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1 Introduction

Debates about the social costs and benefits of segregation by socioeconomic status, ability, race or

gender figure prominently in discussions of education, housing and other areas of social policy. In

the late-1960s Coleman et al. (1966) argued that racial isolation lowered the academic achievement

of minority students. This claim immediately generated controversy, spawning a vast empirical

literature in education, sociology and economics. Forty years later Rivkin and Welch (2006),

surveying the resulting body of work, concluded that “the effect of integration on black students

remains largely unsettled” (p. 1043). Schofield (1995), reviewing the education and sociology

literature, comes to a similarly tentative conclusion, emphasizing the “methodological and other

problems that typify work in this area” (p. 597). After four decades of research, school busing and

other mandated desegregation policies remain controversial. Other unsettled debates touching on

issues of ‘segregation’ include those on school vouchers, single-sex schooling, ability tracking and

public housing policy.1

Each of these debates centers on a common question: would society be better off if social

groups were configured differently? Are there welfare-increasing deviations from the status quo

assignment of individuals to classrooms, schools or neighborhoods? How do average outcomes and

inequality respond to ‘reallocations’ of individuals across groups? Durlauf (1996c) has termed such

reallocating policies ‘associational redistribution’.

Despite the long-standing controversy surrounding reallocation-inducing policies, econometric

methods for framing and analyzing their effects are not widely available. Researchers interested

in, for example, segregation in schools typically focus their efforts on identifying and estimating

an average relationship between school racial composition and student achievement (e.g., Angrist

and Lang, 2004; Guryan, 2004; Card and Rothstein, 2007). The optimality of segregation relative

to integration is inferred by reference to this estimated relationship.2 The target estimand of this

literature, the average marginal effect of school racial composition on student achievement, does not

correspond to an implementable policy. It would be impossible, for example, to engineer an increase

1Disagreements about the magnitude and relevance of ‘cream-skimming’ in response to widespread school choice

figure prominently in the debate on educational vouchers (e.g., Manski, 1992; Hoxby, 2003; Ladd, 2003; Urquiola,

2005).

The evidence on the achievement effects of single-sex instruction is mixed (e.g., Morse 1998, Mael 2005), although

this interpretation is debated by advocates of gender-separation (e.g., Sax 2005). In 2006 the United States De-

partment of Education, in a controversial decision, modified Title IX regulations to allow the formation of single-sex

classrooms in public schools (Paulson and Teicher 2006).

The literature on school tracking is enormous with supporting evidence available for both its advocates and oppo-

nents. For recent discussions see Oakes (1992), Epple, Newlon and Romano (2002) and Figlio and Page (2002).

Massey and Denton (1993, p. 231) advocate for increased use of housing vouchers and decreased use of public

housing projects. The effects of housing vouchers are analyzed by Jacob (2004) and Kling, Liebman and Katz (2007).
2The original Coleman Report provides a particularly thoughtful example of this type of informal inference process:

“If a white pupil from a home that is strongly and effectively supportive of education is put in a

school where most students do not come from such homes, his achievement will be little different than if

he were in a school composed of others like himself. But if a minority pupil from a home without much

educational strength is put with schoolmates with strong educational backgrounds, his achievement is

likely to increase” (Coleman et al., 1966, p. 22).
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in minority enrollment across all schools — the policy effect measured by this estimand — since an

increase in such enrollment in one school necessarily requires a commensurate decrease in another.

While knowledge of the (average) mapping between school racial composition and outcomes may

be an ingredient to an evaluation of a particular race-based allocation of students to schools, it is

not sufficient.3

In this paper we provide an initial exploration of the econometrics of reallocating individuals

across groups in the presence of social spillovers. Our analysis emphasizes issues of measurement,

that is, the definition of relevant target estimands. Additionally, we provide conditions for non-

parametric identification, propose estimators and characterize their large sample properties. We

implement our procedures using data from the randomized Tennessee class size reduction experi-

ment, Project STAR. Following Whitmore (2005) we use these data to study the effects of classroom

gender mix on student achievement.

