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1 Introduction

With the availability of product-level price data used in the construction of the Con-

sumer Price Index (CPI) from several developed countries, the micro-pricing literature in

macroeconomics has become one of the most active areas of research in recent years.1 One of

the main stylized facts uncovered by this literature is that the distribution of price changes

(conditional on a change) is close to a unimodal centered at zero percent, with a large share

of small price changes. This finding has also been shown to hold in scanner datasets from

retailers in the US.2

These results are important because the different theories of price stickiness have direct

implications on the number of modes of the price change distribution. For example, a stan-

dard state-dependent model, such as Golosov and Lucas (2007), predicts that the distribution

of price changes should have little mass near zero percent. The intuition is that small devi-

ations from the optimal price are less costly than the price-adjustment cost, and therefore

small changes are rare. In a low-inflation setting, this creates a bimodal distribution around

zero percent, with both a positive and negative mode. By contrast, time-dependent models

of price stickiness – such as the classical Calvo (1983) model – imply that the distribution of

price changes should inherit the same properties of the distribution of cost changes, and in

low-inflation setting, such costs will tend to have a unimodal shape centered around zero.3

A third kind of model combines elements of time and state-dependent pricing, giving rise

to a variety of distributions whose shape depends on the relative importance of observation

and adjustment costs. Examples include Woodford (2009), Bonomo, Carvalho, and Garcia

(2010), and Alvarez, Lippi, and Paciello (2010). Surprisingly, even though the modality of

the distribution plays a crucial role in distinguishing the different theories of price stickiness,

no paper has formally evaluated the number of and location of price-change modes.

In this paper, we study modality using three statistical tests and a new dataset that

covers many countries and retailers. We go beyond the graphical analyses performed in the

literature and develop a new methodology that can be scaled to test for modality in multiple

countries and sectors.4 Contrary to the stylized facts highlighted in the literature, we find

1As can be attested by the excellent survey by Klenow and Malin (2009). See Bils and Klenow (2004),
Dhyne, Alvarez, Bihan, Veronese, Dias, Hoffman, Jonker, Lunnenmann, Rumler, and Vilmunen (2005),
Nakamura and Steinsson (2008), Bils, Klenow, and Malin (2009), Gagnon (2007), Gopinath and Rigobon
(2008), Klenow and Kryvtsov (2008), Wulfsberg (2008).

2See Midrigan (2005) and Klenow and Kryvtsov (2008).
3In addition, some recent state-dependent models can also imply unimodal distributions. For example, a

model with economies of scope in menu costs, such as Midrigan (2005)
4Cavallo (2010) found evidence of bi-modality using histograms in four Latin American countries, also

included in this sample: Argentina, Brazil, Chile, and Colombia.
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that the distribution of price changes is, in most cases, not unimodal at zero percent.

The data include individual-product prices in 36 supermarkets across 22 countries and

5 continents. They were collected by the Billion Prices Project (BPP) at MIT Sloan using

a scraping software that records, on a daily basis, the price information for all goods sold

by supermarkets with online shopping platforms.5 These “scraped” prices were collected

between October 2007 and February 2010, and on average, for each retailer we have 571 days

of data, 20,000 products, 5 million price observations, and 80,000 price changes.

This “scraped” dataset has several advantages. First, we collected prices every day, as

opposed to once a month (or two months) like most prices used in the CPIs. The daily data

reduce the sampling biases that are associated with low frequency prices, as discussed later

on. Second, we collected the full array of products sold by each retailer and therefore do not

have forced item substitutions, nor do we rely on hedonics or other imputation procedures

to compute prices – as occurs in some of the items underlying the CPI. There are also no

adjustments for product discontinuations and technological improvements because these are

rare in supermarket goods. All of these adjustments can potentially affect the size of price

changes in other datasets. Finally, we collected posted prices as opposed to unit values. In

most scanner datasets, prices are unit values computed as the ratio between total sales and

total quantity sold at given frequencies (usually every week). Even daily unit values can

experience small fluctuations due to different intensities in the use of loyalty cards, coupons,

and quantity discounts which can introduce small price changes that are unrelated to the

actual posted price change.6

The first part of our analysis uses the two best-known tests for unimodality available

in the statistical literature: Hartigan’s Dip and Silverman’s Bandwidth tests. These tests

are intuitive, easy to compute, and statistically powerful. We find that Hartigan’s Dip

rejects unimodality in 36 out of 37 supermarkets, while Silverman’s test rejects the null of

unimodality in 33 of those supermarkets. Although these results point to the rejection of

unimodality, these tests have two limitations that complicate their interpretation. First, the

main reason for these rejections is that these tests are too sensitive to even tiny bumps in

the distribution, some of which may not be economically meaningful.7 Our goal is to reject

unimodality only when the distribution exhibits additional modes that are large enough to

allow us to distinguish between different theories of price stickiness; as opposed to rejections

5For an introduction to Scraped Data, see Cavallo (2010)
6From the inflation calculation point of view, scanner data could have an advantage over the data we use.

This would be the case if there are frequent changes in the use of discounts or other aspects of consumers
demand, which are an important part of the welfare calculations of inflation that our data misses.

7In fact, when we apply Silverman’s test to a null of bimodality – with an alternative hypothesis of more
than two modes – it still rejects it for 14 supermarkets.

3



due to small jolts in the distribution. Second, both tests are not designed to measure modality

around a specific value, like zero percent; hence, their rejections might be occurring around

a point in the distribution that is far from zero, or at least far from the price change around

which the economic analysis is focused.

To deal with these limitations we developed a new test called the Proportional Mass

(PM) test. It was designed to find unimodality around a specific value, like zero percent,

and to allow for small modes in the distribution as part of the null-hypothesis. The intuition

of the test is the following: First, it computes the mass of price changes in absolute terms

within certain bounds. These bounds form progressively larger intervals from the center,

for example, at ±1% and ±5%. In a unimodal distribution, the mass in the smaller interval

(close to the center) is larger than the proportional (per unit) mass in the larger interval. In a

bimodal distribution (with two significantly large modes away from the center) the opposite

is true. The PM score shows the relative importance of the mass close to the center. A

higher PM score is evidence in favor of unimodality. This is a more conservative test because

it requires the different modes to be of relatively similar importance in order to affect the

relative masses. A distribution with one large mode and a series of smaller bumps will exhibit

a similar proportional mass than a purely unimodal distribution. Intuitively, the test is not

rejected for a multimodal distribution if the masses of the smaller modes can be rearranged

to form a unimodal distribution with the same mass within that interval.8

Three results are worth highlighting. First, in two-thirds of the supermarkets we reject

unimodality around zero percent. In particular, when we perform the PM test at the store

(aggregate) level in the -5 to +5 percent interval, we reject unimodality at zero percent in 22

out of 36 supermarkets. This level of rejection is similar when we compute PM scores on a

quarterly basis for each retailer. Second, heterogeneity at the category level can account for

about half of the rejection of unimodality at the store level. Third, the data is consistent a

model that combines elements of time and state-dependent pricing behaviors.

The first result is mostly at odds with the existing literature based on CPI and scanner

datasets, so we explored possible explanations to reconcile the differences. We found two

8One possible source of concern in our test is the fact that sales can produce modes in the distribution
that would lead us to reject unimodality. For example, imagine that the company does frequent temporary
sales of 10 percent. In this case, the distribution of price changes will have symmetric modes around the
negative and positive values of -10 and 10. In order to deal with this problem we focus our modality analysis
in the -5 to +5 percent price change window, because reported and unreported sales smaller than 5 percent
are rare in our sample. In addition, we expect adjustment costs that create any bimodality to have their
largest impact within this range of values. As we show below, unimodality is more easily rejected if the full
distribution is used. As an alternative, we can exclude sales using explicit indicators posted by the retailers
online. However, only a fraction of retailers have sale indicators that we can collect, and even in those some
cases, it is possible that not all sale events are explicitly identified.
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reasons for the discrepancies with scanner data findings. First, scanner data tend to have

“unit values” instead of actual posted prices. Stores report the total sales and total quantities

per item, and unit values are computed as the ratio between these two totals. Unit values are

affected by shifts in consumer purchasing practices. For example, consumers might decide

to buy with or without coupons, or with or without loyalty cards. Therefore, the unit

values can have small changes due to randomness in consumer demand and not because the

posted price has actually shifted. Second, scanner data are usually reported on a weekly

basis, so there is also an averaging that takes place through out the week. Although in our

data we do not have prices with loyalty cards, we can simulate a weekly averaging or unit

value. When we take our data and average the weekly prices, we fail to reject unimodality

in 32 out of 37 supermarkets. A more challenging task is to reconcile our results with those

underlying the CPI data. In the case of the US, our results are not necessarily at odds with

the ones found in the CPI data, because two out of three supermarkets in our US sample are

indeed unimodal. Still, there are important differences between our results and those found

in other countries with monthly CPI data. Sampling frequency differences do not seem to

offer a valid explanation: when we re-sampled our data to replicate the monthly sampling

from statistical offices we find weaker results, but not weak enough to reduce the number

of rejections of unimodality. Another possibility is the fact that statistical offices sometimes

impute missing values with hedonic estimates, and average changes for similar goods in cases

of forced substitution, discontinuations, and out-of-stock items.9 Unfortunately, we do not

have access to the CPI data to determine how common these practices are, and therefore we

must leave this important question for future research.

