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1 Introduction

Agglomeration� industrial clustering� is a key feature of economic geography. Starting with
Marshall (1920), a large and diverse literature studies why similar �rms often collocate. One
body of work provides formal theoretical models of di¤erent agglomerative forces like technology
sharing or labor pooling among �rms. A second literature measures interactions among �rms
and/or workers directly (e.g., worker moves across �rms, patent citation distances). A third
literature characterizes di¤erences in clustering behavior across industries (e.g., relating R&D
intensity to greater spatial concentration). Despite this progress, we have very little understand-
ing of the actual connection between micro-level interactions and observed cluster shapes and
sizes for industries.
This is very worrisome because studies frequently use observed spatial concentrations for

industries to infer the properties of the underlying forces that cause them. Economists often
infer that technology spillovers are shorter than labor pooling spillovers because patenting �rms
are relatively more concentrated at the county level than are �rms that use similar types of
workers. Such reasoning, however, clashes with studies which have concluded that spillover
e¤ects are orders of magnitude stronger over the �rst few city blocks than they are when �rms
are between two and �ve miles apart (e.g., Rosenthal and Strange 2003, 2008, Arzaghi and
Henderson 2008). Many studies �nd that knowledge �ows decrease sharply across �oors within
a single building. Why would we believe that we can infer useful information about knowledge
spillovers from the number of patents in a county, when a county averages over 75,000 people in
population?
This project examines these issues theoretically and empirically. The core of our work is a

location choice model that connects limited, localized agglomerative forces with the formation
of spatial clusters for similar �rms. Agglomerative forces in our model are localized because
�rms face interaction costs. Spillover bene�ts exceed these interaction costs at short distances,
but beyond some distance interaction becomes unpro�table. For example: while a �rm could
learn useful technologies from another �rm 20 miles away, the costs of doing so may be too
great to justify the e¤ort. Clusters are then the product of many small, overlapping regions of
interaction.
Silicon Valley is the world�s most famous cluster, and many observers credit its success to

either technology spillovers or labor pooling. Figures 1a and 1b identify the foundations of our
theoretical framework using technology and labor �ows, respectively, in the San Francisco Bay
Area. Figure 1a focuses on technology sourcing in an area surrounding Silicon Valley. Downtown
San Francisco and Oakland are to the north and o¤ of the map. The triangle in the bottom
right corner of the map is the core of Silicon Valley. This core contains 76% of industrial patents
�led from the San Francisco Bay Area and 18 of the top 25 zip codes in terms of patenting.
To introduce our model, we describe the primary technology sourcing zones for three of the
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four largest zip codes for patenting outside of the core. Each focal zip code is marked with a
star, and the other points of the shape are the three zip codes that �rms in the focal zip code
cite most in their work. The orange zone (also labelled with a �1�) for Menlo Park extends
deepest into the core. The green zone for Redwood City (�2�) shifts up and encompasses Menlo
Park and Palo Alto but less of the core. The black zone for South San Francisco (�3�) further
shifts out and brushes the core.
These technology zones are characterized by small, overlapping regions. None of the technol-

ogy sourcing zones transverse the whole core, much less the whole cluster, and only the closest
zip code (Menlo Park) even reaches far enough into the core to include the area of Silicon Valley
where the greatest number of patents occur. The empirical appendix contains additional maps
that show these small, overlapping regions are also evident in the core itself and in other parts
of the San Francisco region. While technology sourcing for individual �rms is localized, the
resulting cluster extends over a larger expanse of land.
These properties are also evident in labor �ows. Figure 1b describes commuting zones for

scientists and engineers from the 2000 Census of Populations. Zones on the map are approxi-
mations, computed from Public Use Micro Area (PUMA) designations. The colored asterisks
indicate locations of work. The zones surrounding the asterisks of similar color indicate the pri-
mary PUMAs of residence for the workers. Labor zones are more uniform in direction, with the
star for the work PUMA typically nearer to the center of its labor zone. These labor commuting
regions again display small, overlapping zones that in turn encompass a large land area.1

The central construct of our model replicates these features. Our model thus makes explicit
that empirical observation of cluster size in the data does not indicate the length of the micro-
interactions that produce the cluster. We show, however, that cluster shape and size does depend
systematically on whether the localized interactions for �rms in an industry are longer or shorter
in length. We demonstrate that a longer e¤ective spillover region, either due to weaker decay
in bene�ts or lower interaction costs, yields a macro-structure with fewer, larger, and less-dense
clusters. These regularities allow researchers to use cluster dimensions to rank order spillover
lengths even though micro-interactions are not observed.
After deriving these predictions, we empirically test the model in two ways. We �rst use

US patent data to describe di¤erences across technology clusters. Patent citations allow us to
measure e¤ective spillover regions by technology. Di¤erences in these spillover regions relate to
cluster shapes and sizes as predicted by the model. Technologies with very short distances over
which �rms interact exhibit clusters that are smaller and denser than technologies that allow for
longer distances.
We then use US Census Bureau data on spatial concentration patterns throughout all sectors

of the economy. We show that industries with concentrated labor requirements, for whom the
bene�ts of labor pooling are very strong, also exhibit smaller and denser clusters relative to

1See also the Arzaghi and Henderson (2008) mapping of advertising agencies in Manhattan.
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industries without this need. A comparison of di¤erences between agglomeration due to Mar-
shallian forces and those due to natural advantages (e.g., access to waterways) further conform
to our model�s predictions. This empirical work primarily employs continuous agglomeration
metrics like that of Duranton and Overman (2005), and we use traits of industries in the United
Kingdom to con�rm the causal direction of these relationships (e.g., Ellison et al. 2010).
Our work makes several contributions to the literature on industrial agglomeration. Most

importantly, we provide a theoretical connection between observable cluster shapes and the
underlying agglomerative forces that cause them. At the core of this contribution is the simple
mechanism of including interaction costs among �rms. The resulting framework provides a
theoretical foundation for inferring properties of agglomerative forces through observed spatial
concentrations of industries. We identify settings in which such inference is appropriate, as well
as key properties of agglomeration in such settings. An additional contribution of our work,
discussed in greater detail later, is to provide a micro-foundation for using continuous spatial
density measurements that center on bilateral distances between �rms. This class of metrics
includes the popular Duranton and Overman (2005) metric.2 ;3

Our central empirical contribution is a framework, motivated by our theoretical model, for
meaningful analysis of agglomerative forces with continuous distance horizons. Previous work
considers how agglomerative forces a¤ect spatial concentration over di¤erent distance horizons,
for example up to 75 or 250 miles (e.g., Rosenthal and Strange 2001, 2004; Duranton and
Overman 2005, 2008; Ellison et al. 2010). Our framework is an important step towards jointly
considering agglomeration at di¤erent distances (25, 75, and 250 miles) simultaneously. This
paper provides a �rst rationale for this type of analysis, and we hope that future research can
similarly analyze other factors that govern cluster shapes and sizes.4

Section 2 presents our theoretical model and connects it to empirical measurement of ag-
glomeration. Section 3 tests the model using variations across patent citation clusters. Section 4
presents the second empirical analysis that uses variations in industrial agglomeration for many
sectors of the economy. The last section concludes.

2Studies of agglomeration metrics include Ellison and Glaeser (1997), Maurel and Sédillot (1999), Marcon and
Puech (2003), Mori et al. (2005), Barlet et al. (2009), Ellison et al. (2010), and Billings and Johnson (2010).

3A further technical contribution of our work centers on establishing conditions to distinguish agglomeration
due to Marshallian spillovers among �rms versus proximity to natural advantages. These have been observation-
ally equivalent in prior work (e.g., Ellison and Glaeser 1997).

4Related studies include Rosenthal and Strange (2001, 2003, 2004, 2008), Duranton and Overman (2005,
2008), Ellison and Glaeser (1997, 1999), Audretsch and Feldman (1996), Head and Mayer (2004), Arzaghi and
Henderson (2008), Ellison et al. (2010), Greenstone et al. (2010), Delgado et al. (2009), Holmes and Lee (2009),
Fallick et al. (2006), Glaeser and Kerr (2009), Menon (2009), Bleakley and Lin (2010), Alcacer and Chung (2007),
Pe�er and Vertinsky (2009), Alfaro and Chen (2010), and Dauth (2010). Our work also connects to studies of the
shapes of cities (e.g., Lucas and Rossi-Hansberg 2002, Baum-Snow 2007, 2010, Glaeser 2008, and Saiz 2010) and
of agglomeration and productivity di¤erences across cities and regions (e.g., Ciccone and Hall 1996, Partridge et
al. 2009, Fu and Ross 2010, and Behrens et al. 2010, Sarvimäki 2010). Jackson (2008) outlines a complementary
literature on economic networks.
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2 Theoretical Framework

We now introduce a model of �rm location choice that generates large agglomeration clusters
from smaller, overlapping spillover zones. To maintain consistency with previous work, we use
the notation of Duranton and Overman (2005) whenever possible. The theoretical appendix
contains proofs of propositions and additional materials noted below.

2.1 Basic Framework

There are N �rms indexed by i, and each �rm i belongs to an industry A(i). These �rms
i sequentially select their locations, denoted j(i), from a �xed set Z � R2 of potential sites.
Sites are drawn at random according to a uniform distribution in advance of any �rms�location
decision. There are many more possible sites than �rms, i.e. jZj � N . To focus on agglomeration
economies, we assume that �rms compete in broad product markets. Location choice thus a¤ects
the productivity of a �rm, but not its competitive environment.
The speci�c bene�ts of location j to a �rm in industry A are driven by two factors that

generate spatial concentration. First, intra-industry Marshallian forces represent productivity
spillovers that �rms generate by being in proximity to each other, independent of geographic
positioning relative to attraction sites de�ned shortly. Three common examples are customer-
supplier interactions (e.g., reducing transportation costs for intermediate goods), labor pooling,
and knowledge exchanges.
Second, natural advantages make some sites more attractive for �rms independent of these

Marshallian forces. Shipbuilders are attracted to harbors, and pulp and paper mills are not well-
suited for desert areas. Natural advantages can also be man made. State capitols, for example,
are attraction sites for law �rms, and universities can provide technology transfers to high-tech
industries. We accordingly model industry-speci�c local advantages that represent the value of
locating near a �xed set of industry-speci�c attraction sites, K(A).5

Trade-o¤s between these factors a¤ect �rms�patterns of clustering, as does the distribution
of the attraction sites. We denote by dj1;j2 the spatial distance between j1 2 R2 and j2 2 R2.
We assume that the bene�t of site j 2 Z to a �rm i in industry A(i) is given by

Vj(i) = gj;A(i) + �i;j;

where gj;A(i) takes the form

gj;A(i) �
X

k2K(A(i))

G
A(i)
K (dj;k) +

X
i0 6=i;

A(i0)=A(i)

G
A(i)
A (dj;j(i0)): (1)

5For technical reasons, we assume that locations of attraction sites K(A) are realized before potential sites Z
are drawn. All attraction sites k 2 K(A) are equally attractive to �rms in industry A. This assumption is made
without loss of generality because, to capture the e¤ect of attraction site k that is twice as attractive as site k0,
it su¢ ces to add a second attraction site k00 in�nitesimally close to k. Any rational ratio between attraction site
values may be approximated in this way using �nitely many sites.
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The function gj;A(i) represents the degree to which site j is generally attractive for �rms in
industry A(i). The two components of (1) respectively encapsulate natural advantages and
intra-industry Marshallian forces. We assume the standard basic comparative static of the value
function gj;A(i): each function GA� in (1) is decreasing, so that agglomerative forces decline over
space. Additionally, for simplicity, we assume that agglomerative forces of type � either act
across all distances or do not act at all. That is, for a given A, if GA�(0) > 0, then GA�(d) > 0

for all d � 0.
The term �i;j � gj;A(i) is a positive i.i.d. random term representing the degree to which site j

is a speci�c match for �rm i. For expositional clarity, we will think of the deterministic �value�
of site j to �rm i as being given by gj;A(i). We treat the random term �i;j as representing a process
by which �rm i chooses randomly among sites j1; : : : ; j` for which gj1;A(i) = � � � = gj`;A(i); that
is, among sites over which �rm i would be indi¤erent if forced to choose purely on the basis of
spatial attraction. Firms are not forward-looking, so that the n-th �rm to enter, in (1 � n � N),
chooses its location j(in) 2 Z to maximize Vj(in) conditional upon the location choices of the
�rst n� 1 �rms.

2.2 Maximal Radius of Interaction

So far, our model has more or less followed a standard structure: proximity to resources and
other �rms generates bene�ts, and these bene�ts decay continuously over distance. However, we
now depart from this standard approach via a simple and natural additional assumption.

Assumption. Firms must pay a �xed cost to interact with other �rms or natural advantage
sites. Firms in industry A must pay cAK to interact with a natural advantage site and cAA to
interact with another �rm in industry A.

These �xed costs cA� relate to the costs of transporting goods, people, or ideas across �rms.
Opportunity costs and search costs are the simplest examples, but we further model that these
costs are speci�c to industries and spillover types. For example, accessing and understanding
codi�ed technologies likely requires a lower �xed cost of establishing interactions than that
required for tacit technologies. It is also easier to transport some natural advantages (e.g.,
lumber) than others (e.g., waterways).
Firms only invest in establishing contacts when the bene�ts of doing so equal or exceed the

associated costs of interaction. Speci�cally, �rm i only invests in type-� contact with site j if
GA�(dj(i);j) � cA� . This de�nes a strict distance over which the �rm �nds type-� interactions
pro�table,

dj(i);j � �A� � maxfd : GA�(d) � cA�g:

Therefore, we immediately observe the following result.
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Proposition 1. For each industry A, sites further than distance

max
�
�AK; �

A
A

	
(2)

from an industry-A �rm cannot pro�tably interact with that �rm. That is, an industry-A �rm i

derives no direct bene�ts from the presence of �rms or attraction sites at locations j with dj;j(i) >
max

�
�AK; �

A
A

	
.

In practice, the key consequence of Proposition 1 is that agglomerative forces act only over
�nite distances. We call �A� the maximal radius of �-type interaction in industry A, and abusing
terminology slightly, call the vector

�A � (�AK; �AA)

the maximal radius of interaction in industry A (or just the maximal radius when the industry
is clear from context). The maximal radius is (weakly) decreasing in the costs cA� and increasing
in the levels of the decay functions GA� . In other words, lower costs or weaker attentuation of
bene�ts lead to larger maximal radii.6

Our assumption that interaction costs are �xed is only to simplify the discussion below. One
might naturally assume that interaction costs rise with distance; such an assumption would also
generate the maximal radius described in Proposition 1. The ultimate technical condition is
that interaction costs exceed interaction bene�ts at some distance with a single crossing.

2.3 Agglomeration Clusters

We next examine how agglomeration clusters form in our model and their properties. Figures 2a
and 2b provide a graphical presentation of the theory to build intuition. To focus on the most
essential parts of the model, Figure 2a only considers Marshallian spillovers (i.e., GAK(0) = 0),
while Figure 2b only considers attraction to natural advantage sites (i.e., GAA(0) = 0). In these
graphs, lightly colored circles are potential �rm locations, while �lled-in circles represent sites
populated by �rms. Stars indicate attraction sites in Figure 2b. Throughout this paper, we use
these graphs to explain the model�s structure and depict the behavior of marginal entrants.

2.3.1 Basic De�nitions and Structure

We de�ne an agglomeration cluster to be a group of industry-A �rms located in sites intercon-
nected by bilateral interactions. Each �rm does not necessarily interact with every other �rm in
its cluster, but all �rms in a cluster are interconnected. Our measure of agglomeration counts
the number of these clusters that are expected to arise for an industry. The use of an expectation
is necessary because �rms choose randomly when indi¤erent between sites. Firms in industry A
exhibit agglomeration if they typically occupy few distinct clusters.

6Here, by saying that the maximal radius gets �smaller�or �larger,�we refer to the standard vector ordering:
(�K; �A) = � � �0 = (�0K; �0A), if and only if �K � �0K and �A � �0A.
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More formally: For j 2 R2, we denote by Bd(j) � fj0 2 R2 : dj;j0 � dg the closed ball of
radius d about j. For j 2 Z [K(A), we set

B0�A(j) �
�
(B�AA(j) \ Z) [ (B�AK(j) \K(A)) j 2 Z;
fjg [ (B�AK(j) \ Z) j 2 K(A):

This formula, while complex in its notation, has a simple interpretation. B0�A(j) is the union of
potential �rm locations and attraction sites which can pro�tably interact with j under maximal
radius �A.
In Figure 2a, we draw for each populated site a representative maximal radius within which

the bene�ts of interaction exceed the costs for �rms. For this example, B0�A for site A includes
sites B and C. Sites B and C are the only locations within the maximal radius for Marshallian
conditions �AA.
We next expand our focus to consider sites that are outside of the pro�table spillover range

of site j, but can be connected to j via a single interconnection. De�ne B1�A(j) to be all sites
which can pro�tably interact with the sites in B0�A(j) through one additional step. In Figure 2a,
B1�A(A) further includes the four additional sites within distance �AA from site C that are outside
of the spillover range of site A. We continue to iterate this process, successively adding additional
sites that are more spatially distant to site j but still connected to site j by increasing numbers
of interconnections (B��A(j) for � = 1; 2; : : :). Formally, for any j 2 Z [K(A),

B��A(j) �
[

j02B��1
�A

(j)

B0�A(j0)

Iterating this construction of clusters to its conclusion, B�A(j) is the �A-cluster containing
j 2 Z [K(A), de�ned by

B�A(j) �
1[
�=0

B��A(j):

The �A-cluster containing site j is the largest cluster of sites that 1) contains j and 2) is connected
by a chain of �hops�between sites j0 2 Z [K(A) which can pro�tably interact. The complete
set of �lled locations in Figure 2a constitute the �A-cluster for site A in our example.7

When the maximal radius �A is small, clusters are generally small. For two precise examples,
de�ne the lower and upper bounds on distances between sites as d � minj1 6=j22Z[K dj1;j2 and
�d � maxj1 6=j22Z[K dj1;j2 . When �

A < (d; d), B�A(j) = fjg for each j 2 Z. In other words,
a maximal radius that is shorter than the shortest distance between two sites results in each
cluster only containing a single �rm. By contrast, when �A > (d; d), B�A(j) = Z [ K(A) for
all j 2 Z. A maximal radius longer than the maximal distance between sites results in a single
cluster for an industry.

