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1. Introduction

Dynamic stochastic models have at times diffi culty matching some features of macro-

economic data.1 One route to reconcile differences between data and theory has been to

replace the assumption of rational expectations with that of adaptive learning, where agents

are assumed to estimate the underlying parameters of a model via recursive least squares.

For example, if the monetary authority adaptively learns the underlying Phillips curve via

decreasing gain least squares regressions, then the Nash outcome is the one that is selected

(see Evans and Honkapohja (2001)). Still, the U.S. economy escaped the high inflation of the

1970’s predicted by the standard model with decreasing gains. To provide an explanation

Sargent (1999) and Cho et al. (2002) assumed instead that a monetary authority estimates a

misspecified Phillips curve using constant gain algorithms that place more weight on recent

observations. This assumption allowed the possibility of escape from a Nash outcome to a low

inflation (Ramsey) outcome. In particular, within the context of their endogenous tracking

model, a sequence of otherwise rare shocks can cause frequent large deviations from a high

inflation self-confirming equilibrium. Indeed Sargent et al. (2006) take these endogenous

tracking models to the data and account for the behavior of inflation in the U.S.

Our analysis also focuses on the role of large deviations theory and its interplay with

constant gain learning dynamics. Specifically, working within the adaptive learning tradition

set out by Sargent and Williams (2005), Evans et al. (2010) and others, we examine the role

of generalized constant gain stochastic gradient (SGCG) learning algorithms in generating

1For example, empirical evaluations of consumption based asset pricing models lead to numerous asset
pricing puzzles, and evaluations of real business cycle models cannot typically account for the pattern of
hours worked without appealing to labor supply elasticities that are often at odds with microeconometric
evidence.
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large deviations of an endogenous variable from its rational expectations value. We show

analytically that these large deviations can occur with a frequency associated with a fat tailed

distribution even though the model is driven by thin tailed exogenous stochastic processes.

Using some new techniques in the analysis of stochastic processes and linear recursions with

multiplicative noise2, we characterize these large deviations occurring under adaptive learning

that are driven by sequences of consistently low or consistently high shocks. Such sequences

are rare in that the average of realizations in the sequences can significantly diverge from

the population mean of the shocks. We then apply our model to the single asset version of

the canonical model of Lucas (1978) that has been studied extensively by Carceles-Poveda

and Giannitsarou (2007, 2008) who look at the ability of learning models to approximate

the behavior of aggregate stock market data.

A particular issue in the modification of standard rational expectations models to better

account for features of the data by introducing adaptive learning is the choice of the learning

algorithm itself. Typically, in replacing the rational expectations assumption with that of

adaptive learning, agents are assumed to estimate parameters of processes to be forecasted

using recursive (adaptive) methods.3 A particular strain of this literature demonstrates the

consistency of this approach with Bayes’Law. In a stationary model with optimal learn-

ing, estimated parameters ultimately converge to their rational expectations equilibrium. In

recent work however, Sargent and Williams (2005) introduce a model where agents expect

a random walk drift in estimated parameters. They then show that the SGCG algorithm,

2See Kesten (1973), Saporta (2005) and Roiterstein (2007).
3In asset pricing contexts, see for example: Adam et al. (2008), Adam and Marcet (2011), Branch and

Evans (2010), Brennan and Xia (2001), Bullard and Duffy (2001), Carceles-Poveda and Giannitsarou (2008),
Cogley and Sargent (2008), and Timmermann (1993, 1996).
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that assigns more weight to recent observations on account of the underlying drift in the es-

timated parameters, is asymptotically the optimal Bayesian estimator. Evans et al. (2010)

follow Sargent and Williams (2005) and show how a SGCG learning algorithm approximates

an optimal (in a Bayesian sense) Kalman filter. Under such adaptive SGCG learning, un-

certainty about estimated parameters persists over time and can fuel escape dynamics in

which a sequence of consistently high or consistently low shocks propel agents away from

the REE of a model.4 In an asset-pricing context Weitzman (2007) also shows that if recent

observations are given more weight under Bayesian learning of the variance of the consump-

tion growth rate, agents will forecast returns and asset prices using thick-tailed distributions

for consumption growth.5 It is for this reason that we focus on an asset pricing context to

analytically demonstrate how SGCG learning, consistent with optimal Bayesian learning,

can account for the data features and fat tailed distributions of the price-dividend ratio.

Theoretically, we demonstrate that under adaptive learning of the asset prices, the tails

of the stationary distribution of the price-dividend ratio will follow a power law, even though

the dividend process has thin tails and is specified as a stationary AR(1) process. The tail

index or power-law coeffi cient of the price-dividend ratio can be expressed as a function of

model parameters, and in particular of the optimal gain parameter that assigns decaying

weights to older observations. In fact, as demonstrated by Sargent and Williams (2005)

4See also Holmstrom (1999) for an application to managerial incentives of learning with an underlying
drift in parameters.

5See also Koulovatianos and Wieland (2011). They adopt the notion of rare disasters studied by Barro
(2009) in a Bayesian learning environment. They find that volatility issues are well addressed. Similarly
Chevillon and Mavroeidis (2011) find that giving more weight to recent observations under learning can
generate low frequency variability observed in the data. See also Gabaix (2009) who provides an excellent
summary of instances in which economic data follow power laws and suggests a number of causes of such laws
for financial returns. In particular, Gabaix et al. (2006) suggest that large trades in illiquid asset markets
on the part of institutional investors could generate extreme behavior in trading volumes (usually predicted
to be zero in Lucas-type environments) and returns.
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and more recently by Evans et al. (2010), the optimal gain depends on the variance of the

underlying drift in the estimated parameters: the higher the variance of the drift parameter,

the higher the gain, and the thicker the tail of the distribution of the price-dividend ratio.

We characterize how the power law tail index of the of the long-run stationary distribution

of the price-dividend ratio varies as a function of the gain parameter and of the other deep

parameters of the model. Under our adaptive learning scheme that approximates optimal

Bayesian learning, stationary dividend processes generate distributions for the price-dividend

ratio that are not Normal. Thus, large deviations of the price-dividends ratio from the

rational expectations equilibrium are possible with a frequency higher than that associated

with a Normal distribution even though the dividend process is thin-tailed.

Our analysis and simulations indicate that under standard parameter calibrations, to

match either the empirical tail index or the variance of the annual “fat-tailed”price dividend

ratio, we require a gain parameter around 0.4-0.55, significantly higher than what is typically

used in the adaptive learning literature (0.01-0.04). Carceles-Poveda and Giannitsarou (2008)

also employ large parameter values for the gain in asset pricing contexts, as do Branch and

Evans (2010). The latter implicitly assumes slowly decaying weights on past observations,

and therefore very little underlying drift in the parameters estimated by agents. In order

to get an empirical handle on the gain parameter we estimate the parameters of our model,

including the gain parameter, by two separate methods. The first is a structural minimum

distance estimation method for the tail index. This method puts higher weight on the

empirically observed tail of the price-dividend ratio, and produces a gain estimate in the

range of 0.35-0.53. The second method computes the gain as Bayesian agents expecting

drifting parameters would, using a Kalman filter on the data. This yields a gain parameter
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in the range of 0.49-0.55, assigning decaying weights on past observations that take the

parameter drift into account. Therefore agents who use this gain parameter would indeed

have their expectations confirmed by the data.