The rejection of unimodality at the store level can be partially driven by category-level

heterogeneity. Intuitively, it is possible that each category is unimodal by itself, but that

each mode occurs at different average price changes, so that the aggregate distribution ap-

pears multimodal. To explore this possibility, we re-estimated the PM score for the narrowest

categories of goods available in each supermarket. These categories are chosen by the su-

permarkets to display similar products on a single webpage, and we use the narrowest level

of aggregation, such as “organic eggs” and “fat-free milk”.10 Moving to these categories

substantially reduces the number of observations, making the PM test less powerful. Still,

after running the test for each category, we find that on average across retailers we reject

9See BLS (2009). From the inflation measurement point of view, the computation of hedonics and the
imputation of missing variables using statistical methods is the correct procedure. These practices, however,
might lead to a pricing behavior that is not completely reflective of the posted prices by firms

10The categories do not exactly match the ten-digit Harmonized Tariff Schedules (HTS) from the US
Census, but they are just as detailed. In fact, in developed countries, our supermarkets tend to organize
their products in an average of 2000 categories, close to the 2500 categories for food and beverages at HTS
(which also includes live animals, trees, etc).
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unimodality in 30 percent of all categories. In supermarkets where bimodality was found at

the store level, this level of rejection rises to 48 percent. Heterogeneity is indeed playing a

role in the aggregate rejection of unimodality results, but it is not strong enough to make it

disappear.11

Finally, we perform a simple simulation exercise with the model by Alvarez, Lippi, and

Paciello (2010). We estimate the PM score from the simulated data at various levels of

observation and adjustment costs, and find that the typical PM score in the data is consistent

with a mixture of time and state dependent behaviors in the model. This exercise also

illustrates how the PM test can be used to provide a unique statistic of the modality of

empirical distributions that theoretical models can attempt to match.

The paper is organized as follows: Section 2 describes the data. Section 3 introduces three

non-parametric statistical tests of unimodality. Section 4 presents the results of these tests,

with evidence rejecting unimodality at zero percent. We also discuss some explanations

for the difference in our results with the rest of the literature, and explore the effects of

category-level heterogeneity. Section 5 simulates the Alvarez, Lippi, and Paciello (2010)

model for different parameters and computes the PM test for unimodality in the simulated

price change distributions. Section6 concludes.

2 Data: The Billion Prices Project

The data was collected by the Billion Prices Project (BPP) at MIT Sloan. We used a

scraping software to record, on a daily basis, the price information for all goods sold by online

supermarkets.

The scraping methodology for each retailer works in 3 steps: First, at a given time each

day we download all public web-pages where product and price information are shown. These

pages are individually retrieved using the same URL or web-address every day. Second, we

analyze the underlying code and locate each piece of information that we want to collect.

This is done by using custom characters in the code that identify the start and end of each

variable, matching the format of that particular page and supermarket. For example, prices

are usually shown with a dollar sign in front of them and two decimal digits at the end. This

set of characters can be used by the scraping software to identify and record the price every

11At this moment we cannot match categories across supermarkets, but an interesting question is to de-
termine which characteristics of the categories – if any – produces bimodality or unimodality. Unfortunately,
even though we have the description of the categories, there are no classification standards across super-
markets, which makes this matching impossible. Categories in different supermarkets aggregate different
products and there are often some overlaps.
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day. Third, we store the scraped variables in a panel database, containing one record per

product-day. Along with the price and product characteristics, retailers show an id for each

product in the page’s code (typically not visible when the page is displayed to the customer),

which allows us to uniquely identify each product over time.12

The retailers included in this paper are detailed in Table 1. There are 36 supermarkets

in 22 countries and 5 continents. Prices were collected on a daily basis between October

2007 and February 2010, with different starting dates for each supermarket. In all cases, we

have at least one year of data, with a mean per retailer of 571 days, 20 thousand individual

products, 5 million daily observations and 100 thousand price changes. When computing

price changes, we consider only consecutive price observations, for which data is directly

observed at days t and t-1.13

[Table 1 about here]

3 Tests for Unimodality

The standard analysis of unimodality in the micro-price literature relies on histograms

and cumulative frequency plots.14 This is adequate to examine the shape of few distributions,

but not practical to extend the analysis to a large number of retailers and countries.

We formally test for unimodality using three non-parametric statistical tests: Hartigan’s

Dip Test, Silverman’s Bandwidth Test, and a test we develop in this paper called the Pro-

portional Mass Test.

Hartigan’s and Silverman’s tests are common in the statistical literature but have rarely

been used in economic applications before, so we describe them briefly below.15 They are

12For more on the scraping methodology, see Cavallo (2010) and www.billionpricesproject.org
13The collection of high-frequency information for every single product sold in each supermarket greatly

expands the number of data points available, but at the same time, produces frequent gaps in individual price
series. These gaps occur, for example, when the scraping software fails or individual items are temporarily
out of stock. Scraping failures are typically resolved in a few days by the BPP scraping team, but seasonal
products can create missing values that last several months. The standard treatment in the literature is
to fill missing prices with the last recorded price available for each product, but if some price changes are
not directly observed, the distribution of the size of changes can be affected. For example, in cases of high
inflation, price changes could appear larger, because several price adjustments would be accumulated over
time. By contrast, in a context with low inflation but frequent temporary shocks, two unobserved price
changes of opposite magnitudes could appear to be one smaller change in the data. We take a conservative
approach in this paper and consider only consecutive price observations as the basis for computing price
changes.

14See Kashyap (1995), Klenow and Kryvtsov (2008), Kackmeister (2007), Midrigan (2005) and Cavallo
(2010)

15See Hartigan and Hartigan (1985) and Silverman (1981). A recent paper that uses both tests in an
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both intuitively appealing and simple to compute. Unfortunately, they are also very sensitive

to small modes in the distribution that may not be economically relevant but still lead to

frequent rejections of unimodality. In addition, these tests can only take into account the

full distribution. So, for example, if are two modes, one centered at 0% and the other at

5%, both tests would reject unimodality in general, but tell us nothing about the modality

around 0%, which is key to evaluate the prediction of time-dependent and state-dependent

models.

By contrast, our Proportional Mass Test (PM) has two main advantages in the context

of a micro-price setting paper: first, it ignores tiny modes that may not be economically

meaningful, and second, it tests for modality in an interval around a specific value, such as

zero percent.

3.1 Hartigan’s Dip Test

The dip test, described in Hartigan and Hartigan (1985), relies on the fact that the

cumulative distribution function of a density function f with a single mode at mf is convex

on the interval (−∞, mf ) and concave on the interval (mf ,∞). The intuition of this property

is simple: at the right hand side of the mode, the density is non increasing – meaning that

its derivative is non-positive. The opposite occurs at the left of the mode.

Using this property, the dip statistic is calculated to measure the departure of an empirical

distribution from the best fitting unimodal distribution. When the empirical distribution has

a single mode, the dip statistic is zero. If the empirical distribution has multiple modes, with

a cumulative distribution that has several regions of convexity and concavity, then it will

be ”stretched” until it takes the shape of an unimodal distribution. The larger the stretch

needed, the larger the departure from unimodality and therefore the larger the dip becomes.

In Hartigan’s test, positive dip values provide evidence to reject the null hypothesis of

unimodality. To determine the statistical significance of a positive dip, the test sets the

null hypothesis equal to the uniform distribution, for which, asymptotically, the dip value

is stochastically largest among all unimodal distributions.16 This increases the power of the

test, making it more likely to reject the null hypothesis of unimodality.

economics setting is Henderson, Parmeter, and Russell (2008). Parametric tests of modality are more common
in economics. Examples of these tests include Paapaa and van Dijk (1998) and Anderson (2004), with methods
that mix normal distributions with mass overlaps. Unfortunately, these parametric tests require the ex-ante

assumption of a number of clusters or groups, and are used to reject the null hypothesis of normality, not
general forms of unimodality.

