
NBER WORKING PAPER SERIES

MARKET TIMING, INVESTMENT, AND RISK MANAGEMENT

Patrick Bolton
Hui Chen

Neng Wang

Working Paper 16808
http://www.nber.org/papers/w16808

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
February 2011

We are grateful to Viral Acharya, Michael Adler, Nittai Bergman, Charles Calomiris, Xavier Gabaix,
Zhiguo He, Jennifer Huang, Stewart Myers, Emi Nakamura, Paul Povel, Adriano Rampini, Doriana
Ruffino, Jeremy Stein, Jeffrey Wurgler and seminar participants at Columbia, Duke Fuqua, Fordham,
LBS, LSE, SUNY Buffalo, Berkeley, UNC-Chapel Hill, Global Association of Risk Professionals
(GARP), Theory Workshop on Corporate Finance and Financial Markets (at NYU), and Minnesota
Corporate Finance Conference for their comments. The views expressed herein are those of the authors
and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2011 by Patrick Bolton, Hui Chen, and Neng Wang. All rights reserved. Short sections of text, not
to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including
© notice, is given to the source.



Market Timing, Investment, and Risk Management
Patrick Bolton, Hui Chen, and Neng Wang
NBER Working Paper No. 16808
February 2011
JEL No. E22,G01,G12,G3

ABSTRACT

Firms face uncertain financing conditions and are exposed to the risk of a sudden rise in financing
costs during financial crises. We develop a tractable model of dynamic corporate financial management
(cash accumulation, investment, equity issuance, risk management, and payout policies) for a financially
constrained firm facing time-varying external financing costs. Firms value financial slack and build
cash reserves to mitigate financial constraints. However, uncertainty about future financing opportunities
also induce firms to rationally time the equity market, even if they have no immediate needs for cash.
The stochastic financing conditions have rich implications for investment and risk management: (1)
investment can be decreasing in financial slack; (2) firms may invest less as expected future financing
costs fall; (3) investment-cash sensitivity, marginal value of cash, and firm's risk premium can all be
non-monotonic in cash holdings; (4) speculation (as opposed to hedging) can be value-maximizing
for financially constrained firms.

Patrick Bolton
Columbia Business School
804 Uris Hall
New York, NY 10027
and NBER
pb2208@columbia.edu

Hui Chen
MIT Sloan School of Management
77 Massachusetts Avenue, E62-637
Cambridge, MA 02139
and NBER
huichen@mit.edu

Neng Wang
Columbia Business School
3022 Broadway, Uris Hall 812
New York, NY 10027
and NBER
nw2128@columbia.edu



1 Introduction

The financial crisis of 2008 is a fresh reminder of the substantial uncertainties about financing

conditions that corporations face at times, as well as the impact that market shutdowns can

have on the economy. Recent studies have documented dramatic changes in firms’ financing

and investment behaviors during the crisis. For example, Ivashina and Scharfstein (2009)

document aggressive credit line drawdowns by firms for precautionary reasons. Campello,

Graham, and Harvey (2009) and Campello, Giambona, Graham, and Harvey (2010) show

that the financially constrained firms planned deeper cuts in investment, spending, burned

more cash, drew more credit from banks, and also engaged in more asset sales in the crisis.

Intuitively it is quite sensible that firms should try to adapt to the fluctuations in financ-

ing conditions, including timing favorable market conditions and hedging against unfavorable

market conditions. However, there is little existing theoretical work that tries to answer the

following questions: How should firms change their financing, investment, and risk manage-

ment policies during a period of severe financial constraints? And how should firms behave

when facing the threat of financial crisis in the future?

In this paper we address the above questions by proposing a dynamic model of invest-

ment, financing, and risk management for firms facing stochastic financing conditions. Our

model combines the corporate precautionary cash saving motive due to financial constraints,

developed in Bolton, Chen, and Wang (2010) (henceforth BCW), with the market timing

motives that endogenously arise due to stochastic financing opportunities. The four main

building blocks of the model are: 1) a long-run constant-returns-to-scale production function

with independently and identically distributed (i.i.d.) productivity shocks, convex invest-

ment adjustment costs, and a constant capital depreciation rate (as in Hayashi (1982));

2) stochastic external equity financing costs; 3) constant cash carry costs; and 4) dynamic

hedging opportunities. We purposely hold the investment opportunities constant in order to

highlight the role of time-varying financing conditions.

We analyze how a firm simultaneously adjusts its cash reserves, investment, hedging,
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financing, and payout decisions in two settings. In one case, the firm is in the midst of a

financial crisis trying to survive so as to preserve the firm’s going-concern value. In a second

case, we consider a firm currently facing relatively favorable financing conditions, but is

anticipating a potential financial crisis that will freeze up financial markets.

The main results of our model are as follows. First, during a period of high external

financing costs (e.g., a financial crisis), the firm cuts investment and delays payout aggres-

sively in order to survive the crisis.1 While in general, the sooner the crisis is expected to end,

the less valuable cash can be to mitigate financial constraints, we show that the opposite can

be true when cash holding is low. The intuition for this seemingly counter-intuitive result is

as follows. With low cash holding, the firm is facing an immediate liquidation threat. When

the crisis is expected to end soon, the “breathing room” provided by an extra dollar of cash

becomes especially valuable. This effect can cause the marginal value of cash to rise as the

expected duration of the crisis gets shorter. It can also cause firms with low cash holdings to

underinvest more aggressively while its expected future financing costs are falling, whereas

firms with relatively high cash holdings will invest more at the same time. Another interest-

ing finding in the crisis state is that the firm’s payout boundary is first increasing and then

decreasing in the probability of exiting the crisis.

Second, we show that it may be optimal for firms to time equity markets. When there

is a significant chance that financing conditions will deteriorate dramatically, the firm will

optimally time the market by issuing new equity before it runs out of cash. Otherwise,

the window of opportunity for cheap equity funding may vanish. The timing results are

consistent with the findings in Baker and Wurgler (2002), DeAngelo, DeAngelo, and Stulz

(2009), Fama and French (2005), and Huang and Ritter (2009).

Moreover, we show that market timing together with fixed costs of external financing

can give rise to convexity of firm value for low levels of cash holdings in states with good

financing opportunities. The convexity result has several important implications. It implies

that investment can be decreasing in cash holding simply due to the market timing option.

1See the empirical evidence cited in the opening paragraph.
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This prediction is opposite to most models of investment with financial constraints. It also

implies that the risk premium of a financially constrained firm might not necessarily decrease

with its cash holding as often perceived. Finally, it implies that speculation instead of risk

management can sometimes be value-maximizing for a financially constrained firm.

Our third result is that the firm’s risk premium can be decomposed into two parts: a

technology risk premium and a financing risk premium. Both components are sensitive to

changes in the firm’s cash holding, especially in the state of poor financing conditions, where

the conditional risk premium ranges from 2% to 30% depending on the firm’s cash holding.

Moreover, while the technology risk premium generally decreases with cash holding, the

market timing effect can make it increase with cash due to the convexity of firm value in

cash.

Fourth, as the expected duration of the state with favorable financing conditions shortens,

the firm issues equity sooner in that state because the window of opportunity is smaller,

and the firm optimally delays cash payouts to shareholders more. Overall, the firm’s cash

inventory rises in anticipation of a significant worsening of equity financing opportunities.

These results confirm the conjecture of Bates, Kahle, and Stulz (2009), who find that the

average cash-to-asset ratio of US firms has nearly doubled in the past quarter century, and

who attribute this rise in cash holdings to firms’ perceived increase in risk. These results

also help explain the investment and financing policies of many US non-financial firms in the

years prior to the financial crisis of 2007-2008, to the extent that these firms had anticipated

a potential worsening of financing conditions.

Our results highlight the sophisticated dynamic interactions between firm savings and

investment. Typically, we expect that higher cash holdings or lower expected future financing

costs will relax a firm’s financial constraint. Hence, investment should increase with cash

(and other financial slack measures such as credit) and decrease with expected financing

costs. This is generally true and holds in dynamic corporate finance models and also optimal

dynamic contracting models in the absence of stochastic financing conditions.2 However, we

2See DeMarzo, Fishman, He, and Wang (2010) for an example.
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show that with stochastic financing opportunities, investment is no longer monotonically

increasing in cash, nor is it monotonically decreasing with expected financing costs. The key

to these relations lies in the optionality of market timing and the dynamic behavior of the

marginal value of cash.

Our result also shows that first-generation static models on financial constraints and

corporate investment3 are inadequate to explain corporate investment policy based on simple

comparative statics analysis. In particular, static models are unsuited to explain the effects

of market timing on corporate investment, since these effects do not simply operate through a

change in the cost of external equity financing or a change in the firm’s cash holdings. Rather,

market timing matters when there is a finitely-lived window of opportunity for cheap equity

financing. Moreover, market timing interacts in a complex way with the firm’s precautionary

cash management: when cash is tight and dwindling it induces an acceleration in capital

expenditure, while when cash is abundant it induces a deceleration of investment in response

to a local reduction in cash holdings.

By construction, the productivity shocks in our model are i.i.d. Thus, firms that time

equity markets in our model are also ones with low cash holdings (as opposed to having

better investment opportunities). This is consistent with the empirical findings of DeAn-

gelo, DeAngelo and Stulz (2009) that most firms who issue stock look as if they are cash

constrained. Therefore, one cannot reject the market timing hypothesis based on this finding

alone. Certainly, firms may issue equity in good times to finance investment opportunities,

but our model shows that firms issuing equity when cash holdings are low can be consistent

with a rational market timing explanation. Testing of our market timing hypothesis would

ideally look for firm behavior not only in equity issuance, but also in investment and hedging

decisions. For cash-strapped firms, corporate investment may increase, and speculation may

arise as the firm’s cash dwindles and gets closer to the issuance boundary to replenish its

cash holding.

