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1 Introduction

The wild bootstrap of |Wul (1986) and [Liu| (1988) provides a procedure for conducting inference in
the model:
Y = X/BO + € s (1)

where Y € R, X € R% and ¢ may have a heteroskedastic structure of unknown form. This
robustness to arbitrary heteroscedasticity provides a distinct advantage over the residual bootstrap
of Freedman| (1981)) while retaining some of its computational and statistical advantages. This has
led to increasing attention among economists who are often concerned with robust inference in small
sample environments (Horowitz (1997, 2001), |Cameron et al.| (2008)), Davidson and Flachaire (2008]))
and to a variety of recent extensions beyond the basic linear regression model (Cavaliere and Taylor
(2008), |Gongalves and Meddahi (2009), Davidson and MacKinnon| (2010)). To date, however, the
higher order properties of the wild bootstrap have only been studied under the assumption that
the errors are mean independent of the regressors. [Liu (1988) established that when this condition

holds the wild bootstrap provides a refinement over a normal approximation.

In this paper we contribute to the literature by analyzing the higher order properties of the wild
bootstrap in instances where the conditional mean function may be misspecified. Concretely, we
examine the ability of the wild bootstrap to provide a refinement over the normal approximation
when € is uncorrelated with X but not necessarily mean independent of it — a setting pervasive in
economics where regressors are stochastic rather than fixed or chosen by the econometrician. It is
precisely in such environments that heteroskedasticity is likely to arise (White (1982))) making the

higher order properties of the wild bootstrap of particular interest.

We conduct our analysis in two steps. First, we compute the approximate cumulants (Bhat-
tacharya and Ghosh (1978)) of t-statistics under both the full sample and bootstrap distributions
with general assumptions on the wild bootstrap weights. We show that both the first and third
approximate cumulants may disagree up to order Op(n’%) if higher powers of X are correlated with
€; a situation that is ruled out under proper specification. This higher order discordance between
the approximate cumulants under the full sample and bootstrap distribution implies that if valid
Edgeworth expansions exist they would only be equivalent up to order Op(n_%) (Hall (1992)). As a
result, despite remaining consistent under misspecification, the wild bootstrap may fail to provide

a higher order refinement over a normal approximation.

We complement this result by formally establishing the existence of valid one term Edgeworth ex-



pansions when the distribution of the wild bootstrap weights is additionally assumed to be strongly
nonlattice (Bhattacharya and Rao| (1976)). In accord with Liu| (1988)) we note that one-sided wild
bootstrap tests obtain a refinement to order O,(n~') under proper specification. However, this
result is undermined by certain forms of misspecification under which only some, but not all, of
the second order terms in the full sample Edgeworth expansion are matched by their bootstrap
counterparts. Consequently, the wild bootstrap may provide only a partial refinement over the
normal approximation (Liu and Singh (1987)). To assess the practical implications of this result,
we conclude by conducting a Monte Carlo study contrasting the performance of the wild bootstrap

with the traditional nonparametric bootstrap in the presence of misspecification.

The rest of the paper is organized as follows. Section 2 contains our theoretical results while
Section 3 examines the implications of our analysis in a simulation study. We briefly conclude in

Section 4 and relegate all proofs to the Appendix.

2 Theoretical Results

While numerous variants of the wild bootstrap exist, we study the original version proposed by |Wu
(1986) and [Liul (1988). Succinctly, given a sample {V;, X;}™, and 3 the OLS estimator from such

sample, the wild bootstrap generates new errors and dependant variables:
Y =X[B+¢ ¢ = (Yi— X[B)W; , 2)

where {W;}?_ , is an i.i.d. sample independent of the original data {Y;, X;} ;. A bootstrap estimator
3* can then be computed from the sample {Y;*, X;}7_, and the distribution of v/n(3*— ) conditional
on {Y;, X;}7, (but not {W;}",) used to approximate that of \/n(3 — fy). While it may not be

possible to compute the bootstrap distribution analytically, it is straightforward to simulate it.

We focus our analysis on inference on linear contrasts of Sy, which includes both individual

coefficients and predicted values as special cases. In particular, for an arbitrary ¢ € R% we examine:

n

(B - fo) 6% = H'S, (B H e (3)

n

T, =

o

where the d, x d, matrices H,, and %, () are defined by:
1 « 1 &
H,=-Y X,X/ Y8 ==Y X XY, — XIB)?. 4
PIREt (6) = Do XX0 - X9 (@)

The bootstrap statistic TF is then the analogue to T;, but computed on {Y;*, X;} ; instead. Namely,

N

n=VlE B e = 5)



where H, is as in (), and 33(8) = £ >, X, X[ (Y;* — X[6)%.

As argued in [Mammen| (1993, under mild assumptions on the wild bootstrap weights {W;}7,,
the distribution of T* conditional on {Y;, X;}” ,, (but not {W;}?_,) provides a consistent estimator
for the distribution of T},,. Consequently, tests based upon a comparison of the statistic 7,, to the
quantiles of the bootstrap distribution of 7' are asymptotically justified. In what follows, we explore
whether such a procedure provides a refinement over employing the quantiles of a standard normal

distribution instead.

2.1 Assumptions

We explore the higher order properties of the wild bootstrap under the following assumptions:

Assumption 2.1. (i) {Y;, X;} | is an i.i.d. sample, satisfying with E[Xe| = 0; (i) (Y, X)
are bounded almost surely; (iii) E[XX'] = I and Xy = E[XX'e?| is full rank; (iv) For Z =
(X'e, vech(X X", vech(X X'€*)'), and &z its characteristic function, lim supy, . 1€2(t)] < 1E|

Assumption 2.2. (1) {W;}", is i.i.d., independent of {Y;, X;}*, with E[W] =0, E[W? =1 and
EW*] < 00, w>9; (i) For U= (W,W?), & its characteristic function, limsupy,_,, [Ev(t)] < 1.

Assumption [2.1(i) allows for misspecification of the conditional mean function by requiring
E[Xe] = 0 rather than E[e|X] = 0. In Assumption [2.1[ii) we impose that (Y, X) be bounded.
This specialized (yet widely applicable) setting simplifies the arguments employed in obtaining an
Edgeworth expansion for 7)r. Our finding that the wild bootstrap may fail to provide a higher order
refinement under misspecification would not be overturned if Assumption [2.1(ii) were weakened to
less stringent moment conditions. Assumption [2.1ii) additionally imposes that E[X X'] = I, which
is just a normalization in the present context; see Remark [2.1] The requirements on {W;}7; in
Assumption (1) are standard in the wild bootstrap literature and satisfied by all commonly used

choices of wild bootstrap weights.

