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When the endogenous variable enters the structural equation non-parametrically the linear Instrumental
Variable (IV) estimator is no longer consistent. Non-parametric IV (NPIV) can be used but it requires
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we reject the maintained assumption of the independence of the instruments and the expected value
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1 Introduction

The problem of endogenous regressors in simultaneous equations models has a long history in

econometrics and empirical studies. The econometric problem is further complicated when the en-

dogenous variables enter non-parametrically in the structural equation because linear Instrumental

Variable approaches are no longer valid.

There are currently two approaches to identification for this case. The non-parametric instru-

mental variables (NPIV) approach uses conditional moment restrictions (CMRs) to identify the

structural equation (see Newey and Powell (2003), Ai and Chen (2003), Hall and Horowitz (2005),

Blundell, Chen, and Kristensen (2007) and Horowitz (2011a)). The structural equation is the

solution to the integral equation implied by the CMRs. The main challenge arises from the non-

continuity of these estimators with respect to the joint distribution of the data - the ill-posed inverse

problem - and there is a large literature on restrictions that make the problem well-posed (see e.g.

Newey and Powell (2003), Florens (2003), and Darolles, Florens, and Renault (2006)).1

A second approach is the non-parametric control function estimator of Newey, Powell, and Vella

(1999) (NPV-CF). The approach starts by using conditional mean decomposition to create control

variables that are orthogonal to all of the instruments. For identification they consider the function

that is the expected value of the structural error conditional on the instruments and the control

variables (and thus conditional also on the endogenous variables because of the way the control

variables are constructed). They then assume that this conditional expectation is independent of

the instruments conditional on the control variables. This suffices for identification because the

control function - the expected value of the structural error conditional on the instruments and

controls - is then only a function of the control variables and because the control variables are

measurably separated from the regressors as long as there are valid instruments. This implies that

including (possibly functions of) the control variables conditions out the variations in the endogenous

variables that are correlated with the structural error.

A weakness of this identification assumption is that it does not hold in some economic settings

where endogeneity is a first-order concern. These include estimation of returns to education, pro-

duction functions, and demand or supply with non-separable reduced forms for equilibrium prices.

We provide some examples in Section 3 to illustrate why this assumption does not hold.

Our main contribution is to develop an estimator for non-linear and non-parametric regressions

1 For example, assuming the structural function belongs to a class of compact functions and using a sieve approach

is one way to make the problem well-posed. This compactness assumption, however, can be relaxed and instead various

regularization methods have been used to stabilize the inversion of the integral equation (see Tikhonov, Goncharsky,

Stepanov, and Yagola (1995), Engl, Hanke, and Neubauer (1996), Kress (1999), Chernozhukov and Hansen (2005),

Hall and Horowitz (2005), Blundell, Chen, and Kristensen (2007), Chen and Pouzo (2009), Chen and Pouzo (2011),

and Darolles, Fan, Florens, and Renault (2011)). Hall and Horowitz (2005) and Chen and Reiss (2011) studied

convergence properties of the nonparametric IV estimators (also see Johannes, Bellegem, and Vanhems (2011) and

Horowitz (2011b)). Horowitz (2007) developed conditions under which the estimator in Hall and Horowitz (2005) is

asymptotically normal.
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that is consistent in the case when the conditional expectation of the structural error depends on

both the control variables and the instruments. We also show our estimator is consistent in settings

where both NPIV and NPV-CF estimators are not, although this is not the main focus of the

paper. For identification we combine the CMRs from NPIV and the conditional mean controls from

NPV. Together they imply that the expectation of the structural error conditional on instruments

and control variables can both depend upon instruments and be distinguished from any function of

the endogenous and exogenous regressors, implying identification of the structural function in the

outcome equation. Section 4 discusses identification and provides a set of assumptions that falls

outside the realm of both NPIV and NPV-CF but not our new estimator.

Our estimator based on this identification result is a multi-step sieve estimator and we develop

asymptotic properties of this estimator in Sections 5-7. The results include
√
n-asymptotic normality

of linear functionals of the structural function and consistent estimators for their standard errors.

Our approach shares the strength of the NPV-CF estimator in that it is easy to implement. In

the case of sieve estimation it typically reduces to a series of Least Squares regressions, which makes

point estimation simple and approximation of standard errors possible by bootstrap methods.

Our estimator uses the same CMR conditions as the NPIV estimators and we therefore face

potentially the same ill-posed inverse problem. Our estimator provides another set of restrictions

that our assumptions together with the use of sieve approximations for both the structural function

and the control function make the problem well-posed. Our proofs for identification, consistency,

and asymptotic normality are all based on extending the proofs from Newey, Powell, and Vella

(1999) - which are quite different from the methods of proof used in the NPIV literature - and we

therefore focus our discussion in the paper almost exclusively on the control function aspects of our

estimator.

Our monte carlos in Section 8 are motivated by the economic examples we provide in Section 3,

where the NPV-CF identification assumption is violated. They illustrate the ease of implementing

our estimator. They also show that our new estimator performs well while the NPV-CF can be

biased in non-linear settings.

In Section 9 we return to the empirical application from NPV and show that we reject the

NPV-CF independence assumption when the CMRs are maintained instead. However, in terms of

the economic significance of the violation in this application the point estimates of the coefficients

in the structural function do not change appreciably.

In Section 10 we conclude. The Appendix explores the implications of our estimator for con-

trol functions in linear models with additively separable errors.2 Other technical details are also

presented in the Appendix.

2For the classic control function approach linear in parameters see, for example, Telser (1964), Hausman (1978),
or Heckman (1978).
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2 The Model

We consider a triangular non-parametric simultaneous equations model with additivity:

xi = Π0(zi) + vi, E[vi|zi] = 0 (1)

yi = f0(xi, z1i) + εi. (2)

With zi = (z1i, z2i) denoting the instrumental variables, (1) is a conditional mean decomposition of

xi with Π0(zi) denoting E[xi|zi] (so E[vi|zi] = 0 is not restrictive). The unknown function f0(xi, z1i)

in the second equation is the parameter of interest with z1i a subset of zi. The endogeneity arises

because E[εi|xi] 6= 0, i.e. the regressors xi are endogenous.

Control function estimators express yi as a function of (zi, vi)

yi = f0(xi, z1i) + h0(zi, vi) + ηi (3)

where h0(zi, vi) = E[εi|zi, vi] is the control function and ηi = εi − h0(zi, vi) (so E[ηi|zi, vi] = 0).

The control function conditions out the part of the error correlated with the endogenous regressors.

However, without further restrictions on h0(zi, vi) the function f0(xi, z1i) is not identified because

one cannot separate the effect of (xi, z1i) on f0 from their impact on h0.

Newey, Powell, and Vella (1999) (NPV-CF) achieve identification by assuming that the expected

value of εi conditional on vi is independent of zi,

E[εi|zi, vi] = E[εi|vi], (4)

so that h0(zi, vi) does not depend on zi given the control vi. From (3) it is clear that this shape

restriction on h0(z, v) can potentially rule out any additive functional relationship with (x, z1). NPV

achieve identification of f0(xi, z1i) by combining this restriction with (i) differentiability of f0(x, z1),

h0(v) = E[ε|v], and Π0(z), (ii) zero mass on the boundary of the support of (z, v), and (iii) full rank

of ∂Π0(z)
∂z2′ with probability one. Indeed identification holds as long as (x, z1) and a control variate

v are measurably separated and imposing NPV’s sufficient conditions is one way to achieve this

separability (see Florens, Heckman, Meghir, and Vytlacil (2008) and their use of Matzkin (2003)’s

control).

In Section 3 we show it can be hard to motivate the independence assumption in (4) from

primitives in models of demand and supply.3 In contrast conditional moment restrictions are usually

motivated by economic primitives that lead to exclusion restrictions. Our main contribution is to

show that in a control function approach framework, we can identify and consistently estimate

3 The NPV-CF estimator is also not robust to conditional heteroskedasticity. For example, suppose εi = σ(zi)ε̃i

where E[ε̃i|zi] = 0. Then E[εi|zi, vi] 6= E[εi|vi] because E[εi|zi, vi] = σ(zi)E[ε̃i|zi, vi] = σ(zi)E[ε̃i|vi], so E[εi|zi, vi]

cannot be written as a function of vi only.
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f0(x, z1) by restricting h0(z, v) to satisfy the conditional moment restrictions (CMR)

(CMR) E[εi|zi] = 0.

CMR implies that the function h0(zi, vi) must satisfy E[h0(zi, vi)|zi] = 0 because by the law of

iterated expectations

0 = E[εi|zi] = E[E[εi|zi, vi]|zi] = E[h0(zi, vi)|zi] = 0. (5)

Our main contribution is to show that the shape restriction on h0(zi, vi) implied by (5) implies that

h0(zi, vi) can both depend upon zi and be distinguished from any function of zi only, which leads to

identification of f0(xi, z1i) when combined with a suitable rank condition. Specifically, in Sections

4-7 we show that CMR and a completeness condition in the control function setting is sufficient

for identification and estimation of f0(xi, z1i) or any linear functional of it. Before turning to the

formal development of the estimator we illustrate with a simple example.

2.1 Heuristic Example

While our approach is consistent for much more general functions h0(zi, vi), for this example we

suppose h0(zi, vi) is given by

h0(zi, vi) = ϕ(zi) + a1vi + a2v
2
i + a′3zivi

where ϕ(zi) denotes any arbitrary function of zi. We show how we can identify f0(xi, z1i) from an

additive regression of yi on (xi, z1i) and h0(zi, vi) when h0(zi, vi) satisfies the CMR condition. The

CMR condition implies that h0(zi, vi) satisfies

0 = E[h0(zi, vi)|zi] = E[ϕ(zi)|zi] + a1E[vi|zi] + a2E[v2
i |zi] + a′3E[zivi|zi]

= ϕ(zi) + a2E[v2
i |zi]

because by construction of vi we have E[vi|zi] = 0. It follows that

h0(zi, vi) = h0(zi, vi) − E[h0(zi, vi)|zi]
= (ϕ(zi) − ϕ(zi)) + a1vi + a2(v

2
i − E[v2

i |zi]) + a′3zivi = a1vi + a2ṽ2i + a′3zivi

where ṽ2i = v2
i − E[v2

i |zi]. Identification in this example is then equivalent to the non-existence of

a linear functional relationship between any functions of (xi, z1i) and linear functions of vi, ṽ2i, and

zivi.

2.2 Computation and Testing

A strength of our non-parametric sieve estimator is that it will typically be a series of least

squares regressions that proceeds in three steps. In the first step we obtain the control v̂i =
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xi − Ê[xi|zi] from the first stage (possibly non-parametric) regression of xi on zi (equation (1)). In

the second step we construct an approximation of h(zi, v̂i) using (e.g.) polynomials. We directly

impose the restriction E[h(zi, vi)|zi] = 0 at this point by demeaning (conditional on zi) each term

in the approximation to h(zi, v̂i). For example, one non-parametric sieve approximation is given by

h(zi, v̂i) ≈
∑L1

l1=1
al1,0(v̂

l1
i − E[v̂l1

i |zi]) +
∑L

l=2

∑

l1≥1,l2≥1 s.t. l1+l2=l

al1,l2ϕl2(zi)(v̂
l1
i − E[v̂l1

i |zi])

where ϕl2(zi) denotes functions of zi and E[v̂l1
i |zi] are estimated using (possibly non-parametric)

regression.4 We then estimate the parameters of f(xi, z1i) and h(zi, v̂i) simultaneously in the final

regression step. In the example above estimation would involve a first regression where an estimate

of vi is recovered followed by a second regression of v2
i on zi to estimate ṽ2i followed by the final

nonparametric regression of yi on (xi, z1i) with three additive regressors vi, ṽ2i, and zivi.

As in other control function approaches (e.g. Smith and Blundell (1986), Rivers and Vuong

(1988), Wooldridge (2005), and Wooldridge and Papke (2008)), we can test for endogeneity of the

regressors xi. In our setting this is equivalent to testing whether the control function h0(zi, vi)

is a zero function or not. If xi is exogenous it must be that h0(zi, vi) = 0 because E[εi|zi, vi] =

E[εi|zi, xi] = 0. In terms of the simple example above, testing whether a1 = 0, a2 = 0, and a3 = 0

is equivalent to testing the null hypothesis of exogenous xi.

3 Does E[εi|zi, vi] = E[εi|vi] Hold in Models of Demand or Supply?

In this section we examine the control function assumption in demand and supply settings. On

the demand side we consider a buy/not-buy binary choice setting with logit demands and a single-

product monopolist.5 We let the latent utilities of consumers be ui0 = ǫi0 and ui1 = β0 + β1z1 −
αp+ ξ + ǫi1 with (ǫi0,ǫi1) i.i.d. extreme value and (z1, p, ξ) denoting observed characteristics, price,

and the unobserved characteristic (to the econometrician). The market share for good 1 is given by

s =
exp(β0 + β1z1 − αp+ ξ)

1 + exp(β0 + β1z1 − αp + ξ)
, (6)

which can be linearized as

ln s− ln(1 − s) = β0 + β1z1 − αp + ξ.

If we let mc(z2, ω) denote marginal costs given as a function of a cost shifter z2 and a cost shock ω,

4For consistency L1, L → ∞ and L1/n, L/n → 0 as n → ∞.
5 The idea extends immediately to more general multi-firm and multi-product settings.
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then the monopolist chooses price p to maximize the expected profit such that

p = arg max
p

(p −mc(z2, ω))
exp(β0 + β1z1 − αp+ ξ)

1 + exp(β0 + β1z1 − αp+ ξ)
,

so E[ξ|p] 6= 0 in the linearized demand equation. Prices are evidently not separable in ξ and

z = (z1, z2). The control is given as v = p − E[p|z]. Since price is not separable in z and ξ

conditioning on v will not generally make ξ independent of z implying E[ξ|z, v] 6= E[ξ|v].
For the returns to education/production function setting - both of which are about input choices

conditional on productivity - we use the setup from Imbens and Newey (2009) and Florens, Heckman,

Meghir, and Vytlacil (2008). y denotes the outcome (wages/output), x is the agent’s choice variable

(schooling/input), and

y = f(x) + ε.

c(x, z, η) is the cost function where z denotes a cost shifter. The agent sees a noisy signal η of ε,

with η possibly a vector. The agent optimally chooses x by maximizing the expected profit given

the information (z, η) so the observed x is the solution to

x = arg max
x̃

{E[f(x̃) + ε|z, η] − c(x̃, z, η)}, (7)

which leads to the endogeneity problem.

Assuming differentiability the optimal x solves

∂f(x)/∂x− ∂c(x, z, η)/∂x = 0. (8)

By the implicit function theorem we have x = k(z, η) for some function k(·) and we also know that

∂x

∂η
=

∂2c(x, z, η)/∂x∂η

∂2f(x)/∂x2 − ∂2c(x, z, η)/∂x2
.