7The use of an in�nite index in the union de�ning B�A(j) is ultimately unnecessary, as the �nitude of the set
of sites implies that B��A(j) = B

�+1
�A
(j) = � � � for some �nite �.
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Suppose that natural advantages do not act in an industry A, i.e. that GAK(0) = 0, so
that �AK = 0. (In this case, here and hereafter, we simplify our notation slightly by writing
B�AA(j) � B�A(j).) If the �rst �rm in industry A with maximal Marshallian radius �AA locates
at site j; and the cluster around j contains available locations (i.e., B�AA(j) 6= fjg), then there
is some site j0 2 B�AA(j) which delivers positive utility �ows to the next entrant in industry A.
It follows that if Marshallian forces are su¢ ciently strong, then �rms in industry A select sites
in the cluster B�AA(j) until B�AA(j) is �lled. Iterating this analysis shows that when Marshallian
forces are strong, �rms occupy clusters in sequence.
The sequential �lling of clusters explains how large-area clustering may arise in an industry

even if agglomerative forces act only over short distances. Cluster sizes associated with a given
maximal radius can be much larger than the underlying radius itself. Clusters may span large
regions even if each �rm derives bene�ts only from its immediate neighbors.
A consequence of the maximal radius, however, is that clusters can reach their capacity, at

which point the next entrant for the industry will locate elsewhere. In Figure 2a, the closest
remaining site to the existing cluster is site X, but this location is beyond the spillover ranges
of any of the populated sites in the cluster. As the marginal entrant cannot pro�tably interact
with the cluster, it is indi¤erent among sites X, Y, Z, and any other unoccupied site. It will
choose its location based upon its idiosyncratic preferences �i;j.
Likewise, when natural advantages are important to industry A, �rms �ll clusters near at-

traction sites K(A) whenever possible. Figure 2b depicts the simple case where an industry does
not have any Marshallian spillovers, but a series of attraction sites are present and important for
location choice. The maximal radius in this �gure shows the range around each attraction site
where �rms can pro�tably interact with the attraction site. A boundary or edge of the cluster
again emerges.
The preceding observations suggest a natural notion of agglomeration in our model:

De�nition 1. The level of agglomeration in industry A for maximal radius �A is the expected
number of distinct �A-clusters B�A(j) about sites j 2 Z [K(A) occupied by industry-A �rms.

We say that �rms are (weakly) more agglomerated with respect to maximal radius �1 than
they are with respect to radius �2 if, holding N

A �xed, fewer clusters of industry-A �rms form
when the maximal radius is �1 than when it is �2. Note that agglomeration increases as the
expected number of clusters decreases. Holding industry size constant, increased agglomeration
therefore also corresponds to increased cluster size.
Our discussion of the marginal entry decision also highlights the core di¤erence between

our structure and prior work. Without considering interaction costs, strictly positive spillover
bene�ts exist at all distances. Industries may di¤er in how fast or slowMarshallian bene�ts decay,
but these di¤erences in Marshallian forces do not impact the number of clusters. Regardless of
whether the potential spillover bene�t is large or miniscule, marginal entrants always select sites
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closest to the developing cluster regardless of distance (i.e., site X next in Figure 2a). As a
consequence, one cluster always forms for an industry, and entrants select sites in an exact order
in all industries.8

Thus, the simplest framework does not provide a foundation for relating di¤erences in spatial
concentration for industries to their underlying agglomerative forces. Yet, our intuitive addi-
tion of interaction costs provides additional traction by establishing a spatial range over which
interactions are relevant. This localization in turn provides meaningful di¤erences in cluster
formation. We now turn to these comparative statics.9

2.3.2 Agglomeration due to Marshallian Advantages

Figure 2a illustrates the consequences of a longer maximal radius for cluster formation. We
enlarge the e¤ective spillover range for site B to the wider circle. While we only enlarge site B�s
circle for visual clarity, the comparative static we have in mind is one in which all �rms in the
industry have a longer spillover range equivalent to site B�s. Under the larger maximal radius,
the marginal entrant is no longer indi¤erent over sites, but would instead choose site X. Thus,
a longer maximal radius is (weakly) associated with greater industry agglomeration as fewer
clusters form in expectation.
More formally, recall that �AA is the maximal radius for intra-industry spillovers, �

A
A � maxfd :

GAA(d) � cAAg: Since Z [K(A) is �nite, su¢ ciently small changes do not a¤ect location choices.
Larger increases in �AA, either due to weaker attenuation in spillover bene�ts or lower interaction
costs, can lead �rms to organize into fewer clusters. In fact, we may sign this change: so long
as Marshallian forces are su¢ ciently strong, industry-A �rms become more agglomerated when
�AA increases. To simplify our demonstration of this fact in the next proposition, we �turn o¤�
natural advantage e¤ects by temporarily assuming GAK(0) = 0.

10

Proposition 2. If GAK(0) = 0, then a longer maximal radius for intra-industry spillovers �AA
leads to a (weak) increase in the agglomeration level of industry A.

The idea behind the proof of Proposition 2 is intuitive. A �rm i that is indi¤erent across sites
chooses its location j(i) 2 Z randomly. But until the sites in cluster B�AA(j(i)) are �lled, they are
more attractive to industry-A �rms than are un�lled sites outside of B�AA(j(i)). If �

A
A grows to

�̂AA, a radius large enough that B�̂AA(j) = B�AA(j) [ B�AA(j
0) for some j; j0 2 Z, then the expected

8This is equivalent to �A !1 in our model. Once a �rst entrant for an industry picks a location, the set of
sites �lled by the remaining NA � 1 �rms (where NA � jfi : A(i) = Agj) is exactly determined.

9Our discussion and proofs focus on the simple case where spillover bene�ts do not transfer through the
cluster. Interaction costs are incurred on a bilateral basis, and �rms at the periphery of a cluster only receive
bene�ts from their immediate neighbors. More generally, our predictions hold for any transmission structures of
bene�ts through the cluster so long as �AA is constant.
The theoretical appendix discusses other extensions and attributes of this framework. Most notably, we outline

some basic spatial dynamics for clusters.
10The conclusion of Proposition 2 holds whenever natural advantage bene�ts are su¢ ciently small. However,

the assumption that GAK(0) = 0 substantially simpli�es the demonstration of the result.
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number of clusters occupied by industry-A �rms shrinks. Indeed, whenever a �rm locates in
either B�AA(j) or B�AA(j

0), industry-A �rms �ll all of B�̂AA(j) before locating in or starting another
cluster.
Three empirical implications of the proof of Proposition 2 are evident in Figure 2a. First,

industries with a longer maximal radius have larger clusters in the sense of having more �rms and
covering a greater spatial area. Intuitively, a longer spillover radius makes sites at the edges of
clusters attractive that are not attractive with a shorter radius. This induces marginal entrants
into choosing these sites rather than starting new clusters. A longer radius can be due to weaker
decay of spillover bene�ts or lower interaction costs.
The second and third predictions are closely related. A longer spillover radius yields fewer

clusters for a given industry size. As clusters grow in size, fewer clusters are needed to house the
NA �rms in the industry. Finally, clusters are less dense. The longer radius activates sites at
the edges of a cluster that are too spatially distant to pro�tably interact with previous entrants
if the radius is shorter. Thus, growth in cluster size is simultaneous with reduction in cluster
density.
Our result that clusters due to a longer maximal radius are less dense is the same as saying

that average bilateral distances among �rms within the clusters increase. The model�s structure,
however, contains a much more powerful implication regarding spillover lengths and the complete
distribution of bilateral distances within clusters. We draw out this implication in Section 2.4.3
after introducing empirical measurement more formally.

2.3.3 Agglomeration due to Natural Advantages

To this point, our discussion has focused mostly on Marshallian agglomeration where �rms
derive bene�ts from being near to each other. In partial analogy with Proposition 2, industries
su¢ ciently dependent upon natural advantages also exhibit increased agglomeration as �AK grows.
Moreover, this e¤ect is mediated by the density of the set of potential �rm locations.

Proposition 3. If natural advantages are su¢ ciently more important to industry-A �rms than
Marshallian bene�ts are, and �AK is such that

(B(0;�AK)(k)) \ Z 6= ; for each k 2 K(A); (3)

then a longer maximal radius for natural advantages spillovers �AK leads to a (weak) increase in
the agglomeration level of industry A.

The �rst condition is a requirement that natural advantages be su¢ ciently important to the
industry, and one su¢ cient condition is given in equation (10) of the theoretical appendix. The
second condition, (3) in Proposition 3, requires that all attraction sites have been discovered.
This second condition prevents situations where �AK is so small that some attraction sites are out
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of range of potential �rm locations. If (3) does not hold, increasing �AK can lead to discovery of
new resources, causing formation of new clusters.
If these two conditions hold, expansion of the radius �AK both 1) expands the number of

sites with access to the resources at attraction sites k 2 K(A) and 2) grows the clusters B�AK(k)
(k 2 K(A)) at the peripheries where Marshallian forces act. So long as Marshallian forces
outside of the clusters fB(0;�AK)(k)gk2K(A) do not dominate the draw of natural advantages, the
result holds. Figure 2b illustrates this case, and the same empirical predictions regarding the
relationships of cluster size, density, and number to the e¤ective spillover length for an industry
exist.

2.4 Empirical Measurement of Agglomeration

As a �nal step, we connect our theoretical framework to empirical metrics of agglomeration
that utilize continuous bilateral distances among �rms within an industry. This connection is
important given that micro-interactions among �rms are generally unobserved and must instead
be inferred from realized �rm locations. We thus need to build an apparatus to distinguish the
agglomerative forces of interest from idiosyncrasies of economic geography.
Establishing this connection also has the nice corollary of showing how our model micro-

founds the use of continuous agglomeration metrics like that of Duranton and Overman (2005).11

2.4.1 Duranton and Overman (2005)

Our empirical work in large part uses a slight variant of the Duranton and Overman (2005,
hereafter DO) metric or its underlying smoothed kernel density. This discussion summarizes
the DO methodology to show the connection to our theory. The empirical appendix further
describes the DO metric and the empirical modi�cations required for our speci�c datasets.
The DOmetric considers bilateral distances among establishments in an industry. The central

calculation is the spatial density of industry A through a continuous function

K̂A(d) =
1

hNA(NA � 1)

NA�1X
i=1

NAX
i0=i+1

f

�
d� dj(i);j(i0)

h

�
: (4)

Here, as in our basic model set-up, dj(i);j(i0) is the Euclidean distance between the spatial lo-
cations of establishments j(i) and j(i0) within industry A. The double summation considers
every pairwise bilateral distance within the industry analyzed (i.e., NA(NA � 1)=2 distances).
Establishments receive equal weight, and the function f is a Gaussian kernel density function
with bandwidth h that smooths the series.
The resulting density function provides a distribution of bilateral distances for establishments

within an industry. Across all potential distances� ranging from �rms being next door to each
11Historically, continuous agglomeration metrics have generally been designed to meet a set of speci�ed criteria

(e.g., being comparable across industries, being unbiased with respect to measurement scales) rather than to
support micro-founded models of �rm behavior.
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other to being across the country from each other� this distribution sums to one. Smoothed
density functions are calculated separately for each technology or industry analyzed. Industries
where establishments tend to pack together tightly in cities, for example, are measured to have
higher densities K̂A(d) at short distance ranges.
While the density function is of direct interest, it is also important to compare the observed

distributions of bilateral distances to general activity in the underlying economy. This compari-
son provides a basis for saying whether an industry�s spatial concentration at a given distance is
abnormal or not. Because the density functions for small industries with fewer plants are natu-
rally more lumpy, these comparisons are speci�c to industry size. Operationally, comparisons are
calculated through 1000 random draws of hypothetical industries of equivalent size to the focal
industry A and repeating the density estimation. This procedure, which is further discussed in
the empirical appendix, provides 5%/95% con�dence bands for each industry and distance that
we designate as KLCI�U

A (d) and KLCI�L
A (d).

Industry localization A and dispersion  A at distance d are de�ned using the DO formulae:

A(d) � max
h
K̂A(d)�KLCI�U

A (d); 0
i

(5)

 A(d) � max
h
KLCI�L
A (d)� K̂A(d); 0

i
if A(d) = 0

and 0 otherwise.

Positive localization is observed when the kernel density exceeds the upper con�dence band;
similarly, positive dispersion occurs when the kernel density is below the lower con�dence band.
In between, an industry is said to be neither localized nor dispersed, and both metrics have a
zero value. To allow for consistent and simple graphical presentation, we present a combined
measure of localization and dispersion:

CA(d) � A(d)�  A(d): (6)

An industry is neither localized nor dispersed at a given distance if its density is within the
5%/95% con�dence bands. In such cases, CA(d) has a value of zero. Excess density at distance
d has a positive value, while abnormally low density carries a negative value. Our estimations
analyze these local departures in a systematic manner across industries.12

2.4.2 Ordering and Characterizing Agglomerative Forces

Having introduced the DO metric, we now connect our model�s focus on spillover lengths and
cluster shapes to this empirical measurement. Before proceeding, however, it is helpful to recall
that the structure required for Propositions 2 and 3 is minimal. These propositions build directly

12The empirical appendix further discusses the summation of localized agglomeration levels into aggregate
statistics similar to DO�s global indices. Our technique does not require this step, as we instead interpret local
deviations directly (although one can use global metrics and their gradients as well). We thank Gilles Duranton
for pointing this feature out to us.
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on the agglomeration cluster theory to demonstrate that adjustments of the unobserved maximal
radius a¤ect cluster shapes and sizes in predictable ways.
The theory speci�cally suggests that longer maximal spillover radii are associated with fewer,

larger, and less-dense clusters. It is feasible to use these observed traits in di¤erent industries
to rank order the lengths of di¤erent spillovers. In empirical analyses below, for example, we
provide suggestive evidence for the model by plotting an estimate of maximal radius for di¤erent
technologies against a measure of the density of technology clusters over 50 miles. These tests,
however, are partial representations of the complete predictions and in some sense ad hoc. They
also do not provide a comparison to expected behavior similar to the DO con�dence intervals.
With additional structure, we can jointly quantify these predictions within the DO frame-

work. It is impossible to measure directly the GA� functions that determine the value of �rm
clustering. However, observed spatial location patterns within industry A allow us to model
the behavior of the unobserved functions GA� via an observation that is immediate from the
functional form (1) of gj;A.

Proposition 4. Holding GAK (GAA) and �
A �xed, and assuming that the GA� are di¤erentiable

functions, an increase in the magnitude j(GAA)0j (j(GAK)0j) of the derivative (GAA)0 ((GAK)0) leads
to a (weak) increase in the number of �rms clustered at low distances.

The decay of agglomerative forces across space correlates with observed distances between
clustered �rms. Thus, we may understand the speed at which the bene�ts of localization de-
cay by measuring the degree of localization within industry A at di¤erent distances. For an
extreme example, if localization of �rms in industry A is constant across space, then we must
have j(GAK)0j = j(GAA)0j = 0. If localization gradients are very sharp at short distances, then
Proposition 4 implies that the underlying GA� function sharply attenuates.
Proposition 4 provides the additional conditions� di¤erentiability� which allow us to use

DO density estimations to characterize distributions continuously. Adding this more continuous
structure to our model, we can compare the full distributions of industries to assess how a longer
maximal radius a¤ects the shapes of clusters. The predictions that clusters become larger and
less dense become jointly visible. Moreover, we can observe the in�uence using regular step sizes
in distance.
Let S denote the set of sites occupied by �rms in equilibrium, with many industries present in

the economy. The null hypothesis is that neither agglomeration nor dispersion occurs in industry
A at a given bilateral distance d when the maximal radius is �A. This hypothesis is equivalent to
the observation that �rms in industry A locate randomly when a maximal radius �A is assumed.
Said di¤erently, the null hypothesis is that gj;A = 0 at a given bilateral distance d conditional
upon the maximal radius being �A.
We empirically proxy the set of potential sites Z with the observed set of actual sites S

for all businesses. With this assumption, the DO density measures can quantify localization by
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comparing observed localization levels to counterfactuals representing the underlying distribution
of economic activity typical for a bilateral distance. The null hypothesis is rejected if the localized
density of �rms in industry A is a substantial departure from counterfactuals having the same
number of �rms as A and occupying sites randomly sampled from S.13

2.4.3 Bilateral Distance Gradients in Agglomeration Clusters

There is an additional bene�t to connecting our model to these continuous structures. We earlier
noted that our empirical implication of smaller, denser clusters for a shorter maximal radius is
equivalent to saying that the mean bilateral density for clusters declines. The model, however,
has a much stronger implication for how spillover length in�uences the distribution of bilateral
distances within clusters.

Proposition 5. There is some �� > (d; d) so that whenever � and �0 are such that (d; d) < � <

�0 < ��, then the mean intra-cluster �rm distance is (weakly) smaller when the maximal radius is
� than when it is �0.

This result describes a key comparative static across spillover lengths. When comparing
two industries, we earlier established that the industry with the shorter maximal radius should
exhibit denser clusters such that very close bilateral distances are common. This proposition
further identi�es that this greater representation should be at its highest at the shortest bilateral
distances possible (i.e., among locations that are located very near to each other). This higher
frequency should then (weakly) decline as one considers bilateral distances further from the
shortest possible connections.14

To provide intuition, �rst consider the impact of the marginal entrant on the bilateral dis-
tances in Figure 2a. As site X becomes part of the cluster, the kernel density (4) incorporates
the bilateral distance from site X to every other populated site in the cluster into the spatial
description. Some of the added bilateral distances are shorter than those that already existed in
the cluster, with the distance between sites X and B, for example, being less than the distance
between sites B and C. Yet, all of the additional bilateral distances are longer than the closest
connections possible (e.g., those surrounding site C). Thus, as the cluster expands and becomes
less dense, the relative impact on densities is highest at the shortest possible connections and
proceeds (weakly) outwards for some distance.
An empirical example can also help. Assume that the premium for proximity is higher for

investment bankers than it is for accountants. We predict that clusters of investment bankers
should exhibit shorter mean bilateral distances among �rms than clusters of accountants do.
When comparing the spatial distributions of their clusters, Proposition 5 further indicates that

13As discussed in the empirical appendix and Barlet et al. (2009), this approach is slightly strained for the
largest industries but is a reasonable baseline for most industries.
14The conditions of Proposition 5 indicate that this e¤ect may disappear when the maximal radius is very

large. This is a natural consequence of approaching a limit where the maximal radius is so long as to no longer
in�uence cluster formation.
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the greater density for investment banking should be at its highest at the spatial level of being
in the same building or on the same block. When looking at �rms being �ve blocks away from
each other, the spatial density for investment bankers can still exceed that of accountants, but
the di¤erence should not be higher than it is when looking at being next door to each other.
This requirement micro-founds use of continuous density metrics like (4) to assess whether

di¤erences in agglomerative forces across industries yield meaningful deviations in agglomeration
behavior. To summarize, we should empirically see that the greater density associated with a
shorter maximal radius is at its maximum at the closest possible distance on the spatial scale
(the intercept of DO) and (weakly) decline thereafter for some distance. Eventually, a distance
is reached where the bilateral densities are the same even with the di¤erences in maximal radius.
Continuing with our earlier example, the o¢ ces of investment bankers and accountants may be
equally represented when looking at �rms that are ten city blocks apart.
After this point, a distance interval follows with relative under-representation for the cluster

associated with the shorter maximal radius. Finally, once spatial distances are reached that rep-
resent distances between agglomeration clusters for Marshallian industries, the relative densities
again converge. In our example, accounting �rms should be more represented than investment
bankers when looking at businesses 15-20 blocks from each other. This higher representation
of accountants should then decline as we consider progressively longer distances that start to
exceed the sizes of cities.
By contrast, our model generally does not make predictions for bilateral distances across

Marshallian industries beyond the spatial horizons of individual clusters. The behavior of longer
horizons depends upon the underlying distribution of cluster sites and it is thus ambiguous in
our general framework. The median bilateral distance for all �rms within an industry, for exam-
ple, can increase or decrease with a longer maximal radius depending upon the spatial distances
among the multiple, growing agglomeration clusters and the newly activated sites surround-
ing them. Our predictions at this scale instead relate to the distinctions between Marshallian
spillovers and natural advantages.

