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Meeting the Mandate for Biofuels: Implications for Land Use, Food and Fuel Prices 
 

Concerns about energy security, high oil prices and climate change mitigation have led to 

increasing policy support for the production of biofuels in the U.S. In 2008, the production of 

U.S. corn ethanol more than tripled relative to 2001 with the production of 9 billion gallons using 

one-third of U.S. corn production (USDA 2010). Prices of agricultural commodities doubled 

between 2001 and 2008, leading to a debate about the extent to which the price increase was 

caused by biofuels and the competition for land induced by them (USDA/ERS 2010). A number 

of studies have analyzed the impact of biofuel demand on the price of crops and obtained widely 

varying estimates depending on the choice of price index, the baseline and the other contributing 

factors considered. Reviews of these studies by Pfuderer, Davies and Mitchell (2010), and 

Abbott, Hurt and Tyner (2008) shows that biofuels did contribute to the spike in crop prices in 

2008 but with the current relatively low levels of diversion of global corn production to biofuels, 

they were not the key drivers of the price increase. The trade-offs between food and fuel 

production could, however, intensify in the future as the Renewable Fuel Standard (RFS) 

established by the Energy Independence and Security Act (EISA) of 2007 seeks a six-fold 

increase in biofuel production by 2022. 

Recognition of these trade-offs and the limits to relying on corn-based ethanol to 

meaningfully reduce dependence on oil, has led to growing interest in developing advanced 

biofuels from feedstocks other than corn starch. A commercial technology to produce cellulosic 

biofuels is yet to be developed but efforts are underway to produce them from several different 

feedstocks such as crop and forest residues and perennial grasses (such as, miscanthus and 

switchgrass). The use of residues does not require diversion of land from food production while 

perennial grasses are not only likely to be more productive in their biofuel yields per unit of land 
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than corn ethanol but can also be grown on marginal lands.  Cellulosic biofuels are expensive 

compared to corn ethanol and unlikely to be viable without biofuel support policies. The RFS 

mandates an increasing share of biofuel production from non-corn starch feedstocks; this 

increases to 58% in 2022. The Food, Conservation, Energy Act (FCEA) of 2008 also provides a 

variety of volumetric tax credits for blending biofuels with gasoline with higher tax credits for 

advanced biofuels ($0.27 per liter) than for corn ethanol ($0.12 per liter) with the intent of 

making them competitive with corn ethanol. These tax credits lower fuel prices and to the extent 

that they shift the mix of biofuels towards cellulosic feedstocks relative to the mandate alone, 

they could also lower crop prices. The decrease in fuel prices could however lead to an increase 

in fuel consumption relative to the RFS alone.   

This paper examines the effects of the RFS and accompanying volumetric subsidies for 

land use, food and fuel production and prices in the US. We analyze the extent to which these 

policies lead to changes in cropping patterns on the intensive margin and to an expansion of 

cropland acreage. We also analyze the tradeoff they pose between fuel and food production and 

the mix of cellulosic feedstocks that are economically viable under alternative policy scenarios.  

Furthermore, we examine the welfare costs of these policies and the costs of these tax 

credits for domestic taxpayers. A recent report by the CBO (2010) estimates that the volumetric 

tax credit costs tax payers $0.47 per liter of (gasoline energy equivalent) corn ethanol and $0.79 

per liter of (gasoline energy equivalent) cellulosic biofuels.  The study assumes that these tax 

credits lead to a 32% increase in corn ethanol production and a 47% increase in cellulosic biofuel 

production, over and above that otherwise. Metcalf (2008) attributes all of the corn ethanol 

consumption above the mandate in 2005 to the corn ethanol tax credits and estimates that tax 

credits increased consumption by 25%.  McPhail and Babcock (2008) find a much smaller role 
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for the effect of the corn ethanol tax credit in 2008/2009; they estimate that it increased domestic 

supply by about 3% compared to the mandate alone.  With two types of biofuels, corn ethanol 

and cellulosic biofuels, receiving tax credits at differential rates, determining the incremental 

effect of these tax credits in the future is more challenging, since they could affect not only the 

total volume of biofuels but could create incentives to increase one type of biofuel at the expense 

of another.  Moreover, the cost of these tax credits should include not only the direct effect on 

tax payers but also the indirect effect on consumers and producers of agricultural and fuel 

products.   These policies will differ in their impacts on food and fuel consumers and producers 

and are likely to benefit agricultural producers and fuel consumers while adversely affecting 

gasoline producers and agricultural consumers. In an open economy with trade in agricultural 

products and gasoline, some of these costs are passed on to foreign producers and consumers. 

We use the framework developed here to jointly determine the economic costs (in terms of 

domestic social welfare) of these tax credits as well as the extent to which they lead to 

incremental biofuel production above the mandated level and change the mix of biofuels. 

Finally, we analyze the sensitivity of the impact of the these biofuel policies on the mix of 

feedstocks used and on food and fuel prices to several supply-side factors, such as the costs of 

various feedstocks and biofuels, the growth in productivity of conventional crops and the 

availability of land.   

We develop a dynamic, multi-market equilibrium model, Biofuel and Environmental 

Policy Analysis Model (BEPAM), which analyzes the markets for fuel, biofuel, food/feed crops 

and livestock for the period 2007-2022. We consider biofuels produced not only from corn but 

also from several cellulosic feedstocks and imported sugarcane ethanol while distinguishing 

between domestic gasoline supply and gasoline supply from the rest of the world. BEPAM treats 
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each Crop Reporting District (CRD) as a decision making unit where crop yields, costs of crop 

and livestock production and land availability differ across CRDs. Food and fuel prices are 

endogenously determined annually and used to update price expectations, cropland acreage and 

land use choices. The rest of the paper is organized as follows. In Section II we review the 

existing literature and the key contributions of our research. In Section III we briefly describe the 

current legislations whose effects are being analyzed here. Section IV describes the simulation 

model. Data used for the simulation model is described in Section V followed by the results and 

conclusions in Sections VI and VII.  

 

II. Previous Literature 

A number of studies have examined the implications of biofuel production and policies 

for food/feed prices and land use in the long run. Using the partial equilibrium FAPRI model, 

Elobeid et al. (2007) analyze the long run effects of crude oil price changes on demand for 

ethanol and corn while Elobeid and Tokgoz (2008) expand that analysis to show the extent to 

which the effects of expansion in corn ethanol production on food/feed prices can be mitigated 

by liberalizing import of biofuels from Brazil. More recently, Fabiosa et al. (2009) use the model 

to obtain acreage multiplier effects of corn ethanol expansion. These studies (like Tyner and 

Taheripour 2008) consider an exogenously given price of gasoline and assume that ethanol and 

gasoline are perfectly substitutable. As a result, the price of ethanol is determined by the price of 

gasoline (based on its energy content relative to gasoline) and there is a one-directional link 

between gasoline prices and corn prices, resulting in a perfectly elastic demand for corn at the 

break-even price at which ethanol refineries can make normal profits. These studies also assume 

that crop yields are constant over time.  
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Ferris and Joshi (2009) use AGMOD to examine the implications of the RFS for ethanol 

and biodiesel production (2008-2017), assuming perfect substitutability between gasoline and 

ethanol and no cellulosic biofuel production. They find that the mandate could be met by 

potential crop yield increases and a decline in land under the Conservation Reserve Program and 

cropland pasture.  

Unlike the models used in above studies which focus only on corn ethanol, the 

POLYSYS model includes various bioenergy crops and investigates land use impacts of biofuel 

and climate policies (Ugarte et al. 2003). Walsh et al. (2003) apply POLYSYS to examine the 

potential for producing bioenergy crops at various exogenously set bioenergy prices. English et 

al. (2008) analyze the effects of the corn ethanol mandate (assuming that cellulosic biofuels are 

not feasible) and show that it will lead to major increases in corn production in the Corn Belt and 

in fertilizer use and soil erosion over the period 2007-2016. Most recently, Ugarte et al. (2009) 

apply POLYSYS to analyze the implications on agricultural income, over the 2010-2025 period, 

of various carbon prices and carbon offset scenarios under a GHG cap and trade policy assuming 

the RFS exists. 

The impact of climate change policies on the agricultural sector and biofuel production 

has been examined by McCarl and Schneider (2001) using FASOM, a multi-period, price 

endogenous spatial market equilibrium model, with a focus on land allocation between 

agricultural crops and forests. Like the above studies, FASOM also assumes that gasoline and 

ethanol are perfectly substitutable, but determines the price of gasoline endogenously using an 

upward sloping supply curve for gasoline. The model includes an autonomous time trend in crop 

yields and considers various bioenergy feedstocks, such as crop and forest residues, switchgrass, 

and short-rotation woody crops. FASOM is used by EPA to simulate the impacts of 
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implementing the RFS relative to 2007 Annual Energy Outlook (EIA 2007) reference case (EIA 

2010). Results show that the RFS would increase corn and soybeans prices in 2022 by 8% and 

10%, respectively, and decrease gasoline price by 0.006 cents per liter relative to the AEO 2007 

Reference Case. Total social welfare in 2022 is $13-26 B higher than the reference level. 

In addition to these partial equilibrium studies, the general equilibrium GTAP model has 

been used to examine the global land use effect of corn ethanol mandate in the U.S. and a biofuel 

blend mandate in European Union in 2015, assuming no cellulosic biofuel production (Hertel, 

Tyner and Birur 2010) and imperfect substitutability between gasoline and ethanol (Birur, Hertel 

and Tyner 2008). Reilly et al. (2009) use the general equilibrium EPPA model to examine the 

implications of greenhouse gas reduction targets over the 2015-2100 period for second 

generation biomass production and changes in land use. Their simulations suggest that it is 

possible for significant biofuel production to be integrated with agricultural production in the 

long run without having dramatic effects on food and crop prices. 

The model developed in this paper differs from the existing models in the literature in 

several aspects. First, we allow imperfect substitutability between gasoline and ethanol. 

Bottlenecks within the ethanol distribution infrastructure, the existing stock of vehicles and 

constraints on the rate of turnover in vehicle fleet limit the substitutability between biofuels and 

gasoline. Empirical evidence shows that biofuel prices are not simply demand driven (based on 

energy equivalent gasoline prices and perfect substitutability); instead they have been observed 

to be correlated with their costs of production as well.1  It is difficult to estimate and predict the 

substitution possibility between these fuels in the near future as it is directly related to the vehicle 

fleet structure. Therefore, we examine the implications of a range of substitutability between 

gasoline and ethanol and implicitly derive the demand for the two fuels. Hayes et al. (2009) show 
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that  incorporating imperfect substitutability between ethanol and gasoline in the FAPRI model 

results in a substantially smaller impact of a change in crude oil prices on demand for ethanol 

and land use than in Tokgoz et al. (2007). Additionally, we assume two upward sloping supply 

functions of gasoline and allow biofuel production to have a feedback effect on gasoline prices 

and thus on the demand for biofuels (as in Hayes et al. 2009). The U.S. accounts for 23% of 

world petroleum consumption, and about 57% of the consumption is imported from the rest of 

the world (EIA 2010); thus the change in U.S. oil demand can significantly affect world oil 

prices. To capture the effect of biofuel policy on gasoline prices, this study considers gasoline 

supply from domestic producers and the rest of world.  

Crop yield changes over time influence the land needed to meet food and fuel needs to 

meet biofuel mandates. Dumortier et al. (2009) show that introduction of even a 1% increasing 

trend in corn yield in the FAPRI model can substantially reduce the corn acreage in response to 

changes in gasoline and biofuel prices  We allow for changes in crop yields over time from two 

sources, an endogenous price effect and an autonomous technology effect, using econometrically 

estimated elasticities and time trend .   