Since the derivative of x with respect to η depends on z, z and η are not additively separable in

x = k(z, η). With v = x− E[x|z] this implies that ε conditional on v is not generally independent

of z (so E[ε|z, v] 6= E[ε|v]).
We illustrate further by considering the special case when

y = ϕ0 + ϕ1x+
1

2
ϕ2x

2 + ε

for parameters (ϕ0, ϕ1, ϕ2) and

c(x, z, η) = c0(z, η0) + c1(z, η1)x+
1

2
c2(z, η2)x

2,

for cost shocks η = (η0, η1, η2) known to the agent and possibly correlated with ε (and z independent
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of ε and η). The optimal x is

x =
ϕ1 − c1(z, η1)

c2(z, η2) − ϕ2
(9)

which is not additively separable in η1 or η2, which means E[ε|z, v] is not generally equal to E[ε|v].6

4 Identification

We ask whether f0(xi, z1i) and h0(zi, vi) are identified by equation (3) with restrictions (5). Our

approach to identification closely follows Newey, Powell, and Vella (1999) and Newey and Powell

(2003). We consider pairs of functions f(xi, z1i) and h(zi, vi) that satisfy

E[yi|zi, vi] = f(xi, z1i) + h(zi, vi) (10)

and the CMR condition. Because conditional expectations are unique with probability one, if there

exists a pair f̄(xi, z1i) and h̄(zi, vi) that satisfies (10), it must be that

Pr(f0(xi, z1i) + h0(zi, vi) = f̄(xi, z1i) + h̄(zi, vi)) = 1. (11)

Identification of f0 and h0 means we must have f0 = f̄ and h0 = h̄ with probability one whenever

(11) holds. Working with differences, we let δ(xi, z1i) = f0(xi, z1i) − f̄(xi, z1i) and κ(zi, vi) =

h0(zi, vi) − h̄(zi, vi). Identification of f0 and h0 is then equivalent to

Pr(δ(xi, z1i) + κ(zi, vi) = 0) = 1 implying Pr(δ(xi, z1i) = 0, κ(zi, vi) = 0) = 1.

Theorem 1. Assume (1-2) and (5). If for all δ(xi, z1i) with finite expectation E[δ(xi, z1i)|zi] = 0

implies δ(xi, z1i) = 0 a.s. then f0(xi, z1i) and h0(zi, vi) are identified.

Proof. Suppose it is not identified. Then there must exist functions f̄(xi, z1i) and h̄(zi, vi) such that

δ(xi, z1i) 6= 0 and κ(zi, vi) 6= 0 but Pr(δ(xi, z1i) + κ(zi, vi) = 0) = 1. It follows that E[κ(zi, vi)|zi] =

0 by construction so 0 = E[δ(xi, z1i) + κ(zi, vi)|zi] = E[δ(xi, z1i)|zi]. E[δ(xi, z1i)|zi] = 0 then

implies δ(xi, z1i) = 0 a.s., so δ(xi, z1i) = 0 and κ(zi, vi) = 0 with probability one. This is a

contradiction. The result then implies that h0(zi, vi) is also identified because the conditional

expectation E[yi|zi, vi] is nonparametrically identified and h0(zi, vi) = E[yi|zi, vi] − f0(xi, z1i).

A sufficient condition for identification is that the conditional distribution of xi given zi satisfies

the completeness condition (see Newey and Powell (2003) or Hall and Horowitz (2005)), which

6 Sufficient conditions for E[ε|z, v] = E[ε|v] are that c1(z, η1) = c1z(z) + η1 and c2(z, η2) is constant, in which

case v = − η1

c2−ϕ2

. The economic implication is that the linear cost coefficient must be separable in z and η1 and the

quadratic cost coefficient cannot depend on z nor cost shocks.

Also even when we use the Matzkin (2003)’s control v∗ = Fx|z, the conditional CDF of x given z as in Florens,
Heckman, Meghir, and Vytlacil (2008), the condition E[ε|z, v∗] = E[ε|v∗] does not hold in general unless we restrict
c1(z, η1) and c2(z, η2).
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assumes that E[δ(xi, z1i)|zi] = 0 implies δ(xi, z1i) = 0 for any δ(xi, z1i) with finite expectation.7

To illustrate the implication for a parametric setting we let f0(xi, z1i) = β′0xi + β′10z1i. Then an

alternative function is f̄(xi, z1i) = β̄′xi+β̄
′
1z1i 6= β′0xi+β

′
10z1i, so E[δ(xi, z1i)|zi] = (β0−β̄)′E[xi|zi]+

(β10 − β̄1)
′z1i. If zi satisfies the standard rank condition - e.g. it includes excluded instruments

from z1i that are correlated with xi - then E[δ(xi, z1i)|zi] = 0 implies δ(xi, z1i) = 0, so β0 = β̄ and

β10 = β̄1.

4.1 Generalization of NPIV and NPV-CF

While it is not the focus of this paper, there are sets of assumptions under which neither NPV-

CF nor NPIV yields identification but our approach does yield identification. Let zi = (z1i, z2i) and

consider a setting where

E[εi|z1i] = 0 and E[εi|zi, vi] = E[εi|z1i, vi]. (12)

In this case E[εi|z2i] 6= 0 so NPIV is not consistent. Also, since E[εi|zi, vi] = E[εi|z1i, vi], even

though εi is independent of z2i conditional on vi it is not independent of z1i, meaning E[εi|zi, vi] 6=
E[εi|vi]. Thus NPV-CF is also not consistent.8

In order to see that our approach to identification works let h(z1i, vi) = E[εi|z1i, vi]. Then under

(12) the new expression for (10) combined with the CMRs yields

E[yi|zi, vi] = f(xi, z1i) + h(z1i, vi) (13)

E[h(z1i, vi)|z1i] = 0.

For identification it must be that if both (f0, h0) and (f̄ , h̄) satisfy (13),

Pr(f0(xi, z1i) = f̄(xi, z1i), h0(z1i, vi) = h̄(z1i, vi)) = 1.

We show (f0, h0) are identified under (1-2) and (12) next, and Section 5.1 develops the estimator

for this case.

Theorem 2. Assume (1-2) and (12). Suppose ∂Π0(zi)
∂z′2i

has the full rank (i.e. rank(∂Π0(zi)
∂z′2i

) =

dim(xi)) with probability one. Then f0(xi, z1i) and h(z1i, vi) are identified.

Proof. We prove by contradiction. Suppose it is not identified. Then there must exist functions

f̄(xi, z1i) and h̄(z1i, vi) such that δ(xi, z1i) = f0(xi, z1i)− f̄(xi, z1i) 6= 0 and κ(z1i, vi) = h0(z1i, vi)−
h̄(z1i, vi) 6= 0 but δ(xi, z1i) + κ(z1i, vi) = 0 with probability one (wp1). By taking derivatives w.r.t.

z2i to δ(xi, z1i) + κ(z1i, vi) = 0, we obtain ∂δ(xi,z1i)
∂z2i

= 0 wp1 because κ(z1i, vi) is not a function

7The completeness condition is the nonparametric analog of the rank condition for identification in the linear
setting.

8 This last assumption allows, for example, the error εi to be conditionally heteroskedastic in z1i.
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of z2i. Then because 0 = ∂δ(xi,z1i)
∂z′2i

= ∂δ(xi,z1i)
∂x′

i

∂xi
∂z′2i

= ∂δ(xi,z1i)
∂x′

i

∂Π0(zi)
∂z′2i

and ∂Π0(zi)
∂z′2i

has the full rank,

we also find ∂δ(xi,z1i)
∂xi

= 0 wp1. Therefore δ(xi, z1i) must be a function of z1i only wp1. We then

find 0 = E[δ(xi, z1i)|z1i] + E[κ(z1i, vi)|z1i] = δ(xi, z1i) because E[κ(z1i, vi)|z1i] = 0 by construction

of h0(z1i, vi) and h̄(z1i, vi). We then conclude δ(xi, z1i) = 0 and κ(z1i, vi) = 0 wp1, which is a

contradiction.

5 Estimation

Our estimator is obtained in three steps. We focus on sieve estimation because it is convenient

to impose the restriction (5). We use capital letters to denote random variables and lower case

letters to denote their realizations. We assume the tuple {(Yi,Xi, Zi)} for i = 1, . . . , n are i.i.d. We

let Xi be dx × 1, Z1i be d1×1, Z2i be d2×1, dz = d1 + d2 and d = dz + dx, with dx = 1 for ease

of exposition. Let {pj(Z), j = 1, 2, . . .} denote a sequence of approximating basis functions (e.g.

orthonormal polynomials or splines). Let pkn = (p1(Z), . . . , pkn(Z))′, P = (pkn(Z1), . . . , p
kn(Zn))′,

and (P ′P )− denote the Moore-Penrose generalized inverse, where kn tends to infinity but kn/n →
0. Similarly we let {φj(X,Z1), j = 1, 2, . . .} denote a sequence of approximating basis functions,

φKn = (φ1(X,Z1), . . . , φKn(X,Z1))
′, where Kn tends to infinity but Kn/n→ 0.9

In the first step to estimate the controls we estimate Π0(z) using

Π̂(z) = pkn(z)′(P ′P )−
∑n

i=1
pkn(zi)xi

and obtain the control variable as v̂i = xi − Π̂(zi).

In the second step we construct approximating basis functions using v̂ and z, where we impose

the CMR condition (5) by subtracting out the conditional means (conditional on Z). We start by

assuming v is known and then show how the setup changes when v̂ replaces v. We write basis

functions when v is known as

ϕ̃l(z, v) = ϕl(z, v) − ϕ̄l(z)

where ϕ̄l(z) = E[ϕl(Z, V )|Z = z] and {ϕl(z, v), l = 1, 2, . . .} denotes a sequence of approximating

basis functions generated using (z, v) ∈ supp(Z, V ) ≡ W, the support of (Z, V ). We let H denote a

space of functions that includes h0, and we let ‖·‖H be a pseudo-metric on H. We define the sieve

space Hn as the collection of functions

Hn = {h : h =
∑

l≤Ln
alϕ̃l(z, v), ‖h‖H < C̄h, (z, v) ∈ W}

for some bounded positive constant C̄h, with Ln → ∞ so that Hn ⊆ Hn+1 ⊆ . . . ⊆ H (and

Ln/n→ 0).

9We state specific rate conditions in the next section for our convergence rate results and also for
√

n-consistency
and asymptotic normality of linear functionals.
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Because v is not known we use instead estimates of the approximating basis functions, which

we denote as ˆ̃ϕl(z, v̂) = ϕl(z, v̂) − ˆ̄ϕl(z), where ˆ̄ϕl(z) = Ê[ϕl(Z, V̂ )|Z = z]. We then construct the

approximation of h(z, v) as 10

ĥLn(z, v̂) =
∑Ln

l=1
al{ϕl(z, v̂) − Ê[ϕl(Z, V̂ )|Z = z]} (14)

=
∑Ln

l=1
al{ϕl(z, v̂) − pkn(z)′(P ′P )−

∑n

i=1
pkn(zi)ϕl(zi, v̂i)},

with coefficients, (a1, . . . , aLn) to be estimated in the last step. We approximate the sieve space Hn

with Ĥn using (14), so Ĥn is given by

Ĥn = {h : h =
∑

l≤Ln
al

ˆ̃ϕl(z, v̂), ‖h‖H < C̄h, (z, v̂) ∈ W}. (15)

In the last step we define F as the space of functions that includes f0, and we let ‖·‖F be a

pseudo-metric on F . We define the sieve space Fn as the collection of functions

Fn = {f : f =
∑

l≤Kn

βlφl(x, z1), ‖f‖F < C̄f , (x, z1) ∈ supp(X,Z1)}

for some bounded positive constant C̄f , with Kn → ∞ so that Fn ⊆ Fn+1 ⊆ . . . ⊆ F (and

Kn/n→ 0). Then our multi-step sieve estimator is obtained by solving

(f̂,ĥ) = arginf(f,h)∈Fn×Ĥn

n∑

i=1

{yi − (f(xi, z1i) + h(zi, v̂i))}2/n (16)

where v̂i = xi − Π̂(zi).

Equivalently we can write the last step estimation as

min(β1,...,βKn ,a1,...,aLn )

∑n

i=1
{yi − (

∑Kn

k=1
βkφk(xi, z1i) +

∑Ln

l=1
al

ˆ̃ϕl(zi, v̂i))}2/n. (17)

With fixed kn, Ln, and Kn our estimator is just a three-stage least squares estimator. Once we

obtain the estimates (f̂,ĥ) we can also estimate linear functionals of (f0, h0) using plug-in methods

(see Section 7).

5.1 Estimation of Model (12)-(13)

To estimate the model (12)-(13) we have only to replace the control function with h(z1, v) and

10 We can use different sieves (e.g., power series, splines of different lengths) to approximate E[ϕl(Z, V )|Z = z]

and Π(z) depending on their smoothness, but we assume one uses the same sieves for notational simplicity.
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its approximation with

ĥLn(z1, v̂) =
∑Ln

l=1
al

ˆ̃ϕl(z1i, v̂i)

=
∑Ln

l=1
al{ϕl(z1, v̂) − Ê[ϕl(Z1, V̂ )|Z1 = z1]}

=
∑Ln

l=1
al{ϕl(z1, v̂) − pkn

1 (z1)
′(P ′

1P1)
− ∑n

i=1
pkn
1 (z1i)ϕl(z1i, v̂i)}

where pkn
1 (z1) = (p1(z1), . . . , pkn(z1))

′ and P1 = (pkn
1 (z11), . . . , p

kn
1 (z1n))′, so we demean the approx-

imating functions ϕl(z1, v̂) w.r.t. z1 only. We then estimate the function f together with the control

function as

(β̂, â) = argmin(β1,...,βKn ,a1,...,aLn )

∑n

i=1
{yi − (

∑Kn

k=1
βkφk(xi, z1i) +

∑Ln

l=1
al

ˆ̃ϕl(z1i, v̂i))}2/n

such that f̂ =
∑Kn

k=1 β̂kφk(xi, z1i) and ĥ(z1, v̂) =
∑Ln

l=1 âl
ˆ̃ϕl(z1i, v̂i).

In the following Sections 6-7 we develop asymptotic properties of the estimator for the model

(1-2) and (5). Similar results can be obtained for the estimator of the model (12)-(13) with minor

modifications.

6 Convergence Rates

We obtain the convergence rates building on Newey, Powell, and Vella (1999). We differ from

their approach as we have another nonparametric estimation stage in the middle step of estimation

that arises due to our identification approach different from NPV. This creates additional terms in

the convergence rate results.

We introduce additional notation. We write g0(zi, vi) ≡ g0(xi, z1i∪zi, vi) = f0(xi, z1i)+h0(zi, vi)

for ease of notation. For a random matrix D, let ‖D‖ = (tr(D′D))1/2, and let ‖D‖∞ be the infimum

of constants C such that Pr(||D|| < C) = 1. We derive the convergence rates of the nonparametric

estimator ĝ = f̂ + ĥ to g0 and f̂ to f0 only for the purpose of obtaining the
√
n-consistency and the

asymptotic normality of the linear functional estimators of g0 or f0. Below Assumptions C1 and

C2 along with identification of (f0, h0) as shown in Section 4 ensure the rate results we derive.