16Hartigan and Hartigan (1985) argue that this is not always the case with small samples, so we use a
calibration of the dip test proposed by Cheng and Hall (1998) to account for such cases
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3.2 Silverman’s Bandwidth Test

Silverman’s Bandwidth or “Bump” test uses kernel smoothing functions to evaluate

modality. Given a sample X = (x1, x2, ..., xn), a non-parametric kernel estimate of the

unknown density function f is given by

f̂ (x, h) = (nh)−1
n

∑

i=1

K

(

xi − x

h

)

(1)

where h is the smoothing parameter (or ”bandwidth”) and K is the Gaussian kernel

function. Silverman (1981) showed that the larger smoothing h, the fewer the number of

modes in f̂ (x, h). Therefore, for the null hypothesis of unimodality, he proposed the test

statistic

ĥ1
crit = inf

{

h : f̂ (x, h) has 1 mode
}

(2)

This is the minimum smoothing required for the smoothed kernel density to have one

mode. Large values of ĥ1
crit are evidence against the null hypothesis, because larger degrees

of smoothing are needed to eliminate additional modes in the density estimate.

The statistical significance of ĥ1
crit is evaluated using a smoothed bootstrap method.17 For

each bootstrapped sample, we compute the minimum bandwidth ĥ1∗
crit required to have one

mode and estimate the probability P̂ , given by

P̂ = P
(

ĥ1∗
crit ≥ ĥ1

crit

)

(3)

P̂ gives us a way to know the relative level of ĥ1
crit. If it is relatively high compared to the

results from the bootstrapped samples, then P̂ will be small and there is stronger evidence

against the null hypothesis.18

This method can be used to test for any number of modes, and is usually carried out

in sequence, starting with one mode and continuing until the test fails to reject the null

hypothesis of m modes. This is a major advantage of Silverman’s approach, because it

allows us to test explicitly for bi-modality in the size of price changes. In addition, this test

17The bootstraps are drawn from an smoothed conditional function re-scaled to have a variance equal to
the sample variance. See Henderson, Parmeter, and Russell (2008) for details.

18Because the number of modes is non-increasing with h, P̂ is equivalent to the share of bootstraps that
have more than one mode when evaluated with bandwidth ĥ1

crit. We use this approach to estimate P̂ , also
called the achieved significance level in the bootstrap literature, because it is easier to compute.
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is intuitively appealing and easy to compute. Unfortunately, it also has important weaknesses

derived from the use of a single bandwidth in the kernel smoothing estimates: it is easily

affected by outliers in the tails of the distribution and it is sensitive to tiny bumps which

lead to frequent rejections of the null hypothesis, especially in large samples.

3.3 Proportional Mass Test

We now propose a new ”Proportional Mass Test” that compares the relative mass of the

distribution between bounds to determine the degree of unimodality around a centered value.

The test relies on the fact that unimodal distributions have a high proportion of their mass

close to the mode. If we take an interval around the mode and make it progressively larger,

the total mass increases by smaller increments each time. By contrast, in a distribution

that is bimodal around a specific value, the mass increases by larger increments each time.

Therefore, the relative size of these additional increments of mass can be used to determine

the degree of unimodality in the distribution around a specific value.

To illustrate this, consider the case where the distribution is unimodal centered at zero

percent, as shown in Figure 1(a). The mass between -1% and 1% should be larger than the

mass between -5 and 5 per unit, that is,

P (|∆p| ≤ 1) ≥ P (|∆p| ≤ 5) /5 (4)

The proportional mass between i = 1 and j = 5 is thus given by

PM0
1,5 = ln

P (|∆p| ≤ 1)

P (|∆p| ≤ 5) /5
(5)

This ratio is positive when the distribution is unimodal around zero.19 By contrast, when

the distribution is strictly bimodal around zero, PM0
1,5 is negative, as shown in Figure 1(b).

Finally, if the distribution is bimodal but the modes are not large, as seen in Figures 1(c)

and 1(d), then the PM will remain positive. This ensures that minor bumps in the distribution

will not cause a rejection of unimodality.

The ratio can be generalized to incorporate information from different intervals and com-

pute the Proportional Mass Score around zero, given by

19If the distribution is uniform, PM0
1,5 = 0 when the domain of the distribution is wider than 5, otherwise

PM0

1,5 is positive
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PM0 =
1

|Z|

∑

ij∈Z

PMij (6)

where Z is the set of all combination ij such that i < j.

The same logic applies when we want to test the degree of unimodality around a mode

m, with PMm given by

PMm =
1

|Z|

∑

ij∈Z

ln
P (|∆p−m| ≤ i)

P (|∆p−m| ≤ j) /(j/i)
(7)

In our computations, we consider the intervals i, j ∈ {1, 2.5, 5}, but we also test the

robustness of our results to changes in these intervals.20

The null hypothesis of the test is that PMm (the “PM score”) is positive, corresponding to

a unimodal distribution. The statistical significance is evaluated using bootstrapped samples

from the data and calculating the share with positive PM scores. The lower the share of

bootstraps with positive PM scores, the stronger the rejection of unimodality.

4 Results

4.1 Rejection of Unimodality at 0%

We first ran Hartigan’s Dip test in all supermarkets. The first two columns in Table 2

show the dip statistics and p-values for the null hypothesis of unimodality. The dip statistics

are consistent with a simple graphical analysis of the histograms in Figures 2 to 4. For

example, the lowest dips belong to AUSTRALIA-4, NETHERLANDS-1, UK-1, UK-2,

UK-3, and COLOMBIA-1. These are cases that either uniformly distributed or have a

large dominating mode.

As a statistical test, Hartigan’s method is just too powerful for our purposes. At the 1%

significance level, unimodality is rejected in 36 out of 37 supermarkets. The test rejects the

null hypothesis even for distributions with only minor departures from unimodality.

20A key parameter in the design of this test is the optimal bandwidth. It is likely to depend on the type
of adjustment cost, and the reason behind the price bumps in the distribution. In this paper we focus on
the -5% to 5% price change range to avoid modes generated by sale events, and also because adjustment
costs that could create bimodality are likely to have their greatest impact in this range of price changes. The
aspects of optimal design for the PM test are left for future research.
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[Table 2 about here]

Next, we considered Silverman’s bandwidth test. The results are shown in columns 3 to 5

of Table 2. The critical bandwidth values, which measure the degree of ”smoothing” needed

to obtain a single-mode kernel estimate, are also consistent with a simple graphical analysis.

Some of the lowest critical values are, once again, in AUSTRALIA-4, UK-1, UK-2, UK-3

and COLOMBIA-1.

Although slightly more conservative, Silverman’s test still rejects the null of unimodal-

ity in 33 out of 37 supermarkets. The rejection level is high even when we consider the

null hypothesis of 2 or less modes. In fact, in 22 supermarkets we find evidence support-

ing more than 2 modes. The test also appears to be too sensitive to tiny bumps in the

distribution. This is especially true in those retailers with the largest number of observa-

tions, such as URUGUAY-1, CHINA-2, CHILE-1, RUSSIA-1, IRELAND-1, US-1 and

NEWZEALAND-1, where we reject both unimodality and bimodality around zero.

As we mentioned before, we consider the excessive sensitivity of both of these tests to

small bumps in the distribution as a major weakness. We are looking for modes that are

sufficiently large and can provide insights into the importance of menu costs and other pricing

behaviors. So we move to analyze the results from the PM test, which is significantly more

conservative.

The results for the PM test centered at 0% are presented in Table 3. Column 3 shows the

PM score point estimate, columns 4 and 5 show the mean and the standard deviation in 500

bootstrapped samples, and column 6 shows the share of bootstrapped estimates that have a

positive PM score (unimodality).

[Table 3 about here]

As expected, the PM test is far more conservative. We now fail to reject unimodality

in 14 supermarkets, or 40% of the total. The reason is that this test does a better job at

ignoring small bumps in the distribution, because it spreads their mass into relatively wide

intervals that are used to calculate the proportional mass ratios.

