procedure was followed for disbursal of materials (no money was 

handed over to schools or teachers, and procurement was conducted jointly). 

  After the randomization was 

conducted, project staff from the Azim Premji Foundation (APF) personally went to selected 

schools to communicate the details of the school block grant program (in August 2005).  The 

schools had the freedom to decide how to spend the block grant, subject to guidelines that 

required the money to be spent on inputs directly used by children. Schools receiving the block 

grant were given a few weeks to make a list of items they would like to procure.  The list was 

approved by the project manager from APF, and the materials were jointly procured by the 

teachers and the APF field coordinators and provided to the schools by September, 2005.  This 

method of grant disbursal ensured that corruption was limited and that the materials reached the 

schools and children. 

Table 7 shows that the majority of the grant money was spent on student stationary such as 

notebooks, and writing materials (over 40%), classroom materials such as charts (around 25%), 

and practice materials such as workbooks and exercise books (around 20%).   A small amount 

(under 10%) of the grant was spent in the first year on student durable items like school bags, 

and plates/cups/spoons for the school mid-day meal program.  This amount seems to have been 

transferred to stationary and writing materials in the second year.  We also see that the overall 

                                                 
27 Table 6 shows sample balance between the comparison schools and those that received the block grant, which is 
the focus of the analysis in this paper.   The randomization was done jointly across all treatments and the sample was 
also balanced on observables across the other treatments.    
28 The block grant was set on the basis of the number of students who took the baseline tests as opposed to the 
number of students enrolled (except for the first grade where there was no baseline test).  This ensured that schools 
that inflated enrollment (which is not uncommon in India) were not rewarded with a larger grant. 



20 
 

spending pattern at the school level is quite stable across the first and second year of the grant.  

Many of these items could be provided directly by parents for their children, suggesting a high 

potential for substitution. 

4.3  Data 

Data on household expenditure on education was collected from a household survey that 

attempted to cover every household with a child in a treatment or comparison school and 

administer a short questionnaire on education expenditures on the concerned child during the 

previous school year.29   Data on household spending was collected at three points in time –

alongside the baseline tests for spending incurred in the pre-baseline year (Y0), during the 

second year of the program about spending during the first year (Y1), and after two full years of 

the program about spending during the second year (Y2).  Data on household education spending 

was collected retrospectively to ensure that this reflected all spending during the school year.30

The outcome data used in this paper comprise of independent learning assessments in math 

and language (Telugu) conducted at the beginning of the study, and at the end of each of the two 

years of the experiment.  The baseline test (June-July, 2005) covered competencies up to that of 

the previous school year.  At the end of the school year (March-April, 2006), schools had two 

rounds of tests with a gap of two weeks between them.  The first test covered competencies up to 

that of the previous school year, while the second test covered materials from the current school 

year's syllabus.  The same procedure was repeated at the end of the second year, with two rounds 

of testing.   Doing two rounds of testing at the end of each year allows for the inclusion of more 

overlapping materials across years of testing, reduces the impact of measurement errors specific 

to the day of testing by having multiple tests around two weeks apart, and also reduces sample 

attrition due to student absence on the day of the test. 

   

For the rest of this paper, Year 0 (Y0) refers to the baseline tests in June-July 2005; Year 1 

(Y1) refers to the mean score across both rounds of tests conducted at the end of the first year of 

the program in March-April, 2006; and Year 2 (Y2) refers to the mean score across both rounds 

of tests conducted at the end of the second year of the program in March-April, 2007.  All 

analysis is carried out with normalized test scores, where individual test scores are converted to 
                                                 
29 The data was collected from a short survey that was only based on the “main” child who was being covered in the 
school assessments and not for other siblings or other components of household spending.   
30 We obtained spending data from a total of 8,612 households for Y0 (no data was collected for retrospective 
spending on children in grade 1, because it was their first year in school), 13,572 households for Y1, and 10,189 
households for Y2. 
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z-scores by normalizing them with respect to the distribution of scores in the control schools on 

the same test.31

4.4   Results 

 

4.4.1  Household Spending 

We estimate:  

        (14)  

where ijktzln is the expenditure incurred by the household on education of child i, at time t (j, k, 

denote the grade, and school), nY  is the project year, BG is an indicator for whether or not the 

child was in a “block grant” school, and standard errors are clustered at the school level.   The 

parameters of interest are 3β , which should equal zero if the randomization was valid (no 

differential spending by program households in the year prior to the intervention); 4β , which 

measures the extent to which household spending adjusted to an unanticipated increase in school 

resources (since the block grant program was a surprise in the first year of the project), and 5β , 

which measures the response of household spending to an anticipated increase in school 

resources (since the grant was mostly anticipated in the second year).32

Table 8 confirms that that

  All regressions include a 

set of mandal-level dummies (Zm) to account for stratification and to increase efficiency.   