2.4.4 Distinguishing between Marshallian and Natural Advantage Forces

Finally, we determine conditions under which we can empirically separate agglomeration due to
Marshallian spillovers from that due to natural advantages. We generally do not observe the
locations of natural attraction sites, hence it is not possible to distinguish these forces in every
setting. Put another way, there is always some inherent limit to our observational capacity:
we may not be able to determine whether �rms are clustering around an unobserved natural
advantage or each other.15

Analogous results have arisen in the work of Ellison and Glaeser (1997, 1999), DO, and

15It may be possible to elucidate this with a dynamic approach; some intuitions along these lines are given in
the theoretical appendix.
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others. Historically, this feature of agglomeration measurement has been viewed as an advantage,
rather than a de�ciency, since it means that localization levels are determined in a fashion
unencumbered by distinctions between sources of agglomerative forces. The solution to the
Ellison and Glaeser (1997) location choice model, which is the micro-foundation of their widely
used metric, is the same in both scenarios. However, this indeterminacy is not desirable when
analyzing and contrasting the determinants of agglomeration (e.g., Ellison and Glaeser 1999).
Unlike in previous work, our framework allows us to partially infer the trade-o¤ between

Marshallian forces and natural advantage dependency when attraction sites are su¢ ciently far
apart.

Proposition 6. Suppose that NA is su¢ ciently small. Then, there is a constant � such that if
the minimal distance between attraction sites for A is bounded below by �, and �AK and G

A
K are

held �xed, scaling GAA by a constant � > 1 will (weakly) increase agglomeration.

Proposition 6 indicates that when natural advantages are su¢ ciently far away from each
other, dense agglomeration in small industries is likely driven by Marshallian factors, while
natural advantage dependency is likely to drive agglomeration observed at longer horizons. If
coal mines or state colleges have su¢ cient distance between them, and an industry�s location
choices are heavily in�uenced by being near to one of these attraction sites, the cluster sites for
this industry will generally be more dispersed than industries that are not in�uenced by these
attraction sites. This observation is empirically con�rmed below for a set of natural advantages.16

2.5 Our Empirical Approach

Our model connects the maximal radius of interaction for an industry with the shape, density,
and number of clusters it forms. We test these predictions empirically in the next two sections.
For clarity, we �rst describe how our empirical analyses �t together.
The graphical analysis in Figure 2a highlights that one approach for testing the model would

be to identify marginal entrants into clusters by industry and infer from their relative spatial
location the maximal radius. This would be particularly powerful as the technique could be
applied to any setting. While quite interesting, multiple data constraints, measurement issues,
and interpretation questions suggest this be left for future research. We thus take two simpler,
more transparent approaches that separately test aspects of the model.
Our �rst test, presented in Section 3, uses patent citation data to measure the maximal radii

that exist in di¤erent technology �elds. This work closely links with technology or knowledge
spillovers as a rationale for agglomeration. Returning to Figure 2a, our strategy is to use
citation rates across bilateral distances within clusters to determine whether (and how) distant
�rms interact. By estimating the relative frequencies of B!A and B!C citations among the
16It is important to note that, while our general framework can encompass many varieties of natural advantages,

this prediction focuses on more structured settings with minimum distances across attraction sites.
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sites in Figure 2a, we can develop a reasonable proxy of the maximal radius. We can then
investigate whether di¤erences in maximal radius by technology produce the predicted variations
in clustering traits.
Our second test in Section 4 is much broader in scope. We examine di¤erences in agglom-

eration across many industries and sectors in the US economy. This broader approach means
that we can no longer identify the micro-interactions among �rms. We instead pursue a more
reduced-form approach where we take from the agglomeration literature traits of industries that
increase their desire to agglomerate for labor pooling or around natural advantage sites. We
show how ordering industries by these traits produces the patterns predicted in our model.

3 Patent Technology Clusters

3.1 Patent Citations and Knowledge Spillovers

We employ individual records of patents granted by the United States Patent and Trademark
O¢ ce (USPTO) from January 1975 to May 2009. Each patent record provides information
about the invention (e.g., technology classi�cation, �rm or institution) and the inventors sub-
mitting the application (e.g., name, address). Hall et al. (2001) provide extensive details about
these data, and Griliches (1990) surveys the use of patents as economic indicators of technology
advancement. The data are extensive, with over eight million inventors and four million granted
patents during this period.
A long literature exploits patent citations to measure knowledge di¤usion or spillovers. A

number of studies examine the importance of local proximity for scienti�c exchanges, generally
�nding that spatial proximity is an important determinant of knowledge �ows.17 Additional work
links these local exchanges and economic clusters. Carlino et al. (2007) �nd that higher urban
employment density is correlated with greater patenting per capita within cities. Rosenthal and
Strange (2003) and Ellison et al. (2010) both �nd that intellectual spillovers are strongest at the
very local levels of proximity. These empirical patterns closely link to ethnographic accounts of
economic activity within clusters (e.g., Saxenian 1994).18

Patent citations thus o¤er us a unique opportunity to quantify di¤erences in spillover radii
and cluster shapes. It is important, however, to recall several boundaries of this approach.
First, patent citations can reasonably proxy for technology exchanges, but there are many other
forms of knowledge spillovers that may behave di¤erently (e.g., Glaeser and Kahn 2001, Arzaghi
and Henderson 2008). Second, several studies �nd that patent citations re�ect Marshallian
spillovers among �rms other than pure knowledge exchange. Breschi and Lissoni (2009) closely

17See Ja¤e et al. (1993, 2000), Thompson and Fox-Kean (2005), Thompson (2006), and Lychagin et al. (2010).
18Recent theoretical and empirical work further ties innovation breakthroughs to the clustering of activity

around the discovery location, suggestive of very short spillover ranges (e.g., Zucker et al. 1996, Duranton
2007, Kerr 2010). These concepts are central to endogenous growth theory (e.g., Romer 1986), and Desmet and
Rossi-Hansberg (2010) presents a recent model of spatial endogenous growth.

17



link citations to inventor mobility across neighboring �rms in their sample, and Porter (1990)
emphasizes how technologies embodied in products and machinery can be transferred directly
through customer-supplier exchanges. Our measurements below may encompass these e¤ects to
the extent that they operate.19

3.2 Patent Data Construction

Inventors are required to cite the prior work on which their current patent builds. The total
count of citations made by USPTO domestic and foreign patents granted after 1975 is about 41
million citations. We �rst restrict this sample to citations where the citing and cited patents
are both applied for after 1975. This restriction is necessary for collecting inventor addresses.
Our second restriction is that both patents have inventors resident in the United States at the
time of the invention with identi�able cities and zip codes. About 15 million citations remain
after these restrictions. Our primary dataset further focuses on the 4.3 million citations that are
made in a geographical radius of 250 miles or shorter from the citing patent.
To identify these distances, we employ zip codes from addresses given for inventors. This

dataset combines both zip codes listed directly on patents and representative zip codes taken
from city addresses where zip codes are not listed. Where multiple inventors exist for a patent,
we take the most frequent zip code; ties are further broken using the order of inventors listed
on the patent. The spatial radius is de�ned using geographic centroids of zip codes and the
Haversine �at earth formula. We assign a distance of less than one mile to cases where the citing
and cited patents are in the same zip code.
Our analyses below consider how distances between zip codes in�uence patent citation rates.

Two issues with using inventor zip codes should be noted. A small concern is that our approach
does not consider all of the zip codes associated with inventors for some patents, and this may
lead to mismeasurement in our distance measure over short spatial scales (speci�cally, an upward
bias on the minimum distance). As a check against this concern, we �nd very similar results
when instead employing only patents with single inventors.
More substantively, addresses listed for inventors can be either their home or work address.

It would be nice to model both distances between work locations and distances between inventor
home locations. Both of these distances can in�uence technology di¤usion, and it is not clear
which is more important. The patent data do not let us separate these two, however, and this
measurement error biases us against �nding shorter spillover e¤ects.20

19As an additional note, the literature on intellectual spillovers is divided on whether the development of new
innovations is most aided by having a large concentration of one�s own industry or by industrial diversity. The
view stressing industrial concentration is most often associated with Marshall, Arrow, and Romer (MAR). The
MAR model emphasizes the bene�ts of concentrated industrial centers, particularly citing the gains in increasing
returns and learning-by-doing that occur within industries. The second view, often associated with Jacobs (1970),
argues that major innovations come when the ideas of one industry are brought into a new industrial sector. This
perspective stresses that a wealth of industrial diversity is needed to create the cross-fertilization that leads to
new ideas and entrepreneurial success. Duranton and Puga (2001) formalize theoretical foundations for this
model. Our empirical analysis focuses solely on the MAR determinant.
20While we manually identi�ed work locations for the description of the San Francisco Bay Area in the intro-
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3.3 Generations of Citations within Clusters

Our �rst analysis examines di¤erences in spatial scope within clusters for �rst generation citations
compared to later generations of citations. This analysis is useful because it provides evidence
for the interconnections among �rms built into our model�s structure. It also introduces the
empirical framework that we use to calculate the maximal radius for each technology.
To introduce the terminology, a �rst generation citation is simply patent A (our focal patent)

citing patent B. A second generation analysis analyzes the distances from patent A to a patent
C cited by patent B. Third generation citations are similarly calculated through the citations
made by patent C, and so on. If spillovers are not fully transmissible through a cluster,21

the maximal radius model predicts that �rst generation citations will be spatially nearer than
later generation citations within clusters. This framework thus o¤ers evidence about whether
technology movements through clusters conform to our model�s structure, although other models
may generate similar predictions.
We undertake this test using patent citations among bilateral pairs of zip codes that are within

150 miles of each other. To allow for maximum �exibility in the estimations, we construct a
series of distance rings indexed by dr. Our distance rings start with a ring of one mile or less,
which includes all citations that occur in the same zip code or between close neighbors. The
next ring is one mile to �ve miles, and subsequent rings are every �ve miles to 50 miles. Denote
the set of distance rings as DR.
Our empirical speci�cation takes the form

ln(Citationsz1!z2) =
X
dr2DR

�dr � I(dz1;z2 = dr) +  � ln(Patentsz2) + �z1 + "z1!z2 ; (7)

where z1 indexes source zip codes and z2 indexes destination zip codes. The regressors of interest
are the indicator variables I(�) for each distance ring. �z1 is a vector of citing zip code �xed
e¤ects that controls for the overall citation rates by the source zip code. ln(Patentsz2) controls
for the level of patenting in the destination zip code, which naturally in�uences the likelihood
of citations occurring. We drop zip codes for which patents and citations are never observed
locally. This regression thus describes the deviations in citation rates at di¤erent distance bands
from what the spatial distribution of patents would predict. Zip code pairs with distances of 50

duction, we are unable to replicate this approach for the full patent dataset. This is partly due to time constraints,
but more importantly it becomes increasingly di¢ cult to assign inventions to facilities in multi-unit �rms. The
San Francisco Bay Area is a nice case in that single locations typically house both corporate headquarters and
innovation facilities. This collocation is much less prevalent in the New York City region, for example, where
major �rms frequently have o¢ ces in Manhattan and in surrounding areas. These multiple o¢ ces even within
250 mile circles limit the gain from this approach versus simply using known inventor addresses. Aarland et al.
(2007) study the separation of �rm activity into multiple locations.
21Marshallian spillovers are fully transmissible through a cluster if all sites in a cluster receive identical spillover

bene�ts from one another, independent of location. In Figure 2a, this would result in �rms at sites A and B
receiving equal bene�ts from a �rm at site C, even though site C is only within the maximal radius of interaction
of site A. The intuition is that the spillovers of site C are �transmitted�to the �rm at site B through the �rm at
site A.
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to 150 miles serve as the reference group.22

Figure 3a plots the �dr coe¢ cients. First generation citations are remarkably concentrated at
short distances. There is a particular spike at less than one mile, which includes citations within
the same zip code. Over half of this excess e¤ect is gone when looking at zip codes one to �ve
miles away, which connects to the very localized networking of Arzaghi and Henderson (2008)
and the spillover estimations of Rosenthal and Strange (2003, 2008). The additional decline to
zip codes �ve to ten miles away is very modest, after which a steeper decline ensues. A little
more than half of the excess e¤ect evident at one to �ve miles is gone once 20-25 miles is reached.
Coe¢ cients for �rst generation citations are statistically di¤erent from zero at all distances.
Figure 3a also graphs the spatial patterns of subsequent generations of patent citations. To

construct these later generations, we randomly select one subsequent citation at each generation
per cited patent. We require that newly selected citations be within 250 miles of the citing
patent to maintain geographic proximity, but not necessarily within 250 miles of the original
citing patent. The speci�cation (7) is again used to compare rates in local distances to the rates
that exist over 50-150 miles.
The results are intuitive and agree with the developed model. Earlier generations, or more

immediate interactions, are signi�cantly stronger at less than one mile than are later generations.
Di¤erences at one to �ve miles, however, are much more modest. These relative di¤erences slowly
decay from �ve miles onward. At longer distances, the spatial overlaps become very similar across
generations.
To provide a second baseline of comparison, we generate random citation pairs comparable to

our observed sample. For every patent cited, we randomly draw a patent with a similar patent
class and application year. This method has been used extensively in the literature; we add the
innovation that the new counterfactual citation must be within a 250 mile radius of the original
citing patent. We do not exclude the original cited patent from the draws, and thus we use the
original citation if there are no other patents with the same technology and application year
in the de�ned spatial radius. This approach allows us to focus on local geographic areas and
provide a rough comparison of underlying patent densities with similar technology traits.
The random citation counterfactual series is signi�cantly di¤erent from zero at short dis-

tances. This suggests that �rms with closely related technologies locate near each other even
within spatial distances of 150 miles or less. Thus, the citation premiums evident at short dis-
tances combine both a higher likelihood to cite proximate neighbors and a higher likelihood to
cite generally �rms in closely related technologies. While our basic model is interested in both
of these mechanisms, we can derive further insights into the structure of interconnections within
clusters by comparing our citation premiums by generation with these counterfactuals.

22The total sample count for these estimations is 429,400 zip code pairs with non-zero citation counts. We �nd
very similar results when collapsing destination zip codes into consolidated rings around citing zip codes. Our
core speci�cation drops zero citation cells due to the log transformation. We �nd similar results when instead
recoding zero citations to be one citation for cells where patenting exists but a citation does not occur.
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The citation premiums for �rst and second generation citations at distances of one mile
or less are substantially stronger than those of the random counterfactuals. These deviations
gradually decay as distances between locations within clusters lengthen, with the initial decay for
�rst generation interactions again being much more rapid. These results con�rm that observed
citations are not simply following from underlying spatial distributions of technologies. Moreover,
even against the random baseline, initial interactions among �rms are most important at very
localized distances and decline thereafter.
The contrast with third and fourth generation citations is also very informative. Third gen-

eration citations are identical to the random counterfactual at distances of one mile or less.
They then achieve relative importance between distances of �ve and 20 miles, before converging
again to the random counterfactuals. Thus, extended chains of citations only mirror localized
technology distributions at very short spatial scales, but the interconnected hops do aid access-
ing technologies that are farther away in the cluster. Finally, fourth generation citations are
under-represented at distances of less than one mile, whereas they mirror the random baseline
thereafter. This suggests that more than three interconnections do not provide additional access
in technology clusters for the �rst 50 miles compared to 50-150 miles.23

These di¤erences across citation generations suggest that knowledge spillovers are not fully
transmissible through a cluster, but instead follow a pattern indicated by the Silicon Valley
example and our model�s structure. In Figure 2a, the chain of interconnected hops B!A!C
aids site B�s access to spillovers from sites around site C. Moreover, the extra strength for �rst
generation citations over very short distances o¤ers a path for identifying maximal radii of �rm
interactions that we investigate next.

3.4 Maximal Radius and Spatial Cluster Patterns

Our theory connects the maximal radius of �rm interactions with cluster structure. We test
these predictions by looking at di¤erences across patent technologies in their citation behaviors
similar to Figure 3a. We analyze 36 technologies using the sub-category level of the USPTO
system and Hall et al. (2001). Examples include Semiconductors, Optics, and Resins.

3.4.1 Basic Calculations and Descriptive Evidence

We proxy the maximal radius of interaction for each technology through the citation patterns
evident among patents within that technology. We again measure how close citing patents are
within individual clusters. One technology, for example, may show that most of the citations
that exist within local areas occur across �rms with a bilateral distance of ten miles or less.
On the other hand, a second technology�s local citations could occur more evenly over distances

23The patterns in Figure 3a allow for citations within �rms so that later generations of citations and the random
counterfactual are simple to de�ne. Excluding citations within �rms, the citation premium for �rst generation
citations at one mile or less is 1.8. The subsequent patterns look very similar. We exclude citations within �rms
in all subsequent citation analyses.
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0-70 miles. In the context of Figure 3a, this second industry would have a much �atter citation
premium for short distances. While we cannot put an exact distance on each technology�s max-
imal radius, we can use the di¤erences across technologies in these observable citation patterns
to proxy relative di¤erences in their maximal radii.
Operationally, we estimate for each technology a �rst generation citation regression similar

to that undertaken for all citations in Figure 3a. To develop a single measure of short technology
exchanges, however, we only include indicator variables for bilateral distances of [0,10] miles and
(10,30] miles. Thus, the reference group is bilateral zip code pairs of distances between 30-150
miles. Our measure of technology spillover horizons is the observed premium over the �rst ten
miles compared to this reference group. We exclude within-�rm citations from these calculations.
A shorter maximal radius is associated with a greater citation premium for the �rst ten miles.

