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1. Introduction

Macroeconomics is concerned with the dynamic effects of shocks. For instance, the real business

cycle research program originated with an investigation of the consequences of changes in pro-

ductivity (Kydland and Prescott, 1982). Later, the new generation of monetary models of the

late 1990s and early 2000s was particularly focused on shocks to monetary policy (Christiano,

Eichenbaum, and Evans, 2005). In open macroeconomics, considerable attention has been de-

voted to shocks to the interest rate (Mendoza, 1991) or to the terms of trade (Mendoza, 1995).

Similar examples can be cited from dozens of other subfields of macroeconomics, from asset pric-

ing to macro public finance: researchers postulate an exogenous stochastic process and explore

the consequences for prices and quantities of innovations to it.

Traditionally, one key feature of these stochastic processes was the assumption of homoscedas-

ticity. More recently, however, economists have started to relax this assumption. In particular,

they have started considering shocks to the variance of the innovations of the processes. A first

motivation for this new research comes from the realization that time series have a strong time-

varying variance component. The most famous of those episodes is the great moderation of

aggregate fluctuations in the U.S. between 1984 and 2007, when real aggregate volatility fell by

around one third and nominal volatility by more than half. A natural mechanism to generate

these changes is to have shocks that also have themselves a time-varying volatility and to trace

the effects of changes in volatility on aggregate dynamics.

A second motivation, particularly relevant since the summer of 2007, is that changes to the

volatility of shocks can capture the spreading out of distributions of future events, a phenomenon

that many observers have emphasized is at the core of the current crisis. For example, an increase

in the variance of future paths of fiscal policy (a plausible description of the situation of many

European countries) can be incorporated in a parsimonious way by a rise in the variance of the

innovations to a fiscal policy rule in an otherwise standard dynamic stochastic general equilibrium

(DSGE) model. Similarly, the higher volatility of sovereign debt markets can be included in our

models as a higher variance in the innovations to a country-specific spread.

A third, and final motivation, is that, even when the main object of interest is the conditional

mean, economists should care about time-varying volatility. As illustrated in two examples by

Hamilton (2008), inference about means can be unduly influenced by high variance episodes and

standard statistical tests can become misleading. For instance, if we do not control for time-

varying variance, a true null hypothesis will be asymptotically rejected with probability one.
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Thus, ignoring changes in volatility is simply not an option in many empirical applications even

when we do not care about volatility per se.

In this paper, we want to study time-varying volatility with the help of DSGE models, the

workhorse of modern macroeconomics and the most common laboratory for policy evaluation.

How do we incorporate time-varying volatility in the models? How do we solve models with this

time-varying volatility? How do we take them to the data? What are the policy implications of

volatility?

To address these questions, the rest of this chapter is organized as follows. First, we review the

existing literature. Instead of being exhaustive, we will focus on those papers that have a closer

relation with the rest of the chapter. Second, we present data to make the case that time-varying

volatilities are an important feature of macroeconomic time series. Then, we present a prototype

real business cycle model with time-varying volatility and show how we compute it and take it to

the data using a likelihood-based approach. We move them into the summary of two “real life”

applications from our own previous work. We conclude by discussing what we know and what we

do not know about time-varying volatility and by pointing out directions for future research.

2. Review of the Literature

In one form or another, economists have talked for a long time about time-varying volatility. Just

to give an example that mixes theory, data, and policy, David Ricardo, in his defense of free

trade on corn in the House of Commons explicitly talked about the volatility of corn prices as an

important factor to consider in the design of trade policy (although he dismissed it as an argument

for protection).1 But it was perhaps Haavelmo’s 1944 work that opened the path for the modern

understanding of changes in volatility. Haavelmo taught economists to think about observed time

series as the realization of a stochastic process. Once this was accomplished, and since nothing in

the idea implied that the variance of the stochastic process had to be constant, it was natural to

start thinking about processes whose variances changed over time.

Unfortunately, for a long time, most of the procedures that economists used to incorporate

time-varying volatility were ad hoc and lacked a sound foundation in probability theory. As late as

the mid 1970s, two papers published in the Journal of Political Economy, one of the top journals

of the profession, when trying to measure the time component in the variance of inflation, resorted

to such simple devices as using the absolute value of the first difference of inflation (Khan, 1977)

1David Ricardo, speech of 9 May 1822. Collected works, volume V, p. 184, Ricardo (2005).
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or a moving variance around a moving mean (Klein, 1977). And even these primitive approaches

were merely empirical and never made an explicit connection with theoretical models.

A major breakthrough came with Engle’s (1982) paper on autoregressive conditional het-

eroscedasticity, or ARCH. Engle postulated that a fruitful way to study the evolution of variance

over time of time series xt was to model it as an autoregressive process that is hit by the square

of the (scaled) innovation on the level of xt. The beauty of the assumption was that it combined

simplicity with its ability to deliver an estimation problem that was straightforward to solve us-

ing a scoring iterative maximum likelihood procedure and ordinary least squares. The empirical

application in Engle’s original paper was the estimation of an ARCH process for British inflation.

Engle found that indeed time-varying components were central to understanding the dynamics of

inflation.

The profession quickly embraced Engle’s contribution. Furthermore, after Bollerslev (1986)

expanded the original model and created the Generalized ARCH, or GARCH, researchers joined

an arms race to name yet another ARCH that would provide an extra degree of flexibility in mod-

eling the data: Nonlinear GARCH, or NGARCH (Engle and Ng, 1993), Exponential GARCGH,

or EGARCH (Nelson, 1991), Quadratic GARCH, or QGARCH (Sentana, 1995), or Threshold

GARCH, or TGARCH (Zakoïan, 1994) are some of the most popular extensions, but Bollerslev

(2010) has recently counted 139 variations.

But it was not in macro where ARCH models came to reign, as one might have guessed from

Engle’s original application. The true boom was in finance, where the research on volatility took

on a life of its own. The reason was simple. Financial institutions are keenly interested in the

amount of risk they load onto their books. This risk is a function of the volatility on the return of

their assets (in fact, the Basel II regulatory capital requirements depended on the Value-at-Risk

of a bank’s portfolio and, hence, on the level of variance). Similarly, the price of many assets,

such as options depends directly on their volatility. Finally, time-varying volatility is a simple

way to generate fat tails in the distribution of asset returns, a salient property of the data. The

availability of high frequency data complemented in a perfect way the previously outlined need

to describe volatility by providing economists with large samples with which to estimate and test

their models.

The situation changed with the publication of the work by Kim and Nelson (1998), McConnell

and Pérez-Quirós (2000), and Blanchard and Simon (2001). These influential papers documented

that the volatility of U.S. aggregate fluctuations had changed over time. While Kim and Nelson

and McConnell and Pérez-Quirós highlighted a change in volatility around 1984, Blanchard and
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Simon saw the great moderation as part of a long-run trend toward lower volatility only momen-

tarily interrupted during the 1970s. In a famous review paper, Stock and Watson (2002) named

this phenomenon the “great moderation,” a title that became so popular that it even jumped

into the popular media (and became rather unfairly attached to economists’alleged complacency

during the real estate boom of the 2000s).

The documentation of the great moderation led to an exploration of its causes and of a need

to have models with mechanisms that generated time-varying volatility. McConnell and Pérez-

Quirós (2000) had already pointed out the possibility of better inventory control as one possible

explanation of the great moderation. Other mechanisms put forward have included financial

innovation (Dynan, Elmendorf, and Sichel, 2006) and, in an well-cited study by Clarida, Galí,

and Gertler (2000), changes in monetary policy.

A few years later, and in response to the previous work, Sims and Zha (2006) estimated a

structural vector autoregression (SVAR) with Markov regime switching both in the autoregressive

coeffi cients and in the variances of the disturbances. They found that the model that best fit the

data had changes over time only in the variances of structural disturbances and no variation in the

monetary rule or in the private sector of the model. But even when they allowed for policy regime

changes, Sims and Zha found that the estimated changes could not account for the evolution

of observed volatility. From those results, Sims and Zha concluded that models in which the

innovations to the shocks had time-varying volatilities are a key element in the toolbox of applied

macroeconomics.2

All of this research has convinced us that 1) time-varying volatility is an important feature

of the data and that 2) we need DSGE models that allow us to generate it, quantify its effects,

perform welfare analysis, and design optimal policy. First attempts in this direction are Fernández-

Villaverde and Rubio-Ramírez (2007) and Justiniano and Primiceri (2008). These papers estimate

DSGE economies that incorporate stochastic volatility on the structural shocks and show that

such models fit the data considerably better than economies with homoscedastic structural shocks.

More recently, Christiano, Motto, and Rostagno (2009) have shown that, in a financial accelerator

model, shocks to the volatility of individual firms’productivity have a significant impact on the

business cycle because of their consequences for the level of leverage that firms can take. A related

result is found by Arellano, Bai, and Kehoe (2010).

2Sims and Zha’s conclusion is, nevertheless, not incontrovertible. Benati and Surico (2009) illustrate that it is
diffi cult to map between changes in the autoregressive coeffi cients or in the variance of disturbances in a regime-
switching SVARs and equivalent elements in a New Keynesian DSGE model. This would be a key motivation for
our application in section 5.
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Another strand of the literature starts from the real-option effect of risk. In a situation

where investment (in capital, durable goods or any similar item) is subject to frictions such as

irreversibilities or non-convex adjustment costs, a change in volatility may have a substantial

effect on the investment decision. Think, for example, about a household’s decision to buy a new

car to substitute its old clunker. If labor market volatility increases, the household may be quite

concerned about its own job status in the next few months. By delaying the purchase of a new car,

the household loses the differential utility between the services of the old and the new car times

the length of the delay. On the other hand, it avoids both the costs of purchasing an expensive

item and the risk of facing a liquidity constraint that may force the household to sell the car

(with a loss of value) or re-adjust other consumption items. This mechanism is particularly well

explored by Bloom (2009) and in Bloom, Jaimovich, and Floetotto (2008).

Guerrón-Quintana (2009) finds that volatility shocks à la Bloom induce depreciations in the

real exchange rate in the US, particularly vis-a-vis the Canadian dollar. Fatás (2002) discusses the

effects of business cycle volatility on growth. Lee, Ni, and Ratti (1995) show that the conditional

volatility of oil prices matter for the effect of oil shocks on the economy. Grier and Perry (2000)

and Fountas and Karanasos (2007) relate inflation and output volatility with average output

growth, while Elder (2004a and 2004b) links nominal and real volatility.