Existing models such as FASOM rely on historically observed crop mixes to constrain 

the outcomes of linear programming models and generate results which are consistent with 

farmers’ planting history. To accommodate new bioenergy crops and unprecedented changes in 

crop prices in the future FASOM allow crop acreage to deviate 10% from observed historical 

mixes. In BEPAM, we use the estimated own and cross price crop elasticities to limit the 

flexibility of crop acreage changes, instead of an arbitrary level of flexibility. 
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III. Policy Background 

The EISA established the RFS in 2007 to provide an assurance of demand for biofuels 

beyond levels that might otherwise be supported by the market. It establishes a goal of 136 

billion liters of biofuel production in 2022 that includes four separate categories of renewable 

fuels, each with a separate volume mandate. Of the 136 B liters of the renewable fuel, the 

RFS requires that at least 80 B liters should be advanced biofuels. Advanced biofuel specifically 

excludes ethanol derived from corn starch. It includes ethanol made from cellulose, hemi-

celluloses, lignin, sugar or any starch other than corn starch as long as it achieves a GHG 

reduction of 50% compared to gasoline and is obtained from ‘renewable biomass’. Renewable 

biomass limits the crops and crop residues used to produce renewable fuel to those grown on 

land cleared or cultivated at any time prior to enactment of EISA in December 2007.  Crops used 

to produce renewable fuels that can meet the mandate must be harvested from agricultural land 

cleared or cultivated prior to December 2007. Land enrolled in the Conservation Reserve 

Program (CRP) is not allowed to be converted for the production of miscanthus and swithchgrass 

(EIA 2010).  

Of the 80 B liters of the advanced biofuels, at least 60 B liters should be cellulosic 

biofuels derived from any cellulose, hemicelluloses or lignin and achieving a lifecycle GHG 

emission displacement of 60% compared to gasoline while the rest could be sugarcane ethanol 

from Brazil. Conventional biofuels produced from corn starch are capped at 56 B liters in 2022. 

Cumulative production of biofuels over the 2007-2022 period mandated by the RFS requires 

1220 B liters of renewable fuel and at least 420 B liters of advanced biofuels while the amount of 

conventional biofuels cannot exceed 800 B liters during this period. 



9 
 

  The Food, Conservation, and Energy Act (FCEA) of 2008 provides tax credits for 

blending biofuels with gasoline. The tax credits for corn ethanol peaked at $0.16 per liter in 

1984, fell to $0.14 per liter in 1990, $0.13 per liter between 1998 and 2005 and is authorized at 

$0.12 cents per liter till December 20102.  The tax credit for cellulosic biofuels is $0.27 per liter 

and authorized till January 1, 2013. It also requires that cellulosic biofuels should be produced 

and consumed in the U.S.  

In addition to biofuel mandates and volumetric tax credits, the U.S. imposes trade barriers  

to restrict the imports of sugarcane ethanol from Brazil. The biofuel trade policy includes a 2.5% 

ad valorem tariff and a per unit tariff of $0.14 per liter (authorized until January 2011). A key 

motivation for the establishment of the tariff is to offset a tax incentive for ethanol-blended 

gasoline. An exception to the tariff is the agreement of the Caribbean Basin Initiative (CBI) 

initiated by the 1983 Caribbean Basin Economic Recovery Act (CBERA). Under this agreement, 

ethanol produced from at least 50% agricultural feedstocks grown in CBI countries is admitted 

into the U.S. free of duty. If the local feedstock content is lower than the requirement, a tariff rate 

quota (TRQ) will be applied to the quantity of duty-free ethanol. Nevertheless, duty-free ethanol 

from CBI countries is restricted to no more than 0.2 B liters or 7% of the U.S. ethanol 

consumption. To take advantage of this tariff-free policy, hydrous ethanol produced in other 

counties, like Brazil or European countries, can be imported to a CBI country and exported to the 

U.S. after dehydration. In 2007, total imports account for roughly 6% of U.S. consumption (25.7 

B liters), with about 40% of the import from Brazil and approximately 60% routed through CBI 

countries to avoid the import tariff. However, CBI countries have never reached the ceiling on 

their ethanol quota, partly due to insufficient capacity. Our analysis here assumes existing tariff 

policy remain in effect till 2022. 
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IV. The Model 

IV.1. General Description 

 We develop a multi-market, multi-period, price-endogenous, nonlinear mathematical 

programming model which simulates the U.S. agricultural and fuel sectors and formation of 

market equilibrium in the commodity markets including trade with the rest of the world. We 

refer to this model as the Biofuel and Environmental Policy Analysis Model (BEPAM).  

BEPAM is a dynamic, multi-market equilibrium model, which analyzes the markets for fuel, 

biofuel, food/feed crops and livestock for an extendable future period (currently set for 2007-

2022) in the U.S. This model determines several endogenous variables simultaneously, including 

vehicle kilometers travelled (VKT), fuel and biofuel consumption, domestic production and 

imports of oil and imports of sugarcane ethanol, mix of biofuels and the allocation of land among 

different food and fuel crops and livestock. This is done by maximizing the sum of consumers’ 

and producers’ surpluses in the fuel and agricultural sectors subject to various material balances 

and technological constraints underlying commodity production and consumption within a 

dynamic framework  (McCarl and Spreen 1980; Takayama and Judge 1971). This model is 

designed specifically to analyze the implications of biofuel and climate policies on land use 

patterns, commodity markets, and the environment.  

The agricultural sector in BEPAM includes several conventional crops, livestock and 

bioenergy crops (crop residues from corn and wheat and perennial grasses, miscanthus and 

switchgrass) and distinguishes between biofuels produced from corn, sugarcane and cellulosic 

feedstocks. Crops can be produced using alternative tillage and rotation practices. The model 

incorporates spatial heterogeneity in crop and livestock production activity, where crop 

production costs, yields and resource endowments are specified differently for each region and 
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each crop assuming linear (Leontief) production functions. As the spatial decision unit, the 

model uses the CRDs in each state by assuming an aggregate representative producer who makes 

planting decisions to maximize the total net returns under the resource availability and 

production technologies (yields, costs, crop rotation possibilities, etc.) specified for that CRD. 

The model covers CRDs in 41 of the contiguous U.S. states in five major regions.3  

The model uses ‘historical’ and ‘synthetic crop mixes’ when modeling farms’ planting 

decisions to avoid extreme specialization in regional land use and crop production. The use of 

historical crop mixes ensures that the model output is consistent with the historically observed 

planting behaviors (McCarl and Spreen 1980; Önal and McCarl 1991). This approach has been 

used in some existing models also, such as FASOM, to constrain feasible solutions of 

programming models and generate results which are consistent with farmers’ planting history. 

To accommodate planting new bioenergy crops and unprecedented changes in crop prices in the 

future FASOM allows crop acreage to deviate 10% from the observed historical mixes. In our 

model we use synthetic (hypothetical) mixes to offer increased planting flexibility beyond the 

observed levels and allow land uses that might occur in response to the projected expansion in 

the biofuels industry and related increases in corn and cellulosic biomass production. Each 

synthetic mix represents a potential crop pattern generated by using the estimated own and cross 

price crop acreage elasticities and considering a set of price vectors where crop prices are varied 

systematically. These elasticities are estimated econometrically using historical, county-specific 

data on individual crop acreages for the period 1970-2007 as described in Huang and  Khanna 

(2010). Crop yields are assumed to grow over time at an exogenously given trend rate and to be 

responsive to crop prices.  
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The model includes five types of land (cropland, idle cropland, cropland pasture, pasture 

land and forestland pasture) for each CRD. We obtain CRD-specific planted acres for 15 row 

crops for the period 1977 to 2007 from USDA/NASS (2009) and use this to construct the 

historical and synthetic mixes of row crops. Cropland availability in each CRD is assumed to 

change in response to crop prices. The responsiveness of total cropland to crop prices as well as 

the own and cross-price acreage elasticities for individual crops is obtained from Huang and 

Khanna (2010). Data on idle cropland, cropland pasture, pasture and forestland pasture for each 

CRD are also obtained from USDA/NASS (2009). Idle cropland includes land use category for 

cropland in rotations for soil improvement, and cropland on which no crops were planted for 

various physical and economic reasons. The estimates of idle land include land enrolled in the 

CRP which could be an additional source of land available for energy crops. Land in this 

program is farmland that is retired from crop production and converted to trees, grass, and areas 

for wildlife cover. We exclude land enrolled in CRP from our simulation model. Cropland 

pasture is considered as a long-term crop rotation between crops and pasture at varying intervals.   

Pasture land consists of land with shrub, brush, all tame and native grasses, legumes and 

other forage while forestland pasture is stocked by trees of any size and includes a certain 

percentage of tree cover. Pasture land and forestland pasture are primarily for grazing uses. We 

keep the level of permanent pastureland and forestland pasture fixed at 2007 levels but allow idle 

land and cropland pasture to move into cropland and back into an idle state. It can also be used 

for perennial bioenergy crop production. A change in the composite crop price index triggers a 

change at the extensive margin and leads to a shift in land from idle cropland and cropland 

pasture to land available for crop production the following year. The responsiveness of aggregate 

cropland supply to a lagged composite price index is econometrically estimated and the 
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implications of expanding crop production to idle land and cropland acreage for average yields 

of conventional crops in each CRD are described in Huang and Khanna (2010). The remaining 

idle land/pasture land can be used for bioenergy crops. While yields of bioenergy crops are 

assumed to be the same on marginal land as on regular cropland there is a conversion cost to the 

use of idle land/cropland pasture for bioenergy crop production.  In the absence of an empirically 

based estimate of the ease of conversion of marginal land for perennial grass production we 

assume a CRD-specific conversion cost equal to the returns the land would obtain from 

producing the least profitable annual crop in the CRD. This ensures consistency with the 

underlying assumption of equilibrium in the land market, in which all land with non-negative 

profits from annual crop production is utilized for annual crop production.  As annual crop prices 

increase, the cost of conversion increases; the “supply curve” for idle marginal land is, therefore, 

upward sloping. We impose a limit of 25% on the amount of land in a CRD that can be 

converted to perennial grasses due to concerns about the impact of monocultures of perennial 

grasses on biodiversity or sub-surface water flows. We examine the sensitivity of model results 

to this assumption by lowering this limit to 10%.  

The perennial nature of the energy crops included in the model requires a multi-year 

consideration when determining producers’ land allocation decisions in any given year. For this, 

we use a rolling horizon approach where for each year of the period 2007-2022 the model 

determines production decisions and the corresponding dynamic market equilibrium for a 

planning period of 10 years starting with the year under consideration. After each run, the first 

year production decisions and the associated market equilibrium are used to update some of the 

model parameters (such as the composite crop price index, land supplies in each region and crop 
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yields per acre for major crops), based on previously generated endogenous prices, and the 

model is run again for another 10-year period starting with the subsequent year. 

The behavior of agricultural consumers’ behavior is characterized by linear demand 

functions which are specified for individual commodities, including crop and livestock products, 

In the crop and livestock markets, primary crop and livestock commodities are consumed either 

domestically or traded with the rest of the world (exported or imported), processed, or directly 

fed to various animal categories. Export demands and import supplies are incorporated by using 

linear demand/supply functions. The commodity demand functions and export demand functions 

for tradable row crops and processed commodities are shifted upward over time at exogenously 

specified rates. The crop and livestock sectors are linked to each other through the supply and 

use of feed items and also through the competition for land (because the grazing land needed by 

the livestock sector has alternative uses in crop production). 

The biofuel sector distinguishes biofuels produced from corn, sugarcane ethanol and 

cellulosic feedstock with all biofuels being perfect substitutes for each other. Biofuel from 

sugarcane is imported from Brazil and CBI countries subject to policies described above. 