The average premium is 0.43. Semiconductors has the greatest value of 0.74 followed by Surgery
& Medical Instruments at 0.53. Values of less than 0.3 are found in Gas and Pipes & Joints.24

For each technology, we estimate the continuous DO spatial density metric described above.
Figure 3b provides descriptive evidence on patent cluster shapes. We group our 36 technologies
into three broad buckets based upon the categories of the USPTO system following Hall et al.
(2001): Chemicals, Pharmaceuticals, and Medical (categories 1 and 3), Computers, Communi-
cations, Electrical, and Electronics (2 and 4), and Mechanical and Miscellaneous (5 and 6). The
chart simply provides the fraction of technologies considered localized by distance within each
grouping using the metric (5).25

Every technology within the Computers/Electronics grouping shows abnormally high spatial
concentration over the �rst 30 miles. After 35 miles, however, localization within this group
decays rapidly and is mostly gone by 70 miles or thereabouts. On the other hand, the Chem-
icals/Medical grouping shows abnormally high spatial concentration over 30-60 miles, with a
much slower decay rate thereafter. Finally, there are no material variations by distance in the
number of technologies localized for the Mechanical/Miscellaneous grouping.
These patterns roughly conform with our predictions, as the unweighted average citation

premium for technologies in Computers/Electronics (0.48) is greater than in Chemicals/Medical
(0.43) and then Mechanical/Miscellaneous (0.39). These di¤erences indicate that the maxi-
mal radius for technology spillovers tends to be shortest in Computers/Electronics, followed by
Chemicals/Medical and Mechanical/Miscellaneous. Greater requirements for very close knowl-
edge exchange are visibly associated with shorter, denser spatial clusters. This description,

24We �nd similar results to those described below when using other techniques to calculate these spillover
horizons. Perhaps most interestingly, the patterns are the same when estimating the distance interval required
to halve the citation premium evident at one to �ve miles compared to 70-75 miles or 145-150 miles. These half-
life calculations mirror typical decay function estimations. The reported technique with the localized citation
premium over 0-10 miles has the advantage of requiring much less data to compute consistently. This e¢ ciency
becomes critical when we estimate these patterns at the technology level in the United Kingdom, where we have
only about a tenth of the patents available in the United States.
25Distances are calculated using zip code centroids. Computational limitations, primarily around constructing

the counterfactuals, require that we calculate these densities using patents from 1990-1999. We calculate very
similar densities for a few smaller technologies when instead considering 1975-2009.
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however, does not take advantage of the heterogeneity within groups or the intensity of agglom-
eration, to which we turn next.26

3.4.2 Cross-Sectional Density Plots

Figure 3c provides a cross-sectional plot of cluster density and our proxy for maximal radius
by technology. Density is measured by the share of bilateral distances among patents for a
technology over 0-50 miles divided by the share of 0-150 miles. Shares range from 30% to over
80%, with a very high share indicating that patents in the technology are very densely packed
in one cluster and then mostly absent until the next cluster.
There is a strong upward relationship between greater citation premiums (shorter maximal

radii) and greater patent density. Recall that citation premiums are calculated controlling for
the underlying spatial patent distribution, so this relationship is not mechanical. The slope of
the trend line is 0.875 (0.163). Very clearly, some of the IT industries show exceptional densities.
The slope of the trend line is 0.336 (0.075) when capping the density ratio at 50%.27

While this plot suggests a strong correlation between lengths of micro-interactions among
�rms and cluster density at the technology level, it is natural to worry about reverse causality.
Existing cluster shapes and economic geography likely in�uence citation behavior. Moreover,
technology clusters may have their spatial locations for unmodeled reasons (e.g., historical acci-
dents, �xed university locations). The length of patent citations could then be determined by
the geographical features of these locations.
To address this, we calculate similar citation premiums using patent data from the United

Kingdom. Ellison et al. (2010) introduce this technique and discuss its strengths and limitations.
We geocode all city names and postal codes associated with UK inventors. We also manually
search for addresses of �rms in the United Kingdom with more than �fty USPTO patents
to provide more accurate city assignments. Calculating bilateral distances among pairwise city
combinations, we then estimate a second set of technology-level citation regressions that parallels
our US estimations.
The UK calculations face several important limitations relative to the US calculations. First,

and most important, there are signi�cantly fewer data points to estimate these citation premiums
(the UK sample is less than a tenth of the US sample size). Second, the geocoding has greater
measurement error, perhaps most centrally dealing with London. Finally, there is some selection
bias in the set of UK inventors applying for US patent protection. While these limitations

26At �rst it may appear odd that a majority of technologies are deemed localized when the con�dence bands
are selected such that only 5% of the counterfactuals reach them. This is to be expected if agglomerative forces
exist, however, as the counterfactuals build upon all patent locations. The counterfactuals are not selected such
that only 5% of technologies will be deemed agglomerated. This levels e¤ect for localization, along with its overall
decline with distance, is predicted by our model if sites are distributed uniformly but agglomerative forces exist
in nearly all technologies. The same pattern is shown in the industrial data in the next section.
27Five technology sub-categories are residual groups (e.g., Miscellaneous Drugs) where consistent clustering

concepts may not apply. Our results generally strengthen when excluding these groups, but we keep them in the
presented results.
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restrict our analysis somewhat, the UK results in this section and the next provide important
con�rmation of our model�s predictions in a manner that addresses reverse causality concerns.
Figure 3d provides a cross-sectional plot of US cluster density against UK citation premiums.

The vertical axis is the same as Figure 3c, but we substitute the UK citation premiums for
the horizontal axis. Interestingly, the UK citation premiums are weaker than in the United
States on average (mean of 0.24 versus 0.43). This decline may re�ect measurement error in
distances or more interesting economic di¤erences. We do not further investigate, however, as
we are primarily interested in relative di¤erences across technologies as a proxy for di¤erences
in maximal radii.
There are some substantial changes among some IT industries in Figure 3d compared to

Figure 3c. Most noticeably, semiconductors declines substantially (i.e., its maximal radius is
not as short as we measure in the US data). Nevertheless, the positive relationship persists
with cluster density in the United States. A greater citation premium for a technology in the
United Kingdom, corresponding to a shorter maximal radius, links to a denser cluster in the
United States. The slope of the trend line is 0.230 (0.075). The slope of the trend line is 0.159
(0.031) when capping the US density ratio at 50%. These patterns provide con�dence that these
relationships are not being solely determined by unmodeled factors.

3.4.3 Complete Density Plots

While transparent, the cross-sectional plots are incomplete in that they do not describe the full
distribution of location behavior. They also do not account for di¤erences in industry size, which
can have a mechanical e¤ect on density estimates. We now use the DO methodology to describe
these patterns more completely.
We begin with the kernel density K̂A(d) de�ned in (4) for a technology A. The process of

assigning localization (5) involves non-monotonic transformations of the data, and it is thus
useful to view the simpler density functions �rst. With some abuse of notation, we de�ne K̂A;d

as the sum of the kernel density over �ve mile increments starting from zero to �ve miles and
extending to 245-250 miles. We again index distance rings with dr and denote the set of distance
rings as DR, although the distance rings are di¤erent from the citations analysis.
Figures 3e and 3f present coe¢ cients from empirical speci�cations of the form

K̂A;d =
X
dr2DR

�dr � I(d = dr) � SpilloverDensityA + �d + "A;d: (8)

These estimations provide a continuous description of how technology cluster shapes vary with
technology horizons. SpilloverDensityA is the technology spillover density for industry A cal-
culated through patent citations (i.e., the same as the horizontal axis values in Figures 3c and
3d). Greater values of SpilloverDensityA correspond to a shorter maximal radius �A in our
model, and we thus anticipate �nding denser and smaller clusters for these technologies. We
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transform K̂A;d and SpilloverDensityA to have unit standard deviation to aid interpretation,
and we evaluate �dr at each distance ring.
A vector of distance �xed e¤ects �d controls for typical agglomeration densities by distance.

They thus directly account for the overall spatial density of patenting so that our estimations
consider di¤erences across technologies. As the vector of distances fully contains the support of
distances, we do not include a main e¤ect for SpilloverDensityA. Higher values of �dr indicate
that technologies with high spillover densities show greater spatial density at that distance. The
cross of 51 distances and 36 technologies yields 1836 observations per estimation.
Figures 3e and 3f present these density estimations using the US and UK measures of

SpilloverDensityA, respectively. Triangles report �dr coe¢ cients. The dashed lines provide
90% con�dence bands with standard errors clustered by technology. We �nd similar precision
when bootstrapping standard errors.
Technologies with greater SpilloverDensityA, or a shorter maximal radius, are substan-

tially more agglomerated at very short distance horizons. A standard deviation increase in
SpilloverDensityA is associated with a 1.3 standard deviation increase in agglomeration at �ve
miles using the US measure; the UK-based estimate is 0.6 standard deviations. By 60-75 miles,
the abnormal spatial concentration is no longer statistically di¤erent from zero.
Looking further, technologies with greater SpilloverDensityA are under-represented after 75

miles or thereabouts. Using the US estimate of citation density, these clusters show an abnormal
lack of density from 80 to 185 miles that is statistically di¤erent from zero at every �ve mile
increment. The UK estimation shows a similar pattern, although its point estimates are not
statistically di¤erent from zero. In both cases, the point estimates converge to zero as distances
approach 250 miles. At the edge of this spatial scale, di¤erences in maximal radius are not
systematically associated with di¤erent agglomeration intensities.
These patterns closely follow our theory model and the predictions given in Section 2.4.3

regarding maximal radii and cluster shapes. Note that the patterns of over-representation fol-
lowed by under-representation are not mechanical. Other attributes, for example, could predict
higher spatial concentration for a technology at all spatial distances to 250 miles.28

Figures 3g and 3h take the next step of calculating localized deviations from industry speci�c
con�dence intervals using (6). The patterns are very similar to Figures 3e and 3f. The excess
density at very short spatial horizons is robustly di¤erent from the random counterfactuals and
very similar to the kernel plots. The abnormally low spatial concentration at moderate spatial
horizons is weaker than in the raw kernel density plots, with the US estimator signi�cantly
di¤erent from zero over a narrower range of 120-155 miles. The UK estimator does not show
material deviations at moderate horizons once the con�dence intervals are considered.
Overall, these �gures jointly illustrate our central model predictions. A shorter maximal

28The kernel density functions (4) sum to one over the support of all bilateral distances in US, stretching from
next door to several thousand miles. This does not materially in�uence the cluster descriptions we develop here
over the �rst 250 miles.
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radius, or greater spillover density, is very strongly associated with greater agglomeration at
very short spatial horizons (i.e., the cluster is denser). These same technologies tend to be
under-represented at moderate spatial horizons (i.e., the clusters are smaller). The latter result
is very strong in the raw US data, and it is partially con�rmed with the UK estimator. Moreover,
in all cases the initial decline in bilateral densities from the closest feasible values that is predicted
by Proposition 5 is robustly supported.29

4 Marshallian Spillovers and Natural Advantages

This section uses data from the US Census Bureau to more broadly examine industry agglom-
eration in the United States. We �rst outline the US Census Bureau data employed. We then
compute spatial densities using bilateral distances among establishments by industry. We �nally
link di¤erences in spatial agglomeration patterns to di¤erences across industries in Marshallian
spillovers and dependency on natural advantages.

4.1 Spatial Densities for Establishments

Our estimates of industrial agglomeration patterns are developed through con�dential data
housed by the US Census Bureau. The Longitudinal Business Database (LBD) provides an-
nual observations for every private-sector establishment with payroll from 1976 onward. The
Census Bureau data are an unparalleled laboratory for studying the industrial structure of US
�rms. Sourced from US tax records and Census Bureau surveys, the micro-records document
the universe of establishments and �rms rather than a strati�ed random sample or published
aggregate tabulations. In addition, the LBD lists physical locations of establishments rather
than locations of incorporation, circumventing issues related to higher legal incorporations in
states like Delaware. We de�ne 362 industries through the three-digit level of the 1987 Standard
Industrial Classi�cation (SIC3). Industry assignment is at the establishment level for multi-unit
�rms. The data include 108 million workers and 5.8 million establishments in 1997.
We use bilateral distances among establishments to create continuous density metrics similar

to those described for our patent data. Our primary metric weights each establishment equally,
and we have con�rmed that an employment-weighted index yields similar results. Localization
is typically higher in employment-weighted distributions than in those using plant counts (e.g.,
Holmes and Stevens 2002). We measure bilateral distances using distances between county
centroids. Establishments in the same county are given a uniform distance of one mile.30

29Similar results are found using three additional speci�cation variants. The �rst employs the density function
(4) and introduces the con�dence bands KLCI�U

A (d) and KLCI�L
A (d) as precision controls. The second calculates

a global index similar to DO�s main metric and then evaluates the gradient of this concentration measure across
distances. Finally, the DO con�dence bands can be adjusted to a 1%/99% signi�cance level.
30Multiple factors yield con�icting recommendations regarding this latter choice� for example, accounting for

larger land areas versus congestion e¤ects with higher urban density. As shown below, the major movements we
analyze in this section happen at distances of 50 miles or greater, making this choice of secondary importance.
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Figure 4a graphs the fraction of industries that are localized at each distance level, akin to
Figure 3b. We analyze 25 mile increments to 1000 miles. Approximately 60% of industries dis-
play positive localization at each increment to 125 miles. Of the remainder, about 30% display
dispersion and 10% show neither pattern. Localization attenuates over moderate distances, and
only 30% of industries are localized at distances of 900-1000 miles. Manufacturing industries
are more agglomerated at short spatial scales than non-manufacturing industries, a pattern that
reverses at longer horizons. This result is to be expected, given the transportable and trade-
able nature of manufactured products. The empirical appendix provides additional descriptive
statistics.

4.2 Agglomerative Forces

We develop two traits of industries to model the Marshallian agglomeration and natural advan-
tages forces analyzed in our theoretical model. For the former, we focus on labor pooling as a
rationale for �rm clustering. Multiple models speci�cally describe the bene�ts of �rm cluster-
ing due to specialized workforces.31 We focus on this feature, recognizing that other forms of
Marshallian interactions exist (e.g., Rosenthal and Strange 2004, Ellison et al. 2010).
We measure how concentrated or specialized the occupational needs of an industry are

through the 1999 National Industry-Occupation Employment Matrix (NIOEM) published by
the Bureau of Labor Statistics. The NIOEM provides industry-level employments in over 700
occupations. We calculate the occupational concentration for each industry as a Her�ndahl-
Hirschman Index (HHI) of employments across occupations. Higher values of this index suggest
greater concentration of workers in a small number of occupations, which increases the spillover
bene�ts of industrial agglomeration.
Figure 4b provides some simple evidence that this labor concentration relates to spatial

scales. We divide industries into terciles based upon their occupational concentration. Highly
concentrated industries are more likely to be localized at shorter spatial scales; they are less
likely to exhibit localization at longer spatial horizons. Figure 4b�s trends are for all industries,
and the same patterns hold both within and outside of manufacturing.
We next model natural advantages for manufacturing industries using data from the Census

of Manufacturers. There are many natural advantages that one could model, and we pick
�ve for this exercise: coal inputs, natural gas inputs, lumber inputs, agricultural and livestock
inputs, and dependency upon water transportation. We normalize each of these dependencies

31Marshall (1920) described how an agglomeration of workers and �rms shields workers from �rm-speci�c
shocks. Workers can be more productive and better insured by moving from �rms that are hit with negative
shocks to better opportunities (e.g., Diamond and Simon 1990, Krugman 1991, Overman and Puga 2010). Larger
labor pools further promote more e¢ cient matches (e.g., Helsley and Strange 1990), and multiple �rms protect
workers against ex post appropriation of investments in human capital (e.g., Rotemberg and Saloner 2000). All
of these mechanisms suggest that �rms that employ similar types of workers will tend to locate near one another
and that �rms will bene�t from thick local markets for their speci�c labor needs. Glaeser and Kerr (2009) provide
a further discussion of this pooling concept. Duranton and Puga (2004) and Glaeser (2008) provide a general
theoretical taxonomy of agglomeration determinants.
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by industry shipments, and we de�ne a single natural advantages metric for each industry as
its maximum dependency across these �ve traits. Some of the largest dependencies on natural
advantages are found in food processing, pulp and paper, and steel industries.
Figure 4c again provides simple evidence that natural advantages are systematically related

to spatial scales. We divide manufacturing industries into terciles. In contrast to Figure 4b, the
most dependent industries on natural advantages are the least likely to be abnormally concen-
trated at small spatial distances. This dependency instead exhibits itself over horizons of 250 to
700 miles. The industries most concentrated to 200 miles are those with the least dependency
on natural advantages. The rates of decay at the edges for natural advantages also appear more
gradual.

4.3 Labor Pooling and Spatial Cluster Patterns

To more formally test these patterns, we run a series of regressions similar to the patent re-
gression model (8). We organize the data by industries A and distances d. We use 40 distance
intervals, ranging from 0-25 miles to 975-1000 miles, and 353 industries for a total of 14,120
observations. We exclude nine industries from our general sample of 362 industries for which we
cannot calculate all of the explanatory variables.
We present the patterns using the basic kernel estimator (4); the results are very similar with

the other variants studied in Section 4. We again transform variables to have unit standard de-
viation to aid in interpretation. The size variation of these industries is substantially larger than
among patent technologies.32 To provide the most representative depictions, we conservatively
cap extreme densities at their 1% and 99% values by distance and weight by log employment
of the industry. These speci�cation steps are not very important, however, and the patterns we
describe are very robust across speci�cation variants.
Figure 4d �rst tests occupational concentration across all industries. Higher occupational

concentration promotes localization over the �rst 100 miles, with substantial and monotonic
attenuation thereafter. By 250 miles, higher occupational concentration is no longer associated
with greater localization at a 90% con�dence level. The magnitudes are important in economic
size. A standard deviation increase in occupational concentration is associated with a 0.6 stan-
dard deviation increase in localization to 100 miles. It is also clear that the total length of the
agglomeration cluster associated with labor pooling is substantially longer than typical commut-
ing distances (which are frequently less than 40 minutes), akin to the San Francisco example in
Figure 1b.
We have con�rmed this pattern using several other techniques for measuring occupational

concentration or specialization. We �nd similar results when calculating the concentration ratio
of employment in the most frequent occupations or in the top four occupations. Similarly, we �nd

32Counts of patents used in our estimations range from 2811 to over 66,000. Among the industrial data, 18
industries have fewer than 100 establishments, while the maximum is over 400,000 establishments.
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the opposite pattern of results when modeling the number of occupations listed. Industries with
more listed occupations, regardless of employment levels, are associated with greater dispersion.
We also �nd that the results are invariant to including other distance-based interactions for
average wage, college share, labor intensity, and the number of �rms in the industry.
To check that reverse causality is not the case for our labor measures, we calculate the cor-

responding occupational concentration of manufacturing industries in the United Kingdom. We
use data from the UK Labour Force Survey, which is similar to the US�s Current Population
Survey. The patterns in Figure 4e are very similar. This suggests that our results are not due
to endogenous selections of production techniques by spatially isolated industries to match local
worker environments.33 A second advantage of the UK test is that the occupational concentra-
tions are calculated from a second data source, suggesting that our outcomes are not dependent
upon idiosyncratic features of the BLS�s NIOEM.
The shapes of these distributions mirror Figures 3e-3h. It is important to note, however, the

more subtle di¤erences in the estimation. A central strength of the patent data is the capacity
to model directly the micro-level interactions of �rms to calculate a measure of the maximum
radii. While the Census Bureau data allows us to consider many more industries and sectors,
this broader dataset requires a reduced-form approach that models traits of industries.