Of course, the importance of these observations and models is not universally accepted (see

Bachmann, Elstner, and Sims, 2010, for a much less sanguine reading of the importance of volatil-

ity shocks), but we judge that the preponderance of the evidence is clearly on the side of time-

varying volatility. To show this, we start now with a brief summary of some data that will help

us to understand better the literature we just discussed.

3. Data

In this section we illustrate the presence of time-varying volatility in two contexts that we will

revisit later in the paper: fluctuations in the U.S. economy and fluctuations in the interest rates

at which small open emerging economies borrow.

We start with the evolution of aggregate variables in the U.S. In that way we document (once

more) the great moderation, which has been the motivating fact of much of the literature on

time-varying volatility. In figure 3.1, we plot the absolute deviations of real GDP growth with

respect to their mean. In this figure we can see how, since 1984, the absolute deviation rarely

crosses 4 percentage points (except in a couple of brief spikes around the 1992 and 2008-2009
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recession), while before it did it rather often. Even the great recession of 2008-2009 did not imply

a difference in growth rate as big as the two Volcker recessions (although the 2008-2009 recession

was longer). Besides, we can also see fat tails in the distribution of deviations.

Figure 3.1: Real GDP Growth, Absolute Deviations from

Mean

This change in volatility also appears in nominal variables. Figure 3.2 plots the absolute

deviations of the GDP deflator with respect to its mean. Again, we see how the big spikes of the

1970s and early 1980s disappeared after 1984 and they did not come back even briefly in the last

recession.

Figure 3.2: GDP Deflator, Absolute Deviations from Mean
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In table 3.1, we summarize the graphical information into statistical moments for the sample

1959.Q1 to 2007.Q1 that we will use in section 5 and we add the federal funds rate as a measure

of monetary policy. These three variables, inflation, output growth, and the federal funds rate

are the most commonly discussed series in monetary models (for example, the “trinity”model so

dear to the New Keynesian tradition has only these three variables). We can see in table 3.1 how

the standard deviation of inflation falls by 60 percent after 1984.Q1, the standard deviation of

output growth by 44 percent, and the standard deviation of the federal funds rate by 39 percent.

Again, the evidence of changes in variances over time is rather incontrovertible.

Table 3.1: Changes in Volatility of U.S. Aggregate Variables

Means Standard Deviations

Inflation
Output

Growth
FFR Inflation

Output

Growth
FFR

All sample 3.8170 1.8475 6.0021 2.6181 3.5879 3.3004

Pre 1984.Q1 4.6180 1.9943 6.7179 3.2260 4.3995 3.8665

After 1984.Q1 2.9644 1.6911 5.2401 1.3113 2.4616 2.3560

Post-1984.Q1/pre-1984.Q1 0.6419 0.8480 0.7800 0.4065 0.5595 0.6093

Our second example of time-varying volatility is figure 3.3, where we use the Emerging Markets

Bond Index+ (EMBI+) Spread reported by J.P. Morgan at a monthly frequency to plot the

country spreads of Argentina, Brazil, Ecuador and Venezuela. This index tracks secondary market

prices of actively traded emerging market bonds denominated in U.S. dollars. For comparison

purposes, we also plot the real U.S. T-bill rate as a measure of the international risk-free nominal

interest rate. We build the real T-bill rate by subtracting expected inflation measured as the

average U.S. CPI inflation in the current month and in the eleven preceding months. This is

motivated by the observation that U.S. inflation is well approximated by a random walk. The

results are nearly identical with more sophisticated methods to back up expected inflation. Both

the T-bill rate and the inflation series are obtained from the St. Louis Fed’s FRED database. We

use annualized rates in percentage points.

In this figure we can see how the international risk-free real rate is low (with negative interest

rates in 2002-2006) and relatively stable over the sample. In comparison, all country spreads are

large and volatile, with times of turbulence following much calmer months. The spreads are nearly

always larger than the real T-bill rate itself and fluctuate, at least, an order of magnitude more.

The most prominent case is Argentina, where the 2001-2002 crisis raised the country spreads to
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70 percentage points. In the figure, we also see the problems of Ecuador in 1998-1999 and the

turbulence in all four countries during the virulent international turmoil of 1998.

Figure 3.3: Country Spreads and T-Bill Real Rate

Besides the data in these figures, we could present many others, such as those in Bloom

(2009). However, we feel we have already made the case for the empirical relevance of time-

varying volatility and it seems a better use of our allocated space to jump into the substantive

questions by presenting a prototype business cycle model where volatility changes over time.

4. A Prototype Business Cycle Model with Time-Varying Volatility

A simple exercise to illustrate the theoretical, computational, and empirical issues at hand when

we deal with DSGE models that incorporate changes in variances is to write down a prototype

economy and to introduce in it the minimum modifications required to capture time-varying

volatility in a plausible way. The perfect vehicle for such a pedagogical effort is the real business

cycle model for two reasons.

First, the stochastic neoclassical growth model is the foundation of modern macroeconomics.

Even the more complicated New Keynesian models are built around the core of the neoclassical

growth model augmented with nominal and real rigidities. Thus, once we understand how to

deal with time-varying volatility in our prototype economy, it will be straightforward to extend

it to richer environments. Second, the model is so well known, its working so well understood,
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and its computation so thoroughly explored that the role of time-varying volatility in it will be

staggeringly transparent.

Once we are done with our basic model, we will move on to analyzing two applications, one in

monetary economics and one in international macroeconomics, where changes in volatility play a

key role. While these applications are more complicated than our prototype economy, they are

explicitly designed to account for a richer set of observations and to demonstrate the usefulness

of DSGE models with time-varying volatility in “real life.”

4.1. Environment

To get into the substantive questions as soon as possible, our description of the standard features

of our prototype economy will be limited to fixing notation. There is a representative household

in the economy, whose preferences over stochastic sequences of consumption, ct, and work, lt, are

representable by a utility function:

U = E0

∞∑
t=0

βtu (ct, lt) (1)

where β ∈ (0, 1) is the discount factor and E0 is the conditional expectation operator. We leave

the concrete parameterization of the utility function open since we will consider below the effects

of different period utility kernels.

The household’s budget constraint is given by:

ct + it +
bt+1

Rt

= wtlt + rtkt + bt

where it is investment, Rt is the risk-free gross interest rate, bt is the holding of an uncontingent

bond that pays 1 unit of consumption good at time t+1, wt is the wage, lt is labor, rt is the rental

rate of capital, and kt is capital. Asset markets are complete and we could have also included in the

budget constraint the whole set of Arrow securities. Since we have a representative household, this

is not necessary because the net supply of any security must be equal to zero. The uncontingent

bond is all we need to derive a pricing kernel for the economy. Capital is accumulated according

to the law of motion kt+1 = (1− δ)kt + it where δ is the depreciation rate.

The final good is produced by a competitive firm with a technology yt = eztAkαt l
1−α
t where zt

is the productivity level whose evolution we will describe momentarily and A is a constant. Thus,

the economy must satisfy the aggregate resource constraint yt = ct + it.
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Productivity follows an autoregressive process zt = λzt−1 + σtεt with λ < 1 and random

innovations εt ∼ N (0, 1). We impose stationarity in the process to save on notation (otherwise

we would need to rescale the variables in the model by the level of technology), but besides the

notational burden, it would be easy to have a martingale on zt. Note, and here is where we are

introducing time-varying volatility, that the standard deviation of innovations, σt, is indexed by

the period t. That is, the dispersion of the productivity shocks changes over time: sometimes

there are large shocks, sometimes there are smaller shocks. Our specification is extremely simple

and we present it only as a default process to start the conversation.

The first question that we need to handle at this point is how to model these changes in

volatility. The literature has proposed three alternatives: stochastic volatility, GARCH processes,

and Markov regime switching.

The first approach is stochastic volatility, or SV. More concretely, it assumes that σt evolves

over time as an autoregressive process, for example, with the form:

log σt = (1− ρσ) log σ + ρσ log σt−1 + ηut, where ut ∼ N (0, 1) (2)

The law of motion is expressed in terms of logs to ensure the positivity of σt. This is a point

that will be important later: by mixing levels (zt) and logs (log σt), we create a structure that

is inherently non-linear and it twists the distribution of technology. This will have consequences

both for the solution and for the estimation of the model.

Our specification (2) is parsimonious and it introduces only two new parameters, ρσ, the

autoregressive coeffi cient of the log standard deviation, and η, the standard deviation of the

innovations to volatility. At the same time, it is surprisingly powerful in capturing some important

features of the data (Shephard, 2008). Another important point is that, with SV, we have two

innovations, an innovation to technology, εt, and an innovation to the standard deviation of

technology, ut. As we will see below, this will help the researcher to sort out the specific effects

of volatility per se.3

The second approach is to specify that the variance of the productivity innovations follows

a GARCH process σ2
t = ω + α (σt−1εt−1)2 + βσ2

t−1, that is, σ
2
t is a function of its own past and

the squared scaled innovation ((σt−1εt−1)2). As with SV, instead of our simple GARCH, we could

3It is trivial to correlate εt and ut. For example, in the data, times of large volatility such as the 1970s are
often also times of low productivity growth. In international macro, times of large spreads are also times of high
volatility. This correlation is sometimes called the “leverage effect”of level shocks on volatility shocks because, in
asset pricing, one can generate it through the presence of leverage in the firm’s balance sheet.
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think about any of the many incarnations of GARCHs mentioned in section 2. Most of what we

have to say in the next few lines would be unchanged.

In the GARCH specification there is only one shock driving the dynamics of the level and

volatility of technology: εt. This means that, when we have a large innovation, we will have

a large volatility in the next period. Thus, we cannot separate a volatility shock from a level

shock: higher volatilities are triggered only by large level innovations. While this constraint may

not be very important when we are dealing with time series from a reduced-form perspective, it

is quite restrictive in structural models. In particular, the interconnection of levels and volatil-

ities precludes the use of GARCH models to assess, in a DSGE model, the effects of volatility

independently from the effects of level shocks.

Another way to think about it is as follows. In time series analysis, GARCHs are a popular

alternative to stochastic volatility because they are much easier to estimate and the loss in em-

pirical fit is minor. In the case of DSGE models, this simplicity advantage disappears because,

with either SV or GARCH, we need to solve the model non-linearly. Not only that, but, as we

argued before, the presence of two shocks in SV provides the researcher with an extra degree of

freedom that can be put to good use.

