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ABSTRACT

We examine the higher order properties of the wild bootstrap (Wu, 1986) in a linear regression model
with stochastic regressors. We find that the ability of the wild bootstrap to provide a higher order refinement
is contingent upon whether the errors are mean independent of the regressors or merely uncorrelated.
In the latter case, the wild bootstrap may fail to match some of the terms in an Edgeworth expansion
of the full sample test statistic, potentially leading to only a partial refinement (Liu and Singh, 1987).
To assess the practical implications of this result, we conduct a Monte Carlo study contrasting the
performance of the wild bootstrap with the traditional nonparametric bootstrap.
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1 Introduction

The wild bootstrap of Wu (1986) and Liu (1988) provides a procedure for conducting inference in

the model:

Y = X ′β0 + ε , (1)

where Y ∈ R, X ∈ Rdx and ε may have a heteroskedastic structure of unknown form. This

robustness to arbitrary heteroscedasticity provides a distinct advantage over the residual bootstrap

of Freedman (1981) while retaining some of its computational and statistical advantages. This has

led to increasing attention among economists who are often concerned with robust inference in small

sample environments (Horowitz (1997, 2001), Cameron et al. (2008), Davidson and Flachaire (2008))

and to a variety of recent extensions beyond the basic linear regression model (Cavaliere and Taylor

(2008), Gonçalves and Meddahi (2009), Davidson and MacKinnon (2010)). To date, however, the

higher order properties of the wild bootstrap have only been studied under the assumption that

the errors are mean independent of the regressors. Liu (1988) established that when this condition

holds the wild bootstrap provides a refinement over a normal approximation.

In this paper we contribute to the literature by analyzing the higher order properties of the wild

bootstrap in instances where the conditional mean function may be misspecified. Concretely, we

examine the ability of the wild bootstrap to provide a refinement over the normal approximation

when ε is uncorrelated with X but not necessarily mean independent of it – a setting pervasive in

economics where regressors are stochastic rather than fixed or chosen by the econometrician. It is

precisely in such environments that heteroskedasticity is likely to arise (White (1982)) making the

higher order properties of the wild bootstrap of particular interest.

We conduct our analysis in two steps. First, we compute the approximate cumulants (Bhat-

tacharya and Ghosh (1978)) of t-statistics under both the full sample and bootstrap distributions

with general assumptions on the wild bootstrap weights. We show that both the first and third

approximate cumulants may disagree up to order Op(n
− 1

2 ) if higher powers of X are correlated with

ε; a situation that is ruled out under proper specification. This higher order discordance between

the approximate cumulants under the full sample and bootstrap distribution implies that if valid

Edgeworth expansions exist they would only be equivalent up to order Op(n
− 1

2 ) (Hall (1992)). As a

result, despite remaining consistent under misspecification, the wild bootstrap may fail to provide

a higher order refinement over a normal approximation.

We complement this result by formally establishing the existence of valid one term Edgeworth ex-
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pansions when the distribution of the wild bootstrap weights is additionally assumed to be strongly

nonlattice (Bhattacharya and Rao (1976)). In accord with Liu (1988) we note that one-sided wild

bootstrap tests obtain a refinement to order Op(n
−1) under proper specification. However, this

result is undermined by certain forms of misspecification under which only some, but not all, of

the second order terms in the full sample Edgeworth expansion are matched by their bootstrap

counterparts. Consequently, the wild bootstrap may provide only a partial refinement over the

normal approximation (Liu and Singh (1987)). To assess the practical implications of this result,

we conclude by conducting a Monte Carlo study contrasting the performance of the wild bootstrap

with the traditional nonparametric bootstrap in the presence of misspecification.

The rest of the paper is organized as follows. Section 2 contains our theoretical results while

Section 3 examines the implications of our analysis in a simulation study. We briefly conclude in

Section 4 and relegate all proofs to the Appendix.

2 Theoretical Results

While numerous variants of the wild bootstrap exist, we study the original version proposed by Wu

(1986) and Liu (1988). Succinctly, given a sample {Yi, Xi}ni=1 and β̂ the OLS estimator from such

sample, the wild bootstrap generates new errors and dependant variables:

Y ∗i ≡ X ′iβ̂ + ε∗i ε∗i ≡ (Yi −X ′iβ̂)Wi , (2)

where {Wi}ni=1 is an i.i.d. sample independent of the original data {Yi, Xi}ni=1. A bootstrap estimator

β̂∗ can then be computed from the sample {Y ∗i , Xi}ni=1 and the distribution of
√
n(β̂∗−β̂) conditional

on {Yi, Xi}ni=1 (but not {Wi}ni=1) used to approximate that of
√
n(β̂ − β0). While it may not be

possible to compute the bootstrap distribution analytically, it is straightforward to simulate it.

We focus our analysis on inference on linear contrasts of β0, which includes both individual

coefficients and predicted values as special cases. In particular, for an arbitrary c ∈ Rdx we examine:

Tn ≡
√
n

σ̂
c′(β̂ − β0) σ̂2 ≡ c′H−1n Σn(β̂)H−1n c , (3)

where the dx × dx matrices Hn and Σn(β) are defined by:

Hn ≡
1

n

n∑
i=1

XiX
′
i Σn(β) ≡ 1

n

n∑
i=1

XiX
′
i(Yi −X ′iβ)2 . (4)

The bootstrap statistic T ∗n is then the analogue to Tn but computed on {Y ∗i , Xi}ni=1 instead. Namely,

T ∗n ≡
√
n

σ̂∗
c′(β̂∗ − β̂) (σ̂∗)2 ≡ c′H−1n Σ∗n(β̂∗)H−1n c , (5)
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where Hn is as in (4), and Σ∗n(β) ≡ 1
n

∑
iXiX

′
i(Y

∗
i −X ′iβ)2.

As argued in Mammen (1993), under mild assumptions on the wild bootstrap weights {Wi}ni=1,

the distribution of T ∗n conditional on {Yi, Xi}ni=1, (but not {Wi}ni=1) provides a consistent estimator

for the distribution of Tn. Consequently, tests based upon a comparison of the statistic Tn to the

quantiles of the bootstrap distribution of T ∗n are asymptotically justified. In what follows, we explore

whether such a procedure provides a refinement over employing the quantiles of a standard normal

distribution instead.

2.1 Assumptions

We explore the higher order properties of the wild bootstrap under the following assumptions:

Assumption 2.1. (i) {Yi, Xi}ni=1 is an i.i.d. sample, satisfying (1) with E[Xε] = 0; (ii) (Y,X)

are bounded almost surely; (iii) E[XX ′] = I and Σ0 ≡ E[XX ′ε2] is full rank; (iv) For Z ≡

(X ′ε, vech(XX ′)′, vech(XX ′ε2)′)′, and ξZ its characteristic function, lim sup‖t‖→∞ |ξZ(t)| < 1.1

Assumption 2.2. (i) {Wi}ni=1 is i.i.d., independent of {Yi, Xi}ni=1 with E[W ] = 0, E[W 2] = 1 and

E[W ω] <∞, ω ≥ 9; (ii) For U ≡ (W,W 2)′ , ξU its characteristic function, lim sup|t|→∞ |ξU(t)| < 1.

Assumption 2.1(i) allows for misspecification of the conditional mean function by requiring

E[Xε] = 0 rather than E[ε|X] = 0. In Assumption 2.1(ii) we impose that (Y,X) be bounded.

This specialized (yet widely applicable) setting simplifies the arguments employed in obtaining an

Edgeworth expansion for T ∗n . Our finding that the wild bootstrap may fail to provide a higher order

refinement under misspecification would not be overturned if Assumption 2.1(ii) were weakened to

less stringent moment conditions. Assumption 2.1(ii) additionally imposes that E[XX ′] = I, which

is just a normalization in the present context; see Remark 2.1. The requirements on {Wi}ni=1 in

Assumption 2.2(i) are standard in the wild bootstrap literature and satisfied by all commonly used

choices of wild bootstrap weights.

Assumptions 2.1(i)-(iii) and 2.2(i) suffice for showing that the approximate cumulants of Tn and

of T ∗n under the bootstrap distribution may disagree up to order Op(n
− 1

2 ) under misspecification.

In order to additionally establish the existence of Edgeworth expansions, however, we also impose

Assumptions 2.1(iv) and 2.2(ii). These requirements, also known as Cramer’s condition, are stan-

dard in the Edgeworth expansion literature (Bhattacharya and Rao (1976)). They are satisfied,

1For a symmetric matrix A, vech(A) denotes a column vector composed of its unique elements.
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for example, if the distributions of Z and U have a component that is absolutely continuous with

respect to Lebesgue measure. Unfortunately, this requirement rules out two frequently used wild

bootstrap weights: Rademacher random variables and the weighting scheme advocated in Mammen

(1993). Thus, while our results on approximate cumulants are applicable to these choices of weights,

our results on Edgeworth expansions are not.