4.4 Natural Advantages and Spatial Cluster Patterns

Figure 4f considers natural advantages within the manufacturing sector. These estimations
control for occupational concentration, with the unreported coe¢ cients being very similar to
Figure 4d. The contrast between natural advantages and labor agglomeration is very interesting
and supports the crossing property of our model described in Proposition 6. High dependency
upon natural advantages is associated with dispersion (a lack of density) at short spatial scales.
This follows from coal mines, coastal ports, and similar features naturally having some distance
between them. The e¤ective radius for transporting goods and material inputs is also longer
than for labor pooling.
Over the next 500 miles, however, the importance of natural advantages grows. By distances

of 400 miles, the agglomerative force of natural advantages exceeds that of labor, and remains
strong until about 800 miles. Very clearly, the spatial dimension of natural advantages is longer,
and it appears that the attenuation rate is weaker, than for the Marshallian agglomeration
proxied by our labor features. This is most evident in the modest gradients and long spatial
durations of the slope in Figure 4f. The shapes of these densities conform to our model�s
predictions.

33Several theoretical models describe spatial location choice and production technology as jointly determined
(e.g., Duranton and Puga 2001, Glaeser et al. 2010).
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5 Conclusion

This paper introduces a new model of location choice and agglomeration behavior. From a simple
and general framework, we show that agglomeration clusters generally cover a substantially
larger area than the micro-interactions upon which they build. In turn, agglomerative forces
with longer micro-interactions are associated with fewer, larger, and less-dense clusters. The
theory thereby provides a basis for the use of continuous agglomeration metrics that build upon
bilateral distances among �rms. The theory also rationalizes the use of observable cluster shapes
and sizes to rank order the lengths of underlying agglomerative forces. We �nd con�rmation of
our theoretical predictions using both variations across patent technology clusters and variations
across industry concentrations.
We hope that our theoretical framework proves an attractive model for incorporating ad-

ditional factors that in�uence �rm location and agglomeration behavior. Important extensions
include: modelling the dynamics of industry life-cycles, incorporating interactions across �rms in
di¤erent industries, allowing for pricing of locations, and incorporating the development of new
sites. We likewise believe our setting is an attractive laboratory for structural modelling that
would allow recovery of the underlying lengths of micro-interactions. These parameters could
in turn be useful for understanding spillover transmissions in networks and for studying spatial
propagation of economic shocks.
We have applied our framework to two empirical settings, but we believe that many more

applications in industrial agglomeration are possible. For example, future work can look to price
clusters or identify spillover lengths by examining the location decisions of marginal entrants.
Our framework highlights the important information that is contained in these indi¤erence
conditions if properly identi�ed. As important, we believe our framework describes interactions
in many other contexts as well. For example, studies �nd that knowledge �ows within �rms
or universities are substantially shaped by the physical layout of facilities (e.g., Liu 2010). We
hope that future work similarly analyzes parallel situations where costs of interaction generate
a maximal radius.
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Fig. 1a: Technology Sourcing from Silicon Valley
Top patenting zip codes outside of core and their sourcing zones

Notes: Figure characterizes technology flows for the San Francisco area.  The core of Sil icon Valley is depicted with 
the shaded triangle.  The Sil icon Valley core contains 76% of the patenting for the San Francisco region.  This map 
describes the technology sourcing for three of the four largest zip codes for patenting not included in the core itself.  
Technology sourcing zones are determined through patent citations.  

The stars indicate the focal zip codes, and the shape of each technology sourcing zone is determined by the three 
zip codes that firms in the focal zip code cite most in their work.  The orange zone (1) for Menlo Park extends 
deepest into the core.  The green zone (2) for Redwood City shifts up and encompasses Palo Alto but less of the 
core.  The black zone (3) for South San Francisco further shifts out and brushes the core.

These technology zones are characterized by small, overlapping regions.  None of the technology sourcing zones 
transverse the whole core, and only the technology zone of the closest zip code (Menlo Park) reaches far enough 
into the core to include the area of the core where the greatest number of patents occur.  Transportation routes 
and geographic features influence the shapes and lengths of these sourcing zones.

The empirical appendix contains additional maps that show these small, overlapping regions are also evident in the 
core itself and in other areas outside of the core.

1
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Notes:  Figure characterizes labor commutes in the San Francisco area for scientists and engineers.  Data are taken 
from the 2000 Census and organized by PUMA of residence and work.  The colored asterisks indicate locations of 
work.  The zones surrounding the asterisks of similar color indicate the primary PUMAs of residence for the workers.  
Zone boundaries are only representative given the coarse nature of PUMA designations.  The labor commuting 
patterns also exhibit multiple, overlapping sourcing zones, none of which transverses the whole region. 

Fig. 1b: Labor Commutes in San Francisco Area
Work commutes for scientists and engineers across PUMAs



Notes:  Image il lustrates a natural advantage cluster.  The stars represent fixed natural advantage sites, with circles 
now representing the maximal spil lover radii of those advantages.  Large area clustering follows from firm attraction 
to fixed resources and an uneven spatial distribution of natural advantage sites.  The larger dashed circle again 
shows that a longer maximal radius induces marginal entrants into the cluster.  Moreover, this tipping behavior is 
weakly increasing in Marshallian complementarity if these latter spillovers exist among firms.

Fig. 2a: Marshallian Clusters
Agglomeration due to interactions among firms

Fig. 2b: Natural Advantage Clusters
Agglomeration due to proximity to fixed resources

Notes:  Image il lustrates a Marshallian cluster.  Entry is sequential, without foresight, and potential sites are fixed.  
Black dots are chosen sites, and circles represent maximal spillover radii.  Large area clustering is due to small, 
contained interaction effects that overlap each other.  The next entrant is indifferent among available sites, 
including X, Y, and Z.  The larger dashed circle shows that a larger maximal radius would induce the marginal entrant 
into the cluster over other sites, resulting in (weakly) fewer, larger, and less dense clusters.  
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Notes:  Figure plots the fraction of technologies showing localization by each distance.  The sample includes 36 sub -
categories of the USPTO system organized into three simple divisions.  Localization is calculated using pairwise 
distances among inventors in a technology with the Duranton and Overman (2005) metric.  Technologies are 
considered localized at a distance if they exhibit abnormal density compared to 1000 random draws of US inventors 
of a similar size to the technology.  Local confidence bands are set at 5%/95% for this determination.

Fig. 3a: Local Patent Technology Horizons 
Pairwise citations over 50 miles compared to 50-150 miles

Fig. 3b: Patent Spatial Densities
Share of sub-technologies in indicated group localized by distance

Notes:  Figure plots coefficients from regressions of log patent citation counts on distances.   Observations are 
pairwise citing and cited zip codes within 150 miles of each other.  Distance bands are <1 mile, 1 -5 miles, and each 
subsequent five mile increment to 50 miles.  Explanatory variables are indicator variables for each distance band, 
with 50-150 miles apart serving as the reference category.  Regressions control for log patenting and citing zip code 
fixed effects.  The random counterfactual considers same technologies and years as true citations.



Notes:  See Figure 3c.  Estimates use technology spillover lengths in the UK to address potential reverse causality 
where US cluster shapes determine spillover lengths.  Using patents fi led from the UK to the USPTO, the technology 
spillover horizon measures by patent class the citation premium among patents 0 -10 miles apart relative to 30-150 
miles apart.  The slope of the trend line  is 0.230 (0.075).

Fig. 3c: Patent Cluster Density & Spillover Radius
Cross-section of invention density and tech. spillover lengths

Fig. 3d: Patent Cluster Density & Spillover Radius
Using UK tech. spillover lengths to predict US density levels

Notes:  Figure provides a cross-sectional plot of cluster density and technology spillover lengths.  Cluster density is 
measured through bilateral patent distances in each technology.  It is the share of patenting that occurs within 50 
miles relative to the share within 150 miles.  Technology spillover horizon measures by patent class the citation 
premium among patents 0-10 miles apart relative to 30-150 miles apart.  Technologies with shorter spillover ranges 
(i.e., greater citation premiums) have denser clusters.  The slope of the trend line is 0.875 (0.163).
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Notes:  See Figure 3e.  Estimates use technology spillover lengths in the UK to address potential reverse causality 
where US cluster shapes determine spillover lengths.

Fig. 3e: Patent Cluster Shape & Spillover Radius
Kernel estimations of cluster shape and tech. spillover lengths

Fig. 3f: Patent Cluster Shape & Spillover Radius
Using UK tech. spillover lengths to predict US cluster shapes

Notes:  Figure plots coefficients from regressions of kernel densities by distance for 36  technologies.  Technology 
spillover horizon measures by technology the citation premium for 0 -10 miles relative to 30-150 miles. This metric is 
interacted with indicator variables for each five mile increment in distances to 250 miles.  Regressions include fixed 
effects for each distance.  Dashed lines are 90% confidence bands.  Technologies with shorter spillover ranges show 
excess density at short distances and increase dispersion over medium distances (i.e., denser, smaller clusters).
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Notes:  See Figures 3e-3g.  Estimates use technology spillover lengths in the UK to address potential reverse 
causality where US cluster shapes determine spillover lengths.

Fig. 3g: Patent Localization & Spillover Radius
Localization estimations and technology spillover lengths

Fig. 3h: Patent Localization & Spillover Radius
Using UK tech. spillover lengths to predict US localization

Notes:  See Figure 3e.  The dependent variable is updated from the kernel density in Figure 3e to be the 
measurement of localization developed by Duranton and Overman (2005).  Technologies are considered localized at 
a distance if they exhibit abnormal density compared to 1000 random draws of US inventors of a similar size to the 
technology.  Local confidence bands are set at 5%/95% for this determination.  Technologies with shorter spillover 
ranges again exhibit denser, smaller clusters with this technique.
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Notes:  See Figure 4a.  This figure separates the 362 industries into terciles based upon how concentrated their 
occupational employments are.  Occupation concentration is taken from the National Industry -Occupational 
Employment Matrix of the Bureau of Labor Statistics.  Greater occupational concentration increases the benefits of 
labor pooling.  Greater occupational concentration is associated with higher spatial concentration at short distances 
and lower spatial concentration at longer distances.

Fig. 4a: Industry Spatial Densities
Share of SIC3 industries in sector localized by distance

Fig. 4b: Densities & Occupational Concentration
Share of SIC3 industries in tercile localized by distance

Notes:  Figure plots the fraction of industries showing localization by each distance.  The total sample includes 362 
SIC3 industries; 140 industries are in manufacturing.  Localization is calculated using pairwise distances among 
plants in an industry.  Industries are considered localized at a distance if they exhibit abnormal density compared to 
1000 random draws of US establishments of a similar size to the industry.  Local confidence bands are set at 
5%/95% for this determination.
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Notes:  Figure plots coefficients from regressions of agglomeration densities by distance for 362 SIC3 industries.  
Occupational concentration measures the HHI index of occupational employment within an industry.  This metric is 
interacted with indicator variables for each 25 mile increment in distances to 1000 miles.  Regressions include fixed 
effects for each distance.  Dashed lines are 90% confidence bands.  Occupational concentration promotes excess 
concentration over short to moderate distances.  The shape of these functions mirrors the technology regressions 
in Figure 3g.

Fig. 4c: Densities & Natural Advantages
Share of SIC3 mfg. industries in tercile localized by distance

Fig. 4d: Labor Pooling Cluster Shape
Estimations of cluster shape and occupation concentration

Notes:  See Figure 4a.  This figure separates the 140 manufacturing industries into terciles based upon their 
dependency for natural advantages.  Dependency is taken as the maximum of dependency for water transportation, 
coal, natural gas, lumber, and agricultural products.  Greater dependency for natural advantages is associated with 
lower spatial densities at short distances and higher spatial densities at longer distances.  While unobserved, the 
spillover range for natural advantages related to these factors is often longer than for labor pooling.
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Notes:  Figure plots coefficients from regressions of agglomeration densities by distance for 140 SIC3 manufacturing 
industries.  Natural advantages measure maximum dependency of the industry on one of five natural advantages 
(water transportation, coal, natural gas, lumber, and agricultural products).  These metrics are interacted with 
indicator variables for each 25 mile increment in distances to 1000 miles.  Regressions include fixed effects for each 
distance and control for occupational concentration.  Compared to occupational concentration, industries 
dependent upon natural advantages show larger and less dense agglomeration patterns.

Fig. 4e: Labor Pooling Cluster Shape
Estimations of US cluster shape and UK occupation concentration

Fig. 4f: Natural Advantage Cluster Shape
Estimations of cluster shape and natural advantage dependency

Notes:  See Figure 4d. Estimates use UK occupational concentration measures to confirm reverse causality is not 
determining the results.  Occupational concentration is defined as the HHI index of occupational employment 
within an industry using data from the UK.
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Theoretical Appendix

Proof of Proposition 1
Immediate from text.

Proof of Proposition 2
Throughout, we �x the industry A and only consider Marshallian forces, so that �AK = 0. Thus,
for simplicity, we henceforth suppress the indices A and A whenever doing so does not introduce
confusion. We also assume for notational convenience that the �rms in industry A enter in
uninterrupted sequence. The results are unchanged if we instead assume that �rms in other
industries enter between �rms i and i0, so long as the entry order of all �rms is �xed at the
beginning. Finally, we assume a generic distribution of sites.
We order the �rms in industry A by entry period i = 1; : : : ; NA, and let Zi be the set

of sites occupied at the stage in which �rm i chooses its location. Since sites are generically
distributed and only Marshallian forces a¤ect the location decision of �rm i, we see that i is
indi¤erent between sites if and only if B�(j(i � 1)) n Zi = ;. In that case, i chooses locations
randomly. Otherwise, i chooses the unique site j(i) 2 B�(j(i� 1)) n Zi which maximizes gj(i);A,
and Zi+1 = Zi [ fj(i)g.
The preceding discussion implies that the set of locations occupied by industry-A �rms fol-

lowing all �rms� entries is completely determined by an instantiation of the random cluster
selection which occurs whenever a �rm i is forced to choose a site randomly because of indi¤er-
ence. We may represent such a sequence of random draws by an ordering � � �1 � � ��B(�) of the
B(�) disjoint �-clusters B�(j�b). (Here, Z 3 j�b 2 B�(j�b) is a representative site in the �-cluster
assigned index b in the ordering �.) We denote the set of possible orderings of �-clusters by �.34
The number of �-clusters actually occupied by industry-A �rms if the random entry sequence

is drawn as � 2 � is given by

#�(�) � min
(
b 2 N : NA �

bX
b0=1

���B�(j�b0 )���
)
:

Denoting the probability of draw � 2 � by Prob(�),35 we compute that E�[#�(�)], the expected
level of agglomeration level in industry A, is given by

E�[#�(�)] =
X
�2�

#�(�) � Prob(�):

We suppose that � increases to �0 > � (with �0K = 0). If B�(j) = B�0(j) for all j 2 Z, then
clearly agglomeration behavior is unchanged. Thus, we may assume that

B�(j) 6= B�0(j) (9)

for at least one j 2 Z. Moreover, since the distribution of sites is generic, we may assume without
loss of generality that B(�0) = B(�) � 1, so that there is some j0 2 Z such that (9) holds for
exactly the sites j 2 B�0(j0). Iterating our arguments for that case (over successive expansions
of �) show the proposition in general.
Now, we let � and �0 denote the two �-clusters which are merged when the maximal radius

expands to �0, so that B�0(j�) = B�0(j�0) but B�(j�) 6= B�(j�0). Abusing notation slightly, for
34We maintain the subscript � to remind the reader which maximal radius is being considered.
35Here, we do not specify the actual distribution of draws, since it is not needed for the proposition.
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� 3 � = �1 � � ��B(�), we let �(�) denote the index b such that �b = �. We de�ne �0(�)
analogously.
We may again associate the possible �rm location patterns to the orders of possible �-cluster

selection � 2 �, with the understanding that the �0-clusters are occupied in the order

B�0(j�1); : : : ;B�0(j��(�)); : : : ;B�0(j��0(�)�1);B�0(j��0(�)+1); : : : ;B�0(j�B(�))

until all NA �rms have entered. The actual number of clusters occupied by �rms, denoted
#�0(�), will not in general be equal to #�(�). There are two cases to consider: �

0(�) � #�(�)
and �0(�) > #�(�). In each case, we have that #�0(�) � #�(�).
As the probability that cluster B�0(j��) is selected by a �rm choosing randomly among avail-

able sites Z n Zi is equal to the sum of the probability of choosing B�(j��) and that of choosing
B�(j��0 ), direct computation shows that the level of agglomeration expected when the maximal
radius is �0 is equal to E�[#�0(�)]. Since we have shown that #�0(�) � #�(�) for all � 2 �, we
have

E�[#�0(�)] =
X
�2�

#�0(�) � Prob(�) �
X
�2�

#�(�) � Prob(�) = E�[#�(�)];

which proves the desired result.