The third approach to time-varying volatility is Markov regime switching models. For instance,

we can postulate that σt follows a Markov chain that takes two values, σL and σH , where L stands

for low and H stands for high (σL < σH), and with transition matrix: a1 1− a1

1− a2 a2


where a skillful choice of a1 and a2 allows us to introduce a large range of behaviors (for example,

a1 � a2 can be read as low volatility being the normal times and high volatility as the rare times).

Moreover, there is nothing special about two values of volatility and we could have an arbitrary

number of them.

A big difference between this approach and the previous two is the size of the change. We can

interpret both SV and GARCH processes as reflecting a continuously changing process that has

innovations in every period. In comparison, Markov regime switching models evolve in a more

abrupt, discrete way, with sudden jumps interrupted by periods of calm.

In the rest of the paper we will follow the first approach, SV, but we will say a few words

about GARCH and Markov regime switching as we move along. As we argued before, we do
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not really see any advantage to using a GARCH process instead of SV: it has one less degree

of freedom, it prevents us from neatly separating level from volatility shocks, it fits the data

worse, and, in the context of DSGE models, it is not any easier to handle. The choice between

SV and Markov-regime switching is more subtle. In the real world, the change in the volatility

of technology is probably a mix of continuous and discrete events. While there are phenomena

affecting technological change that are easier to interpret as a discrete change (for example, the

approval of a new patent law), other developments (such as the growth in our understanding of

natural laws) are probably better understood as continuous changes. The preference for one or

another is an empirical question.

We could even postulate a more encompassing approach that incorporate discrete jumps and

continuous changes. The problem with such a model would be that, with the data frequency in

macro, we do not have enough observations to tease out these two sources of variation (as we would

have, for instance, in finance, where continuous time versions of this process have been taken to

the data, see the review in Aït-Sahalia, Hansen, and Scheinkman, 2009). This is disappointing

because, as first pointed out by Diebold (1986), ignoring jumps may severely bias the estimates of

ρσ towards one, creating the misleading impression of non-stationarites and invalidating inference.

One advantage of SV, which we will exploit below and that tips the balance in its favor, is that,

since under that specification log σt can take any value, we will be able to differentiate the decision

rules of the agents in the economy with respect to it, and hence to apply perturbation methods

for the computation of the equilibrium dynamics, which are a fast and reliable algorithm.4 This

is not the case with Markov regime switching models since log σt takes only a finite set of values.

However, it is fair to point out that SV has a few problems of its own. A salient one is

that, if the real process has a discrete jump, SV will “anticipate”the change by showing changes

in volatility before they happen. The reason is that the likelihood (or most other estimating

functions) dislikes huge changes in one period and prefers a sequence of smaller ut over time

before and after the actual change to an exceptionally large ut that captures the jump.5

4Unfortunately, we do not have proof that the decision rules are differentiable with respect to log σt. As we will
explain later, this is one of the many issues related to volatility that we do not fully understand.

5This could also be a virtue. Coming back to our example of a new patent law, we could think about a situation
where the volatility of technological change evolves over time as the proposal goes through the legislative process
and hence the conditional probability of its approval changes. Whether the anticipation effect is a feature or a bug
would depend on the context.
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4.2. Equilibrium

The definition of competitive equilibrium of this model is standard and we include it to demon-

strate how we are deviating only a minuscule amount from the standard model.

Definition 1. A competitive equilibrium is a sequence of allocations {ct, lt, it, yt}∞t=0 and prices

{wt, rt, Rt}∞t=0 such that:

1. Given prices {wt, rt, Rt}∞t=0, the representative household maximizes:

U = E0

∞∑
t=0

βtu (ct, lt)

s.t. ct + it +
bt+1

Rt

= wtlt + rtkt + bt

2. Given prices {wt, rt, Rt}∞t=0, the firm minimizes costs given its production function:

yt = eztAkαt l
1−α
t (3)

3. Markets clear:

kt+1 = (1− δ)kt + it (4)

yt = ct + it (5)

4. Productivity follows:

zt = λzt−1 + σtεt (6)

log σt = (1− ρσ) log σ + ρσ log σt−1 + ηut (7)

The presence of SV does not affect the welfare theorems and this economy is still Pareto

optimal. While this is a convenient feature, our analysis of SV will not rely on it. In fact, neither

of the economies in the two applications in the sections below will be Pareto-optimal.

4.3. Solution Methods

The solution of models with time-varying volatility presents some challenges. First, the system

is, at its very essence, non-linear. If we are employing SV, we are combining a linear process for
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the log of technology with a linear process for the log of the standard deviation of technology

innovations. Analogously, in the other two specifications we discussed before, GARCH implies a

quadratic law of motion and Markov regime switching a discrete support. Second, we have an

additional state, log σt, that agents need to keep track of in order to forecast future volatility.

4.3.1. Value Function Iteration

A first, natural approach is to work with the value function of the social planner problem:

V (kt, zt, log σt) = max
ct,lt,kt+1

{u (ct, lt) + βEtV (kt+1, zt+1, log σt+1)}

subject to (3), (4), (5), (6), and (7). This value function can be computed with value function

iteration (VFI). The only conceptual diffi culty is to ensure that the conditional expectation Et is

properly evaluated at each point in time.

While VFI is a safe and straightforward procedure, it suffers from two shortcomings. First, it

forces us to cast the problem in a recursive form, which may be diffi cult to do in economies with

market imperfections or rigidities. Second, VFI suffers from the “curse of dimensionality” that

limits the size of the problems we can handle. The curse of dimensionality is particularly binding

when we deal with SV because we double the number of states for each stochastic process that

incorporate a time-varying volatility: one state to capture the level of the process and one to keep

track of the variance.

4.3.2. Working with the Equilibrium Conditions

A second solution is to work with the equilibrium conditions:

u1 (ct, lt) = Etu1 (ct+1, lt+1) β (1 + rt+1 − δ)

u2 (ct, lt) = u1 (ct, lt)wt

wt = (1− ζ) eztAkζt l
−ζ
t

rt = ζeztAkζ−1
t l1−ζt

plus (3), (4), (5), (6), and (7). Equilibrium conditions enjoy the advantage that we do not need

to rely on any social planner problem or on being able to write the model in terms of a Bellman

equation.

The first step is to write the decision rules of the agents as a function of the states, (kt, zt−1, log σt−1)
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and the two innovations (εt, ut). Thus, we have, for the three controls ct = c (kt, zt−1, log σt−1, εt, ut) ,

lt = l (kt, zt−1, log σt−1, εt, ut), and kt+1 = k (kt, zt−1, log σt−1, εt, ut), and for any other variable xt

defined by the model xt = x (kt, zt−1, log σt−1, εt, ut). Then, we plug these unknown decision rules

into the equilibrium condition and solve the resulting system of functional equations.

This can be accomplished in two ways. The first alternative is to parameterize the unknown

functions, for example, as xt =
∑n

i=0 θ
x
i Ψ

x
i (kt, zt−1, log σt−1, εt, ut) , where Ψi is a multivariate

polynomial built with some combination of univariate polynomials of the 5 state variables (the

tensor product of univariate Chebyshev polynomials is a default choice). Next, we plug the

parameterized decision rules into the equilibrium conditions and we solve for all the unknown

coeffi cients θxi by making the equilibrium conditions to hold as closely as possible over the state

space under some metric (for example, in a collocation, by forcing the equilibrium conditions to

be zero at the zeros of the n+ 1-th order Chebyshev polynomial).

This approach, called a projection method (because we build a projection of the unknown

decision rule into the parameterized approximated decision rule), has the advantage of delivering

a high level of accuracy in the whole state space (it is a “global”solution method). As was the

case with VFI, the only possible conceptual diffi culty is the correct evaluation of the conditional

expectation Et. On the negative side, we need to solve for a large number of θxi coeffi cients to

achieve a good level of accuracy with a five-dimensional problem, yet another manifestation of

the curse of dimensionality.

The second approach to solve for the unknown decision rules in the equilibrium conditions

is to build a higher-order perturbation, an approach that has been shown to be both accurate

and fast (Aruoba, Fernández-Villaverde, and Rubio-Ramírez, 2006). The main idea is to find a

Taylor approximation of the decision rules around the steady state of the model. The first step

to doing so is to introduce a new parameter, called the perturbation parameter, Λ, and rewrite

the stochastic process (6) and (7) as:

zt = λzt−1 + Λσtεt (8)

log σt = (1− ρσ) log σ + ρσ log σt−1 + Ληut (9)

Then, if we make Λ = 1, we get back the original formulation of the problem. However, if we set

Λ = 0, we eliminate the sources of uncertainty in the model and the economy will (asymptotically)

settle down at the steady state.

The second step is to rewrite all variables in terms of deviations with respect to the steady
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state. Thus, we write x̂t = xt − x for any arbitrary variable xt with steady state x, except for
log σt−1 where σ̂t−1 = log σt−1 − log σ. Also, define an augmented state vector of the model

st =

k̂t, zt−1, σ̂t−1︸ ︷︷ ︸
St−1

, εt, ut︸︷︷︸
Wt

; Λ

 = (St−1,Wt; Λ)

where we stack the states in deviations to the mean, St−1, and innovations Wt and we have

incorporated the perturbation parameter, Λ, as a pseudo-state (where the “pseudo”is emphasized

by the use of a semicolon to separate it from the pure states). Then, the decision rules we are

looking for are ĉt = c (st) , l̂t = l (st), and k̂t+1 = k (st).

To approximate them, we will search for the coeffi cients of the Taylor expansion of these

decision rules evaluated at the steady state, s = 01×5. For example, for consumption, we write:

ĉt = c (st) = ci,sss
i
t +

1

2
cij,sss

i
ts
j
t +

1

6
cijl,sss

i
ts
j
ts
l
t +H.O.T.

where each term c...,ss is a scalar equal to a derivative of the value function evaluated at the steady

state, ci,ss ≡ ci (s) for i = 1, ..., 5, cij,ss ≡ cij (s) for i, j = 1, ..., 5, and cijl,ss ≡ cijl (s) for i, j, l =

1, ..., 5, where we follow the tensor notation ci,sssit =
∑5

i=1 ci,sssi,t, cij,sss
i
ts
j
t =

∑5
i=1

∑5
i=1 cij,sssi,tsj,t,,

and cijl,sssits
j
ts
l
t =

∑5
i=1

∑5
j=1

∑5
l=1 cijl,sssi,tsj,tsl,t, that eliminates the symbol

∑5
i=1 when no con-

fusion arises, and where we represent all the higher-order terms by H.O.T. (it will become clear

momentarily why we were explicit about the first three orders of the solution). We can proceed

in analogous ways for all other variables and derive the appropriate formulae.