To the best of our knowledge, this paper provides the first dynamic model of corporate

3See Froot, Scharfstein and Stein (1993) and Kaplan and Zingales (1997).
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investment with stochastic financing conditions. We echo the view expressed in Baker (2010)

that supply effects may be significant for corporate finance. While we treat changes in

financing conditions as exogenous in this paper, the cause could be time variations in the

frictions of financial intermediation, investors’ risk aversion, or aggregate uncertainty and

information asymmetry. Earlier theoretical work on investment with financial constraints

mostly focus on the demand side, i.e., the firm’s optimizing behavior taking the financing

conditions as constant and time invariant. See Kaplan and Zingales (1997), Gomes (2001),

Almeida, Campello, and Weisbach (2004), Hennessy and Whited (2005, 2007), Gamba and

Triantis (2008), Riddick and Whited (2009), Bolton, Chen, and Wang (2010), among others.

2 The Model

We build on BCW by introducing stochastic investment and external financing conditions

into a firm’s dynamic investment, financing, cash management, and hedging problem. Specif-

ically, we assume that the firm can be in one of two states, denoted by st = 1, 2. In each

state, the firm faces different financing and investment opportunities. The state switches

from 1 to 2 (or from 2 to 1) over a short time interval ∆ with a constant probability ζ1∆

(or ζ2∆). For an analysis with a more general setup, see the appendix.

2.1 Production technology

The firm employs capital as the factor of production and the price of capital is normalized

to one. We denote by K and I respectively the firm’s capital stock and gross investment.

As is standard in capital accumulation models, the capital stock K evolves according to:

dKt = (It − δKt) dt, t ≥ 0, (1)

where δ ≥ 0 is the rate of depreciation.

The firm’s operating revenue at time t is proportional to its capital stock Kt, and is given
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by KtdAt, where dAt is the firm’s productivity shock over time increment dt. We assume

that

dAt = µ (st) dt + σ (st) dZ
A
t , (2)

where ZA
t is a standard Brownian motion and µ(st) and σ(st) denote the expected return on

capital and its volatility in state st. The firm’s incremental operating profit dYt over time

increment dt is then given by:

dYt = KtdAt − Itdt− Γ(It, Kt, st)dt, t ≥ 0, (3)

where Itdt is the investment over time dt and Γ(It, Kt, st)dt is the additional adjustment cost

that the firm incurs in the investment process. Note that we allow the adjustment costs to

be state dependent. Following the neoclassical investment literature (Hayashi (1982)), we

assume that the firm’s adjustment cost is homogeneous of degree one in I and K. In other

words, the adjustment cost takes the homogeneous form Γ(I,K, s) = gs(i)K, where i is the

firm’s investment capital ratio (i = I/K), and gs(i) is a state-dependent function that is

increasing and convex in i.4 Our analysis does not depend on the specific functional form of

gs(i) and to simplify the analysis we assume that gs(i) is quadratic:

gs (i) =
θs(i− νs)

2

2
, (4)

where θs is the adjustment cost parameter and νs is a constant parameter.5

The firm can liquidate its assets at any time. The liquidation value Lt is proportional to

the firm’s capital at time t, but the liquidation value per unit of capital can change with the

state st, that is, Lt = lsKt, where ls is the recovery value per unit of capital in state s.

4For notational convenience we use the notation xs to denote a state dependent variable x(s) whenever
there is no ambiguity.

5In the literature, common choices of νs are either zero or the rate of deprecation δ. While the former
choice implies zero adjustment cost for zero gross investment, the latter choice implies a zero adjustment
cost when net investment is zero.
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2.2 Stochastic Financing Opportunities

Neoclassical investment models (Hayashi (1982)) assume that the firm faces frictionless cap-

ital markets and that the Modigliani and Miller theorem holds. However, in reality, firms

face important financing frictions for incentive, information asymmetry, and transaction cost

reasons.6 Our model incorporates a number of financing costs that firms face in practice and

that empirical research has identified, while retaining an analytically tractable setting.

The firm may choose to use external financing at any point in time. For simplicity, we

only consider external equity financing as the source of external funds for the firm. We leave

the generalization of allowing the firm to also issue debt for future research. The firm incurs

a fixed and a variable cost of issuing external equity. The fixed cost is given by φsK, where

φs is the fixed cost parameter in state s. As in BCW we take the fixed cost to be proportional

to the firm’s capital stock K. This assumption ensures that the firm does not grow out of its

fixed issuing costs. It is also analytically convenient, as it preserves the homogeneity of the

model in the firm’s capital stock K. The firm also incurs a (state dependent) proportional

issuance cost γs for each unit of external funds it raises. That is, after paying the fixed cost

φsK, the firm pays γs > 0 in state s for each incremental dollar it raises.

We denote by:

1. H the process for the firm’s cumulative external financing (so that dHt is the incre-

mental external financing over time dt);

2. X the firm’s cumulative issuance costs;

3. W the process for the firm’s cash stock;

4. U the firm’s cumulative non-decreasing payout process to shareholders (so that dUt is

the incremental payout over time dt).

Distributing cash to shareholders may take the form of a special dividend or a share

6See Jensen and Meckling (1976), Leland and Pyle (1977), and Myers and Majluf (1984), for example.
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repurchase.7 The benefit of a payout is that shareholders can invest the proceeds at the

market rate of return and avoid paying a carry cost on the firm’s retained cash holdings. We

denote the unit cost of carrying cash inside the firm per unit of time by λ ≥ 0.8

If the firm runs out of cash (Wt = 0) it needs to raise external funds to continue operating

or its assets will be liquidated. If the firm chooses to raise new external funds to continue

operating, it must pay the financing costs specified above. The firm may prefer liquidation

if the cost of financing is too high relative to the continuation value (e.g., when the firm is

not productive, i.e., low µ). We denote by τ the firm’s stochastic liquidation time. Note

that τ = ∞ means that the firm never chooses to liquidate.

We may write the dynamics for the firm’s cash W as follows:

dWt = [KtdAt − Itdt− Γ(It, Kt, st)]dt+ (r(st)− λ)Wtdt + dHt − dUt . (5)

where the firm term is the firm’s cash flows from operations dYt given in (3), the second

term is the return (net of the carry cost λ) on Wt, the third term dHt is the cash inflow from

external financing, and the last term dUt is the cash outflow to investors, so that (dHt−dUt)

is the net cash flow from financing. Note that this is a completely general financial accounting

equation, where dHt and dUt are endogenously determined by the firm.

The homogeneity assumptions embedded in the adjustment cost, the “AK” production

technology, and financing costs allow us to deliver our key results in a parsimonious and

analytically tractable homogeneous model. Adjustment costs may not always be convex and

the production technology may exhibit long-run decreasing returns to scale in practice, but

7We cannot distinguish between a special dividend and a share repurchase, as we exclude taxes. Note,
however, that a commitment to regular dividend payments is suboptimal in our model. We also exclude any
fixed or variable payout costs so as not to overburden the model. These can be added to the analysis

8The cost of carrying cash may arise from an agency problem or from tax distortions. Cash retentions
are tax disadvantaged because the associated tax rates generally exceed those on interest income (Graham
(2000)). Since there is a cost of hoarding cash λ the firm may find it optimal to distribute cash back to
shareholders when its cash inventory grows too large. If λ = 0 the firm has no incentives to pay out cash
since keeping cash inside the firm does not have any disadvantages, but still has the benefit of relaxing
financial constraints. We could also imagine that there are settings in which λ ≤ 0. For example, if the firm
may have better investment opportunities than investors. We do not explore this case in this paper as we
are interested in a trade-off model for cash holdings.
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these functional forms substantially complicate the formal analysis.9 As will become clear

below, the homogeneity of our model in W and K allows us to reduce the dynamics to a

one-dimensional equation, which is relatively straightforward to solve.

2.3 Systematic Risk and the Pricing of Risk

There are two different sources of systematic risks in our model: i) a small, continuous,

diffusion shock, and ii) a large discrete shock when the economy switches from one state

of nature to another. The diffusion shock in any given state s may be correlated with the

firm’s productivity shock, and we denote the correlation coefficient by ρ. The discrete shock

affects both the firm’s productivity and its external financing costs, as we have highlighted

above.

How are these sources of systematic risk priced? Our model can allow for either risk-

neutral or risk-averse investors. If investors are risk neutral, then the pricing of risk is

zero and the physical probability distribution coincides with the risk-neutral probability

distribution. If investors are risk-averse, however, we need to distinguish between physical

and risk-neutral measures. We do so as follows.

For the diffusion risk, we assume that there is a constant market price of risk ηs in

each state s. The firm’s risk adjusted productivity shock (under the risk-neutral probability

measure Q) is then given by

dAt = µ̂ (st) dt+ σ (st) dẐ
A
t , (6)

where the mean productivity shock is adjusted to account for the firm’s exposure to diffusion

risk as follows:

µ̂(st) ≡ µ̂s = µs − ρηsσs,

and ẐA
t is a standard Brownian motion under the risk-neutral probability measure Q. 10

9See Hennessy and Whited (2005, 2007) for an analysis of a non-homogenous model.
10In the appendix, we provide a more detailed discussion of systematic risk premia. The key observation
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A risk-averse investor also requires a risk premium to compensate for the risk of the

economy switching states. As we show in the appendix, this involves transforming the

transition intensity under the physical probability measure to the risk-neutral probability

measure Q as follows: let ζ̂1 and ζ̂2 denote the transition intensities from respectively state

1 to state 2 (and state 2 to state 1) under the risk-neutral measure, then these intensities

are related to their physical intensities as follows:

ζ̂1 = eκ1ζ1 , and ζ̂2 = eκ2ζ2 ,

where κ1 = ln(ζ̂1/ζ1) and κ2 = ln(ζ̂2/ζ2) represent a form of risk premium required by a

risk-averse investor for the exposure to this jump risk.

Note that a positive κs implies that ζ̂s > ζs. In other words, when κs is positive it

is as if a risk-averse investor perceived a higher transition intensity under the risk-neutral

probability measure than under the physical measure. Vice versa, a negative κs implies that

ζ̂s < ζs. In other words, the perceived transition intensity for a risk-averse investor under

the risk-neutral measure is lower. As we show in the appendix, κs is positive in one state

and negative in the other. Intuitively, this reflects the idea that a risk-averse investor makes

an upward adjustment of the transition intensity from the good to the bad state (with κs > 0)

and a downward adjustment of the transition intensity from the bad to the good state (with

κs < 0). In sum, it is as if a risk-averse investor were uniformly more ‘pessimistic’ than a

risk-neutral investor: she thinks ‘good times’ are likely to last shorter and ‘bad times’ longer.