Assumption 1 (C1). (i) {(Yi,Xi, Zi)}n
i=1 are i.i.d., V = X−E[X|Z], and var(X|Z), var(Y |Z, V ),

and var(ϕl(Z, V )|Z) for all l are bounded; (ii) (Z,X) are continuously distributed with densities that

are bounded away from zero on their supports, which are compact and the distribution of X condi-

tional on Z satisfies the completeness condition; (iii) Π0(z) is continuously differentiable of order

s1 and all the derivatives of order s1 are bounded on the support of Z; (iv) ϕ̄l(Z) is continuously

differentiable of order s2 and all the derivatives of order s2 are bounded for all l on the support of

Z; (v) h0(Z, V ) is Lipschitz and is continuously differentiable of order s and all the derivatives of

order s are bounded on the support of (Z, V ); (vi) ϕl(Z, V ) is Lipschitz and is twice continuously

differentiable in v and its first and second derivatives are bounded for all l; (vii) f0(X,Z1) is con-

tinuously differentiable of order s and all the derivatives of order s are bounded on the support of

(X,Z1).
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Assumptions C1 (iii), (iv), (v), and (vii) ensure that the unknown functions Π0(Z), ϕ̄l(Z),

h0(Z, V ), and f0(X,Z1) belong to a Hölder class of functions, so they can be approximated up to

the orders of O(k
−s1/dz
n ), O(k

−s2/dz
n ), O(L

−s/d
n ), and O(K

−s/(dx+d1)
n ) respectively when polynomials

or splines approximation is used (see Timan (1963), Schumaker (1981), Newey (1997), and Chen

(2007)). Assumption C1 (vi) is satisfied for polynomial and spline basis functions with appropriate

orders. Assumptions C1 (i)-(ii) are about the structure of the data. Assumption C1 (ii) includes

the completeness condition for identification and other conditions can be relaxed with additional

complexity (e.g., a trimming device as in Newey, Powell, and Vella (1999)). Assumption C1 (v)

and (vii) maintain that f0 and h0 have the same order of smoothness for ease of notation, but it is

possible to allow them to differ.

Next we impose the rate conditions that restrict the growth of kn,Kn, and Ln as n tends to

infinity. We write Ln = Kn + Ln.

Assumption 2 (C2). Let △n,1 = k
1/2
n /

√
n + k

−s1/dz
n , △n,2 = k

1/2
n /

√
n + k

−s2/dz
n , and △n =

max{△n,1,△n,2}. For polynomial approximations L
1/2
n (L3

n+L
1/2
n k

3/2
n /

√
n+L

1/2
n )△n → 0, L

3
n/n→ 0

and k3
n/n→ 0. For spline approximations L

1/2
n (L

3/2
n +L

1/2
n kn/

√
n+L

1/2
n )△n → 0 , L

2
n/n→ 0 and

k2
n/n → 0.

For any differentiable function c(w), let |µ| =
∑dim(w)

j=1 µj and define ∂µc(w) = ∂|µ|c(w)
∂w1···∂wdim(w)

.

Also for integer δ define |c(w)|δ = max|µ|≤δ supw∈supp(w) ||∂µc(w)|| with |c(w)|0 = supw∈supp(w) ||c(w)||.
Also let φK(x, z1) ≡ (φ1(x, z1), . . . , φK(x, z1))

′.

Theorem 3. Suppose Assumptions C1-C2 are satisfied. Then

(a) (

∫
[ĝ(z, v) − g0(z, v)]

2dµ0(z, v))
1/2 = Op(

√
Ln/n + Ln△n + L

−s/d
n ), and

(b) |f̂(x, z1) − f0(x, z1)|δ = Op(ζδ(Kn)[
√

Ln/n+ Ln△n + L
−s/d
n ] +K−s/(dx+d1)

n )

where µ0(z, v) denotes the distribution function of (z, v) and |φK(x, z1)|δ ≤ ζδ(K).

In Theorem 3 the term Ln△n arises because of the estimation error from the first and sec-

ond steps of estimation. With no estimation error from these stages we would obtain standard

convergence rates of series estimators.

7 Asymptotic Normality

Following Newey (1997) and Newey, Powell, and Vella (1999) we consider inference for the

linear functionals of g, θ = α(g).11 The estimator θ̂ = α(ĝ) of θ0 = α(g0) is a well-defined “plug-in”

estimator, and because of the linearity of α(g) we have

θ̂ = Aβ̂,A = (α(φ1), . . . , α(φKn), α(ϕ̃1), . . . , α(ϕ̃Ln))

11This includes θ’s being functionals of f only.
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where we let β̂ = (β̂1, . . . , β̂Kn , â1, . . . , âLn)′ that solves (17). This setup includes (e.g.) partially

linear models, where f contains some parametric components, and the weighted average derivative,

where one estimates the average response of y with respect to the marginal change of x or z1.

For example if f is partially linear, then each row vector of A only consists of ones and zeros

such that ones select particular parameters from the parametric components. More generally, if A
depends on unknown population objects, we can estimate it using Â = ∂α(

ˆ̂
ψL′

i β)/∂β′|β=β̂ where

ˆ̂
ψL

i = (φ1(xi, z1i), . . . , φK(xi, z1i), ˆ̃ϕ1(zi, v̂i), . . . , ˆ̃ϕL(zi, v̂i))
′, so that θ̂ = Âβ̂ (see Newey (1997)).

We focus on conditions that provide for
√
n-asymptotics and allow for a straightforward con-

sistent estimator for the standard errors of θ̂.12 If there exists a Riesz representer ν∗(Z, V ) such

that

α(g) = E[ν∗(Z, V )g(Z, V )] (18)

for any g = (f, h) ∈ F×H that can be approximated by power series or splines in the mean-squared

norm, then we can obtain
√
n-consistency and asymptotic normality for θ̂, expressed as

√
n(θ̂ − θ0) →d N(0,Ω),

for some asymptotic variance matrix Ω. In Assumption C1 we take both F and H as Hölder spaces

of functions, which ensures the approximation of g in the mean-squared norm (see e.g., Newey

(1997), Newey, Powell, and Vella (1999), and Chen (2007)). Defining ρv(Z) = E[ν∗(Z, V )(∂h0(Z,V )
∂V −

E[∂h0(Z,V )
∂V |Z])|Z] and ρϕ̄l

(Z) = E[alν
∗(Z, V )|Z], the asymptotic variance of the estimator θ̂ is given

by

Ω = E[ν∗(Z, V )var(Y |Z, V )ν∗(Z, V )′] + E[ρv(Z)var(X|Z)ρv(Z)′] (19)

+ lim
n→∞

Ln∑

l=1

E[ρϕ̄l
(Z)var(ϕl(Z, V )|Z)ρϕ̄l

(Z)′].

The first term in the variance accounts for the final stage of estimation, the second term accounts for

the estimation of the control (v), and the last term accounts for the middle step of the estimation.

Assumptions C1, R1, N1, and N2 below are sufficient to characterize the asymptotic normal-

ity of θ̂ and also a consistent estimator for the asymptotic variance of θ̂. Below let ϕ̃L(z, v) ≡
(ϕ̃1(z, v), . . . , ϕ̃L(z, v))′ and ψL(zi, vi) ≡ (φK(x, z1)

′, ϕ̃L(z, v)′)′.

Assumption 3 (R1). There exist ν∗(Z, V ) and βL such that E[||ν∗(Z, V )||2] < ∞, α(g0) =

E[ν∗(Z, V )g0(Z, V )], α(φk) = E[ν∗(Z, V )φk] for k = 1, . . . ,K, α(ϕ̃l) = E[ν∗(Z, V )ϕ̃l] for l =

1, . . . , L, and E[||ν∗(Z, V ) − ψL(Z, V )′βL||2] → 0 as L → ∞.

Assumption R1 restricts the class of linear functionals we consider that yield the
√
n-consisteny

and also requires ν∗(Z, V ) be well approximated by the approximating basis functions we use to

12Developing the asymptotic distributions of the functionals that do not yield the
√

n-consistency is also possible
based on the convergence rates result we obtained and alternative assumptions on the functionals of interest (see
Newey, Powell, and Vella (1999)).
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approximate g0. To present the theorem, we need additional notation and assumptions. Let aL =

(a1, . . . , aL)′ with an abuse of notation.

Assumption 4 (N1). (i) there exist δ, γ, and βL such that |g0(z, v) − β′
L
ψL(z, v)|δ ≤ CL

−γ

(which also implies |h0(z, v) − a′Lϕ̃
L(z, v)|δ ≤ CL−γ); (ii) var(Yi|Zi, Vi) is bounded away from

zero, E[η4
i |Zi, Vi] and E[V 4

i |Zi] are bounded and E[ϕ̃l(Zi, Vi)
4|Zi] is bounded for all l.

Assumption N1 (i) is satisfied for f0 and h0 that belong to the Hölder class and then we can

take (e.g.) γ = s/d. The bounded conditional fourth moments are imposed to apply for appropriate

central limit theorems. Next we impose the rate conditions that restrict the growth of kn and

Ln = Kn + Ln as n tends to infinity.

Assumption 5 (N2). Let △n,1 = k
1/2
n /

√
n + k

−s1/dz
n , △n,2 = k

1/2
n /

√
n + k

−s2/dz
n , and △n =

max{△n,1,△n,2}.
√
nk

−s1/dz
n → 0,

√
nk

−s2/dz
n → 0,

√
nk

1/2
n L

−s/d
n → 0,

√
nL

−s/d
n → 0 and they are

sufficiently small. For the polynomial approximations L
2
n+LnL3

nkn+L
1/2
n (L4

nk
3/2
n +k

5/2
n )√

n
→ 0 and for the

spline approximations L
3/2
n +LnL

3/2
n k

1/2
n +L

1/2
n (L

5/2
n kn+k

3/2
n )+L

3/2
n k

3/2
n√

n
→ 0.

Theorem 4. Suppose Assumptions C1, R1, and N1-N2 are satisfied. Then

√
n(θ̂ − θ0) →d N(0,Ω).

Based on this asymptotic distribution, one can construct the confidence intervals of θ0 and cal-

culate standard errors in a straightforward manner. Let ĝ(zi, v̂i) = f̂(xi, z1i) + ĥ(zi, v̂i) and ĝi =

ĝ(zi, v̂i). Define
ˆ̂
ψL

i = (φ1(xi, z1i), . . . , φK(xi, z1i), ˆ̃ϕL(zi, v̂i)
′)′ where ˆ̃ϕL(zi, vi) = ( ˆ̃ϕ1(zi, vi), . . . , ˆ̃ϕL(zi, vi))

′.

Let

T̂ =
∑n

i=1

ˆ̂
ψL

i
ˆ̂
ψL′

i /n, Σ̂ =
∑n

i=1
(yi − ĝ(zi, v̂i))

2 ˆ̂
ψL

i
ˆ̂
ψL′

i /n (20)

T̂1 = P ′P/n, Σ̂1 =
n∑

i=1

v̂2
i p

k(zi)p
k(zi)

′/n, Σ̂2,l =
n∑

i=1

{ϕl(zi, v̂i) − ˆ̄ϕl(zi)}2pk(zi)p
k(zi)

′/n

Ĥ11 =

n∑

i=1

L∑

l=1

âl
∂ϕl(zi, v̂i)

∂vi

ˆ̂
ψL

i p
k(zi)

′/n,

Ĥ12 =

n∑

i=1

pk(zi)
′((P ′P )−

n∑

j=1

pk(zj)
∂

∑L
l=1 âlϕl(zj , v̂j)

∂vj
)
ˆ̂
ψL

i p
k(zi)

′/n,

Ĥ2,l =
∑n

i=1
âl

ˆ̂
ψL

i p
k(zi)

′/n, Ĥ1 = Ĥ11 − Ĥ12.

Then, we can estimate Ω consistently by

Ω̂ = AT̂ −1

[
Σ̂ + Ĥ1T̂ −1

1 Σ̂1T̂ −1
1 Ĥ ′

1 +
∑Ln

l=1
Ĥ2,lT̂ −1

1 Σ̂2,lT̂ −1
1 Ĥ ′

2,l

]
T̂ −1A′. (21)

Theorem 5. Suppose Assumptions C1, R1, and N1-N2 are satisfied. Then Ω̂ →p Ω.
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This Ω̂ is the heteroskedasticity robust variance estimator that accounts for the first and second

steps of estimation. The first variance term AT̂ −1Σ̂T̂ −1A′ corresponds to the variance estimator

without error from the first and second steps of estimation. The second variance term accounts

for the estimation of v (and corresponds to the second term in (19)). The third variance term

accounts for the estimation of ϕ̄l(·)’s (and corresponds to the third term in (19)). If we view our

model as a parametric one with fixed kn, Kn, and Ln, the same variance estimator Ω̂ can be used as

the estimator of the variance for the parametric model (e.g, Newey (1984) and Murphy and Topel

(1985)).

7.1 Discussion

We discuss Assumption R1 for the partially linear model and the weighted average derivative.

Consider a partially linear model of the form

f0(x, z1) = x′1β10 + f20(x−1, z1)

where x can be multi-dimensional and x1 is a subvector of x such that x = (x1, x−1). Then we have

β10 = α(g0) = E[ν∗(Z, V )g0(Z, V )]

where ν∗(z, v) = (E[q(Z, V )q(Z, V )′])−1q(z, v) and q(z, v) is the residual from the mean-square

projection of x1 on the space of functions that are additive in functions of (x−1, z1) and any h(z, v)

such that E[h(Z, V )|Z] = 0.13 Thus we can approximate q(z, v) by the mean-square projection

residual of x1 on ψL

−1(zi, vi) ≡ (φ1(x−1i, z1i), . . . , φK(x−1i, z1i), ϕ̃
L(zi, vi)

′)′, and then use these

estimates to approximate ν∗(z, v).

Next consider a weighted average derivative of the form

α(g0) =

∫

W̄
̟(x, z1, κ(z, v))

∂g0(z, v)

∂x
d(z, v) =

∫
̟(x, z1, κ(z, v))

∂f0(x, z1)

∂x
d(z, v)

where the weight function ̟(x, z1, κ(z, v)) puts zero weights outside W̄ ⊂ W and κ(z, v) is some

function such that E[κ(Z, V )|Z] = 0. This is a linear functional of g0. Integration by parts shows

that

α(g0) = −
∫

W̄
proj(µ0(z, v)

−1 ∂̟(x, z1, κ(z, v))

∂x
|S)g0(z, v)dµ0(z, v) = E[ν∗(Z, V )g(Z, V )]

where proj(·|S) denotes the mean-square projection on the space of functions that are additive

in functions of (x, z1) and any h(z, v) such that E[h(Z, V )|Z] = 0 (so the Riesz representer

ν∗(z, v) is well-defined), and ν∗(z, v) = −proj(µ0(z, v)
−1 ∂̟(x,z1,κ(z,v))

∂x |S) with µ0(z, v) denoting

the distribution of (z, v). We can then approximate ν∗(z, v) using a mean-square projection of

13Note that existence of the Riesz representer in this setting requires E[q(Z, V )q(Z, V )′] to be nonsingular.

16



µ0(z, v)
−1 ∂̟(x,z1,κ(z,v))

∂x on ψL(z, v).

8 Simulation Study

We conduct two monte carlos simulations to evaluate the performance of the NPV-CF estima-

tor and our CMR-CF estimator. The first set of monte carlos is based on the economic examples

provided in Section 3 where the structural function f(x) is parametric and the second set uses a

nonlinear setup from Newey and Powell (2003) where the structural function is estimated nonpara-

metrically.

8.1 Monte Carlos Based on Parametric Models

In the first set we consider six models. The outcome equations are parametric so f(x) is known

up to a finite set of parameters. The selection equations are treated as unknown to the practitioner

and we use nonparametric regressions for them in the simulation.