The paper is structured as follows. We first describe the general dynamic stochastic

equation under learning, and also briefly illustrate its application to the single asset pricing

version of Lucas (1978). Then in Section 3 we prove that our learning model, written as a

random linear recursion with multiplicative noise, predicts that the tails of the stationary

distribution of the endogenous variable of interest, in our application the price-dividends

ratio, will follow a power law with coeffi cient κ that is a function of model parameters. In

Section 4 we use simulations to study how κ varies with the deep parameters. In Section 5

we provide estimates of the deep parameters of the model for our asset pricing application,

and of the gain parameter in particular, that are consistent with the κ estimated directly

from the price-dividends ratio. Section 6 concludes.

2. Model Environment

We focus on models of the type

pt = βEt(pt+1) + θdt (1)

in which the exogenous driving process dt follows

dt = ρdt−1 + εt, |ρ| < 1 (2)

5



where εt is an iid(0, σ2) random variable (such that σ2 < +∞) with compact support

[−a, a], a > 0. Evans and Honkapohja (1999, 2001) consider different economic environ-

ments that also give rise to such specifications.

The assumption that the exogenous process for dt has compact support is not very re-

strictive and clearly highlights our result: while the stationary distribution of an exogenous

driving process has thin tails, the stationary distribution of the related endogenous variable

may have fat tails, a result also characterized as “thin tails in, thick tails out”. Furthermore,

the assumption of compact support for εt makes it easy to show that the autoregressive

exogenous process is uniformly recurrent over its stationary distribution. The assumption of

uniform recurrence simplifies proofs and is further discussed in detail in the next section.

Anticipating our empirical application, we briefly provide an asset pricing interpretation

for the model in (1)-(2). Following Lucas (1978), a single asset endowment economy with

utility over consumption given by

u(Ct) =
C1−γ
t

1− γ , γ > 0 (3)

yields, under a no-bubbles condition, the nonlinear pricing equation

Pt = Et

{
β

(
Dt+1

Dt

)−γ
(Pt+1 +Dt+1)

}
(4)

where β ∈ (0, 1) is the usual exponential discount factor and (real) dividends (Dt) follow
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some exogenous stochastic process. Log-linearizing the above equation yields

pt = βEt(pt+1) + (1− β − γ)Et(dt+1) + γdt (5)

where all lowercase variables denote log-deviations from the steady state (P ,D) =
(

δ
1−δ , 1

)
.

The exogenous process for dt follows the same specification as above and since Et(dt+1) = ρdt,

pt = βEt(pt+1) + θdt, θ ≡ (1− β − γ)ρ+ γ (6)

is the fundamental expectational difference equation for prices.6

Returning to our linear model of learning, we follow Evans and Honkapohja (1999, 2001)

and assume that the perceived law of motion (PLM) of the representative agent is

pt = φt−1dt−1 + ξt, ξt ∼ i.i.d.(0, σ2
ξ), σ

2
ξ < +∞, (8)

which in turn implies

Et(pt+1) = φt−1dt, (9)

where φt−1 is the coeffi cient that agents estimate from the data to forecast pt. Inserting the

6The rational expectations solution to (6) is

pt = φREEdt, φ
REE =

θ

1− βρ (7)

for all βρ 6= 1.
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above into (6) yields the actual law of motion (ALM) under learning:7

pt = βφt−1dt + θdt = (βφt−1 + θ)dt (10)

= (βφt−1 + θ)ρdt−1 + (βφt−1 + θ)εt. (11)

In contrast the ALM under rational expectations is

pt = φdt = φρdt−1 + φεt. (12)

Under SGCG learning, φt evolves as
8

φt = φt−1 + gdt−1(pt − φt−1dt−1), g ∈ (0, 1). (13)

At this point we take the gain parameter g as given, but in section 5. we will estimate its

value under our learning model with Bayesian agents who expect a random walk drift in φ.

Following the usual practice in the literature for analyzing learning asymptotics, we insert

7We note that in the asset pricing context, the ALM is linear in the ‘belief’parameter (φt). In other
contexts the ALM might be nonlinear in beliefs. However, the linear forces generating large deviations in
the adaptive learning model may drive the dynamics in nonlinear contexts. For example in Cho et al. (2002)
adaptive learning leads to non-neglible probablities for large deviations even in the prescence of nonlinearities
for the true data generating process.

8See Carceles-Poveda and Giannitsarou (2007, 2008) for details and derivations under a variety of learning
algorithms.
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the ALM under learning in place of pt in the recursion for φt in (13) to obtain

φt = λtφt−1 + ψt (14)

λt = 1− (1− ρβ)gd2
t−1 + βgdt−1εt = 1− gd2

t−1 + gβdtdt−1 (15)

ψt = θρgd2
t−1 + θgdt−1εt = θgdtdt−1. (16)

The equation in (14) takes the form of a linear recursion with both multiplicative (λt in (15))

and additive (ψt in (16)) noise. We show in the next Section that the stationary distribution

of φt can be fat-tailed and indeed follows a power law even though the forcing variable (dt) is

a thin tailed process. Under the asset pricing application this implies that the price-dividend

ratio (φt) can exhibit large deviations from its rational expectations equilibrium value with

non-negligible probabilities.

3. Large Deviations and Rare Events

As noted, λt is a random variable generating multiplicative noise, and our main result is

that it can be the source of large deviations and fat tails for the stationary distribution of

φt. There are two elements that are absolutely critical for this result. First, the distribution

of the random variable λ must have E|λ| < 1 or a stationary distribution fails to exist (see

Brandt (1986)). Second, for φt to have a fat tail even if the exogenous driving process, the

dividends, are thin tailed, we need the distribution of λ to have some support above the unit

circle: P (|λ| > 1) > 0. Since the distribution of λt is governed by the exogenous process for

dt we will need some restrictions on {dt}t∈N as discussed below. In particular in section 5.
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where we will apply our results to the asset pricing model and characterize the price-dividend

ratio, these restrictions will apply to the stationary distribution of dividends.