Assumptions 2.1f(i)-(iii) and 2.2](i) suffice for showing that the approximate cumulants of 7, and
of T¥ under the bootstrap distribution may disagree up to order Op(n’%) under misspecification.
In order to additionally establish the existence of Edgeworth expansions, however, we also impose
Assumptions 2.1[iv) and 2.2(ii). These requirements, also known as Cramer’s condition, are stan-

dard in the Edgeworth expansion literature (Bhattacharya and Rao| (1976)). They are satisfied,

For a symmetric matrix A, vech(A) denotes a column vector composed of its unique elements.



for example, if the distributions of Z and U have a component that is absolutely continuous with
respect to Lebesgue measure. Unfortunately, this requirement rules out two frequently used wild
bootstrap weights: Rademacher random variables and the weighting scheme advocated in|Mammen
(1993)). Thus, while our results on approximate cumulants are applicable to these choices of weights,

our results on Edgeworth expansions are not.

Remark 2.1. Since we study T;, for generic vectors ¢ € R%, Assumption [2.1{(iii) is just a convenient

normalization. Specifically, suppose E[X X'] = Xx for Xx full rank. We may then rewrite as:
- _1 1
Y =XBro+e X=XX Bro=2X%bo - (6)

It is then immediate that E[X X'] = I. Moreover, since 3., X; X/ is invertible if and only if H,, is,
we obtain that for any ¢ € R% and f3; the OLS estimator on {V;, X;}7

Vi (Br = Bo) = Vaesi(>. XiX) T8 S S Xie = Vil (B — o) | (7)
=1 =1

1 - - - - <. -~ 1
where ¢ = X3¢, Similarly, &(£ 3, X; X)) 2 5 X, X[(Y; - X[81)2(£ X0, X, X])"'e = 62 for ¢ = B}
Hence, since the choice of ¢ € R% is arbitrary, studying 7}, for some ¢ under Assumption (iii) is

_1
equivalent to studying it under the assumption that E[XX'] be full rank and ¢ = ¥ ,*c. =

Remark 2.2. Assumption (iv) precludes X from containing a constant term. To accommodate
this common case, if the constant is the first element of the vector X, then Assumption [2.1fiv)
should hold for Z = (X'e, vech_1 (X X"), vech(X X'e?)")" where for a vector v = (vV, ... v¥) we

define v_; = (v@,... v¥). =

2.2 Approximate Cumulants

In what follows, for notational simplicity, we denote expectations, probability and law statements
conditional on {Y;, X}, (but not {W;}" ) by E*, P* and L* respectively. Additionally, we define

the following parameters which play a fundamental role in our higher order analysis:
o’ =d¥e k= E[(dX)* 7 = E[(dX)*X¢] 1 =E[((X)(X'X)el . (8)

Finally, we let ® denote the distribution of a standard normal random variable and ¢ its density.

We begin our analysis by obtaining an asymptotic expansion for 7;, and 7.



Theorem 2.1. Suppose Assumption[2.1](i)-(iii) and[2.9(i) hold, and for c € R define:
1 < 1 2 «
_ / ~2 2 /

Ln = C {[ + An}% ZXZGZ — m Z(C Xi)ei{(UR — 0 ) - ﬁ Z”YOXZQ} (9)

=1 i=1 =1

1 1 1
* _ I17r—1 * A~ k) 2 ~2
L,=cH, %ZXM{E—@((US) —67)} (10)
i=1

where A, = I — H,, 6% = S, (Bo)c+2¢ AnSoc and (67) = ¢ H, 'S5 (B)H, Ye. It then follows that:

T,=L,+ op(n_%) Ty = L)+ op (n_%) a.s.

Recall that in Assumption [2.1](ii) the covariance £[X X’] was normalized to equal the identity
matrix. Therefore A,, = I — H,, is the estimation error in the Hessian and the first term in @
captures the contribution to 7;, of not knowing the true value of E[X X’]. Similarly, the contribution
of having to estimate the variance is divided into two parts: (i) 2 3, 7(X;€; which reflects use of B
rather than f3; in the sample variance calculations and (ii) 6% — o which captures the randomness
that would be present in estimating o2 if 8, were known. Interestingly, these terms are smaller

order under the bootstrap distribution due to the mean independence of ¢* and X.

Due to their polynomial form, the moments of L,, and L] are considerably easier to compute
than those of 7}, and T;'. However, the cumulants of L, and L} provide only an approximation
to those of T}, and T and were for this reason termed “approximate cumulants” by |Bhattacharya
and Ghosh (1978). Despite their approximate nature, the cumulants of L, and L play a crucial
role as they may be employed in place of the cumulants of 7}, and 7;" when computing their second
order Edgeworth expansions if such expansions are indeed valid. Thus, a discordance between the
approximate cumulants is indicative of an analogous difference in the corresponding Edgeworth

expansions if such expansions do exist.

Theorem shows the approximate cumulants may disagree under misspecification.

Theorem 2.2. Let Xi(L,) and X;(L:) denote the k™ cumulants of L, and L respectively and
define v = L 5" (CH ' X;)3(Y; — X!B)3. If Assumptions (i)—(iiz’) and (z) hold, then:

K M1 26/2070 x (T % E[W3]’%
W) = =55 = = om0 T = =25 7m
Xo(Ln) =14 0(n™Y) XF(LE) =14 Oy (n))
2 6¢S 2 B35
Xy(Ly) = ——2 €200 4 oY) Xi(LY) = — W)k, Ous(n71) .

T A A 53 m

Observe first that unless k = 0, the wild bootstrap fails to correct the first term in the first and
third cumulants if E[W?] # 1. This property has already been noted in [Liu/ (1988) who advocates
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imposing E[WW3] = 1 for precisely this reason. However, even with this restriction, two additional
terms in the first and third cumulants of L,, remain. These terms capture (i) the correlation between
H, and £ 3. X¢;, and (ii) the additional randomness of employing 3 rather than 3, in estimating
0%. Both these expressions are of smaller order under mean independence but may be present
otherwise. Because the wild bootstrap imposes mean independence in the bootstrap distribution
it fails to mimic these terms. As a result, a discordance between the full sample and bootstrap

approximate cumulants will arise under misspecification if the error term € is correlated with higher

powers of X so that y or v, are nonzero.

2.3 Edgeworth Expansions

Under the additional requirement that the Cramer conditions hold (Assumptions[2.1|iv) and [2.2{ii))
we now establish that the discordance in approximate cumulants indeed translates into an analogous

disagreement between Edgeworth expansions.

Theorem 2.3. Under Assumptions [2.1/(i)-(iv) and[2.9(i)-(ii) it follows that uniformly in z:

P(T,<z)=®(z)+ 6(?7(;3//%(222 +1) — gﬁ%(6/2070(22 +1) — 0% + o(n_%) (11)
P Ty <z)=®(z) + )REIN] 222+ 1) +o(n2) as. (12)

N

As Theorem shows, the wild bootstrap provides the usual skewness correction whenever
E[W3] = 1. However, when the conditional mean function is misspecified, imposing mean inde-
pendence in the wild bootstrap sample implies the bootstrap distribution may fail to match all the
second order terms in the expansion for 7},. In particular, if € is correlated with higher moments of
X, so that vy and ~; are not equal to zero, the wild bootstrap will only provide a partial refinement
over a normal approximation. The importance of such a refinement is dependent on the degree of
misspecification as measured by the magnitude of 79 and ;. In particular, if the misspecification is

local with ~g,v1 = O(n_%)7 then the wild bootstrap does attain the usual higher order refinement.