The six designs are given as:

[1] yi = α+ βxi + γx2
i + εi ; xi = zi + (3εi + ςi) · log(zi)

[2] yi = α+ βxi + γx2
i + εi ; xi = zi + (3εi + ςi)/ exp(zi)

[3] yi = α+ βxi + γ log xi + εi ; xi = zi + (3εi + ςi)/ exp(zi)

[4] yi = α+ βxi + γ log xi + εi ; xi = zi + (3εi + ςi + εi · ςi)/ exp(zi)

[5] yi = α+ βxi + εi ; xi = zi + (3εi + ςi)/ exp(zi)

[6] yi = α+ βxi + γx2
i + εi ; xi = zi + (3εi + ςi).

These designs can be obtained from the underlying decision problem of (7) by varying the structural

function f(x) and the cost function c(x, z, η).14

We generate simulation data based on the following distributions: εi ∼ Uε, ςi ∼ Uς , zi =

2 + 2Uz, where each Uε, Uς , and Uz independently follows the uniform distribution supported on

[−1/2, 1/2] so all three random variables εi, ςi, and zi are independent of one another. In all designs

xi is correlated with εi and the CMR condition, E[εi|zi] = 0 holds. The NPV-CF restriction

(4) is violated in designs [1]-[5] and holds in design [6].15 We set the true parameter values at

(α0, β0, γ0) = (1, 1,−1) and the data is generated with the sample size of n = 1, 000.

All of the estimators are based on a first stage estimation residual v̂i = xi − (π̂0 + π̂1zi + π̂2z
2
i )

although estimates are robust to adding higher order terms.16 The structural function f(xi) is given

14

For example we obtain design [1] by letting c2(z, η2) be constant and c1(z, η1) include the leading term z and the

interaction term η1 log(z), where η1 = 3ε+ς is a noisy signal of ε. The selection equation (9) is then x = ϕ1−c1(z,η1)
c2(z,η2)−ϕ2

=

z + (3ε + ς) · log(z). The other designs can be derived in a similar way.

15For example, in design [2] we have vi = xi − E[xi|zi] = (3εi + ςi)/ exp(zi). Then we have εi = (exp(zi)vi − ςi)/3
and therefore E[εi|zi, vi] = (exp(zi)vi − E[ςi|zi, vi])/3, and this cannot be written as a function of vi only.

16Root mean-squared errors were similar across all estimators whether we used two or more higher order terms.
Thus if we followed Newey, Powell, and Vella (1999) and used cross validation (CV) to discriminate between alternative
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by the designs [1]-[6]. The classic control function (CCF) approach just includes the control in an

additive manner. Our analysis begins with this CCF estimator which then posits

yi = f(xi) + ρv̂i + ηi

and estimates the model using least squares. The NPV-CF estimator is obtained by estimating

yi = f(xi) + h(v̂i) + ηi,

where we approximate h(v̂i) as h(v̂i) =
∑5

l=1 alv̂
l
i. Since the NPV-CF does not separately identify

the constant term we normalize h(0) = 0 so that the constant term α is also identified. Our results

are robust to adding higher orders of polynomials to fit h(v̂i).

We obtain the CMR-CF estimator by using the first stage estimation residual v̂i to construct

approximating functions ṽ1i = v̂i, ṽ2i = v̂2
i − Ê[v̂2

i |zi], ṽ3i = v̂3
i − Ê[v̂3

i |zi] where Ê[·|zi] is estimated

using least squares with regressors (1, zi, z
2
i ). Interactions with polynomials of zi like ziv̂i and z2

i v̂i

are defined similarly. In the last step we estimate the parameters as

(α̂, β̂, γ̂, â) = argmin
∑n

i=1
{yi − (f(xi;α, β, γ) + h(zi, v̂i))}2/n

where h(zi, v̂i) =
∑L

l=1 alṽli depends on the simulation designs. The choice of the basis in the

finite sample is not a consistency issue but it is an efficiency issue and we vary this choice across

specifications. In design [1] we use ṽ1i and ziṽi as the controls. In designs [2], [5], and [6] we use

the controls ṽ1i, ṽ2i, and ziṽi. In design [3] we use the controls ṽ1i, ṽ2i, ziṽi, and z2
i ṽi, and in design

[4] we use ṽ1i, ṽ2i, ṽ3i, ṽ4i, ziṽi.

We report the biases and the RMSE’s based on 200 repetitions of the estimations. The simulation

results in Tables I-VI show that CCF and NPV-CF are biased in all designs except [5] and [6] for

which the theory says they should be consistent. The CMR-CF is robust regardless of the designs.

In design [5] all three approaches produce correct estimates because the outcome equation is linear,

which is consistent with our discussion in Appendix A. In design [6] all three approaches are

consistent because the restriction (4) holds. We conclude that our CMR-CF approach is consistent

in these designs regardless of whether the model is linear or nonlinear or whether the restriction

(4) holds while the CCF and NPV-CF approaches are not robust when the restriction (4) does not

hold.

specifications we would be indifferent between this simplest specification and the ones with the higher order terms.
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Table I: Design [1], α0 = 1, β0 = 1, γ0 = −1

Nonlinear & The condition (4) does not hold

mean bias RMSE

CCF α 0.7076 -0.2924 0.2952

β 1.3078 0.3078 0.3094

γ -1.0679 -0.0679 0.0682

NPV-CF α 0.6655 -0.3345 0.3395

β 1.3677 0.3677 0.3738

γ -1.0917 -0.0917 0.0938

CMR-CF α 0.9978 -0.0022 0.0548

β 1.0021 0.0021 0.0503

γ -1.0005 -0.0005 0.0109

Table II: Design [2], α0 = 1, β0 = 1, γ0 = −1

Nonlinear & The condition (4) does not hold

mean bias RMSE

CCF α 1.5331 0.5331 0.5452

β 0.4056 -0.5944 0.6055

γ -0.8496 0.1504 0.1529

NPV-CF α 1.3535 0.3535 0.3767

β 0.6283 -0.3717 0.3948

γ -0.9090 0.0910 0.0966

CMR-CF α 0.9933 -0.0067 0.1478

β 1.0079 0.0079 0.1611

γ -1.0021 -0.0021 0.0405

Table III: Design [3],α0 = 1, β0 = 1, γ0 = −1

Nonlinear & The condition (4) does not hold

mean bias RMSE

CCF α 0.5818 -0.4182 0.4235

β 1.5048 0.5048 0.5108

γ -1.9246 -0.9246 0.9367

NPV-CF α 0.7750 -0.2250 0.2405

β 1.3042 0.3042 0.3200

γ -1.5861 -0.5861 0.6156

CMR-CF α 0.9943 -0.0057 0.1103

β 1.0076 0.0076 0.1255

γ -1.0144 -0.0144 0.2249

Table IV: Design [4], α0 = 1, β0 = 1, γ0 = −1

Nonlinear & The condition (4) does not hold

mean bias RMSE

CCF α 0.6109 -0.3891 0.3950

β 1.4702 0.4702 0.4769

γ -1.8617 -0.8617 0.8751

NPV-CF α 0.7794 -0.2206 0.2371

β 1.3333 0.3333 0.3497

γ -1.6687 -0.6687 0.6988

CMR-CF α 1.0003 0.0003 0.1117

β 1.0005 0.0005 0.1267

γ -1.0016 -0.0016 0.2262

Table V: Design [5], α0 = 1, β0 = 1

Linear & The condition (4) does not hold

mean bias RMSE

CCF α 0.9993 -0.0007 0.0343

β 1.0004 0.0004 0.0172

NPV-CF α 1.0010 0.0010 0.0417

β 0.9997 -0.0003 0.0192

CMR-CF α 0.9991 -0.0009 0.0343

β 1.0005 0.0005 0.0171

Table VI: Design [6], α0 = 1, β0 = 1, γ0 = −1

Nonlinear & The condition (4) holds

mean bias RMSE

CCF α 0.9991 -0.0009 0.0354

β 1.0010 0.0010 0.0200

γ -1.0002 -0.0002 0.0024

NPV-CF α 0.9997 -0.0003 0.0350

β 1.0004 0.0004 0.0210

γ -1.0001 -0.0001 0.0032

CMR-CF α 0.9975 -0.0025 0.0891

β 1.0068 0.0068 0.1204

γ -1.0021 -0.0021 0.0304
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8.2 Monte Carlos Based on Non-Parametric Models

Next we conduct two small-scale simulation studies where we estimate the structural function

f(x) nonparametrically. Design [A] has a first stage selection equation that satisfies the NPV-CF

restriction (4) and Design [B] does not.

For the first specification we follow the setup from Newey and Powell (2003) given as

yi = f(xi) + εi = ln(|xi − 1| + 1)sgn(xi − 1) + εi

[A] xi = zi + ηi

where the errors εi and ηi and instruments zi are generated by




εi

ηi

zi


 ∼ i.i.d N







0

0

0


 ,




1 ρ 0

ρ 1 0

0 0 1







with ρ = 0.5. This design satisfies the restriction (4) with vi = xi − E[xi|zi] because vi = ηi.

In the second specification we use the same outcome equation but change the first stage equation

to

[B] xi = zi + ηi/ exp(|zi|)

and we use ρ = 0.5 and ρ = 0.9 varying the degree of endogeneity. The restriction (4) is violated

because vi = xi − E[xi|zi] = ηi/ exp(|zi|).
Following Newey and Powell (2003) we use the Hermite series approximation of f(x) as

f(x) ≈ xβ +
J∑

j=1

γj exp(−x2)xj−1. (22)

We estimate f(x) using the nonparametric least squares (NPLS), the NPV-CF estimator and our

CMR-CF estimator. We fix J = 5 for design [A] and J = 7 for design [B] and we use four different

sample sizes (n=100, 400, 1000, and 2,000). In all of the designs we obtain the control using the first

stage regression residual v̂i = xi − (π̂0 + π̂1zi + π̂2z
2
i ). We experimented with adding several higher

order terms in the first stage and found very similar simulation results across all three estimators.

We also experimented with different choices of approximating functions of h(v) and h(z, v) for design

[B]. We consider h(v) ≈

∑4
l=1 alv

l (NPV-CF1) or
∑5

l=1 alv
l (NPV-CF2) for NPV-CF estimators

and h(z, v) = a1v+a2zv (CMR-CF1), a1v+a2zv+a3z
2v (CMR-CF2), or a1v+a2zv+a3z

2v+a4ṽ2

(CMR-CF3) for CMR-CF estimators.

The results are summarized in Tables A and B. We report the root mean-squared-error (RMSE)

averaged across the 500 replications and the realized values of x. In both designs RMSE decreases

as the sample size increases for all estimators. The RMSEs for nonparametric least squares (NPLS)

are larger than RMSEs for the estimators that correct for endogeneity. In the design [A] as expected

both NPV-CF and CMR-CF estimators perform similarly although the CMR-CF estimator shows
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slightly larger RMSEs because it adds an irrelevant correction term (zv) in the control function.

In the design [B] the CMR-CF estimators dominate the NPV-CF estimators in terms of RMSE.

CMR-CF2 is our preferred specification that shows the smallest RMSE among CMR-CF estimators.

Comparison with CMR-CF1 suggests that including the term z2v significantly reduces RMSE’s. The

RMSE’s of NPLS and NPV-CF estimators tend to increase as the degree of endogeneity increases

while RMSEs decrease in CMR-CF2 and CMR-CF3 as the degree of endogeneity increases. We

conclude that our proposed CMR-CF estimator is robust to violations of the restriction (4) while

the NPV-CF estimator is not.

Table A: Design [A], RMSE

NPLS NPV-CF CMR-CF

Control Functions None h(v) ≈ a1v̂ h(z, v) ≈ a1v̂ + a2zv̂

n=100 0.4121 0.2685 0.2732

n=400 0.3844 0.1667 0.1692

n=1000 0.3788 0.1308 0.1317

n=2000 0.3695 0.1149 0.1165

Table B: Design [B], RMSE

NPLS NPV-CF1 NPV-CF2 CMR-CF1 CMR-CF2 CMR-CF3

CF’s None
P4

l=1 alv̂
l P5

l=1 alv̂
l a1v̂ + a2zv̂ a1v̂ + a2zv̂ + a3z

2v̂ a1v̂ + a2zv̂ + a3z
2v̂ + a4ṽ2

ρ = 0.5

n=100 0.3896 0.3233 0.3241 0.3049 0.3104 0.3231

n=400 0.2775 0.1679 0.1671 0.1540 0.1422 0.1456

n=1000 0.2511 0.1364 0.1358 0.1190 0.0999 0.1014

n=2000 0.2440 0.1150 0.1156 0.0968 0.0737 0.0745

ρ = 0.9

n=100 0.5277 0.3059 0.3018 0.2833 0.2734 0.2889

n=400 0.4462 0.2042 0.2003 0.1680 0.1296 0.1322

n=1000 0.4375 0.1885 0.1865 0.1483 0.0941 0.0950

n=2000 0.4311 0.1762 0.1773 0.1356 0.0690 0.0696

9 Empirical Example

We apply our estimator to the empirical example in Newey, Powell, and Vella (1999, hereafter

NPV). They investigate the relationship between hourly wage rate and annual hours worked using

the 1989 wave of the Michigan Panel Survey of Income Dynamics (PSID). The model is as follows:

yi = z′1iβ + g20(xi) + εi xi = z′iγ + vi

where yi is the log of the hourly wage rate of individual i, z1i is a vector of individual characteristics,
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xi is annual hours worked, zi is a vector of exogenous variables that includes z1i and g20 is a

non-parametric, unknown function. εi and vi are mean zero error terms such that E[ε|z, v] 6= 0,

E[v|z] = 0, and E[ε|v] 6= 0. We mimic NPV’s specification by defining z1i as education dummies,

union status, tenure status, full time work experience, regional variables and a racial dummy. The

variables included in zi but excluded from z1i are marital status, health status, presence of young

children, nonlabor income and a rural dummy. After following the data cleaning from NPV we have

2545 observations on males aged between 22 and 55 who had worked between 1000 and 3500 hours

in the previous year.

To construct our estimator we rewrite the model as follows:

yi = z′1iβ + g20(xi) + h(zi,vi) + ηi xi = z′iγ + vi

with E[εi|zi, vi] = h(zi, vi) and E[ηi|zi, vi] = 0. In the first step we mimic NPV’s control v̂i =

xi − Ê[xi|zi] exactly by regressing hours worked on the zi they use including the higher order

terms for the regressors related to tenure and full-time experience. In the second step, for NPV we

approximate h(zi, v̂i) = h(v̂i) as a third-order polynomial in v̂i and for our estimator we approximate

h(zi, v̂i) as a demeaned (w.r.t. Ê[·|zi]) third-order polynomial in v̂i and with interaction terms

between z1i and the demeaned third-order polynomial in v̂i (45 interaction terms in total). We

approximate g20(xi) as a fourth-order polynomial in xi.
17 We then regress yi on our approximations

to f0(xi, z1i) = z′1iβ + g20(xi) and h(zi, v̂i).