Comparing the PM results to Silverman’s test, and the graphical distribution in Figures 2

to 2, we can see why the PM score is a better test for your purposes. For example, the largest

PM scores belong to the distributions of URUGUAY-1, UK-2, UK-1, and US-1, all of which

are identified now as unimodal. By contrast, Silverman’s test results suggested they were

all bimodal or multimodal. In the case of URUGUAY-1, where nearly all the mass lies
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within -1% and 1%, Silverman’s test rejected unimodality because there is (by construction),

no mass at exactly zero percent, and this has a great impact on the smoothed kernel for

this tiny range of values. At the same time, the cases of UK-2, UK-1, and US-1 clearly do

have a single big mode, but lots of tiny modes that also cause Silverman’s test rejection of

unimodality.

Still, even though we have been stacking the odds to find some unimodality, the PM test

continues to rejects the null hypothesis in 22 supermarkets, about two-thirds of the total. The

evidence against unimodality at zero percent is simply very strong in our data. This finding

is robust over time, as seen in In Table 4. When we compute the PM score at quarterly

intervals, we still obtain negative scores (bi-modality) in most retailers over time.

[Table 4 about here]

Overall, the three statistical tests strongly reject the hypothesis of unimodality around

zero percent. We have shown results within the interval of -5% to 5%, but these findings

are robust to extensions with distributions at the +/- 10% and +/- 50% intervals. In fact,

the wider the range of the distribution, the lower the evidence of unimodality around zero

percent.21

4.2 Reconciling differences with the Literature

Our main finding, the lack of unimodality of price changes around zero percent, is at odds

with the existing literature that uses Scanner and CPI data. In this section, we consider

possible explanations for these differences by replicating some of the sampling methodologies

in these two types of data.

21While there is less unimodality around zero percent, there can still be large modes away from zero.
This In the Appendix, we explore this possibility by running the PM test centered on the highest “mode”
in the distribution. Positive PM scores indicate the presence of modes that are large enough to dominate
the mass of price changes within a +/-5% interval of that value, possibly reflecting the outcome of an
inflationary or deflationary macroeconomic context. In Table A2, we find that the highest mode is negative
in 13 supermarkets and positive in 21 supermarkets, and 34 out of 36 supermarkets have a positive PM score.
Computing PM scores away from zero can also be used to explore the changes in modality with different
levels of inflation, which has important implications for some theoretical models. For example, standard
state-dependent models predict that an economy that moves gradually from a peak of inflation to a peak of
deflation will have a distribution that looks initially unimodal with a positive mode, then bimodal at zero,
and finally unimodal with a negative mode. Table A3 shows the share of bootstraps with a non-unimodal
PM score away from zero in each quarter. We find that the distributions were less unimodal in late 2008
and early 2009. The last row shows that the ratio of retailers with some evidence of bimodality starts to rise
in the fourth quarter of 2008 and peaks in the second quarter of 2009. This is a time when many of these
countries were in the middle of a recession. Although the shift in modality is not as stylized as standard
models predict, these results suggest that modality and inflation could be closely related.
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4.2.1 Differences with Scanner Data

Scanner datasets have two important differences with our data. First, prices are con-

structed as “unit values”, with the ratio of total sales over total quantity sold for each

product. Because consumers can sometimes purchase products with or without coupons,

with or without loyalty cards, or even at different prices within the same day, this unit value

will change in small percentages with the randomness in consumer demand. Second, scanner

data are reported on a weekly basis, so there is also an averaging that takes place along the

week. The effect of this averaging is discussed by Campbell and Eden (2005). Their focus

was not on the size of changes, but they described some complications caused by weekly

averages using a simple example. Consider a three week period with a single price change

on the middle of the second week. If average weekly prices are used, each week would have

a different price and two –smaller– price changes would be observed.

Although we do not have information on the use of loyalty cards and coupons, we can

replicate the weekly averaging in our data and see how it affects our results. We do so by

first computing the weekly average price per individual product, and then re-calculating price

changes only when consecutive weekly prices are available.

Our results in Table 5 show that the evidence of unimodality increases dramatically

with weekly averaged prices. This table compares the effect of weekly averaging on the three

measures of modality embedded in our tests: the dip statistic, the critical bandwidth and the

PM score (centered at 0%). A drop in Hartigan’s dip means that, on average, the distribution

is now closer to being unimodal. A drop in Silverman’s critical bandwidth means that less

smoothing is needed to obtain an unimodal kernel estimate. An increase in PM scores means

that the distribution becomes unimodal around zero. In all three cases, the evidence for

unimodality increases dramatically with weekly prices. Furthermore, the PM test centered

at zero also fails to reject unimodality in 32 out of 37 supermarkets.

[Table 5 about here]

4.2.2 Differences with CPI Data

Reconciling our results with CPI studies is harder because the differences in the data

go far beyond simple sampling methodologies. Nevertheless, the monthly sampling of prices

could lead to artificially small price changes when there frequent temporary shocks lasting

less than a month. For example, if a price were to fall from $10 to $9, and then move back to

$10.1 within a few days, monthly sampling would detect a +1% price change instead of two
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changes of -10% and +12%. Cavallo (2010) showed that these type of temporary changes

can occur frequently in supermarket data, and it can be particularly relevant in low-inflation

settings like the US, where most of the literature’s CPI findings come from.22

To approximate the CPI sampling methods, we randomly picked one day of the month for

each individual product and recorded the price. If we chose a day where no price information

is available, the price is missing for that month. Next, we re-calculated price changes only

when consecutive monthly price observations were available.

In contrast to weekly averages, monthly sampling of the data has no effect on the degree of

unimodality. The average dip statistic, critical bandwidth and PM score in Table 5 are similar

with daily and monthly data (even though the number of observations drops significantly once

monthly data is used).

An alternative explanation for our differences with the CPI literature it related to individ-

ual price corrections in the US CPI series. The BLS makes several adjustments in individual

prices that can potentially affect the distribution of the size of changes. First, changes in a

price spell can be cause by forced item substitutions that occur when an item is no longer

available. In these cases, the BLS estimates a price change using hedonic quality adjustments

or the average price change for that category of products. Second, even when no product sub-

stitutions occur, the BLS sometimes imputes prices that are considered temporarily missing.

Seasonal products –including Fresh Food– are the typical case when this happens. Third,

individual prices can also be adjusted for coupons, rebates, loyalty cards, bonus merchandize,

and quantity discounts, depending on the share of sales volume that had these discounts dur-

ing the collection period. Fourth, some food items that are sold on a unit basis –like apples–

are sometimes weighted in pairs to calculate an average-weight price. These and other price

adjustments are described in the BLS Handbook of Methods.23 Unfortunately, we do not

know how frequent these changes are in practice, or whether they can explain most of the

small price adjustments previously found by the literature. Without access to the US CPI

data, we must leave this important questions for future research.

4.3 Product and Category Heterogeneity

The existence of multiple modes documented so far at the store level could be the result

of heterogeneity across categories. It is possible that each individual distribution is unimodal

-at different values- and the aggregate exhibits more than one mode. In this section we

22In a setting with high inflation, monthly sampling can have the opposite effect, accumulating several
small price changes that occur within a month.

23See , Chapter 17, pages 30 to 33.
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explore the role that heterogeneity in the PM test results.

In the process of collecting the data, we record the category in which the supermarket

placed each item. These categories are constructed by each retailer to facilitate the finding of

individual items in the website. For example, a typical supermarket would show a navigation

menu with ”Food”, ”Diary”, ”Milk”, and finally ”Low-Fat Milk”. We use the narrowest level

of aggregation, such as ”Low-Fat Milk” in this example.24 There are several advantages in

this categorization. First, products are added and reclassified automatically by each retailer.

Second, items within each of these categories are close substitutes, because classification

depends more on consumer’s practices than on a preconceived notions of which items we

consider to be closely related. For example, when iPad was launched in 2010, it was unclear

whether it would compete mostly with laptops, netbooks, or e-book readers. As other tablets

appeared in the market, a new category was created by retailers. This dynamic categorization

ensures that we can compare pricing behaviors between close competitors. The drawback is

that international comparisons between categories are not possible, because stores in different

countries tend to arrange products in different ways.

In each category, we first obtain 500 bootstraps to estimate the distribution of the PM

test – the same procedure we followed at the supermarket level before. We then compute

the proportion of bootstrapped PM scores that are negative – indicating a rejection of uni-

modality. Finally, for each supermarket, we calculate the proportion of categories where

unimodality is rejected in 95 percent of the bootstrap replications, in 90 percent, 85 percent,

and so on. These results are shown in Table 6. The last two columns indicate the total

categories available in each store, and the total number of categories in which there are at

least 64 price changes, enough to run the test. These represent only about 20% of the total

number of categories.