To find the coeffi cients ci,ss, cij,ss, and cijl,ss, we take derivatives of the equilibrium conditions

with respect to each component of st and solve for the resulting unknown coeffi cients that make

these derivatives hold. Conveniently, this procedure is recursive; that is, we find the coeffi cients

of each order of the approximation one step at a time. For example, by taking first derivatives

of the equilibrium conditions with respect to st, we find all the coeffi cients of the first-order

ci,ss. Then, we take second derivatives of the equilibrium conditions with respect to st, we plug

in the coeffi cients of the first-order ci,ss that we already know and we solve for the coeffi cients

cij,ss, and so on for any arbitrary order. Furthermore, while in the first-order problem we have

a quadratic system (with two solutions that satisfy the necessary conditions, one that violates

the transversality condition and one that does not), all the higher-order systems are linear and

therefore easy to solve.
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In addition to all these coeffi cients, we also need to find a Taylor expansion of the stochastic

processes (8) and (9) or in our transformed state variables:

zt = λzt−1 + Λσeσ̂tεt (10)

σ̂t = ρσσ̂t−1 + Ληut (11)

In standard DSGE models solved by linearization, this step is often overlooked because the con-

ventional law of motion for zt is already linear, but in our case, since we have the term σeσ̂tεt, we

cannot avoid approximating (10) (equation 11 is already linear in the transformed variables). The

reason is that, when we perform a perturbation, all the variables should be perturbed at the same

order. This is required by the theorems that ensure that perturbation works (see Jin and Judd,

2002). The unfortunate practice, often seen in the literature, of mixing different orders of approx-

imation, for instance, getting a first-order approximation for consumption and a second-order for

the stochastic processes, is wrong.6 Beyond its theoretical flaw, mixing orders of approximation is

not even particularly accurate and it is simple to show that standard measures as Euler equation

errors deteriorate when we follow this practice.

While, theoretically, we could find all the derivatives of the decision rules and the exogenous

processes and coeffi cients by paper and pencil, in practice, we employ some symbolic software to

manipulate the equilibrium conditions of the model and take all the relevant derivatives. There

are programming languages, such as Mathematica, which are particularly suited to these type of

manipulations. Also, there is specific software developed in recent years for perturbation such as

the Dynare, a pre-processor and a collection of MATLAB and GNU Octave routines that compute up

to third-order approximations, or Dynare++, a standalone C++ version of Dynare that specializes

in computing n− th-order approximations.

4.3.3. Structure of the Solution

Our previous discussion gave us an abstract description of how to find the perturbation solution.

However, it overlooked the fact that the perturbation solution of the model has a particular pattern

that we can exploit. To make this point more generally, we switch in the next few paragraphs to

a more abstract notation.

6This is also why we solve for consumption, labor, and capital. In principle, given two of these variables, we
could find the third one using the resource constraint of the economy. But this would imply that we are solving
two variables up to order n and the third one nonlinearly.
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The set of equilibrium conditions of a large set of DSGE models, including the real business

cycle model with SV in this section, can be written in a compact way as:

Etf (Yt+1,Yt,St+1,St,Zt+1,Zt) = 0 (12)

where Et is the conditional expectation operator at time t, Yt = (Y1t,Y2t, . . . ,Ykt) is the vector of
non-predetermined variables of size k (such as consumption or labor), St = (S1t,S2t, . . . ,Snt) is the
vector of endogenous predetermined variables of size n (such as capital), Zt = (Z1t,Z2t, . . . ,Zmt)
is the vector of exogenous predetermined variables of sizem, which we refer to as structural shocks

(such as productivity), and f is a mapping from R2×k+2×n+2×m into Rk+n+m.

We assume that structural shocks follow an SV process of the form Zit+1 = ρiZit + Λσit+1εit+1

where the standard deviation of the innovations evolves as log σit+1 = ϑi log σit + Ληiuit+1 for all

i = {1, . . . ,m} and Λ is still the perturbation parameter. To avoid carrying extra indices, we

are assuming that all structural shocks face volatility shocks. By setting the appropriate entries

of ϑi and ηi to zero, we can easily handle homoscedastic shocks. We are also assuming that the

volatility shocks are uncorrelated. This restriction can also be relaxed.

The solution to the system of functional equations defined by (12) can be expressed in

terms of two equations, one St+1 = h (St,Zt−1,Σt−1, Et,Ut,Λ) , describing the evolution of pre-

determined variables, and another, Yt = g (St,Zt−1,Σt−1, Et,Ut,Λ) , describing the evolution of

non-predetermined ones, where Σt = (log σ1t, log σ2t, . . . , log σmt), Et = (ε1t, ε2t, . . . , εmt), and

Ut = (u1t, u2t, . . . , umt). More intuitively, we think of Σt as the volatility shocks, Et are the
innovations to the structural shocks, and Ut are innovations to volatility shocks.
As we described in the previous subsection, we are seeking a higher-order approximation to the

functions h (·) : Rn+(4×m)+1 → Rn and g (·) : Rn+(4×m)+1 → Rk around the steady state, St = S
and Λ = 0. While a general characterization of these functions is diffi cult, it is surprisingly easy

to obtain substantial results regarding the first- and second-order derivatives of the functions h (·)
and g (·) evaluated at the steady state.7 In particular, we formally show in Fernández-Villaverde,
Guerrón-Quintana, and Rubio-Ramírez (2010a) (hereafter, FGR) that the first partial derivative

of h (·) and g (·) with respect to any component of Ut and Σt−1 evaluated at the steady state is

zero. In other words, volatility shocks and their innovations do not affect the linear component

of the optimal decision rule of the agents for any i = {1, . . . ,m}. The same occurs with the

7We conjecture, based on our numerical results, that there exists relatively direct (yet cumbersome to state)
extensions of our theorem for higher-order terms.
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perturbation parameter Λ. This is not a surprising result since Schmitt-Grohé and Uribe (2004)

have stated a similar theorem for the homoscedastic shocks case. The theorem also shows that

the second partial derivative of h (·) and g (·) with respect to ui,t and any other variable but εi,t
is also zero for any i = {1, . . . ,m}.
The interpretation of the theorem is simple. The first part just states that variances or

their evolution do not enter in the first-order component of the solution of the model. This is

nothing more than certainty equivalence: a first-order approximation is equivalent to a model

with quadratic utility functions and where, consequently, agents do not respond to variance. It

is only in the second-order component of the solution that we have terms that depend on the

variance since those depend on the third derivative of the utility function. In particular, we will

have a constant that corrects for risk.

But even in the second-order, time-varying volatilities enter into the solution is a very restricted

way: through the interaction term of the innovations to the structural shocks and the innovations

to volatility shocks of the same exogenous variable. That is, if we have two different shocks (for

instance, one to technology and one to preferences), the only terms different from zero in the

second-order perturbation involving volatility would be the term with the innovation to the level

of technology times the innovation to the volatility of technology and the term with the innovation

to the level of preferences times the innovation to the volatility of preferences.

It is only in the third-order part of the solution (not covered by the theorem) -that is, those

terms depending on the fourth derivative of the utility function- that the level of volatility enters

without interacting with any other variable. That is why, if we are interested, for instance, in

computing the impulse-response function (IRF) of a shock to volatility (as we will be in section

6), we need to compute at least a third-order approximation.

4.4. A Quantitative Example

We now present a quantitative example that clarifies our previous discussion. We start with

Greenwood-Hercowitz-Huffman (GHH) preferences u (ct, lt) = log
(
ct − ψ l1+ζ

t

1+ζ

)
. We pick these

preferences because they do not have a wealth effect. For our illustrative purposes, this is most

convenient. Given that the production function is of the form yt = eztAkαt l
1−α
t , an increase in the

variance of zt has a Jensen’s inequality effect that induces a change in expected output. GHH

kills that effect and avoids distracting elements in the solution. Later, for completeness, we will

come back to a CRRA utility function.
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The second step is to calibrate the model (below we will discuss how to estimate it, so we can

think about this step as just fixing some parameter values for the computation). For our goals

here, a conventional calibration will be suffi cient. With respect to the preference parameters,

we set β = 0.99 to get an annual interest rate of around 4 percent, we set ζ = 0.5 to get a

Frisch elasticity of 2, and ψ = 3.4641 to get average labor supply to be 1/3 of available time.

With respect to technology, we set α = 1/3 to match labor income share in national income,

A = 0.9823 to normalize y = 1, and δ = 0.025 to get a 10 percent annual depreciation. Finally,

with respect to the stochastic process parameters, we set ρ = 0.95 and log σ = log (0.007), the

standard values for the Solow residual in the U.S. economy, and ρσ = 0.95 and η = 0.1 as two

values that generate changes in volatility similar to the ones observed in the U.S. (since η does

not appear in the decision rules up to second-order, its value for our example is less important).

The solution for consumption is then:

ĉt = 0.055115k̂t + 0.576907zt−1 + 0.004251εt

−0.000830k̂2
t + 0.036281k̂tzt−1 + 0.000267k̂tεt + 0.315513z2

t−1 + 0.004650zt−1εt

+0.000017ε2
t + 0.004251εtut + 0.004038εtσ̂t−1 + 0.000013 +H.O.T.,

(where we have already eliminated all terms with zero coeffi cients), for labor

l̂t = 0.014040k̂t + 0.253333zt−1 + 0.001867εt

−0.000444k̂2
t + 0.010671k̂tzt−1 + 0.000079k̂tεt + 0.096267z2

t−1 + 0.001419zt−1εt

+0.000005ε2
t + 0.001867εtut + 0.001773εtσ̂t−1 +H.O.T.,

and for capital

k̂t+1 = 0.983067k̂t + 0.563093zt−1 + 0.004149εt

−0.0005k̂2
t + 0.035747k̂tzt−1 + 0.000263k̂tεt + 0.3342873z2

t−1 + 0.004926zt−1εt

+0.000018ε2
t + 0.004149εtut + 0.003942εtσ̂t−1 − 0.000013 +H.O.T.

In this solution, the correction for risk in consumption is reflected by the constant 0.000013,

and for capital, by the constant−0.000013 (given the absence of wealth effects in GHH preferences,

there is no constant shifting labor). This is because we have two mechanisms that act in different

directions. On the one hand, precautionary behavior caused by volatility induces higher saving,
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but on the other hand, volatility increases the production risk of capital. In our calibration this

second effect predominates. Furthermore, high levels of volatility raise the effects of productivity

shocks on consumption, labor, and capital. This is given by the three terms on εtσ̂t−1. Finally,

shocks to the level and shocks to volatility also reinforce each other (the coeffi cients on εtut).