Remark 2.1. Since we study Tn for generic vectors c ∈ Rdx , Assumption 2.1(iii) is just a convenient

normalization. Specifically, suppose E[XX ′] = ΣX for ΣX full rank. We may then rewrite (1) as:

Y = X̃ ′βI,0 + ε X̃ = Σ
− 1

2
X X βI,0 = Σ

1
2
Xβ0 . (6)

It is then immediate that E[X̃X̃ ′] = I. Moreover, since
∑

i X̃iX̃
′
i is invertible if and only if Hn is,

we obtain that for any c̃ ∈ Rdx and β̂I the OLS estimator on {Yi, X̃i}ni=1:

√
nc̃′(β̂I − β̃0) =

√
nc̃′Σ

1
2
X(

n∑
i=1

XiX
′
i)
−1Σ

1
2
X

n∑
i=1

Σ
− 1

2
X Xiεi =

√
nc′(β̂ − β0) , (7)

where c = Σ
1
2
X c̃. Similarly, c̃′( 1

n

∑
i X̃iX̃i)

−1 1
n

∑
i X̃iX̃

′
i(Yi−X̃ ′iβ̂I)2( 1

n

∑
i X̃iX̃

′
i)
−1c̃ = σ̂2 for c = Σ

1
2
X c̃.

Hence, since the choice of c ∈ Rdx is arbitrary, studying Tn for some c under Assumption 2.1(iii) is

equivalent to studying it under the assumption that E[XX ′] be full rank and c̃ = Σ
− 1

2
X c.

Remark 2.2. Assumption 2.1(iv) precludes X from containing a constant term. To accommodate

this common case, if the constant is the first element of the vector X, then Assumption 2.1(iv)

should hold for Z ≡ (X ′ε, vech−1(XX
′)′, vech(XX ′ε2)′)′ where for a vector v = (v(1), . . . , v(d)) we

define v−1 ≡ (v(2), . . . , v(d)).

2.2 Approximate Cumulants

In what follows, for notational simplicity, we denote expectations, probability and law statements

conditional on {Yi, Xi}ni=1 (but not {Wi}ni=1) by E∗, P ∗ and L∗ respectively. Additionally, we define

the following parameters which play a fundamental role in our higher order analysis:

σ2 ≡ c′Σ0c κ ≡ E[(c′X)3ε3] γ0 ≡ E[(c′X)2Xε] γ1 ≡ E[(c′X)(X ′X)ε] . (8)

Finally, we let Φ denote the distribution of a standard normal random variable and φ its density.

We begin our analysis by obtaining an asymptotic expansion for Tn and T ∗n .
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Theorem 2.1. Suppose Assumption 2.1(i)-(iii) and 2.2(i) hold, and for c ∈ Rdx define:

Ln ≡ c′{I + ∆n}
1√
nσ

n∑
i=1

Xiεi −
1

2σ3
√
n

n∑
i=1

(c′Xi)εi{(σ̂2
R − σ2)− 2

n

n∑
i=1

γ′0Xiεi} (9)

L∗n ≡ c′H−1n

1√
n

∑
i=1

Xiε
∗
i {

1

σ̂
− 1

2σ̂3
((σ̂∗s)2 − σ̂2)} (10)

where ∆n ≡ I−Hn, σ̂2
R ≡ c′Σn(β0)c+2c′∆nΣ0c and (σ̂∗s)2 ≡ c′H−1n Σ∗n(β̂)H−1n c. It then follows that:

Tn = Ln + op(n
− 1

2 ) T ∗n = L∗n + op∗(n−
1
2 ) a.s.

Recall that in Assumption 2.1(ii) the covariance E[XX ′] was normalized to equal the identity

matrix. Therefore ∆n ≡ I − Hn is the estimation error in the Hessian and the first term in (9)

captures the contribution to Tn of not knowing the true value of E[XX ′]. Similarly, the contribution

of having to estimate the variance is divided into two parts: (i) 2
n

∑
i γ
′
0Xiεi which reflects use of β̂

rather than β0 in the sample variance calculations and (ii) σ̂2
R − σ2 which captures the randomness

that would be present in estimating σ2 if β0 were known. Interestingly, these terms are smaller

order under the bootstrap distribution due to the mean independence of ε∗ and X.

Due to their polynomial form, the moments of Ln and L∗n are considerably easier to compute

than those of Tn and T ∗n . However, the cumulants of Ln and L∗n provide only an approximation

to those of Tn and T ∗n and were for this reason termed “approximate cumulants” by Bhattacharya

and Ghosh (1978). Despite their approximate nature, the cumulants of Ln and L∗n play a crucial

role as they may be employed in place of the cumulants of Tn and T ∗n when computing their second

order Edgeworth expansions if such expansions are indeed valid. Thus, a discordance between the

approximate cumulants is indicative of an analogous difference in the corresponding Edgeworth

expansions if such expansions do exist.

Theorem 2.2 shows the approximate cumulants may disagree under misspecification.

Theorem 2.2. Let Xk(Ln) and X ∗k (L∗n) denote the kth cumulants of Ln and L∗n respectively and

define κ̂ ≡ 1
n

∑
i(c
′H−1n Xi)

3(Yi −X ′iβ̂)3. If Assumptions 2.1(i)-(iii) and 2.2(i) hold, then:

X1(Ln) = − κ

2σ3
√
n
− γ1
σ
√
n

+
2c′Σ0γ0
σ3
√
n

X ∗1 (L∗n) = −E[W 3]κ̂

2σ̂3
√
n

X2(Ln) = 1 +O(n−1) X ∗2 (L∗n) = 1 +Oa.s.(n
−1)

X3(Ln) = − 2κ

σ3
√
n

+
6c′Σ0γ0
σ3
√
n

+O(n−1) X ∗3 (L∗n) = −2E[W 3]κ̂

σ̂3
√
n

+Oa.s.(n
−1) .

Observe first that unless κ = 0, the wild bootstrap fails to correct the first term in the first and

third cumulants if E[W 3] 6= 1. This property has already been noted in Liu (1988) who advocates
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imposing E[W 3] = 1 for precisely this reason. However, even with this restriction, two additional

terms in the first and third cumulants of Ln remain. These terms capture (i) the correlation between

Hn and 1
n

∑
iXiεi, and (ii) the additional randomness of employing β̂ rather than β0 in estimating

σ2. Both these expressions are of smaller order under mean independence but may be present

otherwise. Because the wild bootstrap imposes mean independence in the bootstrap distribution

it fails to mimic these terms. As a result, a discordance between the full sample and bootstrap

approximate cumulants will arise under misspecification if the error term ε is correlated with higher

powers of X so that γ0 or γ1 are nonzero.

2.3 Edgeworth Expansions

Under the additional requirement that the Cramer conditions hold (Assumptions 2.1(iv) and 2.2(ii))

we now establish that the discordance in approximate cumulants indeed translates into an analogous

disagreement between Edgeworth expansions.

Theorem 2.3. Under Assumptions 2.1(i)-(iv) and 2.2(i)-(ii) it follows that uniformly in z:

P (Tn ≤ z) = Φ(z) +
φ(z)κ

6σ3
√
n

(2z2 + 1)− φ(z)

σ3
√
n

(c′Σ0γ0(z
2 + 1)− γ1σ2) + o(n−

1
2 ) (11)

P ∗(T ∗n ≤ z) = Φ(z) +
φ(z)κ̂E[W 3]

6σ̂3
√
n

(2z2 + 1) + o(n−
1
2 ) a.s. (12)

As Theorem 2.3 shows, the wild bootstrap provides the usual skewness correction whenever

E[W 3] = 1. However, when the conditional mean function is misspecified, imposing mean inde-

pendence in the wild bootstrap sample implies the bootstrap distribution may fail to match all the

second order terms in the expansion for Tn. In particular, if ε is correlated with higher moments of

X, so that γ0 and γ1 are not equal to zero, the wild bootstrap will only provide a partial refinement

over a normal approximation. The importance of such a refinement is dependent on the degree of

misspecification as measured by the magnitude of γ0 and γ1. In particular, if the misspecification is

local with γ0, γ1 = O(n−
1
2 ), then the wild bootstrap does attain the usual higher order refinement.

3 Monte Carlo

We turn now to a study of the effect of misspecification on the finite sample performance of the wild

bootstrap through a series of Monte Carlo sampling experiments. To ensure that our theoretical

results are relevant, we restrict our attention to cases where: (i) X is continuously distributed
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Table 1: Rejection rates for 0.05 nominal size - One sided tests

Sample Size n = 10. Alternative Hypothesis H1 : β < 0

Noise Level λ = 0.25 Noise Level λ = 0.5 Noise Level λ = 1

Analytical Wild Pairs Analytical Wild Pairs Analytical Wild Pairs

ψ = −0.2 0.100 0.054 0.073 0.102 0.061 0.077 0.096 0.071 0.073

ψ = 0.0 0.094 0.076 0.078 0.094 0.076 0.078 0.094 0.076 0.078

ψ = 0.2 0.221 0.186 0.163 0.153 0.130 0.120 0.114 0.092 0.095

Sample Size n = 10. Alternative Hypothesis H1 : β > 0

Noise Level λ = 0.25 Noise Level λ = 0.5 Noise Level λ = 1

Analytical Wild Pairs Analytical Wild Pairs Analytical Wild Pairs

ψ = −0.2 0.207 0.136 0.115 0.149 0.104 0.082 0.112 0.079 0.061

ψ = 0.0 0.078 0.052 0.039 0.078 0.052 0.039 0.078 0.052 0.039

ψ = 0.2 0.094 0.047 0.049 0.083 0.055 0.047 0.078 0.050 0.046

Sample Size n = 20. Alternative Hypothesis H1 : β < 0

Noise Level λ = 0.25 Noise Level λ = 0.5 Noise Level λ = 1

Analytical Wild Pairs Analytical Wild Pairs Analytical Wild Pairs

ψ = −0.2 0.077 0.053 0.060 0.076 0.059 0.060 0.075 0.069 0.087

ψ = 0.0 0.068 0.072 0.095 0.068 0.072 0.095 0.068 0.072 0.095

ψ = 0.2 0.175 0.155 0.145 0.127 0.109 0.127 0.090 0.078 0.110

Sample Size n = 20. Alternative Hypothesis H1 : β > 0

Noise Level λ = 0.25 Noise Level λ = 0.5 Noise Level λ = 1

Analytical Wild Pairs Analytical Wild Pairs Analytical Wild Pairs

ψ = −0.2 0.148 0.107 0.093 0.101 0.081 0.081 0.070 0.057 0.054

ψ = 0.0 0.048 0.035 0.049 0.048 0.035 0.049 0.048 0.035 0.049

ψ = 0.2 0.070 0.044 0.042 0.052 0.043 0.047 0.049 0.039 0.043

and bounded, (ii) ε is continuously distributed and bounded and (iii) the bootstrap weights W are

continuously distributed with E[W ] = 0, E[W 2] = 1, and E[W 3] = 1.