2.4 Firm optimality

The firm chooses its investment I, cumulative payout policy U , cumulative external financing

H , and liquidation time τ to maximize firm value as follows:

E
Q
0

[∫ τ

0

e−
∫
t

0
rudu (dUt − dHt − dXt) + e−

∫
τ

0
rudu (Lτ +Wτ )

]
, (7)

is that the adjustment from the physical to the risk-neutral probability measure reflects a representative
risk-averse investor’s stochastic discount factor (SDF) in a dynamic asset-pricing model.
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where ru denotes the interest rate at time u. The first term is the discounted value of payouts

to shareholders, and the second term is the discounted value upon liquidation. Note that

optimality may imply that the firm never liquidates. In that case, we simply have τ = ∞.

3 Model Solution

3.1 First-best Benchmark

We begin by characterizing the solution in the neoclassical benchmark, where there are no

external financing costs, φs = γs = 0. In the neoclassical (frictionless-markets) solution

firms hold no cash (W = 0) and the optimal investment is determined by Tobin’s q, which

is the ratio of the market value and replacement value of capital. As Hayashi (1982) has

first established, marginal q is equal to average (Tobin’s) q in the first-best benchmark due

to the homogeneity in K of the production and adjustment-cost functions.

The first-best Tobin’s q and investment-capital ratio iFBs satisfy

rsq
FB
s = µ̂s − iFBs −

1

2
θs

(
iFBs − νs

)2
+ qFBs

(
iFBs − δ

)
+ ζ̂s

(
qFBs− − qFBs

)
, s = 1, 2 (8)

and

qFBs = 1 + θs
(
iFBs − νs

)
. (9)

Note first that Tobin’s q is greater than one only due to the presence of investment adjust-

ment cost. Second, as described in the system of equations (8), firm value in the first-best

benchmark, qFBs in state s (normalized by the firm’s capital stock K), is the sum of the

present value of expected earnings net of investment and adjustment costs per unit of capi-

tal (under the risk-neutral measure Q), µ̂s− iFBs − 1
2
θs

(
iFBs − νs

)2
, plus the value of the net

percentage increase in capital stock, qFBs
(
iFBs − δ

)
, plus the expected change in value (also

under Q) as the firm switches from state s to s−, ζ̂s
(
qFB
s−

− qFBs
)
. In the two-state model,

iFBs and qFBs can be solved in closed form by mapping this system of bi-variate quadratic
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equations into a quartic equation.

3.2 Second-best Solution

Let P (K,W, s) denote firm value when the firm faces positive external financing costs (φs > 0

and γs ≥ 0) in state s, with capital K and cash holding W . Firm value P (K,W, s) then

satisfies the following system of Hamilton-Jacobi-Bellman (HJB) equations when its cash

holding is above the financing-liquidation boundary W s and below the payout boundary

W s, i.e., for W s ≤ W ≤W s,

rsP (K,W, s) = max
I

[(rs − λs)W + µ̂sK − I − Γ (I,K, s)]PW (K,W, s) +
σ2
sK

2

2
PWW (K,W, s)

+ (I − δK)PK(K,W, s) + ζ̂s
(
P (K,W, s−)− P (K,W, s)

)
(10)

where s− denotes the other state.

Intuitively, the first and the second terms on the right side of the HJB equation (10) give

the effects of the expected change (drift) and volatility of cash holding W on firm value,

respectively. The third term gives the effect of the expected change of capital stock K on

firm value. The last term gives the expected change of firm value due to the change of the

state from s to s−. When ζ̂s = 0, we uncover the special case where the firm remains forever

in the same state (the case treated in BCW).

As in BCW, firm value is homogeneous of degree one in W and K within each state. We

may write P (K,W, s) = ps(w)K, and substitute it into (10) and simplifying, we then obtain

the following system of ordinary differential equations (ODE) for ps(w):

rsps(w) = max
is

[(rs − λs)w + µ̂s − is − gs (is)] p
′
s (w) +

σ2
s

2
p′′s (w)

+ (is − δ) (ps (w)− wp′s (w)) + ζ̂s (ps− (w)− ps (w)) . (11)
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The first-order condition (FOC) for the investment-capital ratio i(w) is then given by:

is(w) =
1

θs

(
ps(w)

p′s(w)
− w − 1

)
+ νs, (12)

where p′s(w) is the marginal value of cash in state s.

The implied investment response to changes in w is thus given by:

i′s(w) = −
1

θs

ps(w)p
′′
s(w)

p′s (w)
2 . (13)

As in BCW, the endogenous payout boundary ws = W s/K satisfies the following value

matching condition:

p′s(ws) = 1, (14)

which states that the marginal value of cash is one when the firm chooses to pay out cash.

Moreover, the optimality of a payout implies the following super contact condition (see, e.g.,

Dumas, 1991) holds:

p′′s(ws) = 0. (15)

In contrast, the lower endogenous financing boundary in state s is determined by a

fundamentally different trade-off than in the single-state model in BCW. Let ws = W s/K

denote the endogenous lower boundary for equity issuance in state s, and let ms denote the

“return target” financing level in state s per unit of capital. A key result in BCW is that

the firm never chooses to raise external equity before it exhausts its cash stock. That is, in

BCW the firm optimally chooses w = 0. The reason is that the firm always has the option

to raise external equity financing in the future, and market financing terms do not change

over time (i.e., financing opportunities are constant). The firm is therefore better off relying

first on its cheaper internal funds before turning to external financing. As is highlighted in

BCW, this is a form of dynamic pecking order of financing.

When financing opportunities are changing, however, as they are in our setting here, it

is no longer necessarily optimal to set w = 0. It may now be optimal for the firm to time
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the market and issue equity before it runs out of cash, if it is concerned that financing costs

could rise in the future. That is, the option to tap cheaper equity markets now even though

the firm has not run out of cash can be an optimal strategy if the cheap financing terms are

not permanent.

Given any equity issuance boundary ws, however, we have the same value matching and

smooth pasting conditions at issuance as in BCW. These allow us, in particular, to determine

the return target ms:

ps(ws) = ps(ms)− φs − (1 + γs)(ms − ws), (16)

p′s(ms) = 1 + γs. (17)

If the firm chooses to raise external equity, it first pays the fixed equity issuance cost

φs per unit of capital and then incurs the marginal issuance cost γs for each unit of equity

it raises. The condition (16) thus gives the accounting relation for firm value immediately

before and after issuance. Second, as the firm optimally chooses its external financing at the

margin it sets ms so that marginal benefit of issuance p′s(ms) is equal to the marginal cost

1 + γs, which yields condition (17).

How does the firm determine its equity issuance boundary ws? We use the following

two-step procedure. First, suppose that the optimal lower boundary ws is interior (ws > 0),

then, the standard optimality condition implies that the derivatives of the left and the right

sides of (16) with respect to ws should be equal. This argument gives the following condition:

p′s(ws) = 1 + γs. (18)

If there exists no ws such that the above condition holds, we obtain a corner solution, ws = 0.

In that case, the option value to tap equity markets earlier than absolutely necessary is valued

at zero. Using this procedure, we can characterize the optimal lower boundary ws ≥ 0.

Next, we need to determine whether costly external equity issuance or liquidation is

optimal, as the firm always has the option to liquidate. Under our assumptions, the firm’s
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capital is productive and thus its going-concern value is higher than its liquidation value.

Therefore, the firm never chooses to exercise its liquidation option before it runs out cash.

Under liquidation, we then have

ps(0) = ls. (19)

Hence, the firm chooses costly equity issuance as long as the equilibrium firm value ps(0) is

greater than ls.

Finally, we specify the value function outside of the financing and payout boundary. If

the firm has too much cash in state s (so that w > ws) it will reduce its cash holding to ws

immediately by making a lump-sum payout. That is, we have

ps (w) = ps (ws) + (w − ws) , w > ws . (20)

This scenario is possible when the firm with high cash holding moves into a state with a

lower payout boundary.

Similarly, when the firm suddenly transits from the state s− with the financing boundary

ws− into the other state s with a higher financing boundary (ws > ws−) and its cash holding

lies between the two lower financing boundaries (ws− < w < ws) it is then optimal for the

firm to immediately issue external equity and restore its cash balance to the target level ms.

The following equation describes this rebalancing:

ps(w) = ps(ms)− φs − (1 + γs) (ms − w) , w ≤ ws. (21)

In the remainder of the paper, we use this model framework to study several scenarios.

In Section 4, we consider the case where the firm is attempting to survive a financial crisis

during with financial markets are temporarily shut down. In Section 5, we consider the

situation where the firm expects to transit from the good state, denoted by G, in which

external costs of financing are low, to the other state, denoted by B, where the costs of

financing are high. And in section 8 we consider the general case where the firm’s environment
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transits between two recurrent states B and G.

4 Fighting for Survival in a Crisis

Our first scenario captures the situation faced by firms in the midst of a financial crisis. Much

empirical work has shown, firms in such an environment scramble to survive by cutting back

capital expenditures, drawing down lines of credit, and (when possible) engaging in asset

sales so as to preserve cash.11 In this section we analyze how firms optimally manage their

finances when their priority is to survive in a severe but temporary financial crisis. To make

our notation more intuitive, we use state G to refer to the good state, in which financial

markets operate normally. We set the fixed cost of equity issuance to 1% of the firm’s

capital stock in this state (φG = 1%) and the marginal cost of issuance to γG = 6%. We

also set the liquidation value of assets to lG = 1.1. State B is the financial crisis (bad) state,

where the market for external financing shuts down. Should the firm run out of cash in this

state it would be forced into liquidation. During a financial crisis, few investors have either

sufficiently deep pockets or the risk appetite to acquire assets. This leads to fire sale prices

of assets and low liquidation values12 For these reasons, we set lB = 0.7.