Table VII reports the results. Columns 1-3 mimic the specifications from NPV (estimates for

all regressors except the control and hours worked are suppressed). Column 1 is OLS and shows

that hours worked is not significant without the control, suggesting endogeneity problem. Column

2 is 2SLS and suggests that the linear model is misspecified when the higher order terms of hours

worked are omitted. Column 3 is NPV’s estimator using their preferred specification. Column 4

is our CMR-CF estimator. For our estimator there are 45 additional terms that we add to the

control function relative to NPV and an F-test of their significance rejects the null with a p-value

of less than 0.01 as the adjusted R-squared increases to 0.456 from 0.439. Thus it appears that the

expected value of εi does depend on z1i conditional on vi. However, correcting for the additional

terms does not appear to change the coefficients much as all of the NPV estimates fall within the

confidence interval of their counterpart for the CMR-CF estimator.

10 Conclusion

We show that the CF estimator of Newey, Powell, and Vella (1999) can be modified to allow

the conditional mean of the error to depend on both the instruments and controls. We do so by

adding conditional moment restrictions which, when combined with a suitable rank condition, imply

the control function is distinguishable from functions of the endogenous and exogenous regressors,

yielding identification of the structural function. We also show our approach yields identification

in settings where neither NPIV nor NPV-CF does. When sieves are used to approximate both the

17The choice of a fourth-order polynomial in xi and a third-order polynomial in v̂i is due to NPV, who state that
this is the preferred specification according to the cross validation (CV) criterion.
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structural function and the control function our estimator is simple to implement as it reduces to

a series of Least Squares regressions. Our monte carlos are designed to mimic common economic

settings where the NPV-CF independence assumption will not generally hold and we show our new

estimator is consistent in these settings when the NPV-CF estimator is biased. Our empirical ex-

ample revisits the example from NPV and we show under the CMRs we reject that the conditional

mean of the error is fully independent of the instruments.

Table VII: Wage as a Function of Hours Worked (x)

(1) OLS (2) 2SLS (3) NPV (4) CMR-CF

lnwage lnwage lnwage lnwage

x -1.51e-05 0.00102*** -0.00621** -0.00603

(1.97e-05) (0.000112) (0.00306) (0.00389)

x2 4.78e-06** 5.07e-06**

(2.08e-06) (2.44e-06)

x3 -1.34e-09** -1.54e-09**

(6.33e-10) (7.15e-10)

x4 1.33e-13* 1.61e-13**

(7.17e-14) (8.00e-14)

v -0.00106*** -0.00107*** 0.00267

(0.000114) (0.000170) (0.002554)

v2 -1.32e-07 -1.43e-07

(1.12e-07) (1.83e-06)

v3 1.81e-10* -2.42e-09

(1.10e-10) (3.24e-09)

R-squared 0.416 0.435 0.444 0.471

Adj R-squared 0.412 0.432 0.439 0.456

F-test on Interactions n/a n/a n/a 2.820

Prob > F n/a n/a n/a 0.000

Standard errors in parentheses account for pre-stage estimations.

*** p<0.01, ** p<0.05, * p<0.1

x is the number of hours worked.

v is the residual from the first stage.
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Appendix

A Linear setting with additive errors

We revisit the linear-in-parameters setting in light of our new estimator. In mean-deviated form

the equation of interest as

yi = xiβ0 + εi, (23)

with yi the dependent variable and xi a scalar explanatory variable that is potentially correlated

with εi, so E[xiεi] 6= 0 (and E[yi] = 0 and E[xi] = 0). We let zi denote an instrument vector

satisfying

E[zi εi] = 0, E[zi xi] 6= 0, (24)

(and E[zi] = 0). The classic control function (CCF) estimator for the linear case posits the same

control vi = xi − E[xi|zi] and follows directly from assuming

(Classic CF Restriction) E[εi|zi, xi] = E[εi|zi, vi] = ρvi. (25)

(25) implies the following estimating equation

yi = xiβ + ρvi + ηi, (26)

with ηi = εi −E[εi|zi, xi]. The CCF estimator differs from our CMR-CF estimator which considers

an (unrestricted) general specification for the conditional expectation of the error

E[εi|zi, vi] ≡ h(zi, vi) = ρ̃vi + h̃(zi, vi),

with the function characterizing E[εi|zi, vi] having a leading term in vi and a remaining term denoted

by the function h̃(zi, vi).

It is well-known by projection theory that the CCF estimator and the two-stage least squares

(2SLS) estimator produce numerically identical estimates. Our CMR-CF estimator will differ in

finite samples from CCF/2SLS estimator because of the additional regressors used to approximate

h̃(zi, vi). In this section we show that under the CMR condition the asymptotic correlation between

xi and h̃(zi, vi) conditional on vi vanishes so all three estimators for β0 are asymptotically equivalent.

In the linear case “CMR-CF” is a misnomer because - like CCF and 2SLS - we only require

E[ziεi] = 0. We relegate the proof that CCF and 2SLS are numerically equivalent to a footnote

below.18

18We provide a simple proof using projection that shows why they are equivalent. Let Y = (y1, . . . , yn)′, X =
(x1, . . . , xn)′, Z = (z1, . . . , zn)′, X̂ = (x̂1, . . . , x̂n)′ and V̂ = (v̂1, . . . , v̂n)′ below.
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We then consider the generalization of equation (26), with

Y = Xβ0 + ρ̃V̂ + H̃(Z, V̂ ) + η̂ (27)

where Y = (y1, . . . , yn)′, X = (x1, . . . , xn)′, Z = (z1, . . . , zn)′, H̃(Z, V̂ ) = (h̃(z1, v̂1), . . . , h̃(zn, v̂n))′

and V̂ = X − Zπ̂, the vector of controls, which are the ordinary least squares residuals from the

regression of X on Z, and η̂ is the residual after the estimated vector of controls are included. We

can rewrite (27) as

Y = (Zπ̂ + V̂ )β0 + ρ̃V̂ + H̃(Z, V̂ ) + η̂. (28)

Define MV̂ = I − V̂ (V̂ ′V̂ )−1V̂ ′, the matrix that projects off of V̂ , and note that MV̂ V̂ = 0 and

MV̂ Z = Z (because V̂ ′Z = 0). Then by partitioned regression theory, estimation of β0 in (28) is

numerically equivalent to the estimation of

Y = MV̂ (Zπ̂ + V̂ )β0 +MV̂ H̃(Z, V̂ ) +MV̂ η̂

= Zπ̂β +MV̂ H̃(Z, V̂ ) +MV̂ η̂.

If MV̂ H̃(Z, V̂ ) is asymptotically uncorrelated with Zπ̂, i.e., if Z ′MV̂ H̃(Z, V̂ )/n converges to zero as

the sample size goes to infinity, then the least squares estimator of β0 in (27) is consistent whether

or not we include H̃(Z, V̂ ) in the regression as long as V̂ is included as a regressor in (27). Note

that because Z ′V̂ = 0 we have

Z ′MV̂ H̃(Z, V̂ )/n = Z ′(I − V̂ (V̂ ′V̂ )−1V̂ ′)H̃(Z, V̂ )/n = Z ′H̃(Z, V̂ )/n =
∑n

i=1
zih̃(zi, v̂i)/n

and therefore consistency holds if

∑n

i=1
zih̃(zi, v̂i)/n →p 0. (29)

Theorem 6 couples (24) with weak regularity conditions which are sufficient for (29) to hold.

Theorem 6. Assume (i) E[‖zi‖ · ||h̃(zi, vi)||] < ∞, (ii) h̃(z, v) is differentiable with respect to v,

(iii) for vi(π) ≡ xi − z′iπ, assume supπ∗∈Π0
E[‖zi‖2

∥∥∥∂h̃(zi,vi(π∗))
∂vi

∥∥∥] < ∞ for Π0 some neighborhood

of π0, (iv) assume E[‖zi‖2
∥∥∥∂h̃(zi,vi(π))

∂vi

∥∥∥] is continuous at π = π0, and (v) π̂ →p π0. If (24) holds

then (29) holds.

Proof. Write
∑n

i=1 zih̃(zi, v̂i)/n =
∑n

i=1 zih̃(zi, vi)/n +
∑n

i=1 zi(h̃(zi, v̂i) − h̃(zi, vi))/n. We have

Remark 1 (2SLS-CF Numerical Equivalence). If β̂2SLS = (X̂ ′X̂)−1X̂ ′Y and (β̂CF , ρ̂CF )′ =

((X, V̂ )′(X, V̂ ))−1(X, V̂ )′Y are well-defined and exist, then β̂2SLS= β̂CF .

Proof. From projection theory the same numerical estimate obtains for the coefficient on xi from either regressing Y

on (X, V̂ ) or regressing Y on the projection of X off of V̂ . Numerical equivalence follows because the projection of X

off of V̂ is equal to X̂ because (I− V̂ (V̂ ′V̂ )−1V̂ ′)X = (I− V̂ (V̂ ′V̂ )−1V̂ ′)(X̂ + V̂ ) = X̂ , as V̂ ′X̂ = 0 by projection.
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∑n
i=1 zih̃(zi, vi)/n→p E[zih̃(zi, vi)] by the law of large numbers under (i). Obtain ||∑n

i=1 zi(h̃(zi, v̂i)−
h̃(zi, vi))/n|| ≤ ‖π̂∗ − π0‖

∑n
i=1 ‖zi‖

2 ||∂h̃(zi,vi(π̂∗))
∂vi

||/n by applying the mean-value expansion, where

π̂∗ lies between π̂ and π0 and vi(π) = xi − z′iπ. Then the term
∑n

i=1 zi(h̃(zi, v̂i)− h̃(zi, vi))/n →p 0

by the consistency of π̂ and
∑n

i=1 ‖zi‖
2
∥∥∥∂h̃(zi,vi(π̂∗))

∂vi

∥∥∥ /n→p E[‖zi‖2
∥∥∥∂h̃(zi,vi(π0))

∂vi

∥∥∥] <∞ under (iii)

and (iv). Therefore
∑n

i=1 zih̃(zi, v̂i)/n →p E[zih̃(zi, vi)]. Finally note E[zih̃(zi, vi)] = 0 if (24) holds

and vi is such that E[vi|zi] = 0 because by the law of iterated expectations

0 = E[zi εi] = E[ziE[E[εi|zi, vi]|zi] ] = E[zi(ρ̃E[vi|zi] + E[h̃(zi, vi)|zi])]
= E[ziE[h̃(zi, vi)|zi]] = E[zi h̃(zi, vi)]

and therefore the conclusion follows.

The theorem also makes it clear that the classic control function approach does not generally

yield consistency for the expected value of the error conditional on the control and exogenous

variables unless H̃(Z, V̂ ) is also included in the regression equation. Although this is not typically

the object of interest of either the classic CF estimator or the 2SLS estimator, an exception is when

one tests for endogeneity based on the estimate of ρ in (26).19

A simple example is illustrative of these points. Consider the case that zi is a scalar and

E[εi|zi, vi] = ρ1vi + ρ2vizi, (30)

but the researcher only includes xi and v̂i as regressors. Even though the researcher omits the

relevant variable v̂izi, the ordinary least squares estimator β̂ is consistent for β0 because for the

term corresponding to (29)

n∑

i=1

zi(v̂izi)/n→p E[viz
2
i ] = 0,

which follows from v̂i →p vi (because π̂ →p π0) and E[vi|zi] = 0 and by LLN under standard

regularity conditions (E[‖vi‖ ‖zi‖2] < ∞ and E[‖zi‖3] < ∞). However, ρ̂1v̂i is not a consistent

estimator of E[εi|zi, vi]. If one desired a consistent estimator of this conditional expectation, then

v̂izi would have to be included in the regression, and ρ̂1v̂i+ ρ̂2v̂izi would be consistent for E[εi|zi, vi].

B Proof of convergence rates (Theorem 3)

We first introduce notation and prove Lemma L1 below that is useful to prove the convergence

rate results and also the asymptotic normality of linear functional estimators.

19 See e.g. Smith and Blundell (1986). In this case the misspecification of this conditional expectation may reduce

the power of the test or call into question the test’s consistency.
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Define hL(z, v) = a′Lϕ̃
L(z, v) and ĥL(z, v) = a′L ˆ̃ϕL(z, v) where aL

20 satisfies Assumption L1 (iv).

Define ψL

i (zi, vi) = (φ1(xi, z1i), . . . , φK(xi, z1i), ϕ̃
L(zi, vi)

′)′ where ϕ̃L(zi, vi) = (ϕ̃1(zi, vi), . . . , ϕ̃L(zi, vi))
′

and ψ̂L

i (zi, vi) = (φ1(xi, z1i), . . . , φK(xi, z1i), ˆ̃ϕL(zi, vi)
′)′ with ˆ̃ϕL(zi, vi) = ( ˆ̃ϕ1(zi, vi), . . . , ˆ̃ϕL(zi, vi))

′.

We further let
ˆ̂
ψL

i = ψ̂L(zi, v̂i), ψ
L

i = ψL(zi, vi), and ψ̂L

i = ψ̂L(zi, vi). We further let ψL,n =

(ψL

1 , . . . , ψ
L
n )′ , ψ̂L,n = (ψ̂L

1 , . . . , ψ̂
L
n )′, and

ˆ̂
ψL,n = (

ˆ̂
ψL

1 , . . . ,
ˆ̂
ψL

n )′.

Let C (also C1,C2, and others) denote a generic positive constant and let C(Z, V ) or C(X,Z1)

(also C1(·), C2(·), and others) denote a generic bounded positive function of (Z, V ) or (X,Z1). We

often write Ci = C(xi, z1i). Recall W = supp(Z, V ).

Assumption 6 (L1). (i) (X,Z, V ) is continuously distributed with bounded density; (ii) for each

k, K, L, and L = K + L there are nonsingular matrices B1, B2, B3, and B such that for

pk
B1

(z) = B1p
k(z), φK

B2
(x, z1) = B2φ

K(x, z1), ϕ̃
L
B3

(z, v) = B3ϕ̃
L(z, v), and ψL

B(z, v) = BψL(z, v),

E[pk
B1

(Zi)p
k
B1

(Zi)
′], E[φK

B2
(Xi, Z1i)φ

K
B2

(Xi, Z1i)
′], E[ϕ̃L

B3
(Zi, Vi)ϕ̃

L
B3

(Zi, Vi)
′], and E[ψL

B(Zi, Vi)ψ
L

B(Zi, Vi)
′]

have smallest eigenvalues that are bounded away from zero, uniformly in k, K, L, and L; (iii) for

each integer δ > 0, there exist ζδ(K), ζδ(L), and ξδ(k) such that |φK(x, z1)|δ ≤ ζδ(K), |ψL(z, v)|δ ≤
ζδ(L) (this also implies that |ϕ̃L(z, v)|δ ≤ ζδ(L)), and |pk(z)|δ ≤ ξδ(k) ; (iv) There exist γ1, γ2, γf ,

γ > 0, and βK , aL, βL, λ1
k, and λ2

l,k such that |Π0(z) − λ1′
k p

k(z)|δ ≤ Ck−γ1 , |ϕ̄0l(z) − λ2′
l,kp

k(z)|δ ≤
Ck−γ2 for all l, |f0(x, z1) − βK′φK(x, z1)|δ ≤ CK−γf , |h0(z, v) − a′Lϕ̃

L(z, v)|δ ≤ CL−γ, and

|g0(z, v) − β′
L
ψL(z, v)|δ ≤ CL

−γ; (v) both Z and X are compact.

Let △n,1 = k
1/2
n /

√
n+ k−γ1

n and △n,2 = k
1/2
n /

√
n+ k−γ2

n and △n = max{△n,1,△n,2}.