Let Z ∼ TN(µ, σ2, τ) denote a normal random variable with mean µ and variance σ2, truncated

to lie in the interval [−τ, τ ]. The regressor X was drawn from a mixture of Z1 ∼ TN(0, 1, 2) with

probability 0.1 and from Z2 ∼ TN(1, 4, 4) with probability 0.9, recentered and scaled to have mean

zero and variance one. We generate the variable Y according to the relationship:

Yi = ψ{X2
i − E[X3]Xi − 1}+ λη , (13)

where η is the exponential of a TN(0, 1, 2) random variable, recentered to have mean zero, and ψ, λ

are scalar parameters that will be changed across different Monte Carlo specifications.

We examine the ability of the wild bootstrap to control size when conducting inference on the
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Table 2: Rejection rates for 0.05 nominal size - Two sided tests

Sample Size n = 10. Alternative Hypothesis H1 : β 6= 0

Noise Level λ = 0.25 Noise Level λ = 0.5 Noise Level λ = 1

Analytical Wild Pairs Analytical Wild Pairs Analytical Wild Pairs

ψ = −0.2 0.242 0.145 0.070 0.181 0.121 0.052 0.136 0.097 0.039

ψ = 0.0 0.109 0.087 0.033 0.109 0.087 0.033 0.109 0.087 0.033

ψ = 0.2 0.244 0.167 0.062 0.174 0.130 0.051 0.131 0.106 0.042

Sample Size n = 20. Alternative Hypothesis H1 : β 6= 0

Noise Level λ = 0.25 Noise Level λ = 0.5 Noise Level λ = 1

Analytical Wild Pairs Analytical Wild Pairs Analytical Wild Pairs

ψ = −0.2 0.156 0.110 0.068 0.120 0.094 0.051 0.095 0.071 0.032

ψ = 0.0 0.066 0.060 0.028 0.066 0.060 0.028 0.066 0.060 0.028

ψ = 0.2 0.176 0.139 0.074 0.109 0.099 0.048 0.079 0.072 0.035

slope coefficient in the following linear regression model:

Yi = α +Xiβ + ε . (14)

By construction, the unique parameters (α, β) ensuring that E[Xε] = 0 in (14) are (α, β) = 0. The

parameter ψ in (13) therefore governs the extent of misspecification in the regression model, with

ψ = 0 corresponding to proper specification (E[Y |X] = 0). Similarly, the scale parameter λ in (13)

controls the level of noise in the linear regression.

Table 1 shows the empirical rejection rates of one-sided tests under different values of the pa-

rameters governing misspecification and residual noise. Code for our Monte Carlo experiments

is available online. All rejection rates were computed using 200 bootstrap repetitions and 1,000

Monte Carlo replications. We implement the wild bootstrap drawing the weights W from a recen-

tered Gamma distribution with shape parameter 4 and scale parameter 1/2 as suggested by Liu

(1988). For comparison with the wild bootstrap, we also examine the ability of the nonparametric

(“pairs”) bootstrap and analytical t-tests to control size. 2

The results suggest both the wild and nonparametric bootstraps yield improvements over an

analytical t-test for one sided alternaitves. The relative performance of the two bootstraps under

misspecification (ψ 6= 0) is dependent on the level of misspecification, the direction of the test

and the level of noise. Table 2 provides false rejection rates for two-sided tests. Here the ranking

of the various techniques is more clear cut with the nonparametric bootstrap performing best

2The nonparametric bootstrap computes the distribution of
√
nc′(β̂ − β0)/σ̂ under the empirical measure.

9



under misspecification and the normal approximation worst. Notably, the improvement of the wild

bootstrap over the first order analytical approximation is still substantial, illustrating the practical

importance of our theoretical finding of a partial refinement.

4 Conclusion

We find that the wild bootstrap may provide only a partial refinement over a normal approximation

when the conditional mean function is misspecified. This suggests that while the wild bootstrap

may not work as well as the nonparametric bootstrap in many settings where regression is used,

it will likely still generate an improvement over analytical techniques. Our Monte Carlo study, for

example, found that the wild bootstrap performed nearly as well as the nonparametric bootstrap

in one-sided tests and still provided substantial improvements over normal approximations in two-

sided tests. We conclude that in small sample environments where misspecification is of concern,

the nonparametric bootstrap possesses a modest advantage over the wild bootstrap.
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APPENDIX A - Proofs of Theorems 2.1 and 2.2

The following is a table of the notation and definitions that will be used throughout the appendix.

‖ · ‖F On a matrix A, ‖A‖F denotes the Frobenius norm.

‖ · ‖o On a matrix A, ‖A‖o denotes the usual operator norm.

|λ| For a vector λ of positive integers and λ(i) its ith coordinate |λ| =
∑
i λ

(i).

Dλf For f : Rd → R and λ ∈ R, Dλf = ∂|λ|f

∂λ
(1)
...∂λ

(d) .

ei The OLS residual ei = (Yi −Xiβ̂).

Φ The distribution of a standard normal random variable in Rd (d may be context specific).

Lemma A.1. Let {Zi}ni=1 be an i.i.d. sample of Z a k × p random matrix with ‖Z‖F bounded a.s.. Then:

P (‖ 1√
n

n∑
i=1

{Zi − E[Zi]}‖F > Mn) = o(n−
1
2 ) ,

for any sequence Mn ↑ ∞ such that log(n) = o(Mn).

Proof: Let Z(l,j) denote the (l, j) entry of Z. To establish the claim of the Lemma, then note that:

P (‖ 1√
n

n∑
i=1

{Zi − E[Zi]}‖F > Mn) ≤ P ( max
1≤l≤k,1≤j≤p

| kp√
n

n∑
i=1

{Z(l,j)
i − E[Z

(l,j)
i ]}| > Mn)

≤
k∑
l=1

p∑
j=1

P (| kp√
n

n∑
i=1

{Z(l,j)
i − E[Z

(l,j)
i ]}| > Mn) . (15)

Since |Z(l,j)
i − E[Z

(l,j)
i ]| ≤ K a.s. for some K > 0 and 1 ≤ l ≤ k, 1 ≤ j ≤ p, Bernstein’s inequality implies:

P (| kp√
n

n∑
i=1

{Z(l,j)
i − E[Z

(l,j)
i ]}| > Mn) ≤ 2 exp{− Mn

2kpK
} , (16)

since Mn ↑ ∞. Results (15), (16) and log(n) = o(Mn) then establish the Lemma.

Lemma A.2. Let ∆n ≡ I −Hn, σ̂2
R ≡ c′Σn(β0)c+ 2c′∆nΣ0c and Assumptions 2.1(i)-(iii) hold. Then:

(i) P (‖ 1√
n

∑
iXiεi‖ > Mn) = o(n−

1
2 ) for any sequence Mn ↑ ∞ with log(n) = o(Mn).

(ii) P (‖H−1
n −

∑k
j=0 ∆j

n‖o > n−α) = o(n−
1
2 ) for any α ∈ [0, k+1

2 ).

(iii) P (‖β̂ − β0‖ > n−α) = o(n−
1
2 ) for any α ∈ [0, 1

2 ).

(iv) P (|σ̂2 − σ̂2
R + 2

n

∑
i γ
′
0Xiεi| > n−α) = o(n−

1
2 ) for any α ∈ [0, 1

2 ).