Proof of Proposition 3
As in the proof of Proposition 2, we �x the industry A and suppress the index A whenever doing
so does not introduce confusion. (In particular, we write K � K(A) throughout this proof.)
We also assume for notational convenience that the �rms in industry A enter in uninterrupted
sequence, and that the distribution of sites is generic.
We suppose that the cost of extracting natural advantages falls from cK to c0K < cK, so that

�K rises to �
0
K. We suppose for simplicity that �K > �A.
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Under the condition

GA(0)� cA < min

�
GK

�
max

f(j;k)2Z�K:dj;k<�g
dj;k

�
� cK; GK

�
max

f(j;k)2Z�K:dj;k<�0g
dj;k

�
� c0K

�
(10)

(so that natural advantages are always more valuable than Marshallian advantages) and the cost
cK, if there exists an unoccupied site j 2 B�(k) for some k 2 K, then any entering industry-A
�rm i will choose a location j(i) 2 B�(k0) for some k0 2 K.37 We write

B�(K) �
[
k2K

B�(k): (11)

If jB�(K)j � NA, then all �rms in industry A will locate in the clusters fB�(k)gk2K when facing
the cost cK. When the cost falls to c0K, �rms�location decisions will be unchanged, hence there
is nothing to show. This follows from the fact that the cost term enters linearly into �rm utility
from contact with a site. Likewise, if NA > jB�(K)j but jB�(K)j = jB�0(K)j, that is, if the
cost decrease leaves the set of sites in the maximal-radius clusters about attraction sites k 2 K
36There are two cases in which �A > �K, according as �A is larger or smaller than �

0
K. In each of these cases,

the result follows via an argument analogous to that presented here for the case �A < �K.
37Note that this is true even if no sites within �K of an attraction site k 2 K are available, as in this case if

there is some k 2 K for which there exists an unoccupied site j 2 B�(k), then there exists some k0 2 K with a
site j0 2 B�(k0) which delivers Marshallian agglomeration bene�ts.
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unchanged, then there is nothing to show since the clusters in Z n B�(K) are left unchanged by
the change in cK.38
Thus, we need only consider the case in which jB�0(K)j > jB�(K)j. Because the site dis-

tribution is generic, it su¢ ces to prove the result in the case that there is only one cluster
B�0(j) � B�0(K) n B�(K). The full result follows upon induction.
The expected number of �-clusters occupied by �rms under maximal radius �, conditional

upon some �rm choosing a site j0 2 B�0(j), is left unchanged upon expansion of the maximal
radius to �0. To complete the proof, we consider the case in which, under maximal radius �,
the �rst jB�(K)j �rms choose locations in B�(K) and the remaining NA � jB�(K)j �rms choose
locations in Z n (B�(K) [ B�(j)) = Z n B�0(K).39 A decrease in cK leaves the number of distinct
clusters in Z n (B�(K) [ B�(j)) �xed, hence to bound the number of clusters occupied under
maximal radius �0, it su¢ ces to consider, for each collection of clusters fB�(jb) � Z n (B�(K) [
B�(j))gb occupied, the e¤ect on the number of occupied �-clusters of moving jB�(j)j �rms to
B�(j) from the last clusters B�(jb) to be occupied. Clearly, this process can at most increase
the number of occupied �-clusters by 1 (in the case in which no cluster B�(jb) is emptied).
It follows that for any instantiation of random site selection, the number of �-clusters outside
B�0(K) occupied under maximal radius �0 is at most as large as the number of �-clusters outside
B�0(K) occupied under maximal radius �. The site discovery condition (3) guarantees that the
number of distinct �0-clusters inside B�0(K) occupied under maximal radius �0 is always weakly
smaller than the number of �-clusters inside B�0(K) occupied under maximal radius �, hence we
have the result.

Proof of Proposition 4
Immediate from text.

Proof of Proposition 5
The result is trivial for the case in which � is such that jB�(j)j > 1 for only two j 2 Z (i.e. the
case in which only one cluster contains more than one site), as in that case expansion to �0 either
does not change the composition of clusters or increases mean bilateral distances between sites
in clusters.40 Thus, the existence of the desired �� is immediate.

Proof of Proposition 6
As in the proofs of Propositions 2 and 3, we �x the industry A and suppress the index A
whenever doing so does not introduce confusion. (In particular, we write K � K(A) throughout
this proof.) Additionally, we suppose a generic distribution of sites.
The result follows from Proposition 2 if GK(0) = 0, so we assume that GK(0) > 0. We de�ne

B�(K) as in (11), and suppose that NA � jB�(K)j. With these assumptions, it is clear that all
�rms (deterministically) choose sites in B�(K).
Scaling GA by � (possibly) expands the maximal radius to �0 � �. We assume that the

attraction sites k 2 K are su¢ ciently dispersed that B�0(k) = B�0(k0) implies that B�(k) = B�(k0)
38If B�(K) = B�0(K), then the total number of clusters occupied by �rms in the maximal-radius clusters about

attraction sites weakly decreases. Meanwhile, since again NA � jB�(K)j �rms must locate outside B�(K), the
expected number of clusters occupied by sites choosing sites in Z n B�(K) is unchanged.
39Note that B�0(j) n B�0(K) = B�(j) because cA is unchanged.
40Note that for �� su¢ ciently small, if B�0(j) ) B�(j), then the mean bilateral distance between sites in B�0(j)

is larger than that between sites in B�(j).
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for all k; k0 2 K.41 This guarantees that no �-cluster B�(k) (k 2 K) which is not occupied under
maximal radius � is occupied under maximal radius �0. Indeed, if the cluster B�(k) is not occupied
under maximal radius �, then (by �rm-revealed preference) its natural advantage bene�ts must
be lower than the bene�ts o¤ered by the other clusters occupied under maximal radius �. Since
scaling GA by � leaves the natural advantage bene�ts �xed, �rms could only want to occupy a
site j 2 B�(k) under maximal radius �0 if the Marshallian advantages a¤orded by j are su¢ ciently
strong. These bene�ts must be derived from contact with sites j0 =2 B�(k); the assumption on
the dispersion of K rules out this possibility.

Cluster Dynamics
Although �rms�location decisions are deterministic in the model, it is still possible for agglom-
eration clusters due to Marshallian forces to move over time in a dynamic setting. We describe
several limit cases and general observations here, leaving a complete analysis of our model�s
dynamics for future work.
When a �rst-mover �rm i1 2 A chooses its location, this decision must be driven by natural

advantage concerns or idiosyncratic factors. But then, Marshallian forces drive subsequent
entrants i2; : : : ; im 2 A to locate around j(i1), creating a network of localized spillovers. If these
forces are su¢ ciently strong, then even were i1 to fold and vacate its site j(i1), a newly entering
�rm im+1 might not choose to locate at j(i1). Instead, the new entrant could locate in some
location j 6= j(i1) close to multiple sites of fj(i2); : : : ; j(im)g that provides more spillovers in the
now-populated economy than the �rst location does.
For an example of this behavior, we will assume that all relevant sites are located on integer

points of a coordinate plane R2. We have K = f(0; 1)g and Z = f(0; 1); (0; 2); (0; 3); (1; 3)g.42
We assume that �AA = �AK =

p
2 + �, where � > �

p
2

1�� for some tiny � > 0 and take

GA(d) =

�
�AA � d d � �AA;
0 d � �AA:

GK(d) =

�
�(�AK � d) d � �AK;
0 d � �AK:

The �rst �rm i1 will choose to locate at site (0; 1), and then the second and third �rms will
locate at sites (0; 2) and (0; 3). Now, suppose that i1 folds and vacates (0; 1). The value of site
(0; 1) to a new �rm is now

�(�AK � d(0;1);(0;1)) + (�
A
A � d(0;1);(0;2)) = �(

p
2 + �) + (

p
2 + � � 1) = (1 + �)(

p
2 + �)� 1;

while the value of site (1; 3) to a new �rm is now

(�AA � d(1;3);(0;2)) + (�
A
A � d(1;3);(0;3)) = (

p
2 + � � 1) + (

p
2 + � �

p
2) = 2� +

p
2� 1:

Since � > �
p
2

1�� , we see that the value of site (1; 3) exceeds that of site (1; 0).
43 Thus, a newly

entering �rm will locate at site (1; 3).

The preceding discussion shows that growth of clusters at their peripheries arises endoge-
nously in our static model and is supported in a simple dynamic setting, too. By extension,

41This assumption implicitly de�nes the constant � of the theorem statement.
42We say that both (0; 1) 2 K and (0; 1) 2 Z as shorthand denoting the fact that there is a site in K and a

site in Z, both of which are �-close to (0; 1) for some small �.
43To see this, note that

(2� +
p
2� 1)� ((1 + �)(

p
2 + �)� 1) = �(1� �)�

p
2� > 0:
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complete clusters could be dynamically vacated in favor of more appropriate locations due to
entry and exit behavior.
By contrast, when natural advantages dominate Marshallian forces, as under the conditions of

Proposition 3, the pattern of location choices for �rms is dynamically stable. If a �rm exits in this
scenario, then the newly vacated site j is the most valuable site available. This is immediate by
virtue of the fact that site j was previously selected and all resource attraction sites are known.
Since natural advantage spillovers dominate, location j must be (weakly) optimal relative to
other available sites. Thus, if the number of �rms in industry A is constant, then the pattern of
�rm locations is constant if natural advantages are of central importance.
The dynamics are determined by Marshallian conditions if a natural advantage site loses its

innate importance. If local Marshallian forces are strong, agglomeration can persist absent the
original natural advantages. If local Marshallian forces are weak, the cluster may be vacated over
time. The former scenario is in line with the related empirical work by Bleakley and Lin (2010) on
the persistence of US cities originally centered on portage sites. This natural advantage has lost
its economic importance, but Bleakley and Lin (2010) �nd continued and growing importance
of these locations.
Looking ahead to future work, this framework provides a tractable setting for modelling

agglomeration patterns and industry evolution. As industries mature, their needs evolve and
the concomitant maximal radii shift. A classic example is moving from heavy dependence upon
knowledge spillovers at industry birth to more production-centered factors at industry maturity.
The associated changes in spillover lengths can be linked to dynamics in cluster patterns through
this framework. Extending the model to have interesting interactions across industries could also
a¤ord evaluation of the role of diversity in industry birth similar to the work of Jacobs (1970)
and Duranton and Puga (2001).

Additional Theoretical Notes
� One can further introduce inter-industry Marshallian forces (coagglomeration) by adding
a third term to gj;A(i) of the form

P
i0 6=i;

A(i0)6=A(i)
G
A(i)
C (dj;j(i0)): An earlier version of this paper

traces out some of the properties that arise due to coagglomeration (e.g., the spatial scale
of coagglomeration can exceed agglomeration even if the interaction e¤ect is weaker). We
will pursue these coagglomeration traits further in future work.

� Our framework assumes that interaction costs exceed spillover bene�ts at some distance,
with a single crossing property. While this condition holds in many settings, it is interest-
ing to note an empirical case where it does not. Ethnic networks have long been associated
with reducing interaction costs at great distances and thereby facilitating economic ex-
changes (e.g., Rauch 2001, Kerr 2008). In e¤ect, these networks transmit the bene�ts of
clusters that are typically con�ned spatially. Future extensions of this model could allow
for networks, ethnic or otherwise, to connect clusters.

� In some industries, natural advantages are transmitted through contact with other �rms.
That is, if an industry-A �rm i has access to a natural advantage site k 2 K(A(i)), and
some other industry-A �rm i0 is proximate to j(i) but not to k, then i0 derives some of the
bene�t of the attraction site k. Although a full treatment of such a model is outside the
scope of this paper, one special case stands out. If GA(0) = 0 and natural advantages are
fully transmissible44, then �rms behave as in the case of Marshallian forces with attraction
sites dictating the spatial distribution of �rm locations. In this case, agglomeration again
increases with a longer maximal radius of interaction.

44We say that natural advantages are fully transmissible if when j(i0) 2 B�A(j(i)) and dj(i);k < �AK, then i
0

receives utility equal to GAK(dj(i);k), the full value of the natural advantage to i.
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Empirical Appendix
This appendix begins with a deeper presentation of the technology �ow maps discussed in the
introduction. Color images of these maps are available at http://www.people.hbs.edu/wkerr/.
We then introduce the US Census Bureau data employed and our approximation of the contin-
uous Duranton and Overman (2005) metric. We close with additional descriptive statistics on
US industrial concentration. The main text summarizes this material.

Technology Flows in Silicon Valley

We start with a characterization of technology �ows in Silicon Valley and its surrounding region.
The underlying structures of these technology �ows exhibit several properties that are central
to our location choice model, making this visual description a useful reference point. We employ
individual records of all patents granted by the United States Patent and Trademark O¢ ce
(USPTO) between January 1975 and May 2009 to inventors in the San Francisco Bay Area. We
de�ne the San Francisco Bay Area as any zip code that is within 75 miles of Redwood City, CA.
Our analysis only considers industrial patents and the citations among them (e.g., we exclude
technology transfer from Stanford University). We exclude self-citations.
We discuss in Section 3 the literature that exploits patent citations to measure knowledge

di¤usion or technology spillovers. We use localized citations among patents to portray technology
sourcing zones at the zip code level within the San Francisco Bay Area. We assign �rms to zip
codes based on business directories and web-based searches. This data development process
requires extensive manual e¤ort as the San Francisco Bay Area produced as many industrial
patents over the last 30 years as the bottom 29 states combined. We thus map with certainty
�rms that had two or more patents during the 1975-2009 period and use 20% subsamples for
assignees with just a single patent. In total, we obtain physical addresses for 88% of the potential
citations for our sample.1

We start with the structure of technology �ows in the core area of Silicon Valley and work
outwards. App. Figure 1a describes the core area that contains three-quarters of industrial
patents �led from the San Francisco Bay Area. The core contains the top 10 zip codes in the
whole region in terms of patenting (and 18 of the top 25). We �rst place these 10 zip codes on
the map and describe their technology zones.
Panel A of App. Figure 1a shows the primary technology sourcing for zip code 95054, which

is marked with a star. This zip code produced the most industrial patents of any zip code in
the San Francisco Bay Area (more than 20,000, which is equal to the seventeenth largest state).
It is home to �rms like Intel, Sun, Advanced Micro Devices, and Applied Materials. The other
points of the red shape are the three zip codes that �rms in 95054 cited most in their work.
These three zip codes contain about 30% of 95054�s external citations, with 95054 itself

accounting for about 15%. On average, the top three external zips contain 41% of local external

1Our approach has several limitations. First, the vast majority of web searches yield current business addresses.
In some cases, these searches also yield historical addresses for �rms that have been acquired or gone out of
business, but addresses are nonetheless more likely to be found for �rms currently in operation. Second, even
within the San Francisco Bay Area, some �rms have multiple facilities. In such cases, our top priority is for
locations where research is performed. Our results are robust when multiple assignments are possible to either
using the most likely facility or to weighting each facility equally.
A second source of address information comes from parallel work matching �rms into the Census Bureau data

described in Section 4 (e.g., Kerr and Fu 2008, Balasubramanian and Sivadasan 2010, Akcigit and Kerr 2010).
This approach produces a similar rank order of zip codes and description of cluster zones as those discussed
below. Disclosure restrictions prohibit further tabulating these results.
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citations for a zip code. This dependency grows modestly as one moves from the core (39%) to
the periphery (47%). Likewise, the relative importance of external citations within the focal zip
code declines as one moves to the periphery. It averages 10% across the region. In total, about
17% of external citations for the �rms are contained in the San Francisco Bay Area. This share
is greater than the more typical 10% share found at the metropolitan level due to both a larger
expanse of land considered and due to this region being the dominate technology cluster.
Panel B further incorporates the second and third largest zip codes and their technology

sourcing. The second largest zip code is 95134, home to �rms like Altera, Micron, and Cisco.
It has reciprocal sourcing from 95054, and it draws extensively from its neighbors 95035 and
95124. The third largest zip code is 94304 (e.g., Hewlett-Packard, Incyte, Palo Alto Research
Center). Its technology sourcing extends down to include 95014 (e.g., Apple, Tandem, GTE)
and 95120 (e.g., IBM Almaden Research Center).
Panels C and D show the top 6 and 10 zip codes, respectively. Although unrestricted in

design, the primary technology sourcing zones for each zip code in the core are also contained
in the core. This is true for all of the 18 zip codes in the core that are among the top 25. These
zones are characterized by small, overlapping regions that often exhibit directional transmission.
No technology sourcing zone spans the entire core. In larger maps, we represent the core as a
shaded triangle, and for visual ease we will no longer maintain the micro technology �ows. Panel
D shows the boundaries of this triangle; its longest side is 25 miles in length.
App. Figure 1b places the Silicon Valley core in a larger map that includes surrounding

parts of the San Francisco Bay Area. Downtown San Francisco and Oakland are to the north
and still o¤ the map. We map on this �gure the seven largest zip codes for patenting that are
not contained in the core itself (numbers 12, 13, 17, 19, 22, 24, and 25). The shape of each
technology sourcing zone is again determined by the three zip codes that �rms in the focal zip
code cited most in their work. For visual ease, San Ramon and Santa Clara are indicated on the
edge of the map at the location of their primary transportation route.
Similar to the core, these zones are characterized by small, overlapping regions that often

exhibit directional transmission. The northwestern portion is a good example of the phenomena
our theory describes. The orange zone (also labelled with a �1�) for Menlo Park extends deepest
into the core. The green zone for Redwood City (�2�) shifts up and encompasses Menlo Park
and Palo Alto but less of the core. The black zone for South San Francisco (�3�) further shifts
out and brushes the core. The northern side is similar. Fremont�s pink zone extends deepest
through the core, while points further out attach more to the core�s edge. Finally, Santa Clara�s
zone connects up the eastern edge of the core.
The background of the map demonstrates the roles of geographical features and transporta-

tion costs. The shape of the core and outlying technology zones are dictated by mountains,
protected land, and the bay. Likewise, the edges of sourcing zones conform to major transporta-
tion routes. Highway networks play a central role (e.g., horizontal �ows across the top of the
core, vertical �ows on the eastern edge of the core). Bridges help cross the bay. While not
shown in App. Figure 1a due to visual limitations, these same factors, especially the highway
transportation routes, govern the technology �ows within the core itself.
The length of each zone is in�uenced by congestion. The distance along the upper edge of

the orange zone from Menlo Park into the core is 14 miles with an estimated travel time of 28
minutes. The distance along the upper edge of the black zone from South San Francisco to Menlo
Park is 20 miles but with a comparable travel time of 32 minutes. A full spatial equilibrium
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depends on additional factors like commercial and residential real estate prices.2

App. Figure 1c further expands the size of the map to include the northern portion of the
San Francisco region. The bottom of the triangle for the Silicon Valley core is truncated in this
map. The other regions are representations of major patent citation �ows across zip codes in
the San Francisco region. We use citation data from about 70 zip codes to identify these zones.
These zip codes are subject to minimum requirements for counts of patent, citations, and �rms.
The tan region represents the northwestern expansion from the core up to South San Fran-

cisco discussed in App. Figure 1b. The large blue region represents the northern expansion.
Three zip codes from this group (i.e., Fremont, Hayward, and San Ramon) are also depicted
in App. Figure 1b. The red zone from the bottom represents the region surrounding Santa
Clara and its access. Finally, the green region represents interconnections between downtown
San Francisco and Oakland and their access to Silicon Valley. These macro groupings also
exhibit multiple, overlapping technology sourcing zones, none of which transverses the whole
span. The importance of geography and transportation networks in shaping these zones is again
apparent.
This mapping exercise is a quick tour of the structure of technology �ows in the San Fran-

cisco Bay Area. We �nd similar outcomes in unreported variants. Examples include using four
zip codes to de�ne technology sourcing zones, separating major technology groups, separating
entrants from long-lived incumbents, and examining only the most recent citations. More impor-
tant for the development of our theory, Figure 1b in the main text shows similar patterns using
predominant commuting zones for scientists and engineers from the 2000 Census of Populations.