We use results from large deviation theory (see Hollander (2000)) together with the work

of Saporta (2005), Roitershtein (2007) and Collamore (2009) to characterize the tail of the

distribution of φt.
9 Let N = 0, 1, 2..., and note that the stationary AR(1) Markov process

{dt}t∈N given by (2) is uniformly recurrent, and has compact support D =
[
−a
1−ρ ,

a
1−ρ

]
(see

Nummelin (1984), p. 93).10 We use the uniform recurrence of {dt}t∈N in step (ii) of the

proof of 1 below to show that |λ| > 1 with positive probability, or Pω (|λ| > 1) > 0, which is

essential to obtain fat tails for {φt}.11

Next we seek restrictions on the support of the iid noise εt ∈ [−a, a] to ensure that

E |λ∞| < 1 where, from equation (15), λ∞ is the random variable associated with the sta-

tionary distribution of dt. For simplicity, in order to derive restrictions on a that assures

E |λ∞| < 1 we assume that εt is uniformly distributed. We could just as easily have assumed

another distribution, for example a triangular distribution, or even another skewed distribu-

tion over [−a, a], and sought restrictions on its support, or a, to ensure that E |λ∞| < 1. The

uniform distribution leads to easy computations, and makes it quite clear that it is not the

skewness or the tails of the distribution of εt that drive our results on the tails of distribution

9For an application of these techniques to the distribution of wealth see Benhabib et al. (2011) and to
regime switching, Benhabib (2010).
10To define uniformly recurrent let (X,X ) be a measurable space and define BP

m (x,A) =
P (Xn ∈ A,Xi /∈ B,m = 1, ...m− 1) . A chain {Xn} is uniformly ϕ-recurrent if for all A ∈ X with ϕ (A) > 0,
if limn Σnm=1 AP

m (x,A) = 1 holds uniformly in x. That is, for all ε > 0 there exists N such that for
all x ∈ X and n ≥ N, Σnm=1 AP

m (x,A) = 1 − ε (see Petritis (2012, Chapter 11)). To assure that the
AR (1) process {dt}t∈Z is uniformly recurrent we also assume that the distribution of εt is not a singular
(see Nummelin (1984, p. 92)). This is a very weak requirement: a probability distribution is singular on Rn

if it is concentrated on a set of Lebesgue measure zero and gives probability zero to every one-point set. An
example on R1 would be the Cantor distribution, a probability distribution over a Cantor set.
11This requirement of uniform recurrence can be weakened, as discussed in Collamore (2009) in more

detail, but proofs would become more cumbersome.
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of the price dividend ratio. However a restriction on a that assures E |λ∞| < 1, no matter

what the underlying distribution, is critical. If E |λ∞| ≥ 1, then φt does not even have a

limiting stationary distribution, so our results about fat tails cannot hold.

We assume for simplicity therefore that εt ∈ [−a, a] and is uniform, and that12

a <

(
6 (1− ρ2)

g (1− βρ)

)0.5

. (17)

Note that

E(λt) = E
(
1− g (dt−1)2 + gβ (dt−1 (ρdt−1 + εt))

)
E(λt) = 1− gE (dt−1)2 + βρgE (dt−1)2

E(λ∞) =
(
1− gE (dt−1)2 (1− βρ)

)
t→∞ .

Since εt is iid and is uniform with variance σ2,

E(λ∞) = 1− g σ2

1− ρ2
(1− βρ) (18)

E(λ∞) = 1− g
1
12

(2a)2

1− ρ2
(1− βρ) . (19)

From equation (19) it follows that E(λ∞) < 1, and solving for a such that E(λ∞) > −1, we

obtain the restriction (17) to guarantee that E |λ∞| < 1, which is the only reason that we

12We can express this condition as

g <
6(1− ρ2)
a2(1− βρ)

which implies that given a, if g is too high, the condition E |λ∞| < 1 may fail and the dynamics of φt may
explode. We thank a referee for pointing this out.
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impose the restriction on a.

We denote the stationary distribution of {dt}t∈N by π. Since {dt}t∈N ∈ D and [εt]t∈N ∈

[−a, a] are bounded, so are {λt}t∈N and {ψt}t∈N, and we define (λt, ψt)t∈N ∈ B. In fact, fol-

lowing the definition of Roitershtein (2007), {dt, (λt, ψt)}t∈N constitutes a Markov Modulated

Process (MMP) defined on the product space (D,B): conditional on dt, the evolution of the

random variables λt+1 (dt, dt−1) and ψt+1 (dt, dt−1) are given by

P (dt ∈ A, (λt, ψt) ∈ B) =

∫
A

K (d, dy)G (d, y, B) |d=dt−1 , (20)

G (d, y, ·) = P ((λt, ψt) ∈ ·) | dt−1 = d, dt = y) , (21)

where A ∈ D, B ∈ B, K (d, dy) is the transition kernel of the Markov process {dt}t∈N and

dy represents the differential. In other words an MMP does not require λt and ψt to be fully

independent but allows a form of dependence where both can be driven by the process for

{dt}t∈N. In addition, since either or both can also be subject to iid shocks, they do not have

to be perfectly correlated. Thus the probability that dt will belong to a set A and (λt, ψt)

will belong to a set B depends on dt−1 and on the the transition kernel of the Markov process

{dt}t∈N. This will in fact be the case when we apply our results to asset prices in section 5.

where dividends drive both the multiplicative and the additive parts of the process for φt.

To set the stage for Proposition 1 let Sn =
∑n

t=1 log |λt|. Following Roitershtein (2007)
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and Collamore (2009)13 the tail of the stationary distribution of {φt}t depends on the limit14

Λ(δ) = lim
n→∞

sup
1

n
logE

n∏
t=1

|λt|δ = lim
n→∞

sup
1

n
logE[exp(δSn)] ∀ δ ∈ R. (22)

Using results in Roitershtein (2007), we can now prove the following about the tails of the

stationary distribution of {φt}t∈N:

Proposition 1 For π-almost every d0 ∈ [−a, a], there is a unique positive κ <∞ that solves

Λ(δ) = 0, such that

K1 (d0) = lim
τ→∞

τκP (φ > τ |d0) and K−1 (d0) = lim
τ→∞

τκP (φ < −τ |d0) (23)

and K1 (d0) and K−1 (d0) are not both zero.15

13For results on processes driven by finite state Markov chains see Saporta (2005).
14 lim
n→∞

sup 1
n logE[exp(δSn)] is the Gartner Ellis limit that also appears in large deviations theory. For an

exposition see Hollander (2000).
15We can also show that π (K1 (d0) = K−1 (d0)) = 1 if a is large enough. This follows from Condition

G given by Roitershtein (2007): Conditon G holds if there does not exist a partition of the irreducible set

D =
{
d ⊂

(
−a
1−ρ ,

a
1−ρ

)}
into two disjoint sets D−1 and D1 such that:

P (d ∈ D−1, ρd+ ε ∈ D1, λ < 0)

= P (d ∈ D−1, ρd+ ε ∈ D−1, λ > 0) = 0

where ε ⊂ [−a, a] and ρ ⊂ (0, 1). (See Roitershtein’s Definition 1.7 and subsequent discussion, and his
Proposition 4.1.) Suppose in fact that P (d ∈ D−1, ρd + ε ∈ D1, λ > 0) = 0 for D−1 with minimal element
d0 and maximal element d1. Then P (d ∈ D−1, ρd + ε ∈ D−1, λ > 0) = 1. Then it must be true, since d1 is
the maximum element of D−1, that ρd1 + a ≤ d1 and so a