3β and 4β are not significantly different from zero while 5β is 

significantly negative.   We report the results both with and without a full set of household 

controls, and the results are unchanged.  The findings are fully consistent with the predictions of 

the model: in Y1, households did not adjust to the unexpected grant, while in Y2, household 

spending was adjusted in anticipation of provision of materials by the school (using the grant).33

                                                 
31 Since all analysis is done with normalized test scores (relative to the control school distribution), a student can be 
absent on one testing day and still be included in the analysis without bias because the included score is normalized 
relative to the control school distribution for the same test that the student took.  

  

The estimated elasticity of -0.25 to -0.27 suggests that at the mean household expenditure for the 

32 We say “mostly anticipated” because it was not guaranteed that the program would be continued to the second 
year, but field reports suggest that the perception of the likelihood of continuation was high enough that households 
waited to see the materials provided by the schools before doing their own spending.   
33 This was further corroborated by field reports after the program was withdrawn, which suggest that most parents 
did not buy the materials that they thought would be provided by the school. 

ijkmijkt ZYBGYBGYBGYYYz εβββββββ +⋅+⋅⋅+⋅⋅+⋅⋅+⋅+⋅+⋅= 251403221100ln
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comparison group (Rs 411 in Y2), the per-child grant of Rs. 125 would be almost entirely offset, 

and we cannot reject that the substitution is 100% (the estimated offset is around 85%).34

4.4.2  Student Test Scores 

   

Our default specification for studying the impact of the school block grant, consistent with 

equation (11) uses the form:  

ijkjkkmijkmnijkm ZBGYTYT εεεβδγα +++⋅+⋅+⋅+=∆ )()( 0              (15) 

The main dependent variable of interest is ijkmT∆ , which is the change in the normalized test 

score on the specific test (normalized with respect to the score distribution of the comparison 

schools), where i, j, k, m denote the student, grade, school, and mandal respectively.  0Y  indicates 

the baseline tests, while nY  indicates a test at the end of n years of the program. Including the 

normalized baseline test score improves efficiency due to the autocorrelation between test-scores 

across multiple periods.35

The BG variable is a dummy at the school level indicating if it was selected to receive the 

school block grant (BG) program, and the parameter of interest is δ, which is the effect on the 

normalized test scores of being in a school that received the grant.  The random assignment of 

treatment ensures that the BG variable in the equation above is not correlated with the error term, 

and the estimate of the one-year and two-year treatment effects are therefore unbiased.

  These regressions also include a set of mandal-level dummies (Zm) 

and the standard errors are clustered at the school level.  We also run the regressions with and 

without controls for household and school variables. They will allow us to capture any sources of 

changes in user costs, as in (11).   

36

                                                 
34 As in the Zambia case, we used a logarithmic specification; estimating a linear model in levels of spending we 
found identical results, including that we could not reject total substitution by households of the school grant in Y2. 

    

35 The inclusion of the baseline test score also allows us to control also for individual heterogeneity correlated with 
baseline test-scores. In the case of Zambia, we explored adding this to the specification in table 4A and 4B, but, this 
creates endogeneity problems for inference related to the variables of interest (spending). In the AP case, the 
randomization ensures that the BG variable is uncorrelated with the error term.  Since grade 1 children did not have 
a baseline test, we set the normalized baseline score to zero for these children (similarly for children in grade 2 at the 
end of two years of the treatment).   
36 We also check for differential post-treatment attrition of teachers and students and find that there is no differential 
attrition or turnover of teachers between "block grant" and "control" schools.  However, there is a small amount of 
differential student participation in the test at the end of the first year of the program (with attrition from the baseline 
test-taking sample of 5.4% and 8.2% in the treatment and control groups respectively). As weaker students may drop 
out of the testing sample, this may bias our estimate of the first-year treatment effect downwards, but since the 
magnitude of differential attrition is small (2.8%), this bias is likely to be quite small, especially since baseline 
scores are controlled for.  In the second year, however, there is no differential attendance on the end of year tests. 
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Note that specification in (15) can be used to consistently estimate the one-year and two-year 

effect of the program, but not the second year effect alone (with the second-year gains as the 

dependent variable controlling for Y1 scores) because Y1 scores are a post-treatment outcome 

that are correlated with the treatment.   Thus, specifications with second-year gains as the 

dependent variable controlling for Y1 scores will not provide consistent estimates of δ for the 

second year of the program. We show these results for illustrative reasons, and to help 

understand the mechanism for the differing results on 1-year and 2-year impacts of the program.    