[Table 6 about here]

The first column shows the proportion of categories in which 95 percent (or more) of

the replications in the bootstrap rejected unimodality. As can be seen, there are some

supermarkets in which all the categories rejected unimodality, while there are others in which

not a single one of the categories rejected unimodality. However, in most supermarkets, there

are approximately 40 percent of categories where we can reject unimodality. Because not all

supermarkets are of the same size, the weighted average proportion of rejections (weighted

by the number of categories where the test can be run) is 27.1 percent.

24See Cavallo (2010) for a more thorough description of these categories in four of the countries in our
sample.

16



Notice that the rejection at the category level is much smaller than the rejections we

reported at the supermarket level in previous sections (over 60%). Besides heterogeneity, it

is possible that, because we have less observations, the PM test looses too much statistical

power. To evaluate this possibility we can move along the columns of Table 6, reducing

our confidence interval. For example, in the third column we present the proportion of

categories in each retailer in which at least 85 percent of the simulations rejected the null

hypothesis of unimodality. In this case, the average unweighed proportion is 43.8 percent,

and the weighted one is 31.3 percent. Although larger than before, the increase in rejections

is not overwhelming. In fact, we need to reduce the confidence interval to 75 percent (i.e.

a significance level of 25 percent) to get similar unweighed rejections as in the previous

section.25

Overall, we believe that part of the rejections that we observed at the supermarket level

are due to category heterogeneity. There is still a significant proportion of rejections of

unimodality in the data, at least 30 percent on average.

Finally, could the bimodality in these categories be caused, in turn, by product-level

heterogeneity? This is unlikely in theory, precisely because products classified into these

narrow categories are supposed to be close substitute. So, for example, it is reasonable to

expect products in the “organic eggs” category to be quite homogeneous in their pricing

behavior. Still, while we cannot run the PM test at the individual-product level due to lack

of data (very few items have 64 price changes), we did not want to leave the possibility of

product heterogeneity unexplored, so we explored a simple question: does the dispersion of

inflation rates at the item level increase the likelihood of rejecting unimodality. If we assume

that the mode is closely related to the average inflation, then this exercise is meaningful:

categories where the average inflation is very different across products are categories where

rejection of unimodality should also be more likely. We understand we are making a strong

assumption: that the only heterogeneity that matters is the average inflation. However,

computing the average daily inflation rate in one item is straightforward, because it does not

depend on the number of observations but on the span of the price collection.

[Table 7 about here]

Table 7 presents the result of a series of simple regressions. Within each supermarket,

25We could have a selection problem if there is a relationship between the cause for stickiness and the
frequency of price adjustment. For example, suppose that products that are more time-dependent (and there-
fore more unimodal) tend to have more frequent price adjustments. If that were the case, then by requiring
categories to have a minimum number of observations we are biasing the sample towards unimodality. How-
ever, when we run the exact same exercise on categories with at least 32 price changes, our results barely
change: the unweighed proportion of rejections is 38.9 percent, while the weighted is 27.8 percent.
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we put on the left hand side the proportion of simulations that reject unimodality in a

category, and on the right hand side the inflation dispersion within that category. There

is one observation per category. We estimate a simple correlation, estimated as an OLS

regression where a constant is included. For each supermarket in which we were able to

estimate this regression we present the coefficient (column 2), its standard deviation (column

3), and the t-stat (column 4).

The purpose of this exercise is to determine if the rejection of unimodality in a category

(higher proportion of simulations rejecting unimodality) is correlated with product hetero-

geneity – in this case measured as inflation dispersion. Hence, a positive coefficient is evidence

in support of heterogeneity causing the rejections. Only 23 supermarkets have enough obser-

vations for us to perform the estimation. From them, 12 have statistically significant positive

coefficients, 11 are not significant; and only 3 are negative (but not significant). So, in about

half of the supermarkets the rejection can be partially explained by product heterogeneity.

Overall, this is consistent with the message of heterogeneity we highlighted when studying

the PM scores at the category level. We loose observations and statistical power, but in those

cases were the test can still be run, we find that heterogeneity is playing an significant role.

Future research – with several more years of individual data – should further address the

question of product-level heterogeneity.

5 Simulation of a model with both state and time-

dependent pricing

The results so far show that there is evidence of both bimodality and unimodality in the

size of price changes around zero percent. In this section we simulate a model that exhibits

menu cost and observation/information costs to evaluate the strength and properties of the

PM test, and to be able to make an assessment of the relative importance of both time

and state-dependant pricing behaviors. We use the recent model by Alvarez, Lippi, and

Paciello (2010). They assume a firm solving a pricing problem, with quadratic cost function,

exhibiting fixed cost to change prices, and a fixed cost to observe previous realizations. This is

a stylized model that has relatively simple solutions. The fixed cost for changing prices is the

standard menu cost, while the observation cost alone can generate an optimal strategy that

resembles the time-dependent rule in the Calvo (1983) model.26 The advantage of Alvarez,

Lippi, and Paciello (2010) is that encompasses both types of costs, and can also account for

26See Mankiw and Reis (2002) and Mankiw and Reis (2007)
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different levels of inflation.

We simulate the model under zero inflation and use a range of menu costs from 0.4% to

1% and an observation cost from 1% to 6%, consistent with the range selected by Alvarez,

Lippi, and Paciello (2010).27 For each of the simulations, we compute the distribution of

price changes and estimate the PM score. Figure 5 computes the PM test when the 0 to

5 percent window is used.28 There are two panels in this figure. The top panel shows the

surface for several choices of menu cost and observation cost. The bottom panel is an iso-PM

score figure – the combination of menu and observation costs that produce the same PM

score within the range we studied.

The PM score is, as expected, affected by the size of each cost. First, an increase in the

menu cost reduces the PM score unambiguously. Second, an increase in the observation cost

increases the PM score also unambiguously. Both of these implications should be expected.

When the menu costs are increasing the range of inaction for the firm increases, reducing its

mass around zero, and making the distribution more bimodal. On the other hand, increasing

the observation costs imply a behavior closer to the standard Calvo model, and therefore the

distribution of price changes becomes more unimodal, with a higher PM score.

[Figure 5 about here]

The PM score could be used in this model to get a sense of the magnitude and relative

importance of the observation and adjustment costs. For example, Figure 5 tells us that if

the PM score lies between -0.5 and -0.6, then the menu cost would have to be relatively small

– from 0.6% to 1% – while the observation costs about 3 to 5 times larger –1.5% to 5%–.

This is consistent with the estimates in Alvarez, Lippi, and Paciello (2010)’s own calibrations.

The menu costs, in particular, are also close to the estimate of 0.7% of revenue obtained by

Levy, Bergen, Dutta, and Venable (1997), who looked at direct evidence of menu costs in a

large US supermarket chain in the 90s.

6 Conclusions

The distribution of the size of price changes is an important implication of the different

theories of price stickiness. One of the key characteristics of this shape is the number of modes

27The model is estimated with the additional parameters: B = 20 (cost function parameter) as in Alvarez,
Lippi, and Paciello (2010), a standard deviation in the target price σ = 0.008, and a daily discount factor
ρ = 0.0007.

28See the Appendix Figure A1 for a wider window of 0 to 20 percent in PM Scores
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around zero percent. We formally tested for this modality in a large set of supermarkets,

spanning 22 countries and 5 continents, using the two best-known tests in the statistical

literature –Hartigan’s Dip and Silverman’s Bandwidth– and a test designed in this paper

–the Proportional Mass test–. When the traditional tests are used, the unimodality around

zero is rejected in about 90 percent of the establishments. When we use the Proportional

Mass test, which is much more conservative than the first two, we still reject unimodality in

two thirds of the supermarkets. Heterogeneity at the product-category level can account for

part of the rejections of unimodality at the retailer level.

While the rejection of unimodality implies an important role for adjustment or “menu”

costs, there is no conclusive evidence in favor of any standard theory of price stickiness. The

distributions we observe with the data appear similar, in fact, with those predicted by models

that combine elements of both time and state-dependent pricing. We have shown how the

PM score can be used to explore issues like these in a particular model, from Alvarez, Lippi,

and Paciello (2010), but the relative importance of adjustment and observation costs is still

an open empirical question whose answer is specific to the model being used.