1−ρ ≤ d1, implying d1 = a
1−ρ . Similarly, it must be

true that ρd0 − a ≥ d0 so that −a1−ρ ≥ d0, implying
−a
1−ρ ≥ d0. Thus D−1 = D, that is the whole set. Now we

can show that for a large enough, P (d ∈ D, ρd+ ε ∈ D,λ > 0) = 1 cannot hold. Since

λ = 1− g (d0)
2

+ gβd0 (ρd0 + ε) = 1− g
(
d20
)

(1− ρβ) + gβd0ε,

we attain the smallest possible λ if we set d0 = a
1−ρ and ε = −a, or equivalently d0 = −a

1−ρ and ε = a. Then

λ ≥ 0 with probability 1 if and only if a ≤ ā = (1−ρ)
(g(1+β(1−2ρ)))0.5 . If a > ā with positive probability, then

P (λ < 0) > 0, which contradicts P (d ∈ D−1, ρd+ ε ∈ D−1, λ > 0) = 1. Note also that λ = 1 for d0 = 0 so
it also follows that the P (λ > 0) > 0.
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Proof. The results follow directly from Roitershtein (2007), Theorem 1.6 if we show the

following:

(i) There exists a δ0 such that Λ(δ0) < 0. First we note that Λ(0) = 0 for all n. Note also

that

Λ′(0) = lim
n→∞

sup
1

n

d logE

n∏
t=1

|λt|δ

dδ
|δ=0

= lim
n→∞

sup
1

n

(
E

n∏
t=1

|λt|δ
)−1

E

(
n∏
t=1

|λt|δ log

n∏
t=1

|λt|
)
|δ=0

= lim
n→∞

sup
1

n
E log

n∏
t=1

|λt|

For large n, as {λt}t converges to its stationary distribution ω, we have

Λ′(0) = lim
n→∞

sup
1

n
logE

n∏
t=1

|λt| = Eω (log |λ∞|)

From equations (17)-(19) we have Eω |λ∞| < 1. Therefore Λ′(0) = Eω log (|λ∞|) < 0, and

there exists δ0 > 0 such that Λ(δ0) < 0.

(ii) There exists a δ1 such that Λ(δ1) > 0. As in (i) above, we can evaluate, using Jensen’s

inequality,

Λ(δ) = lim
n→∞

sup
1

n
logE

n∏
t=1

|λt|δ = lim
n→∞

sup
1

n
logE[exp(δSn)] (24)

= lim
n→∞

sup log (E[exp(δSn)])
1
n ≥ lim

n→∞
sup log

(
E[exp(δ

Sn
n

)]

)
(25)
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so that at the stationary distribution of {λt}t∈N

Λ(δ) ≥ logEω[exp(δ log |λ∞|)] = log

∫
λ

[exp(δ log |λ∞|)]dω (λ) . (26)

As δ → ∞ for log |λ| < 0 we have [exp(δ log |λt|)] → 0, but if Pω (log |λ| > 0) > 0 at

the stationary distribution of {λt}t, then limδ→∞ Λ(δ) = log
∫
λ
[exp(δ log |λt|)]dω (λ) → ∞.

Therefore if we can show that Pω (log |λt| > 0) > 0, it follows that there exists a δ1 for which

Λ(δ1) > 0. Since Λ(δ) is convex16, it follows that there exists a unique κ for which Λ(κ) = 0.

To show that Pω (|λ| > 1) > 0, define A =
{
d ∈

(
0, µaβ

1−ρβ

)}
, µ ∈ (0, 1) so that µaβ

1−ρβ <
a

1−ρ .

At its stationary distribution {dt}t∈N is uniformly recurrent over
[
−a
1−ρ ,

a
1−ρ

]
which implies

that Pπ (dt−1 ∈ A) > 0. We have λt = 1−βgdt−1

(
β−1(1− ρβ)dt−1 − εt

)
, so for dt−1 ∈ A and

εt ∈ (µa, a], it follows that λt > 1. Thus Pω (|λt| > 1) = Pπ (dt−1 ∈ At)P (εt ∈ (µa, a]) > 0.

(iii) The non-arithmeticity assumption required by Roitershtein (2007) (p. 574, (A7))

holds17: There does not exist an α > 0 and a function G : R× {−1, 1} → R such that

P (log |λt| ∈ G (dt−1, η)−G (dt, η · sign (λt)) + αN) = 1. (27)

We have

log |λt| = log
∣∣(1− gd2

t−1 + gβdtdt−1)
∣∣ = log

∣∣(1− (1− ρβ)gd2
t−1 + βgdt−1εt

)∣∣ = F (dt−1, εt) ,

(28)

16This follows since the moments of nonnegative random variables are log convex (in δ); see Loeve (1977,
p. 158).
17See also Alsmeyer (1997). In other settings {λt}t may contain additional iid noise independent of the

Markov Process {dt}t, in which case the non-aritmeticity is much more easily satisfied.
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which contains the cross-partial term dtdt−1. Therefore in general F (dt−1, εt) cannot be

represented in separable form as R (dt−1, η)−R (dt, η) + αN ∀ (dt−1, dt) where dt = ρdt−1 +

εt. Suppose to the contrary that there is a small rectangle [D,D∗] × [E,E∗] in the space

of (d, ε), over which λ remains of constant sign, say positive, such that F (d, ε) = R(d) −

R(ρd+ ε), d is in the interior of [D,D∗], and ε is in the interior of [E,E∗], up to a constant

from the discrete set αN, which we can ignore for variations in [D,D∗] × [E,E∗] that are

small enough. Now fix d, d′ close to one another in the interior of [D,D∗]. We must have,

for ε ∈ [E + ρ|d− d′|, E∗ − ρ|d− d′|], that

F (d, ε)−R(d) = −R(ρd+ ε) = −R(ρd′ + ε+ ρ(d− d′)) (29)

= F (d′, ε+ ρ(d− d′))−R(d′), (30)

or F (d, ε) − F (d′, ε + ρ(d − d′)) = R(d) − R(d′). However the latter cannot hold since the

cross-partial term dt−1εt in F (dt−1, εt) = 1− (1− ρβ)gd2
t−1 + βgdt−1εt is non-zero except for

a set of zero measure where d or ε are zero.18,19

(iv) To show that K1 (d0) = limτ→∞ τκP (φ > τ |d0) and K−1 (d0) = limτ→∞ τκP (φ <

18We thank Tomasz Sadzik for suggesting this proof for (iii).
19We can avoid possible degeneracies that may occur if λt and ψt have a specific form of dependence so

that
P (φ|λtφ+ ψt = φ) = 1.