3 Monte Carlo

We turn now to a study of the effect of misspecification on the finite sample performance of the wild
bootstrap through a series of Monte Carlo sampling experiments. To ensure that our theoretical

results are relevant, we restrict our attention to cases where: (i) X is continuously distributed

7



Table 1: REJECTION RATES FOR 0.05 NOMINAL SIZE - ONE SIDED TESTS

Sample Size n = 10. Alternative Hypothesis Hy : § <0

Noise Level A = 0.25 Noise Level A = 0.5 Noise Level A =1
Analytical Wild Pairs Analytical Wild Pairs Analytical Wild Pairs
1 =—0.2 0.100 0.054 0.073 0.102 0.061 0.077 0.096 0.071 0.073
¥ =0.0 0.094 0.076  0.078 0.094 0.076  0.078 0.094 0.076  0.078
¥ =0.2 0.221 0.186 0.163 0.153 0.130 0.120 0.114 0.092 0.095

Sample Size n = 10. Alternative Hypothesis H; : § > 0

Noise Level A = 0.25 Noise Level A = 0.5 Noise Level A =1
Analytical Wild Pairs Analytical Wild Pairs Analytical Wild Pairs
¥ =-0.2 0.207 0.136 0.115 0.149 0.104 0.082 0.112 0.079 0.061
¥ =0.0 0.078 0.052 0.039 0.078 0.052 0.039 0.078 0.052 0.039
1 =0.2 0.094 0.047 0.049 0.083 0.055 0.047 0.078 0.050 0.046

Sample Size n = 20. Alternative Hypothesis Hy : § <0

Noise Level A = 0.25 Noise Level A = 0.5 Noise Level A =1
Analytical Wild Pairs Analytical Wild Pairs Analytical Wild Pairs
P =-0.2 0.077 0.053 0.060 0.076 0.059 0.060 0.075 0.069 0.087
¥ =0.0 0.068 0.072  0.095 0.068 0.072  0.095 0.068 0.072  0.095
¥ =0.2 0.175 0.155 0.145 0.127 0.109 0.127 0.090 0.078 0.110

Sample Size n = 20. Alternative Hypothesis H; : § > 0

Noise Level A = 0.25 Noise Level A = 0.5 Noise Level A =1
Analytical Wild Pairs Analytical Wild Pairs Analytical Wild Pairs
¥ =-0.2 0.148 0.107 0.093 0.101 0.081 0.081 0.070 0.057 0.054
1 =0.0 0.048 0.035 0.049 0.048 0.035 0.049 0.048 0.035 0.049
1 =0.2 0.070 0.044 0.042 0.052 0.043  0.047 0.049 0.039 0.043

and bounded, (ii) € is continuously distributed and bounded and (iii) the bootstrap weights W are
continuously distributed with E[W] =0, E[W? =1, and E[W?]| = 1.

Let Z ~ TN(u,0? 7) denote a normal random variable with mean p and variance o2, truncated
to lie in the interval [—7,7]. The regressor X was drawn from a mixture of Z; ~ TN(0,1,2) with
probability 0.1 and from Zy ~ T'N(1,4,4) with probability 0.9, recentered and scaled to have mean

zero and variance one. We generate the variable Y according to the relationship:
Yi = o{X7 - E[X?|X; — 1} + A, (13)

where 7 is the exponential of a TN (0, 1, 2) random variable, recentered to have mean zero, and 1, A

are scalar parameters that will be changed across different Monte Carlo specifications.

We examine the ability of the wild bootstrap to control size when conducting inference on the



Table 2: REJECTION RATES FOR 0.05 NOMINAL SIZE - T'WO SIDED TESTS

Sample Size n = 10. Alternative Hypothesis Hy : 5 # 0

Noise Level A = 0.25 Noise Level A = 0.5 Noise Level A =1
Analytical Wild Pairs Analytical Wild Pairs Analytical Wild Pairs
1 =—0.2 0.242 0.145 0.070 0.181 0.121  0.052 0.136 0.097 0.039
¥ =0.0 0.109 0.087 0.033 0.109 0.087 0.033 0.109 0.087 0.033
¥ =0.2 0.244 0.167 0.062 0.174 0.130 0.051 0.131 0.106 0.042

Sample Size n = 20. Alternative Hypothesis H; : § # 0

Noise Level A = 0.25 Noise Level A = 0.5 Noise Level A =1
Analytical Wild Pairs Analytical Wild Pairs Analytical Wild Pairs
¥ =-0.2 0.156 0.110 0.068 0.120 0.094 0.051 0.095 0.071  0.032
¥ =0.0 0.066 0.060 0.028 0.066 0.060 0.028 0.066 0.060 0.028
1 =0.2 0.176 0.139 0.074 0.109 0.099 0.048 0.079 0.072 0.035

slope coefficient in the following linear regression model:
Yi=a+ X;6+¢€. (14)

By construction, the unique parameters («, ) ensuring that E[Xe| = 0 in are (a, 3) = 0. The
parameter ¢ in therefore governs the extent of misspecification in the regression model, with
1 = 0 corresponding to proper specification (E[Y|X] = 0). Similarly, the scale parameter A in (13))

controls the level of noise in the linear regression.

Table 1 shows the empirical rejection rates of one-sided tests under different values of the pa-
rameters governing misspecification and residual noise. Code for our Monte Carlo experiments
is available online. All rejection rates were computed using 200 bootstrap repetitions and 1,000
Monte Carlo replications. We implement the wild bootstrap drawing the weights W from a recen-
tered Gamma distribution with shape parameter 4 and scale parameter 1/2 as suggested by |Liu
(1988). For comparison with the wild bootstrap, we also examine the ability of the nonparametric

(“pairs”) bootstrap and analytical t-tests to control size. E]

The results suggest both the wild and nonparametric bootstraps yield improvements over an
analytical t-test for one sided alternaitves. The relative performance of the two bootstraps under
misspecification (¢ # 0) is dependent on the level of misspecification, the direction of the test
and the level of noise. Table 2 provides false rejection rates for two-sided tests. Here the ranking

of the various techniques is more clear cut with the nonparametric bootstrap performing best

2The nonparametric bootstrap computes the distribution of v/nc’ (B — Bo)/é under the empirical measure.



under misspecification and the normal approximation worst. Notably, the improvement of the wild
bootstrap over the first order analytical approximation is still substantial, illustrating the practical

importance of our theoretical finding of a partial refinement.