We believe the PM test developed here will help this literature by providing a simple

mechanism to evaluate modality in a large set of countries and retailers. Further research

is needed to understand how different theories can explain cross-country and cross-retailer

differences in PM scores and modality results, how they change through time, and across

product categories. In particular, the link between inflation rates, the distribution’s sym-

metry and the location of its modes seems a promising area for future work. In addition,

the differences with CPI datasets should be further studied in countries where both micro-

CPI and scraped data become available. Finally, while we do not have enough data today

to compute PM scores at the individual product level, future research should study how

heterogeneity within categories can impact our main results.
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Tables

Table 1: Supermarket Data

Database Country Started Days Obs. Products # Pr P/day Pr. Ch. (cc) Sales
ARGENTINA-1 Argentina 10/7/2007 876 13117K 26K 12K 155K 1.2% YES
ARGENTINA-2 Argentina 23/7/2007 861 5294K 11K 6K 103K 2.0% YES
AUSTRALIA-1 Australia 8/4/2008 574 232K 3K 1K 147K 63.4% NO
AUSTRALIA-2 Australia 8/7/2008 571 202K 1K 0K 2K 1.0% NO
AUSTRALIA-3 Australia 8/4/2009 209 3292K 7K 6K 2K 0.1% NO
AUSTRALIA-4 Australia 5/3/2008 667 1967K 18K 4K 46K 2.3% YES
BRAZIL-1 Brasil 10/10/2007 873 10780K 22K 11K 260K 2.4% YES
CHILE-1 Chile 10/24/2007 859 12102K 35K 12K 120K 1.0% NO
CHINA-1 China 12/5/2008 451 1101K 7K 3K 6K 0.5% NO
CHINA-2 China 3/19/2008 712 6644K 46K 10K 22K 0.3% NO
COLOMBIA-1 Colombia 11/13/2007 839 4186K 9K 5K 77K 1.8% YES
ECUADOR-1 Ecuador 3/19/2009 347 667K 3K 2K 6K 0.9% NO
FRANCE-1 France 10/29/2008 488 2806K 10K 5K 11K 0.4% NO
FRANCE-2 France 11/18/2008 468 4878K 17K 10K 18K 0.4% NO
FRANCE-3 France 11/5/2008 481 3102K 21K 6K 33K 1.1% NO
HONGKONG-1 Hong Kong 5/24/2008 646 1229K 10K 6K 3K 0.3% YES
IRELAND-1 Ireland 5/28/2008 642 11660K 35K 18K 94K 0.8% YES
ITALY-1 Italy 11/19/2008 467 1076K 4K 3K 2K 0.2% NO
ITALY-2 Italy 12/5/2008 451 1622K 5K 4K 7K 0.4% YES
MEXICO-1 Mexico 5/15/2009 290 600K 4K 2K 39K 6.5% YES
NETHERLANDS-1 Netherlands 5/2/2009 303 1485K 10K 8K 4K 0.3% YES
NEWZEALAND-1 New Zealand 6/17/2008 622 9528K 39K 12K 295K 3.1% NO
RUSSIA-1 Russia 2/11/2009 383 13765K 120K 30K 308K 2.2% NO
SINGAPORE-1 Singapore 3/20/2009 346 514K 2K 2K 1K 0.1% YES
SPAIN-1 Spain 6/27/2008 612 3017K 11K 5K 28K 0.9% YES
TURKEY-1 Turkey 6/4/2008 635 8889K 30K 13K 55K 0.6% YES
UK-1 UK 5/7/2008 663 8124K 24K 13K 152K 1.9% YES
UK-2 UK 6/27/2008 612 3442K 16K 5K 25K 0.7% NO
UK-3 UK 2/17/2009 377 494K 6K 4K 5K 1.0% YES
UK-4 UK 10/5/2008 512 2774K 7K 6K 20K 0.7% NO
UK-5 UK 6/18/2008 621 433K 4K 3K 1K 0.3% NO
URUGUAY-1 Uruguay 10/23/2007 860 12297K 46K 10K 79K 0.6% YES
US-1 US 4/11/2009 324 13484K 57K 35K 486K 3.6% NO
US-2 US 5/6/2008 664 6309K 14K 10K 35K 0.6% YES
US-3 US 5/8/2008 662 11868K 29K 15K 262K 2.2% YES
VENEZUELA-1 Venezuela 5/16/2008 654 10292K 20K 13K 49K 0.5% NO
Mean 571 5236K 20K 8K 80K 2.9%
Median 612 3292K 11K 6K 33K 0.8%
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Table 2: Estimation of Hartigan’s Dip and Silverman’s Tests

DIP Test (calibrated) Silverman’s Test
Dip Stat. Null = 1 mode Critical Band. Null = 1 mode Null ≤ 2 modes

(lower is unimodal) P-values (lower is unimodal) P-values P-values
ARGENTINA-1 0.07 0.00 1.92 0.00 0.00
ARGENTINA-2 0.03 0.00 1.47 0.00 0.00
AUSTRALIA-1 0.04 0.00 2.21 0.00 0.03
AUSTRALIA-2 0.07 0.04 1.79 0.25 0.24
AUSTRALIA-3 0.02 0.00 1.27 0.00 0.33
AUSTRALIA-4S 0.01 0.00 0.65 0.00 0.00
BRAZIL-1 0.03 0.00 1.12 0.00 0.00
CHILE-1 0.02 0.00 1.74 0.00 0.00
CHINA-1 0.02 0.00 1.34 0.00 0.13
CHINA-2 0.02 0.00 1.61 0.00 0.00
COLOMBIA-1 0.01 0.00 0.66 0.03 0.97
ECUADOR-1 0.02 0.00 1.60 0.00 0.20
FRANCE-1 0.02 0.00 1.40 0.00 0.00
FRANCE-2 0.02 0.00 1.10 0.00 0.01
FRANCE-3 0.04 0.00 0.59 0.00 0.00
HONGKONG-1 0.04 0.00 1.22 0.00 0.00
IRELAND-1 0.05 0.00 1.70 0.00 0.00
ITALY-1 0.02 0.00 0.92 0.03 0.10
ITALY-2 0.03 0.00 1.57 0.00 0.15
MEXICO-1 0.03 0.00 0.81 0.00 0.00
NETHERLANDS-1 0.01 0.00 1.06 0.00 0.07
NEWZEALAND-1 0.05 0.00 2.35 0.00 0.00
RUSSIA-1 0.02 0.00 0.95 0.00 0.00
SINGAPORE-1 0.09 0.00 2.48 0.00 0.33
SPAIN-1 0.03 0.00 1.72 0.00 0.00
TURKEY-1 0.02 0.00 1.62 0.00 0.03
UK-1 0.01 0.00 0.68 0.00 0.00
UK-2 0.01 0.00 0.54 0.00 0.17
UK-3 0.01 0.00 0.83 0.00 0.00
UK-4 0.08 0.00 2.47 0.00 0.00
UK-5 0.03 0.00 0.95 0.06 0.12
URUGUAY-1 0.10 0.00 0.49 0.00 0.00
US-1 0.06 0.00 1.05 0.00 0.00
US-2 0.07 0.00 2.42 0.00 0.01
US-3 0.04 0.00 1.56 0.00 0.00
VENEZUELA-1 0.04 0.00 0.77 0.00 0.00
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Table 3: Proportional Mass Test - Distribution centered at 0%

Establishment Observations Centered Point Mean of Standard Share above
Centered Estimate Bootstrap Deviation zero