The other parameters remain the same in the two states: the riskfree rate is r = 4.34%,

the risk-adjusted mean and volatility of the productivity shock are µ̂ = 21.2% and σ = 20%,

the rate of depreciation of capital is δ = 15%, the adjustment cost parameters are θ = 6.902

and ν = 12%.13 Finally, the cash-carrying cost is λ = 1.5%. Although in reality these

parameter values clearly change with the state of nature, we keep them fixed under this

scenario so as to isolate the effects of changes in external financing conditions. All the

parameter values are annualized whenever applicable and summarized in Table 1.

To make our point in the simplest possible setting, consider a firm currently in the

11See Campello, Graham, and Harvey (2009), Ivashina and Scharfstein (2009), and Campello, Giambona,
Graham, and Harvey (2010).

12See Shleifer and Vishny, 1992, Acharya and Viswanathan, 2010, Campello, Graham and Harvey, 2009).
13Other than the volatility parameter, we rely on the technology parameters estimated by Eberly, Rebelo,

and Vincent (2009).
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financial crisis (state B), and that the state G is absorbing, i.e., once the firm reaches state

G, it remains there permanently (ζG = 0). The firm exits the crisis state with transition

probability ζB∆ over time period ∆, and as a benchmark we set ζB = 0.9, which implies

that the average duration of a financial crisis is 1.1 years. Under the risk-neutral measure,

with a pricing of risk with respect to changes in the state of nature of κG = −κB = ln(3),

the corresponding risk-neutral transition intensity is ζ̂B = 0.3.

The firm’s behavior in the absorbing state G is identical to that in the model with

constant financing opportunities in BCW. Figure 1 plots the average q and its derivative,

as well as the investment-capital ratio i(w) and its derivative in this state. The average q

is a natural measure of the value of capital. It is defined as the ratio between the firm’s

enterprise value, P (K,W, s)−W , and its capital stock:

qs(w) =
P (K,W, s)−W

K
= ps(w)− w. (22)

The sensitivity of average q to changes in cash holdings is thus given by

q′s(w) = p′s(w)− 1 . (23)

We may interpret q′s(w) as the (net) marginal value of cash, as it measures how much the

firm’s enterprise value increases with an extra dollar of cash. The firm’s investment-capital

ratio is(w) and investment-cash sensitivity i′s(w) in each state are given by equations (12)

and (13), respectively.

After reaching the absorbing state G, the firm’s financing follows a strict pecking order

with internal funds always tapped before external funds, so that wG = 0. The return target

for equity issuance, which is also the total amount of equity issuance due to wG = 0, is

mG = 0.17, and the payout boundary is wG = 0.49 (each marked by a vertical line in the

graphs). As w rises, the financial constraint is relaxed. As a result, both the average q

and investment rise with w, while the net marginal value of cash and the investment-cash

sensitivity fall with w. Obviously, the transition intensity ζB into the absorbing state has
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Figure 1: Firm value and investment in (absorbing) state G. This figure plots the

average q and investment in state G for the case where G is absorbing. Costly external financing

is available in state G, but not in B. All parameter values are given in Table 1.

no impact on the results in the absorbing state G.

Next, we turn to the crisis state B, where the firm’s overriding concern is survival due

to the lack of any external financing. The firm also anticipates an improvement in financing

opportunities when the state of the economy switches back to normal. Thus, a rise in the

probability of leaving the crisis state can have two effects. First, it might encourage the firm

to invest with the hope that external financing will become available soon. Second, it raises

the continuation value for the firm, which makes the firm place extra weight on survival in

order to preserve its going concern value. The tradeoff between these two effects determines

how the firm times payout and investment in the crisis state.

Figure 2 plots the average q and investment in state B. Panel A plots qB(w) and gives
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Figure 2: Firm value and investment in (transitory) state B. This figure plots

the average q and investment in state B for the case where G is absorbing. Costly external

financing is available in state G, but not in B. We consider three risk-neutral transition intensities

ζ̂B = 0, 0.3, 1.0. All other parameter values are given in Table 1.

the optimal payout boundary wB in the transitory state B. We consider three levels of

risk-neutral transition intensity, ζ̂B = 0, 0.3, 1, which corresponds to ζB = 0, 0.9, 3 under

the physical measure. Regardless of the transition intensity, the average q always starts at

lB = 0.7 due to liquidation at w = 0. When the probability of exiting a crisis increases, firm

value rises, and the firm responds by reducing its cash holding. The payout boundary wB

falls from 0.78 to 0.76 and then to 0.68 as ζ̂B rises from 0 to 0.3 and then to 1.0.

It is worth noting that the payout boundary in state B is not always monotonic in ζ̂B. For

very high and very low transition intensities the firm pays out sooner than for intermediate

intensities. The reason is that when the firm is stuck in the crisis state for a long time the
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value of its investment opportunities is so low that it is best to payout cash to shareholders.

When the probability of exiting the crisis is very high then the prospect of raising cheap

equity in the future also encourages the firm to pay out more dividends in the crisis state.

It is for intermediate probabilities, when the value of the firm’s investment opportunities is

relatively high, but the risk of staying in a prolonged crisis is also high, that the firm is most

conservative in its payout policy.

However, even when the crisis is expected to end quickly (e.g., ζ̂B = 1 corresponds

to ζB = 3, which implies the average duration of state B is only 0.33 years), the payout

boundary is still significantly higher than in the good state (wG = 0.49), suggesting that the

firm has a strong desire to hold more cash in the crisis state. The graph also shows that

moving from state B to G can result in a big jump in firm value when the cash holding is low,

but the effect is much smaller when the cash holding is high. This difference reflects the fact

that the firm uses precautionary savings to cushion the impact of severe financial constraints.

One implication of this finding is that we should not expect to see sharp increases in stock

valuations for cash rich firms as the economy exits the crisis state.

Panel B plots the net marginal value of cash q′B(w) in state B. As w approaches 0,

the marginal value of cash rises significantly because an extra dollar of cash can reduce the

chance of costly liquidation. While the net marginal value of cash in state G reaches at most

$0.2 as w → 0, it can be as high as $6 in state B. Again, this is due to the fact that the

firm has access to external financing in state G but not in state B.

Interestingly, when cash holdings w are relatively high the marginal value of cash in

state B decreases with the transition intensity ζ̂B, while it increases with ζ̂B when w is

low. This result might appear counter-intuitive, as a higher probability of ending the crisis

ought to help relax the financial constraint the firm is facing. Intuitively, the severity of

financial constraints depends on the probability of the firm running out of cash before the

crisis ends. When current cash holding is high, a higher ζ̂B makes liquidation less likely,

hence reducing the importance of hoarding cash today. However, when the firm is facing an

immediate liquidation threat, yet the chance of the crisis ending in the near future is high,
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the “breathing room” provided by an extra dollar of cash can be especially valuable, which

explains why the marginal value of cash rises with ζ̂B. Notice that for w > 0, the marginal

value of cash should eventually decrease in ζ̂B as ζ̂B becomes large, since the high intensity

eventually makes liquidation concerns irrelevant.14

The behavior of the marginal value of cash is key to understanding the firm’s investment

policy. As Panel C shows, the investment-capital ratio iB(w) in state B is increasing in

w. This result is driven by the rise in firm value and the fall in marginal value of cash

with w. With sufficiently high w, investment increases with ζ̂B. But the opposite is true

when w is low. Underinvestment is a form of risk management for a financially constrained

firm. When the firm does not face an immediate threat of liquidation, a higher transition

intensity ζ̂B further reduces the need to save cash and hence makes the firm more willing

to invest. However, if the cash holding is already low, a higher ζ̂B can induce the firm to

underinvest more in order to avoid running out of cash before the end of the crisis. The

different investment policy at the lower and higher ends of w highlights the importance of a

dynamic risk management perspective.

Panel D of Figure 2 shows that the investment-cash sensitivity i′B(w) is positive but non-

monotonic in w. Kaplan and Zingales (1997) show that investment increases with net worth

(i′(w) > 0) but cannot sign i′′(w) in their static setting. In the scenario we illustrate here,

the sensitivity i′(w) is positive, and indeed can be either increasing or decreasing in w.

In summary, when current external financing is impossible but may be available in the

future, the potential change of financing terms in the future affects the firm’s payout and

investment policies. From the comparative statics for ζ̂B, we can conjecture the implications

of a time-varying transition intensity in a dynamic setting. When ζ̂B rises, which can be

either because the expected duration of the crisis is getting shorter (ζ̂B falls), or because

investors are less concerned with the crisis state (the risk premium for financing shocks falls),

firm value will rise, firms will tend to hold less cash, and investment may be falling for firms

with low cash holdings (despite the fact that expected future financing costs are falling) but

14The exception is at the limit as w approaches 0, where one can prove that the marginal value of cash
will be monotonically increasing in ζ̂B.
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rising for firms with high cash holdings.

5 Market Timing: Building aWar-chest in Good Times

In this section, we consider a setting where the firm is currently in state G. However, the

economy may switch out of state G to enter the crisis state B with probability ζG∆ over the

time interval ∆. Moreover, in state B the firm cannot access external financing and can only

survive on internal funds. Thus, under the scenario considered in this section the firm has

an external financing window only in state G, and this window has limited duration. Unlike

in the previous section, we show that the option to time the market has significant value.

This predictable worsening of financing conditions generates a positive timing-option

value for the firm. By tapping external equity markets while there is still time, the firm can

build a cash war chest for the future. By deferring external financing, it would save on the

time value of money for financing costs and also on subsequent cash carry costs. However,

doing so would then take a risk of being shut out of capital markets forever before it had

time to accumulate cash. Facing this tradeoff, the firm chooses its external equity issuance

policy together with its investment and payout policies to maximize its value.

The firm’s behavior in the absorbing state B is essentially the same as in BCW. Figure 3

plots the average q and i(w) in the absorbing state B. If the firm runs out of cash in state B,

the inability to raise external funds results in immediate liquidation. Average q thus is equal

to the liquidation value lB = 0.7 at w = 0. Also, average q is concave in w (as in BCW). The

net marginal value of cash q′B(w) can be as high as 3.5 when the firm is close to runnning

out of cash, but it decreases to 0 monotonically as we w increases from 0 to the endogenous

payout boundary wB. As in BCW, investment is increasing but is not necessarily concave

in cash: from Panels C and D one can see that i′(w) is positive but not monotonic.