Lemma 1 (L1). Suppose Assumptions L1 and Assumptions C1 hold. Further suppose L
1/2(ζ1(L)+

L1/2ξ0(k)
√
k/n+ L1/2)△n → 0 , ξ0(k)

2k/n→ 0, and ζ0(L)2L/n→ 0. Then,

(
∑n

i=1
(ĝ(zi, vi) − g0(zi, vi))

2 /n)1/2 = Op(
√

L/n+ Lξ0(k)△n,1

√
k/n+ L△n,2 + L

−γ)

max
i≤n

|ĝ(zi, vi) − g0(zi, vi)| = Op(ζ0(L)[
√

L/n+ Lξ0(k)△n,1

√
k/n+ L△n,2 + L

−γ ]).

B.1 Proof of Lemma L1

Without loss of generality, we will let pk(z) = pk
B1

(z), φK(x, z1) = φK
B2

(x, z1), ϕ̃
L(z, v) =

ϕ̃L
B3

(z, v), and ψL(z, v) = ψL

B(z, v). Let Π̂i = Π̂(zi) and Πi = Π0(zi). Let ˆ̄ϕli = ˆ̄ϕl(zi) and ϕ̄li =

ϕ̄l(zi). Let ˆ̃̂ϕli = ˆ̃ϕl(zi, v̂i) and ϕ̃li = ϕ̃l(zi, vi). Also let ˆ̃̂ϕL
i = ˆ̃ϕL(zi, v̂i) and ϕ̃L

i = ϕ̃L(zi, vi). Further

define ˙̄ϕl(z) = pk(z)′(P ′P )−
∑n

i=1 p
k(zi)ϕl(zi, vi) where we have ˆ̄ϕl(z) = pk(z)′(P ′P )−

∑n
i=1 p

k(zi)ϕl(zi, v̂i).

Let ˙̄ϕL(z) = ( ˙̄ϕ1(z), . . . , ˙̄ϕL(z))′ and ϕ̄L(z) = (ϕ̄1(z), . . . , ϕ̄L(z))′. We also let

ϕL(zi, v̂i) = (ϕ1(zi, v̂i), . . . , ϕL(zi, v̂i))
′ and ϕL(zi, vi) = (ϕ1(zi, vi), . . . , ϕL(zi, vi))

′.

First note (P ′P )/n becomes nonsingular w.p.a.1 as ξ0(k)
2k/n → 0 by Assumption L1 (ii) and

by the same proof in Theorem 1 of Newey (1997). Then by the same proof (A.3) of Lemma A1 in

20With abuse of notation we write aL = (a1, . . . , aL)′.
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Newey, Powell, and Vella (1999), we obtain

∑n

i=1
||Π̂i − Πi||2/n = Op(△2

n,1) and
∑n

i=1
|| ˙̄ϕli − ϕ̄li||2/n = Op(△2

n,2) for all l. (31)

Also by Theorem 1 of Newey (1997), it follows that

max
i≤n

||Π̂i − Πi|| = Op(ξ0(k)△n,1) (32)

max
i≤n

|| ˙̄ϕli − ϕ̄li|| = Op(ξ0(k)△n,2) for all l. (33)

Define T̂ = (
ˆ̂
ψL,n)′ ˆ̂ψL,n/n and Ṫ = (ψL,n)′ψL,n/n. Our goal is to show that T̂ is nonsingular

w.p.a.1. We first note that Ṫ is nonsingular w.p.a.1 by Assumption L1 (ii) as ζ0(L)2L/n → 0 by

the same proof in Lemma A1 of Newey, Powell, and Vella (1999).

For ease of notation along the proof, we will assume some rate conditions are satisfied. Then

we collect those rate conditions in Section B.2 and derive conditions under which all of them are

satisfied. Next note that

∥∥ ˆ̃̂ϕL
i − ϕ̃L

i

∥∥ ≤
∥∥ϕL(zi, v̂i) − ϕL(zi, vi)

∥∥ +
∥∥ ˆ̄ϕL(zi) − ϕ̄L(zi)

∥∥ (34)

≤
∥∥ϕL(zi, v̂i) − ϕL(zi, vi)

∥∥ +
∥∥ ˆ̄ϕL(zi) − ˙̄ϕL(zi)

∥∥ +
∥∥ ˙̄ϕL(zi) − ϕ̄L(zi)

∥∥ .

We find
∥∥ϕL(zi, v̂i) − ϕL(zi, vi)

∥∥ ≤ Cζ1(L)||Π̂i − Πi|| applying a mean value expansion because

ϕl(zi, vi) is Lipschitz in vi (so in Πi) for all l (Assumption C1 (vi)). Combined with (31), it implies

that ∑n

i=1

∥∥ϕL(zi, v̂i) − ϕL(zi, vi)
∥∥2
/n = Op(ζ1(L)2△2

n,1). (35)

Next let ω̂l = (ϕl(z1, v̂1) − ϕl(z1, v1), . . . , ϕl(zn, v̂n) − ϕl(zn, vn))′. Then we can write for any

l = 1, . . . , L,

∑n

i=1

∥∥ ˆ̄ϕl(zi) − ˙̄ϕl(zi)
∥∥2
/n = tr

{∑n

i=1
pk(zi)

′(P ′P )−P ′ω̂lω̂
′
lP (P ′P )−pk(zi)

}
/n (36)

= tr

{
(P ′P )−P ′ω̂lω̂

′
lP (P ′P )−

n∑

i=1

pk(zi)p
k(zi)

′
}
/n

= tr
{
(P ′P )−P ′ω̂lω̂

′
lP

}
/n

≤ Cmax
i≤n

||Π̂i − Πi||2tr
{
(P ′P )−P ′P

}
/n ≤ Cξ0(k)

2△2
n,1k/n

where the first inequality is obtained by (32) and applying a mean value expansion to ϕl(zi, vi)

which is Lipschitz in vi (so in Πi) for all l (Assumption C1 (vi)). From (31), (34), (35), and (36),

we conclude

∑n

i=1
|| ˆ̄ϕL(zi) − ϕ̄L(zi)||2/n = Op(Lξ0(k)

2△2
n,1k/n) +Op(L△2

n,2) = op(1), (37)
∑n

i=1

∥∥ ˆ̂
ϕ̃L

i − ϕ̃L
i

∥∥2
/n = Op(ζ1(L)2△2

n,1) +Op(Lξ0(k)
2△2

n,1k/n) +Op(L△2
n,2) = op(1).
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The latter also implies that by the triangle inequality and the Markov inequality,

∑n

i=1
|| ˆ̃̂ϕL

i ||2/n ≤ 2
n∑

i=1

|| ˆ̃̂ϕL
i − ϕ̃L

i ||2/n + 2
n∑

i=1

||ϕ̃L
i ||2/n = op(1) +Op(L). (38)

Let △ϕ
n = (ζ1(L) + L1/2ξ0(k)

√
k/n + L1/2)△n. It also follows that

∑n

i=1

∥∥∥ ˆ̂
ψL

i − ψL

i

∥∥∥
2

/n ≤
∑n

i=1

∥∥∥ ˆ̂
ϕ̃L

i − ϕ̃L
i

∥∥∥
2
/n = Op((△ϕ

n)2) = op(1). (39)

This also implies
∑n

i=1 ||
ˆ̂
ψL

i ||2/n = Op(L) because
∑n

i=1

∥∥∥ ˆ̂
ψL

i

∥∥∥
2

/n ≤ 2
∑n

i=1

∥∥∥ ˆ̂
ψL

i − ψL

i

∥∥∥
2

/n +

2
∑n

i=1

∥∥ψL

i

∥∥2
/n = Op(L).

Then applying (39) and applying the triangle inequality and Cauchy-Schwarz inequality and by

Assumption L1 (iii) , we obtain

||T̂ − Ṫ || ≤
∑n

i=1

∥∥∥ ˆ̂
ψL

i − ψL

i

∥∥∥
2

/n+ 2
∑n

i=1

∥∥ψL

i

∥∥
∥∥∥ ˆ̂
ψL

i − ψL

i

∥∥∥ /n (40)

≤ Op((△ϕ
n)2) + 2

(∑n

i=1

∥∥ψL

i

∥∥2
/n

)1/2
(∑n

i=1

∥∥∥ ˆ̂
ψL

i − ψL

i

∥∥∥
2

/n

)1/2

= Op((△ϕ
n)2) +Op(L

1/2△ϕ
n) = op(1).

It follows that

||T̂ − T || ≤ ||T̂ − Ṫ || + ||Ṫ − T ||
= Op((△ϕ

n)2 + L
1/2△ϕ

n + ζ0(L)
√

L/n) ≡ Op(△T ) = op(1) (41)

where we obtain ||Ṫ − T || = Op(ζ0(L)
√

L/n) by the same proof in Lemma A1 of Newey, Powell,

and Vella (1999). Therefore we conclude T̂ is also nonsingular w.p.a.1. The same conclusion holds

even when instead we take T̂ =
∑n

i=1C(zi, vi)
ˆ̂
ψL

i
ˆ̂
ψL′

i /n and Ṫ =
∑n

i=1 C(zi, vi)ψ
L

i ψ
L′
i /n for some

positive bounded function C(zi, vi) and this helps to derive the consistency of the heteroskedasticity

robust variance estimator later.

Let ηi = yi − g0(zi, vi) and let η = (η1, . . . , ηn)′. Let (Z,V) = ((Z1, V1), . . . , (Zn, Vn)). Then we

have E[ηi|Z,V] = 0 and by the independence assumption of the observations, we haveE[ηiηj |Z,V] =

0 for i 6= j. We also have E[η2
i |Z,V] <∞. Then by (39) and the triangle inequality, we bound

E
[
||( ˆ̂
ψL,n − ψL,n)′η/n||2|Z,V

]
≤ Cn−2

∑n

i=1
E[η2

i |Z,V]
∥∥∥ ˆ̂
ψL

i − ψL

i

∥∥∥
2

≤ n−1Op(L(△ϕ
n)2) = op(n

−1).

Then from the standard result (see Newey (1997) or Newey, Powell, and Vella (1999)) that the

bound of a term in the conditional mean implies the bound of the term itself, we obtain ||( ˆ̂
ψL,n −

ψL,n)′η/n||2 = op(n
−1). Also note that E[

∥∥(ψL,n)′η/n
∥∥2

] = CL/n (see proof of Lemma A1 in
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Newey, Powell, and Vella (1999)). Therefore, by the triangle inequality

||( ˆ̂
ψL,n)′η/n||2 ≤ 2||( ˆ̂

ψL,n − ψL,n)′η/n||2 + 2||(ψL,n)′η/n||2. (42)

= op(1) +Op(L/n) = Op(L/n).

Define ĝi = f̂(xi, z1i) + ĥ(zi, v̂i), ˆ̂gLi = fK(xi, z1i) + ĥL(zi, v̂i), g̃Li = fK(xi, z1i) + hL(zi, v̂i),

g̃0i = f0(xi, z1i) + h0(zi, v̂i), and g0i = f0(xi, z1i) + h0(zi, vi) where fK(xi, z1i) =
∑K

l=1 βlφl(xi, z1i),

ĥ(zi, v̂i) = â′L ˆ̃ϕ(zi, v̂i), ĥL(zi, v̂i) = a′L ˆ̃ϕ(zi, v̂i), and hL(zi, v̂i) = a′L(ϕ(zi, v̂i) − ϕ̄L(zi)) and let ĝ, ˆ̂gL,

g̃L, and g̃0 stack the n observations of ĝi, ˆ̂gLi, g̃Li, and g̃0i, respectively. Recall βL = (βK′, a′L)′ where

βK = (β1, . . . , βK)′ and let this βL satisfies Assumption L1 (iv). From the first order condition of

the last step least squares we obtain

0 =
ˆ̂
ψL,n′(y − ĝ)/n (43)

=
ˆ̂
ψL,n′(η − (ĝ − ˆ̂gL) − (ˆ̂gL − g̃L) − (g̃L − g̃0))/n

=
ˆ̂
ψL,n′(η − ˆ̂

ψL,n(β̂ − βL) − (ˆ̂gL − g̃L) − (g̃L − g̃0) − (g̃0 − g0))/n.

Note that by
ˆ̂
ψL,n(

ˆ̂
ψL,n′ ˆ̂ψL,n)−1 ˆ̂

ψL,n′ idempotent and by Assumption L1 (iv),

||T̂ −1 ˆ̂
ψL,n′(g̃L − g̃0)/n|| ≤ Op(1){(g̃L − g̃0)

′ ˆ̂ψL,n(
ˆ̂
ψL,n′ ˆ̂ψL,n)−1 ˆ̂

ψL,n′(g̃L − g̃0)/n}1/2 (44)

≤ Op(1){(g̃L − g̃0)
′(g̃L − g̃0)/n}1/2 = Op(L

−γ).

Similarly we obtain by
ˆ̂
ψL,n(

ˆ̂
ψL,n′ ˆ̂ψL,n)−1 ˆ̂

ψL,n′ idempotent, Assumption L1 (iv), and (37),

||T̂ −1 ˆ̂
ψL,n′(ˆ̂gL − g̃L)/n|| = Op(1){(ˆ̂gL − g̃L)′(ˆ̂gL − g̃L)/n}1/2 (45)

≤ Op(1)(
∑n

i=1
||ĥL(zi, v̂i) − h̃L(zi, v̂i)||2/n)1/2

≤ Op(1)(
∑n

i=1
||aL||2|| ˆ̄ϕL(zi) − ϕ̄L(zi)||2/n)1/2 = Op(Lξ0(k)△n,1

√
k/n+ L△n,2).

Similarly also by
ˆ̂
ψL,n(

ˆ̂
ψL,n′ ˆ̂ψL,n)−1 ˆ̂

ψL,n′ idempotent and (31) and applying the mean value expan-

sion to h0(zi, vi), we have

||T̂ −1 ˆ̂
ψL,n′(g̃0 − g0)/n|| = Op(1)(

n∑

i=1

||h0(zi, v̂i) − h0(zi, vi)||2/n)1/2 (46)

≤ Op(1)(
∑n

i=1
||Π̂i − Πi||2/n)1/2 = Op(△n,1) = op(1).

Combining (42), (43), (44), (45), (46) and by T̂ is nonsingular w.p.a.1, we obtain

||β̂ − βL|| ≤ ||T̂ −1 ˆ̂
ψL,n′η/n|| + ||T̂ −1 ˆ̂

ψL,n′(ˆ̂gL − g̃L)/n|| + ||T̂ −1 ˆ̂
ψL,n′

(g̃L − g̃0)/n|| + op(1)

= Op(1){
√

L/n+ Lξ0(k)△n,1

√
k/n + L△n,2 + L

−γ} ≡ Op(△n,β). (47)

Define g∗
Li = fK(xi, z1i) + h∗L(zi, vi) where h∗L(zi, vi) = a′L(ϕL(zi, vi) − ˆ̄ϕL(zi)). Then applying the
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triangle inequality, by (37), (47), the Markov inequality, Assumption L1 (iv), and T̂ is nonsingular

w.p.a.1 (by Assumption L1 (ii) and (41)), we conclude

∑n

i=1
(ĝ(zi, vi) − g0(zi, vi))

2 /n (48)

≤ 3
∑n

i=1
(ĝ(zi, vi) − g∗

Li)
2 /n+ 3

∑n

i=1
(g∗

Li − gLi)
2 /n+ 3

∑n

i=1
(gLi − g0(zi, vi))

2 /n

≤ Op(1)||β̂ − βL||2

+C1

∑n

i=1
||aL||2|| ˆ̄ϕL(zi) − ϕ̄L(zi)||2/n+ C2 sup

W
||β′

L
ψL(z, v) − g0(z, v)||2

≤ Op(△2
n,β) + LOp(Lξ0(k)

2△2
n,1k/n+ L△2

n,2) +Op(L
−2γ) = Op(△2

n,β).