Our setup generalizes that of a class of stylized locational sorting models developed by de Bar-

tolome (1990), Benabou (1993, 1996), Becker and Murphy (2000) and others.4 As in those papers,

we consider a setting where individuals are either ‘high’ or ‘low’ types, with outcomes depending

on the type composition of their social group in a fully nonparametric way. We add statistical

content to this framework by introducing unobserved individual heterogeneity. We also allow for

location-specific heterogeneity (both observed and unobserved). These extensions complicate our

analysis but are, of course, essential for empirical relevance.

An example, which we develop empirically below, helps to clarify the various issues involved.

Consider a setting where individuals are students, with high and lows types respectively denoting

girls and boys. Students may differ in unobserved ways, for example in their ability. A social group

is a classroom of students. Classrooms may also be heterogeneous, for example in observed and/or

unobserved dimensions of teacher quality. This set-up is complicated because there are three distinct

levels of heterogeneity: individual-level, peer-level and location-level. Any analysis of peer effects

must keep track of, and impose conditions on, these three types of heterogeneities. Our approach

involves imposing restrictions on the group formation process; both the mechanism whereby specific

individuals sort together into groups, and that whereby such groups place themselves in specific

locations. While we are restrictive regarding the process which generates the status quo allocation

of individuals to groups, we are very flexible elsewhere. An alternative, complementary, approach

would involve imposing more restrictions on, say, the ‘production technology’, in exchange for

imposing fewer restrictions on the status quo assignment process (e.g., Nesheim, 2002, 2009). We

emphasize that our basic setup, in particular our estimands and characterization of the social

planner’s problem, is not linked to any specific approach to identification.

We develop three classes of estimands. The first class measures the average strength of any social

spillovers. The central focus here is on what we call the average spillover effect, ase. Here our

3More generally the menu of program evaluation estimands surveyed by Imbens (2004, 2007), Heckman and

Vytlacil (2007a,b), and others is, at best, only indirectly helpful for assessing the effects of reallocations. We justify

this claim further below.
4Much of this theoretical literature is surveyed by Piketty (2000), Fernández (2003) and Durlauf (2004).
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contribution is modest; we provide a nonparametric generalization of prior work on the measurement

of spillovers (e.g., Manski, 1993; Brock and Durlauf, 2001; Moffitt, 2001; Glaeser and Scheinkman,

2003). In particular our measure of spillover strength can be viewed as a (simple) nonparametric

generalization of Ciccone and Peri’s (2006) ‘constant composition’ externality measure.

We view our second set of estimands as more innovative. This class includes the local segregation

outcome effect, lsoe, which measures the effect of small increases in segregation (relative to the

status quo) on average outcomes. We also develop a local segregation inequality effect, lsie, which

measures the effect of a small increase in segregation on the the average outcome gap between high

and low type individuals. These estimands provide a basis for characterizing any equity versus

efficiency trade-offs associated with segregation-inducing policies.

Our final estimand allows us to assess the efficiency of the status quo allocation relative to

an outcome-maximizing allocation. In our setup the social planner’s problem is a functional op-

timization (i.e., infinite dimensional) one. Nevertheless we are able to characterize its solution

quite generally. As we leave the (average) mapping from group composition to outcomes a priori

unrestricted (and also allow for a large number of social groups) our result generalizes the social

planner analyses of, for example, de Bartolome (1990), Benabou (1993, 1996) and Becker and

Murphy (2000), in addition to providing them with statistical content.

Our framework offers several advantages over existing methods of characterizing social spillovers.

First, our approach explicitly connects the data with many of the ideas emphasized in theoretical

work on sorting in the presence of social spillovers. In particular, our estimands provide measures of

segregation-induced inefficiencies, a key theme of the neighborhood sorting literature. For example,

our local segregation outcome effect (LSOE) estimand has a representation as a weighted average

of own and peer type complementarity and curvature. Benabou (1996), in the context of a stylized

deterministic model, shows how the efficiency of segregation vis-a-vis integration depends on these

two objects. Prior empirical work on social externalities generally only loosely connects to the

relevant applied public finance theory. Fernández (2003), in her survey article, notes that “there has

been very little work done to assess the significance of the inefficiencies [induced by segregation],”

despite the growing body of empirical work that points to the importance of peer effects in a general

way (p. 14). Piketty (2000) makes a similar point.