Gasoline is produced domestically as well as imported from the rest of the world. The demand 

for gasoline and biofuels is derived from the demand for VKT. We assume a linear demand for 

VKT as a function of the cost per kilometer and that VKT is produced using a blend of gasoline 

and biofuels. At the individual consumer level (with a conventional vehicle), the two fuels are 

currently perfectly substitutable in energy equivalent units up to a 10% blend. For an individual 

consumer with a flex fuel car the two fuels are substitutable up to an 85% blend. At the 

aggregate level, we consider a representative consumer that owns a vehicle fleet that consists of a 

mix of the two types of vehicles; in 2007,  only 2.9% of vehicles in 2007 were flex-fuel vehicles 
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(EIA 2010). The ability to substitute gasoline for biofuels at the aggregate level is, therefore, 

limited by the mix of vehicles.  It is also limited by the available ethanol distribution network 

and infrastructure for retail ethanol sales. We, therefore, consider gasoline and biofuel to be 

imperfectly substitutable at the aggregate level and use a constant elasticity of substitution 

function to model the aggregate blend of fuel produced. The VKT demand function and CES 

production function are calibrated for the base year assuming a specific value for the elasticity of 

substitution between gasoline and ethanol and observed base year prices and quantities of these 

fuels and VKT. We examine the implications of varying the extent of substitutability on the 

consumption of the two types of fuels and on the agricultural and fuel sectors. The demand for 

VKT is shifted upwards over time and the VKT consumed is determined by the marginal cost of 

kilometers which in turn depends on the marginal costs of gasoline and biofuels.  The shares of 

various fuels are determined endogenously based on fuel prices.  

In the presence of the RFS, the quantity mandate imposes a fixed cost of biofuel on 

blenders. The average cost of the blended fuel (gasoline and ethanol) will fall as the level of 

gasoline consumption increases, but the average cost will be greater than marginal costs for low 

levels of gasoline consumption. Thus, at low levels of fuel consumption blenders can be 

expected to price fuel based on its average cost (if average cost is greater than the marginal cost) 

in order to avoid negative profits. In this case VKT will be determined by the average cost of a 

kilometer rather than its marginal cost. If gasoline consumption is high enough (or if biofuel 

consumption is small) it could be profitable to use marginal cost pricing of the blended fuel. The 

model selects the appropriate rule for pricing the blended fuel depending on whether average 

cost of VKT is greater or smaller than its marginal cost. 

The endogenous variables determined by the model include: (1) commodity prices; (2) 
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production, consumption, export and import quantities of crop and livestock commodities; (3) 

land allocations and choice of practices for producing row crops and perennial crops (namely, 

rotation, tillage and irrigation options) for each year of the 2017-2022 planning horizon and for 

each CRD and (4) the annual mix of feedstocks for biofuel production, domestic production and 

imports of gasoline and consumption of VKT.   

 

IV.2. Algebraic Presentation 

We describe the algebraic form of the numerical model using lower case symbols to 

denote the exogenous parameters and upper case symbols to represent endogenously determined 

variables. The objective function is the sum of discounted consumers’ and producers’ surpluses 

obtained from production, consumption and trade of the crop and livestock products plus the 

surplus generated in the fuels sector over the 16-year planning horizon 2007-2022 and the 

terminal values of standing perennial grasses in 2022. The algebraic expression is given 

explicitly in (1): 
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(1) 

The first integral term in line of (1) represents the areas under the domestic demand 

functions from which consumers’ surplus is derived. Each integral is associated with a crop, 

livestock, or processed commodity for which a domestic market demand is considered 
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(
,t z

DEM denotes the endogenous domestic demand variable in year t; { , , }z i j k } denotes the 

index set for crop commodities (i), processed products from crops (j), and livestock commodities 

(k); (.)zf denotes the inverse demand function for the commodity involved; and d(.) denotes the 

integration variable). The next two integral terms account for the areas under the inverse demand 

functions for exports,
,t z

EXP , and the areas under the import supply functions 
,t z

IMP (such as 

sugar and sugarcane ethanol). The last integral term represents the area under the inverse demand 

function for kilometers traveled (denoted by tKIL ). The demand functions for crop products, 

livestock products and kilometers traveled are all characterized by linear demand functions in the 

current version, but other functional forms, such as constant elasticity demand functions, can be 

incorporated without difficulty.  

The second line in (1) includes the production costs of row crops, perennial crops and 

crop/forest residues collected for biofuel production, and land conversion costs for marginal 

lands converted to the production of perennial crops. The land allocated to row crops and 

perennial crops (acreage) in region r and year t, denoted by , ,t r qACR and , ,t r pACR , respectively, 

may use one of the various production practices which differ by crop rotation, tillage, and 

irrigation. Fixed input-output coefficients (Leontief production functions) are assumed for both 

row crops and perennial crops production. The third term represents the cost of collected crop 

residues (biomass for cellulosic biofuel production) and involves the management options for 

row crops that produce biomass (specifically, corn stover and wheat straw). The amount of 

marginal lands converted for perennial grasses are denoted by , ,t r pACR  and rcc represents the 

cost per unit of marginal land conversion. The last term denotes the costs of converted marginal 
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lands (such as idle land and crop pasture land) for perennial crops. The land conversion costs 

include costs for land clearing, wind rowing and any necessary activities for seedbed preparation. 

The third line in (1) includes the costs associated with livestock activities. The amount of 

livestock is represented by ,t kLIV , and klc denotes the cost per unit of livestock category k (again 

employing Leontief production functions) that is assumed to be the same across all regions. The 

second term represents the total cost of converting primary crops (corn, soybeans, and 

sugarcane) to secondary (processed) commodities (oils, soymeal, refined sugar, HFCS and 

DDGS). The amount of processed primary crop i in year t is denoted by ,t iPRO , and isc denotes 

the processing cost per unit of i.  

The fourth line involves the costs accruing to the fuel sector. The first integral represents 

the area under the supply functions for gasoline from domestic producers and the rest of the 

world, whose consumption and price are to be determined endogenously. The next two terms 

represent the processing costs of corn and cellulosic ethanol in refinery, namely , ,,t c t bETH ETH . 

Finally, the last line reflects the value of the remaining economic life of standing perennial 

grasses beyond the planning period T, denoted by ,r pv , net of the return from the most profitable 

cropping alternative in region r, denoted by rw . The latter is used to account for the opportunity 

costs of land.  

In the model, we assume that the consumers obtain utility from VKT ( tKIL ), which is 

produced by blending gasoline ( tGAS ), corn ethanol ( ,t cETH ), cellulosic ethanol ( ,t bETH ) and 

sugarcane ethanol ( ,t sIMP ). Gasoline and ethanol are assumed to be imperfect substitutes in 

kilometers production while corn ethanol and cellulosic ethanol are perfect substitutes. The total 
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amount of kilometers generated by use of all sources of fuels is formulated using a constant 

elasticity production function as shown in equation (2) below: 

1/
, , ,[ ( ) (1 ) ]     for all  t t t t c t b t s t tKIL ETH ETH IMP GAS t        

  
(2) 

 The regional material balance equations link the production and usage of primary crops, 

as shown in constraint (3) for primary crop product i produced and marketed by region r: 

, , , , , , ,{ }    for all  ,   ,      t r i t r r q i t r qi corn
j

MKT CE y ACR t r i      (3) 

where , ,t r iMKT denotes the amount of primary crop product i sold in the commodity markets and 

, ,r q iy  is the yield of product i per unit of the land allocated to crop production activity q in region 

r. For corn, , ,t r iMKT includes non-ethanol uses and ,t rCE is the amount of corn converted to 

ethanol production (which appears only in the balance constraint for corn). 

The amount of primary crop i available in the market (excluding the corn used for 

ethanol) comes from domestic regional supply ( , ,t r iMKT ). This total amount is either consumed 

domestically ( ,t iDEM ), exported ( ,t iEXP ), processed to secondary commodities ( ,t iPRO ), or 

used for livestock feed ( ,t iFED ). This is expressed in constraint (4) below: 

, , , , , , for all ,t i t i t i t i t r i
r

DEM PRO FED EXP MKT t i        (4) 

Similar to (4), a balance equation is specified for each processed commodity. Like 

primary commodities, processed commodities can also be consumed domestically, exported, or 

fed to animals, as shown in constraint (5) below: 

,, , , , , , ,{ }    for all ,
t jt j t j i j t i i j t r j ddg i corn

r

DEM FED EXP PRO CE t j           (5) 

where ,i j denotes the conversion rate of raw product i to processed product j.  
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A particularly important component of the model that links the crop and fuel sectors is 

the conversion of corn and cellulosic biomass to ethanol. During the conversion of corn a 

secondary commodity, called the Distiller's Dried Grains with Solubles (DDGS), is produced as a 

byproduct. The amount of DDGS produced is proportional to the amount of corn used for 

ethanol, ,t rCE , through a fixed conversion rate ,corn ddg , and it can either be fed to livestock as a 

substitute for soymeal or exported.  

The relations between ethanol production and crop production activities are expressed 

below: 

, ,       for all     
t c t r

r

E CE t          (6) 

, , , , , , ,
, ,

( )      for all 
t b r p t r p r q t r q

r p r q

E by AC ry AC t        (7) 

where   and  denote the amounts of ethanol produced per unit of corn and cellulosic 

feedstock, respectively, and ,r pby and ,r qry are the biomass and crop residue yields in region r for 

respective perennial and crop production activities. 

 Land is the only primary production factor considered in the model. In each region, the 

total amount of land used for all agricultural production activities cannot exceed the available 

land ( ,t ral ), which is specified separately for irrigated and non-irrigated land. Due to the steady 

increase in ethanol consumption the demand for agricultural land is expected to increase through 

the conversion of some marginal lands (not currently utilized) to cropland. The extent of 

conversion is assumed to depend on variations in crop prices over time. Therefore, in the model 

we determine the agricultural land supply ‘endogenously’. Specifically, for a given year t in the 

planning horizon 2007-2022, we solve the model assuming a fixed regional land availability for 

each year of the 10-year production planning period considered in that run. From the resulting 
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multi-year equilibrium solution, we take the first-year values of the endogenous commodity 

prices and use them to construct a composite commodity price index, CPI. Based on the CPI 

generated thereby we adjust the land availability for the subsequent run (which considers another 

10-year planning period starting with year t+1). The land constraint is shown in (8). 

, , , , ,      for all   ,t r q t r p t r
q p

ACR ACR al t r         (8) 

 To prevent unrealistic changes and extreme specialization in land use, which may be 

particularly serious at regional level, we restrict farmers’ planting decisions to a convex 

combination (weighted average) of historically observed acreage patterns ( , ,r ht ih ) where subscript 

ht stands for the observed time periods prior to the base year. Historical land uses may be valid 

when simulating farmer’s planting decisions under ‘normal’ conditions. However, they maybe 

too restrictive for future land uses given the increased demand for ethanol and unprecedented 

land use patterns that are likely to occur in the future to produce the required biomass crops. To 

address this issue we introduce ‘hypothetical’ acreage patterns ( , ,'r n ih ) for each row crop and 

each region. To generate hypothetical acreage patterns (crop mixes), we first use the historical 

data on prices and acreages of row crops in each region to estimate acreage elasticities for each 

row crop with respect to its own price and cross-price changes while controlling other factors, 

such as social- economic changes and time trend. Then we estimate a number of hypothetical 

acreages using these price elasticities and considering a systematically varied set of crop prices. 

The resulting set of actual and hypothetical crop mixes are used in constraint (9) to limit the 

flexibility in planting decisions, where ,i q  represents the share of row crop i in production 

activity q and , ,*t rW  represents the weight assigned to historical or hypothetical crop mixes. The 

latter are defined as variables to be endogenously determined by the model. 
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, , , , , , , , , , ,'     for all  ,  ,     i q t r q r ht i t r ht r n i t r n
q ht n

ACR h W h W t r i            (9) 

The sum of the endogenous weights assigned to individual mixes must be less than or 

equal to 1 (convexity requirement), as shown in equation (10).  

1       for all  t ,r
, , , ,

W W
t r t r n

n

          (10) 

 A similar set of crop mix constraints is introduced for irrigated crops too, which we do 

not show here, using only the historically observed irrigated land use patterns (no hypothetical 

mixes for irrigated crops). 

            Large scale monocultures of perennial grasses may have unforeseen impacts on 

biodiversity and sub-surface water flows. To prevent extreme specialization in the production of 

perennial grasses in some regions, we restrict the land allocated to perennial grasses to less than 

25% of total land available in each region ( ,t ral ). The constraint is shown in (11).  