Proof: Since ‖Xε‖ is bounded a.s. by Assumption 2.1(ii), the first claim follows by Lemma A.1. For the second

claim, notice Lemma A.1 implies that for any Mn ↑ ∞ such that log(n) = o(Mn) we must have:

P (‖∆n‖F ≥
Mn√
n

) = o(n−
1
2 ) . (17)

Moreover, notice that if ‖∆n‖F < 1, then H−1
n =

∑∞
j=0 ∆j

n. Hence, we obtain:

P (‖H−1
n −

k∑
j=0

∆j
n‖o > n−α) ≤ P (‖

∑
j≥k+1

∆j
n‖o > n−α and ‖∆n‖F < 1) + P (‖∆n‖F ≥ 1)

≤ P (
∑
j≥k+1

ξ(∆j
n) > n−α and ‖∆n‖F < 1) + o(n−

1
2 ) ≤ P (

ξk+1(∆n)

1− ξ(∆n)
> n−α) + o(n−

1
2 ) , (18)

11



where ξ(∆j
n) is the largest eigenvalue of ∆j

n and we have exploited ‖∆j
n‖o = ξ(∆j

n) and ξ(∆j
n) = ξj(∆n). for the

second and third inequalities. Moreover, since ξ(∆n) = ‖∆n‖o ≤ ‖∆n‖F , result (17) implies that P (|ξ(∆n)| ≥ 1/2) =

o(n−
1
2 ). Therefore, from (18) we are able to conclude that:

P (‖H−1
n −

k∑
j=0

∆j
n‖o > n−α) ≤ P (2ξk+1(∆n) > n−α) + o(n−

1
2 ) ≤ P (2‖∆n‖k+1

F > n−α) + o(n−
1
2 ) . (19)

To conclude, exploit (19) and set Mn = n
1
2−

α
k+1 in (17) to obtain P (2‖∆n‖F > n−

α
k+1 ) = o(n−

1
2 ).

Next, note that Corollary III.2.6 in Bhatia (1997) implies |ξ(H−1
n ) − 1| = |ξ(H−1

n ) − ξ(I)| ≤ ‖H−1
n − I‖F . By

part (ii) of the Lemma, it follows that P (‖H−1
n ‖o > 2) = o(n−

1
2 ). Hence, we obtain:

P (‖β̂ − β0‖ > n−α)

≤ P (‖ 2

n

n∑
i=1

Xiεi‖ > n−α) + P (‖H−1
n ‖o > 2) = P (‖ 1√

n

n∑
i=1

Xiεi‖ >
n

1
2−α

2
) + o(n−

1
2 ) . (20)

The third claim of the Lemma is then established by (20), part (i) and α < 1/2.

In order to establish the final claim of the Lemma, first observe that by direct calculation we obtain:

P (‖Σn(β̂)− Σn(β0)‖F > n−
α
2 ) = P (‖ 1

n

n∑
i=1

XiX
′
i{(X ′i(β̂ − β0))2 − 2εiX

′
i(β̂ − β0)}‖F > n−

α
2 ) = o(n−

1
2 ) (21)

where the final result is implied by part (iii), (X, ε) bounded a.s. by Assumption 2.1(ii) and α < 1. Similarly, by

Lemma A.1, for any sequence Mn ↑ ∞ such that log(n) = o(Mn) we also have:

P (‖Σn(β0)− Σ0‖F >
Mn√
n

) = o(n−
1
2 ) . (22)

Let K > 0 be such that ‖Σ0‖o < K and note that since (21)-(22) imply P (‖Σn(β̂) − Σ0‖o > n−
α
2 ) = o(n−

1
2 ), it

follows that P (‖Σn(β̂)‖o > K) = o(n−
1
2 ). Hence, we conclude from part (ii) of the Lemma that:

P (|c′(H−1
n − I)Σn(β̂)(H−1

n − I)c| > n−α)

≤ P (K‖c‖2‖H−1
n − I‖2o > n−α) + P (‖Σn(β̂)‖o > K) = o(n−

1
2 ) . (23)

Similarly, exploiting again that P (‖Σn(β̂)‖o > K) = o(n−
1
2 ) and part (ii) of the Lemma we also obtain:

P (|c′(H−1
n − I −∆n)Σn(β̂)c| > n−α) = o(n−

1
2 ) . (24)

Moreover, since α < 1, exploiting (17), (21) and (22) we also conclude:

P (|c′∆n(Σn(β̂)− Σ0)c| > n−α) ≤ P (‖c‖2‖∆n‖o‖Σn(β̂)− Σ0‖o > n−α)

≤ P (‖c‖‖∆n‖F > n−
α
2 ) + P (‖c‖‖Σn(β̂)− Σ0‖F > n−

α
2 ) = o(n−

1
2 ) . (25)

Since (X, ε) is bounded, Lemma A.1 implies that P (‖ 1
n

∑
i(c
′Xi)

2εiXi − γ0‖ > Mn√
n

) = o(n−
1
2 ) for any Mn ↑ ∞ with

log(n) = o(Mn). Hence, using manipulations as in (25) we can conclude that:

P (‖ 1

n

n∑
i=1

{εi(c′Xi)
2X ′i − γ′0}(β̂ − β0)‖ > n−α) = o(n−

1
2 ) . (26)

Next, exploit parts (i) and (ii) of the Lemma and argue as in (25) to additionally conclude that:

P (|γ′0(β̂ − β0)− 1

n

n∑
i=1

γ′0Xiεi| > n−α) ≤ P (‖γ0‖‖H−1
n − I‖o‖

1

n

n∑
i=1

Xiεi‖ > n−α) = o(n−
1
2 ) . (27)
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Hence, by results (26), (27), X bounded a.s. and part (iii) of the Lemma we establish that:

P (|c′Σn(β̂)c− c′Σn(β0)c+
2

n

n∑
i=1

γ′0Xiεi| > n−α)

= P (| 2
n

n∑
i=1

γ′0Xiεi −
2

n

n∑
i=1

(c′Xi)
2εiX

′
i(β̂ − β0) +

1

n

n∑
i=1

(c′Xi)
2(X ′i(β̂ − β0))2| > n−α) = o(n−

1
2 ) . (28)

To conclude, note that by direct manipulations we obtain that:

σ̂2 = c′(H−1
n − I)Σn(β̂)(H−1

n − I)c+ c′Σn(β̂)c+ 2c′(H−1
n − I)Σn(β̂)c , (29)

and hence the final claim of the Lemma follows from (23), (24), (25) and (28).

Lemma A.3. Let Assumptions 2.1(i)-(iii) hold and Ln be as in (9). Then for any α ∈ [0, 1):

lim sup
n→∞

P (|Tn − Ln| > n−α) = o(n−
1
2 ) .

Proof: By a Taylor expansion we obtain for some σ̄2 a convex combination of σ̂2 and σ2 that:

Tn − Ln = c′{H−1
n − I −∆n}

1

σ
√
n

n∑
i=1

Xiεi +
(σ − σ̂)

σ̂σ
c′{H−1

n − I}
1√
n

n∑
i=1

Xiεi

+
1√
n

n∑
i=1

c′Xiεi{−
1

2σ3
(σ̂2 − σ̂2

R +
2

n

n∑
i=1

γ′0Xiεi) +
3

4σ̄5
(σ̂2 − σ2)2} . (30)

To study the right hand side of (30), first observe that Lemma A.2(i) and A.2(ii) imply that:

P (|c′{H−1
n − I −∆n}

1

σ
√
n

n∑
i=1

Xiεi| > n−α)

≤ P (‖c‖‖H−1
n − I −∆n‖o >

1

nα log2(n)
) + P (‖ 1√

n

n∑
i=1

Xiεi‖ > log2(n)) = o(n−
1
2 ) . (31)

Moreover, by identical manipulations but exploiting Lemma A.2(i) and A.2(iv) we can similarly conclude:

P (| 1

2σ3
√
n

n∑
i=1

c′Xiεi{σ̂2 − σ̂2
R +

2

n

n∑
i=1

γ′0Xiεi}| > n−α) = o(n−
1
2 ) . (32)

Next, notice that (X, ε) bounded a.s. and Lemma A.1 further imply that:

P (|c′(Σn(β0)− Σ0)c| > n−
α
2 ) = o(n−

1
2 ) P (| 1

n

n∑
i=1

γ′0Xiεi| > n−
α
2 ) = o(n−

1
2 ) . (33)

Therefore, we obtain from (29) together with (23) and (28) that since α < 1 we must have:

P (|σ̂2 − σ2| > n−
α
2 ) = o(n−

1
2 ) . (34)

This implies that P (|σ̂ − σ| > n−
α
2 ) = o(n−

1
2 ) and since σ̄ is a convex combination of σ2 and σ̂2 that P (σ̄ > ε) =

o(n−
1
2 ) for any ε < σ. Hence, exploiting (34) and manipulations as in (31) we can conclude:

P (| (σ̂
2 − σ2)2

σ̄5
√
n

n∑
i=1

c′Xiεi| > n−α) ≤ P ((σ̂2 − σ2)2 >
ε5

nα log2(n)
) + o(n−

1
2 ) = o(n−

1
2 ) . (35)

Similarly, for ε < σ we can exploit P (σ̂ > ε) = o(n−
1
2 ) and Lemma A.2(i) to obtain:

P (| (σ − σ̂)

σ̂σ
c′{H−1

n − I}
1√
n

n∑
i=1

Xiεi| > n−α) ≤ P (
|σ − σ̂|‖c‖

ε2
‖H−1

n − I‖o >
1

nα log2(n)
) + o(n−

1
2 )

≤ P (|σ − σ̂| > ε2

‖c‖nα2 log(n)
) + P (‖H−1

n − I‖o >
1

n
α
2 log(n)

) + o(n−
1
2 ) = o(n−

1
2 ) . (36)
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where the final result follows from Lemma A.2(ii), equation (34) and α < 1. The Lemma is then established due to

the decomposition in (30) and results (31), (32), (35) and (36).