4 Conclusion

We find that the wild bootstrap may provide only a partial refinement over a normal approximation
when the conditional mean function is misspecified. This suggests that while the wild bootstrap
may not work as well as the nonparametric bootstrap in many settings where regression is used,
it will likely still generate an improvement over analytical techniques. Our Monte Carlo study, for
example, found that the wild bootstrap performed nearly as well as the nonparametric bootstrap
in one-sided tests and still provided substantial improvements over normal approximations in two-
sided tests. We conclude that in small sample environments where misspecification is of concern,

the nonparametric bootstrap possesses a modest advantage over the wild bootstrap.
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APPENDIX A - Proofs of Theorems 2.1] and 2.2

The following is a table of the notation and definitions that will be used throughout the appendix.

|- |7 On amatrix A, ||A||r denotes the Frobenius norm.

II-lo On amatrix A, ||A||, denotes the usual operator norm.

Al For a vector A of positive integers and A(¥) its i*" coordinate |A| = >, A(V.
DM f Forf:Rd%RandAeR,DAf:%.
€; The OLS residual ¢; = (Y; — X;5).
) The distribution of a standard normal random variable in R? (d may be context specific).

Lemma A.1. Let {Z;}!"_, be an i.i.d. sample of Z a k x p random matriz with | Z| g bounded a.s.. Then:
1 < !
P(l== > {%i = ElZi]}|lr > Myn) = o(n"2) ,
o
for any sequence M, 1 oo such that log(n) = o(M,).

Proor: Let Z(:9) denote the (I, j) entry of Z. To establish the claim of the Lemma, then note that:

kp ) (L,4)
Z{Z E[Zi]}|r > My) _P(KKH]g;gﬂp Z{Z E[Z;7"V1}H > M,,)

E p . | |
< ;;p(\k/% Z;{Zi(z,g) — B[z} > M,) . (15)

Since |Zi(l’j) — E[Zi(l’j)ﬂ < K as. forsome K >0and 1 <[ <k, 1<j<p, Bernstein’s inequality implies:

kp ¢ (9] J)
P E zZ:7" — ’ M,
( vn i:l{ ‘ B> M) < 2kp K

since M,, 1 co. Results (L5), and log(n) = o(M,,) then establish the Lemma. ®

Lemma A.2. Let A, =1 — H,, 6% =%,(Bo)c+ 2d A, Xoc and Assumptions (z)—(m) hold. Then:

(i) P(||ﬁ > Xie|| > M,) = o(n=%) for any sequence M, 1 co with log(n) = o(M,).
(ii) P(|H, =5 Adllo>n~%) =o(n"%) for any o € [0, 1£1).
(iii) P(||B = Bol| > n=) = o(n~2) for any o € [0, 1).

(iv) P(|6% — 6% + % Yo 0K >nT) = o(n_%) for any a € [0, %)

(16)

Proof: Since || Xe|| is bounded a.s. by Assumption ii), the first claim follows by Lemma For the second

claim, notice Lemma [A 1] implies that for any M, 1 oo such that log(n) = o(M,,) we must have:

P(|Anlr > Ajg) _o(n}) .

Moreover, notice that if [| A, || < 1, then H, ' = 377 AJ,. Hence, we obtain:

P(|H ZN lo>n=) < P(I S Allo>n~ and [[Anllr < 1) + P(|Au]l# > 1)
j>k+1

PCY €(A)) >0 and [|A, ]l < 1)+ o(n %) < p(%
j>k+1 §(Ay)

11

(17)



where £(A7) is the largest eigenvalue of AJ and we have exploited ||A7]|, = £(A7) and £(A)) = &(A,,). for the
second and third inequalities. Moreover, since £(A,,) = ||An|lo < |Anl £, Tesult implies that P(|(A,,)] > 1/2) =
o(n~2). Therefore, from we are able to conclude that:

k
P([H; ! =3 Alllo >n™%) < PQEMH(An) > n7%) +o(n™) < PEIAE >n™) +o(n™%) . (19)
3=0
To conclude, exploit and set M,, = n? T in to obtain P(2|A,|r > n” FT) = o(n~3).
Next, note that Corollary I11.2.6 in Bhatia| (1997) implies |£(H,;!) — 1| = |£(H,,;Y) — ()| < ||H, — I||p. By

part (i) of the Lemma, it follows that P(|H; |, > 2) = o(n"2). Hence, we obtain:

P(||3 = Boll > n™®)

1
nz—¢

2 — ﬂ B 1 & 1
SP(IIgZXm-Ibn )+P(||Hn1|\o>2):P(IIWZXMII> 2 )+o(n~z). (20)
i=1 =1

The third claim of the Lemma is then established by (20), part (i) and o < 1/2.

In order to establish the final claim of the Lemma, first observe that by direct calculation we obtain:
. Ca I ; 5 _a 1
P(|[Za(B) = Zn(Bo)llr > n™=) = P(|| X XH{(X)(B - Bo))? — 26 X[(B— Bo)}lr >nF) =0(n"2)  (21)
i=1

where the final result is implied by part (iii), (X, €) bounded a.s. by Assumption ii) and a < 1. Similarly, by
Lemma for any sequence M, T oo such that log(n) = o(M,,) we also have:

My
vn
Let K > 0 be such that ||[Syll, < K and note that since (2I)-(22) imply P(|Z0(3) = Zollo > n %) = o(n" =
follows that P(||£, ()], > K) = o(n~2). Hence, we conclude from part (i) of the Lemma that:

P(|n(Bo) — Sollp > —2) = o(n"%) . (22)

P(|¢(Hy " = DEn(B)(H, ' = De| > n™®)

n

< P(K|el?IlH; " =112 > 1) + P(|Sa(B)llo > K) = o(n"2) . (23)

Similarly, exploiting again that P(||S,(3)]lo > K) = o(n~2) and part (ii) of the Lemma we also obtain:

P(I¢/(Hy ' =T — AT (B)e] >n~) = o(n"3) . (24)
Moreover, since o < 1, exploiting , and we also conclude:

P(I¢ A(Ea(B) = Zo)e| > n™*) < P(lle|*|Aullo|n(8) = Sollo > n~*)

< P(llellAn]r > n=%) + P(lelIZa(8) = Sollr > n~%) = o(n"2) . (25)

Since (X, €) is bounded, Lemmaimplies that P(||2 3. (¢ X;)%eX; — vl > 1\\%) = o(n~2) for any M,, T co with

log(n) = o(M,,). Hence, using manipulations as in we can conclude that:
1 « 5 —a 1
P~ > {e(@Xi)* X =B = Bo)ll > n™*) =o(n"7) . (26)
i=1
Next, exploit parts (i) and (ii) of the Lemma and argue as in to additionally conclude that:

A 1 — N B 1 — N 1
P(|vo(8 — Bo) — - > v Xieil >n~) < P(llolll H, ' - Il > Xieil| > ) =o(n"?) . (27)
=1 =1