Once we have the solution, there is the question of the quantitative importance of the second-

or higher-order terms and, with them, of SV. There are two considerations. First, the size of the

effect will depend on the parameters for the SV process. For some countries, a small level of SV

may be plausible. For others, larger values are likely. A reasonable prior is that many developed

economies would fall into the first group and many emerging economies into the second (our choice

of η = 0.1 gets us closer to developed economies than to emerging ones). Second, the level of

accuracy required in a solution is context-dependent. For example, a linear approximation that

ignores SV may be good enough to compute some basic business cycle statistics, but it is unlikely

to be enough for an accurate evaluation of welfare, and by construction, it is unable to estimate

any of the parameters related to SV.

By modifying our utility kernel to the standard log-CRRA form u (ct, lt) = log ct−ψ l1+ζ
t

1+ζ
. The

calibration stays the same except that we readjust ψ = 4.5425 to keep l = 1/3. The new policy

functions for consumption:

ĉt = 0.043421k̂t + 0.199865zt−1 + 0.001473εt

−0.000810k̂2
t + 0.005249k̂tzt−1 + 0.000039k̂tεt + 0.053136z2

t−1 + 0.000783zt−1εt

+0.000003ε2
t + 0.001473εtut + 0.001399εtσ̂t−1 − 0.000003 +H.O.T.

for labor

l̂t = −0.008735k̂t + 0.148498zt−1 + 0.001094εt

+0.000449k̂2
t − 0.000676k̂tzt−1 − 0.000005k̂tεt + 0.018944z2

t−1 + 0.000279zt−1εt

+0.000001ε2
t + 0.001094εtut + 0.001039εtσ̂t−1 + 0.000002 +H.O.T.

and for capital

k̂t+1 = 0.949211k̂t + 0.730465zt−1 + 0.005382εt

−0.000214k̂2
t + 0.017585k̂tzt−1 + 0.000130k̂tεt + 0.351353z2

t−1 + 0.005178zt−1εt

+0.000019ε2
t + 0.005382εtut + 0.005113εtσ̂t−1 + 0.000006 +H.O.T.
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show the consequences of the wealth effect, in particular, the presence of a (small) precaution-

ary behavior for labor, 0.000002, and the switch on the sign of the precautionary behavior for

consumption and capital.

Now we can use our solution to form a state space representation, with a transition equation

for the states given the innovations:

St = f (St−1,Wt; Ψ) (13)

that is the law of motion for capital that we just derived and (the second-order expansion of) the

laws of motion of the stochastic process for productivity and its volatility, and a measurement

equation for observables Yt = g (St,Vt; Ψ) where Vt is measurement noise (either measurement

error or any other shock that affects the observables but not the states). This measurement noise

is optional and, in our prototype model, we will not include it (one additional advantage of SV

is that, for every stochastic process, we have two innovations, one to the level and one to the

volatility) and we can write the simpler version:

Yt = g (St; Ψ) (14)

We index both equations by the vector Ψ = {β, ψ, ζ, A, α, δ, λ, σ, ρσ, η} of model parameters.
While the transition equation (13) is unique up to an equivalent class, the measurement equa-

tion depends on the assumptions about what we observe. For example, in our prototype business

cycle model we can assume we observe hours or consumption (or both of them), since the model

implies predictions about both variables. The choice should depend on the quality of the ob-

servables and on the goal of the empirical exercise. The only constraint is that we must select a

number of series less than or equal to dimensionality of (Wt,Vt) to avoid stochastic singularities.

4.5. Estimation

The next step in the analysis of our prototype business cycle model is its estimation with observed

data. Besides the usual arguments for a rigorous statistical treatment of any model, in this case,

a simple calibration exercise suffers from two serious challenges. First, in the presence of higher-

order terms, the traditional strategy of selecting parameters by matching moments of the model

with steady state values is flawed. When we have non-linearities, the ergodic distribution of the

variables is not centered around their steady state, as it would be with a linearization. Instead, it
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is translated by the non-linear coeffi cients. Thus, the only logical stand is to match the moments of

the data with the simulated moments of the model, leaving us close to an SMM. Second, and even

if we follow an SMM, it is not obvious which moments to select to calibrate the parameters of the

SV process. Unfortunately, the experience from many years of methods of moments estimations is

that choosing different moments (all of them sensible) may lead to rather different point estimates.

The alternative is to use a likelihood-based approach. The advantages of the likelihood function

as the center of inference have been explained in other places (see An and Schorfheide, 2006,

Fernández-Villaverde and Rubio-Ramírez, 2004, and Fernández-Villaverde, 2010) and there is not

much point in reviewing them here. Suffi ce it to say that the likelihood is a coherent procedure

that respects the likelihood principle and allows us to back up all the parameters of interest,

and that has good small and large sample properties. Furthermore, the likelihood function can

be easily complemented with presample information in the form of priors, which are particularly

useful in macroeconomics, where we have short samples.

The likelihood function p
(
YT ; Ψ

)
is nothing more than the probability the model assigns to

a sequence of observables YT given parameter values Ψ. The challenge with likelihood-based

inference is that we need to evaluate that probability. A way to think about how this task can

be accomplished for our model is as follows. Given the Markov structure of our state space

representation (13)-(14), we factorize the likelihood function as:

p
(
YT ; Ψ

)
=

T∏
t=1

p
(
Yt|Yt−1; Ψ

)
Then, conditioning on the states St, and the innovation to productivity εt, we can write:

p
(
Yt|Yt−1; Ψ

)
=

∫ ∫
p (Yt|St, εt; Ψ) p

(
St, εt|Ydata,t−1; Ψ

)
dStdεt (15)

except for the first one:

p (Y1; Ψ) =

∫
p (Y1|S1, ε1; Ψ) dS1dε1 (16)

If we know St and εt, computing p (Yt|St, εt; Ψ) is easy: it is just a change of variables implied by

the measurement equation. To illustrate this point, imagine that Yt = ĉt,8 that is the observable

8Note that ĉt is equal to the raw data ct minus the steady state c. Since the evaluation of the likelihood is
conditional on some Ψ, we can easily find that steady state and map the raw data c into ĉt. In real life, we are
likely to have growth in the data, and hence, we will need to solve the model in some (transformed) stationary
variable and undo the transformation in the measurement equation.

23



vector is just consumption which we have solved up to second-order:

ĉt = a1k̂t + a2zt−1 + a3εt +

a4k̂
2
t + a5k̂tzt−1 + a6k̂tεt + a7z

2
t−1 + a8zt−1εt + a9ε

2
t + a10εtut + a11εtσ̂t−1 + a12

where the at’s are the coeffi cients of the perturbation that are complicated non-linear functions

of Ψ. Then, given St and εt, we find the value of ũt that accounts for the observation ĉt:

ũt =
1

a10εt

 ĉt − a1k̂t − a2zt−1 − a3εt − a4k̂
2
t − a5k̂tzt−1

−a6k̂tεt − a7z
2
t−1 − a8zt−1εt − a9ε

2
t + a11εtσ̂t−1 − a12

 (17)

By evaluating the p.d.f. of ũt given Ψ (in our model, just a normal p.d.f.) and applying the change

of variables formula, we get p (Yt|St, εt; Ψ) . This computation of ũt in (17) takes advantage of the

structure of the solution to our model that we characterized before. The result can be generalized

to an arbitrary number n of observables and shocks with SV, in which case we would have a linear

system of n equations. If we did not know that some coeffi cients were zero, we would need to

solve a quadratic system on ut, something much harder to do. For example, in the case with n

observables, it would be a quadratic system with 2n solutions, a daunting task.

In the same way, if we know how to draw from p (S1; Ψ), we can compute (16) by Monte Carlo.

Generating this drawing is usually straightforward, although tedious. As described in Santos and

Peralta-Alva (2005), given some parameter values Ψ, we can simulate the model for a suffi ciently

large path (to wash out the effect of the initial conditions, which we can make equal to the steady

state just for simplicity, although other starting points are admissible if convenient) and keep the

last realizations as a sample from p (S1; Ψ).

Thus, the complication in evaluating (15) is reduced to a) finding the sequence of conditional

densities {p (St, εt|Yt−1; Ψ)}Tt=1 and b) computing the different integrals. Fortunately, filtering

theory aims at providing the user precisely that sequence of conditional densities and ways to

compute the required integrals.

Filtering is a recursive procedure that relies on two tools, the Chapman-Kolmogorov equation:

p
(
St+1, εt+1|Yt; Ψ

)
=

∫
p (St+1, εt+1|St, εt; Ψ) p

(
St, εt|Yt; Ψ

)
dStdεt (18)
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and Bayes’theorem:

p
(
St, εt|Yt; Ψ

)
=

p (Yt|St, εt; Ψ) p (St, εt|Yt−1; Ψ)∫
p (Yt|St, εt; Ψ) p (St, εt|Yt−1; Ψ) dStdεt

(19)

The Chapman-Kolmogorov equation tells that the distribution of states and productivity in-

novations tomorrow given observations until today, p (St+1, εt+1|Yt; Ψ), is equal to the distribution

today, p (St, εt|Yt; Ψ) , times the transition probabilities p (St+1, εt+1|St, εt; Ψ) integrated over all

possible events. In other words, the Chapman-Kolmogorov equation just provides the researcher

with a forecasting rule for the evolution of states. Given that we have access to the solution of

the model, the computation of p (St+1, εt+1|St, εt; Ψ) is direct given p (St, εt|Yt; Ψ) as an input.

Bayes’theorem updates the distribution of states p (St, εt|Yt; Ψ) when a new observation ar-

rives given its probability p (Yt|St, εt; Ψ), which, as we argued above, is also easy to evaluate

given our state space representation. Thus, with an input p (St, εt|Yt−1; Ψ), the Bayes’ theo-

rem gives us p (St, εt|Yt; Ψ). We can see clearly the recursive structure of filtering. Given some

initial p (S1, ε1; Ψ), Bayes’ theorem provides us with p (S1, ε1|Y1; Ψ), which we use as an input

for the Chapman-Kolmogorov equation and get p (S2, ε2|Y1; Ψ), the input for the next applica-

tion of the Bayes’ theorem. By a recursive application of the forecasting and updating steps,

we generate the complete sequence {p (St, εt|Yt−1; Ψ)}Tt=1 we are searching for. But while the

Chapman-Kolmogorov equation and Bayes’theorem are conceptually straightforward, their prac-

tical implementation is cumbersome because they involve the computation of numerous integrals

again and again over the sample.