, , ,0.25*       for all   ,t r p t r
p

ACR al t r         (11) 

In the livestock sector, we define production activity variables (number of animals) at 

national level for each category of livestock except the beef and dairy cattle. Cattle production is 

given special emphasis in the model for two reasons. First, cattle require grazing land, therefore 

compete with crop production activities on total land in each region. Second, besides 

requirements of feed crops directly fed to different types of livestock, DDGS (a byproduct of 

corn ethanol production) is also used as a feed item that may substitute soymeal (both supplying 

protein). The regional cattle production activities are aggregated in (12) to obtain the total cattle 

activity at national level: 

, ,    for all t cattle t r
r

LIV CTL t        (12) 
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where ,t rCTL is the number of cattle stock in region r and year t. Cattle supply is constrained by 

the grazing land availability. Therefore, for each region we specify the grazing rates and the 

supply of grazing land, , ,t r gGL , where g denotes the type of grazing land (namely pasture land, 

forest land and cropland that can be used for grazing -such as wheat and oats). The amounts of 

other livestock (chicken, turkey, lamb, pork and eggs) are also constrained by historical numbers 

at the national level. Constraint (13) below relates the usage of grazing land and cattle activity in 

each region: 

, , , ,/    for all , t r t r g r g
g

CTL GL ga t r        (13) 

where ,r gga denotes the amount of grazing land required per unit of cattle. 

Equations (14) and (15) establish the balances between nutrition needs of livestock 

activities, in terms of protein and calories, and the amounts of nutrients  provided by primary 

feed crops (grains) and byproducts of crops processing (i.e., soymeal and DDGS):  

, , , , , , , ,  for all t, kk nu t k i nu t i k j nu t j k
i j

nr LIV nc F nc F       (14) 

, , ,   for all ,   and ,  used for feed   t z t z k
k

FED F t k z i j     (15) 

where ,z nunc denotes the nutrition content per unit of feed item z, and ,k nunr and , ,t z kF  are the 

required amount of nutrient nu per unit of livestock and the amount of feed item z used by 

livestock category k, respectively. 

 To avoid unrealistic changes in feed mixes, we impose historical feed mixes used by all 

livestock categories. Constraints (16) and (17) constrain the consumption of feed to be within a 

convex combination of historical feed uses. 

, , ,t z z ht t ht
ht

FED hf WF            (16) 
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, 1t ht
ht

WF                 (17) 

Soybean meal and DDGS are substitutes in the provision of protein up to a certain share level. 

Because the share of DDGS in total feed consumption of each livestock category is restricted 

(Babcock et al, 2008), we impose appropriate upper bounds for DDGS to reflect this aspect of 

feeding practices. Livestock commodities can be consumed domestically or exported. The total 

supply of each livestock commodity is then related to the respective livestock production activity 

through a fixed yield coefficient, denoted by ,k sly . Constraint (18) establishes this relationship:  

, , , ,   for all ,  t k t k k s t s
s

DEM EXP ly LIV t k            (18) 

V. Data  

The simulation model uses CRD specific data on costs of producing crops, livestock, 

biofuel feedstocks, yields of conventional and bioenergy crops and land availability. We estimate 

the rotation, tillage and irrigation specific costs of production in 2007 prices for 15 row crops 

(corn, soybeans, wheat, rice, sorghum, oats barley, cotton, peanuts, potatoes, sugarbeets, 

sugarcane, tobacco, rye and corn silage) and three perennial grasses (alfalfa, switchgrass and 

miscanthus) at county level. These are aggregated to the CRD level for computational ease. 

Production of dedicated energy crops is limited to the rainfed regions which include the Plains, 

Midwest, South, and Atlantic, while conventional crops can be grown in the Western region as 

well.1   The primary livestock commodities considered are eggs and milk. The secondary (or 

processed) crop and livestock commodities consist of oils from corn, soybeans and peanuts, 

soybean meal, refined sugar, high-fructose corn syrup (HFCS), wool and meat products such as 
                                                 
1 Western region includes Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, 
Washington and Wyoming; Plains includes Nebraska, North Dakota, Oklahoma,  South Dakota, Texas and Kansas; 
Midwest includes Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio and Wisconsin; South includes 
Alabama, Arkansas, Florida, Georgia, Louisiana,  Mississippi and South Carolina; Atlantic includes Kentucky, 
Maryland, New Jersey,  New York, North Carolina, Pennsylvania, Tennessee, Virginia, and West Virginia. 
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beef, pork, turkey, chicken and lamb. Feedstocks used for biofuel production in the model 

include corn, corn stover, wheat straw, forest residues, miscanthus and switchgrass. 

 

Dedicated Bioenergy Crops: Miscanthus and switchgrass have been identified as among the best 

choices for high yield potential, adaptability to a wide range of growing conditions and 

environmental benefits  in the U.S. and Europe (Gunderson, Davis and Jager 2008; Heaton, 

Dohleman and Long 2008; Lewandowski et al. 2003). Both grasses have high efficiency of 

converting solar radiation to biomass and in using nutrients and water, and have good pest and 

disease resistance (Clifton-Brown J, Y-C and TR 2008; Semere and Slater 2007).  

Switchgrass is a warm season perennial grass native to North America while Miscanthus 

is a perennial rhizomatous grass non-native to the U.S. A key concern with a large-scale 

introduction of a non-native grass, such as miscanthus, is its potential to be an invasive species. 

The miscanthus variety being evaluated in this study as a feedstock for biofuels is the sterile 

hybrid genotype Miscanthus × giganteus that has been studied extensively through field trials in 

several European countries. Switchgrass stands can have a life-span of 15-20 years in a native 

state, but in cultivated conditions the U.S. Department of Energy estimates stand-life at 10 

years.4 In the U.S, miscanthus stands that are more than 20 years old have been observed in 

experimental fields in Illinois (Heaton, Dohleman and Long 2008). This study assumes a life-

span of 10 years for switchgrass and 15 years for miscanthus.  

In the absence of long term observed yields for miscanthus and limited data for 

switchgrass, we use a crop productivity model MISCANMOD to simulate their yields. The 

MISCANMOD estimates yields of miscanthus and Cave-in-Rock variety of switchgrass using 

GIS data, at a 1o by 1o scale, on climate, soil moisture, solar radiation and growing degree days 
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as model inputs, as described in Jain et al. (2010). The Cave-in-Rock switchgrass cultivar studied 

here is an upland variety that originated in Southern Illinois and is cold-tolerant and well-suited 

for the upper Midwest (Lemus and Parrish 2009; Lewandowski et al. 2003). Lowland varieties of 

switchgrass, like Alamo, are most suited for southern US (Lemus and Parrish 2009). Recent 

analysis of data from field trials across the U.S. shows that frequency distributions of yield for 

the upland and lowland varieties were unimodal, with mean (±SD) biomass yields of 8.7 ± 4.2 

and 12.9 ± 5.9 metric tons dry matter per hectare (MT DM/ha) for the two varieties, respectively 

(Wullschlegera et al. 2010). This is consistent with estimates provided by a review of literature 

which shows that annual yield of lowland variety of switchgrass ranges between 11-16 MT DM/ 

ha (Lemus and Parrish 2009) and is about 50% higher than that of the upland variety. We, 

therefore, increase switchgrass yields from MISCANMOD by 50% for all regions other than the 

Midwest (excluding Missouri) to account for higher yields of the lowland varieties. 

The simulated yields show that the post-harvest (delivered) biomass yield of miscanthus 

is about two times the yield of switchgrass at each location. For each crop, these yields vary from 

north to south and from west to east in the U.S. Atlantic states have high yields for miscanthus 

and switchgrass while western states have very low yields due to insufficient soil moisture. 

Furthermore, southern states have higher yields for miscanthus and switchgrass as compared to 

northern states. The average delivered yield of miscanthus is the highest in the Atlantic states at 

31.6 MT DM/ha followed by the South at 30.2 MT DM/ha, Midwest at 23.8 MT DM/ha and the 

Plains at 19.8 MT DM/ha. Corresponding estimates for average switchgrass yield are 16.4, 15.2, 

10.7, 11 MT DM/ha, respectively.5 

The costs of producing miscanthus and switchgrass differ over their lifetime, due to lags 

between time of planting and harvestable yields. Costs of production of miscanthus and 
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switchgrass are developed for each year of their lifetime for each CRD and include the costs of 

inputs including fertilizer, seed and chemicals; machinery required for establishment and harvest 

of bioenergy crops; and storage and transportation. Cost of land for these crops is implicitly 

included given a land constraint in the model. The cost of labor, building repair and depreciation, 

and overhead (such as farm insurance and utilities) are excluded from the costs of production 

since they are likely to be the same for all crops and would not affect the relative profitability of 

crops. Costs of bioenergy crops in the first year differ from those in subsequent years because it 

involves costs of seeding and land preparation to establish the crops. Existing studies vary in 

their assumptions about input requirements, pre-harvesting, harvesting and storage costs of 

bioenergy crops. This study constructs low cost and high cost scenarios for the production of the 

bioenergy crops, and the simulation model will test the sensitivity of the results to these 

assumptions. The low cost scenario considers a low fertilizer application rate, low replanting 

probability, high second-year yield, low harvest loss and low harvesting costs while the high cost 

scenario considers the opposite scenario of production. These are described in Jain et al. (2010). 

Analysis of the break-even annualized costs of producing these grasses shows that there is 

considerable spatial variation in the cost of cellulosic feedstocks in the U.S. and that the mix of 

bioenergy crops will differ across geographic locations. Switchgrass is likely to have relatively 

lower costs of production in some of the northern Midwestern states (Minnesota and Wisconsin) 

and southern states (Texas and Louisiana) that have relatively high switchgrass yields while 

Miscanthus has lower costs in the Southern, Atlantic and central Plain states.  

 

Conventional Crops and Crop Residues: For row crops, we use the historical five year average 

(2003-2007) yield per hectare for each CRD as the representative yield for that CRD 
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(USDA/NASS 2009) under dryland and irrigated land. The yields of corn, soybeans and wheat 

are assumed to grow over time at the trend rate estimated using historical data. These yields are 

also assumed to be price-elastic with the price elasticities estimated econometrically. The trend 

rates and elasticities used in the model and more details of the econometric estimation methods 

can be found in Huang and Khanna (2010). Some crops are grown in rotation with each other to 

increase soil productivity and reduce the need for fertilizers. We adjust crop yields per hectare 

based on crop rotations for each CRD. We obtain 15 crop rotation possibilities for each region of 

the U.S. from USDA/ERS (1997), including corn-soybean rotation, continuous corn rotation, 

fallow-wheat rotation and continuous  rotations for other crops. In Midwestern states where a 

corn-soybean rotation is the dominant rotation practice, we assume observed corn yields to be 

those under a corn-soybean rotation. Corn yields per hectare under a continuous corn rotation are 

assumed to be 12% lower than under a corn-soybean rotation. The fallow-wheat rotation is 

primarily used to conserve soil moisture over a 2-year period for 1 year production, which leads 

to a reduction in wheat yields by 50% in this rotation. The fallow-wheat rotation is widely used 

in the Northern wheat-growing region (such as Washington, Oregon, Idaho, Montana and 

Colorado) and in parts of the Northern Plains states (such as North Dakota, South Dakota, 

Nebraska and Kansas). Some counties in Minnesota and Texas also use the fallow-wheat 

rotation.6  

Corn stover and wheat straw yields for each CRD are obtained based on a 1:1 grain-to-

residue ratio of dry matter of crop grain to dry matter of crop residues and 15% moisture content 

in the grain reported in Sheehan et al. (2003), Wilcke and Wyatt (2002) and Graham, Nelson and 

Sheehan (2007). Similar to Malcolm (2008), we assume that 50% of the residue can be removed 

from fields if no-till or conservation tillage is practiced and 30% can be removed if till or 
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conventional tillage is used. Corn stover yield ranges from 0.16-5.07 MT DM/ha under no-till 

while wheat straw yield ranges from 0.34 to 4.38 MT DM/ha in the U.S. In contrast to 

miscanthus, the average delivered yields for corn stover are the highest in Midwestern and Plain 

states at 4.0 MT/ha followed by the southern and western states at 3.3 and 3.2 MT/ha 

respectively. Atlantic states have the lowest corn stover yield at 2.8 MT/ha. Wheat straw 

delivered yield is highest in the West at 3.1 MT/ha followed by the Midwestern states at 2.3 

MT/ha and less than 2 MT/ha in other regions. 