ARGENTINA-1 45946 0 -0.15 -0.15 0.007 0.00
ARGENTINA-2 20283 0 -0.132 -0.133 0.011 0.00
AUSTRALIA-1 9140 0 -0.345 -0.344 0.02 0.00
AUSTRALIA-2 35 0 0 -0.087 0.26 0.41
AUSTRALIA-3 585 0 -0.503 -0.501 0.083 0.00
AUSTRALIA-4 19332 0 0.216 0.216 0.008 1.00
BRAZIL-1 88811 0 -0.092 -0.092 0.005 0.00
CHILE-1 31936 0 -0.236 -0.235 0.01 0.00
CHINA-1 1730 0 -0.241 -0.241 0.039 0.00
CHINA-2 10669 0 -0.62 -0.621 0.021 0.00
COLOMBIA-1 29012 0 -0.011 -0.012 0.007 0.06
ECUADOR-1 1450 0 -0.081 -0.079 0.037 0.01
FRANCE-1 6121 0 -0.171 -0.173 0.019 0.00
FRANCE-2 5309 0 -0.089 -0.088 0.02 0.00
FRANCE-3 20355 0 0.103 0.103 0.008 1.00
HONGKONG-1 933 0 -0.111 -0.113 0.049 0.00
IRELAND-1 18353 0 0.109 0.109 0.008 1.00
ITALY-1 635 0 0.06 0.061 0.052 0.89
ITALY-2 910 0 -0.548 -0.553 0.069 0.00
MEXICO-1 5131 0 0.095 0.094 0.016 1.00
NETHERLANDS-1 2473 0 -0.416 -0.416 0.039 0.00
NEWZEALAND-1 42557 0 -0.293 -0.294 0.008 0.00
RUSSIA-1 70016 0 0.393 0.393 0.004 1.00
SINGAPORE-1 100 0 -1.073 -1.133 0.349 0.00
SPAIN-1 10084 0 -0.196 -0.196 0.016 0.00
TURKEY-1 4597 0 -0.435 -0.435 0.028 0.00
UK-1 71788 0 0.582 0.582 0.003 1.00
UK-2 13597 0 0.638 0.638 0.005 1.00
UK-3 1776 0 0.167 0.168 0.026 1.00
UK-4 1423 0 -1.919 -1.922 0.167 0.00
UK-5 312 0 -0.264 -0.274 0.098 0.00
URUGUAY-1 52454 0 0.959 0.959 0.001 1.00
US-1 210698 0 0.487 0.487 0.002 1.00
US-2 5261 0 -1.192 -1.192 0.05 0.00
US-3 10466 0 0.156 0.156 0.011 1.00
VENEZUELA-1 15779 0 -0.463 -0.463 0.016 0.00

Note: Bootstrap derived from 500 replications. A positive PM score implies
unimodality. We reject unimodality if less than 5% of bootstrapped samples have
a positive PM score (i.e. when the “Share above Zero” is ¡0.05).
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Table 4: Proportional Mass Scores for each quarter
(Distribution centered at 0%)

Estimates through time Q4.2007 Q1.2008 Q2.2008 Q3.2008 Q4.2008 Q1.2009 Q2.2009 Q3.2009 Q4.2009
ARGENTINA-1 -0.784 -0.641 -0.704 -0.750 -0.675 -0.865 -0.199 0.454 -0.264
ARGENTINA-2 -0.301 -0.239 -0.239 -0.015 -0.010 -0.102 0.103 -0.391 -0.171
AUSTRALIA-1 -0.295 -0.274 -0.106 -0.587 -0.697
AUSTRALIA-2 0.108 0.270
AUSTRALIA-3 -0.920 -1.403 -0.588 -0.015 -0.134
AUSTRALIA-4 0.234 0.192 0.277
BRAZIL-1 -1.430 -0.684 -0.459 -0.518 -0.242 -0.513 -0.120 -0.330 0.531
CHILE-1 -0.591 -0.174 -0.263 -0.267 -0.335 -0.222 -0.072 -0.064 0.012
CHINA-1 -0.222
CHINA-2 -1.221 -0.331
COLOMBIA-1 -0.017 0.056 0.003 0.110 -0.019 0.017 -0.077 -0.061 0.055
ECUADOR-1 -0.495 -0.094 -0.347 0.245
FRANCE-1 0.044 -0.338 -0.690 -0.106 -0.219
FRANCE-2 -0.769 -0.235 0.277 -0.358 -0.198
FRANCE-3 -0.600 -0.322 -0.446 0.444 0.357
HONGKONG-1 -0.816 0.029 -1.042 -1.268 -1.316
IRELAND-1 0.007 0.202 -0.711 -0.117 -0.039 -0.207 -0.549
ITALY-1 -1.195 -0.462 -0.584 0.085 0.009
ITALY-2 0.238 -0.522 -0.470 -1.032 -0.579
MEXICO-1 0.719 -0.529 -0.305
NETHERLANDS-1 -0.740 -0.388 -0.419
NEWZEALAND-1 -0.035 -0.016 -0.315 -0.497 0.012 -0.501 -0.549
RUSSIA-1 -0.190 -0.121 0.624 0.031
SINGAPORE-1 -0.866 -1.238
SPAIN-1 0.217 0.040 -0.388 -0.392 -0.292 -0.259
TURKEY-1 -0.430 -0.591 -0.438 -0.686 -0.415 -0.247 -0.689
UK-1 0.686 0.689 0.393 0.510 0.658 0.660 0.674
UK-2 0.707 0.605 0.581 0.561 0.374
UK-3 0.107 0.346
UK-4 -2.429 -1.132
UK-5 -0.775 -0.450 -0.379 0.280 0.046
URUGUAY-1 1.055 1.012 0.906 0.939 0.798 0.907 0.935 0.914 -1.555
US-1 0.479 0.574 0.376
US-2 -1.479 -1.238 -1.800 -1.151 -1.179 -1.114
US-3 -0.487 0.106 -0.190 0.212 0.332 0.491 0.160
VENEZUELA-1 0.508 0.114 0.030 -0.054 -0.901 -0.095 -0.132

Table 5: Comparison with Scanner and CPI sampling methods

Daily Data Weekly Average Monthly Sampling
Mean Dip (Hartigan) 0.035 0.019 0.046

Mean Critical Bandwidth (Silverman) 1.351 0.799 1.471
Mean PM Score -0.143 0.145 -0.203

Note: Unimodal distributions have lower Dips, lower CBs and positive PMs.
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Table 6: PM Score by Supermarket and Categories. Proportion of Categories
where Unimodality (centered at zero) is rejected at different levels of significance.

Establishment cat>0.95 cat>0.90 cat>0.85 cat>0.80 cat>0.75 Cat-Total Cat-Included

ARGENTINA-1 0.333 0.333 0.333 0.467 0.467 69 15
ARGENTINA-2 0.228 0.228 0.241 0.278 0.304 1419 79
AUSTRALIA-1 0.717 0.739 0.804 0.804 0.848 439 46
AUSTRALIA-2 0.351 0.351 0.364 0.377 0.377 224 77
AUSTRALIA-3 0.769 0.846 0.846 0.846 1.000 167 13
AUSTRALIA-4 0.435 0.478 0.487 0.530 0.557 442 115
BRAZIL-1 0.333 0.333 0.333 0.667 0.667 756 3
CHILE-1 0.081 0.081 0.081 0.084 0.088 1416 297
CHINA-1 0.357 0.401 0.433 0.477 0.545 1346 277
CHINA-2 0.007 0.007 0.007 0.007 0.007 1241 146
ECUADOR-1 1.000 1.000 1.000 1.000 1.000 1093 4
FRANCE-1 0.000 0.000 0.005 0.005 0.005 433 207
FRANCE-2 0.296 0.370 0.370 0.370 0.444 197 27
FRANCE-3 0.700 0.740 0.780 0.800 0.820 143 50
HONGKONG-1 0.493 0.530 0.567 0.593 0.645 687 487
ITALY-1 0.219 0.241 0.257 0.261 0.277 1853 448
ITALY-2 0.333 0.333 0.373 0.373 0.392 675 51
MEXICO-1 0.250 0.250 0.250 0.250 0.250 190 4
NETHERLANDS-1 0.000 0.000 0.000 0.000 0.000 801 29
RUSSIA-1 0.115 0.126 0.130 0.136 0.149 1250 824
SINGAPORE-1 0.770 0.809 0.816 0.816 0.849 293 152
SPAIN-1 0.078 0.109 0.180 0.188 0.242 597 128
URUGUAY-1 0.412 0.412 0.412 0.529 0.588 800 17
US-2 0.714 0.762 0.762 0.762 0.762 411 21
US-3 0.279 0.358 0.380 0.425 0.503 549 179
VENEZUELA-1 0.507 0.587 0.601 0.609 0.630 508 138

Total 19547 3839
Unweighed Mean 0.40 0.42 0.44 0.47 0.50
Weighted Mean 0.27 0.30 0.31 0.33 0.36

Table 7: Inflation Dispersion and Rejection of Unimodality

Establishment Coefficient Standard Deviation Tstat
ARGENTINA-1 0.033 0.007 4.780
ARGENTINA-2 0.004 0.002 2.047
AUSTRALIA-1 -0.002 0.006 0.287
AUSTRALIA-4 0.018 0.014 1.273
BRAZIL-1 0.069 0.007 10.599
CHILE-1 0.010 0.019 0.543
CHINA-1 0.029 0.020 1.401
CHINA-2 0.002 0.045 0.046
COLOMBIA-1 0.036 0.016 2.287
ECUADOR-1 -0.031 0.053 0.586
FRANCE-3 0.092 0.042 2.220
IRELAND-1 0.241 0.052 4.671
MEXICO-1 0.167 0.077 2.157
NETHERLANDS-1 0.110 0.050 2.210
NEWZEALAND-1S 0.080 0.020 3.953
RUSSIA-1 0.001 0.014 0.074
SPAIN-1 0.067 0.107 0.630
TURKEY-1 0.041 0.031 1.309
UK-1 0.029 0.003 8.919
UK-2 0.000 0.000 0.000
URUGUAY-1 -0.001 0.003 0.378
US-1 0.008 0.001 6.095
US-3 0.188 0.036 5.200
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Figures