Lemma A.4. Let {Ain}ni=1 be a triangular array of k × p matrices, {cn}ni=1 be a sequence of scalars with {Ain}ni=1

and {cn}ni=1 measurable functions of {Yi, Xi}ni=1. Suppose Assumptions 2.1(i) and 2.2(i) hold and

lim sup
n→∞

1

n

n∑
i=1

‖Ain‖ωF <∞ c−1
n = o(nα) a.s. (37)

for some α ∈ [0, ω−1
2ω ). Then, for any g : R→ R such that E[gω(W )] <∞, it follows that:

P ∗(‖ 1

n

n∑
i=1

Ain{g(Wi)− E[g(Wi)]}‖F > cn) = o(n−
1
2 ) a.s. .

Proof: Let A
(l,j)
in denote the (l, j) entry of Ain and proceed as in equation (15) to conclude that:

P ∗(‖ 1

n

n∑
i=1

Ain{g(Wi)− E[g(Wi)]}‖F > cn) ≤
k∑
l=1

p∑
j=1

P ∗(|kp
n

n∑
i=1

A
(l,j)
in {g(Wi)− E[g(Wi)]}| > cn) . (38)

Next, apply Markov’s inequality and the Marcinkiewicz and Rosenthal inequalities (Lemmas 1.4.13 and 1.5.9 in de la

Pena and Gine (1999)) to obtain for some constants C1 and C2 that:

√
nP ∗(| 1

n

n∑
i=1

A
(l,j)
in {g(Wi)− E[g(Wi)]}| > cn) ≤

√
n

cωn
E∗[| 1

n

n∑
i=1

A
(l,j)
in {g(Wi)− E[g(Wi)]}|ω]

≤
√
nC1

cωn
E∗[(

1

n2

n∑
i=1

(A
(l,j)
in {g(Wi)− E[g(Wi)]})2)

ω
2 ] ≤

√
nC2

cωnn
ω
2

(
1

n

n∑
i=1

(A
(l,j)
in )2Var(g(Wi)))

ω
2 , (39)

where in the final result we have used (37) and ω ≥ 2. The claim of the Lemma then follows by (37), (38), (39) and

α ∈ [0, ω−1
2ω ) by hypothesis.

Lemma A.5. Let (σ̂∗s )2 ≡ c′H−1
n Σ∗n(β̂)H−1

n c and {cn}ni=1 be measurable scalar-valued functions of {Yi, Xi}ni=1. Let

Assumptions 2.1(i)-(ii), 2.2(i) hold and c−1
n = o(nα) a.s. for some α ∈ [0, ω−1

2ω ). Then:

(i) P ∗(‖β̂∗ − β̂‖ > cn) = o(n−
1
2 ) almost surely.

(ii) P ∗(|(σ̂∗)2 − (σ̂∗s )2| > c2n) = o(n−
1
2 ) almost surely.

(iii) P ∗(|(σ̂∗s )2 − σ2| > ε) = o(n−
1
2 ) almost surely for any ε > 0.

Proof: Since β̂
a.s.→ β, (Y,X) are bounded by Assumption 2.1(ii) and ‖H−1

n ‖o
a.s.→ 1, Lemma A.4 implies:

P ∗(‖β̂∗ − β̂‖ > cn) ≤ P ∗(‖H−1
n ‖o‖

1

n

n∑
i=1

Xi(Yi −Xiβ̂)Wi‖ > cn) = o(n−
1
2 ) a.s. (40)

For the second claim of the Lemma, proceed by standard manipulations to obtain the inequalities:

P ∗(|(σ̂∗)2 − (σ̂∗s )2| > c2n)

= P ∗(|c′H−1
n {

1

n

n∑
i=1

XiX
′
i(X

′
i(β̂
∗ − β̂))2 − 2

n

n∑
i=1

XiX
′
iε
∗
iX
′
i(β̂
∗ − β̂)}H−1

n c| > c2n)

≤ P ∗(‖c‖2‖H−1
n ‖2o{‖

1

n

n∑
i=1

XiX
′
i(X

′
i(β̂
∗ − β̂))2‖o + ‖ 2

n

n∑
i=1

XiX
′
iε
∗
iX
′
i(β̂
∗ − β̂)‖o} > c2n) . (41)
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Since X is bounded a.s., we then obtain from part (i) of the Lemma that for some K > 0 we must have:

P ∗(‖c‖2‖H−1
n ‖2o‖

1

n

n∑
i=1

XiX
′
i(X

′
i(β̂
∗ − β̂))2‖o > c2n)

≤ P ∗(‖c‖2‖H−1
n ‖2oK‖β̂∗ − β̂‖2 > c2n) = o(n−

1
2 ) a.s. (42)

Let X(k) denote the kth coordinate of the vector X. Using ‖ · ‖o ≤ ‖ · ‖F , we can then conclude that:

P ∗(‖c‖2‖H−1
n ‖2o‖

2

n

n∑
i=1

XiX
′
iε
∗
iX
′
i(β̂
∗ − β̂)‖o > c2n)

≤ P ∗(‖c‖2‖H−1
n ‖2o{ max

1≤j≤dx,1≤k≤dx
|2d

2
x

n

n∑
i=1

X
(j)
i X

(k)
i ε∗iX

′
i(β̂
∗ − β̂)|} > c2n)

≤
dx∑
j=1

dx∑
k=1

P ∗(‖c‖2‖H−1
n ‖2o‖

2d2
x

n

n∑
i=1

X
(j)
i X

(k)
i Xiε

∗
i ‖‖β̂∗ − β̂‖ > c2n) . (43)

Moreover, for any (j, k) we can then conclude from Lemma A.4 and part (i) of this Lemma that:

P ∗(‖c‖2‖H−1
n ‖2o‖

2d2
x

n

n∑
i=1

X
(j)
i X

(k)
i Xiε

∗
i ‖‖β̂∗ − β̂‖ > c2n)

≤ P ∗(‖2d2
x

n

n∑
i=1

X
(j)
i X

(k)
i Xiε

∗
i ‖ > cn) + P ∗(‖c‖2‖H−1

n ‖2o‖β̂∗ − β̂‖ > cn) = o(n−
1
2 ) , (44)

almost surely. The second claim of the Lemma then follows from (41)-(44).

To conclude, exploit that ‖H−1
n ‖o

a.s.→ 1 and σ̂2 a.s.→ σ together with Lemma A.4 to obtain:

P ∗(|(σ̂∗s )2 − σ2| > ε) ≤ P ∗(|(σ̂∗s )2 − σ̂2| > ε− |σ̂2 − σ2|)

≤ P ∗(‖ 1

n

n∑
i=1

XiX
′
i(Yi −Xiβ̂)2(W 2

i − 1)‖F >
ε− |σ̂2 − σ2|
‖c‖2‖H−1

n ‖2o
) = o(n−

1
2 ) a.s. , (45)

which establishes the third and final claim of the Lemma.

Lemma A.6. Let Assumptions 2.1(i)-(ii), 2.2(i), and for c ∈ Rdx define the following random variables:

T ∗s,n ≡
√
nc′

σ̂∗s
(β̂∗ − β) (σ̂∗s )2 ≡ c′H−1

n Σ∗n(β̂)H−1
n c . (46)

It then follows that P ∗(|T ∗n − T ∗s,n| > n−α) = o(n−
1
2 ) almost surely for any α ∈ [0, 2ω−3

2ω ).

Proof: Let ε < σ2 and note that parts (ii) and (iii) of Lemma A.5 imply P ∗(σ̂∗σ̂∗s < ε) = o(n−
1
2 ) almost surely. For

any γ ∈ [0, ω−1
2ω ), part (i) of Lemma A.5 then establishes that:

P ∗(|T ∗n − T ∗s,n| > n−α) ≤ P ∗(
√
n|σ̂∗ − σ̂∗s |
σ̂∗σ̂∗s

× ‖c‖‖β̂∗ − β̂‖ > n−α)

≤ P ∗(
√
n|σ̂∗ − σ̂∗s | >

ε

nα−γ
) + P ∗(‖β̂∗ − β̂‖ > 1

nγ‖c‖
) + P ∗(σ̂∗σ̂∗s < ε)

= P ∗(
√
n|σ̂∗ − σ̂∗s | >

ε

nα−γ
) + o(n−

1
2 ) a.s. . (47)

Since for any α ∈ [0, 2ω−3
2ω ) we may pick γ ∈ [0, ω−1

2ω ) so that α − γ + 1
2 ∈ [0, ω−1

ω ), the claim of the Lemma then

follows from result (47) and part (ii) of Lemma A.5.
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Lemma A.7. Let Assumptions 2.1(i)-(iii), 2.2(i) hold, ei ≡ (Yi −X ′iβ̂) and κ̂ ≡ 1
n

∑
i(c
′H−1

n Xi)
3e3
i . Then:

E[Ln] = − κ

2σ3
√
n
− γ1

σ
√
n

+
2c′Σ0γ0

σ3
√
n

E∗[L∗n] = −E[W 3]κ̂

2σ̂3
√
n

.