Next we turn to the transitory state G, Figure 4 plots firm value, investment, and their

sensitivities in state G for three levels of risk-neutral transition intensity ζ̂G = 0, 0.3, 1.0

from state G to B, which corresponds to ζG = 0, 0.1, 1/3 under the physical measure.
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Figure 3: Firm value and investment in (absorbing) state B. This figure plots the

average q and investment in state B for the case where B is absorbing. Costly external financing

is not available in state B. All parameter values are given in Table 1.

Panel A plots average q. Intuitively, the higher is the transition intensity from G to

B (the higher ζ̂G) the lower is firm value for the same cash-capital ratio w. Importantly,

when ζ̂G is sufficiently high firm value is no longer globally concave in w. Since financial

constraints typically induce the firm to hoard cash for precautionary reasons, firm value is

increasing and concave in financial slack in almost all models featuring financial constraints.

In our scenario, the precautionary motive for hoarding cash is still present. Yet, stochastic

financing conditions also introduce a motive to time equity markets, which potentially results

in a locally convex firm value.

From Panel B, it is easy to see that firm value is not globally concave in w. For sufficiently

high w (w ≥ 0.17 with ζ̂G = 0.3 and w ≥ 0.26 with ζ̂G = 1) qG(w) is concave. When the
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Figure 4: Firm value and investment in (transitory) state G. This figure plots the

average q and investment in state G for the case where G is transitory. Costly external financing

is available in state G, but not in B. We consider three transition probabilities ζ̂G = 0, 0.3, 1.0.

All other parameter values are given in Table 1.

firm has sufficient cash, the firm’s equity issuance need is then quite distant so that the

financing timing option is out-of-the-money. Recall that the sign of i′(w) is determined by

p′′G(w) (see equation 13). Hence, the concavity of pG(w) in the cash rich region also implies

that investment responds positively to increases in cash in that region, which is confirmed

in Panels C and D of Figure 4. To sum up, with sufficient financial slack, the firm behaves

effectively in the same way as in standard models with financial constraints (e.g. BCW).

In contrast, when w is low (e.g. w ≤ 0.17 with ζ̂G = 0.3 and w ≤ 0.26 with ζ̂G = 1) the

firm is more concerned about the risk of being shut out of capital markets when the state

switches to B. A firm with low cash holdings may want to issue equity while it can, even
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before running out of cash. In addition, such a firm may choose to accelerate its cash burn

rate by increasing its investments, to bring forward the time when it raises new funds through

equity issuance. Also, due to the fixed costs of issuing equity, the firm will engage in a lumpy

equity issue when it chooses to tap equity markets. This means that post issuance the firm

will have high cash holdings. Thus when w is low, the expectation of high post issuance cash

reserves coupled with the inclination to time favorable equity markets dominates the firm’s

precautionary motive, resulting in a locally convex-shaped firm value in w.

How does the transition intensity out of state G affect firms’ market timing motive?

Consider first the limiting case when state G is absorbing (ζ̂G = 0). In this case, the

firm taps equity markets only when it runs out of cash (wG = 0), and to economize the

fixed cost of issuance, the firm issues a lumpy amount mG = 0.17. Firm value qG(w) is

then globally concave in w and iG(w) increases with w everywhere. Note in particular that

the fixed issuance cost by itself is not sufficient to generate market timing behavior. The

transitory nature of favorable market conditions is necessary to induce the firm to time

the market. As the transition intensity ζ̂G rises above 0 the equity issuance boundary wG

may possibly move above 0. In these situations, the optimality condition for the issuance

boundary requires that the net marginal value of cash at the issuance boundary be equal to

the proportional financing cost γ = 6%. As one would expect, the return cash-capital ratio,

mG, is also increasing in the transition intensity (as can be seen in Panel A), since a higher

likelihood of an impending financial crisis raises the firm’s precautionary demand for cash.

The firm also chooses to preserve more cash in response to an increase in ζ̂G by postponing

payouts to shareholders. This can be seen from the shift to the right for the optimal payout

boundary wG as ζ̂G rises. In sum, Panel A shows that through a combination of market

timing and reduced payout, the firm optimally responds to a greater crisis risk by holding

more cash on average.

Besides the finite duration of the option to time the equity market, the fixed issuance

cost is also necessary to obtain local convexity of the value function. In Figure 5, we examine

average q and investment in the transitory state G for three levels of fixed cost of equity
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Figure 5: The effects of financing costs on firm value and investment in (transitory)
state G. This figure plots firm value and investment in state G for the case where G is transitory.

We consider three levels of fixed costs of equity financing in state G: φG = 0, 1%, 5%. The transition

intensity is ζ̂G = 0.3. All other parameter values are given in Table 1.

financing φ = 0, 1%, 5% (with transition intensity ζ̂G = 0.3). Note first that the lower the

fixed cost parameter φ is the earlier the firm issues equity in state G. Intuitively, the firm

exercises the financing option earlier if the cost of doing so is lower. In Panel A, as φG drops

from 5% to 1% and then to 0, the financing boundary w rises from 0 to 0.08 and then to

0.24. Second, without the fixed cost (φG = 0), the firm issues just enough equity to stay

away from its optimally chosen financing boundary w, as the net marginal value of cash

cannot be higher than the marginal cost of financing γ. In this extreme case, the marginal

value of cash q′G(w) is monotonically decreasing in w as can be seen from Panel B; hence,

firm value is globally concave in w even under market timing. Thus, stochastic financing
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costs and fixed costs are both necessary to generate convexity.15

When the fixed cost of issuing equity is positive but not very high (φG = 1% or 5%)

the marginal value of cash is no longer monotonic in w. Moreover, higher fixed costs lead

firms to choose larger issuance sizes (mG − wG). Notice also that wG = 0 when φG = 5%.

This result shows that market timing does not necessarily lead to a violation of the pecking

order between internal cash and external equity financing, and importantly that wG > 0

is not necessary for the convexity of the value function. Finally, when the fixed cost of

issuing equity is very high (not shown in the graph), the market timing effect is so weak

that the precautionary motive dominates again, so that the net marginal value of cash is

monotonically decreasing in w.

Having determined why the value function may be locally convex, we now explore the

implications of convexity for investment. Recall from equation (13) that the sign of the

investment-cash sensitivity i′s(w) depends on p′′s(w). Thus, in the region where pG(w) is

convex, investment is decreasing in cash holdings w. This finding is in sharp contrast to the

standard result in the investment with financial constraint literature, where investment is

always positively related with w. Indeed, in all existing models with financial constraints in-

vestment increases with financial slack. Existing models only differ in their results concerning

investment-cash sensitivity (the sign of the second derivative i′′(w)).16

The economic reason for why investment may be locally decreasing in financial slack is

related to market timing. When the firm’s cash holding is low, it wants to take advantage

of the favorable financing condition in state G before it disappears. As a result, rather

than cutting investment further to avoid further reducing the cash holding, the firm actu-

ally wants to accelerate investment in order to reach the equity issuance boundary sooner.

Also anticipating equity issuance, it is less worthwhile for the firm to significantly distort

investment. The optionality of issuing equity generates convexity. Simply put, the firm is

15More generally, the value of the market timing option depends on the difference in financing costs between
the two states: either lowering the financing costs in state G or raising the financing costs in state B (or
making liquidation more costly in state B) will lead the firm to issue equity early.

16See Kaplan and Zingales’ (KZ) discussion of Fazzari, Hubbard, and Petersen (1988). See also Stein
(2003) for a survey on the issue of investment/cash sensitivity.
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more willing to invest when higher investment reduces the chance of missing out on favorable

equity financing conditions, and when it expects its cash holding to substantially increase

post equity issue. This behavior is shown in Panels C and D of Figure 4 and 5. Our model

is thus able to account for the behavior that the threat of high financing costs in the future

can cause changes in investment and cash holding to be negatively correlated.

There may be other ways of generating a negative correlation between changes in in-

vestment and cash holding. First, when the firm moves from state G to B, this not only

results in a drop in investment, especially when w is low (comparing Panel C in Figure 3

and 4), but also in an increase in the payout boundary, which may explain why firms during

the recent financial crisis have increased their cash reserves and cut back on capital expen-

ditures, as Acharya, Almeida, and Campello (2010) have documented. Second, in a model

with persistent productivity shocks (as in Riddick and Whited (2009)), when expected future

productivity falls, the firm will cut investment and the cash saved could also result in a rise

in its cash holding.17

Is it possible to distinguish empirically between these two mechanisms? In the case

of a negative productivity shock the firm has no incentive to significantly raise its payout

boundary, as lower productivity lowers the costs of underinvestment, hence reducing the

precautionary motive for holding cash. This prediction is opposite to the prediction related

to a negative financing shock. Thus, following negative technology shocks we will not see

firms aggressively increasing cash reserves. In fact, firms that already have high cash holdings

will likely pay out cash after a negative productivity shock, but hold on to even more cash

after a negative financing shock.

Another empirical prediction which differentiates our model from other market timing

models concerns the link between equity issuance and corporate investment. Our model

predicts that underinvestment is substantially mitigated when the firm is close to the eq-

uity financing boundary. Moreover, the positive correlation between investment and equity

issuance in our model is not driven by better investment opportunities (as the real side of

17This mechanism is captured in our model with the two states corresponding to two different values for
the return on capital µs.
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the economy is held constant across the two states) it is driven solely by the market timing

and precautionary demand for cash.

6 Financial Constraints and the Risk Premium

In this section, we explore how financial constraints and time-varying external equity issuance

costs affect the firm’s cost of capital. A heuristic derivation of the firm’s (risk-adjusted)

expected return involves a comparison of the HJB equations under the physical and risk-

neutral measures P and Q. Let the firm’s conditional risk premium in state s be µRs (w). We

may write the HJB equation under the physical measure as follows

(
rs + µRs (w)

)
ps(w) = max

is
[(rs − λs)w + µs − is − gs (is)] p

′
s (w) +

σ2
s

2
p′′s (w) (24)

+ (is − δ) (ps (w)− wp′s (w)) + ζs (ps− (w)− ps (w)) ,

where µs and ζs denote the expected excess return on capital and the transition intensity

from state s to s− under the physical probability measure, respectively.