Columns 1 and 4 of Table 9 show that students in schools that received the block grant 

scored 0.09 standard deviations (SD) higher than those in comparison schools at the end of the 

first year of the program for mathematics, and 0.08 SD higher for Telugu. Test scores were 0.04 

SD and 0.07 SD higher for mathematics and Telugu at the end of the second year (Table 9 – 

columns 3 and 6).   The difference at the end of year one is significant for each subject, but not 

so at the end of two years.    The addition of school and household controls does not significantly 

change the estimated value of δ, again confirming the validity of the randomization (tables 

available on request).   

It is striking that after two years of block grants, there is no significant effect on test scores, 

despite the gains after the first year.  The size of gains after two years (with point estimates 

below the point estimates after Y1) suggest that the second year of block grants did not add 

much to learning outcomes, while depreciation of earlier gains may explain that average gains 

(in terms of point estimates) after Y2 are smaller than achieved after Y1, and not significant.37

Finally, we tested for heterogeneity of the block grant (BG) program effect across student 

and school characteristics by adding a set of characteristics and their interaction with the BG 

variable in (15).  The main result is the lack of heterogeneous treatment effects by several 

household and child-level characteristics.

 

These findings are entirely consistent with the predictions of the model, and confirm the 

considerable substitution in terms of household spending on education in response to the 

program when anticipated. 

38

                                                 
37 Columns (2) and (5) of Table 9 shows the results of estimating equation (15) with the second-year gains on the 
left hand side.   Recall that this estimate is biased as discussed above, but it suggests that the effect of the block grant 
program in the second year alone was close to zero in mathematics and 0.05SD in Telugu (both of which are not 
significantly different from zero). 

  For example, if we expect poor households to be 

38 We tested the interaction of the program with school size, proximity to urban centers, school infrastructure, 
household affluence, parental literacy, caste, sex and baseline test score. 
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more credit constrained and to be within their desired ‘optimal’ amount of spending on 

education, then we would expect that they would offset less of the value of the grant and that the 

grant would have a larger impact on learning outcomes of poorer households.   This suggests that 

even poor households were spending enough on education so as to almost completely substitute 

away the value of the school grant from their own spending. 

 

5 Robustness and Interpretation 

We find strong suggestive evidence from two different low-income countries for a model in 

which households respond to anticipated school funding.  The crowding out of private spending 

is sufficiently substantial to lead to no impact on test scores from anticipated school grants, while 

unanticipated changes positively impact the growth of test scores of children. In this section, we 

discuss the robustness of our results and its interpretation. 

5.1 What are the components of spending? 

One possible concern regarding our interpretation of the results is that the lack of 

responsiveness by households to unanticipated funds arises because schools spend these funds on 

different inputs with different parameters of (technical) substitution between household and 

school funding. Simply put, it is possible that all the unanticipated grants were spent on hiring 

teachers (who households cannot substitute for) and all the anticipated grants on textbooks 

(which they can). We compare patterns of spending across various spending categories, and 

show that this is not the case. In AP, the pattern of spending across various categories is almost 

identical between the first and second years of the project (Table 7), and it seems clear that the 

funds were spent on the same type of inputs both when they were unanticipated (first year) and 

anticipated (second year). In Zambia, we cannot attribute school spending to specific sources of 

funding (discretionary vs. rule-based).  However, the total shares spent on those items most 

suitable for substitution (books, chalks, and stationary) add up to 57% and 47% respectively for 

schools without and with discretionary funding, suggesting that in both cases, substantial and 

similar spending occurs on items that could be substituted by households. 

This also helps rule out explanations based on diminishing returns to the items procured or 

the durable nature of school materials. In both countries, the majority of the grant is spent on 

material that is used up during the school year (stationery, notebooks, practice books, etc).  In the 

AP experiment, it is possible that some of the classroom materials purchased may be durable, 
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and the results reflect diminishing returns to durables in the second year.  However, we see that 

the exact same fraction of the grant was spent on classroom materials in both years, suggesting 

that even these materials needed to be replenished. We also explicitly record spending on 

durables (bags, uniforms, plates, etc.) and find that these accounted for less than 10% of 

spending in the first year, and under 1% in the second year. 

5.2 Are the unanticipated grants “true” surprises? 

A further possible concern with our approach may be that the distinction between anticipated 

and unanticipated funding is artificial, and households can similarly anticipate both sources after 

all. For the AP program, this is hard to sustain: as mentioned earlier, the schools had no reason 

whatsoever to expect the program in the first year, while the grant was eagerly anticipated by 

schools in the second year.  Also, as suggested earlier, most household spending on education 

occurs at the start of the school year when the school typically provides parents with a list of 

items to procure for their child for the school year.  In the first year of the experiment, the 

announcement of the grant program was made around one and a half months into the school year 

and materials were typically procured a few weeks after that.  Thus, it is highly likely that 

materials bought with the grant supplemented the initial household spending and that the first-

year program effect represents the "production function" effect of additional spending on school 

materials.  In the second year of the program, field reports suggest that in many cases, treatment 

schools reduced the list of what they expected parents to buy expecting to use the grant to buy 

some of these items.  Thus, the difference in the degree of anticipation of funds in the first and 

second year is quite clear. 