Costs of producing row crops and alfalfa are obtained from the crop budgets complied for 

each state by state extension services and used to construct the costs of production for each CRD. 

Crop budgets vary by rotation, tillage and irrigation choices. The costs of crop production 

include costs of inputs such as fertilizer, chemicals and seeds, costs of drying and storage, 

interest payments on variable inputs, costs on machinery and fuels and costs of crop insurance. 

The costs of labor, building repair and depreciation, and overhead (such as farm insurance and 

utilities) are excluded from these costs of production since they are likely to be the same for all 

crops and would not affect the relative profitability of crops. We determine the cost of 

production of corn silage by estimating the foregone revenue per hectare by growing corn silage 

instead of corn, the additional cost of fertilizer replacement that is needed for corn silage, and 

harvesting costs as reported in FBFM7. 

Application rates for nitrogen, phosphorous and potassium and seeds for row crops and 

alfalfa vary with crop yields, and differ across CRDs. Other costs of producing crops are 

assumed to be fixed irrespective of crop yields per hectare but differ across states. In addition, 

costs of fertilizer, chemicals and machinery under conventional tillage differ from those under 

conservation tillage.  
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The costs of collecting corn stover and wheat straw include the additional cost of 

fertilizer that needs to be applied to replace the loss of nutrients and soil organic matter due to 

removal of the crop residues from the soil. The fertilizer application rates per dry metric ton of 

stover and straw removed are assumed to be constant across regions and are obtained from 

Sheehan et al. (2003) and Wortmann et al. (2008), respectively. In addition, the collection of 

crop residues involves the costs of harvesting stover and staw (i.e., mowing, raking, baling, 

staging and storage) that are estimated based on the state-specific crop budgets on hay alfalfa 

harvesting. We find that the costs of production of crop residues are higher than those of 

bioenergy crops grown on marginal lands, except for corn stover in Plain states, such as North 

Dakota, South Dakota and Nebraska where corn yields are high due to irrigation. High wheat 

yields in western mountain states (such as in Oregon, Idaho and Washington) can make wheat 

straw in those states competitive with other biomass produced in rain-fed eastern US. 

 

Land Availability: For each of the five types of land (cropland, idle cropland, cropland pasture, 

pasture land and forestland pasture) we obtain CRD-specific data on land availability. CRD-

specific planted acres for 15 row crops are used to obtain the cropland available in 2007 

(estimated at 123 M ha for the 280 CRDs considered here), and to obtain the historical and 

synthetic mixes of row crops. Cropland availability in each CRD is assumed to change in 

response to crop prices. The responsiveness of total cropland to crop prices as well as the own 

and cross-price acreage elasticities for individual crops are obtained from Huang and Khanna 

(2010).  

 Data on idle cropland, cropland pasture, pasture and forestland pasture for each CRD are 

obtained from USDA/NASS (2009). In 2007, the availability of pastureland and forestland 
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pasture is estimated to be 155 M ha and 10.5 M ha, respectively while that of idle cropland is 15 

M ha and of cropland pasture is 13 M ha. Most of the idle cropland in 2007 was enrolled in the 

Conservation Reserve Program (CRP). This size of the CRP decreased to 13 M ha from 2008 

onwards. The analysis here assumes that land enrolled in CRP is preserved at 2008 levels and not 

used for conventional crop or bioenergy crop production.  

Crop and Livestock Sector: In the livestock sector we consider demands for several types of 

meat (chicken, turkey, lamb, beef and pork), wool, dairy and eggs. The demand functions are 

calibrated using the observed quantities consumed and prices and demand elasticities. The latter 

are obtained from Adams et al. (2005). The supply of livestock (chicken, turkey, lamb and pork) 

is constrained by their historical numbers at the national level. The supply of beef is restricted by 

the number of cattle which in turn depends on the amount of grazing land available at regional 

level. The historical livestock data at the national level and production of meat, dairy and eggs 

for 2003-2007 are used to obtain the average livestock productivity. The data on grazing land 

requirements for cattle, nutrition requirements (in terms of protein and grain) for each livestock 

category, and production and processing costs are obtained from Adams et al. (2005). We use the 

nutrient content of feed crops, soymeal and DDGS to find the least cost feed rations for each type 

of livestock.  The price of DDGS is determined by the lagged prices of corn and soymeal using 

the relationship estimated by Ellinger (2008). To prevent unrealistic feed mixes consumed by 

livestock we constrain the consumption of different types of feed based on the historically 

observed levels obtained from USDA/NASS (2009).  

The crops sector consists of markets for primary and processed commodities. The 

demands for primary commodities, such as, corn and soybeans are determined in part by the 

demands for processed commodities obtained from them and by other uses (such as seed). The 
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conversion rates from primary crop commodities to processed commodities are obtained from 

USDA/NASS (2009). Conversion costs are obtained from Adams et al. (2005) and inflated to 

2007 prices using the respective GDP deflator. We use two-year (2006-2007) average prices, 

consumption, exports and imports of crop and livestock commodities to calibrate the domestic 

demand, export demand and import supply functions for all commodities8.  The data on prices, 

consumption, exports and imports are obtained from ERS/USDA. Elasticities are assembled 

from a number of sources including FASOM, USDA and existing literature as shown in Table 1. 

Domestic demands, export demands and import supplies are shifted upward over time at 

exogenously specified rates, listed in Table 1. We obtain projected amounts of crop and livestock 

commodities for domestic consumption, exports and imports for 2010 and 2020 from FAPRI9 

and interpolate then for the intervening years assuming a uniform annual growth rate. 

 

Fuel Sector: We assume a linear demand function for VKT with a price elasticity of -0.2 that 

shifts out by 1% each year10. The elasticity of substitution between gasoline and ethanol is 3.95 

(Hertel, Tyner and Birur 2008). For the supply of gasoline, we consider two gasoline supply 

curves to distinguish domestic gasoline supply and gasoline supply from the rest of the world. 

The short-run supply of domestic gasoline is assumed to be linear with a slope of 0.9 (Greene 

and Tishchishyna 2000) implying a short-run supply elasticity of 0.049 when the oil price is 

$34/BBL  while the short-run gasoline supply to the U.S. from the rest of the world is assumed to 

have a constant elasticity form with a price-elasticity of 2 (National Research Council 2002).  

To calibrate the demand function of vehicle kilometers, production function of vehicle 

kilometers and supply functions of gasoline, data on consumption of kilometers and fuel 

consumption and fuel prices in 2007 are assembled from several sources. The Federal Highway 
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Administration (FHWA) reports that total vehicle-kilometers traveled in 2007 were 5107 B 

kilometers. The Energy Information Administration (EIA) reports that the consumption of 

gasoline and ethanol are 519.4 B liters and 23.4 B liters, respectively, in the U.S. in 2007. The 

EIA reports that average retail price of gasoline that year was $0.72 per liter. We calculate the 

retail price of ethanol as the wholesale rack price plus $0.10 per liter fuel taxes and a $0.05 per 

liter markup minus $0.13 per liter subsidy, yielding $0.61 per liter in 200711. In the benchmark 

case we assume the price elasticity of VKT demand is -0.2 and elasticity of substitution between 

gasoline and ethanol is 3.95 (Hertel, Tyner and Birur 2008). 

We assume linear supply functions for ethanol imports from Brazil and CBI countries, 

and use two-year (2006-2007) average prices and imports of ethanol imports to calibrate the 

ethanol import supply functions. The excess supply elasticity of imported ethanol from Brail and 

CBI counties is assumed to be 2.7 (as in de Gorter and Just (2008)). We calculate the sugarcane 

ethanol price in Brazil and CBI countries as U.S. retail price minus $0.02 per liter transportation 

cost, fuel tax and tariff, and plus subsidy, yielding $0.49 and $0.62 per liter, respectively.12  

Ethanol yield from corn grain is 417.3 liters of denatured ethanol per metric ton of corn 

while cellulosic biofuel yield from an nth-generation stand alone plant is estimated as 330.5 liters 

per metric ton of dry matter of biomass (Wallace et al. 2005). The cost of conversion of corn 

grain to ethanol is estimated as $0.20 per liter in 2007 prices based on EPA estimates (EPA 

2010) while the non-feedstock costs of producing cellulosic ethanol are estimated as $0.37 per 

liter in 2007 prices (EPA 2010). We assume that the current unit cost of conversion of feedstock 

to biofuel, Ccum , is a declining function of cumulative production, i.e., 0 ,b
cumC C Cum  where C0 

is the cost of the first unit of production,  Cum is the cumulative production, b is the experience 

index. We assume b for corn ethanol is equal to -0.20 (Hettinga et al. 2009) and calibrate C0  
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using data on the processing cost and cumulative corn ethanol production in 2007. To calibrate 

the function for cellulosic ethanol we assume Ccum in 2022 is  $0.18 per liter (EPA 2010) and use 

the production quantities specified in the RFS to obtain a value for b of -0.05.13 The feedstock 

and refinery costs of sugarcane ethanol in Brazil and CBI countries are also assumed to be 

declining functions of cumulative production. We assume b for sugarcane ethanol is -0.32 (van 

den Wall Bake et al. 2009). Parameter C0 is calibrated using data on the feedstock and refinery 

costs of sugarcane ethanol and cumulative sugarcane ethanol production in 2007. The growth 

rate of sugarcane ethanol production is assumed to be constant and equal to 8%  (van den Wall 

Bake et al. 2009)  and is used to compute the feedstock and refinery costs of sugarcane ethanol 

for 2007-2022.   

VII. Results 

We first validated the simulation model assuming existing fuel taxes and corn ethanol tax 

credits and compared the model results on land allocation, crop production, biofuel production, 

and commodity prices with the corresponding observed values in the base year (2007). Since the 

corn ethanol mandate was exceeded in 2007 it is not imposed as a binding constraint. As shown 

in Table 2, the differences between model results and the observed land use allocations are less 

than 10%. Food prices are generally within 10% of the observed values except for the wheat 

price which is 12% higher than the actual prices in 2007. The fuel prices and fuel consumption 

are also simulated well, within 5% deviation from the observed values. We consider these results 

as a fairly good sign of the model’s validation capability. 

 We then examine the effects of two policy scenarios on the agricultural and fuel sectors: 

biofuel mandates under the RFS alone, and biofuel mandates with volumetric tax credits. The 

RFS mandates are set as nested volumetric requirements for the production of biofuels at 
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mandated levels for the period of 2007-2022. These mandates serve as the minimum quantity 

restrictions on biofuel production that can shift up if economically competitive with conventional 

fuels through policy support and technological improvements. We then compare model results 

under biofuel policies to those under a business-as-usual (BAU) scenario. The BAU scenario is 

defined as one without any biofuel policy, except for the tariff on biofuel imports which is kept 

unchanged in all scenarios here. In all scenarios considered here we also include a fuel tax on 

gasoline and biofuels, which is set at $0.10 per liter, and assume that the demands for crops and 

VKT increase over time. Results for cropland allocation are presented in Table 3 while Table 4 

shows the results for production and prices of key crop and livestock commodities. The regional 

distribution of land for bioenergy feedstocks are presented in Table 5. Tables 6 and 7 present the 

impact of biofuel policies on the fuel sector and on social welfare. Table 8 contains the results of 

the sensitivity analysis. 

 

Business-As-Usual (BAU) Scenario: In the absence of any government intervention in the biofuel 

market we find that total crop acreage decreases by 0.3% from 121.5 in 2007 to 121.1 M ha in 

2022 with corresponding increases in idle/pasture land. Corn and soybean acreages would 

decrease by 0.8 M ha (2.8%) and 0.1 M ha (0.4%) while wheat acreage would increase by 1.2 M 

ha (5.3%) over the 2007-2022 period.  Land under cotton in 2022 decreases by 0.3 M ha (7.8%) 

compared to 2007. Despite the reduction in corn and soybean acreages, their production would 

increase by 16% and 10% over the 2007-2022 period due to 19% and 10% increases in corn and 

soybean yields. The production of wheat also increases by 25% , which can be attributed to the 

increases in wheat acreage and yields from 2.4 metric tons per hectare to 2.8 metric tons per 

hectare over 2007-2022. In the livestock sector, beef production would increase by 10% between 
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2007-2022.  Despite the increasing demand for corn for biofuel production, corn price decreases 

by 7% in 2022 due to the increase in corn yields. Since corn is a major source of feed for beef 

production, it leads to a reduction in beef price in 2022 by 12% compared to 2007.  Soybean and 

wheat prices change only marginally between 2007 and 2022. There is a significant increase in 

exports of corn, soybean and wheat by 31%, 6% and 38% over the 2007-2022. Exports of beef 

would increase by 30% due to lower beef prices.  