Note

φ =
ψt

1− λt
=

θρgd2t + θgdtεt+1
1− (1− ρβ)gd2t + βgdtεt+1

=
θ

β

βρgd2t + gβgdtεt+1
1− (1− ρβ)gd2t + βgdtεt+1

Differentiating with respect to εt, the right side is zero only if βρgd2t = 1− (1−ρβ)gd2t , or βρg = 1−g+gρβ.
This holds only if g = 1. So in general, for any dt, there exists a constant φ such that P (φ|λtφ+ ψt = φ) = 1
only if g = 1, which we ruled out by assumption.
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−τ |d0) are not both zero, we have to assure, since ψt and λt are not assumed to be inde-

pendent, that φ is not a deterministic function of the initial d−1. We invoke (a) and (c) of

Proposition 8.1 in Roitershtein (2007): Condition 1.6, π (K1 (d0) +K−1 (d0) = 0) = 1, holds

if and only if there exists there exists a measurable function Γ:
[
−a
1−ρ ,

a
1−ρ

]
→ R such that

P (ψ0 + λ0Γ (ρd−1 + ε0) = Γ (d−1)) = 1.

However

ψ0 + λ0Γ (ρd−1 + ε0) = θgd−1ρd−1 + θgd−1ε0 +
(
1− gd2

−1 + gβd−1 (ρd−1 + ε0)
)

Γ (ρd−1 + ε0)

is a random variable that depends on ε0 while Γ (d−1) is a constant, so

P (ψ0 + λ0Γ (ρd−1 + ε0) = Γ (d−1)) < 1

and Condition 1.6 in Roitershtein (2007) cannot hold. Then from Roitershtein (2007) Propo-

sition 1.8 (c), K1 (d0) and K−1 (d0) are not both zero.20

The Proposition above characterizes the tail of the stationary distribution of φ as a

power tail with exponent κ. It follows that the distribution of φ has moments only up to

the highest integer less than κ, and is a ‘fat tailed’distribution rather than a Normal. The

results are driven by the fact that the stationary distribution of {λt}t∈N has a mean less

20In models where the driving stochastic process is iid or is a finite stationary Markov chain, the exponent
κ can be analytically derived using the results of Kesten (1973) and Saporta (2005 ). In the case where λ is
iid in equation (14), κ solves E (λκ) = 1. In the finite Markov chain case, under appropriate assumptions,
κ solves ς (PAκ) = 1 where P is the transition matrix, A is a diagonal matrix of the states of the Markov
chain assumed to be non-negative, and ς (PAκ) is the dominant root of PAκ.
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than one, which tends to induce a contraction towards zero, but also has support above 1

with positive probability, which tends to generate divergence towards infinity. The stationary

distribution arises out of a balance between these two forces. Then large deviations as strings

of realizations of λt above one, even though they may be rare events, can produce fat tails.

In the asset price model φ relates the dividends to asset prices. Under adaptive learning,

the results above show how the probability distribution of large deviations, or ‘escapes’of φ

from its REE value is characterized by a fat tailed distribution, and will occur with higher

likelihood than under a Normal.21

We now briefly discuss the case where {dt}t is an MA(1) process. Proposition 1 still

applies and we obtain similar results to the AR(1) case. Let

dt = εt + ζεt−1, |ζ| < 1, t = 1, 2... (31)

Then at its stationary distribution dt ∈ [−a (1 + ζ) , a (1 + ζ)]. Under the PLM

pt = φ0tεt + φ1tεt−1, (32)

after observing εt at time t but not φ1t+1, the agents expect

Et(pt+1) = φ0tEt(εt+1) + φ1tEt(εt) = φ1tεt. (33)

21In the model of Cho et al. (2002), the monetary authority has a misspecified Philips curve and sets
inflation policy to optimize a quadratic target. The learning algorithm using a constant gain however is not
linear in the recursively estimated parameters (the natural rate and the slope of the Philips curve).
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Then the ALM is

pt = βφ1tεt + γ(εt + ζεt−1) = [βφ1t + γ] εt + γζεt−1

and the REE is given by

φ0 = γ(1 + βζ), (34)

φ1 = γζ. (35)

Under the learning algorithm in equation (13) we obtain

φ1t = φ1t−1 + gdt−1(pt − φ1t−1dt−1), (36)

φ1t+1 = λt+1φ1t + ψt+1, (37)

λt+1 = 1− gd2
t + gβεt+1dt, (38)

ψt+1 = gγεt+1dt + γζgdtεt. (39)

It is straightforward to show that at the stationary distribution of {λt}t, E (λt) < 1, and

that P (λt > 1) > 0. It is also easy to check that λt > 0 if a < ((1 + ζ)(1 + ζ − β))−0.5. With

the latter restriction, it is easy to check that the other conditions in the proof of Proposition

1 are satisfied.
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4. Model Simulations and Comparative Statics

The theoretical results above indicate that, in the context of a simple asset pricing model,

rare but large shocks to the exogenous dividend process can throw off forecasts for the price-

dividend ratio away from its rational expectation value. Of course escapes are more likely

if the variance of the shocks to dividends are high. More critically, escapes in the long-run

are possible if agents put a large weight on recent observations and discount older ones.

The decay of the weights on past observations depends on the gain parameter g.22 The

size of the Bayesian optimal g will in turn depend on the drift that agents expect in the

estimated parameter φ. We will estimate g in the next section, both directly, and also from

the perspective of Bayesian agents expecting a random walk drift in φ.

In this section we explore how κ is related to the underlying parameters of our model. We

can simulate the learning algorithm that updates φ, and then estimate κ from the simulated

data using a maximum likelihood procedure following Clauset et al. (2009). We can then

explore how κ varies as we vary model parameters. We simulate 1000 series, each of length

5000, for φt under the AR(1) assumption for dividends with iid uniform shocks. We then

feed the simulated series into the model to produce {Pt} and {Pt/Dt}. We estimate κ for

each simulation and produce an average κ.

Escapes or large deviations in prices will take place when sequences of consistently large

shocks to dividends (in absolute value) throw off the learning process away from the rational

expectations equilibrium. Such escapes will be more likely if dividend shocks can produce

22Under constant gains the decay in weights on past observations dating i periods back is given by
(1− g)

i−1. Note of course that the value of g computed with annual data would be larger than the corre-
sponding g if the data were converted to quarterly.
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values of λt above 1, as we can see from equations (14-16). We expect lower κ, or fatter tails,

as the support of λt that lies above 1 gets larger.