Similarly, in Zambia the uncertainty related to the cash-budget meant that actual spending 

and budgets were far apart. The typical arrival of these funds at varying points during the school 

year suggest that households were unlikely to be able to respond to these (as suggested by the 

positive test score gains in these schools in Table 4A and 4B, and the findings in Table 2).  In 

any case, we see clearly in Table 3 that households do respond substantially to variations in the 

rule-based grants and that they spend much more/less in schools with lower/higher per-student 

rule-based funding.     

5.3 Budgetary Offsets 

A third possibility is that there are correlations between the two different types of funds that 

may be confounding our results. In Zambia, we find a positive but insignificant relationship 
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between rule-based funding and discretionary funding [p-value=0.22].  In AP, the concern would 

be if anticipated funds are offset by a reduction of other transfers to the program schools.  We 

measure the total grants received by the schools from all other sources and we verify that there is 

no difference in year to year receipts of funds in either treatment or control schools.  There is 

also no significant difference between the amounts received in treatment and control schools in 

any year, or a significant difference between any of these differences across the years (tables 

available on request).  

5.4 Storage and Smoothing  

In interpreting our results, a question that arises is whether households or schools could have 

smoothed the unexpected grant by either saving some of the funds or storing some materials for 

use in later years (if the materials had already been bought).   We argue that this does not seem to 

have taken place because the households don’t appear to reduce their expenditure in response to 

the unanticipated grant in either AP or in Zambia.  On the school side, the program design in AP 

did not provide schools the option of saving funds.  They could have saved materials, but they 

spend on the same sets of materials in both years suggesting that storage was limited, and that the 

grant led to a near one for one increase in learning materials in the first year.  In Zambia, the cash 

budget system in government spending would have given little scope for smoothing spending, 

though some of the funds did get used for durable infrastructure.   

But even if some smoothing via savings, storage or durable goods spending by the school 

may have been possible, the coefficient on the unexpected grant is a lower bound on the 

production function parameter (because in this case, the full value of the grant will not have been 

spent in the same time period) and our results show that the production function effect of the 

school grant is positive – which would not have been apparent if the relationship between school 

grants and test scores were to have been estimated using anticipated grants.  

5.5 What did households substitute spending towards? 

One striking implication of our results is that while it was possible in production function 

terms to obtain a significant increase in student test scores in both contexts for a relatively 

inexpensive intervention (spending $3/student to raise test scores by 0.1 SD compares very 

favorably with the cost effectiveness of other education interventions in developing countries), 

parents chose to not make that investment in the next period when they could have continued 

making it (in AP), and seem to offset rule-based grants completely in Zambia.  While this result 
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suggests that the households had a low income elasticity of test scores, it is impossible to make 

any further conclusions without further information on what the household spent the extra cash 

on. Specifically, given the declining marginal benefit of spending on education in each particular 

period, the household may still have found it better to save this money for spending on future 

educational materials, rather than just spend it on goods and services this year. As we do not 

have information on what the households did with the extra cash available, we cannot explore 

this further.39

We summarize this section by noting that while having further disaggregated data on both 

school and household expenditures would allow for an even more precise understanding of the 

mechanism for our test score results, the combination of the household spending results and the 

test score results are most parsimoniously explained by the theoretical framework laid out in this 

paper.  We consider but end up rejecting several alternative explanations for these results and 

finding the same results in two contexts as varied as Zambia and India makes us confident that 

our results present evidence of differential household responses to anticipated and unanticipated 

school grants. 

 

 

6 Conclusion  

Data on test-scores and household expenditures in the context of school grant programs in 

Zambia and Andhra Pradesh in India suggest that grants anticipated by households crowd-out 

private educational spending.  Consequently, school grants that are fully anticipated have no 

impact on test-scores.  Unanticipated grants elicit no household responses and do have positive 

impacts on learning.       

These results have implications for common estimation techniques in the educational 

literature. The dominant technique for estimating the effect of school inputs on test scores is 

based on the production function approach, where achievement (or changes in achievement) is 

regressed on school inputs. Following Todd and Wolpin (2003), these estimates represent the 

policy effect of school inputs that combines both the effect of inputs on test scores through the 

production function, as well as household responses to such inputs. Our use of unanticipated 

                                                 
39 What we do know from our evidence is that households did not spend it on other (non-education) inputs that may 
raise child test scores directly, such as child nutrition; if so, we could have had substantial crowding out, but still a 
positive impact on test-scores, which is rejected by our evidence.  
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inputs allows the estimation of both effects separately, thus shedding more light on the process 

through which school inputs may or may not affect educational attainments. 