There is, of course, a well-known exception. If the state space representation (13)-(14) were

linear and the innovations normally distributed, we could use the Kalman filter to effi ciently derive

{p (St, εt|Yt−1; Ψ)}Tt=1 and, by taking advantage of the fact that all the appropriate conditional

distributions are normal, to solve the required integrals.

Unfortunately, this cannot be done once we have SV since at least one component of (13)

is non-linear.9 The non-linearity of SV deforms {p (St, εt|Yt−1; Ψ)}Tt=1 in such a way that they

do not belong to any known parametric family. Instead, we need to resort to some numerical

procedure to compute the relevant integrals. A powerful algorithm for this non-linear filtering is

9Even if we kept the linear approximation of the decision rule and cut off its quadratic terms, we would still
need to resort to some type of non-linear filtering. We argued before that this mixing of approximation orders
(linear for endogenous state variables, non-linear for exogenous ones) violates the theorems that guarantee the
convergence of perturbations and it suffers from poor accuracy. Here, we show it does not even save time when
estimating the model.
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the particle filter, as described, for example, in Fernández-Villaverde and Rubio-Ramírez (2005

and 2007) (see also the technical appendix to Fernández-Villaverde and Rubio-Ramírez, 2007, for

alternative algorithms).

The particle filter is a sequential Monte Carlo method that replaces the unknown sequence

{p (St, εt|Yt−1; Ψ)}Tt=1 with an empirical distribution of N draws
{
sit|t−1, ε

i
1t

}N
i=1

(where we follow

the short-hand notation that a variable xij|m is the draw i at time j conditional on the information

up to period m) generated by simulation. Then, by an appeal to the Law of Large Numbers, we

can substitute the integral in (15) by:

p
(
Yt|Yt−1; Ψ

)
' 1

N

N∑
i=1

p
(
Yt|sit|t−1, ε

i
1t; Ψ

)
(20)

The key to the success of the particle filter is that the simulation is generated through a procedure

known as sequential importance resampling (SIR) with weights:

qit =
p
(
Yt|sit|t−1, ε

i
1t; Ψ

)
∑N

i=1 p
(
Yt|sit|t−1, ε

i
1t; Ψ

) (21)

SIR allows us to move from a draw
{
sit|t−1, ε

i
t

}N
i=1

to a draw
{
sit|t, ε

i
t

}N
i=1

that incorporates infor-

mation about the observable at period t. The reason is that resampling with weights qit is just

equivalent to the application of Bayes’theorem in equation (19): the draw
{
sit|t−1, ε

i
t

}N
i=1

is the

prior and the weights are the normalized likelihood of Yt. SIR guarantees that the Monte Carlo

method achieves suffi cient accuracy in a reasonable amount of time, something that cannot be

achieved without resampling as most draws would wander away from the true unknown state. The

forecast step in the Chapman-Kolmogorov equation (18) is extremely simple because we have the

law of motion for states given
(
sit|t−1, ε

i
t

)
, the volatility innovation it implies, and the distribution

of the level innovation p (ε|Ψ). Under weak conditions, the particle filter delivers a consistent

estimator of the likelihood function and a central limit theorem applies (Künsch, 2005).

In pseudo-code, this resampling works as follows:
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Step 0, Initialization: Set t  1. Sample N values
{
si0|0, ε

i
0

}N
i=1

from p (S0|Ψ) and

p (ε|Ψ).

Step 1, Prediction: Sample N values
{
sit|t−1, ε

i
t

}N
i=1

from p (St, εt|Yt−1; γ) using the

draw
{
sit−1|t−1, ε

i
t−1

}N
i=1
, the law of motion for states and p (ε|Ψ).

Step 2, Filtering: Assign to each draw
(
sit|t−1, ε

i
t

)
the weight qit in (21).

Step 3, Sampling: Sample N times with replacement from
{
sit|t−1, ε

i
t

}N
i=1

with weights

{qit}
N
i=1. Call the new draw

{
sit|t, ε

i
t

}N
i=1
. If t < T, set t  t + 1 and go to step 2.

Otherwise stop.

Once we have evaluated the likelihood function given Ψ, the researcher can either maximize it

by searching over the parameter space or we can combine it with a prior p (Ψ) and use a Markov

chain Monte Carlo (McMc) to approximate the posterior:

p
(
Ψ|Yt

)
=

p
(
YT ; Ψ

)
p (Ψ)∫

p (YT ; Ψ) p (Ψ) dΨ

An and Schorfheide (2006) is a standard reference for details about to how to implement McMc’s.

Moreover, the McMc method (or close relatives such as simulated annealing) can be used for the

maximization of the likelihood. One inconvenient consequence of the resampling in the particle

filter is that the evaluation of the likelihood is not differentiable with respect to the parameters: a

small change in one parameter may imply that we resample a different draw than in the previous

pass of the algorithm.10 Therefore, derivative-based optimization algorithms cannot be applied

without further smoothing of the likelihood.

4.6. Implications for Policy

The final step in our discussion is to think about policy implications. The first, and most direct, is

that if volatility shocks affect aggregate fluctuations in a significant way, policy makers may need

10For the maximum likelihood to converge, we need to keep the simulated innovations εt and the uniform
numbers that enter into the resampling decisions constant as we modified the parameter values. This is required
to achieve stochastic equicontinuity. With this property, the pointwise convergence of the likelihood (20) to the
exact likelihood is strengthened to uniform convergence and we can swap the argmax and the lim operators (that
is, as the number of simulated particles converges to infinity, the MLE also converges). Otherwise, we would suffer
numerical instabilities induced by the “chatter” of random numbers. In the Bayesian approach, keeping these
random numbers constant is not strictly needed but it improves accuracy.
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to consider volatility when implementing fiscal and monetary policy. Imagine, for example, that

we extend our model with the need to finance an exogenously given flow of public expenditure and

the government only has access to distortionary taxes. This is the same framework as in Chari,

Christiano, and Kehoe (1994), except that now technology shocks have SV. A Ramsey optimal

policy would prescribe how debt, and fiscal policy in general, needs to respond to volatility shocks.

For instance, we conjecture that the presence of SV, by augmenting the risk of having a really bad

shock, may imply that governments want to accumulate less public debt on average to leave them

enough space to respond to these extreme shocks. Similarly, an optimal interest rate rule followed

by the central bank to implement monetary policy could also depend on the level of volatility

in addition to the traditional dependence on the levels of inflation and the output gap. In fact,

Bekaert, Hoerova, and Lo Duca (2010) have gathered evidence that, in the U.S., the Fed responds

to increased stock market volatility by easing monetary policy.

A second policy consideration is that countries subject to volatility shocks require a more

sophisticated management of the maturity structure of their debt that takes into account the

future paths of the level and volatility of interest rates. This is central in environments with

non-contingent public debt, arguably a fair description of reality. Thus, volatility highlights the

importance of improving our understanding of the optimal management of government debt in a

world with incomplete markets, a field still relatively unexplored.

Now, after our fairly long discussion of the prototype business cycle model, we are ready for

our first “real life” application, an exercise in reading the recent monetary history of the U.S.

through the lens of DSGE models.

5. Application I: Understanding the Recent Monetary History of the

U.S.

As we documented in section 3, around 1984, the U.S. economy entered into a period of low

volatility known as the great moderation. Among the many reasons presented in the literature,

two have received a considerable amount of attention. One branch of the literature argues that the

great moderation was just the consequence of low volatility shocks (for example, Sims and Zha,

2006). Another branch of the literature argues that some other changes in the economy, usually

better monetary policy, explain the evolution of aggregate volatility (more famously, Clarida, Galí,

and Gertler, 2000, and Lubick and Schorfheide, 2004). The first explanation is pessimistic: we

enjoy or suffer periods of low or high volatility, but there is little that policy makers can do about
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it. The second one is optimistic: as long as we do not unlearn the lessons of monetary economics,

we should expect the great moderation to continue (even after the current turbulence).

Sorting the two different approaches requires that we analyze the question using a model that

has both changes in volatility and changes in policy. Moreover, we need an equilibrium model.

As shown by Benati and Surico (2009), SVARs may be uninformative for the question at hand

since we cannot easily map between changes in variances of the SVAR and changes in variances

of the shocks of a DSGE model.

The techniques presented in this paper can help us to fill this gap. In particular, we can

build and estimate a medium-scale DSGE model with SV in the structural shocks that drive the

economy, parameter drifting in the Taylor rule followed by the monetary authority, and rational

expectations of agents regarding these changes. In the next pages, we summarize the material in

FGR.

5.1. The Model

We adopt what has become the standard New Keynesian DSGE model, based on Christiano,

Eichenbaum, and Evans (2005). Since the model is well known, our description will be brief. In

our specification, SV appears in the form of changing standard deviations of the five structural

shocks to the model (two shocks to preferences, two shocks to technology, and one shock to

monetary policy). Parameter drifting appears in the form of changing values of the parameters

in the Taylor policy rule followed by the monetary authority.

In more detail, household j’s preferences are:

E0

∞∑
t=0

βtdt

{
log (cjt − hcjt−1) + υ log

(
mjt

pt

)
− ϕtψ

l1+ϑ
jt

1 + ϑ

}
,

which is separable in consumption, cjt, real money balances, mjt/pt, and hours worked, ljt. In

our notation, E0 is the conditional expectation operator, β is the discount factor, h controls habit

persistence, ϑ is the inverse of the Frisch labor supply elasticity, dt is a intertemporal preference

shock that follows log dt = ρd log dt−1 + σdtεdt where εdt ∼ N (0, 1) and ϕt is a labor supply shock

that evolves as logϕt = ρϕ logϕt−1 + σϕtεϕt where εϕt ∼ N (0, 1).

As in section 4, the standard deviations, σdt and σϕt, of innovations εdt and εϕt move ac-

cording to log σdt =
(
1− ρσd

)
log σd + ρσd log σdt−1 + ηdudt where udt ∼ N (0, 1) and log σϕt =(

1− ρσϕ
)

log σϕ + ρσϕ log σϕt−1 + ηϕuϕt where uϕt ∼ N (0, 1).
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All the shocks and innovations are perfectly observed by the agents when they are realized.

Agents have, as well, rational expectations about how they evolve over time.