In the AR(1) case for dividends we have λt+1 = 1 − (1 − ρβ)gd2
t + βgdtεt+1. Given the

stationary distribution of {dt}t and that of {εt}t, the support of λt above 1 unambiguously

increases if β increases. In principle increasing ρ can have an ambiguous effect: while the

term (1−βρ) declines and tends to raise λt for realizations of dt and εt+1, the support of the

stationary distribution of {dt}t gets bigger with higher ρ. While this can increase (1−ρβ)gd2
t

and reduce the support of λ that is above 1 for large realizations of d2
t , in our simulations the

former effect seems to dominate. Finally we expect that decreasing g will shrink the support

of λt that is above 1 so that κ increases with g: as the gain parameter decreases, the tails of

the stationary distribution of {φt} get thinner.23

We use a baseline parameterization, (ρ, g, β, γ) = (0.80, 0.4, 0.95, 2.5) based on estimates

that we obtain in the next section. The estimated parameters, except for g, are in line with

standard calibrations. The discount factor of β = 0.95 is consistent with annual data and an

annual discount rate of about 5%. While empirical estimates of g are hard to come by, the

usual values of g used in theoretical models are much smaller, in the order of 0.01 or 0.04,

suggesting a very slow decay in the weights attached to past observations. Values of g in the

range of 0.3-0.5 indicate a high decay rate, suggesting a propensity for the agents to think

that “this time it’s different”. As noted above, we attempt to estimate g in the context of

23This of course is in accord with the Theorem 7.9 in Evans and Honkapohja (2001). As the gain parameter
g → 0 and tg →∞, {φgt − κ} /g0.5 converges to a Gaussian variable where κ is the globally stable point of
the associated ODE describing the mean dynamics. More generally, as g → 0, the estimated coeffi cient under
learning with gain parameter g, φgt , converges in probability (but not uniformly) to κ for t→∞. However,
there will always exist arbitrarily large values of t with φgt taking values remote from κ (see Benveniste et
al. (1980), pp. 42-45). Note however that our characterization of the tail of the stationary distribution of
{φt}t and of κ is obtained for fixed g > 0.
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our model by two separate methods in the next section. However, as the comparative statics

in Figure 2 below demonstrate, for the learning model to explain the fat tails and the high

variance of the P/D ratio, the gain parameter has to be large enough. This also implies, as

discussed further in the next section, that the expected drift in the estimated parameters

should have a large variance.

For a parametrization based on the asset pricing model, we set the value of a = 0.33

to match the standard deviation of linearly detrended dividends in the data. We find that

the average κ is 5.0210, the average price-dividend ratio (Pt/Dt) is 20.6274 and the average

standard deviation of (Pt/Dt) is 9.8934. We then vary each element of (ρ, g, β, γ, α) while

keeping the others at their baseline values. The results of varying each parameter around

the baseline values are plotted in Figures 1 and 2 below.24

Figure 1. Simulation Results.

24The restriction given by equation (17) implies a maximum value of a = â = 4.2733, the corresponding
value for quarterly data would be 3.9933 (see the Quarterly Frequency Results Appendix). For all parameter
values used to produce Figures 1 and 2, the restriction is easily satisfied.
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Figure 2. Simulation Results (cont’d.).

The simulation results confirm the notion that the average κ’s should decline with β, γ

and a. Figure 2 plots the results of the critical learning parameter g; it clearly demonstrates

that as the learning gain falls, that is, the horizon for learning increases, the average κ

rises. In summary, SGCG learning leads to large deviations of (Pt/Dt) from its rational

expectations value even though the exogenous driving process for dividends is thin-tailed.

5. An Empirical Application

Figures 3-4 plot aggregate annual stock prices and dividends in the U.S. as measured by

the S&P 500 and CRSP datasets. The plots show that, as predicted by standard theory,

prices and dividends do move in tandem. However the price-dividend ratio, shown in the

third panel of each Figure, exhibits large fluctuations, especially in the latter parts of the
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sample.25 These large fluctuations in the price-dividend ratio are diffi cult to explain with

the standard rational expectations asset pricing model, for example that of Lucas (1978).26

Figure 3. Annual S & P 500 (1871-2010).

Figure 4. Annual CRSP (1926-1998).

We first check whether real world data on price-dividend ratios have fat tails. We use

the maximum likelihood procedure following Clauset et al. (2009) to estimate κ associ-

25Details on the data employed are presented in the Data Appendix.
26See for example Carceles-Poveda and Giannitsarou (2008).
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ated with Pt/Dt for both S&P 500 and CRSP dividend series plotted in Figures 3 and 4

above. The results provided in Table 1 below show fairly small values of κ for both series,

suggesting that only the first few moments of Pt/Dt exist irrespective of the data source.

Table 1 also reports the estimated persistence ρ under an AR(1) specification for the two

linearly detrended dividends series, alongside the average price-dividends ratio (Pt/Dt) and

its standard deviation.27

Table 1. Data Characteristics

S & P 500 CRSP

1871-2010 1926-1998

κ̂ 3.6914 5.5214

s.e.(κ̂) 0.3828 2.6046

ρ̂ 0.7891 0.7519

s.e.(ρ̂) 0.0523 0.0777

Mean (Pt/Dt) 25.5211 26.1805

Std. Dev. (Pt/Dt) 13.1758 9.3298

Corr (Pt/Dt) 0.9438 0.7872

r = Dt

P t
0.0336 0.0360

β = (1 + r/4)−1 0.9917 0.9911

σd 0.1892 0.1649

27Whenever we employ actual dividends series, we linearly detrend (see DeJong and Dave (2011)). Note
also that the dividends data have a higher standard deviation than that which is obtained only with post
WWII data. This is because our data series also capture the Great Depression, and in the case of the S&P
500, the higher volatility in stock prices subsequent to the U.S. Civil War.
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We use two separate approaches to get estimates for the gain parameter g. First we

feed the actual S&P and CRSP dividend series into our learning model and estimate the

parameters, ϑ = [g γ β ρ] by minimizing the squared difference between the empirical κ’s

reported in Table 1 and those generated by our model. That is, we implement a simulated

minimum distance method to estimate ϑ as28

min
ϑ

[κ− κ(ϑ)]2. (40)

This estimation process necessarily puts a great deal of emphasis on the tail of the

empirical data given by κ. Since the puzzle lies in the fat tail and high variance of P/D,

emphasizing the tail in the estimation method may be justified. The parameter estimates

other than g are certainly in line with basic calibrations in the literature, but the value of

g, as expected from our model, is higher than the usual values of 0.01-0.04 that we find in

the literature.

The minimization procedure is as follows. For candidate parametrizations of ϑ we employ

the S&P 500 or CRSP series dividends dt to calculate φt as per (14)-(16). The ALM (10)

then produces a corresponding pt series which in turn delivers a price-dividend ratio Pt/Dt.