This distinction between anticipated and unanticipated inputs could account for the wide 

variation in estimated coefficients of school inputs on test scores (Glewwe 2002, Hanushek 

2003, or Kreuger 2003).  The production function framework does not separate anticipated from 

unanticipated inputs and so the regressor is a combination of these two different variables.  The 

estimated coefficient is bounded below by the policy effect and above by the production function 

parameter; the distance from either bound depends on the extent to which the schooling inputs 

were anticipated or not.    While experimental evaluations of education interventions typically 

overcome selection and omitted variable concerns, the distinction highlighted in this paper is 

relevant even for experiments, since the interpretation of experimental coefficients depends on 

the time horizon of the evaluation and whether this was long enough for other agents (especially 

households) to re-optimize their own inputs.   

Although we find evidence of high crowding out of anticipated inputs, our results do not 

suggest an educational policy where inputs are provided unexpectedly.  Although test scores in 

the current period increase with unanticipated inputs, the additional consumption will push 

households off the optimal path.  In subsequent periods, therefore, they will readjust 

expenditures until the first-order conditions are valid again – unanticipated inputs in the current 

period will not have persistent effects in the future (except due to the durable nature of the good).  

The policy framework that is suggested under this approach involves a deeper understanding of 

the relationship between public and private spending, acknowledging that this may vary across 

different components of public spending.  Our key policy implication is that schooling inputs 

that are less likely to be substituted away by households are better candidates for government 

provision.40

What might such inputs be?  One important example may be teaching inputs, whereby the 

combination of economies of scale in production (relative to private tuition), difficulty of 

substituting for teacher time by poorly educated parents, or the generic non-availability of trained 

personnel in every village could make public provision more efficient  (see Andrabi et al., 2009).  

  

                                                 
40 An alternative could be to give very large grants to school. The anticipated grant in both countries was relatively 
small. For example, in AP only 12% of households were spending less than the per pupil school grant. If a grant 
larger than household spending had been given, then crowding out of household spending would have been 
bounded, and the additional school grant may have had a positive impact on test-scores as total spending by schools 
and households would have been increased. 
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In a parallel experiment on the provision of an extra teacher to randomly-selected schools in 

Andhra Pradesh, Muralidharan and Sundararaman (2010) find that the impact of the extra teacher 

was identical in both the first and second year of the project – suggesting that teacher inputs were 

less likely to be substituted away.   Similarly, inputs like school infrastructure that retain some 

aspects of public-goods and would thus be under-provided by non-coordinating households are a 

good candidate for government provision.       

The approach followed here of treating test scores as a household maximization problem 

with the production function acting as a constraint explicitly recognizes the centrality of 

households in the domain of child learning. This has important implications for both estimation 

and policy and further research could potentially separate inputs with high/low degrees of 

substitutability with regard to private expenditures.  One hurdle for such studies is the lack of 

matched school and household data and the identification of "surprises" in the provision of 

inputs; long-term data on schooling inputs and panel data on student learning would allow for a 

deeper understanding in varied contexts based on deviations from means, as is standard in the 

consumption literature (following Hall 1978).  Investments in such data collection will provide 

the necessary infrastructure for evaluation of short, medium, and long-run impacts of education 

policy innovations and should be a high priority for education policy makers and funders of 

education research. 
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Table 1: Summary Statistics of Sampled Schools 

Variable Type Variable 
Full 

Sample 
Urban 

Sample 
Rural 

Sample 
Remote 
Sample 

Difference (Col 
3 - Col 4) 

Class Size Indicators 
Size of average class in school 53.9892 40.7701 58.2003 68.0702 -9.86 
Students per good classroom 98.3198 102.4692 97.9581 91.0939 6.86 

Infrastructure 

Does school have library 0.1163 0.2167 0.0633 0.0606 -0.002 
Does school have playground 0.9128 0.7833 0.9747 1 -0.025 
Does school have fence 0.3198 0.8 0.0759 0.0303 0.045 
Math textbooks per 100 pupils 29.4018 12.4983 34.0235 50.7878 -16.76** 

School Inputs 
English textbooks per 100 pupils 31.9922 18.9598 37.8634 42.8223 -4.95 
Desks per 100 pupils 40.5585 38.1258 38.6156 50.0305 -11.41** 

School Performance 
Fraction Repeating 0.0772 0.0468 0.0935 0.0937 -0.0002 
Fraction Dropouts in Primary 0.0423 0.0191 0.053 0.0579 -0.005 