12



Hence, by results , , X bounded a.s. and part (iii) of the Lemma we establish that:

P(I'Sn(B)e — ¢ En(Bo)c + = Z%Xez|>n *)
=1

|*ZVOXQ_*Z( ) 5 Bo) +

i=1

3\'—‘

To conclude, note that by direct manipulations we obtain that:

— d(H; = DEa(A)(Hy ' = e+ ¢Sa(B)e+ 26 (Hy' = DEa(Be
and hence the final claim of the Lemma follows from , , and . [ |
Lemma A.3. Let Assumptions[2.1)(i)-(iii) hold and Ly, be as in (9). Then for any o € [0,1):

limsup P(|T,, — Ln| >n" %) =o(n"2) .

n—oo

Proof: By a Taylor expansion we obtain for some 52 a convex combination of 62 and o2 that:

N 1 < (0 — &) N 1 <
T,—L,=c{HT—T-A1Y —> X;¢ MHT - — Y Xie
A S K D 1) 1Y e

1 3
—|—TZ:(:X6Z 23(02—0R—|— Z’yOXGZ-Fﬁ(O'Q—UQV}.

=1

To study the right hand side of (30), first observe that Lemma [A.2{i) and [A.2(ii) imply that:

- 1 ¢ o

_ 1 R~ 1
<P(|lelHY =T = Ao > ———) +P(||%2Xiq|| > log?(n)) = o(n"?) .
i=1

nelog?(n)
Moreover, by identical manipulations but exploiting Lemma i) and (iv) we can similarly conclude:

1

- o 2 — Y 1
(\W ;c’Xiei{UQ — 6%+ -~ ;%Xieiﬂ >n" % =o(n"2).
Next, notice that (X, €) bounded a.s. and Lemma further imply that:
/ -2 — = 1 = / —o 1
P(|d(Zn(B0) — Zo)e| >n~2) =o(n™2) P(|ﬁ Z’yOXieﬂ >n"2)=o0(n"2).
i=1

Therefore, we obtain from together with and that since a < 1 we must have:

1

P(|6* = 0% >n"%)=o0(n"2).

Z X[(B=Bo)?|>n") =o(n"?).

(32)

(33)

(34)

This implies that P(|6 — 0| > n~%) = o(n~2) and since & is a convex combination of 62 and 62 that P(5 > €) =

o(n_%) for any € < 0. Hence, exploiting and manipulations as in we can conclude:

e

ZCX€Z|>7’1 a) ((6’2—0'2)2>m)—f‘O(N_E):O(n_E) .

O'—O'

05f

Similarly, for € < o we can exploit P(§ > €) = o(n~2) and Lemma (1) to obtain:

(0=0) )i 1 ¢ - lo —alllell - 1 1
P p n —1 €| > aﬁpiﬂ —Illy> ———)+ 3
152t =123 Xl > o) < PUT G o> o) ot )
2

€
< P(lo =6 > s ——
l[elln= log(n)

1
P H =1y > ———
)4 PO~ Tl > oo s

13
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where the final result follows from Lemma ii), equation and o < 1. The Lemma is then established due to

the decomposition in and results (31]), (32), and (36]). m

Lemma A.4. Let {A;n}7 be a triangular array of k x p matrices, {c,}_, be a sequence of scalars with {A;n}? 4
and {c, }1_y measurable functions of {Y;, X;}?_,. Suppose Assumptions[2.1|(i) and[2.9(i) hold and
1
hmsup Z lAin]l5 < o0 eyt = o(n®) a.s. (37)
i=1

for some o € [0,%=). Then, for any g : R — R such that E[g*(W)] < oo, it follows that:

P S Aun{g(W) ~ Blg(WalHle > ) =o(n™?)  as.
i=1

Proof: Let A ) denote the (1,7) entry of A;, and proceed as in equation ([15]) to conclude that:

n k D n )
PPI% D Aindg(W) = ElgWll > ca) < ZZP*(|%ZA§2J>{9<Wi>—E[g(WinH>cn>. (39)

Next, apply Markov’s inequality and the Marcinkiewicz and Rosenthal inequalities (Lemmas 1.4.13 and 1.5.9 in|de la
Pena and Gine| (1999)) to obtain for some constants C; and Cs that:
: 49 < Vgl a0 w
VP (|- Z in 19(Ws) = ElgWi)l}| > en) < - E7[ Z {g(Wi) = Elg(W)]}]

n
1:1 n i=1

< VIO LSS (oW — Bl F] < Y2 (L S pvarow® , (39)

cv W 2
n i=1 Epl

where in the final result we have used and w > 2. The claim of the Lemma then follows by , , and
o € [0,%=1) by hypothesis. ®

Lemma A.5. Let (67)2 = ¢ H; S* (B)H; Y¢ and {c,}7_, be measurable scalar-valued functions of {Y;, X;}"_,. Let
Assumptions (z)—(zz), (z) hold and c;* = o(n®) a.s. for some a € [0, %=L). Then:

v
(i) P*(||6* = Bl > cn) = o(n~7) almost surely.

(ii) P*(|(6*)% — (62)%| > ¢2) = o(n™2) almost surely.

(iii) P*(|(67)2 — 02| > €) = o(n~2) almost surely for any e > 0.

Proof: Since 3“3 3, (Y, X) are bounded by Assumption 2 .(11 and ||H; Y, %31, Lemma implies:

~ ~ 1 & A 1
Pr([18" = Bl > cn) < P*(||H51||OHE Y XY= Xi)Wil > cn) =o(n”2)  as. (40)
=1

For the second claim of the Lemma, proceed by standard manipulations to obtain the inequalities:

P(|(6)? = (62)% > <)

P*(|¢'H,; 1{ ZXX (XN(B" - B)) —fZXX’ X3 = B)YHre| > )
< P*(llelPlH, 13 {H*ZXX {8 = 8)llo + II*ZX Xt X[(B" = B)llo} > c2) - (41)

14



Since X is bounded a.s., we then obtain from part (i) of the Lemma that for some K > 0 we must have:

. gl e N
P (llel®1H, 311~ D XX (X[(B" = £)°[lo > c3)
i=1

1

< P*(lel®I1H KNS = B > ) =o(n™%)  as. (42)

Let X*) denote the k' coordinate of the vector X. Using || - ||, < || - ||, we can then conclude that:

P (||l H, Il = ZXX’ PX((B = B)llo > )

. - 242 TN () (B) w vt me A
< PP R a1 X XPEXIB = Bl > )

dy dy
* k) *
P (el 2 2 ZX XX 18" = Bl > e) - (43)
jZlk‘:l =1

Moreover, for any (j, k) we can then conclude from Lemma and part (i) of this Lemma that:

P ([lel1H I3 IIfZX O x5 - Bl > )

2 n
* T j k * * — A% P -1
< PP S XOXD Xt > ) + PP H 215~ Bl > e0) = oln~d) . (44)

=1

almost surely. The second claim of the Lemma then follows from —.