In the fuel sector, we find an 8% increase in the price of VKT and a 7% increase in 

gasoline price in 2022 compared to 2007. Ethanol consumption would be about 28 B liters in 

2022 or 4% of fuel consumed with no government intervention.  Of the cumulative consumption 

of corn ethanol over the 2007-2022 period, a little over 10% is imported from Brazil. 

 

Biofuels Mandate: With corn ethanol production at its maximum allowable level or 56 B liters 

from 2015 and beyond, it could constitute a maximum of two-thirds of the cumulative biofuel 

production between 2007-2022; the remaining mandate is met by advanced biofuels. With the 

nested volumetric provisions of the RFS, however, advanced biofuels can meet more of the 

mandate than the minimum level if they can compete with corn ethanol. Given the assumptions 

about the rate of decline in costs of producing advanced biofuels from cellulosic feedstocks in 

the US (described above), we find that the RFS would lead to the production of about 613 B 

liters of corn ethanol and about 608 B liters of advanced biofuels including 38 B liters of 

sugarcane ethanol imports over the 2007-2022 period. This would increase cumulative 

production of corn ethanol by 107% relative to the BAU over this period. The cumulative 

advanced biofuels (608 B liters) are largely produced using miscanthus (49%) and forest residues 

(22%), with the rest produced using switchgrass, corn stover and wheat straw.  
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The RFS leads to a 6% increase in total cropland (6.86 M ha); most of this is to enable an 

increase in corn production to produce the additional corn ethanol. There is a 16% increase 

(about 4.7 M ha) in land under corn in 2022 compared to the BAU. With a high yielding grass 

like miscanthus, only 4.4 M ha are required for miscanthus production and 3 M ha to switchgrass 

production to produce cellulosic biofuels. Of this 7.44 M ha under bioenergy crops only 0.44 M 

ha is converted from cropland and about 7M ha is from currently idle cropland or cropland 

pasture. Thus, a total 12.14 M ha is required for biofuel production; of this, about 5 M ha of land 

is released by reducing acreage under other crops (including soybeans, wheat, rice, cotton and 

pasture), representing 4% of the 121.5 M ha of cropland in 2007 and the rest is obtained by a 

change in land use at the extensive margin. Corn stover and wheat straw would be harvested 

from 10% and 5% of the land under corn and wheat, respectively, in 2022.  

There is considerable variation in the mix of feedstocks produced across regions. Stover 

is harvested only in the Plain States while wheat straw is harvested mainly in the Western States. 

More than half of the switchgrass acreage is in the Plain states, followed by the Midwest and the 

South. Miscanthus acreage is largely in the Plains and the Midwest followed by the Atlantic and 

Southern States.  This acreage also changes over time; it expands as the mandate requires more 

cellulosic biofuel production. Figure 1 shows the change in land under bioenergy crops over the 

2007-2022 period under the mandate. Acreage under miscanthus expands from less than 1 M ha 

in 2012 to over 4 M ha in 2022. Initially miscanthus and switchgrass acreage are similar as each 

is produced in areas where it has a comparative advantage; in latter years miscanthus acreage 

expands much more rapidly while switchgrass acreage levels off because of the relatively lower 

costs of producing a high-yielding crop like miscanthus. 
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The RFS would significantly affect production, exports and prices of crop and livestock 

commodities. The increase in demand for corn results in an increase in corn production in 2022 

by 18% relative to the BAU. However, corn price in 2022 is still 24% higher than under the 

BAU because 38% of corn production in 2022 is used for biofuel production. Soybean and wheat 

prices in 2022 are also 20% and 7% higher than the BAU due to 8% reduction in their production 

levels. The production of rice and cotton in 2022 would decrease by 8% and 2%, respectively, 

relative to the BAU due to the acreage shifts to the production of corn. This increases rice and 

cotton prices in 2022 by 5% and 2% relative to the BAU. Livestock prices also rise with beef 

price increasing by 8% compared to the BAU due to the increases in feed prices and a 3% 

reduction in beef production. In response to higher prices of crop commodities, export of corn, 

soybean and wheat would decrease by 4%, 11% and 12% relative to the BAU while the exports 

of rice would decrease by 42%. Higher livestock prices also lead to a reduction in beef exports 

by 2% relative to the BAU. 

As a result of the mandate, the volumetric share of ethanol in total fuel consumption 

increases to 21% in 2022. The RFS results in a reduction in cumulative gasoline consumption 

over the 2007-2022 period by 7% and a reduction in gasoline price in 2022 by 8% compared to 

the BAU. While domestic gasoline production falls by 2.5% gasoline imports from the rest of the 

world decrease by 8.5% relative to BAU. The overall cost of VKT falls from $0.087/km to 

$0.085/km; as a result the VKT increases by 0.4% relative to the BAU scenario in 2022. This 

market-based feedback effect on gasoline prices tempers the extent to which biofuels replace 

gasoline.  At a maximum, with perfect substitutability between gasoline and biofuels and a fixed 

price of gasoline, the additional 109 B liters of biofuels produced in 2022 (over and above the 28 

B liters in the BAU) could have displaced an energy equivalent volume of 72 B liters of gasoline. 
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With imperfect substitutability and the reduction in gasoline price, the amount of gasoline 

reduced is 68 B liters; implying a rebound effect on gasoline consumption of about 6%.  

 

Biofuel Mandate and Volumetric Tax Credits: The provision of tax credits for biofuels leads to 

three significant impacts on total biofuel production and the mix of feedstocks used for biofuels. 

First, it increases total biofuel production over 2007-2022 from the minimum mandated level of 

1221 B liters to 1316 B liters. Second, it makes cellulosic ethanol competitive with corn ethanol 

and sugarcane ethanol and reduces cumulative corn ethanol production from 613 B liters under a 

mandate alone to 132 B liters. Cumulative cellulosic ethanol production increases to twice the 

level under a mandate alone, from 570 B liters to 1159 B liters over the 2007-2022 period. Third, 

it increases the share of miscanthus and switchgrass in cumulative advanced biofuels (cellulosic 

biofuels plus sugarcane ethanol) from 49% and 18% under a mandate alone to 57% and 21%. The 

corresponding shares of ethanol imports and biofuel produced from forest residues fall from 6% 

and 22% under a mandate alone to 2% and 13%.  The reduction in production of corn ethanol 

(relative to the RFS) reduces the acreage under corn by 8.4 M ha. Of this, about 6 M ha is 

diverted to other conventional crops while the rest is diverted to miscanthus and switchgrass.  In 

addition to this, 10.6 M ha of idle/cropland pasture is converted to produce these energy crops. 

The increase in biofuels produced from miscanthus leads to an increase in the land under 

miscanthus from 4.4 M ha under a mandate alone to 8.7 M ha under a mandate and volumetric tax 

credits and a corresponding increase in land under switchgrass from 3 M ha to 4.2 M ha. 

Switchgrass acreage expands in all rainfed regions as does miscanthus acreage.  In particular, 

these tax credits enable miscanthus acreage to more than double in the Midwest and to expand by 

more than 50% in the Atlantic States. The biofuel tax credits also increase the acreage from which 

 

 

 



40 
 

corn stover and wheat straw are harvested in 2022, to 40% of corn acres and 9% of wheat acres, 

respectively. With the tax credits, it is profitable to harvest corn stover in the Midwest and to 

harvest wheat straw in the Plains and Southern States. Switchgrass acreage expands in all rainfed 

regions as does miscanthus acreage.  The expansion in acreage of energy crops over time is much 

more rapid for miscanthus than for switchgrass (Fig.1). The volumetric tax credits also make the 

production of switchgrass and miscanthus viable earlier than otherwise. Moreover, they change 

the relative profitability of growing miscanthus and switchgrass. After 2016,  miscanthus acreage 

continues to expand while switchgrass acreage levels off and even declines in later years. This is 

because volumetric subsidies increase the relative profitability of biofuels with higher yields per 

hectare of land. After 2016, miscanthus and switchgrass compete for marginal land in the same 

locations and the tax credits increase the relative profitability of  miscanthus in those locations. 

The change in the composition of biofuels due to the subsidy changes the total land under 

crop production and under various row crops. Total cropland increases by 1.1 M ha relative to 

that under the RFS alone, due to an expansion in acreage under energy crops. Acreage under 

corn and corn production in 2022 declines by 13% relative to the BAU scenario; corn production 

in 2022 is, however, still higher than that in 2007 under the BAU due to productivity increase. In 

comparison to BAU, acreage under soybeans and soybean production in 2022 would increase by 

2% and 3%, respectively. The reduction in total cropland availability results in a decrease of 1.5 

M ha in acreage under wheat, rice, cotton and pasture compared to the BAU. However, the 

acreage under these crops in 2022 under a mandate and subsidy are still higher than those under 

a mandate alone. 

The increase in the production of cellulosic biofuels due to biofuel subsidies alleviates 

the adverse impact of the mandate on the prices of crop and livestock commodities. Corn and 
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soybean prices in 2022 would be 24% and 16% lower than under a mandate alone while beef 

price in 2022 would be 6% lower. In comparison to the BAU, corn price in 2022 is 6% lower due 

to productivity increase and decrease in demand for corn ethanol. Prices of soybeans, wheat, rice 

and cotton are similar to those under the BAU, deviating from -1% for rice to 3% for wheat. Beef 

price is about 1% higher relative to the BAU. In response to lower prices of corn, soybeans and 

rice, exports demand for these commodities would increase by 0.7%, 0.1% and 2% relative to the 

BAU.  Lower beef price also leads to an increase in beef exports by 11% relative to the BAU. 

The volumetric tax credits result in consumer prices of $0.54 per liter for corn ethanol 

and $0.46 per liter for cellulosic ethanol that are significantly lower than those under a mandate 

alone while the gasoline price is marginally higher due to increased demand for fuel relative to 

the mandate alone. Relative to the RFS alone, cumulative VKT over the 2007-2022 period 

increases by 581 B kilometers (0.7%), while gasoline consumption increases by 4.6 B liters 

(0.05%) and biofuel consumption increases by 95.38 B liters (8%). The tax credits lower the 

overall cost of fuel and thus the cost per kilometer by 6%. 

 

VII.2. Social Welfare Effects of Biofuel Policies 

 We use the modeling framework presented here to estimate the changes in consumer and 

producer surplus in each of the markets in the fuel and agricultural sector considered here and the 

change in government revenues due to fuel taxes/subsidies.  We present the change in social 

welfare with the RFS compared to the BAU and the change in social welfare with the RFS and 

volumetric tax credits relative to the RFS alone in Table 7. As described above, the RFS leads to 

lower gasoline price but higher costs of corn ethanol and cellulosic biofuels; nevertheless it 

lowers cost per kilometer. Therefore, it increases the consumer surplus of the vehicle kilometer 
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consumers. The RFS also raises conventional crop prices and by increasing demand for residues 

and energy crops it raises returns from existing land as well as from marginal land that was 

otherwise not used for agricultural production. It, therefore, benefits agricultural producers. This 

is at the expense of agricultural consumers; only a portion of these are, however, domestic. Thus 

some of the loss in surplus is borne by foreign consumers. The RFS hurts gasoline producers by 

lowering demand for gasoline and its price. However, with two-thirds of the cumulative gasoline 

consumption over the 2007-2022 period being imported, the bulk of the loss in producer surplus 

is borne by foreign oil producers. As a result, the RFS leads to an increase in net present value of 

social welfare (in 2007 dollars) of $122 B relative to the BAU. It also increases cumulative 

biofuel production relative to the BAU by 890 B liters, implying a per liter benefit of $0.14.  