Student Assets 
Imputed school level asset 
indices -0.1581 0.6134 -0.4804 -0.7892 0.308*** 

School Funding 

Did School receive discretionary 
funds 0.2442 0.25 0.2911 0.1212 0.169* 
Did School receive rule-based 
funds 0.9419 0.9333 0.9241 1 -0.07 
Per-Pupil Discretionary Funds 
(Kwacha) 10369.31 4280.306 11702.52 18248.62 -6546 
Per-Pupil Rule-Based Funds 
(Kwacha) 4997.677 2004.352 5750.567 8637.709 -2887.14*** 

Observations   172 60 78 34   

Notes: The table shows summary statistics for (a) all schools in the sample in Column (1); (b) schools in the sample that are in urban areas only in 
Column (2); schools that are in the sample in rural regions but not in the remote sample that was also selected for the household survey Column 
(3) and; schools that were in the remote sample only in Column (4). Column (5) reports tests of differences between schools in the rural and the 
remote samples. School-level asset indices are the average wealth of students in the school, based on surveys with students who were also 
tested.  For the construction of the asset index, see Das et al. (2003) ***p<.01 **p<.05 * p<.1. 1 US dollar = 3570 Kwacha on 1 September 2001. 



 

Table 3: Household Spending and Rule-Based Allocations in the School 

Funding Type   

Low Rule 
Based Grant 

Schools 
(N=17) 

High Rule 
Based Grant 

Schools 
(N=17) 

Difference 

Average Per-Child 
Household Expenditure 
(Kwacha) 

Mean 17882 12022 5860*** 

Observations (Households) 612 620 1232 
     Rule-Based funds 
(Kwacha) 

Mean 5915 12158 -6243*** 
Observations (Schools) 17 17 34 

          
Total Household and 
Rule-Based Funding 
(Kwacha) 

Mean 23734 24124 -390 

Observations (Households) 612 620 1232 
Notes: Rule Based-Funds show the per-student funding received under the BESSIP funding. Total Household and 
Rule-Based funding shows the sum of the two. The 34 schools in the sample are categorized into two equal groups 
with low and high rule-based funding. *** p<0.01 p<0.1. 1 US dollar = 3570 Kwacha on 1 September 2001. 
 
 

Table 2: The Relationship between Household Spending and School Funding 
  (1) (2) (3) (4) 

 
Dependent Variable: Log of Household Spending on Child's Education 

  OLS OLS IV IV 
Rule Based Funds -0.716** -0.843*** -1.124*** -0.946** 

 
[0.285] [0.252] [0.266] [0.460] 

     Discretionary Funds 0.0769 0.0713 0.0661 0.0627 

 
[0.109] [0.0829] [0.0910] [0.0797] 

     Constant 14.69*** 15.52*** 18.42*** 16.25*** 

 
[2.617] [2.454] [2.383] [3.561] 

Geographic Controls N Y N Y 
Child-level Controls N Y N Y 
Household-level Controls N Y N Y 
School-Level Controls N Y N Y 
F-stat of First Stage     23.54 10.32 
Observations 1,195 1,116 1,164 1,085 
R-squared 0.053 0.239 0.037 0.238 
Notes: This table shows the relationship between household spending and funding received at the school. All 
regressions exclude 2 private schools. We report OLS and IV coefficients for the response of household spending to 
rule-based and discretionary funding at the school-level. Column (1) has no controls beyond rule based and 
discretionary funds; column (2) control include province and rural dummies; child age, the square of age, and 
gender; parental presence, parental literacy and household wealth measured through an asset index; and class-
size in the school, textbooks available per child for Mathematics and English and the number of desks and chairs 
per 100 children.  Columns (3) and (4) are the estimated coefficients from an instrumental variable specification 
where we use the size of the school catchment as an instrument for per-student rule-based funding as discussed in 
the text. The F-statistic of the first-stage for each specification is noted; we reduce the sample size by 2 schools for 
whom this information is not available.  Robust standard errors in brackets. *** p<.01, ** p<.05.  



Table 4A The Relative Impacts of Rule-Based Funds and the Receipt of Discretionary Funds on Test-Scores 

  Dependent variable is the gain in normalized test-scores 

 
English Mathematics 

VARIABLES [1] [2] [3] [4] 
Any Discretionary Funds Received 0.128** 0.103** 0.0794* 0.0957* 

 
[0.0583] [0.0501] [0.0457] [0.0481] 

     Rule-Based Funds -0.0272 -0.0184 -0.00416 -0.00445 

 
[0.0343] [0.0303] [0.0216] [0.0262] 

     Constant 0.664** 0.550** 0.467** 0.459* 

 
[0.288] [0.259] [0.187] [0.235] 