By matching terms in the HJB equations (11) and (24), one then obtains the following

expression for the conditional risk premium:

µRs (w) = ηsρsσs
p′s (w)

ps (w)
− (eκs − 1) ζs

(ps− (w)− ps (w))

ps (w)
, (25)

where ρs is the conditional correlation between the firm’s productivity shock dA and the

stochastic discount factor in state s.18 The first term in (25) is the technology risk premium,

which is the product of the firm’s exposure to systematic Brownian risk ρsσsp
′
s(w)/ps(w) and

the price of Brownian risk ηs. It is positive for firms whose values are positively correlated

with aggregate technology shocks. The ratio p′s(w)/ps(w) measures the percentage change

of firm value with respect to a unit change in w. The second term is the financing risk

18This expression can also be obtained via the standard covariance between return and stochastic discount
factor derivation (see e.g., Duffie (2001)).
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premium, which compensates risk-averse investors for the exposure to the firm’s risk with

respect to time-varying equity issuance costs. Since the stochastic discount factor (marginal

utility) jumps up when financing conditions deteriorate we naturally have κG = −κB > 0

in our two state model: risk-averse investors demand this extra premium for firms whose

values drop during times when external financing conditions worsen (pG(w) > pB(w)).
19

Note that in the first-best setting where there are no equity issuance costs, the firm’s

expected risk premium is constant and can be recovered from (25) by setting η, ρ, and σ to

be constants and dropping the second term. We then obtain the standard CAPM formula:

µFB = ηρσ
1

qFB
= βFB (rm − r) , (26)

where βFB = ρσ/(σmq
FB), (rm − r) is the excess market portfolio return, and σm is the

market portfolio volatility.

The comparison between µR(w) and µFB highlights the impact of external financing

frictions on the firm’s cost of capital:

Constant equity issuance costs: When financing opportunities are constant over time,

financial constraints only affect the cost of capital by amplifying (or dampening) a

firm’s exposure to technology shocks. This effect is captured by the technology (dif-

fusion) risk premium in (25). As the cash-capital ratio w increases, the firm tends

to become less risky for two reasons. First, if a greater fraction of its assets is cash,

the firm beta is automatically lower due to a simple portfolio composition effect. As

a financially constrained firm hoards more cash to reduce its dependence on costly

external financing, the firm beta becomes a weighted average of its asset beta and the

beta of cash, which is equal to zero. In particular, with a large enough buffer stock of

cash relative to its assets, this firm may be even safer than a firm facing no external

financing costs and therefore holding no cash. Second, an increase in w effectively re-

laxes the firm’s financing constraint and therefore reduces the sensitivity of firm value

19Livdan, Sapriza, and Zhang (2009) also study the effect of financing constraints on stock returns. Their
model, however, does not allow for stochastic financing conditions or cash accumulation.
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to cash flow, which also tends to reduce the risk of holding the firm.

Time-varying equity issuance costs: Time-varying equity issuance costs affect the cost

of capital for a financially constrained firm in two ways. First, the firm’s exposure to

technology shocks changes as financing conditions change, as the marginal value of cash

p′s(w) and firm value ps(w) both depend on the state s. Second, when external financing

shocks are priced, investors demand an extra premium for investing in firms that do

poorly when financing conditions worsen. This effect is captured by the second term in

(25). Note that (ps− (w)− ps (w)) /ps (w) gives the percentage change of firm value if

financing conditions change, and this term measures the sensitivity of firm value with

respect to changes in w. Intuitively, the financing risk premium is larger the bigger

the relative change in firm value due to a change in external financing conditions.

Figure 6 plots the conditional risk premium for a firm as a function of w. Recall that

state G (with low financing costs) is transient and state B (with high financing costs) is

absorbing. We set the price of Brownian risk to ηG = ηB = 0.4, and the correlation between

the aggregate and firm level Brownian shocks to ρG = ρB = 0.6. The remaining parameters

are the same as in the benchmark case and are reported in Table 1. The risk premium for

an unconstrained firm in the first-best setting is then µFB = 3.2%.

In Panel A, the total risk premium in state B is shown to be decreasing in the firm’s cash

holding. When w is close to 0, the annualized conditional risk premium can exceed 30%,

but it falls rapidly as w rises. This result mirrors the rapid decline in the marginal value

of cash (see Figure 3, Panel B): thus, high marginal value of cash in the low w region can

dramatically amplify the firm’s sensitivity to technology shocks relative to the unconstrained

case. The risk premium can be as low as 2% for a firm near the payout boundary–even lower

than the total risk premium for a financially unconstrained firm (3.2%). This is due to the

asset composition effect discussed earlier. As the firm approaches the payout boundary, the

marginal value of cash p′B(w) approaches 1. By definition, pB(w) = qB(w) + w. While the

average q for the constrained firm will always be below the q under the first best, qFB, the

sum of average q and w can exceed qFB, which causes µRB(w) to fall below µFB.
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Figure 6: The effects of stochastic financing conditions on the cost of capital. This

figure plots firm risk premium in state G and B for the case where G is transitory. We consider

three levels of transition intensity from G to B: ζ̂G = 0, 0.3, 1.0.

In Panel B, the total risk premium in state G also decreases when the firm’s cash holding

rises. Compared to state B, the level of risk premium is lower, especially when the firm has

low cash holdings. Moreover, a higher probability of switching into state B raises the risk

premium. This effect is weaker for a firm with a higher cash-capital ratio as the composition

effect then becomes stronger.

When we decompose the total risk premium in state G into the technology and financing

components we observe the following. First, Panel C plots the technology risk premium (the

first term in (25)). As can be seen from this panel, when the external financing conditions do

not change (ζ̂G = 0) the technology risk premium is monotonically decreasing in w. However,

under time-varying external financing costs, the risk with respect to higher future financing
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costs generates market timing behavior and non-monotonicity in the marginal value of cash

(Figure 4, Panel B), which in turn may involve a technology risk premium that is locally

increasing in w for low levels of w. As the non-monotonicity in the marginal value of cash

is partially offset by the asset composition effect, the non-monotonicity in the technology

risk premium is relatively weak. Similarly, holding w fixed at a low level, market timing can

lower p′G(w) as the transition intensity ζ̂G increases. This explains why the technology risk

premium may be decreasing in the transition intensity for low w.

Second, Panel D plots the financing risk premium. The size of this premium depends on

the relative change in firm value when external financing conditions change. It is increasing

in the transition intensity ζ̂G, but decreasing in w. Intuitively, when cash holdings are low,

a sudden worsening in external financing conditions is particularly costly, but when cash

holdings are high, the firm is able to avoid liquidation by cutting investment, engaging in

asset sales, and deferring payout, all of which mitigate impact of the financing shock.

Our model has several implications for expected returns of financially constrained firms.

Controlling for technology parameters and financing costs, the model predicts an inverse re-

lation between returns and corporate cash holdings, which has been documented by Dittmar

and Mahrt-Smith (2007) among others. Our analysis points out that this negative rela-

tion may not be due to agency problems, as they emphasize, but may be driven by relaxed

financing constraints and a changing asset composition of the firm.20

A related prediction is that firms that are more financially constrained are not necessarily

more risky. The risk premium for a relatively more constrained firm can be lower than

that for a less constrained firm if the more constrained firm also holds more cash. This

observation may shed light on the recent studies by Ang, Hodrick, Xing, and Zhang (2006,

2009) documenting that stocks with high idiosyncratic volatility have low average returns. In

20When heterogeneity in technology and financing costs is difficult to measure, it is important to take into
account the endogeneity of cash holdings when comparing firms with different cash holdings empirically. A
firm with higher external financing costs will tend to hold more cash, however its risk premium may still
be higher than for a firm with lower financing costs and consequently lower cash holdings. Thus, a positive
relation between returns and corporate cash holdings across firms may still be consistent with our model
(see Palazzo (2008) for a related model and supporting empirical evidence).
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our model, firms that face higher idiosyncratic risk will optimally hold more cash on average,

which could explain their lower risk premium.

Finally, with time-varying financing conditions, our model can be seen as a conditional

two-factor model to explain the cross section of returns (we provide details of the derivation

in the Appendix). A firm’s risk premium is then determined by its technology beta and its

financing beta. Other things equal, a firm whose financing costs move closely with aggregate

financing conditions will have a larger financing beta and earn higher returns than one with

financing costs independent of aggregate conditions. Empirically, this two-factor model can

be implemented using the standard market beta plus a beta with respect to a portfolio that

is sensitive to financing shocks (e.g. a banking portfolio). This model, in particular, shows

how a firm’s conditional beta depends on the firm’s cash holdings.

7 Market Timing and Dynamic Hedging

We have thus far restricted the firm’s financing choices to only internal funds and external

equity financing. In this section, we extend the model to allow the firm to engage in dynamic

hedging via derivatives such as market-index futures. How does market timing behavior

interact with dynamic hedging? And, how does the firm’s dynamic hedging strategy affect

its market timing behavior? These are the questions we address in this section. We denote

by F the index futures price for a market portfolio that is already completely hedged against

financing shocks. Under the risk-neutral probability measure, the future prices F then

evolves according to:

dFt = σmFtdẐ
M
t , (27)

where σm is the volatility of the market index portfolio, and {ẐM
t : t ≥ 0} is a standard

Brownian motion that is correlated with the firm’s productivity shock {ZA
t : t ≥ 0} with a

constant correlation coefficient ρ.21

21Note that the futures price F follows a martingale after risk adjustment. The interesting case to consider
is when the index futures is imperfectly correlated with the firm’s productivity shock.
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We denote by ψt the fraction of the firm’s total cash Wt that it invests in the futures

contract. Futures contracts require that investors hold cash in a margin account. Thus, let

αt ∈ [0, 1] denote the fraction of the firm’s total cash Wt held in the margin account. Cash

held in this margin account incurs a flow unit cost ǫ ≥ 0. Futures market regulations typically

require that an investor’s futures position (in absolute value) cannot exceed a multiple π of

the amount of cash αtWt held in the margin account. We let this multiple be state dependent

and denote it by π(st). The margin requirement in state s then imposes the following limit

on the firm’s futures position: |ψt| ≤ π(st)αt. As the firm can costlessly reallocate cash

between the margin account and its regular interest-bearing account, it optimally holds the

minimum amount of cash necessary in the margin account when ǫ > 0. Without much loss of

generality we shall ignore this haircut on the margin account and assume that ǫ = 0. Under

this assumption, we do not need to keep track of cash allocations in the margin account and

outside the account. We can then simply set αt = 1. Since the derivation of firm value and

optimal hedging policy follows closely the analysis in BCW we do not develop it in the text

below and provide a more detailed derivation in the Appendix C, where we establish that:

1. in the absorbing state B, the optimal futures position is given by

ψ∗
B(w) = max

{
−ρσB
wσm

, −πB

}
.