To conclude, exploit that |H; |, “3 1 and 62 “3 o together with Lemma to obtain:

P(|(65)* = o®| > €) < P*(|(67)* = 6% > e — |67 — 0?))

e—|6%2 -0

719 ZO9 N _omt)  as., (45)
llell2l Ha 2

< P*( ||fZXXY XiB)? (WP = 1)||r >

=1

which establishes the third and final claim of the Lemma. B

Lemma A.6. Let Assumptions (z)—(zz), (z), and for ¢ € R% define the following random variables:

1, =V s e =) (46)

It then follows that P*(|T; — T, | >n"%) = o(n~2) almost surely for any o € [0, 22=3).

2w

Proof: Let € < 0% and note that parts (ii) and (iii) of Lemma imply P*(6*6% < €) = o(n~2) almost surely. For
any v € [0, %1), part (i) of Lernma then establishes that:

\fIU sl

P*(ITy = Td| > n™%) < PP == x [le] 16" = Bl > n™)

< P*(\/mef* -

=)+ P15 = Bl > )+ P (6765 <€)

|||

= P*(\/n|6* — 67| > )+o(n"3)  as. . (47)

ne—"

20-3) we may pick v € [0, ;w) so that o — v + 3 € [0,%=1), the claim of the Lemma then

Since for any « € [0,

follows from result and part (ii) of Lemma

15



Lemma A.7. Let Assumptions (z)-(m), (2) hold, e; = (Y; — X!B) and it = + 3°,(¢'H; ' X;)%e?. Then:

E[W3)#
253 /n

K 71 + 20/20’)/0

ElLn] = " 203n ovn | o3yn

E*[L3] = —

Proof: We first derive an expression for F[L,]. Note that E[XX'] = I and E[X¢] = 0 imply:

Elc a\FZX € _cE[ Z(I—XiX ZX €] = \F E[(dX)X' X

i=1

due to the i.i.d. assumption. Similarly, exploiting the i.i.d. assumption and E[(¢’X)e] = E[A,] = 0 yields:

ORr — 02)] =

1 /
E[W ;(cx € QUng

a3f{ (¢ X)3€*] — 2E[e(d X)>X'|Soc} .

(' X)e{d (0 (Bo) — Xo)e + 2¢' Ay Toc}]

(49)

The expression for E[L,] can then be obtained from , and by analogous arguments concluding;:

1 - 2 — Yo
El—m—F 'Xi)ei x = (X)) = — o
[203\/71 ;(C Jei x nzZ:;% € a3y/n

In order to compute E*[L}], observe that W L (Y, X) and E[W?] = 1 implies that:

n

cH1
Pz - xS tond - S
20 f n = 263\/n

which establishes the second claim of the Lemma. ®

Lemma A.8. Under Assumptions[2.|(i)-(iii) and[2.9(i), the second moments of L, and L}, satisfy:

E[L}]=14+0(n™") E*(L5)] =1+ O4s(nh) .

Proof: To calculate E[L2], first note that E[X X'] = I, E[X¢] = 0 and direct calculations yield:

R c/ n n
/Ani X’i i 2 — _ I X X X z — EI / I_XZX/ X 2
vno ; W= " ; fﬂ Z ‘i U2n2 [(<'( 1)(2 Kek))

k=1

+ (7;2—7; E[{d(I - X;X;) ZXkek}{c/(I ~ X; X)) zn: Xperd] =

k=1 k=1

Similarly, exploiting the i.i.d. assumption together with E[X¢] = 0 and E[I — X X'] = 0 we obtain:

E[(ﬁ z_; c’Xiei)(c’Anﬁ z_; X)) = n;(TZE[(; I X )¢ 2(1 - XiX;))(Z; X))

1
= WE[(C/XE)(C/XG —dXX'Xe)] =

(50)

(51)

]

O(n~Y). (52)

O(n~Y) . (53)

Exploiting identical arguments to on the squares of the remaining terms of L,, and the Cauchy-Schwarz inequal-

ity and arguments identical to those in to address cross terms arising from expanding the square, it is then

straightforward to establish that:

B3] = Bl S X 4 0t = CEEXCE L o6 Z1 o).
i=1

g

16
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For notational simplicity, let a;, = ¢ H;; ' X; and set e; = (Y; — X/3). To compute E*[(L*)?], first note that the
i.i.d. assumption together with E*[(€})*] = e} E[W?], E*[(¢})?] = €2 and E*[e}] = 0 imply that:

~ ! E*[(Z ainej)2(z az?n{(ej)2 - - A4n2 Za’ln € W4 - 1) Oa S(nil) . (55)

64n? :
=1

Next, also note that by direct calculations, {W;}"_ ; being i.i.d. and E*[(e})3] = e3 E[W?3] we may establish:
40%3 Zame 2 al () = el})]
i=1
- L E Zam{ D= )+ 3D Bl e Zakn{ 60)? = et}
i—1

i=1 j#i

:Fim{zzafnainﬂ*[(e:f{(ek P 23 ab el W2 (56)

1=1 k=1 i=1 j#i

Therefore, expanding the square, noting that + > a2 e? = 62 and exploiting and (56):

E*[(L%)?] = Zame 4 Ous.(n™) =14 0gs.(n7h), (57)

which establishes the second and final claim of the Lemma. ®

Lemma A.9. Let Assumptions (z)-(m), (z) hold e; = (Y — X/B) and & = L 3, (¢ H ' X;)3e3. Then:

Tk 3’71 120/20’70

TEW3i
203n  oyn o3y/n B

265/n

BlLy) = - +0(n™) E*[(L;)°] = + 04 (n7h) . (58)

Proof: The calculations are cumbersome and for brevity we provide only the essential steps. Define:
2 n
_ 2 /
r,= \fE Xezf23fg (' X;)ed —0)7£;2170Xiei}. (59)

Notice that L,, >, Xie;+T,. Under Assumptlon ii), it can be shown that E[I'3] = O(n~2) and similarly
that [(ﬁ >o.c Xl-ei) ] = O(n~2). Therefore, by direct calculation and Holder’s inequality:

NGk

BIER) = Bl SO Xe)] 4351 SN0 Tl + 3E1( = S X0ears) + BIT)
Bl(— Z(CX)Q)]—&—?)E gfch Jer)2To] + O(nY) . (60)

Hence, we can establish the first claim of the Lemma by analyzing the remaining terms in . Note that

Bl(= Y X)e)] = =Bl X)e] (61)

by the i.i.d. assumption and F[X¢] = 0. Similarly, by direct calculation we can also obtain the expression:

E[(gi\l/ﬁ Z(C/XZ)62)2 Cl\/%; Z Xiei}

1 n n n n
= ——= B[ (X)) + ) (Xiei Y (¢ X)es} Y (- X3 Xp) Y Xiel]
o°nz i=1 i=1 j#i k=1 1=1
' Yoc

= - E[(¢'X)(X'X)e] — E[(¢ X)(7X)e’] + O(n"2) . (62)

a3y/n

2
a3y/n

17



By analogous arguments we can compute the remaining terms in F [(ﬁ >, ¢ Xi€)*T,,] and obtain:

1 1 &, , RIOING , _s
ﬁEK% 2 (Xi)60)’e (Bn(Bo) = So}el = 25/ EUEX) e+ O(n™3) (63)
%Z (X6 {d AnSoc}] = 3"5\2}0 i See +O(n~ 1) (64)
i=1
G DY e 1 Dbl = 5 s + O (65)

The first claim of the Lemma then follows by combining the results from —.