          
Geographical controls Y Y Y Y 
School controls N Y N Y 
Expenditure controls N N N N 
Lagged test scores N N N N 
Observations 172 171 172 171 

R-squared 0.133 0.187 0.042 0.06 

Notes: The table reports the estimated effects of rule-based and discretionary funds on yearly changes in English and Mathematics test-scores. 
Discretionary Funds are treated as a binary variable, separating schools into those who received a positive amount versus thosse who received zero. 
Column (1) reports the estimated coefficient with only geographical controls, in the form of indicator variables for whether the school is rural and 
the province; Column (2) adds in school level changes in the head-teacher, the head of the Parent-Teacher Association and PTA fees; Column (3) and 
(4) report the coefficients for Mathematics. All regressions are clustered at the district-level.*** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 



Table 4B: The Relative Impacts of Rule-Based Funds and Discretionary Funds on Test-Scores 

  Dependent variable is the gain in normalized test-scores+C46 

 
English Mathematics 

VARIABLES [1] [2] [3] [4] 
Discretionary Funds 0.0700** 0.0598** 0.0193 0.0287 

 
[0.0331] [0.0274] [0.0236] [0.0240] 

     Square of Discretionary Funds -0.00488* -0.00422* -0.000524 -0.00122 

 
[0.00274] [0.00231] [0.00185] [0.00192] 

     Rule-Based Funds -0.025 -0.0159 -0.00603 -0.00617 

 
[0.0348] [0.0314] [0.0215] [0.0261] 

     Constant 0.544* 0.439 0.461** 0.438* 

 
[0.313] [0.287] [0.204] [0.248] 

          
Geographical controls Y Y Y Y 
School controls N Y N Y 
Expenditure controls N N N N 
Lagged test scores N N N N 

     F-Test of equality of impact of discretionary and rule-
based funds 

4.27 2.87 0.99 0.98 

P-Value of F-Test [.047] [.10] [0.32] [0.33] 
Observations 172 171 172 171 

R-squared 0.139 0.192 0.047 0.065 

Notes: The table reports the estimated effects of rule-based and discretionary funds on yearly changes in English and Mathematics test-scores. 
Discretionary Funds and Rule-Based Funds are treated as a continuous variable Column (1) reports the estimated coefficient with only geographical 
controls, in the form of indicator variables for whether the school is rural and the province; Column (2) adds in school level changes in the head-
teacher, the head of the Parent-Teacher Association and PTA fees. Columns (3) to (4) report the coefficients for Mathematics. All regressions are 
clustered at the district-level. F-test reported tests null hypothesis that impact of discretionary funding is equal to impact of rule-based funding at 
mean levels of B26B22discretionary funding. *** p<0.01, ** p<0.05, * p<0.1 



Table 5:  Are receipts of discretionary funds correlated with observable school 
characteristics? 

 
[1] [2] [3] [4] 

 

Schools that did 
not receive 

discretionary 
funding 

Schools that 
received 

discretionary 
funding 

Difference OLS Results 

Total enrolment at School 887.3692 989.5476 -102.18 0.0000474 

 
[677.0056] [628.4058] [118.13] [0.000132] 

Average Wealth of Students 
in School 

-0.1942 -0.0465 -0.158 0.0364 
[.7971] [.7349] [.138] [0.103] 

Mean Math Score at 
baseline 

-0.0194 -0.0672 -0.047 -0.139 
[.4433] [.4226] [.077] [0.0929] 

Mean English Score at 
baseline 

-0.0585 -0.0516 -0.007 0.105 
[.438] [.5288] [.082] [0.0860] 

Fraction Repeating 0.0768 0.0786 0.002 0.445 

 
[.0645] [.0579] [.011] [0.597] 

Fraction Dropouts in 
Primary 

0.0447 0.0349 0.009 -0.555 
[.0556] [.0556] [.009] [0.661] 

DEO office <5KM 0.7308 0.619 0.112 -0.0657 

 
[.4453] [.4915] [.084] [0.0760] 

PEO office <25KM 0.7077 0.7857 -0.078 0.129* 

 
[.4566] [.4153] [.075] [0.0751] 

Size of average class in 
school 

56.2947 46.9079 9.38 0.151 
[38.0703] [19.2398] [6.12] [0.166] 

Observations 130 42   172 
R2 0.04 

F-Test (All Coefficients  are jointly insignificant) 1.58 
P-Value of F-test [0.171] 

Notes: The table shows the differences between schools that received any discretionary funds and those that did not. Columns 
(1) and (2) show the mean values and Column (3) reports the results from the mean comparisons. Column (4) reports results 
from a regression where we predict the receipt of any discretionary funding with school-level variables that would not have 
responded to the receipt of funds. The F-test cannot reject that all variables we consider are jointly insignificant, suggesting that 
schools that received discretionary funds were observationally similar to those that did not. For Columns (1) and (2), standard 
deviations are reported in brackets; for Column (3) standard errors of the difference are reported in brackets and in Column (4) 
we report the robust standard error after accounting for clustering at the district level. 