Proof: We first derive an expression for E[Ln]. Note that E[XX ′] = I and E[Xε] = 0 imply:

E[c′∆n
1

σ
√
n

n∑
i=1

Xiεi] = c′E[
1

n

n∑
i=1

(I −XiX
′
i)

1

σ
√
n

n∑
i=1

Xiεi] = − 1

σ
√
n
E[(c′X)X ′Xε] (48)

due to the i.i.d. assumption. Similarly, exploiting the i.i.d. assumption and E[(c′X)ε] = E[∆n] = 0 yields:

E[
1

2σ3
√
n

n∑
i=1

(c′Xi)εi(σ̂
2
R − σ2)] = E[

1

2σ3
√
n

n∑
i=1

(c′Xi)εi{c′(Σn(β0)− Σ0)c+ 2c′∆nΣ0c}]

=
1

2σ3
√
n
{E[(c′X)3ε3]− 2E[ε(c′X)2X ′]Σ0c} . (49)

The expression for E[Ln] can then be obtained from (48), (49) and by analogous arguments concluding:

E[
1

2σ3
√
n

n∑
i=1

(c′Xi)εi ×
2

n

n∑
i=1

γ′0Xiεi] =
c′Σ0γ0

σ3
√
n
. (50)

In order to compute E∗[L∗n], observe that W ⊥ (Y,X) and E[W 2] = 1 implies that:

E∗[L∗n] = − 1

2σ̂3
E∗[

c′H−1
n√
n

n∑
i=1

Xiε
∗
i

1

n

n∑
i=1

c′H−1
n XiX

′
iH
−1
n ce2

i (W
2
i − 1)] = −E[W 3]κ̂

2σ̂3
√
n
, (51)

which establishes the second claim of the Lemma.

Lemma A.8. Under Assumptions 2.1(i)-(iii) and 2.2(i), the second moments of Ln and L∗n satisfy:

E[L2
n] = 1 +O(n−1) E∗[(L∗n)2] = 1 +Oa.s.(n

−1) .

Proof: To calculate E[L2
n], first note that E[XX ′] = I, E[Xε] = 0 and direct calculations yield:

E[(c′∆n
1√
nσ

n∑
i=1

Xiεi)
2] = E[(

c′

n

n∑
i=1

(I −XiX
′
i)

1√
nσ

n∑
i=1

Xiεi)
2] =

1

σ2n2
E[(c′(I −XiX

′
i)(

n∑
k=1

Xkεk))2]

+
(n− 1)

σ2n2
E[{c′(I −XiXi)

n∑
k=1

Xkεk}{c′(I −XjX
′
j)

n∑
k=1

Xkεk}] = O(n−1) . (52)

Similarly, exploiting the i.i.d. assumption together with E[Xε] = 0 and E[I −XX ′] = 0 we obtain:

E[(
1√
nσ

n∑
i=1

c′Xiεi)(c
′∆n

1√
nσ

n∑
i=1

Xiεi)] =
1

n2σ2
E[(

n∑
i=1

c′Xiεi)(c
′
n∑
i=1

(I −XiX
′
i))(

n∑
i=1

Xiεi)]

=
1

nσ2
E[(c′Xε)(c′Xε− c′XX ′Xε)] = O(n−1) . (53)

Exploiting identical arguments to (52) on the squares of the remaining terms of Ln and the Cauchy-Schwarz inequal-

ity and arguments identical to those in (53) to address cross terms arising from expanding the square, it is then

straightforward to establish that:

E[L2
n] = E[(

1

σ
√
n

n∑
i=1

c′Xiεi)
2] +O(n−1) =

c′E[XX ′ε2]c

σ2
+O(n−1) = 1 +O(n−1) . (54)

16



For notational simplicity, let ain ≡ c′H−1
n Xi and set ei ≡ (Yi −X ′iβ̂). To compute E∗[(L∗n)2], first note that the

i.i.d. assumption together with E∗[(ε∗i )
4] = e4

iE[W 4
i ], E∗[(ε∗i )

2] = e2
i and E∗[ε∗i ] = 0 imply that:

1

σ̂4n2
E∗[(

n∑
i=1

ainε
∗
i )

2(

n∑
i=1

a2
in{(ε∗i )2 − e2

i })] =
1

σ̂4n2

n∑
i=1

a4
ine

4
i (E[W 4]− 1) = Oa.s(n

−1) . (55)

Next, also note that by direct calculations, {Wi}ni=1 being i.i.d. and E∗[(ε∗i )
3] = e3

iE[W 3] we may establish:

1

4σ̂6n3
E∗[(

n∑
i=1

ainε
∗
i )

2(

n∑
i=1

a2
in{(ε∗i )2 − e2

i })2]

=
1

4σ̂6n3
{
n∑
i=1

E∗[a2
in(ε∗i )

2(

n∑
k=1

a2
kn{(ε∗k)2 − e2

k})2] +

n∑
i=1

∑
j 6=i

E∗[(ainε
∗
i )(ajnε

∗
j )(

n∑
k=1

a2
kn{(ε∗k)2 − e2

k})2]}

=
1

4σ̂6n3
{
n∑
i=1

n∑
k=1

a2
ina

4
knE

∗[(ε∗i )
2{(ε∗k)2 − e2

k}2] + 2

n∑
i=1

∑
j 6=i

a3
ine

3
i a

3
jne

3
j (E[W 3])2} . (56)

Therefore, expanding the square, noting that 1
n

∑
i a

2
ine

2
i = σ̂2 and exploiting (55) and (56):

E∗[(L∗n)2] =
1

nσ̂2
E∗[(

n∑
i=1

ainε
∗
i )

2] +Oa.s.(n
−1) = 1 +Oa.s.(n

−1) , (57)

which establishes the second and final claim of the Lemma.

Lemma A.9. Let Assumptions 2.1(i)-(iii), 2.2(i) hold ei ≡ (Yi −X ′iβ̂) and κ̂ ≡ 1
n

∑
i(c
′H−1

n Xi)
3e3
i . Then:

E[L3
n] = − 7κ

2σ3
√
n
− 3γ1

σ
√
n

+
12c′Σ0γ0

σ3
√
n

+O(n−1) E∗[(L∗n)3] = −7E[W 3]κ̂

2σ̂3
√
n

+Oa.s.(n
−1) . (58)

Proof: The calculations are cumbersome and for brevity we provide only the essential steps. Define:

Γn ≡ c′∆n
1

σ
√
n

n∑
i=1

Xiεi −
1

2σ3
√
n

n∑
i=1

(c′Xi)εi{(σ̂2
R − σ2)− 2

n

n∑
i=1

γ′0Xiεi} . (59)

Notice that Ln = 1
σ
√
n
c′
∑
iXiεi+Γn. Under Assumption 2.1(ii), it can be shown that E[Γ3

n] = O(n−
3
2 ) and similarly

that E[( 1√
n

∑
i c
′Xiεi)

3] = O(n−
1
2 ). Therefore, by direct calculation and Holder’s inequality:

E[L3
n] = E[(

1

σ
√
n

n∑
i=1

(c′Xi)εi)
3] + 3E[(

1

σ
√
n

n∑
i=1

(c′Xi)εi)
2Γn] + 3E[(

1

σ
√
n

n∑
i=1

(c′Xi)εi)Γ
2
n] + E[Γ3

n]

= E[(
1

σ
√
n

n∑
i=1

(c′Xi)εi)
3] + 3E[(

1

σ
√
n

n∑
i=1

(c′Xi)εi)
2Γn] +O(n−1) . (60)

Hence, we can establish the first claim of the Lemma by analyzing the remaining terms in (60). Note that

E[(
1

σ
√
n

n∑
i=1

(c′Xi)εi)
3] =

1

σ3
√
n
E[(c′X)3ε3] , (61)

by the i.i.d. assumption and E[Xε] = 0. Similarly, by direct calculation we can also obtain the expression:

E[(
1

σ
√
n

n∑
i=1

(c′Xi)εi)
2 c
′∆n√
nσ

n∑
i=1

Xiεi]

=
1

σ3n
5
2

E[{
n∑
i=1

(c′Xi)
2ε2i +

n∑
i=1

(c′Xi)εi
∑
j 6=i

(c′Xj)εj}
n∑
k=1

c′(I −XkX
′
k)

n∑
l=1

Xlεl]

= − c
′Σ0c

σ3
√
n
E[(c′X)(X ′X)ε]− 2

σ3
√
n
E[(c′X)(γ′0X)ε2] +O(n−

3
2 ) . (62)

17



By analogous arguments we can compute the remaining terms in E[( 1
σ
√
n

∑
i c
′Xiεi)

2Γn] and obtain:

1

2σ5
E[(

1√
n

n∑
i=1

(c′Xi)εi)
3c′{Σn(β0)− Σ0}c] =

3c′Σ0c

2σ5
√
n
E[(c′X)3ε3] +O(n−

3
2 ) (63)

1

σ5
E[(

1√
n

n∑
i=1

(c′Xi)εi)
3{c′∆nΣ0c}] = −3c′Σ0c

σ5
√
n
γ′0Σ0c+O(n−

3
2 ) (64)

1

σ5
E[(

1√
n

n∑
i=1

(c′Xi)εi)
3{ 1

n

n∑
i=1

γ′0Xiεi}] =
3c′Σ0c

σ5
√
n
c′Σ0γ0 +O(n−

3
2 ) . (65)

The first claim of the Lemma then follows by combining the results from (60)-(65).