(a) Unimodal PM > 0 (b) Bimodal PM < 0

(c) PM > 0 (d) PM > 0

Figure 1: Example of PM values
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(k) COLOMBIA-1
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(l) ECUADOR-1

Figure 2: Histogram of Changes - Range -5% to 5%
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(l) SINGAPORE-1

Figure 3: Histogram of Changes - Range -5% to 5%
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Figure 5: PM Score and Contours for 0-0.05 percent range
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A Appendix

A.1 Additional Tables and Figures

Table A1: Implied Mean and Median Durations

Mean Median
(days) (days)

ARGENTINA-1 122 82
ARGENTINA-2 73 50
AUSTRALIA-1 16 11
AUSTRALIA-2 139 67
AUSTRALIA-3 465 526
AUSTRALIA-4 42 29
BRAZIL-1 70 53
CHILE-1 171 96
CHINA-1 165 112
CHINA-2 188 163
COLOMBIA-1 85 57
ECUADOR-1 136 98
FRANCE-1 260 251
FRANCE-2 251 238
FRANCE-3 96 78
HONGKONG-1 315 291
IRELAND-1 144 101
ITALY-1 374 479
ITALY-2 243 236
MEXICO-1 48 29
NETHERLANDS-1 175 140
NEWZEALAND-1 49 23
RUSSIA-1 66 55
SINGAPORE-1 244 229
SPAIN-1 106 81
TURKEY-1 196 126
UK-1 106 61
UK-2 113 78
UK-3 125 87
UK-4 386 470
UK-5 105 53
URUGUAY-1 173 131
US-1 66 28
US-2 175 109
US-3 89 45
VENEZUELA-1 226 164
Mean 159 135
Median 136 87

Note: Implied Durations using method in Bils and Klenow (2004)
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Table A2: Proportional Mass Test - Distribution centered at the Largest Mode

Establishment Observations Centered Point Mean of Standard Share above
Centered Estimate Bootstrap Deviation zero

ARGENTINA-1 50598 0.9 0.178 0.178 0.005 1.00
ARGENTINA-2 36321 4.9 0.287 0.287 0.005 1.00
AUSTRALIA-1 9606 -2.9 0.109 0.109 0.012 1.00
AUSTRALIA-2 105 -3.7 -0.565 -0.597 0.232 0.00
AUSTRALIA-3 1078 4.9 0.225 0.221 0.031 1.00
AUSTRALIA-4 19330 -0.3 0.213 0.213 0.008 1.00
BRAZIL-1 90226 1.9 0.38 0.38 0.003 1.00
CHILE-1 32092 4.1 0.129 0.128 0.007 1.00
CHINA-1 1804 -2.1 0.285 0.284 0.023 1.00
CHINA-2 12691 4.1 0.432 0.432 0.008 1.00
COLOMBIA-1 29651 1.1 0.159 0.159 0.007 1.00
ECUADOR-1 1552 4.1 0.115 0.114 0.033 1.00
FRANCE-1 5486 3.1 0.313 0.313 0.013 1.00
FRANCE-2 6314 4.5 0.305 0.303 0.013 1.00
FRANCE-3 20869 1.1 0.725 0.725 0.004 1.00
HONGKONG-1 1086 1.9 0.22 0.217 0.033 1.00
IRELAND-1 17991 -0.5 0.152 0.153 0.008 1.00
ITALY-1 594 -2.1 -0.095 -0.091 0.058 0.05
ITALY-2 1020 1.5 0.077 0.075 0.039 0.97
MEXICO-1 5021 -1.7 0.342 0.341 0.013 1.00
NETHERLANDS-1 2603 -1.1 0.381 0.381 0.017 1.00
NEWZEALAND-1 46034 3.1 0.127 0.127 0.005 1.00
RUSSIA-1 70366 0.1 0.406 0.406 0.003 1.00
SINGAPORE-1 83 1.3 0.09 0.085 0.129 0.74
SPAIN-1 9791 2.1 0.177 0.177 0.012 1.00
TURKEY-1 6437 3.1 0.118 0.118 0.014 1.00
UK-1 71839 -0.5 0.711 0.711 0.002 1.00
UK-2 13554 -0.5 0.695 0.695 0.005 1.00
UK-3 1769 -0.7 0.46 0.459 0.019 1.00
UK-4 2132 4.1 0.31 0.31 0.021 1.00
UK-5 425 2.9 0.153 0.153 0.058 0.99
URUGUAY-1 52651 0.3 0.908 0.908 0.001 1.00
US-1 230505 -0.1 0.423 0.423 0.002 1.00
US-2 4684 -3.3 0.261 0.261 0.016 1.00
US-3 10780 -0.3 0.159 0.16 0.011 1.00
VENEZUELA-1 18146 2.7 0.735 0.735 0.004 1.00

Note: Bootstrap derived from 500 replications.
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Table A3: Share of bootstraps with unimodal PM scores in each quarter, when distribution is centered
at the largest mode.

Estimates through time Q4.2007 Q1.2008 Q2.2008 Q3.2008 Q4.2008 Q1.2009 Q2.2009 Q3.2009 Q4.2009
ARGENTINA-1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ARGENTINA-2 1.00 1.00 1.00 1.00 1.00 0.98 0.80 1.00 0.78
AUSTRALIA-1 0.92 1.00 0.02 1.00 1.00
AUSTRALIA-2 0.10 0.86
AUSTRALIA-3 1.00 1.00 0.95 0.41 0.51
AUSTRALIA-4 1.00 1.00 1.00
BRAZIL-1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CHILE-1 1.00 1.00 1.00 1.00 1.00 1.00 0.07 0.04 1.00
CHINA-1 1.00
CHINA-2 1.00 1.00
COLOMBIA-1 0.98 0.93 1.00 0.01 1.00 1.00 1.00 1.00 1.00
ECUADOR-1 0.95 0.95 1.00 1.00
FRANCE-1 1.00 1.00 1.00 1.00 0.88
FRANCE-2 1.00 1.00 1.00 1.00 0.01
FRANCE-3 1.00 1.00 1.00 1.00 1.00
HONGKONG-1 1.00 1.00 1.00 0.93 0.75 1.00 1.00
IRELAND-1 0.97 1.00 0.98 1.00 0.96 1.00 1.00
ITALY-1 0.65 0.94 0.99 0.89 0.99
ITALY-2 0.81 1.00 0.98 0.88 0.99
MEXICO-1 1.00 1.00 1.00
NETHERLANDS-1 1.00 1.00 1.00
NEWZEALAND-1 1.00 0.31 1.00 1.00 0.71 1.00 1.00
RUSSIA-1 1.00 1.00 1.00 1.00
SINGAPORE-1 0.88 0.98 0.99
SPAIN-1 1.00 0.99 0.20 1.00 1.00 1.00
TURKEY-1 0.79 1.00 1.00 0.99 1.00 1.00 1.00
UK-1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UK-2 1.00 1.00 1.00 1.00 1.00 1.00
UK-3 1.00 1.00
UK-4 1.00 0.91 1.00 1.00 0.99
UK-5 0.85 1.00 0.98 0.82 0.81
URUGUAY-1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
US-1 1.00 1.00 1.00
US-2 1.00 1.00 1.00 1.00 1.00 1.00
US-3 1.00 1.00 0.00 1.00 1.00 1.00 1.00
VENEZUELA-1 1.00 1.00 0.52 1.00 1.00 1.00 0.88
Supermarkets with some “bimodality” 1 1 4 3 8 10 14 6 9
Supermarkets 6 6 17 18 26 26 34 32 31
Ratio with “Bimodality” 0.17 0.17 0.24 0.17 0.31 0.38 0.41 0.19 0.29
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Figure A1: PM Score and Contours for 0-0.20 percent range
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Figure A2: Histogram of Changes - Range -50% to 50%
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Figure A3: Histogram of Changes - Range -50% to 50%
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Figure A4: Histogram of Changes - Range -50% to 50%
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