Letting a;, = ¢'H,, ' X; and employing Assumption ii), it can then be shown that:

E [(% Zamefﬁ(%{(a—:)Q — %1% = O45.(n"2) (66)
1 k) 2 ~2 -
\/> Zalne 3{(05) -0 })3] = Oa.s.(n

Therefore, expanding the cube and exploiting that W L (Y, X) and E*[(e})*] = E[W¥]ek, it follows that:

. . . 1 n . 1 35‘:2—&2 3&:2_6.22 6.:2 0.23
T ST o oo o
3 n n
= T n et Pl D D )+ Ounlr ) (69

Moreover, also note that by analogous arguments and direct calculations we further obtain:

n

B [(%Zamen?’g;n S ad(e)? ~ Fh]

i=1
=53 fZamE* D) — el + SE* Zam ) D a3a(€) Zakn{ ) - €]
26°n2 26 =1 i
9 RS 2 2 E[Ws] - 3.3 -2
= W X ﬁ 2 ainei X T ;ainei +Oa_5_(n 2) . (69)

The second claim of the Lemma is then established by and . [ |

Proof of Theorem[2.1: The first claim of the Theorem is an immediate consequence of Lemma For the second
claim, note that in lieu of Lemma it suffices to show that T} ; = L}, + o)+ (n_%) a.s.. For notational simplicity,
let a;, = ¢ H, 1 X;(Y; — X! /3’) and apply Markov’s inequality to conclude that:

sl

C 1<
* Ak 2 ~2 _ * 2 2
P61 =% > ) = Pl v - 1) >

< LBl Y W - P = o ZamE —17. (10)

However, under our moment assumptions, 1 3" a E[(W? — 1)2] “3' E[(¢ X)*e}]E[(W? — 1)?] < oo, and therefore

from it follows that (67%)% = 6% + O,-(n~2) almost surely. The second claim of the Lemma then follows from a

second order Taylor expansion. ®

Proof of Theorem[2.3: Follows immediately from Lemmas and direct calculation. m
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APPENDIX B - Proofs of Theorem 2.3

Lemma B.1. Let Assumption[2.1)(i)-(iv) hold and L, be as in () with ¢ # 0. Then, uniformly in z € R

¢(2)r ¢(2)

60-3f 3\/“(0 0% (Z +1) 710’2)—‘,—0(71_%) .

P(L, <z)=®(2)+

(22 +1) —

Proof: Letting Z = (X'e, vech(X X'), vech(X X'€?)')’, it is clear that L,, is a smooth functional of 1 3°. Z; and that
Z satisfies Cramer’s condition by Assumption iv). The claim of the Lemma then follows from Theorem 2.2 in

Hall (1992)) and Theorem [

Lemma B.2. Let {a;n}; be a triangular array of measurable scalar valued functions of {Y;, X;}, and define

Vi, = (amVVl,am(VV2 -1)), Q, = fZ,E*[VmV» | and S, = TZQ Vm. Suppose Assumptions (z)—(n)

hold and (i) Q, = Q with Q full rank, (i) imsup,,_, .o maxi<i<p |Gin| < 00 a.s. and (4i) For K,(e) = #{i :
min{|ai,|, a?,} > €}, there a.s. exists an ey such that K,(ey)/log(n) 1 co. Then:

P*(S, € B) = Z/dej(_cp XSO +o(n"E)  as.
j=0

uniformly over all Borel sets B with ®((0B)¢) < Ce for some constant C, (0B)¢ the € enlargement of 0B, X} (Sy,)

the k'™ cumulant of S,, under P* and P;j the Cramer-Edgeworth measures.

Proof: We proceed by verifying the conditions of Theorem 3.4 in |Skovgaard| (1986)). For t € R?, define:

1 1
— XS, = =——=|E*[(¢'S,)?]] , 71

since E[W] =0, E[W?] =1 and W L (Y, X). Hence, by Cauchy-Schwartz and convexity we obtain:

Pn (t)

o) < e S Bl n Vi) < 19 lo 5= ey g

N e nt S
402 )3 5
< Wl S o PIWE) + Bl W2 - 1P (72)
i=1
Note that ©,, “3 Q with Q full rank by hypothesis, implies ||, 2 o “3 |Q72 ||, < co. Moreover, since {a;,}™, is

not random with respect to P*, we obtain from condition (ii) and result ( . ) that almost surely:
_1
lim sup{ sup vnp, ()} < limsup{4|/Q, *||2(E[|[W|*] + E[W? - 1]*]) x max {|a;|* + a5 }} < oo . (73)
n—oo teR?2 n—00 1<i<n
Therefore, we conclude that almost surely there exists a sequence {r, } satisfying the following:
1
sup pn(t) < — T X VN, (74)
teR? Tn

which verifies conditions (I) and (II) of Theorem 3.4 in [Skovgaard| (1986).

Next, let £ (t) = E*[exp(it’'Sy)]. We aim to show that almost surely there exists a ¢ > 0 such that:

4

d
lim sup{ sup |— log(&(
n—o0  0<h<dr,,tcR2 dh4 "

HtH))l x 12} < o0 . (75)

Towards this end, define &, (t) = E*[exp(it’'Qn nt: in/v/n)]. By Corollary 8.2 in [Bhattacharya and Rao| (1976),

{ain}?_; being nonrandom with respect to P* and direct calculation it then follows that:

2 O
||t|| ME[WQ (W2 —1)%] x max (am +af,) . (76)

() — 1] < * 3
66,(6) = 11 < - B9 Vial?] <

19



_1
Condition (ii), | % ||lo “3 [|272]|, < 0o and 7, =< /n then imply that almost surely there is a § > 0 with:

E[W? w2 -1 2 1
tmsup sup g5, (0~ 1) < VXV IO 2 sty <L
n—oo |t||<éry 2 n—oo n 1<i<n 2

Since & (t) = [1, &, (t) by the i.i.d. assumption and W L (Y, X) we obtain by direct calculation:

4 n

08(€5 (1)) x 12} < limsup{  sup Z 0g (&7 (

lim su su
Pl cpap Tl s L LD D i

|l
n—oo  0<h<sr,teR2 A

LB}

Qn y,
< limsup{ sup 72 |D* log(&, ()|} < hmsup{16r2 E*| =
n—oo ||t||<dry, ; ;4 Zz; f

where the final inequality holds by Lemma 9.4 in|Bhattacharya and Rao| (1976|) and result implying |&, (£)—1| < %

1]y (78)

for all ||t]] < 07y, and all 1 <4 < n for n large enough. Moreover,

n

,% 4 T2 2 4
DT i)y < timup( 2 x 2 le > YA BV + BV - ) <00 (1)

NG
almost surely, by condition (i), (ii) and (74). It follows from and that holds almost surely, which
verifies condition (IV) of Theorem 3.4 in [Skovgaard, (1986]).

n
lim sup{r? E*
ma(3 ) F

To conclude, we aim to show that almost surely for any § > 0 it follows that:

limsup{rS x sup |€:(t)|} < o0 . (80)

n—00 orn <t

Let £ denote the characteristic function of U = (W, W? —1)’, n(e) = supy; >, [{v ()] and define:

in, 0

_1
Since €, 2, A;,, are not random with respect to P* and W L (Y, X) we then obtain by direct calculation:

-

N - Ay ?
sup [€ ()] = sup Hlé‘m = sup Jlu(

_1
) < {n(e)}#{irl\Aan 2t|zev/n V|t 2670} (82)
sra<|tl Sra<litll iy Sra<lltll i Vo

_1 _1
for any € > 0. Moreover, since the smallest eigenvalue of Q, ? equals ||Q,||o 2, we also have:

-3 Qn o%
#H{i 2 || A 2t > e/n V|t > 0rn ) > #{i min{\am|,afn} > 6\/H‘A} ) (83)

0T,

Thus, as ||Q,[|2 “3 [|Q]|2 < oo and 7, < /n we may almost surely pick ¢* such that e*\/n||Q,||2/6r, < € for
n sufficiently large. In addition, by Assumption ii), n(e*) < 1; see page 207 in Bhattacharya and Rao| (1976).
Hence, by result and condition (iii) we conclude that almost surely:
limsup{rS x sup |€:(t)|} < limsuprSpy(e*)n0) =0, (84)
n—00 orn <||t]| n—00

verifying Condition (III”) of Theorem 3.4 in [Skovgaard| (1986). The claim of the Lemma therefore follows by direct
application of Theorem 3.4 in [Skovgaard, (1986). ®

Lemma B.3. Suppose Assumptions (z)-(w) and (z)-(u) hold and let ¢ # 0, Ty, = Vnd (B* — B)/6* where
(6%)2 = H; 'S5 (B)H; e, It then follows that almost surely, uniformly in z € R.:
¢(2)RE[W?]

665 /n (222 +1)+o(n"2) . (85)

P*(T?, < z) =®(2) +

sn—
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Proof: We proceed by verifying the conditions of Theorem 3.2 in |Skovgaard| (1981)). First, define:

ain = H P X(Y; — XiB) a; =X (Y — Xifo) . (86)

Since 8 %3 By, |H;' — I]lo 3 0 and (X, €) is bounded a.s. by Assumption ii), we obtain:

lim sup{ maX |am —a;|}
n— oo

<limsup{|le] || H;" — Il max [|X;e |} +Tim sup{|lel| [ 7, [[o]l3 — Boll max [IX;]*} =0. (87)
n—00 Sisn n—oo <1<n

Let Vin, = (ainWi, a2, (W2 — 1)) and V; = (a;W;,a? (W72 — 1))". By result (87), it then follows that:

) Yin

n
Z WVinVin] 3 EVV'] . (88)

:\'—‘

Assumption [2.2[ii) rules out Rademacher weights, which are the only ones satisfying E[W] =0 and P(W? =1) = 1.
By Assumption [2.1{iii), W L (Y, X)), ¢ # 0 and W not being Rademacher, it is then possible to show E[VV'] is full
rank. Next, pick a dy such that:

P(min{|(c' X)e|, (¢ X)?e*} > &) > 0, (89)
which is possible since E[(c/X)%€%] > 0 by Assumption iii) and ¢ # 0. By result (87), then:

n n

1 . do o1 .
hnrriloréff z; 1{min{|a;,|,a?,} > 5} > hnrggcl)f - ; H{min{|a;|,a?} > §o} > 0 a.s. . (90)
_1

Defining S, = ﬁ > 2 Vi, (B3), with Assumption (ii) and verify conditions(i)-(iii) of Lemma

respectively. Therefore, we can conclude that almost surely:

! 1
PSaeB) =Y [ aP(-: (2i(8)) + o) o
j=0"8

uniformly over all Borel sets B with ®((9B)¢) < Ce for some constant C. This verifies condition (3.1) of Theorem

3.2 in |Skovgaard| (1981]).

Next, let t®) denote the i** coordinate of t € R? and define the functions g,, f, : R? — R by:
Falt) = gn(Q31) gnlt) =10 x (o4 67)E (92)
Note that by construction, f,,(Sn) = 15, f»(0) =0 and [[Df,(0)|| = 1. Further, define the set:

T, ={teR2:||t] <log(n)} . (93)

The functions g, are differentiable everywhere except at t € R? with ¢(2) = —62/n. However, since 62 % 62 and
[€92]o “3 122, we obtain that almost surely for n sufficiently large, f,, is differentiable on T',,. Moreover, since a.s.

1
for n large enough [|Q,, ?||, log(n)//n < 62 /2 we obtain by direct calculation:

23 15]1Q2 ], 1 23
limsup{v/n sup sup [D*f, (¢) ., Lf’g” x=}=0  (94)
n—o0 tel, |A|=3 oy 8n2 On
almost surely; which verifies condition (3.11) of Theorem 3.2 in [Skovgaard| (1981). Similarly,
1 1 1 1
lim sup v/n]| V2 £, (0)|[7 = lim sup n |27 V29, (0)24 |7 < limsup{y/n[| Qi |7 x 5—5} =0 (95)
n—o0 n—oo n—o00 n
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almost surely, verifying condition (3.12) of Theorem 3.2 in Skovgaard| (1981). Therefore, we conclude from , ,
(95), Theorem 3.2 and Remark 3.4 in [Skovgaard| (1981)) that an Edgeworth expansion for P* (T%,, € B) holds almost
surely for all sets B such that ®((0B)¢) = O(e) (which includes all sets of the form (—o0,2])). In particular,
holds by Theorem 3.2 in |Skovgaard| (1981)) and Theorem ]

Proof of Theorem [2.3: The first claim of the Theorem follows from Lemma Lemma and Lemma 5(a) in
Andrews| (2002) while the second claim follows by Lemma [B.3] Lemma and Lemma 5(a) in |Andrews| (2002). W
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