Letting ain = c′H−1
n Xi and employing Assumption 2.1(ii), it can then be shown that:

E∗[(
1√
n

n∑
i=1

ainε
∗
i )

3(
1

2σ̂3
{(σ̂∗s )2 − σ̂2})2] = Oa.s.(n

− 3
2 ) (66)

E∗[(
1√
n

n∑
i=1

ainε
∗
i )

3(
1

2σ̂3
{(σ̂∗s )2 − σ̂2})3] = Oa.s.(n

− 3
2 ) . (67)

Therefore, expanding the cube and exploiting that W ⊥ (Y,X) and E∗[(ε∗i )
k] = E[W k]eki , it follows that:

E∗[(L∗n)3] = E∗[(
1√
n

n∑
i=1

ainε
∗
i )

3{ 1

σ̂3
− 3((σ̂∗s )2 − σ̂2)

2σ̂5
+

3((σ̂∗s )2 − σ̂2)2

4σ̂7
− ((σ̂∗s )2 − σ̂2)3

8σ̂9
}]

=
E[W 3

i ]

σ̂3
√
n
× 1

n

n∑
i=1

a3
ine

3
i −

3

2σ̂5
E∗[(

1√
n

n∑
i=1

ainε
∗
i )

3{(σ̂∗s )2 − σ̂2}] +Oa.s(n
− 3

2 ) . (68)

Moreover, also note that by analogous arguments and direct calculations we further obtain:

E∗[(
1√
n

n∑
i=1

ainε
∗
i )

3{ 3

2σ̂5n

n∑
i=1

a2
in{(ε∗i )2 − e2

i }}]

=
3

2σ̂5n
3
2

× 1

n

n∑
i=1

a5
inE

∗[(ε∗i )
3{(ε∗i )2 − e2

i }] +
9

2σ̂5n
5
2

E∗[{
n∑
i=1

ain(ε∗i )
∑
j 6=i

a2
jn(ε∗j )

2}
n∑
k=1

a2
kn{(ε∗k)2 − e2

i }]

=
9

2σ̂5
√
n
× 1

n

n∑
i=1

a2
ine

2
i ×

E[W 3]

n

n∑
i=1

a3
ine

3
i +Oa.s.(n

− 3
2 ) . (69)

The second claim of the Lemma is then established by (68) and (69).

Proof of Theorem 2.1: The first claim of the Theorem is an immediate consequence of Lemma A.3. For the second

claim, note that in lieu of Lemma A.6, it suffices to show that T ∗n,s = L∗n + op∗(n
− 1

2 ) a.s.. For notational simplicity,

let ain = c′H−1
n Xi(Yi −X ′iβ̂) and apply Markov’s inequality to conclude that:

P ∗(|(σ̂∗s )2 − σ̂2| > C√
n

) = P ∗(| 1
n

n∑
i=1

a2
in(W 2

i − 1)| > C√
n

)

≤ n

C2
E∗[(

1

n

n∑
i=1

a2
in(W 2

i − 1))2] =
1

C2n

n∑
i=1

a4
inE[(W 2

i − 1)2] . (70)

However, under our moment assumptions, 1
n

∑
i a

4
inE[(W 2

i − 1)2]
a.s.→ E[(c′X)4ε4i ]E[(W 2 − 1)2] < ∞, and therefore

from (70) it follows that (σ̂∗s )2 = σ̂2 +Op∗(n
− 1

2 ) almost surely. The second claim of the Lemma then follows from a

second order Taylor expansion.

Proof of Theorem 2.2: Follows immediately from Lemmas A.7, A.8, A.9 and direct calculation.
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APPENDIX B - Proofs of Theorem 2.3

Lemma B.1. Let Assumption 2.1(i)-(iv) hold and Ln be as in (9) with c 6= 0. Then, uniformly in z ∈ R:

P (Ln ≤ z) = Φ(z) +
φ(z)κ

6σ3
√
n

(2z2 + 1)− φ(z)

σ3
√
n

(c′Σ0γ0(z2 + 1)− γ1σ
2) + o(n−

1
2 ) .

Proof: Letting Z ≡ (X ′ε, vech(XX ′)′, vech(XX ′ε2)′)′, it is clear that Ln is a smooth functional of 1
n

∑
i Zi and that

Z satisfies Cramer’s condition by Assumption 2.1(iv). The claim of the Lemma then follows from Theorem 2.2 in

Hall (1992) and Theorem 2.2.

Lemma B.2. Let {ain}ni=1 be a triangular array of measurable scalar valued functions of {Yi, Xi}ni=1 and define

Vin ≡ (ainWi, a
2
in(W 2

i − 1))′, Ωn ≡ 1
n

∑
iE
∗[VinV

′
in] and Sn ≡ 1√

n

∑
i Ω
− 1

2
n Vin. Suppose Assumptions 2.2(i)-(ii)

hold and (i) Ωn
a.s.→ Ω with Ω full rank, (ii) lim supn→∞max1≤i≤n |ain| < ∞ a.s. and (iii) For Kn(ε) ≡ #{i :

min{|ain|, a2
in} ≥ ε}, there a.s. exists an ε0 such that Kn(ε0)/ log(n) ↑ ∞. Then:

P ∗(Sn ∈ B) =

1∑
j=0

∫
B

dPj(−Φ : {X ∗k (Sn)}) + o(n−
1
2 ) a.s.

uniformly over all Borel sets B with Φ((∂B)ε) ≤ Cε for some constant C, (∂B)ε the ε enlargement of ∂B, X ∗k (Sn)

the kth cumulant of Sn under P ∗ and Pj the Cramer-Edgeworth measures.

Proof: We proceed by verifying the conditions of Theorem 3.4 in Skovgaard (1986). For t ∈ R2, define:

ρn(t) ≡ 1

3!‖t‖3
|X ∗3 (t′Sn)| = 1

3!‖t‖3
|E∗[(t′Sn)3]| , (71)

since E[W ] = 0, E[W 2] = 1 and W ⊥ (Y,X). Hence, by Cauchy-Schwartz and convexity we obtain:

ρn(t) ≤ 1

n
3
2 ‖t‖3

n∑
i=1

E∗[|t′Ω−
1
2

n Vin|3] ≤ ‖Ω
− 1

2
n ‖3o
n

3
2

n∑
i=1

E∗[‖Vin‖3]

≤ 4‖Ω−
1
2

n ‖3o
n

3
2

n∑
i=1

{E∗[|ain|3|Wi|3] + E∗[a6
in|W 2

i − 1|3]} . (72)

Note that Ωn
a.s.→ Ω with Ω full rank by hypothesis, implies ‖Ω−

1
2

n ‖o
a.s.→ ‖Ω− 1

2 ‖o < ∞. Moreover, since {ain}ni=1 is

not random with respect to P ∗, we obtain from condition (ii) and result (72) that almost surely:

lim sup
n→∞

{ sup
t∈R2

√
nρn(t)} ≤ lim sup

n→∞
{4‖Ω−

1
2

n ‖3o(E[|W |3] + E[|W 2 − 1|3])× max
1≤i≤n

{|ain|3 + a6
in}} <∞ . (73)

Therefore, we conclude that almost surely there exists a sequence {rn} satisfying the following:

sup
t∈R2

ρn(t) ≤ 1

rn
rn �

√
n , (74)

which verifies conditions (I) and (II) of Theorem 3.4 in Skovgaard (1986).

Next, let ξ∗n(t) ≡ E∗[exp(it′Sn)]. We aim to show that almost surely there exists a δ > 0 such that:

lim sup
n→∞

{ sup
0<h<δrn,t∈R2

| d
4

dh4
log(ξ∗n(

th

‖t‖
))| × r2

n} <∞ . (75)

Towards this end, define ξ∗in(t) ≡ E∗[exp(it′Ω
− 1

2
n Vin/

√
n)]. By Corollary 8.2 in Bhattacharya and Rao (1976),

{ain}ni=1 being nonrandom with respect to P ∗ and direct calculation it then follows that:

|ξ∗in(t)− 1| ≤ ‖t‖
2

2n
E∗[‖Ω−

1
2

n Vin‖2] ≤ ‖t‖
2‖Ω−

1
2

n ‖2o
2n

E[W 2 + (W 2 − 1)2]× max
1≤i≤n

(a2
in + a4

in) . (76)
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Condition (ii), ‖Ω−
1
2

n ‖o
a.s.→ ‖Ω− 1

2 ‖o <∞ and rn �
√
n then imply that almost surely there is a δ > 0 with:

lim sup
n→∞

{ sup
‖t‖≤δrn

|ξ∗in(t)− 1|} ≤ δE[W 2 + (W 2 − 1)2]

2
× lim sup

n→∞
{r

2
n‖Ω

− 1
2

n ‖2o
n

{ max
1≤i≤n

(a2
in + a4

in)}} < 1

2
. (77)

Since ξ∗n(t) =
∏
i ξ
∗
in(t) by the i.i.d. assumption and W ⊥ (Y,X) we obtain by direct calculation:

lim sup
n→∞

{ sup
0<h<δrn,t∈R2

| d
4

dh4
log(ξ∗n(

th

‖t‖
))| × r2

n} ≤ lim sup
n→∞

{ sup
0<h<δrn,t∈R2

r2
n

n∑
i=1

| d
4

dh4
log(ξ∗in(

th

‖t‖
))|}

≤ lim sup
n→∞

{ sup
‖t‖≤δrn

r2
n

n∑
i=1

∑
|λ|=4

|Dλ log(ξ∗in(t))|} ≤ lim sup
n→∞

{16r2
n

n∑
i=1

E∗[‖Ω
− 1

2
n Vin√
n
‖4]} , (78)

where the final inequality holds by Lemma 9.4 in Bhattacharya and Rao (1976) and result (77) implying |ξ∗in(t)−1| < 1
2

for all ‖t‖ ≤ δrn and all 1 ≤ i ≤ n for n large enough. Moreover,

lim sup
n→∞

{r2
n

n∑
i=1

E∗[‖Ω
− 1

2
n Vin√
n
‖4]} ≤ lim sup

n→∞
{r

2
n

n
× 2‖Ω−

1
2

n ‖4o
n

n∑
i=1

{a4
inE[W 4] + a8

inE[(W 2 − 1)4]}} <∞ (79)

almost surely, by condition (i), (ii) and (74). It follows from (78) and (79) that (75) holds almost surely, which

verifies condition (IV) of Theorem 3.4 in Skovgaard (1986).