US Census Bureau Data

Our estimates of industrial agglomeration patterns are developed through con�dential data
housed by the US Census Bureau. The Longitudinal Business Database (LBD) provides an-
nual observations for every private-sector establishment with payroll from 1976 onward. The
Census Bureau data are an unparalleled laboratory for studying the industrial structure of US
�rms. Sourced from US tax records and Census Bureau surveys, the micro-records document
the universe of establishments and �rms rather than a strati�ed random sample or published
aggregate tabulations. In addition, the LBD lists physical locations of establishments rather
than locations of incorporation, circumventing issues related to higher legal incorporations in
states like Delaware.
We de�ne industries through the three-digit level of the 1987 Standard Industrial Classi�-

cation (SIC3). Industry assignment is at the establishment level for multi-unit �rms. We focus
on 362 SIC3 industries that are consistently measured from 1976 to 2001, after which time the
transition to the NAICS industry classi�cations occurs. Our data contains 4.0 million estab-
lishments employing 68 million workers in 1977. In 1997, the data include 108 million workers
and 5.8 million establishments. While we calculate agglomeration in all 26 years, our current
discussion focuses just on 1997.

2Glaeser (2008) provides a detailed introduction. Saiz (2010) demonstrates the linkage between geography
and city shape, and Baum-Snow (2007, 2010) studies the role of highways and transportation routes for city
shapes.

3



Duranton and Overman (2005)

Duranton and Overman (2005, DO) construct a continuous metric of agglomeration. DO criticize
indices like Ellison and Glaeser (1997) that employ discrete spatial units (e.g., states) to measure
geographic concentration. This discreteness in e¤ect makes the distance from Detroit, MI, to
Chicago, IL, equivalent to that of Detroit, MI, to Miami, FL. The discreteness also fails to
account for within-geographic unit distances that arise, for example, due to California�s and
Texas�larger spatial size relative to states within New England. DO instead propose analyzing
agglomeration of industry A through a continuous index

K̂Ct
A (d) =

1

hNA(NA � 1)

NA�1X
i=1

NAX
i0=i+1

f

�
d� dj(i);j(i0)

h

�
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1

h
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NA�1X
i=1
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e(i)e(i0)f

�
d� dj(i);j(i0)

h

�
:

where dj(i);j(i0) is the Euclidean distance between establishments i and i0 within the focal industry
A. The function f is a Gaussian kernel density function with bandwidth h. The summations
are over every pairwise bilateral distance of establishments within the industry analyzed (i.e.,
NA(NA � 1)=2 distances). The second formulation weights densities by establishment employ-
ments, e(i) and e(i0), while the top formulation focuses on plant counts regardless of size, e = 1.
We exclude the Ct and Emp superscripts in the main text and below for convenience.
These observed agglomeration densities are then compared to an underlying distribution of

economic activity. This baseline is calculated through 1000 draws of hypothetical industries of
equivalent size to the focal industry A and repeating the density estimation. An industry is said
to be localized or dispersed at a given distance d when its observed agglomeration density shows
substantial deviation from the random draws. Our estimation procedure analyzes these local
departures in a systematic manner. DO likewise propose a global localization and dispersion
measure that captures sustained deviations up to a distance threshold speci�ed by the researcher.
We discuss this measure after describing the base calculations.

Base Index Calculations

Our approximations to the DO metric employ county-to-county distances to measure bilateral
distances between establishments. The county spatial unit is the most detailed spatial unit
available for establishments in the LBD. We collapse establishment counts and employments
into a county-industry spatial distribution for each year. We then apply the almost ten mil-
lion potential pairwise distances between the 3141 counties. We calculate distances between
county centroids using the Haversine �at-earth formula that abstracts from the earth�s curva-
ture. Establishments in the same county are given a uniform distance of one mile. Multiple
factors yield con�icting recommendations regarding this latter choice� for example, accounting
for larger land areas versus congestion e¤ects with higher urban density. As shown below, the
major movements/tipping we analyze happen at distances of 50 miles or greater, making this
choice of secondary importance.
The combination of county-industry spatial distributions and county-to-county distances af-

fords a spatial distribution of establishments ranging from [same county] to just over 6,000 miles.
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We then apply the Gaussian kernel density function f to smooth the distance series. For this
smoothing, the data are re�ected around zero and the bandwidth h is chosen to minimize the
mean integrated squared error. This smoothed density function is calculated for both establish-
ment counts and employments. This process is repeated for each of the 362 industries annually.3

Local Con�dence Intervals

These distance distributions are compared to counterfactuals of distances among randomly-
drawn establishments from the LBD. These counterfactual baselines control for the overall spatial
distribution of economic activity. Industries are deemed to be substantially agglomerated only
to the extent they are more spatially clustered than US establishments generally. In preparing
this test, it is important that each counterfactual have a similar number of observations (and
therefore precision) as the focal distribution. It is also important, given the random nature of
the establishment draw, to replicate the counterfactual baseline multiple times. DO converge on
1000 counterfactuals as the comparison for their agglomeration densities.
Computational restrictions require that we simplify how the con�dence bands are calculated.

Our �rst simpli�cation is that we only calculate con�dence bands using data from 1977 and
1997, rather than annually as in the base index calculation above. These two years are chosen
as sample end points when economic censuses are conducted using the SIC system. When
calculating our agglomeration measures, we �nd very similar patterns across all years 1976-2001
when using either the 1977 or 1997 baselines. Our current discussion focuses just on the 1977
and 1997 cross-sections, and the con�dence intervals are speci�c to these years.
Second, we approximate the establishment count in the industry. Industries di¤er substan-

tially in their establishment counts, ranging in 1997 from 18 industries having fewer than 100
establishments to 12 industries having more than 100,000. The maximum number of establish-
ments was over 400,000 for Eating and Drinking Places (581). It is computationally prohibitive
to match exactly the establishment count in all industries and years. We thus randomly draw
without replacement 100,000 establishments for a hypothetical industry; this sampling is re-
peated 1000 times in both 1977 and 1997.
We then calculate sub-draws of these samples using increments of 100 establishments from

a smallest industry size of 100 establishments up to 1500 establishments (i.e., 100, 200, ...,
1500). In addition, we calculate sub-draws using increments of 500 establishments from 1500
establishments to 5000 establishments and increments of 10,000 establishments up to 100,000
establishments. This procedure creates 32 comparable industry counts ranging from 100 estab-
lishments to 100,000 establishments. As this procedure is repeated in two years and for 1000
samples, 64,000 random baselines are created. Industries are paired with constructed con�dence
bands that most closely re�ect the underlying observation counts (e.g., an industry with 223
establishments is compared to the con�dence bands for 200 establishments).
To compute local con�dence baselines akin to 5% and 95% con�dence intervals, we apply

the Gaussian kernel density function f to smooth the 64,000 counterfactuals. For each distance,
we then identify the 50th and 950th extreme values in the smoothed series. We designate these
con�dence intervals as KLCI�U

A (d) and KLCI�L
A (d). These local con�dence intervals are speci�c

3The largest values for pairwise distance are due to our inclusion of Alaska and Hawaii. Densities are very
small at this level, however. We obtain equivalent results if pairwise establishment distances are capped at 3,000
miles, which is roughly the distance from Miami, FL, to Seattle, WA. The correlation for capped and uncapped
distributions is 0.99.

5



to industries due to di¤erences in industry size. While not expressed in the notation, the local
baselines are separately calculated for establishment counts and employments.
Industry localization  and dispersion  at distance d are de�ned using the formulas:

A(d) � max
h
K̂A(d)�KLCI�U

A (d); 0
i

(2)

 A(d) � max
h
KLCI�L
A (d)� K̂A(d); 0

i
if A(d) = 0

and 0 otherwise.

An industry is said to be neither localized nor dispersed at a given distance unless its density
falls outside of the 5% con�dence bands. We also construct a combined index CA(d):

CA(d) � A(d)�  A(d):

This index does not create a lower or upper bound for localization or dispersion but instead
views them symmetrically. This combined index is convenient for graphs and empirical analyses
and continues to satisfy the necessary properties of an agglomeration estimator.

Global Localization and Dispersion

Most industries exhibit local clustering or dispersion at one distance or another. The DO ap-
proach therefore also calculates indices of global localization and dispersion. These measures
quantify sustained deviations from the baselines of random placement. The procedure �rst
speci�es a distance threshold to analyze, and we denote this threshold as thr.
After de�ning the threshold thr, the DO approach �rst looks for evidence of substantial

localization up to the threshold. If localization is not evident by the threshold, then evidence for
global dispersion is sought up to the threshold. If an industry is spatially distributed similarly to
overall economic activity, neither global localization nor dispersion will be found. This multi-step
procedure and omission of distances beyond the threshold is de�ned in this way since density
functions sum to one over the support. Thus, localization in one distance range will correspond
to dispersion in other distances.
Formally, the global indices of localization � and dispersion 	 are calculated using the for-

mulas:

�A(thr) �
Xthr

d=1
max

h
K̂A(d)�KGCI�U

A;thr (d); 0
i

(3)

	A(thr) �
Xthr

d=1
max

h
KGCI�L
A;thr (d)� K̂A(d); 0

i
if �A(thr) = 0

and 0 otherwise.

KGCI�U
A;thr (d) and KGCI�L

A;thr (d) are con�dence baselines over distances d for measuring global lo-
calization and dispersion, respectively. These global con�dence intervals are wider than the
local con�dence intervals calculated with the 50th and 950th extreme values for each distance.
KGCI�U
A;thr (d) and KGCI�L

A;thr (d) instead represent the local con�dence values that when applied uni-
formly over the support [1; thr] results in 5% of the counterfactual baselines showing deviation
at both tails.
Thus, KGCI�U

A;thr (d) and KGCI�L
A;thr (d) are speci�c to the industry and threshold studied. The

global bands depend upon the industry studied as the counterfactual random draws replicate
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the number of establishments by industry. Industries with fewer establishments have wider
con�dence bands. While not included in DO�s original formulation, the global bands also depend
on the threshold analyzed. Con�dence bands are wider for longer intervals studied; equivalently,
the local con�dence intervals become tighter with greater thresholds.4

When studying the UK, DO employ a distance threshold for identifying localization of 180
kilometers, which is the median distance among UK manufacturing establishments. The US�
large land mass and scattered regional industrial centers do not provide as clear of a threshold,
and the appropriate threshold is not dictated by theory. There is also a question of edge e¤ects
as discussed in Harrison and Kominers (2008). 1000 miles is approximately the median distance
between US establishments and is on the order of magnitude for the distance between Detroit,
MI, and Dallas, TX. The 25th, 10th, and 3rd percentiles of establishment bilateral distances are
approximately 500, 250, and 100 miles, respectively. These are on the order of magnitude of
Detroit, MI, to Washington, DC, Cincinnati, OH, and Lansing, MI, respectively.5

We therefore calculate global localization and dispersion across increments from 25 miles to
1000 miles. The 100 mile threshold is of comparable distance to the UK hurdle employed by DO
(180 kilometers = 112 miles), while 1000 miles maintains the median concept. Finally, we again
de�ne a combined index �CA(thr):

�CA(thr) � �A(thr)�	A(thr): (4)

Descriptive Statistics

Table 1A describes industrial concentration patterns in 1997 using global metrics. Distance
thresholds increase from 50 miles in Panel A to 1000 miles in Panel E. Within each panel,
the four rows document localization and dispersion using establishment counts. Localization is
typically higher in employment-weighted distributions than in those using plant counts (e.g.,
Holmes and Stevens 2002); the pairwise correlation of our agglomeration statistics using counts
and employment is 0.7. Employment-weighted distributions and estimates for 1977 are available
upon request.
To a distance threshold of 50 miles, a substantial number of industries show global localiza-

tion or dispersion. Approximately 60% of industries display non-zero localization, while 30%
display non-zero dispersion. 10% of industries show zero global localization and dispersion, and
about 25% of industries show minimal deviation from the baseline economic activity of LBD
establishments (i.e., localization or dispersion values less than 0.001).
At �rst it may appear odd that 60% of industries are deemed globally localized when the

con�dence bands are selected such that only 5% of the counterfactuals reach them. This is

4Our procedure creates a grid of con�dence bands by industry size and distance threshold for 1977 and 1997.
The industry sizes are the 32 interval ranges outlined earlier. We calculate exact global bands for eight thresholds
and use linear interpolation for distance thresholds between them. These eight thresholds and the extreme values
used for them are: 1000 miles (5th/995th), 500 (6/994), 375 (7/993), 250 (9/991), 175 (10/990), 100 (13/987),
75 (14/986), and 50 (18/982). As a comparison, DO also �nd that the 10/990 extreme values are appropriate
for 5% global con�dence bands at a threshold of approximately 100 miles in their UK sample. These extreme
values are assigned through analyses of the complete distributions for the random draws of 100, 1000, 10,000,
and 100,000 establishments and are most representative for 1000 establishments. Appropriate extreme values
tend to widen (i.e., move to greater extremes) with large industry size due to the interaction of randomness and
greater distance granularity with more observations. Barlet et al. (2009) closely analyze this issue.

5More precisely, the percentiles of unweighted establishment distances in 1997 are 1013 miles (50th), 573
(25th), 280 (10th), and 106 (3rd). The 1977 percentiles are 967, 541, 259, and 95, respectively. Employment
weighted percentiles are shorter than count percentiles.
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to be expected if agglomeration forces exist, however, as the counterfactuals are built upon all
industrial establishments. The counterfactuals are not selected such that only 5% of industries
will be deemed agglomerated. This result is expected if, as in our model, sites are distributed
uniformly but agglomerative forces exist in nearly all industries.
Moving from Panel A to Panel E, the share of industries that are localized and the values

of their localization increase as the distance threshold increases. By 1000 miles, 88% of in-
dustries exhibit localization. Our combined metric (4) also increases in value four fold. This
is again despite the fact that the con�dence intervals are being continually widened at longer
thresholds to maintain only 5% of the counterfactual series reaching them. This con�rms the
model�s implication that an increase in the distance horizon should typically lead to increased
agglomeration.
Unreported analyses �nd that these patterns also hold within each one-digit SIC sector up to

1000 miles. It is important to note, however, that global localization can decrease across some
distance ranges. For example, law o¢ ces can be concentrated at short distances within each city
but also present in many cities. A short threshold captures the initial spike. As the threshold
lengthens, the con�dence intervals against which the densities are compared widen. This results
in a weaker measured concentration and, in some case, even a determination that the industry
is not globally concentrated at all.
Table 1B describes the local deviations that are behind these patterns. We also graph

in the main paper the fraction of industries that are localized at each distance level to 1000
miles. Localization is most powerful at short distance horizons, with substantial attenuation
commencing after 125 miles or so. Whereas about 60% of industries show localization at short
spatial scales, only 30% or thereabouts are localized at distances of 900-1000 miles. This pattern
is predicted in our model so long as some agglomerative force exists. Manufacturing industries
are more agglomerated at short spatial scales than non-manufacturing industries, a pattern that
reverses at longer horizons. This is to be expected given the transportable and tradeable nature
of manufactured products.
Tables 2A-2D document extreme localization and dispersions values for 1997. Table 2A be-

gins with the global metric. Some industries are extremely localized regardless of the threshold
chosen. Most prominently, many of the tobacco, textiles, and apparel industries are very concen-
trated in the southeast of the US; moreover, these industries are very concentrated spatially at
small distances within this region. Other cases are due to very concentrated natural advantages
(e.g., mining industries) or idiosyncrasies in de�nitions (e.g., freight transport on Great Lakes).
On the other hand, some industries are quite localized at small distances but have clusters

throughout the country. Many of the �nance industries and professional services, for example,
fall into this pattern. They have extreme values at small distances but not at larger distances.
A third pattern is where industries are not very locally clustered but tend to congregate in
one region of the US. This may again follow from natural advantages (e.g., regional oil and gas
deposits) or from Marshallian interactions among �rms (e.g., metalworking machinery).
Table 2B similarly documents extreme dispersion values. The dispersed industries are intu-

itive. Many represent services and trade that require homogeneous distribution like gas stations,
hotels, hospitals, and utilities. Other dispersed industries like lumber and concrete are associated
with transportation of heavy products, which limits the advantages of even local agglomeration.
A third rationale is cheaper available land for dealers of used cars, mobile homes, and similar.
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These purchases are substantial enough that consumers are willing to travel to the dealerships.6

Tables 2C and 2D repeat this analysis using the localization metrics by distance. These tables
provide some simple intuition for the behavior described by our model. The localized concentra-
tion and dispersion at 50 miles is naturally closely aligned with the global levels noticed earlier.
Most of the localized industries at 50 miles, however, are among the most dispersed industries
when looking at concentric rings farther away. This is most easily seen in comparing the list of
highly localized industries at 50 miles to highly dispersed industries at 1000 miles. There are
also several cases of industries dispersed at short distances that show abnormal concentration
at moderate to longer distances horizons (e.g., hospitals).
Industry movements across the panels can identify underlying forces of agglomeration and

their spatial scales. This behavior is embedded in global concentrations metrics, like Tables 2A
and 2B, but is even more prominent in localized density functions. These local density functions
describe the edge of �rm location decisions in ways that aggregate agglomeration functions
obscure. This gradient or edge is the central piece that we study in the main text.
Table 3A documents the correlation of the combined concentration metric (4) by threshold.

The correlation is very high among small thresholds and longer thresholds, but weaker in be-
tween. Index values using a 50 mile threshold have a 0.98 correlation with those using a 100 mile
threshold. The correlation of the 50 mile threshold to a 375 mile threshold, however, declines
to 0.81. From here, the correlation only further declines to 0.73 when examining a 1000 mile
threshold.
Table 3B documents the correlation for local deviations. There is a much faster attenuation

of the correlation in local deviations across neighboring distances than for the global metric,
and a negative correlation exists for very distant values. These features are to be expected as
the underlying kernel densities sum to one over the support. Excess density in one distance
range yields below average density in another distance range. The non-linear summation be-
hind the global metric in Table 3A, however, will typically continue to identify an industry as
agglomerated at longer distance thresholds once it is agglomerated at lower thresholds.
The correlation between industry size and �CA is on the order of -0.1. Smaller industries are

typically slightly more localized. The adjustment of con�dence bands insures that this is not due
to greater randomness in the series with fewer observations. It is more of an economic feature
that descends from why the industry has a small number of plants (e.g., economies of scale in
manufacturing versus consumer-oriented services). We have separately analyzed �CA values at
several thresholds for di¤erent size industries. Growth in industry size is always associated with
declining �CA values; likewise, longer distance thresholds are associated with greater �

C
A values

in all size buckets.