This also implies that by a similar proof to Theorem 1 of Newey (1997)

max
i≤n

|ĝi − g0i| = Op(ζ0(L)△n,β). (49)

B.2 Proof of Theorem 3

Under Assumption C1, all the assumptions in Assumption L1 are satisfied. We can take γ1 =

s1/dz and γ2 = s2/dz as discussed in Assumption C1. For the consistency, we require the following

rate conditions: (i) L
1/2△ϕ

n → 0 from (40), (ii) ζ0(L)2L/n → 0 (such that Ṫ is nonsingular w.p.a.1),

and (iii) ξ0(k)
2k/n → 0 (such that P ′P/n is nonsingular w.p.a.1). The other rate conditions are

dominated by these three. From the definition of △ϕ
n = (ζ1(L) + L1/2ξ0(k)

√
k/n + L1/2)△n, we

have (i) : L1/2(ζ1(L) + L1/2ξ0(k)
√
k/n+ L1/2)△n.

For the polynomial approximations, we have ζδ(L) ≤ CL1+2δ and ξ0(k) ≤ Ck and for the

spline approximations, we have ζδ(L) ≤ CL0.5+δ and ξ0(k) ≤ Ck0.5. Therefore for the polynomial

approximations, the rate conditions become (i) L
1/2(L3 +L1/2k3/2/

√
n+L1/2)△n → 0, (ii) L

3/n→
0, and (iii) k3/n → 0 and for the spline approximations, they become (i) L

1/2(L3/2 + L1/2k/
√
n+

L1/2)△n → 0, (ii) L
2/n → 0, and (iii) k2/n → 0. Also note that △n,β ≡ ||β̂ − βL|| =

√
L/n +

Lξ0(k)△n,1

√
k/n + L△n,2 + L

−γ =
√

L/n + L△n + L
−γ since ξ0(k)

√
k/n = o(1). Here we can

take γf = s/(dx + d1) and γ = s/d because f0 and h0 belong to the Hölder class and we can apply

the approximation theorems (e.g., see Timan (1963), Schumaker (1981), Newey (1997), and Chen

(2007)). Therefore, the conclusion of Theorem 3 (a) follows from Lemma L1 applying the dominated

convergence theorem by ĝi and g0i are bounded.

For Theorem 3 (b) note that for β̂ = (β̂K′, â′L)′ and βL = (βK′, a′L)′,

|f̂ − f0|δ ≤ |φK(x, z1)
′(β̂K − βK)|δ + |φK(x, z1)

′βK − f0(x, z1)|δ
≤ ζδ(K)||β̂K − βK || +O(K−s/(dx+d1)) ≤ ζδ(K)||β̂ − βL|| +O(K−s/(dx+d1))

= Op(ζδ(K)[
√

L/n+ L△n + L
−s/d] +K−s/(dx+d1))

where the second inequality holds by Assumption C1 (vii) and the last equality holds by (47). This

completes the proof.
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C Proof of asymptotic normality (Theorem 4 and 5)

C.1 Rate conditions

Along the proof, we obtain rate conditions to bound terms. We collect them here. Define

△ϕ
n = (ζ1(L) + L1/2ξ0(k)

√
k/n+ L1/2)△n, △n,β =

√
L/n+ L△n + L

−γ

△T = (△ϕ
n)2 + L

1/2△ϕ
n + ζ0(L)

√
L/n,△T1 = ξ0(k)

√
k/n

△H = ζ0(L)k1/2/
√
n+ k1/2△ϕ

n + L−γζ0(L)
√
k

△dϕ = ζ0(L)L△n,2,△g = ζ0(L)△n,β

△Σ = ∆T + ζ0(L)2L/n,△Ĥ = (ζ1(L)△n,β + ξ0(k)△n,1)L
1/2ξ0(k)

and we need the following rate conditions for the
√
n-consistency and the consistency of the variance

matrix estimator Ω̂:

√
nL−γ → 0,

√
nk1/2L−γ → 0,

√
nk−γ1 → 0,

√
nk−γ2 → 0

k1/2(△T1 + △H) + L
1/2△T → 0, n−1(ζ0(L)2L + ξ0(k)

2k + ξ0(k)
2kL4) → 0,

k1/2(△T1 + △H) + L
1/2△T + △dϕ → 0,△g → 0,△Σ → 0,△Ĥ → 0.

Dropping the dominated ones and assuming
√
nL−γ ,

√
nk−γ1 , and

√
nk−γ2 are small enough, under

the following all the rate conditions are satisfied:

ζ0(L)k + ζ1(L)k3/2 + ζ0(L)L + Lζ1(L)ξ0(k) + L
1/2ζ1(L)Lξ0(k)k

1/2 + L
1/2ξ0(k)

2k1/2

√
n

→ 0.

For the polynomial approximations it becomes L
2+LL3k+L

1/2(L4k3/2+k5/2)√
n

→ 0 and for the spline

approximations it becomes L
3/2+LL3/2k1/2+L

1/2(L5/2k+k3/2)+L3/2k3/2
√

n
→ 0.

C.2 Asymptotic variance terms

Let pk
i = pk(Zi) and pk

i = (p1i, . . . , pki)
′. We start with introducing additional notation:

Σ = E[ψL

i ψ
L′
i var(Yi|Zi, Vi)], T = E[ψL

i ψ
L′
i ],T1 = E[pk

i p
k′
i ], (50)

Σ1 = E[V 2
i p

k
i p

k′
i ], Σ2,l = E[(ϕl(Zi, Vi) − ϕ̄l(Zi))

2pk
i p

k′
i ],

H11 = E[
∂h0i

∂Vi
ψL

i p
k′
i ], H̄11 =

n∑

i=1

∂h0i

∂Vi
ψL

i p
k′
i /n

H12 = E[E[
∂h0i

∂Vi
|Zi]ψ

L

i p
k′
i ], H̄12 =

n∑

i=1

E[
∂h0i

∂Vi
|Zi]ψ

L

i p
k′
i /n

H2,l = E[alψ
L

i p
k′
i ], H̄2,l =

n∑

i=1

alψ
L

i p
k′
i /n, H1 = H11 −H12, H̄1 = H̄11 − H̄12

Ω̄ = AT −1[Σ +H1T −1
1 Σ1T −1

1 H ′
1 +

∑L

l=1
H2,lT −1

1 Σ2,lT −1
1 H ′

2,l]T −1A′.
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Let T1 = I without loss of generality. Then Ω̄ = AT −1
[
Σ +H1Σ1H

′
1 +

∑L
l=1H2,lΣ2,lH

′
2,l

]
T −1A′.

Let Γ be a symmetric square root of Ω̄−1. Because T is nonsingular and var(Yi|Zi, Vi) is bounded

away from zero, CΣ − I is positive semidefinite for some positive constant C. It follows that

||ΓAT −1|| = {tr(ΓAT −1T −1A′Γ′)}1/2 ≤ {tr(ΓAT −1CΣT −1A′Γ′)}1/2

≤ {tr(CΓΩ̄Γ′)}1/2 ≤ C

and therefore ||ΓAT −1|| is bounded. Next we show Ω̄ → Ω as k,K,L→ ∞. Under Assumption R1,

we have A = E[ν∗(Z, V )ψL′
i ]. Take ν∗

L
(Z, V ) = AT −1ψL

i . Then note E[||ν∗(Z, V )−ν∗
L
(Z, V )||2] → 0

because (i) ν∗
L
(Z, V ) = E[ν∗(Z, V )ψL′

i ]T −1ψL

i is a mean-squared projection of ν∗(zi, vi) on ψL

i ; (ii)

ν∗(zi, vi) is smooth and the second moment of ν∗(zi, vi) is bounded, so it is well-approximated in

the mean-squared error as assumed in Assumption R1. Let ν∗i = ν∗(Zi, Vi) and ν∗
Li = ν∗

L
(Zi, Vi). It

follows that

E[ν∗
Livar(Yi|Zi, Vi)ν

∗′
Li] = AT −1E[ψL

i var(Yi|Zi, Vi)ψ
L′
i ]T −1A′ → E[ν∗i var(Yi|Zi, Vi)ν

∗′
i ].

It concludes that AT −1ΣT −1A′ converges to E[ν∗i var(Yi|Zi, Vi)ν
∗
i
′] (the first term in Ω) as k,K,L →

∞. Next let

bLi = E[ν∗
Li

(
∂h0i

∂Vi
− E[

∂h0i

∂Vi
|Zi]

)
pk′

i ]pk
i

and bi = E
[
ν∗i

(
∂h0i
∂Vi

− E[∂h0i
∂Vi

|Zi]
)
pk′

i

]
pk

i . Note that because (T1)
−1 = I, bLi and bi are least

squares mean projections of ν∗
Li

(
∂h0i
∂Vi

− E[∂h0i
∂Vi

|Zi]
)

on pk
i and ν∗i

(
∂h0i
∂Vi

− E[∂h0i
∂Vi

|Zi]
)

on pk
i , respec-

tively. Then E[||bLi − bi||2] ≤ CE[||ν∗
Li − ν∗i ||2] → 0 where the first inequality holds because the

mean square error of a least squares projection cannot be larger than the MSE of the variable being

projected. Also note that E[||ρv(Zi) − bi||2] → 0 as k → ∞ because bi is a least squares projection

of ν∗i

(
∂h0i
∂Vi

− E
[

∂h0i
∂Vi

|Zi

])
on pk

i and it converges to the conditional mean as k → ∞. Finally note

that

E[bLivar(Vi|Zi)b
′
Li] = AT −1E

[
ψL

i

(
∂h0i

∂Vi
− E

[
∂h0i

∂Vi
|Zi

])
pk′

i

]
E[var(Vi|Zi)p

k
i p

k′
i ]

×E
[
pk

i

(
∂h0i

∂Vi
− E

[
∂h0i

∂Vi
|Zi

])
ψL′

i

]
T −1A′

= AT −1H1Σ1H
′
1T −1A′

and therefore we conclude AT −1H1Σ1H
′
1T −1A′ converges to E[ρv(Z)var(X|Z)ρv(Z)′] (the second

term in Ω). Similarly we can show that for all l

AT −1H2,lΣ2,lH
′
2,lT −1A′ → E[ρϕ̄l

(Z)var(ϕl(Z, V )|Z)ρϕ̄l
(Z)′].

We then conclude Ω̄ → Ω as k,K,L → ∞. This also implies Γ → Ω−1/2 and Γ is bounded.
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C.3 Influence functions and asymptotic normality

Next we derive the asymptotic normality of
√
n(θ̂ − θ0). After we establish the asymptotic

normality, we will show the convergence of the each term in (20) to the corresponding terms

in (50). We show some of them here to be used for deriving the asymptotic normality. Note

||T̂ − T || = Op(△T ) = op(1) and ||T̂1 − T1|| = Op(△T1) = op(1) . We also have ||ΓA(T̂ −1 −
T −1)|| = op(1) and ||ΓAT̂ −1/2||2 = Op(1) (see proof in Lemma A1 of Newey, Powell, and Vella

(1999)). We next show ||H̄11 −H11|| = op(1). Let H11L = E[
∑L

l=1 al
∂ϕl(Zi,Vi)

∂Vi
ψL

i p
k′
i ] and H̄11L =

∑n
i=1

∑L
l=1 al

∂ϕl(Zi,Vi)
∂Vi

ψL

i p
k′
i /n. Similarly defineH12L = E[E[

∑L
l=1 al

∂ϕl(Zi,Vi)
∂Vi

|Zi]ψ
L

i p
k′
i ] and H̄12L =

∑n
i=1E[

∑L
l=1 al

∂ϕl(Zi,Vi)
∂Vi

|Zi]ψ
L

i p
k′
i /n and let H1L = H11L −H12L. By Assumption N1 (i), L1 (iii)

and the Cauchy-Schwarz inequality,

||H1 −H1L||2

≤ CE[||{(∂h0i

∂Vi
− E[

∂h0i

∂Vi
|Zi]) −

∑

l

al(
∂ϕl(Zi, Vi)

∂Vi
−E[

∂ϕl(Zi, Vi)

∂Vi
|Zi])}ψL

i p
k′
i ||2]

≤ CL−2γE[||ψL

i ||2
∑k

j=1
p2

ji] = O(L−2γζ0(L)2k).

Next consider that by Assumption L1 (iii) and the Cauchy-Schwarz inequality,

E[
√
n||H̄11L −H11L||] ≤ C(E[(

∑L

l=1
al
∂ϕl(Zi, Vi)

∂Vi
)2||ψL

i ||2
∑k

j=1
p2

ji])
1/2

= C(E[(
∂hLi

∂Vi
)2||ψL

i ||2
∑k

j=1
p2

ji])
1/2 ≤ Cζ0(L)k1/2

where the first equality holds because ∂hLi
∂Vi

=
∑L

l=1 al
∂ϕ̃l(Zi,Vi)

∂Vi
=

∑L
l=1 al

∂ϕl(Zi,Vi)
∂Vi

and the last

result holds because hLi ∈ Hn (i.e. |hLi|1 is bounded). Similarly by (39), the Cauchy-Schwarz

inequality, and the Markov inequality, we obtain

∥∥H̄11 − H̄11L

∥∥ ≤ Cn−1
∑n

i=1
|
∑L

l=1
al
∂ϕl(Zi, Vi)

∂Vi
| · || ˆ̂ψL

i − ψL

i || · ||pk
i ||

≤ C(
∑n

i=1
Ci|| ˆ̂ψL

i − ψL

i ||2/n)1/2 ·
(∑n

i=1
||pk

i ||2/n
)1/2

≤ Op(k
1/2△ϕ

n).

Therefore, we have ||H̄11 −H11|| = Op(ζ0(L)k1/2/
√
n+ k1/2△ϕ

n +L−γζ0(L)
√
k) ≡ Op(△H) = op(1).

Similarly we can show that ||H̄12 −H12|| = op(1) and ||H̄2,l −H2,l|| = op(1) for all l.

Now we derive the asymptotic expansion to obtain the influence functions. Further define

ĝLi = fK(xi, z1i)+ h̃L(zi, v̂i) where fK(xi, z1i) =
∑K

j=1 βjφj(xi, z1i) and h̃L(zi, v̂i) = a′L(ϕL(zi, v̂i)−
E[ϕL(Zi, V̂i)|zi]) and gLi = fK(xi, z1i) + hL(zi, vi). Recall βL = (β1, . . . , βK , a

′
L)′ and let this βL

satisfy Assumption N1 (i). Then from the first order condition, we obtain the expansion similar to
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(43) as 21

0 =
ˆ̂
ψL,n′(y − ĝ)/

√
n (51)

=
ˆ̂
ψL,n′(η − (ĝ − ˆ̂gL) − (ˆ̂gL − ĝL) − (ĝL − gL) − (gL − g0))/

√
n

=
ˆ̂
ψL,n′(η − ˆ̂

ψL,n(β̂ − βL) − (ˆ̂gL − ĝL) − (ĝL − gL) − (gL − g0))/
√
n.