To conclude, we aim to show that almost surely for any δ > 0 it follows that:

lim sup
n→∞

{r6
n × sup

δrn≤‖t‖
|ξ∗n(t)|} <∞ . (80)

Let ξU denote the characteristic function of U ≡ (W,W 2 − 1)′, η(ε) ≡ sup‖t‖≥ε |ξU (t)| and define:

Ain ≡

(
ain 0

0 a2
in

)
. (81)

Since Ω
− 1

2
n , Ain are not random with respect to P ∗ and W ⊥ (Y,X) we then obtain by direct calculation:

sup
δrn≤‖t‖

|ξ∗n(t)| = sup
δrn≤‖t‖

n∏
i=1

|ξ∗in(t)| = sup
δrn≤‖t‖

n∏
i=1

|ξU (
AinΩ

− 1
2

n√
n

t)| ≤ {η(ε)}#{i:‖AinΩ
− 1

2
n t‖≥ε

√
n ∀‖t‖≥δrn} (82)

for any ε > 0. Moreover, since the smallest eigenvalue of Ω
− 1

2
n equals ‖Ωn‖

− 1
2

o , we also have:

#{i : ‖AinΩ
− 1

2
n t‖ ≥ ε

√
n ∀‖t‖ ≥ δrn} ≥ #{i : min{|ain|, a2

in} ≥
ε
√
n‖Ωn‖

1
2
o

δrn
} . (83)

Thus, as ‖Ωn‖
1
2
o
a.s.→ ‖Ω‖

1
2
o < ∞ and rn �

√
n we may almost surely pick ε∗ such that ε∗

√
n‖Ωn‖

1
2
o /δrn < ε0 for

n sufficiently large. In addition, by Assumption 2.2(ii), η(ε∗) < 1; see page 207 in Bhattacharya and Rao (1976).

Hence, by result (82) and condition (iii) we conclude that almost surely:

lim sup
n→∞

{r6
n × sup

δrn≤‖t‖
|ξ∗n(t)|} ≤ lim sup

n→∞
r6
nη(ε∗)Kn(ε0) = 0 , (84)

verifying Condition (III”) of Theorem 3.4 in Skovgaard (1986). The claim of the Lemma therefore follows by direct

application of Theorem 3.4 in Skovgaard (1986).

Lemma B.3. Suppose Assumptions 2.1(i)-(iv) and 2.2(i)-(ii) hold and let c 6= 0, T ∗s,n ≡
√
nc′(β̂∗ − β̂)/σ̂∗s where

(σ̂∗s )2 ≡ c′H−1
n Σ∗n(β̂)H−1

n c. It then follows that almost surely, uniformly in z ∈ R:

P ∗(T ∗s,n ≤ z) = Φ(z) +
φ(z)κ̂E[W 3]

6σ̂3
√
n

(2z2 + 1) + o(n−
1
2 ) . (85)
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Proof: We proceed by verifying the conditions of Theorem 3.2 in Skovgaard (1981). First, define:

ain ≡ c′H−1
n Xi(Yi −Xiβ̂) ai ≡ c′Xi(Yi −Xiβ0) . (86)

Since β̂
a.s.→ β0, ‖H−1

n − I‖o
a.s.→ 0 and (X, ε) is bounded a.s. by Assumption 2.1(ii), we obtain:

lim sup
n→∞

{ max
1≤i≤n

|ain − ai|}

≤ lim sup
n→∞

{‖c‖‖H−1
n − I‖o max

1≤i≤n
‖Xiεi‖}+ lim sup

n→∞
{‖c‖‖H−1

n ‖o‖β̂ − β0‖ max
1≤i≤n

‖Xi‖2} = 0 . (87)

Let Vin ≡ (ainWi, a
2
in(W 2

i − 1))′ and Vi ≡ (aiWi, a
2
i (W

2
i − 1))′. By result (87), it then follows that:

Ωn ≡
1

n

n∑
i=1

E∗[VinV
′
in]

a.s.→ E[V V ′] . (88)

Assumption 2.2(ii) rules out Rademacher weights, which are the only ones satisfying E[W ] = 0 and P (W 2 = 1) = 1.

By Assumption 2.1(iii), W ⊥ (Y,X), c 6= 0 and W not being Rademacher, it is then possible to show E[V V ′] is full

rank. Next, pick a δ0 such that:

P (min{|(c′X)ε|, (c′X)2ε2} ≥ δ0) > 0 , (89)

which is possible since E[(c′X)2ε2] > 0 by Assumption 2.1(iii) and c 6= 0. By result (87), then:

lim inf
n→∞

1

n

n∑
i=1

1{min{|ain|, a2
in} ≥

δ0
2
} ≥ lim inf

n→∞

1

n

n∑
i=1

1{min{|ai|, a2
i } ≥ δ0} > 0 a.s. . (90)

Defining Sn ≡ 1√
n

∑
i Ω
− 1

2
n Vin, (88), (87) with Assumption 2.1(ii) and (90) verify conditions(i)-(iii) of Lemma B.2

respectively. Therefore, we can conclude that almost surely:

P ∗(Sn ∈ B) =

1∑
j=0

∫
B

dPj(−Φ : {X ∗k (Sn)}) + o(n−
1
2 ) (91)

uniformly over all Borel sets B with Φ((∂B)ε) ≤ Cε for some constant C. This verifies condition (3.1) of Theorem

3.2 in Skovgaard (1981).

Next, let t(i) denote the ith coordinate of t ∈ R2 and define the functions gn, fn : R2 → R by:

fn(t) ≡ gn(Ω
1
2
n t) gn(t) ≡ t(1) × (

t(2)

√
n

+ σ̂2
n)−

1
2 . (92)

Note that by construction, fn(Sn) = T ∗s,n, fn(0) = 0 and ‖Dfn(0)‖ = 1. Further, define the set:

Γn ≡ {t ∈ R2 : ‖t‖ ≤ log(n)} . (93)

The functions gn are differentiable everywhere except at t ∈ R2 with t(2) = −σ̂2
n

√
n. However, since σ̂2

n
a.s.→ σ2 and

‖Ω
1
2
n‖o

a.s.→ ‖Ω 1
2 ‖o we obtain that almost surely for n sufficiently large, fn is differentiable on Γn. Moreover, since a.s.

for n large enough ‖Ω−
1
2

n ‖o log(n)/
√
n ≤ σ̂2

n/2 we obtain by direct calculation:

lim sup
n→∞

{
√
n sup
t∈Γn

sup
|λ|=3

|Dλfn(t)|} ≤ lim sup
n→∞

{4
√
n‖Ω

1
2
n‖3F ×max{ 3

4n
× 2

5
2

σ̂5
n

,
15‖Ω

1
2
n‖o log(n)

8n
3
2

× 2
7
2

σ̂7
n

} = 0 (94)

almost surely; which verifies condition (3.11) of Theorem 3.2 in Skovgaard (1981). Similarly,

lim sup
n→∞

√
n‖∇2fn(0)‖2F = lim sup

n→∞

√
n‖Ω

1
2
n∇2gn(0)Ω

1
2
n‖2F ≤ lim sup

n→∞
{
√
n‖Ω

1
2
n‖2F ×

1

2nσ̂6
n

} = 0 (95)
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almost surely, verifying condition (3.12) of Theorem 3.2 in Skovgaard (1981). Therefore, we conclude from (91), (94),

(95), Theorem 3.2 and Remark 3.4 in Skovgaard (1981) that an Edgeworth expansion for P ∗(T ∗s,n ∈ B) holds almost

surely for all sets B such that Φ((∂B)ε) = O(ε) (which includes all sets of the form (−∞, z])). In particular, (85)

holds by Theorem 3.2 in Skovgaard (1981) and Theorem 2.2.

Proof of Theorem 2.3: The first claim of the Theorem follows from Lemma B.1, Lemma A.3 and Lemma 5(a) in

Andrews (2002) while the second claim follows by Lemma B.3, Lemma A.6 and Lemma 5(a) in Andrews (2002).
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