 

 

 

 

 

 



Table 6: Sample Balance Across Treatments 

    [1] [2] [3] 

Variable type Variable 
Control Block Grant 

P-value   (H0:  
Diff = 0) 

School-level Variable 
Total Enrollment (Baseline: 
Grades 1-5) 

113.2 104.2 0.39 

 
Total Test-takers (Baseline: 
Grades 2-5) 

64.9 62.3 0.64 

 
Number of Teachers 3.07 3.03 0.84 

 
Pupil-Teacher Ratio 39.5 34.6 0.17 

 
Infrastructure Index (0-6) 3.19 3.40 0.37 

 
Proximity to Facilities Index 
(8-24) 

14.55 14.66 0.84 

      
Baseline test 
performance 

Math (Raw %) 18.4 16.6 0.12 
Telugu (Raw %) 35.0 33.7 0.42 

Notes: The table shows the sample balance between the treatment and control groups. The school infrastructure index 
sums 6 binary variables (coded from 0 - 6) indicating the existence of a brick building, a playground, a compound 
wall, a functioning source of water, a functional toilet, and functioning electricity.  2. The school proximity index 
ranges from 8-24 and sums 8 variables (each coded from 1-3) indicating proximity to a paved road, a bus stop, a 
public health clinic, a private health clinic, public telephone, bank, post office, and the mandal educational 
resource center. 3. The t-statistics for the baseline test scores and attrition are computed by treating each 
student/teacher as an observation and clustering the standard errors at the school level (Grade 1 did not have a 
baseline test).  The other t-statistics are computed treating each school as an observation. 
 

Table 7: Spending of School Grant (Average per Block Grant School) 

  Year 1 Year 2 

  Rs. % Rs. % 
Textbooks 110 1.1 246 2.6 
Practice books 1782 17.7 1703 17.8 
Classroom materials 2501 24.9 2354 24.6 
Child Stationary 4076 40.5 4617 48.2 
Child Durable Materials 864 8.6 88 0.9 
Sports Goods and Others 723 7.2 577 6.0 

Average Total Expenditure per Block Grant School 10057 100 9586 100 

Notes: The table shows the average spending in Rupees and spending share in each year of the school grant. 
 

 

 

 



Table 8 : Household Expenditure on Education of Children in Block Grant Schools (relative 
to  comparison schools) over time 

 
Dependent variable is log of household expenditure on 

children's education  

 
[1] [2] 

   Block Grant School* Year 0 -0.021 -0.017 

 [0.033] [0.031] 
   Block Grant School* Year 1 -0.043 -0.038 

 [0.028] [0.026] 
   Block Grant School * Year 2 -0.25*** -0.273*** 

 [0.04] [0.042] 
      Household Controls No Yes 
Observations 34645 31184 
R-squared 0.142 0.168 
P-value (BG * year 1 = BG * Year 2) 0.000 0.000 

Notes: Household expenditure on children's education is the sum of spending on textbooks, notebooks, workbooks, 
pencils, slates, pocket money for school, school fees, and  other educational expenses. Block Grant is a dummy denoting 
whether the school was a treatment school receiving the block grant or not. In column [2], household controls included 
are student gender, caste, parental literacy and household affluence.  * significant at 10%; ** significant at 5%; *** 
significant at 1%  

 

Table 9 : Impact of Block Grant on Student Test Scores 

  Dependent Variable is Gain in Normalized Test Scores 

 

Mathematics Language (Telugu) 

  [1] [2] [3] [4] [5] [6] 

  

First-year Gain 
(Unanticipated 

Grant) 

Second-year 
Gain 

(Anticipated 
Grant) 

Two-
year 
Gain 

First-year Gain 
(Unanticipated 

Grant) 

Second-year 
Gain 

(Anticipated 
Grant) 

Two-
year 
Gain 

 
   

  
  

Block Grant School 0.091 -0.008 0.039 0.079 0.047 0.065 

 
[0.042]** [0.049] [0.049] [0.038]** [0.039] [0.046] 

    
  

  
Observations 13778 12844 9891 13926 12878 9981 

R-squared 0.293 0.302 0.325 0.254 0.206 0.238 

Notes: All regressions include mandal (sub-district) fixed effects and standard errors clustered at the school level. 
Estimates of two-year gains do not include the cohort in grade 1 in the second year (since they only exposure to 
one year of the program). All regressions include lagged test scores. * significant at 10%; ** significant at 5%; *** 
significant at 1%.  
 