 As compared to the RFS, the provision of volumetric tax credits lowers crop prices and 

the cost per kilometer; therefore, they benefit agricultural consumers and vehicle kilometer 

consumers. Moreover, they benefit producers of cellulosic feedstocks by further increasing 

demand for crop residues and energy crops. However, producers of conventional crops are 

adversely affected as are gasoline producers. There is a significant government expenditure of 

$221 B in present discounted value over the 2007-2022 period. As a result, aggregate social 

welfare is $79 B lower than under the RFS alone. Focusing only on tax payer cost of these tax 

credits would significantly overestimate the cost of additional biofuel production.  By estimating 

welfare cost we consider not only the costs to tax payers but also the net costs to the economy 

after considering the gains and losses to fuel and crop consumers and producers.  The tax credits 

do lead to additional biofuel production over and above the RFS alone (by 95 B liters, that is by 

about 8%) over the 2007-2022 period, implying a welfare cost of $0.83 per liter of biofuel. In 

gasoline energy equivalent terms, this implies a cost of about $1.25 per liter.  
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Although our estimate of the welfare cost of biofuel is lower than the direct cost to tax 

payers are per liter cost of additional biofuel is higher than that obtained by the CBO ( ), because 

the incremental volume of biofuels attributable to the tax credits is lower than their assumption. 

The low volume of incremental biofuel attributed to the tax credits in this study is due to our 

assumption that the volume of biofuel mandated by the RFS will be achieved even in the absence 

of a tax credit.  In the event that this is not the case, or if there are other constraints to increasing 

biofuel production, then the incremental biofuel production due to these tax credits could be 

smaller or larger than that estimated here. Moreover, the welfare cost of these tax credits cannot 

be disaggregated into those for corn ethanol and those for cellulosic biofuels since each of these 

tax credits not only has a direct effect on the particular type of biofuel towards which it is 

targeted but also indirectly affects the production of the other type of biofuel by changing their 

relative costs. Thus, it is the combined effect of both the volumetric tax credits for corn ethanol 

and cellulosic biofuels that together determines the effect on food and fuel prices and on social 

welfare. 

 

VII.3. Sensitivity Analysis 

We examine the sensitivity of our results to changes in some key assumptions about 

technology and cost parameters in the agricultural sector (see Table 8), such as, the rate of yield 

increase of row crops, the costs of producing bioenergy crops and land availability for bioenergy 

crops. Jain et al.(2010) describe two scenarios for the costs of production of miscanthus and 

switchgrass, a low cost and a high cost scenarios. The benchmark case considered the low cost of 

miscanthus and switchgrass production described there. We now examine the implications of the 

costs of production being less optimistic for miscanthus14 than assumed in the benchmark case 
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but the same for other feedstocks as in the benchmark case. We also examine the implications of 

constraining the amount of land in a CRD that can be used for bioenergy crops to 10% instead of 

25% assumed in the benchmark case. In each case, only one parameter is changed at a time while 

all other parameters remain the same. We report the results for the biofuel mandate alone (M) 

and biofuel mandates plus volumetric tax credits (MS) scenarios. We present the percentage 

variations due to the parameter changes relative to the same policy scenarios with the benchmark 

parameters.  

We find that compared to the benchmark case, a 50% reduction in rate at which crop 

productivity reduces the acreage under corn under the RFS by about 5%, increases corn price by 

2% and decreases the production of corn ethanol by 25%. It increases cellulosic biofuel 

production by 27% and acreage under miscanthus and switchgrass increases by 31% and 7%. 

This raises the marginal cost of feedstocks for cellulosic biofuel production and makes it 

profitable to increase the area from which corn stover and wheat straw are harvested by 164% 

and 53%, respectively. The volumetric subsidies now shift land even more towards miscanthus 

and switchgrass (since they are relatively higher yielding feedstocks) and lowers acreage under 

corn stover and wheat straw acreages by 9% and 7%, respectively. Corn and soybean prices are 

7% and 4% higher than in the benchmark case. The welfare cost of the tax credits is lower than 

in the benchmark case by 12% primarily because the producers of conventional crops and of 

bioenergy crops are better off in this case; the former due to higher crop prices and the latter due 

to greater demand for cellulosic biofuels. Incremental biofuel production due to the tax credits is 

higher due to greater imports and the shift towards cellulosic biofuels. As a result the welfare 

cost per liter of biofuels decreases to $0.7.   



45 
 

Raising the production cost of miscanthus relative to other feedstocks leads to a 

significant decline in the production of miscanthus and expansion in the use of crop residues and 

switchgrass to produce cellulosic biofuels. It increases the share of corn ethanol, ethanol from 

forest residues and of ethanol imports in the cumulative biofuel production under the RFS and 

under the RFS and tax credit scenario. The price of cellulosic biofuels increases by 16% but 

overall impact on VKT and on gasoline consumption is small. There is a 3% reduction in 

cumulative biofuel consumption in the MS scenario relative to the benchmark due to the absence 

of the high yielding feedstock, miscanthus; same level of land under bioenergy crops now yields 

a lower volume of biofuels. The welfare cost of the tax credits is significantly lower in this case 

but so is the incremental biofuel production due to the tax credit, resulting in an increase in the 

per liter welfare cost to $1.4.  

A reduction in land available for bioenergy crops to a maximum of 10% of the CRD 

reduces the share of cellulosic biofuels to meet the RFS by 10% while increasing the price of 

cellulosic biofuels by 5%. Biomass feedstock producers are better off as are row crop producers. 

The welfare costs of the subsidies are similar to those in the benchmark case, but cumulative 

biofuel production is 5% lower than in the benchmark case (by 63 B liters). As a result the 

welfare cost of biofuels is substantially higher.  

  In general, we find that changes in technology and cost parameters that limit the 

potential to expand production of high yielding biofuels reduce the ability of the volumetric tax 

credits to significantly increase biofuel production. The tax credits then primarily support biofuel 

production that occurs anyway to meet the RFS, provided the RFS is binding; resulting in high 

welfare costs per liter of biofuel production.  
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VIII. Conclusions and Discussion 

 Biofuel mandates and subsidy policies have been enacted with the intention of promoting 

renewable alternatives to reduce dependence on gasoline. Concerns about the competition they 

pose for land and its implications for food prices have led to a shift in policy incentives towards 

second generation biofuels from non-food based feedstocks. This paper develops a framework to 

examine the economic viability of these feedstocks and the extent to which biofuel expansion 

will imply a trade-off between food and fuel production. It analyzes the differential incentives 

provided by alternative policies for biofuel production and the mix of biofuels and the welfare 

costs of biofuel policies.  

    Even with the option of high yielding energy crops, we find that a biofuel mandate 

(without any subsidies) would rely on corn ethanol to meet 50% of the RFS mandate over 2007-

2022; miscanthus and forest residues would produced 49% and 22% of the cumulative advanced 

biofuels over 2007-2022 with switchgrass, crop residues and ethanol imports meeting the rest. In 

the benchmark case, the mandate leads to a 16% increase in corn acreage which is largely met by 

reducing acreage under soybean and other crops. Despite gains in corn productivity over 2007-

2022 the corn price in 2022 is 24% higher than in the BAU. In response to higher crop and 

livestock prices, exports of corn, soybeans, wheat and beef decline relative to the BAU. The 

mandate lowers the price of gasoline by 8% in 2022 relative to the BAU which results in a 

reduction in the cost per kilometer and increases cumulative VKT by 0.4% over the 2007-2022 

period. The benefits to fuel consumers and agricultural producers more than offsets the costs to 

domestic agricultural consumers and gasoline producers; consequently the RFS raises net present 

value of cumulative social welfare relative to the BAU by $122 B. This ranges between $110-

$132 across the scenarios considered here. 
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Volumetric tax credits for corn ethanol and cellulosic biofuels significantly enhances the 

competitiveness of cellulosic biofuels relative to corn ethanol and shifts the mix of biofuels such 

that 88% of the cumulative biofuels over the 2007-2022 would now be produced from cellulosic 

feedstocks. This mitigates the competition for land and reduces corn, soybean, wheat, rice, cotton 

and beef prices relative to those with a mandate alone. Corn price in 2022 would now be 6% 

lower than in the BAU. These tax credits lead to substantial reduction in the consumer price of 

biofuels and in the cost per kilometer, despite marginal increases in the gasoline price. As a 

result these tax credits benefit fuel consumers, agricultural consumers, gasoline producers and 

biomass producers. However, they impose significant costs on tax payers and on conventional 

crop producers (by eventually leading to a transition from corn ethanol to cellulosic biofuels). As 

a result they lower social welfare relative to the RFS alone. The discounted present value of the 

welfare costs of these tax credits range between $79 B and $118 B over the 2007-2022 period.  

The incremental gain in total biofuel production beyond the RFS alone ranges between 32 B 

liters and 99 B liters across the scenarios considered here. Thus, the welfare cost per liter varies 

between $0.7 per liter and $2.6 per liter.  These welfare costs are based on the premise that the 

mandated volume of biofuel production is achieved even in the absence of these tax credits. 

Moreover, these cost estimates are sensitive to assumptions about the costs of producing 

cellulosic feedstocks and the extent to which there might be constraints to the expansion of 

bioenergy crop production on marginal land. 

 Our analysis also shows the role of productivity enhancing technologies both in the 

traditional crop sector and the bioenergy sector. Yield increases for major crops like, corn and 

soybeans and the use of high yielding, long-lived energy crops, like miscanthus contribute to 

mitigating the competition for land and the impact of biofuel production on food prices. Corn 
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price in 2022 would be 2-7% higher if the rate of productivity growth of row crops is 50% of that 

assumed in the benchmark case. High relative costs of miscanthus production result in 14% 

lower cumulative cellulosic biofuel production under the RFS and 3% lower with the RFS and 

tax credits compared to the corresponding benchmark case.  

Our analysis abstracted from considerations of the external benefits of biofuel production 

in the form of energy security and reduced greenhouse gas emissions relative to gasoline as well 

as other benefits of ethanol such as its additive value as an oxygenate for gasoline. It does, 

however, show how high these benefits would need to be to offset the economic welfare costs of 

tax credits estimated here.  