Second our focus on reallocations is novel. While we leave the microstructure of any social

interactions processes unmodelled, our set-up allows us to think about reallocation-inducing policies

in a straightforward way. Many controversial policies, such as busing, ‘school choice’ regimes or the

provision of rental vouchers to public housing recipients, are fundamentally allocation mechanisms.

Our estimands provide a partial basis for the evaluation of such policies.

Finally, unlike most work in this area, Brock and Durlauf (2007) being an important recent

exception, our approach to identification and estimation is fully nonparametric.5 We provide non-

parametric estimators for our first two classes of estimands and also characterize their large sample

5Examples of formal identification analyses of parametric social interaction models include those of Manski (1993),

Brock and Durlauf (2001), Moffitt (2001) and Graham (2008).
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properties.6

In recent years economists and other social scientists have made substantial progress on the

identification and estimation of statistical models with social spillovers (e.g., Manski, 1993; Solon,

1999; Brock and Durlauf, 2001, 2007; Moffit, 2001; Duncan and Raudenbush, 2001; Sampson,

Morenoff and Gannon-Rowley, 2002; Glaeser and Scheinkman, 2003; Graham 2008, 2009). Our work

builds on this work inasmuch as the production technology is a component of each of our estimands.

However our focus substantially differs from this prior work. Our goal is to develop estimands which

directly characterize the effects of reallocations on the distribution of outcomes. Related work in

this vein includes that of Graham, Imbens and Ridder (2007, 2009) and Bhattacharya (2009) (see

Graham (forthcoming) for a survey). More recently Hudgens and Halloran (2008) and Manski

(2010) develop a notation for the study of treatment response in the presence of spillovers which

shares features with our own setup.

Our work is also related to the mathematical programming and economic literature on resource

allocation problems (e.g., Ginsberg, 1974; Ibaraki and Katoh, 1988; Luenberger, 1969, 2005). As

noted above, in our setting the planner’s problem is one of functional optimization. Our general

characterization of the solution to this problem appears to be new.7

The statistical aspects of this paper are most closely connected to the literature of semipara-

metric M-estimation as in Newey (1994a,b) and Newey and McFadden (1994). In particular our

estimands share import features with weighted average derivatives as in Powell, Stock and Stoker

(1990), Härdle and Stoker (1989), Newey and Stoker (1993) and others. While straightforward to

compute, our estimators combine multiple first step nonparametrically estimated objects together

in different ways. Most of our estimators, for example, require nonparametric estimation of two

conditional expectation functions as well as their derivatives. Consequently characterizing their

asymptotic properties, as we do below, is nontrivial.

Section 2, which follows next, describes our sampling structure and maintained identifying as-

sumptions. The need to carefully keep track of all the sources of individual, peer and locational

heterogeneity requires the development of a relatively elaborate set of notational conventions. For

6A limitation of our framework is that it is not helpful for assessing the effects of non-reallocating interventions,

such as providing subsidies to low types. Manski (1993), Brock and Durlauf (2001) and Durlauf (2004) discuss this

class of policy interventions. The analysis of such interventions generally requires an explicit model of the social

interaction process. Durlauf (2004) makes a compelling case for greater focus on the microeconomic foundations of

social interaction processes. We are sympathetic to this perspective, but nevertheless have found it useful to leave

such structure unspecified in the present setting. Lazear (2001) and Weinberg (2006) provide nice examples of how

concrete microstructures of social interaction generate specific reduced form mappings from group structure into

outcomes. Since we leave this mapping nonparametric, our approach is arguably consistent with a wide-variety of

interaction microstructures. An important caveat to this claim, however, is that explicit microstructures of strategic

interaction can generate a mapping from group composition into outcomes that exhibits discontinuities (cf., Brock

and Durlauf 2001, 2007). Since we estimate this mapping using kernel smoothing methods, our approach may work

poorly in such situations.
7The closest work of which we are is aware is that of Arnott and Rowse (1987) which uses parametric estimates of

educational production functions and numerical programming methods to evaluate classroom assignment mechanisms

based on student ability. Their methods are fundamentally parametric in nature and they do not discuss issues of

identification, estimation or inference. Our analysis of the allocation problem is also related to the neighborhood

sorting models of de Bartolome (1990), Benabou (1993, 1996), Durlauf (1996a,b), Epple and Romano (1998) and