Similar to (44), we obtain

||T̂ −1 ˆ̂
ψL,n′(gL − g0)/

√
n|| = Op(

√
nL−γ). (52)

Also note that because α(·) is a linear functional and by Assumption N1 (i),

√
n||Γ(α(gL) − α(g0))|| =

√
n||Γ|| · ||α(gL − g0)|| ≤ C

√
n ‖Γ‖ · |ψL′(·)βL − g0(·)|δ (53)

= Op(
√
nL−γ) = op(1).

Then from the linearity of α(·), (51), (52), and (53) we have

√
nΓ(θ̂ − θ0) =

√
nΓ(α(ĝ) − α(g0)) =

√
nΓ(α(ĝ) − α(gL)) +

√
nΓ(α(gL) − α(g0)) (54)

=
√
nΓA(β̂ − βL) +

√
nΓ{a(gL) − a(g0)}

= ΓAT̂ −1 ˆ̂
ψL,n′(η − (ˆ̂gL − ĝL) − (ĝL − gL))/

√
n+ op(1).

C.3.1 Influence function for the first stage

Now we derive the stochastic expansion of ΓAT̂ −1 ˆ̂
ψL,n′(ĝL − gL)/

√
n. Note that by a second

order mean-value expansion of each h̃Li = h̃L(zi, v̂i) around vi (also write hLi = hL(zi, vi)),

ΓAT̂ −1
∑n

i=1

ˆ̂
ψL

i (ĝLi − gLi)/
√
n = ΓAT̂ −1

∑n

i=1

ˆ̂
ψL

i (h̃Li − hLi)/
√
n

= ΓAT̂ −1
∑n

i=1

ˆ̂
ψL

i (
dhLi

dvi
− E[

dhLi

dVi
|Zi])(Π̂i − Πi)/

√
n+ ς̂

= ΓAT̂ −1H̄1T̂ −1
1

∑n

i=1
pk

i vi/
√
n+ ΓAT̂ −1H̄1T̂ −1

1

∑n

i=1
pk

i (Πi − pk′
i λ

1
k)/

√
n (55)

+ΓAT̂ −1
∑n

i=1

ˆ̂
ψL

i (
dhLi

dvi
− E[

dhLi

dVi
|Zi])(p

k′
i λ

1
k − Πi)/

√
n+ ς̂ .

The remainder term ||ς̂ || ≤ C
√
n||ΓAT̂ −1/2||ζ0(L)

∑n
i=1 Ci||Π̂i − Πi||2/n = Op(

√
nζ0(L)△2

n,1) =

op(1). Then by the essentially same proofs ((A.18) to (A.23)) in Lemma A2 of Newey, Powell, and

Vella (1999), we can show the second term and the third term in (55) are op(1) under
√
nk−s1/dz → 0

(so that
√
n

∣∣Π0(z) − λ1′
k p

k(z)
∣∣
0
→ 0 by Assumption L1 (iv)) and under k1/2(△T1+△H)+L

1/2△T →
21If there exists an estimation error due to tolerance in minimization, take the error arbitrary small to justify this

asymptotic expansion.
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0 (so that we can replace T̂1 with T1, H̄1 with H1, and T̂ with T respectively). We therefore obtain

ΓAT̂ −1 ˆ̂
ψL,n′(ĝL − gL)/

√
n = ΓAT −1H1

∑n

i=1
pk

i vi/
√
n+ op(1). (56)

This derives the influence function that comes from estimating vi in the first step.

C.3.2 Influence function for the second stage

Next we derive the stochastic expansion of ΓAT̂ −1 ˆ̂
ψL,n′(ˆ̂gL − ĝL)/

√
n:

ΓAT̂ −1
n∑

i=1

ˆ̂
ψL

i (ˆ̂gLi − ĝLi)/
√
n = ΓAT̂ −1

n∑

i=1

ˆ̂
ψL

i a
′
L( ˆ̄ϕL(zi) − E[ϕL(Zi, V̂i)|zi])/

√
n

= ΓAT̂ −1{
∑

l
H̄2,lT̂ −1

1

∑n

i=1
pk

i ϕ̃li +
∑

l
H̄2,lT̂ −1

1

∑n

i=1
pk

i (ϕ̄l(zi) − pk′
i λ

2
l,k)}/

√
n (57)

+ΓAT̂ −1
∑n

i=1

ˆ̂
ψL

i

∑
l
al(p

k′
i λ

2
l,k − ϕ̄l(zi))/

√
n+ ΓAT̂ −1

∑n

i=1

ˆ̂
ψL

i ρi/
√
n

where ρi =
∑

l al{pk′
i T̂ −1

1

∑n
j=1 p

k
j (ϕl(zj , v̂j) − ϕl(zj , vj))/n − (E[ϕl(Zi, V̂i)|zi] − ϕ̄l(zi))}. We first

focus on the last term in (57). Note that pk′
i T̂ −1

1

∑n
i=1 p

k
i (ϕl(zi, v̂i)− ϕl(zi, vi))/n is a least squares

projection of ϕl(zi, v̂i)−ϕl(zi, vi) on pk
i and it converges to the conditional mean E[ϕl(Zi, V̂i)|zi]−

ϕ̄l(zi). Therefore we can write ρi =
∑L

l=1 alρil and ρil is the projection residual from the least

squares projection of ϕl(zi, v̂i)− ϕl(zi, vi) on pk
i for each l. It follows that E[ρi|Z1, . . . , Zn] = 0 and

therefore

E[||ρi||2|Z1, . . . , Zn] ≤ E[L
∑L

l=1
||ρil||2|Z1, . . . , Zn] ≤ L2Op(△2

n,2)

where the first inequality holds by the Cauchy-Schwarz inequality and the second inequality holds

by a similar proof to (31) and by the Markov inequality. It follows that by Assumption L1 (iii) and

the Cauchy-Schwarz inequality,

E[
∥∥∑n

i=1

ˆ̂
ψL

i ρi/
√
n
∥∥|Z1, . . . , Zn] ≤ (E[|| ˆ̂ψL

i ||2||ρi||2|Z1, . . . , Zn])1/2 ≤ Cζ0(L)L△n,2.

This implies that
∑n

i=1
ˆ̂
ψL

i ρi/
√
n = Op(ζ0(L)L△n,2) ≡ Op(△dϕ) = op(1).

Then again by the essentially same proofs ((A.18) to (A.23)) in Lemma A2 of Newey, Powell, and

Vella (1999), we can show the second term and the third term in (57) are op(1) under
√
nk−s2/dz → 0

(so that
√
n|ϕ̄l(z) − λ2′

l,kp
k(z)|0 → 0 for all l by Assumption L1 (iv)), under

√
nk1/2L−s/d → 0 (so

that
√
nk1/2|h0(z, v) − a′Lϕ̃

L(z, v)|0 → 0 by Assumption L1 (iv)), and under k1/2(△T1 + △H) +

L
1/2△T +△dϕ → 0 (so that we can replace T̂1 with T1, H̄2,l with H2,l, and T̂ with T respectively).

We therefore obtain

ΓAT̂ −1 ˆ̂
ψL,n′(ˆ̂gL − ĝL)/

√
n = ΓAT −1

∑
l
H2,l

∑n

i=1
pk

i ϕ̃li/
√
n+ op(1). (58)

This derives the influence function that comes from estimating E[ϕli|Zi]’s in the middle step.

We can also show that replacing
ˆ̂
ψL

i with ψL

i does not influence the stochastic expansion by
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(39). Therefore by (54), (56), and (58), we obtain the stochastic expansion,

√
nΓ(θ̂ − θ0) = ΓAT −1(ψL,n′η −H1

∑n

i=1
pk

i vi/
√
n−

∑
l
H2,l

∑n

i=1
pk

i ϕ̃li/
√
n) + op(1).

To apply the Lindeberg-Feller theorem, we check the Lindeberg condition. For any vector q with

||q|| = 1, let Win = q′ΓAT −1(ψL

i ηi − H1p
k
i vi −

∑
lH2,lp

k
i ϕ̃li)/

√
n. Note that Win is i.i.d, given

n and by construction, E[Win] = 0 and var(Win) = O(1/n). Also note that ||ΓAT −1|| ≤ C,

||ΓAT −1Hj|| ≤ C||ΓAT −1|| ≤ C by CI−HjH
′
j being positive semidefinite for j = 1, (2, 1), . . . , (2, L).

Also note that (
∑L

l=1 ϕ̃li)
4 ≤ L2(

∑L
l=1 ϕ̃

2
li)

2 ≤ L3
∑L

l=1 ϕ̃
4
li. It follows that for any ε > 0,

nE[1(|Win| > ε)W 2
in] = nε2E[1(|Win| > ε)(Win/ε)

2] ≤ nε−2E[|Win|4]
≤ Cnε−2{E[||ψL

i ||4E[η4
i |Zi, Vi]] + E[||pk

i ||4E[V 4
i |Zi]] + L3

∑

l

E[||pk
i ||4E[ϕ̃4

li|Zi]]}/n2

≤ Cn−1(ζ0(L)2L + ξ0(k)
2k + ξ0(k)

2kL4) = o(1).

Therefore,
√
nΓ(θ̂ − θ0) →d N(0, I) by the Lindeberg-Feller central limit theorem. We have shown

that Ω̄ → Ω and Γ is bounded. We therefore also conclude
√
n(θ̂ − θ0) →d N(0,Ω−1).

C.4 Consistency of the estimate of the asymptotic variance

Now we show the convergence of the each term in (20) to the corresponding terms in (50). Let

η̂i = yi − ĝ(zi, v̂i). Note that η̂∗i ≡ η̂2
i − η2

i = −2ηi(ĝi − g0i)+ (ĝi − g0i)
2 and that maxi≤n |ĝi − g0i| =

Op(ζ0(L)△n,β) = op(1) by (49). Let D̂ = ΓAT̂ −1 ˆ̂
ψL,n′diag{1 + |ηi|, . . . , 1 + |ηn|} ˆ̂

ψL,nT̂ −1A′Γ′ and

note that
ˆ̂
ψL,n and T̂ only depend on (Z1, V1), . . . , (Zn, Vn) and thus E[D̂|(Z1, V1), . . . , (Zn, Vn)] ≤

CΓAT̂ −1A′Γ′ = Op(1). Therefore, ||D̂|| = Op(1) as well. Next let Σ̃ =
∑n

i=1
ˆ̂
ψL

i
ˆ̂
ψL′

i η
2
i /n. Then,

||ΓAT̂ −1(Σ̂ − Σ̃)T̂ −1A′Γ′|| = ||ΓAT̂ −1 ˆ̂
ψL,n′diag{η̂∗1 , . . . , η̂∗n}

ˆ̂
ψL,nT̂ −1A′Γ′|| (59)

≤ Ctr(D̂)max
i≤n

|ĝi − g0i| = Op(1)op(1).

Also by the essentially same proofs in Lemma A2 of Newey, Powell, and Vella (1999),

||Σ̃ − Σ|| = Op(∆T + ζ0(L)2L/n) ≡ Op(△Σ) = op(1), (60)

||ΓAT̂ −1(Σ̂ − Σ)T̂ −1A′Γ′|| = op(1), ||ΓA(T̂ −1ΣT̂ −1 − T −1ΣT −1)A′Γ′|| = op(1).

It also follows that ||Σ̂−Σ|| = op(1) because ||ΓAT̂ −1|| = Op(1). Then, by (59-60) and the triangle

inequality, we find ||ΓAT̂ −1Σ̂T̂ −1A′Γ′ − ΓAT −1ΣT −1A′Γ′|| = op(1). It remains to show that for

j = 1, (2, 1), . . . , (2, L),

ΓA(T̂ −1Ĥj T̂ −1
1 Σ̂j T̂ −1

1 Ĥ ′
j T̂ −1 − T −1HjΣjH

′
jT −1)A′Γ′ = op(1). (61)

As we have shown ||Σ̂−Σ|| = op(1), similarly we can show ||Σ̂j−Σj|| = op(1), j = 1, (2, 1), . . . , (2, L).

We focus on showing ||Ĥj − H̄j|| = op(1) for j = 1, (2, 1), . . . , (2, L). First note that ||Ĥ11 − H̄11|| =
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||∑n
i=1(

∑L
l=1 âl

∂ϕl(zi,v̂i)
∂vi

− al
∂ϕl(zi,vi)

∂vi
)
ˆ̂
ψL

i p
k(zi)

′/n||. By the Cauchy-Schwarz inequality, (38), and

Assumption L1 (iii), we have
∑n

i=1 ||
ˆ̂
ψL

i p
k′
i ||2/n ≤ ∑n

i=1 ||
ˆ̂
ψL

i ||2||pk
i ||2/n = Op(Lξ0(k)

2). Also note

that by the triangle inequality, the Cauchy-Schwarz inequality, and by Assumption C1 (vi) and

(32), applying a mean value expansion to ∂ϕl(zi,vi)
∂vi

w.r.t vi,

∑n

i=1
||

∑L

l=1
(âl

∂ϕl(zi, v̂i)

∂vi
− al

∂ϕl(zi, vi)

∂vi
)||2/n

≤ 2
∑n

i=1
||

∑L

l=1
(âl − al)

∂ϕl(zi, vi)

∂vi
||2/n+ 2

∑n

i=1
||

∑L

l=1
âl(

∂ϕl(zi, v̂i)

∂vi
− ∂ϕl(zi, vi)

∂vi
)||2/n

≤ C||â− aL||2
∑n

i=1
||∂ϕ̃

L(zi, vi)

∂vi
||2/n + C1

∑n

i=1
||

∑L

l=1
âl
∂2ϕl(zi, ṽi)

∂v2
i

(Π̂i − Πi)||2/n

≤ C||â− aL||2
∑n

i=1
||∂ϕ̃

L(zi, vi)

∂vi
||2/n + C1 max

1≤i≤n
||Π̂i − Πi||2

∑n

i=1
||

∑L

l=1
âl
∂2ϕl(zi, ṽi)

∂v2
i

||2/n

= Op(ζ
2
1 (L)△2

n,β + ξ20(k)△2
n,1)

where ṽi lies between v̂i and vi, which may depend on l. We therefore conclude by the triangle in-

equality and the Cauchy-Schwarz inequality, ||Ĥ11−H̄11|| ≤ Op((ζ1(L)△n,β+ξ0(k)△n,1)L
1/2ξ0(k)) =

Op(△Ĥ) = op(1). Similarly we can show that ||Ĥ12 − H̄12|| = op(1) and ||Ĥ2,l − H̄2,l|| = op(1)

l = 1, . . . , L. We have shown that ||H̄j − Hj|| = op(1) for j = 1, (2, 1), . . . , (2, L) previously.

Therefore, ||Ĥj −Hj|| = op(1) for j = 1, (2, 1), . . . , (2, L). Then by the similar proof like (59) and

(60), the conclusion (61) follows. From (59-61) finally note that by Γ is bounded, ||Ω̂ − Ω̄|| ≤
C||ΓΩ̂Γ′ − ΓΩ̄Γ′|| = op(1).
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