2. in the transitory state G, the optimal futures position is given by

ψ∗
G(w) =





max {−ρσGσm
−1/w, −πG} , for w ≥ ŵG ,

πG , for wG ≤ w ≤ ŵG .

We choose the correlation between index futures and the firm’s productivity shock to be

ρ = 0.6 and a market return volatility of σm = 20%. The margin requirements in states G

and B are set at πG = 5 and πB = 2, respectively. All other parameter values are the same

as in the previous sections.
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Figure 7: Optimal hedge ratios ψ∗(w) in states G and B when state B is absorbing.
The parameter values are: market volatility σm = 20%, correlation coefficient ρ = 0.6, margin

requirements πG = 5 and πB = 2. All other parameter values are given in Table 1.

Optimal hedge ratios ψ∗
s(w). Figure 7 plots the optimal hedge ratios in both states:

ψ∗
G(w) and ψ

∗
B(w). First, we note that for sufficiently high w, the firm hedges in the same

way in both states. Hedging is then unconstrained by the firm’s cash holdings and costless,

so that the firm chooses its hedge ratio to be equal to −ρσσ−1
m /w so as to eliminate its

exposure to systematic volatility of the productivity shock. This explains the concave and

overlapping parts of the hedging policies in Figure 7.

Second, for low w hedging strategies differ in the two states as follows: in state B the

hedge ratio hits the constraint ψ∗
B(w) = −πB = −2 for w ≤ 0.3. In state G on the other

hand, firm value turns from concave to convex (due to market timing) when w is less than

w̃G = 0.16 (where p′′(w̃G) = 0). For w ∈ (wG, w̃G) firm value is convex in w so that the

firm does the opposite of hedging and engages in maximally allowed risk taking by setting

ψ∗
G(w) = πG = 5 for w ∈ (0.06, 0.16).
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Figure 8: Firm value and investment in the (absorbing) state B. This figure plots the

average q and investment in state B with and without hedging opportunities. External financing

is available in state G, but not in B. For the hedging case, we set market volatility σm = 20%,

correlation coefficient ρ = 0.6, and margin requirements: πG = 5 and πB = 2. All other parameter

values are given in Table 1.

Hedging and investment in the absorbing state B. Figure 8 plots firm value q(w) and

the investment-capital ratio i(w) as functions of w in the absorbing state B. We compare the

solutions with and without hedging. As in BCW, firm value q(w) is higher with hedging than

without (Panel A). Also, when w is sufficiently high the net marginal value of cash q′B(w) is

higher for firms that do not hedge than for those that do. This is because cash plays a more

important role in risk management when there are no other hedging tools available. However,

when cash is low, the marginal value of cash is higher when the firm hedges than when it

does not. This is due to the fact that the firm is more valuable with hedging opportunities

in the future than without. Hence, the marginal value of cash is greater for firms with better
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future prospects.

Similarly, investment-capital ratios on average are higher for firms that also hedge with

futures and for firms with sufficiently high cash. However, when cash is low disinvestment

becomes a risk management tool: by reducing investment in productive capital the firm re-

plenishes cash and potentially lowers other costs of risk management. The end result is higher

firm value. Thus, although risk management in the long run helps mitigate underinvestment,

in the short run (when w is low) it may give rise to more underinvestment. These results

underscore the importance of analyzing an intertemporal model, as a dynamic analysis may

reveal surprising optimal behavior that would not be plausible in a static model.

Hedging, investment, and market timing in the transitory state G. Figure 9 plots

firm value, investment-capital ratio, and their sensitivities as functions of w in the transitory

state G. Again, we compare the solutions with and without hedging. Note first that hedging

(or speculation) significantly increases firm value (compare Panel A of Figure 8 with Panel

A in Figure 9). This value gain is much larger than in the absorbing state B. Second, the

marginal value of cash is lower for firms that hedge as long as the firm is not too constrained

(i.e., has enough cash). For cash strapped firms the marginal value of cash is higher for

firms with hedging opportunities (See Panel B of Figure 9). Third, firms issue equity later

(engage in less market timing) when they hedge than when they do not (i.e., w is lower with

hedging). Similarly, firm that hedge hoard less cash and pay out to shareholders earlier.

Comparing investment policies for firms that hedge to those of firms that do not hedge

we note, first, that investment is on average higher with hedging than without hedging.

This follows directly from the observation that hedging increases firm value by mitigating

its underinvestment problem (Froot, Scharfstein, and Stein (1993)). Second, note again that

while hedging mitigates underinvestment for most values of w, it does not for sufficiently

low w. The logic is the same as in the absorbing state: when w is low underinvestment is a

more efficient way to manage risk.
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Figure 9: Firm value and investment in the (transitory) state G. This figure plots the

average q and investment in state G with and without hedging opportunities. External financing is

available in state G, but not in state B. For the hedging case, we set market volatility σm = 20%,

correlation coefficient ρ = 0.6, and margin requirements: πG = 5 and πB = 2. All other parameter

values are given in Table 1.

8 A Recurrent Two-State Model

For expositional clarity, we have so far considered only somewhat stylized scenarios where

either the “low-cost” or the “high-cost” financing state are absorbing. In reality, firms face

mean-reverting financing opportunities and the reader may wonder whether our main results

carry over to this more general setting. We next show that our main results on market timing,

investment, and risk management continue to hold with recurrent changes in the financing

conditions. Moreover, they carry over even when we allow firms to tap external equity

markets in state B albeit at a high cost. We now assume that the fixed cost of financing is
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Figure 10: Firm value and investment in the recurrent model. This figure plots the

average q and investment when the two states are recurrent. All the parameter values are given in

Table 1.

φB = 30%, a level at which the firm still prefers financing to liquidation in state B.

Figure 10 plots firm value (average q) and investment is(w) for both states, and their

sensitivities with respect to w. The top left panel shows that average q in state G is higher

than the average q in state B: the firm has higher valuation in the state with low financing

cost than the state where external financing is more costly. Note that the valuation (average

q) difference in this example is purely due to the difference in financing costs between the two

states. Therefore, using average q to control for investment opportunities and then testing

for the presence of financing constraints by using variables such as cash flows or cash (which

is often done in the empirical literature) would be misleading in our setup. Second, as shown

in Panel C, investment in state G is higher than in state B for a given w, but the difference
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is especially large when w is low. Also, investment on average is much less variable with

respect to w when external financing costs are lower.

Third, the convexity of firm value and the non-monotonicity of investment in state G for

low values of w continues to hold. This is illustrated in the upper left and right panels. The

intuition is essentially the same as that in the earlier sections. Financing is cheap in state G

only for a finite stochastic duration, which makes the financing timing option valuable. The

optimal equity issuance boundary in state G is strictly positive: w = 0.055. These findings

imply that our earlier results about speculation continue to hold in the recurrent setting.

Finally, as in the previous analysis, we find that in state B there is no market timing: the

firm does not issue equity before it exhausts its cash holdings. Also, firm value is concave in

w in state B and investment responds positively in w, as the external financing option is out

of the money in state B. In sum, firm behavior in states B and G are drastically different

even in the recurrent model. Financing constraints and stochastic financing opportunities

significantly influence firm value (average q) and investment.

9 Conclusion

We provide a simple integrated framework of dynamic market timing, corporate investment,

and risk management. Financing conditions and supply of external capital change stochas-

tically over time. Firms anticipate the stochastic evolution of these financing opportunities

and respond optimally. In particular, they optimally build war-chests by issuing equity and

hoarding cash, when external financing is sufficiently cheap. For firms anticipating an eq-

uity issuance, investment may be decreasing in the firm’s cash-to-asset ratio: when firms

get closer to equity issuance their investment policy is less constrained by the availability of

internal funds, as the firm anticipates that more cash will be raised through an equity issue

in the near future. We also show that market timing is consistent with risk-seeking behavior

by the firm. The key driving mechanism for these surprising dynamic implications is the

finite duration of “cheap” financing conditions and the fixed cost of equity issuance.
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While we provide the first dynamic framework to jointly study market timing, corporate

investment, and risk management, our model is one with exogenous shifts of financing op-

portunities. It would clearly be desirable to consider a general equilibrium setting where the

stochastic financing opportunities arise endogenously. We leave this for future research.
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Table 1: Summary of Key Variables and Parameters

This table summarizes the symbols for the key variables used in the model and the parameter values in the benchmark
case. For each upper-case variable in the left column (except K, A, and F ), we use its lower case to denote the ratio
of this variable to capital. Whenever a variable or parameter depends on the state s, we denote the dependence with a
subscript s. All the boundary variables are in terms of the cash-capital ratio wt.