We then estimate the κ associated with the ‘simulated’Pt/Dt, using the methods of Clauset

et al. (2009) to produce the κ(ϑ). The minimization procedure searches over the parameter

space of ϑ to implement (40). Table 2 below reports the estimates and associated standard

errors for each of the S&P 500 or CRSP dividend series. We also report associated κ values

28Minimization was conducted using a simplex method and standard errors were computed using a stan-
dard inverse Hessian method.
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obtained by simulating prices using the estimated parameters and the actual dividend data.29

Table 2. Parameter Estimates

S & P 500 CRSP

Parameter Estimate Std. Err. Estimate Std. Err.

g 0.3468 2.7158 0.5257 0.4722

γ 2.6503 1.7481 2.4598 0.6259

β 0.9615 0.3870 0.8984 0.4576

ρ 0.8729 0.0552 0.7959 0.1355

Associated κ 2.4128 5.5214

The point estimates of g, ranging from 0.35 to 0.53 are high, although the standard

errors are quite large, especially in the case of the S & P 500 dataset. The high estimates

for the gain parameter g, which imply a fat tail for the price dividend ratio, reflect the fat

tail (or low κ) that we observe in the data in Table 1, as expected. Standard errors are

significantly smaller when we construct and use longer quarterly data.30 Carceles-Poveda

and Giannitsarou (2008) discuss possible values of g. Looking at standard deviations of

the price-dividend ratios for the Lucas asset pricing model, they report that the standard

deviations generated by the rational expectations or the learning models are smaller than the

standard deviations in the actual data by factors of about 20 to 50. Note that our estimates

of the parameter values, including g, are very close to those used by Carceles-Poveda and

Giannitsarou (2008) in their simulations except for γ, the CRRA parameter: they set γ

= 1 while we have it at γ = 2.5. Note also that for our simulations in Figure 1 κ drops

29Starting values for the minimization procedure were ϑ0 = [0.5 2.5 0.95 0.75].
30Table 5 in the Quarterly Frequency Results Appendix provides estimates for quarterly data.
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dramatically with γ.

For our second approach to pin down the gain parameter we let the agent optimally

determine g by estimating the standard deviations of the parameter drift, the noise in the

P/D ratio, and the shock to the dividend process.31 Recall that under SGCG learning φt

evolves as

φt = φt−1 + gdt−1(pt − φt−1dt−1), g ∈ (0, 1) (41)

Consider the case in which the agents assume that the PLM is

pt = φt−1dt−1 + ξt, ξt ∼ iid(0, σ2
ξ), σ

2
ξ < +∞ (42)

with the coeffi cient φ drifting according to a random walk:

φt = φt−1 + Λt, Λt ∼ iid(0, σ2
Λ), σ2

Λ < +∞. (43)

In this case, the Bayesian agent would use (41) to estimate σΛ, σd and σξ and set an optimal

estimate of the gain in the limit as

g =
σΛσd
σξ

(44)

where σd denotes the standard deviation of dt (see Evans et al (2010)). Under this approach,

the long-run value of g that generates {p} and {φ} under adaptive learning would be self-

confirming, in the sense that agents would in fact estimate g using (44).

31See Sargent et al. (2006) and others for a more complex version of this approach for models requiring
dynamic tracking estimation.
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To compute (44) an estimate of σd is of course readily obtained from the dividend data.

However we need to specify a method for the agents to compute estimates of σΛ and σξ. If

we recognize the system above as being analogous to a time varying parameter formulation,

then employing the methods laid out in Kim and Nelson (1999) we can obtain estimates of

σΛ and σξ.32 We report these results in Table 3 below.

Table 3. Drifting Beliefs Model Parameter Estimates

S & P 500 CRSP

Parameter Estimate Std. Err. Estimate Std. Err.

σΛ 0.8122 0.7718 0.8588 0.2963

σξ 0.3157 0.0230 0.2596 0.0291

logL -61.4102 -17.5256

σd 0.1892 0.1649

Associated g 0.4866 0.5455

These estimates suggest values of the gain significantly larger than those usually assumed

in the literature.33 Looking at Figure 2, a value of g = 0.4866 yields a tail estimate κ of about

4.9 while a value of g = 0.5455 yields a κ of about 4.75, compared to κ in the data ranging

from 3.7 to 5.5 in Table 1. We also simulated the model with baseline parameter values but

with gains of 0.4866 and 0.5455. These simulations resulted in average price-dividend ratios

of 20.6324 and 20.6965 respectively with corresponding standard deviation values of 10.0051

and 10.5870.

32Given our estimate of β = 0.95 we convert the CRSP data to annual, summing dividends quarterly
dividends for each year. For the S&P 500 we use the annual data reported by Shiller (1999), pp.439-441.
33We also apply block bootstrap methods to this estimation, detailed at the end of the Quarterly Frequency

Results appendix. These methods allow us to construct average associated g’s with attendant standard
deviations, instead of the associated g in the last row of Table 3.
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Finally, instead of using actual P and D data series, we generate data by simulating

our model with our benchmark values (ρ, g, β, γ) = (0.80, 0.4, 0.95, 2.5), and then compute

g from (44) using the methods in Kim and Nelson (1999) to check that we recover a value

close to 0.4.34 The average g is 0.3826, which is quite close to and confirms the benchmark

value of g = 0.4 that we used in generating the simulated data. In fact we conducted these

simulations for a range of values of the gain parameter and then computed the associated

average g value. Our prior was that the resulting plot would intersect near a gain value

which was near g = 0.4; we provide the plot in Figure 5 below and note that our prior was

confirmed.

Figure 5. Fixed Point Plot.

34We run 1000 simulations each with 5000 periods, and obtain the average g from (44) across the 1000
simulations.
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Given these results, we offer a caveat with respect to interpretation of the large gain

parameter estimates that we find. One approach is to say that the model with SGCG

learning does very well in matching features of the data given the gain parameter estimates.

Alternatively one could argue that absent large estimates for the gain, the model does not

do well in matching asset pricing facts. We prefer the former interpretation given that it is

entirely reasonable to interpret our empirical exercise as suggesting that heavily discounting

past observations is consistent with market participants’behavior. With annual data the

estimates suggest market participants’horizon for learning is about 2-3 years which is not

entirely unreasonable given the frequent swings in the data.

6. Conclusion

An important and growing literature replaces expectations in dynamic stochastic models

not with realizations and unforecastable errors, but with regressions where agents ‘learn’

the rational expectations equilibria (REE). In these adaptive learning models when agents

employ constant gain algorithms that put heavier emphasis on recent observations and shown

to be optimal when there is drift in estimated parameters, escape dynamics can propel

estimated coeffi cients away from the REE values. We show that in a constant gain adaptive

learning model, the stationary distribution of the variables that agents are learning can be

fat tailed, and that the tail index of this distribution can be characterized in terms of the

parameters of the model.

We then analyze, in an asset pricing context, the stationary distribution of the price-

dividend ratio in a canonical model with constant gain adaptive learning. We reinterpret
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the learning algorithm as a linear recursion with multiplicative noise and use techniques

from large deviations theory to characterize the tail of the stationary distribution of the

price-dividend ratio.

In an asset pricing context ‘bubbles’, or asset price to dividend ratios that exhibit large

deviations from their REE values (even though our model has presumed a no-bubble con-

dition) can occur with a frequency associated with a fat tailed power law, as observed in

the data. The techniques used in our paper can be generalized to higher dimensions, to

finite state Markov chains, to continuous time,35 and can be applied more generally to other

economic models that use constant gain learning.