6Tables 2A and 2B show evidence of agglomeration of production-related activities and dispersion of
distribution-related activities among some extreme industries. While Motion Picture Production and Services
(781) is extremely localized, Motion Picture Theaters (783) is quite dispersed. Other examples include textile
production versus clothing stores and gas and oil re�nement versus service stations.
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Notes: Figure describes the construction of the technology core for Silicon Valley.  The core includes the top 10 zip 
codes in SF for patenting and 18 of the top 25.  Panel A shows the primary technology sourcing for zip code 95054, 
which is marked with the star.  This zip code produced the most industrial patents of any SF zip code (>20,000, 
equal to 17th largest state).  The other points of the shape are the three zip codes that firms in 95054 cited most in 
their work.  On average, the top three external zips contain 41% of local external citations for a zip code.  Panel B 
incorporates the 2nd and 3rd largest zip codes and their technology sourcing.  Panels C and D show the top 6 and 10 
zip codes, respectively.  While unrestricted in design, the primary technology sourcing zones for zip codes in the 
core are also contained in the core.  These zones are small, overlapping regions that often exhibit directional 
transmission.  In larger maps, we represent the core as a shaded triangle whose longest side is 25 miles in length. 

App. Fig. 1a: Technology Flows in Silicon Valley Core
Patent citations across zip codes among industrial firms

A B

C D



Santa Clara

San Ramon

App. Fig. 1b: Technology Sourcing around the Core
Seven largest patenting zip codes outside core and their sourcing

Notes: Figure continues to characterize technology flows for the San Francisco area.  The Silicon Valley core 
depicted in App. Figure 1a is represented on this larger map as the shaded triangle.  The Silicon Valley core contains 
18 of the top 25 zip codes for patenting in the San Francisco area.  This figure includes the seven largest zip codes 
for patenting that are not contained in the core itself (#12, 13, 17, 19, 22, 24, 25).  The top 25 zip codes contain 87% 
of industrial patenting in the San Francisco area, with 76% in the core.

Similar to App. Figure 1a, the shape of each technology sourcing zone is determined by the three zip codes that 
firms in the focal zip code cite most in their work.  For visual ease, San Ramon and Santa Clara are indicated on the 
edge of the map at the location of their primary transportation route.  The northwestern portion is discussed in 
Figure 1a.  The northeastern portion displays a similar structure.

Similar to the core, these technology zones are characterized by small, overlapping regions that exhibit directional 
transmission.  The map also demonstrates the roles of geographical features (e.g., mountains, protected land) and 
transportation costs (e.g., highways, bridges).  These forces substantially govern the shape of the technology zones 
and access to the core.  These same features also play an important role in the technology flows evident in the core, 
especially the highway transportation routes. 
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App. Fig. 1c: Technology Sourcing at SF Region Level
Broad technology sourcing zones across full region

Notes:  Figure continues to characterize technology flows for the San Francisco area.  The Silicon Valley core 
depicted in App. Figure 1a is represented as the black shaded triangle whose bottom is truncated at the edge of the 
map.  The other regions are representations of major patent citation flows across zip codes in the San Francisco 
region.  The tan region (A) represents the northwestern expansion from the core discussed in App. Figure 1b.  The 
large blue region (B) represents the northern expansion.  Three zip codes from this group are depicted in App. 
Figure 1b.  The red zone (C) from the bottom represents the region surrounding Santa Clara and its access.  Finally, 
the green region (D) represents interconnections between San Francisco and Oakland and their access to Silicon 
Valley.  These macro groupings also exhibit multiple, overlapping technology sourcing zones, none of which 
transverses the whole region.  Geography and transportation networks are important in defining shapes. 
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Industry

Count Mean Stand. Dev. Maximum

Panel A. Distance Threshold of 50 Miles

DO Global Localization - Establishment Counts 216 0.019 0.061 0.737

DO Global Dispersion 112 0.003 0.002 0.007

DO Combined Metric 362 0.011 0.049

DO Localization and Dispersion < 0.001 84

Panel B. Distance Threshold of 100 Miles

DO Global Localization - Establishment Counts 236 0.026 0.066 0.751

DO Global Dispersion 93 0.004 0.003 0.012

DO Combined Metric 362 0.016 0.055

DO Localization and Dispersion < 0.001 76

Panel C. Distance Threshold of 250 Miles

DO Global Localization - Establishment Counts 277 0.036 0.078 0.801

DO Global Dispersion 59 0.007 0.005 0.022

DO Combined Metric 362 0.026 0.070

DO Localization and Dispersion < 0.001 67

Panel D. Distance Threshold of 500 Miles

DO Global Localization - Establishment Counts 302 0.046 0.089 0.816

DO Global Dispersion 34 0.011 0.011 0.038

DO Combined Metric 362 0.037 0.084

DO Localization and Dispersion < 0.001 45

Panel E. Distance Threshold of 1000 Miles

DO Global Localization - Establishment Counts 318 0.054 0.092 0.815

DO Global Dispersion 25 0.019 0.020 0.083

DO Combined Metric 362 0.046 0.089

DO Localization and Dispersion < 0.001 37

Table 1A:  Descriptive Statistics for 1997 Global Agglomeration Measures

Notes: Table describes Duranton and Overman (2005, DO) agglomeration metrics calculated from the Longitudinal Business 

Database of the US Census Bureau for 1997.  362 industries are defined through SIC3 classifications; all private, non-farm 

sectors are included in the sample.  The distance threshold for determining global localization or dispersion is adjusted across 

panels.  Within each panel, localization and dispersion statistics are calculated over observations displaying that trait.  The 

combined metric is calculated for all industries as the value of the localization metric minus the value of the dispersion 

metric.  The final row within each panel counts industries with approximately zero localization or dispersion.  The text 

further describes the construction of these metrics.

Relevant Industries (non-zero)



Industry

Count Mean Stand. Dev. Maximum

Panel A. Distances of 50 Miles

DO Localization - Establishment Counts 212 0.329 0.957 12.528

DO Dispersion 113 0.056 0.042 0.306

DO Combined Metric 362 0.175 0.755

DO Localization and Dispersion < 0.001 37

Panel B. Distances of 100 Miles

DO Localization - Establishment Counts 219 0.175 0.289 1.911

DO Dispersion 89 0.034 0.031 0.240

DO Combined Metric 362 0.098 0.245

DO Localization and Dispersion < 0.001 55

Panel C. Distances of 250 Miles

DO Localization - Establishment Counts 194 0.118 0.185 1.173

DO Dispersion 91 0.038 0.038 0.260

DO Combined Metric 362 0.053 0.153

DO Localization and Dispersion < 0.001 80

Panel D. Distances of 500 Miles

DO Localization - Establishment Counts 162 0.101 0.101 0.555

DO Dispersion 132 0.086 0.083 0.439

DO Combined Metric 362 0.014 0.119

DO Localization and Dispersion < 0.001 73

Panel E. Distances of 1000 Miles

DO Localization - Establishment Counts 90 0.024 0.024 0.116

DO Dispersion 181 0.057 0.059 0.315

DO Combined Metric 362 -0.022 0.056

DO Localization and Dispersion < 0.001 94

Table 1B:  Descriptive Statistics for 1997 Local Agglomeration Measures

Relevant Industries (non-zero)

Notes: See Table 1A.  This table considers local agglomeration characteristics.



Industry Local. Industry Local. Industry Local. Industry Local.

50 Mile Threshold 100 Mile Threshold 500 Mile Threshold 1000 Mile Threshold

Anthracite Mining (123) 0.737 Anthracite Mining (123) 0.751 Anthracite Mining (123) 0.816 Anthracite Mining (123) 0.815

Fur Goods (237) Fur Goods (237) Bituminous Coal and Lignite Mining (122) Fur Goods (237)

Carpets and Rugs (227) Carpets and Rugs (227) Fur Goods (237) Bituminous Coal and Lignite Mining (122)

Women's, Misses', & Jrs' Outerwear (233) Bituminous Coal and Lignite Mining (122) Freight Transport on Great Lakes (443) Tobacco Stemming and Redrying (214)

Apparel, Piece Goods and Notions (513) d Women's, Misses', & Jrs' Outerwear (233) 0.201 Tobacco Stemming and Redrying (214) d Freight Transport on Great Lakes (443) d

Tobacco Stemming and Redrying (214) Tobacco Stemming and Redrying (214) Coal Mining Services (124) Cigarettes (211)

Bituminous Coal and Lignite Mining (122) Commodity Brokers and Dealers (622) Cigarettes (211) Coal Mining Services (124)

Commodity Brokers and Dealers (622) Foreign Banks (608) Yarn and Thread Mills (228) Yarn and Thread Mills (228)

Motion Picture Product'n & Services (781) Cigarettes (211) Carpets and Rugs (227) Carpets and Rugs (227)

Foreign Banks (608) 0.079 Apparel, Piece Goods and Notions (513) d Crude Petroleum and Natural Gas (131) 0.215 Knitting Mills (225) 0.269

Costume Jewelry and Notions (396) Costume Jewelry and Notions (396) Women's, Misses', & Jrs' Outerwear (233) Crude Petroleum and Natural Gas (131)

Knitting Mills (225) Freight Transport on Great Lakes (443) Costume Jewelry and Notions (396) Commodity Brokers and Dealers (622)

Cigarettes (211) Coal Mining Services (124) Knitting Mills (225) Metalworking Machinery (354)

Freight Transport on Great Lakes (443) Knitting Mills (225) Metalworking Machinery (354) Natural Gas Liquids (132)

Taxicabs (412) 0.061 Motion Picture Product'n & Services (781) 0.106 Foreign Banks (608) 0.176 Women's, Misses', & Jrs' Outerwear (233) 0.206

Industry Disp. Industry Disp. Industry Disp. Industry Disp.

50 Mile Threshold 100 Mile Threshold 500 Mile Threshold 1000 Mile Threshold

Petroleum and Petroleum Products (517) 0.007 Petroleum and Petroleum Products (517) 0.012 Misc. Foods and Kindred Products (209) 0.038 Misc. Foods and Kindred Products (209) 0.083

Electric Services (491) Hotels and Motels (701) Airports, Flying Fields & Services (458) Camps and Recreat'n Vehicle Parks (703)

Hotels and Motels (701) Electric Services (491) Camps and Recreat'n Vehicle Parks (703) Airports, Flying Fields & Services (458)

Concrete, Gypsum and Plaster Prod. (327) Radio and Television Broadcasting (483) Hotels and Motels (701) Preserved Fruits and Vegetables (203)

Water Supply (494) 0.006 Heavy Construction, Exc Highway (162) 0.010 Automotive Dealers, Nec (559) 0.025 Toys and Sporting Goods (394) 0.038

Heavy Construction, Exc Highway (162) Water Well Drilling (178) Toys and Sporting Goods (394) Recreational Vehicle Dealers (556)

Water Well Drilling (178) Concrete, Gypsum and Plaster Prod. (327) Recreational Vehicle Dealers (556) Public Warehousing and Storage (422)

Farm Product Raw Materials (515) Recreational Vehicle Dealers (556) Used Merchandise Stores (593) Guided Missiles, Space Vehicles, Parts (376)

Radio and Television Broadcasting (483) Hospitals (806) Public Warehousing and Storage (422) Footwear, Exc Rubber (314)

Fed. & Federally-Sponsored Credit (611) 0.006 Fed. & Federally-Sponsored Credit (611) 0.008 Water Well Drilling (178) 0.013 Family Clothing Stores (565) 0.014

Camps and Recreat'n Vehicle Parks (703) Newspapers (271) Family Clothing Stores (565) Miscellaneous Nonmetallic Minerals (149)

Used Car Dealers (552) Water Supply (494) Miscellaneous Nonmetallic Minerals (149) Pottery and Related Products (326)

Lumber and Oth. Building Materials (521) Camps and Recreat'n Vehicle Parks (703) Agricultural Chemicals (287) Millwork, Plywood and Struct. Mbrs. (243)

Newspapers (271) Variety Stores (533) Millwork, Plywood and Struct. Mbrs. (243) Motion Picture Theaters (783)

Mobile Home Dealers (527) 0.005 Automotive Dealers, Nec (559) 0.008 Motion Picture Theaters (783) 0.010 Job Training & Related Services (833) 0.010

Table 2A:  Most Globally Localized Industries in 1997 by Distance Threshold

Table 2B:  Most Globally Dispersed Industries in 1997 by Distance Threshold

Notes:  See Tables 1A and 1B.  "d" indicates suppressed value due to disclosure restrictions.

Notes:  See Tables 1A and 1B.  "d" indicates suppressed value due to disclosure restrictions.



Industry Local. Industry Local. Industry Local. Industry Local.

50 Miles 100 Miles 500 Miles 1000 Miles

Anthracite Mining (123) 12.528 Bituminous Coal and Lignite Mining (122) 1.911 Knitting Mills (225) 0.555 Title Abstract Offices (654) 0.116

Carpets and Rugs (227) Tobacco Stemming and Redrying (214) Tobacco Stemming and Redrying (214) Gas Production and Distribution (492)

Women's, Misses', & Jrs' Outerwear (233) Cigarettes (211) Natural Gas Liquids (132) Automotive Dealers, Nec (559)

Bituminous Coal and Lignite Mining (122) 2.059 Coal Mining Services (124) Crude Petroleum and Natural Gas (131) Cigars (212)

Tobacco Stemming and Redrying (214) Freight Transport on Great Lakes (443) d Oil and Gas Field Services (138) 0.402 Offices of Osteopathic Physicians (803) 0.071

Commodity Brokers and Dealers (622) Yarn and Thread Mills (228) Freight Transport on Great Lakes (443) Water Well Drilling (178)

Apparel, Piece Goods and Notions (513) Foreign Banks (608) Cigarettes (211) Petroleum and Petroleum Products (517)

Foreign Banks (608) Costume Jewelry and Notions (396) Tires and Inner Tubes (301) Fed. & Federally-Sponsored Credit (611)

Motion Picture Product'n & Services (781) Carpets and Rugs (227) Farm Product Raw Materials (515) Boat Dealers (555)

Cigarettes (211) d Fur Goods (237) 0.966 Wooden Containers (244) 0.285 Airports, Flying Fields & Services (458) 0.061

Costume Jewelry and Notions (396) Knitting Mills (225) Blast Furnace & Basic Steel Products (331) Water Transportation Services (449)

Freight Transport on Great Lakes (443) Jewelry, Silverware and Plated Ware (391) Railroad Equipment (374) Oil and Gas Field Services (138)

Knitting Mills (225) Broadwoven Fabric Mills, Wool (223) Crushed and Broken Stone (142) Combination Utility Services (493)

Coal Mining Services (124) Copper Ores (102) Sawmills and Planing Mills (242) Hospitals (806)

Jewelry, Silverware and Plated Ware (391) 1.147 Footware Cut Stock (313) 0.640 Variety Stores (533) 0.249 Miscellaneous Investing (679) 0.048

Industry Disp. Industry Disp. Industry Disp. Industry Disp.

50 Miles 100 Miles 500 Miles 1000 Miles

Fur Goods (237) 0.306 Anthracite Mining (123) 0.240 Fur Goods (237) 0.439 Anthracite Mining (123) 0.315

Petroleum and Petroleum Products (517) Hotels and Motels (701) Foreign Banks (608) Freight Transport on Great Lakes (443)

Electric Services (491) Petroleum and Petroleum Products (517) Women's, Misses', & Jrs' Outerwear (233) Tobacco Stemming and Redrying (214)

Hotels and Motels (701) Automotive Dealers, Nec (559) Costume Jewelry and Notions (396) Bituminous Coal and Lignite Mining (122)

Radio and Television Broadcasting (483) 0.120 Recreational Vehicle Dealers (556) 0.076 Jewelry, Silverware and Plated Ware (391) 0.322 Knitting Mills (225) 0.236

Concrete, Gypsum and Plaster Prod. (327) Radio and Television Broadcasting (483) Motion Picture Product'n & Services (781) Yarn and Thread Mills (228)

Water Well Drilling (178) Airports, Flying Fields & Services (458) Anthracite Mining (123) Fur Goods (237)

Water Supply (494) Electric Services (491) Motion Picture Distribution & Services (782) Coal Mining Services (124)

Heavy Construction, Exc Highway (162) Heavy Construction, Exc Highway (162) Deep Sea Domestic Trans. of Freight (442) Women's, Misses', & Jrs' Outerwear (233)

Fed. & Federally-Sponsored Credit (611) 0.110 Miscellaneous Nonmetallic Minerals (149) 0.068 Apparel, Piece Goods and Notions (513) d Carpets and Rugs (227) 0.168

Hospitals (806) Used Merchandise Stores (593) Aircraft and Parts (372) Metalworking Machinery (354)

Camps and Recreat'n Vehicle Parks (703) Hospitals (806) Water Transportation of Passengers (448) Metal Forgings and Stampings (346)

Newspapers (271) Agricultural Chemicals (287) Producers, Orchestras & Entertainers (792) Motion Picture Product'n & Services (781)

Used Car Dealers (552) Water Well Drilling (178) Handbags & Pers. Leather Goods (317) Cigarettes (211)

Recreational Vehicle Dealers (556) 0.101 Auto and Home Supply Stores (553) 0.058 Electronic Components & Accessories (367) 0.169 Screw Machine Products, Bolts, etc. (345) 0.144

Table 2C:  Most Localized Industries in 1997 by Distance

Notes:  See Tables 1A and 1B.  "d" indicates suppressed value due to disclosure restrictions.

Table 2D:  Most Dispersed Industries in 1997 by Distance

Notes:  See Tables 1A and 1B.  "d" indicates suppressed value due to disclosure restrictions.



50 mi. 75 mi. 100 mi. 250 mi. 375 mi. 500 mi. 100 mi.

50 mi. 1.00

75 mi. 0.99 1.00

100 mi. 0.98 1.00 1.00

250 mi. 0.88 0.93 0.96 1.00

375 mi. 0.81 0.86 0.90 0.98 1.00

500 mi. 0.77 0.82 0.86 0.96 0.99 1.00

1000 mi. 0.73 0.78 0.82 0.92 0.96 0.98 1.00

50 mi. 75 mi. 100 mi. 250 mi. 375 mi. 500 mi. 100 mi.

50 mi. 1.00

75 mi. 0.56 1.00

100 mi. 0.35 0.92 1.00

250 mi. 0.18 0.56 0.70 1.00

375 mi. 0.20 0.33 0.38 0.84 1.00

500 mi. -0.18 -0.05 0.05 0.50 0.76 1.00

1000 mi. -0.53 -0.64 -0.65 -0.52 -0.40 -0.08 1.00

Table 3B:  Correlation of Combined 1997 Local Agglomeration Index by Distance

Notes: See Tables 1A and 1B.

Table 3A:  Correlation of Combined 1997 Global Agglomeration Index by Distance Threshold

Notes: See Tables 1A and 1B.