 
Endnotes: 
                                                 
1 http://www.agmrc.org/renewable_energy/ethanol/the_relationship_of_ethanol_gasoline_and_oil_prices.cfm# 
2 http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=110_cong_public_laws&docid=f:publ246.pdf 
3 Western region includes Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, 
Washington and Wyoming; Plains includes Nebraska, North Dakota, Oklahoma,  South Dakota, Texas and Kansas; 
Midwest includes Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio and Wisconsin; South includes 
Alabama, Arkansas, Florida, Georgia, Louisiana,  Mississippi and South Carolina; Atlantic includes Kentucky, 
Maryland, New Jersey,  New York, North Carolina, Pennsylvania, Tennessee, Virginia, and West Virginia. 
4 http://southwestfarmpress.com/energy/121107-switchgrass-challenges/ 
http://www.osti.gov/bridge/servlets/purl/771591-9J657S/webviewable/771591.pdf 
5 Delivered yields incorporate losses during harvesting, storing and transporting. Switchgrass yield is typically about 
one-half of that for miscanthus. Exceptions to this are some northern states and some southern states where 
switchgrass yields are relatively higher than those for miscanthus because minimum temperature are too low in the 
north and not low enough in the south for miscanthus growth. Perlaack et al. (2005) assume switchgrass yields of 18 
MT ha-1 in a high yield scenario and 12 MT ha-1 otherwise.  
6 Information on crop rotation for each state is obtained from ERS/USDA report “Production Practices for Major 
Crops in US Agriculture, 1990-1997” 
7 www.farmdoc.uiuc.edu 
8 An exception is the price of milk which is kept fixed at its observed 2006-2007 level. 
9 http://www.fapri.iastate.edu/outlook/2010/text/Outlook_2010.pdf 
10 We obtain historical data on vehicle kilometers travelled (VKT) from Federal Highway Administration website: 
http://www.fhwa.dot.gov/policyinformation/statistics/2008/vm202.cfm,  and use average growth rate of VMT from 
2000-2008. 
11 www.neo.ne.gov/statshtml/66.html 
12 Transportation cost of ethanol is estimated to be $0.02 per liter in Lasco et al (2010). The difference in ethanol 
prices in Brazil and CBA countries can be attributed to additional processing cost in CBA countries because ethanol 
needs to be dehydrated before admitted to the U.S. 
13 These functions imply that the per liter conversion cost for corn ethanol declines by about 27% while that for 
cellulosic ethanol declines by 50% by 2022. 
14 This scenario considers higher fertilizer application rates, lower yields in the second year and higher yield losses 
during harvest as well as higher harvesting costs per ton. 
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 Table 1: Domestic Demand, Export Demand, Import Supply Elasticities1 

Commodity Uses Shift (%)2 Elasticities Sources 
Barley Domestic  0.0 -0.3 USDA/ERS (2009) 
 Export 2.0 -0.2 Adams et al. (2005) 
Corn Domestic 0.8 -0.23 Adams et al. (2005) 
 Export 2.0 -0.26 Fortenbery and Park (2008) 
Cotton Domestic -2.0 -0.18 Adams et al. (2005) 
 Export 0.3 -0.65 Bredahl et al. (1979) 
Oats Domestic -0.4 -0.21 Adams et al. (2005) 
Sorghum Domestic -1.5 -0.2 Adams et al. (2005) 
 Export 2.0 -2.36 Bredahl et al (1979) 
Wheat Domestic 1.0 -0.3 USDA/ERS (2009) 
 Export -2.0 -1.67 Bredahl et al. (1979) 
Soybean Domestic 1.4 -0.29 Piggott and Wohlgenant (2002) 
 Export 0.4 -0.63 Piggott and Wohlgenant (2002) 
Soybean Meal      Export 2.0 -1.41 Adams et al. (2005) 
Vegetable Oil3 Domestic 0.2 -0.18 Piggott and Wohlgenant (2002) 
 Export 2.0 -2.24 Piggott and Wohlgenant (2002) 
Rice Domestic 2.0 -0.11 Gao et al.(1995) 
 Export -0.4 -1.63 Gao et al.(1995) 
Peanut Domestic 0.8 -0.25 Carley and Fletcher (1989) 
Beef Domestic 0.3 -0.75 FAPRI (2009) 
 Export 2.0 -0.8 Adams et al. (2005) 
Chicken Domestic 1.4 -0.46 Adams et al. (2005) 
 Export 1.4 -0.8 Adams et al. (2005) 
Eggs Domestic 0.8 -0.11 Adams et al. (2005) 
 Export    
Pork Domestic 1.0 -0.83 Adams et al. (2005) 
 Export 2.0 -0.8 Adams et al. (2005) 
Turkey Domestic 0.8 -0.53 Adams et al. (2005) 
 Export 1.4 -0.8 Adams et al. (2005) 
Lamb Domestic 0.0 -0.4 Adams et al. (2005) 
 Import    
Wool Domestic 0.0 0.4 Adams et al. (2005) 
 Export 0.0 -0.8 Adams et al. (2005) 
Refined Sugar Domestic 0.0 -0.368 Adams et al. (2005) 
 Import 0.0 0.99 Adams et al. (2005) 
HFCS Domestic 0.5 -0.91 Adams et al. (2005) 
 Export 2.0 -0.2 Adams et al. (2005) 
Notes:1. This table shows the commodities that can be used for domestic consumption or traded with the rest of the 
world. Domestic demand for commodities excludes uses for feed and ethanol production, and prices are fixed at 
2007 prices if the elasticities are zeros.  
         2. Demand shifts are computed based on FAPRI 2010 U.S. and World Agricultural Outlook. 

3. Vegetable oil includes corn oil, soybean oil and peanut oil. 
 
 
 
 
 
 



50 
 

 Table 2: Model Validation for 2007 
  Observed Model Difference (%) 

Land Use (M Ha) 
Total Land  123.05 121.76 -1.04 
Corn 34.31 31.12 -9.30 
Soybeans 28.15 28.41 0.94 
Wheat 21.52 22.46 4.38 
Sorghum 2.69 2.93 9.05 

Commodity Prices ($/MT) 
Corn 142.51 133.22 -6.52 
Soybeans 303.69 319.40 5.17 
Wheat 197.31 220.33 11.67 

Fuel Sector 
Gas Prices ($/Liter) 0.72 0.72 0.00 
Ethanol Prices ($/Liter) 0.61 0.61 -0.49 
Gas Consumption (B Liters) 519.94 519.34 -0.11 
Ethanol Consumption (B Liters) 23.51 24.22 3.02 
Kilometers Consumption (B Kms) 4863.29 4863.29 0.00 

 
 
 
 
Table 3: Effect of Biofuel Policies on Land Use in 2022(M Ha) 
  

Baseline 2007 Baseline Mandate 
Mandate with 
Tax Credits 

Total land 121.51 121.13 127.99 129.06 
Corn 29.74 28.91 33.55 25.14 
Soybeans 29.85 29.74 27.50 30.09 
Wheat 23.02 24.24 22.25 23.35 
Stover   3.45 10.10 
Straw   1.01 1.99 
Miscanthus1   4.43 8.70 
Switchgrass2   3.03 4.16 
1 Of this, 0.32 M ha and 1.88 M ha are on regular cropland under the Mandate and Mandate and Tax Credits 
respectively.  
2 Of this, 0.12 M ha and 0.43 M ha are on regular cropland under the Mandate and Mandate and Tax Credits 
respectively.  
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Table 4: Effect of Biofuel Policies on Commodity Prices and Production 

  
Baseline (2007) 

  
BAU (2022) 

  
Mandate (2022) 

  
Mandate with Tax Credits 

                     (2022) 

  
Prices 
($/MT) 

Production 
(M MT) 

Prices 
($/MT) 

Production 
(M MT) 

      Prices 
($/MT) 

Production 
(M MT) 

Prices 
($/MT) 

Production 
(M MT) 

Corn 127.0 276.7 117.6 321.5 145.9 380.0 111.0 282.2 

Soybean 283.4 81.4 287.0 89.5 343.6 82.9 288.0 92.6 

Wheat 213.8 54.7 212.9 68.5 228.6 63.3 219.5 67.9 

Beef 1298.1 16.6 1136.3 18.3 1230.2 17.8 1151.2 18.2 
 

 
 
 
Table 5: Regional Distribution of Cellulosic Feedstocks in 2022 (M Ha) 

 Stover Straw Switchgrass Miscanthus 
Mandate  

Midwest   0.47 1.25 
South   0.44 0.79 
Plains 3.44 0.22 1.91 1.36 
Atlantic   0.21 1.03 
West  0.79   

Mandate with Subsidies 
Midwest 6.67  0.54 3.08 
South  0.19 0.67 1.09 
Plains 3.22 0.75 2.43 2.91 
Atlantic   0.53 1.63 
West 0.20 1.04   
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Table 6: Effect of Biofuel Policies on Fuel Sector  
 

Baseline 2007 Baseline 2022 Mandate 
Mandate with Tax 

Credits 
Prices in 2022 ($/Km or $/Liter) 

Vehicle Kilometers 0.080 0.087 0.085 0.080 
Corn ethanol 0.69 0.66 0.70 0.54 
Cellulosic ethanol   0.70 0.46 
Gasoline 0.73 0.78 0.72 0.73 

Consumption in 2022 (B Liters or B Kilometers) 
Vehicle Kilometers 4863.29 5513.13 5531.19 5595.92 
Domestic Gasoline  172.44 179.30 171.68 172.49 
Gasoline from ROW  354.85 409.24 349.11 355.26 
Ethanol 15.24 27.70 136.27 136.27 
Corn 13.79 24.82 53.35 0.00 
Stover   5.74 17.72 
Straw   1.02 1.81 
Miscanthus   47.73 84.79 
Switchgrass   13.01 17.25 
Ethanol Imports 1.45 2.88 3.23 2.24 
Forest Residues   12.19 12.46 

Cumulative Consumption (Over 2007- 2022) (B Liters or B Kilometers) 
Vehicle Kilometers  82885.78 83235.64 83817.33 
Domestic Gasoline   2815.63 2747.38 2748.44 
Gasoline from ROW  6107.17 5586.40 5589.91 
Ethanol  330.78 1220.98 1316.36 
Corn  295.82 613.22 131.66 
Stover   24.75 70.71 
Straw   2.14 9.36 
Miscanthus   299.76 674.18 
Switchgrass   107.87 246.22 
Ethanol Imports  34.96 38.22 25.60 
Forest Residues   135.03 158.64 
 
 
 
Table 7: Welfare Costs of Biofuel Policies 

 Mandate Relative 
to BAU 

Mandate with Tax Credits 
Relative to Mandate 

Change in Social Welfare ($B) 122.80 -78.93 
Additional Cumulative Biofuel (B Liters) 890.21 95.38 
Benefit/ Cost per liter of additional biofuel  
($/Liter) 

0.14 -0.83 
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Table 8: Sensitivity Analysis to Technology Parameters1 
.Rate of yield  

increase reduced by 
50% 

High cost of 
production of 
miscanthus  

Upper limit of 10% 
on energy crop 
acres in a CRD  

 M MS M MS M MS 
Land Use in 2022 (%) 

Total Land 1.0 0.1 0.4 0.9 -1.2 -2.0 
Corn -4.8 -0.1 1.3 -1.6 1.2 1.6 

Soybeans 4.1 -0.2 0.4 -3.0 0.0 -0.6 

Wheat 1.7 0.6 -0.9 -1.6 0.8 1.6 

Cellulosic Feedstock Acres in 2022 (%) 

Stover 164.3 -8.9 345.8 111.0 209.2 92.3 

Straw 52.8 -6.5 122.0 822.2 52.8 591.6 

Miscanthus 31.3 3.6 -100.0 -99.0 -20.1 -5.7 

Switchgrass 6.6 0.5 149.8 305.9 -42.6 -61.0 

Crop Production and Prices in 2022 (%) 

Corn Production -13.3 -7.9 2.2 0.2 2.3 2.3 

Corn Price 2.4 6.6 0.0 -3.1 0 0 

Soybeans Production -1.2 -5.5 -0.7 -2.2 0 -0.9 

Soybeans Price 3.5 4.4 1.7 4.4 -0.1 2.2 

Wheat Production -6.6 -7.6 0 -1.8 0.7 0.3 

Wheat Price 7.0 6.1 0 1.4 0 -0.9 

Fuel Prices in 2022 and Cumulative Consumption of Fuels and Kilometers (%) 

Gasoline Price -0.04 -0.01 -0.01 -0.3 -0.1 -0.3 

Corn Ethanol price 1.3 3.2 -1.7 -1.4 -1.5 -0.3 

Cellulosic Ethanol Price 1.5 0.7 1.8 16.2 5.7 16.4 

Gasoline Consumption  -0.05 -0.03 -0.03 0.1 -0.03 0.3 

Corn Ethanol  -25.3 -2.8 12.9 -3.8 8.9 1.7 

Cellulosic Ethanol  27.1 0.6 -14.1 -2.8 -9.8 -5.9 

Ethanol Imports 2.0 0.7 3.0 7.2 2.7 9.9 
Total Biofuels  0 0.25 0 -2.74 0 -4.84 
Kilometer Consumption -0.04 -0.01 -0.03 -0.1 -0.03 -0.1 

Welfare Cost of Biofuels 

Welfare Cost ($ B)2 
110.2 -69.6 132.6 -81.3 133.7 -83.2 

Additional Biofuels (%)  8.1  4.9  2.6 

Welfare Cost ($/liter)  $0.71  $1.37  $2.62 
1Percentage changes are calculated relative to the same policy in the benchmark scenario 
2 Welfare cost of mandate is change in welfare relative to BAU; welfare cost of mandate and 
volumetric tax credits is change in welfare relative to mandate alone. 
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Figure 1:   Land Under Energy Crops   
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