We assume complete financial markets. An amount of state-contingent securities, ajt+1, which

pay one unit of consumption in event ωjt+1,t, is traded at time t at unitary price qjt+1,t in terms

of the consumption good. In addition, households also hold bjt government bonds that pay a

nominal gross interest rate of Rt−1. Therefore, the j − th household’s budget constraint is given
by:

cjt + xjt +
mjt

pt
+
bjt+1

pt
+

∫
qjt+1,tajt+1dωjt+1,t

= wjtljt +

(
rtujt −

Φ [ujt]

µt

)
kjt−1 +

mjt−1

pt
+
Rt−1bjt
pt

+ ajt + Tt

where xt is investment, wjt is the real wage, rt the real rental price of capital, ujt > 0 the rate of

use of capital, µ−1
t Φ [ujt] is the cost of utilizing capital at rate ujt in terms of the final good, µt is

an investment-specific technological level, Tt are lump-sum transfers and the profits. We specify

Φ [·] such that it satisfies the conditions that Φ [1] = 0, Φ′ [·] = 0, and Φ′′ [·] > 0. This function

carries the normalization that u = 1 in the balanced growth path. The capital accumulated by

household j at the end of period t is given by:

kjt = (1− δ) kjt−1 + µt (1− V [xjt/xjt−1])xjt

where δ is the depreciation rate and V [·] is a quadratic adjustment cost function written in
deviations with respect to the balanced growth rate of investment, Λx. Our third structural shock,

the investment-specific technology level µt, follows log µt = Λµ + log µt−1 + σµtεµt, where εµt ∼
N (0, 1). The standard deviation of the innovation also evolves as log σµt =

(
1− ρσµ

)
log σµ +

ρσµ log σµt−1 + ηµuµt where uµt ∼ N (0, 1).

The household chooses cjt, bjt, ujt, kjt, and xjt taking prices as given. Labor and wages, ljt

and wjt, are chosen in the presence of monopolistic competition and nominal rigidities. Each

household j supplies a slightly different type of labor services ljt that are aggregated by a “labor

packer”into homogeneous labor ldt with the production function:

ldt =

(∫ 1

0

l
η−1
η

jt dj

) η
η−1

that is rented to intermediate good producers at the wage wt. The “labor packer” is perfectly
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competitive and it takes wages as given. Households follow a Calvo pricing mechanism when they

set their wages. Every period a randomly selected fraction 1 − θw of households can reoptimize
their wages to w∗jt. All other households index their wages given past inflation with an indexation

parameter χw ∈ [0, 1].

There is one final good producer that aggregates a continuum of intermediate goods and it is

perfectly competitive and minimizes its costs subject to the production function

ydt =

(∫ 1

0

y
ε−1
ε

it di

) ε
ε−1

and taking as given all prices. Each of the intermediate goods is produced by a monopolistic

competitor whose technology is given by a production function yit = Atk
α
it−1

(
ldit
)1−α

, where kit−1 is

the capital rented by the firm, ldit is the amount of the “packed”labor input rented by the firm, and

At (our fourth structural shock) is neutral productivity that follows logAt = ΛA+logAt−1+σAtεAt,

where εAt ∼ N (0, 1). The standard deviation of this innovation evolves following the specification

log σAt =
(
1− ρσA

)
log σA + ρσA log σAt−1 + ηAuAt where uAt ∼ N (0, 1).

Given the demand function from the final good producer, the intermediate good producers set

prices to maximize profits. They also follow a Calvo pricing scheme. In each period, a fraction

1 − θp reoptimize their prices to p∗t . All other firms partially index their prices by past inflation
with an indexation parameter χ.

The model is closed by the presence of a monetary authority that sets the nominal interest

rates. The monetary authority follows a modified Taylor rule:

Rt/R = (Rt−1/R)γR
(
(Πt/Π)γΠ,t

((
ydt /y

d
t−1

)
/ exp (Λy)

)γy)1−γR ξt.

The term Πt/Π, an “inflation gap,”responds to the deviation of inflation from its balanced growth

path level Π and the term
(
ydt /y

d
t−1

)
/ exp (Λy) is a “growth gap” (Λy is the growth rate of the

economy along its balanced growth path). The term log ξt = σm,tεmt is the monetary policy shock.

The innovation εmt ∼ N (0, 1) to the monetary policy shock has a time-varying standard deviation,

σm,t, that follows log σmt =
(
1− ρσm

)
log σm+ρσm log σmt−1+ηmum,t where um,t ∼ N (0, 1). In this

policy rule, we have a drifting parameter: the response of the monetary authority to the inflation

gap, γΠ,t. The parameter drifts over time as log γΠt =
(
1− ργΠ

)
log γΠ + ργΠ

log γΠt−1 + ηπεπt

where επt ∼ N (0, 1). We assume here that the agents perfectly observe the changes in monetary

policy parameters.
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5.2. Solution and Estimation

The equilibrium of the model does not have a closed-form solution and we need to resort to a

numerical approximation to compute it. For the reasons outlined in section 5, we perform a

second-order perturbation around the (rescaled) steady state of the model. The quadratic terms

of this approximation allow us to capture, to a large extent, the effects of volatility shocks and

parameter drift while keeping computational complexity at a reasonable level.

We estimate our model using five time series for the U.S. economy: 1) the relative price of

investment goods with respect to the price of consumption goods, 2) the federal funds rate, 3)

real output per capita growth, 4) the consumer price index, and 5) real wages per capita. Our

sample covers 1959.Q1 to 2007.Q1, with 192 observations. Then, we follow again section 5 and

exploit the structure of the state space representation of the solution of the model to evaluate the

likelihood of the model. FGR provide further details.

5.3. The Empirical Findings

We invite the interested reader to check FGR, where all the results are shown in detail and

Fernández-Villaverde, Guerrón-Quintana, and Rubio-Ramírez (2010b) where the findings are com-

pared with the historical record. Here, as a summary, we highlight our main findings: 1) there is

overwhelming evidence of changes in monetary policy even after controlling for the large amount

of stochastic volatility existing in the data; 2) these changes in monetary policy were key for the

reduction of average inflation; 3) and the response of monetary policy to inflation under Burns,

Miller, and Greenspan was similar, while it was much higher under Volcker.

The first finding can be documented in figure 5.1 with the evolution of the (smoothed) Taylor

rule parameter of the response of the monetary authority to inflation that we recover from the

data. This figure summarizes how our model understands the recent monetary history of the U.S.

The parameter γΠt started the sample around its estimated mean, slightly over 1, and it grew

more or less steadily during the 1960s until reaching a peak in early 1968. After that year, γΠt

suffered a fast collapse that pushed it below 1 in 1971, one year after the appointment of Burns as

chairman of the Fed in February 1970. The parameter stayed below 1 for all of the 1970s, showing

either that monetary policy did not satisfy the Taylor principle or that our postulated monetary

policy rule is not a good description of the behavior of the Fed at the time (for example, because

the Fed was using real-time data). The arrival of Volcker is quickly picked up by our estimates:

γΠt increases to over 2 after a few months and stays high during all the years of Volcker’s tenure.
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Interestingly, our estimate captures well the observation by Goodfriend and King (2007) that

monetary policy tightened in the spring of 1980 as inflation and long-run inflation expectations

continued to grow. The level of γΠt stayed roughly constant at this high during the remainder

of Volcker’s tenure. But as quickly as γΠt rose when Volcker arrived, it went down again when

he departed. Greenspan’s tenure at the Fed meant that, by 1990, the response of the monetary

authority to inflation was again below 1. During all the following years, γΠt was low, even below

the values that it took during Burns-Miller’s time. Moreover, our estimates of γΠt are tight,

suggesting that posterior uncertainty is not the full explanation behind these movements.
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Figure 5.1: Smoothed path for the Taylor rule parameter on inflation +/- 2 standard deviations.

With respect to SV, we plot in figure 5.2 the evolution of the standard deviation of the

innovation of the structural shocks, all of them in log-deviations with respect to their estimated

means. A first lesson from that figure is that the standard deviation of the intertemporal shock

was particularly high in the 1970s and only slowly went down during the 1980s and early 1990s. By

the end of the sample, the standard deviation of the intertemporal shock was roughly at the level

where it started. This is important to understand the behavior of inflation. A high volatility of

intertemporal shocks creates a volatile aggregate demand and, with it, an inflation that is harder

to control. Thus, we conclude that a significant component of the volatility of inflation in the

1970s and 1980s was due to the volatility of preferences. In comparison, the standard deviation of
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all the other shocks is relatively stable except, perhaps, for the big drop in the standard deviation

of the monetary policy shock in the early 1980s and the big changes in the standard deviation of

the investment shock during the period of oil price shocks. Hence, the 1970s and the 1980s were

more volatile than the 1960s and the 1990s, creating a tougher environment for monetary policy.
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Figure 5.2: Smoothed standard deviation shocks to the intertemporal (σ̂dt) shock, the intratemporal

(σ̂φt) shock, the investment-specific (σ̂µt) shock, the technology (σ̂At) shock, and the monetary policy

(σ̂mt) shock +/- 2 s.d.

One advantage of estimating a structural model is that we can use it to compute counterfactual

histories where we remove a source of variation in the data to measure its impact. With one of

these counterfactuals, we document our third main finding. We measure that without changes

in volatility, the great moderation would have been noticeably smaller. The standard deviation

of inflation would have fallen by only 13 percent, the standard deviation of output growth would

have fallen by 16 percent, and the standard deviation of the federal funds rate would have fallen

by 35 percent, that is, only 33, 20, and 87 percent, respectively, of how much they actually fell.

This application has shown how SV is a fundamental element in our understanding of the

recent monetary history of the U.S. and how the methods presented in section 5 can be put to

good use in a developed economy. In the next section we show how SV is also important (perhaps

even more) for small, open emerging economies.
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6. Application II: Small Open Economies

Now we summarize the results in Fernández-Villaverde et al. (2009) and show how changes in the

volatility of the real interest rate at which emerging economies borrow have a substantial effect

on real variables like output, consumption, investment, and hours worked. These effects appear

even when the level of the real interest rate itself remains constant.

To prove our case, we use the evidence of time-varying volatility in the real interest rates faced

by countries such as Argentina that we briefly showed in figure 3 and that is documented formally

in Fernández-Villaverde et al. (2009). Then, we feed this time-varying process into an otherwise

standard small, open economy business cycle model calibrated to match the data from Argentina.

We find that an increase in real interest rate volatility triggers a fall in output, consumption,

investment, and hours worked, and a notable change in the current account. Hence, we show that

the time-varying volatility of real interest rates might be an important force behind the distinctive

size and pattern of business cycle fluctuations of emerging economies.