35See for example Saporta (2005), Saporta and Yao (2005), and Ghosh et al. (2010).
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7. Data Appendix

1. Annual S&P 500 Dataset from Professor Shiller’s website (see Shiller (2005))

(a) The following time series are extracted/constructed for 1871 through 2009 (note

that t = 1, . . . T where T = 2009.12):

i. Extract S & P Comp (P̃ (t)).

ii. Extract Dividend (D̃(t)).

iii. Extract Consumer Price Index (CPI(t)).

iv. Construct Real Price (P (t)) as P (t) = [P̃ (t)× CPI(T )]/CPI(t).

v. Construct Real Dividend (D(t)) as D(t) = [D̃(t)× CPI(T )]/CPI(t).

(b) Construct the Price to Dividends Ratio (ratio) as P (t)/D(t).

2. Quarterly CRSP Dataset

(a) Download the quarterly data from http://scholar.harvard.edu/campbell/data ac-

cessed from Professor Campbell’s website, where the particular data being used is

associated with “Replication Data for: Consumption Based Asset Pricing”. The

relevant file is titled USAQE.ASC, note that this is effectively a CRSP dataset

with the relevant variables being VWRETD and VWRETX. The text below is

an extract from the explanations for this dataset on the above website.

(b) The following quarterly time series are extracted/constructed for 1926.1 through

1998.4 from the above dataset (note that t = 1, . . . T where T = 1998.4):

i. Extract Col. 2: P̃ (t). For each month, the price index is calculated as

P̃ (t) = (VWRETX(t) + 1)× P̃ (t− 1). (Note that time t in this equation is
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in months.) The price index for a quarter, as reported in this column, is the

price index for the last month of the quarter. The original data, which goes

up to 1996.4 was not altered. The new data, which goes up to 1998.4, was

created as described here starting from 1997.1.

ii. Extract Col. 3: D̃(t). Dividend in local currency, calculated as follows. The

dividend yield for each month is calculated as D̃Y (t) = [1+VWRETD(t)]/[1+

VWRETX(t)]−1. Note that if the return index is calculated from VWRETD

as above, then this formula agrees with the formula for the dividend yield

given earlier. As before, the dividend for each month is calculated as D̃(t) =

D̃Y (t)× P̃ (t). The dividend for a quarter, as reported in this column, is the

sum of the dividends for the three months comprising the quarter.

iii. Extract the Consumer Price Index from Shiller’s Monthly Data (CPI(t))

which is monthly and associate the last month of a quarter as a quarterly

CPI(t).

iv. Construct Real Price (P (t)) as P (t) = [P̃ (t) × CPI(T )]/CPI(t). Take the

last price of a quarter as the annual price.

v. Construct Real Dividend (D(t)) as [D̃(t)× CPI(T )]/CPI(t) and then take

quarterly sums to get D(t) at an annual frequency.

vi. Construct the Price to Dividends Ratio (ratio) as P (t)/D(t).
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8. Quarterly Frequency Results

We also considered quarterly versions of the data. Quarterly data for the S&P 500 were

constructed from the monthly series reported by Professor Shiller on his website. Quarterly

data for the CRSP series were directly available from the data website maintained by Pro-

fessor Campbell (Campbell (2003)). The plots, analogous to Figures 3 and 4 in the text but

for quarterly data are as follows.

Figure 6. Quarterly S & P 500 (1871-2010).

40



Figure 7. Quarterly CRSP (1926-1998).

Both datasets indicate that at the quarterly frequency the price-dividends ratio is quite

volatile, just as in the case with annual data discussed in the text. Next, we employed a

baseline parameterization of (ρ, g, β, γ) = (0.98, 0.5, 0.99, 2.5) consistent with quarterly data

(e.g. a ρ = 0.98) and conducted the same simulations as reported in the text above, the

plots, analogous to Figures 1 and 2 in the text, are as follows.

Figure 8. Simulation Results.
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Figure 9. Simulation Results (cont’d.).

Next, our minimum distance estimates analogous to those Tables 1-3 in the text, except

employing quarterly data, are as follows.

Table 4. Data Characteristics (Quarterly Data)

S & P 500 CRSP

1871QI-2010QIV 1926QIV-1998QIV

κ̂ 3.5800 6.9894

s.e.(κ̂) 0.2695 1.3133

ρ̂ 0.9826 0.9749

s.e.(ρ̂) 0.0078 0.0126

Mean (Pt/Dt) 26.5882 26.0243

Std. Dev. (Pt/Dt) 13.7369 8.7640

Corr (Pt/Dt) 0.9882 0.9456

r = Dt

P t
0.0322 0.0363

β = (1 + r/4)−1 0.9920 0.9910

σd 0.1836 0.1627

Table 5. Parameter Estimates (Quarterly Data)
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S & P 500 CRSP

1871QI-2010QIV 1926QIV-1998QIV

Parameter Estimate Std. Err. Estimate Std. Err.

g 0.1585 0.0249 0.3746 0.1737

γ 9.1957 0.1194 1.3088 0.1738

β 0.9975 0.0008 0.9974 0.0001

ρ 0.9895 0.0015 0.9592 0.0002

Associated κ 3.5800 6.7959

Table 6. Drifting Beliefs Model Parameter Estimates

S & P 500 CRSP

1871QI-2010QIV 1926QIV-1998QIV

Parameter Estimate Std. Err. Estimate Std. Err.

σΛ 0.3603 0.1550 1.0114 0.3432

σξ 0.3655 0.0431 0.3032 0.0819

logL -142.2726 -38.9385

σd 0.1836 0.1627

Associated g 0.1810 0.5427

The main results from employing data at a quarterly frequency are twofold. First, while

the gain estimates reported in Table 5 fall, it still remains the case that the data exhibit

fat tails. This is expected since the data are now at a quarterly frequency. A higher gain

or shorter memory with annual data does indeed correspond to a lower gain and longer

memory with quarterly data since the definition of the learning horizon (the inverse of the
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gain) changes from years to quarters. Second, employing data at a quarterly frequency leads

to the structural estimates (as reported in Table 5) being estimated with greater precision.

In fact with more data the surface over which a minimum is sought in the minimum distance

estimation procedure is sharply defined, leading to the increased precision of the estimates.

In contrast to Table 5 however, for Table 6 the CRSP data employed in the drifting beliefs

specification lead to a larger than expected gain. This is driven by a much higher estimate

for σΛ relative to the annual data.

Finally, we also implemented a block bootstrap in estimating the drifting beliefs model.

That is, we used a block bootstrap to generate 1000 samples from the data, each of which was

used to estimate the parameters of a drifting beliefs model with an attendant computation of

g from equation (44), for example, as reported in the last row of Table 6. This yielded 1000

estimates of g for which we then computed the mean and standard deviation. Such estimates

yielded a mean (standard deviation) of g of 0.5080 (0.1777) using quarterly CRSP data and

a mean (standard deviation) of g of 0.6114 (0.1362) when using S&P 500 data. With annual

data the estimates of g were 0.2095 (0.1788) using CRSP data and 0.2196 (0.1788) using

S&P 500 data. Thus, with quarterly data using the minimum distance method or, using

bootstraps with either quarterly or annual data, the estimates of g were sharper and the

standard errors fell.
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