Variable Symbol Parameters Symbol state G state B

A. Baseline model

Capital stock K Riskfree rate r 4.34%
Cash holding W Rate of depreciation δ 15%
Investment I Risk-neutral mean productivity shock µ 21.2%
Cumulative productivity shock A Volatility of productivity shock σ 20%
Investment adjustment cost G Adjustment cost parameter θ 6.902
Cumulative operating profit Y Center of adjustment cost parameter ν 12%
Cumulative external financing H Proportional cash-carrying cost λ 1.5%
Cumulative external financing cost X Proportional financing cost γ 6%
Cumulative payout U Correlation between ZAt and ZMt ρ 0.6
Firm value P Price of risk for technology shocks η 0.4
Average q q

Net marginal value of cash q′ State transition intensity ζs 0.1 0.9
Payout boundary w Capital liquidation value ls 1.1 0.7
Financing boundary w Fixed financing cost φs 1.0% 20%
Return cash-capital ratio m Price of risk for financing shocks κs ln(3) − ln(3)
Conditional risk premium µR

B. Hedging

Hedge ratio ψ Market volatility σm 20%
Fraction of cash in margin account α

Futures price F Margin requirement πs 5 2
Maximum-hedging boundary ŵ

Speculation boundary w̃
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Appendix

A A more general formulation of the model

Our text analysis focuses on variations of the two-state model. However, it is straightforward

to generalize our model to a setting with multiple states, denoted by st = 1, · · · , n. Let the

transition rate matrix for the n-state Markov chain be ζ = [ζ ij]. The n-state Markov

chain can capture both aggregate and firm-specific, both productivity and financing shocks

(examples are business cycle or financial crises shocks). The firm’s expected return on capital,

volatility, and financing costs can all change when the state changes.

A.1 Risk adjustments

To properly adjust for systematic risk in the model, we assume that the economy is charac-

terized by a stochastic discount factor (SDF) Λt, which evolves as

dΛt
Λt−

= −r (st−) dt− η (st−) dZ
M
t +

∑

st 6=st−

(
eκ(st− ,st) − 1

)
dM

(s
t−
,st)

t , (28)

where r(s) is the risk-free rate in state s, η(s) is the risk price for systematic Brownian shocks

ZM
t , κ (i, j) is the relative jump size of the discount factor when the Markov chain switches

from state i to state j, and M
(i,j)
t is a compensated Poisson process with intensity ζ ij ,

dM
(i,j)
t = dN

(i,j)
t − ζ ijdt, i 6= j, (29)

where we have utilized the result that an n-state continuous-time Markov chain with gen-

erator [ζ ij] can be equivalently expressed as a sum of independent Poisson processes N
(i,j)
t

(i 6= j) with intensity parameters ζ ij (see e.g., Chen (2010)).22 The above SDF captures two

22More specifically, the process s solves the following stochastic differential equation, dst =
∑

k 6=s
t−
δk (st−) dN

(s
t−

,k)
t , where δk (j) = j − i.
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different types of risk in the markets: small systematic shocks generated by the Brownian

motion, and large systematic shocks from the Markov chain. We assume that dZM
t is par-

tially correlated with the firm’s productivity shock dZA
t , with instantaneous correlation ρdt.

Chen (2010) shows that the SDF in (28) can be generated from a consumption-based asset

pricing model.

The SDF defines a risk neutral probability measure Q, under which the process for the

firm’s productivity shocks becomes (6). In addition, if a change of state in the Markov chain

corresponds to a jump in the SDF, then the corresponding large shock also carries a risk

premium, which leads to an adjustment of the transition intensity under Q:

ζ̂ ij = eκ(i,j)ζ ij , i 6= j. (30)

A.2 Solutions for the n-state model

Under the first best, the HJB equation for the n-state model can be generalized from (8) as

follows,

rsq
FB
s = µ̂s − iFBs −

1

2
θs

(
iFBs − νs

)2
+ qFBs

(
iFBs − δ

)
+
∑

s′ 6=s

ζ̂ss′
(
qFBs′ − qFBs

)
, (31)

for each state s = 1, · · · , n and the average q in state s is given by with

qFBs = 1 + θs
(
iFBs − νs

)
. (32)

While there are no closed form solutions for n > 2, it is straightforward to solve the system

of nonlinear equations numerically.

With financial frictions, the HJB equation is generalized from (11) as follows:

rsP (K,W, s) = max
I

[(rs − λs)W + µ̂sK − I − Γ (I,K, s)]PW (K,W, s) +
σ2sK

2

2
PWW (K,W, s)

+ (I − δK)PK(K,W, s) +
∑

s′ 6=s

ζ̂ss′
(
P (K,W, s′)− P (K,W, s)

)
, (33)
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for each state s = 1, · · · , n, and W s ≤ W ≤ W s. We conjecture that firm value is

homogeneous of degree one in W and K in each state, so that

P (K,W, s) = ps(w)K, (34)

where ps(w) solves the following system of ODE:

rsps(w) = max
is

[(rs − λs)w + µ̂s − is − gs (is)] p
′
s (w) +

σ2
s

2
p′′s (w)

+ (is − δ) (ps (w)− wp′s (w)) +
∑

s′ 6=s

ζ̂ss′ (ps′ (w)− ps (w)) . (35)

The boundary conditions in each state s are defined in similar ways as in Equation (14-21).

B Beta Representation

As indicated by the SDF Λt in (28) with n = 2, in state s, the price of risk for technology

shock (risk premium for a unit exposure to the shocks) is λTs = ηs, whereas the price of risk

for financing shock is λFs = − (eκs − 1). Thus, we can rewrite the risk premium using the

Beta representation:

µRs (w) = βTs (w)λ
T
s + βFs (w)λ

F
s , (36)

where

βTs (w) = ρsσs
p′s (w)

ps (w)
(37)

βFs (w) = ζs
ps− (w)− ps (w)

ps (w)
(38)

are the technology Beta and financing Beta respectively for the firm in state s. The tech-

nology Beta will be large when the marginal value of cash relative to firm value is high; the

financing Beta will be large when the probability that the financing condition will change is
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high, or when the change in financing condition has large impact on the firm value.

Since there are two sources of aggregate shocks in this model, the CAPM does not hold.

Instead, expected returns can be explained by a two-factor model. We assume that there

are two diversified portfolios T and F , each only subject to one type of aggregate shocks,

i.e. technology shocks or financing shocks, respectively. Suppose their return dynamics are

as follows:

dRT
t = (rs + µTs )dt+ σTs dBt, (39)

dRF
t = (rs + µFs )dt+

(
eκ

F

1 − 1
)
dM1

t +
(
eκ

F

2 − 1
)
dM2

t . (40)

Then, the stochastic discount factor (28) implies that

µTs = σTs ηs, (41)

µFs = ζs(e
κFs − 1) (eκs − 1) . (42)

We can now rewrite the risk premium in (39) and (40) using Betas as follows:

µRs (w) = βTs (w)µ
T
s + βFs (w)µ

F
s , (43)

where

βTs (w) =
ρsσs
σTs

p′s (w)

ps (w)
(44)

βFs (w) =
ps− (w)− ps (w)

ps (w) (eκ
F
s − 1)

(45)

are the technology Beta (Beta with respect to Portfolio T ) and financing Beta (Beta with

respect to Portfolio F ) for the firm in state s. The technology Beta will be large when the

marginal value of cash relative to firm value is high; the financing Beta will be large when the

probability that the financing condition will change is high, or when the change in financing

condition has large impact on the firm value.
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C Dynamic Hedging

We now derive the optimal hedging policy in detail for Section 7. The firm’s cash holding

thus evolves as follows:

dWt = Kt [µ(st)dAt + σ(st)dZt]−(It + Γt) dt+dHt−dUt+[r(st))− λ(st)]Wtdt+ψtWtσmdBt , (46)

where |ψt| ≤ π(st). To avoid unnecessary repetition, we only consider the case with positive

correlation, i.e., ρ > 0. We consider the more interesting case where the absorbing state is

the crisis state and the firm is currently in the transitory state G. We first summarize the

risk management rules in the absorbing state, effectively the results from BCW. Then, we

analyze the hedge ratio in the transitory state G.

In the absorbing state B. After reaching the absorbing state, the firm faces the same

decision problem as the firm in BCW does. For simplicity, in the crisis state, as in the

previous section, the firm has no external financing but can enter index futures contract.

BCW show that the optimal hedge ratio (with time-invariant opportunities) is given by

ψ∗
B(w) = max

{
−ρσB
wσm

, −πB

}
. (47)

Intuitively, the firm chooses the hedge ratio ψ so that the firm only faces idiosyncratic volatil-

ity after hedging. The hedge ratio that achieves this objective is −ρσBσ
−1
m /w. However, this

hedge ratio may not be attainable due to the margin requirement. In that case, the firm

chooses the maximally admissible hedge ratio ψ∗
B(w) = −πB. Equation (47) captures the

effect of margin constraints on hedging. Because there is no hair cut (i.e., ǫ = 0), the hedge

ratio ψ given in (47) is independent of firm value and only depends on w. We next turn to

the focus of this section: hedging in the transitory state G.

In the transitory state G. Before entering the crisis state, the firm has external financing

opportunity. Moreover, the margin requirement may be different (i.e., πG > πB). In the
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transitory state G, the firm chooses its investment policy I and its index futures position

ψW to maximize firm value P (K,W,G) by solving the following HJB equation:

rGP (K,W,G) = max
I,ψ

[(rG − λG)W + µGK − I − Γ (I,K,G)]PW + (I − δK)PK (48)

+
1

2

(
σ2GK

2 + ψ2σ2mW
2 + 2ρσmσGψWK

)
PWW + ζ [P (K,W,G) − P (K,W,B)] ,

subject to |ψ| ≤ πG.

When firm value is concave in cash (i.e., PWW (K,W,G) < 0), we have the same solution

as in the absorbing state with margin πG, i.e. ψ
∗
G(w) = max {−ρσGσm

−1/w, −πG} . However,

market timing opportunities combined with fixed costs of equity issuance imply that firm

value may be convex in cash, i.e., PWW (K,W,G) > 0 for certain regions of w = W/K.

With convexity, the firm naturally speculates in derivatives markets. Given the margin

requirement, the firm takes the maximally allowed futures position, i.e. the corner solution

ψG(w) = πG. Note that the firm is long in futures despite positive correlation between its

productivity shock and the index futures. Let ŵG denote the endogenously chosen point at

which PWW (K,W,G) = 0, or p′′G(ŵG) = 0. We now summarize the firm’s futures position in

the transitory state as follows:

ψ∗
G(w) =





max {−ρσGσm
−1/w, −πG} , for w ≥ ŵG ,

πG , for wG ≤ w ≤ ŵG .
(49)

Note the discontinuity of the hedge ratio ψ∗
G(w) in w. The firm switches from a hedger to a

speculator when its cash-capital ratio w falls below ŵG.
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