We do not offer a theory of why real interest rate volatility changes over time. Instead, we

model it as an exogenous process. Part of the reason is that an exogenous process focuses our

attention on the mechanism through which real interest rate risk shapes the trade-offs of agents in

small, open economies. More important, the literature has not developed, even at the prototype

level, an equilibrium model to endogenize these volatility shocks. Fortunately, the findings of

Uribe and Yue (2006) and Longstaff et al. (2007) justify our strategy. The evidence in both

papers is strongly supportive of the view that a substantial component of changes in volatility is

exogenous to the country. These results should not be a surprise because the aim of the literature

on financial contagion is to understand phenomena that distinctively look like exogenous shocks

to small open economies (Kaminsky et al., 2003).

6.1. The Model

We postulate a simple small, open economy model with incomplete asset markets. The economy

is populated by a representative household with preferences:

E0

∞∑
t=0

βt
(
C1−v
t

1− v − ω
H1+η
t

1 + η

)
. (22)

Here, E0 is the conditional expectations operator, Ct denotes consumption, Ht stands for hours

worked, and β ∈ (0, 1) corresponds to the discount factor. The household can invest in two types
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of assets: the stock of physical capital, Kt, and an internationally traded bond, Dt. We maintain

the convention that positive values of Dt denote debt. Then, the household’s budget constraint

is given by:
Dt+1

1 + rt
= Dt −WtHt −RtKt + Ct + It +

ΦD

2
(Dt+1 −D)2 (23)

whereWt represents the real wage, Rt stands for the real rental rate of capital, It is gross domestic

investment, ΦD > 0 is a parameter that controls the costs of holding a net foreign asset position,

and D is a parameter that determines debt in the steady state. The cost, assumed to eliminate

the unit root otherwise built into the dynamics of the model, is paid to some foreign international

institution (for example, an investment bank that handles the issuing of bonds for the household).

We write the real interest rate faced by domestic residents in international markets at time t

as rt = r+εtb,t+εr,t. In this equation, r is the mean of the international risk-free real rate plus the

mean of the country-spread. The term εtb,t equals the international risk-free real rate subtracted

from its mean and εr,t equals the country-spread subtracted from its mean. Both εtb,t and εr,t

follow AR(1) processes:

εtb,t = ρtbεtb,t−1 + eσtb,tutb,t, where utb,t ∼ N (0, 1) (24)

εr,t = ρrεr,t−1 + eσr,tur,t, where ur,t ∼ N (0, 1) (25)

The standard deviations σtb,t and σr,t also follow:

σtb,t =
(
1− ρσtb

)
σtb + ρσtbσtb,t−1 + ηtbuσtb,t, where uσtb,t ∼ N (0, 1) (26)

σr,t =
(
1− ρσr

)
σr + ρσrσr,t−1 + ηruσr,t, where uσr,t ∼ N (0, 1) (27)

The parameters σtb and ηtb control the degree of mean volatility and SV in the international

risk-free real rate. The same can be said about σr and ηr and the mean volatility and SV in

the country spread. We call utb,t and ur,t innovations to the international risk-free real rate

and the country-spread, respectively. We call uσtb,t and uσr,t innovations to the volatility of the

international risk-free real rate and the country spread, respectively. Sometimes, for simplicity,

we call σtb,t and σr,t volatility shocks and uσtb,t and uσr,t innovation to the volatility shocks.

The stock of capital evolves according to Kt+1 = (1− δ)Kt +

(
1− φ

2

(
It
It−1
− 1
)2
)
It, where δ

is the depreciation rate. The parameter φ > 0 controls the size of these adjustment costs. Finally,

the representative household is also subject to the typical no-Ponzi-game condition.
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Firms rent capital and labor from households to produce output in a competitive environment

according to the technology Yt = Kα
t

(
eXtHt

)1−α
where Xt = ρxXt−1 + eσxux,t and ux,t ∼ N (0, 1).

Firms maximize profits by equating wages and the rental rate of capital to marginal productivities.

Thus, we can rewrite equation (23) in terms of net exports NXt:

NXt = Yt − Ct − It = Dt −
Dt+1

1 + rt
+

ΦD

2
(Dt+1 −D)2

6.2. Solving and Calibrating the Model

We solve the model by relying on perturbation methods. We want to measure the effects of a

volatility increase (a positive shock to either uσr,t or uσtb,t), while keeping the interest rate itself

unchanged (fixing ur,t = 0 and utb,t = 0). Consequently, we need to obtain a third approximation

of the policy functions. As we saw in section 4, a first-order approximation to the model would miss

all of the dynamics induced by volatility because this approximation is certainty equivalent and

a second-order approximation would only capture the volatility effect indirectly via cross product

terms of the form ur,tuσr,t and utb,tuσtb,t; that is, up to second-order, volatility does not have an

effect as long as the real interest rate does not change. It is only in a third-order approximation

that the SV shocks, uσ,t and uσtb,t, enter as independent arguments in the policy functions with a

coeffi cient different from zero. Furthermore, these cubic terms are quantitatively significant.

To calibrate the model, we first estimate the process for the interest rate (24), (25), (26), and

(27) using EMBI+ data and a Bayesian approach and we set the parameters for the law of motion

of the real interest rate equal to the median of the posterior distributions. Then, we pick the

remaining parameters of the model by targeting some moments of the Argentinian economy. Our

calibration must target the moments of interest generated by the ergodic distributions and not

the moments of the deterministic steady state, since those last ones are not representative of the

stochastic dynamics.

6.3. Impulse Response Functions

Now we can analyze the IRFs of shocks to the country spreads and their volatility. In figure 6.1, we

plot the IRFs to these shocks (rows) of consumption (first column), investment (second column),

output (third column), labor (fourth column), the interest rate (fifth column), and debt (the sixth

column). Interest rates are expressed in basis points, while all other variables are expressed as

percentage deviations from the mean of their ergodic distributions (computed by simulation).
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Figure 6.1: IRFs Argentina

The first row of panels plots the IRFs to a one-standard-deviation shock to the Argentinean

country spread, ur,t. Following an annualized rise of 385 basis points (that corresponds to an

increase of nearly 33 basis points at a monthly rate) in Argentina’s spread, the country experiences

a persistent contraction, with consumption dropping 3.20 percent upon impact and investment

falling for seven quarters. Furthermore, the decline in output is highly persistent: after 16 quarters,

output is still falling (at that time it is -1.16 percent below its original level). Labor starts by

slightly increasing (due to the negative wealth effects) but later falls (by a very small margin

given our preferences) due to the reduction in investment and the subsequent decrease of marginal

productivity. Debt falls for 14 quarters, with a total reduction of nearly 19 percent of the original

value of the liability. The intuition for these movements is well understood. A higher rt raises

the service payment of the debt, reduces consumption, forces a decrease in the level of debt (since

now it is more costly to finance it), and lowers investment through a non-arbitrage condition

between the returns to physical capital and to foreign assets. This exercise shows that our model

delivers the same answers as the standard model when hit by equivalent level shocks and to place

in context the size of the IRFs to volatility shocks.

The second row of panels plots the IRFs to a one-standard-deviation shock to the volatility

of the Argentinean country spread, uσ,t. To put a shock of this size in perspective, we estimate

that the collapse of LTCM in 1998 meant a positive volatility shock of 1.5 standard deviations

and that the 2001 financial troubles amounted to two repeated shocks of roughly 1 standard

deviation. First, note that there is no movement on the domestic interest rate faced by Argentina

or its expected value. Second, there is a) a contraction in consumption, b) a decrease of investment,

c) a slow fall in output, d) labor increases slightly to fall later, and e) debt shrinks upon impact
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and keeps declining until it reaches its lowest level, roughly three and a half years after the shock.

These IRFs show how increments in risk have real effects on the economy even when the real

interest rate remains constant.

The intuition is as follows. Small, open economies rely on foreign debt to smooth consumption

and to hedge against idiosyncratic productivity shocks. When the volatility of real interest rates

rises, debt becomes riskier as the economy becomes exposed to potentially fast fluctuations in the

real interest rate and their associated and unpleasant movements in marginal utility. To reduce

this exposure, the economy lowers its outstanding debt by cutting consumption. Moreover, since

debt is suddenly a worse hedge for the productivity shocks that drive returns to physical capital,

investment falls. A lower investment also reduces output. Interestingly enough, we do not have

any of the real-option effects of risk emphasized by the literature, for example, when we have

irreversibilities (Bloom, 2009). Introducing those effects would increase the impact of shocks to

volatility on investment. Thus, our results are likely to be a lower bound to the implications of

time-varying risk.

7. What We Know and What We Do Not Know About Volatility

We arrive now towards the end of our long trip and it seems a fitting conclusion to take stock and

enumerate what we know and what we do not know about volatility.

If we try to summarize what we know, we can venture three lessons. First, there is strong

evidence that, in many contexts, time series experience time-varying volatility and that an un-

derstanding of the behavior of the data requires in consequence an understanding of the behavior

of the volatility changes. Second, it is easy to write DSGE models in which volatility changes

over time and in which we can measure the impact of these variations in risk. Third, there are a

number of contexts where these variations in risk seem suffi ciently important from a quantitative

perspective as to deserve a more careful consideration.

On the other hand, there are also plenty of issues that we do not understand. First, and

foremost, we do not have a good explanation of why aggregate volatility changes over time. In the

models that we presented in this chapter, SV was assumed as exogenous. In some more involved

models (for instance, where monetary and fiscal policy changes), part of the time-variation in

volatility can be endogeneized but, at the same time, it is often the case that the question of

why volatility changes is just pushed one step back to some unexplained change in policy. It is

fair to note that macroeconomics, in general, lacks a very solid theory of why we have shocks,
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either technological, preferences or any other. Much progress has been made just by investigating

the consequences of a given exogenous shock without too much attention to its origins. By

analogy, much progress may still be made by investigating the consequences of volatility shocks.

Second, we do not fully understand many of the theoretical properties of models with SV. Just

as an example, we do not have theorems regarding the differentiability of the decision rules with

respect to the relevant components of SV beyond some simple cases. Third, there are still many

questions regarding the best computational and empirical strategies to take these models to the

data, including the best specifications for the structure of the changes of volatility over time.

Finally, we know very little about the implications of volatility for optimal policy design.

But, fortunately, we do not see this lack of understanding as a fundamental problem but

as a challenge to motivate research for many years to come. We expect to see much work on

documenting and measuring the changes in volatility over time, on working out models that

generate variations in risk in an endogenous way, and on assessing the implications for policy.
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