Becker and Murphy (2000).
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our purposes we have found a heavily modified potential outcomes notation to be the most con-

venient for representing our problem and stating our assumptions (Neyman 1923, Rubin 1974,

Holland 1986a,b). To simplify the exposition we begin with the stylized case where all groups are

(i) equally sized and (ii) there are no covariates beyond type.

Section 3 presents our estimands. We begin by proposing a simple summary measure of the

strength of social spillovers. We then present measures of the outcome and inequality effects of

local reallocations of individuals across groups. Section 4 discusses estimation. Section 5 briefly

considers how observed individual- and location-specific characteristics can be incorporated into

our framework.

In Section 6 we discuss the planner’s problem. By characterizing the solution to this prob-

lem we are able to show that the inefficiency of the status quo — the difference between the ob-

served average outcome and that which would occur under an outcome-maximizing allocation —

is identified under certain assumptions. In Section 7 we apply our methods, and compare them

with parametric alternatives, in a study of the effect of classroom gender composition on student

achievement using data collected in conjunction with the Tennessee Project STAR experiment (cf.,

Whitmore, 2005). Section 8 summarizes and suggests areas for future research. The proofs of our

identification and representation results are contained in Appendix B. The pathwise derivative

calculations underlying our large sample results are detailed in a Supplemental Web Appendix

(https://files.nyu.edu/bsg1/public/).

2 Setup and assumptions

In this section we present our statistical model and discuss the identifying assumptions we main-

tain in subsequent sections. Throughout we use upper case letters to denote random variables.

Lower-case and calligraphic letters respectively denote specific realizations and the support of the

corresponding distributions.

2.1 Population framework

There is a population of individuals (e.g., elementary school students). Individuals are indexed

by  ∈ I = {1     } and are one of two observed types  ∈ {0 1}, for example, boy or girl.
Additional individual level heterogeneity is indexed by the vector  ∈ A. For reasons of exposition
we refer to  as an individual’s ‘ability’. We also refer, without intending to be pejorative, to

those individuals with  = 1 as ‘high’ types and those individuals with  = 0 as ‘low’ types. The

population fraction of high types is given by  . We assume that  is non-manipulable, denoting

a permanent characteristic such as race or sex. The outcome of interest, say, student achievement,

is  ∈ Y and may be discretely- or continuously-valued. For ease of exposition we initially assume
there are no observed individual characteristics beyond type (we introduce observed individual-level

attributes into our analysis in Section 5).

Individuals reside in different locations or, alternatively, ‘attend’ different ‘schools’. Members
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of the population of available locations are indexed by  ∈ C = {1     }  Associated with each
location is a vector of unobserved characteristics  ∈ U  If locations are, for example, schools, then
 might capture heterogeneity in teacher quality and facilities (we introduce observed location

characteristics into our analysis in Section 5).

At times it will be necessary to compute averages across the population of locations and, at

others, ones across individuals. When we use a  subscript the relevant average is over locations,

whereas an  subscript signals an average over individuals.

Each individual’s location of residence is given by the assignment indicator  ∈ C. If individual
 resides in location  then  =  To avoid double subscripting we use the notation  = 

 An

allocation is a feasible assignment of individuals to groups and is completely specified by a vector

of group assignment indicators G =(1      )
0 

Individuals assigned to a common location are neighbors. For ease of exposition we initially

assume that all neighborhoods have room for exactly  =  residents (we allow for unequally

sized groups in Sections 5 and 6).

Individual 0 peer group includes those individuals also assigned to her location, i.e. the index
set

 () = { :  =   6= } 

These peers’ types and abilities are given by the vectors

 () =
¡
()1     ()−1

¢0
 () =

¡
()1     ()−1

¢0


where the subscripts ()  with  = 1     −1 indicate the members of ’s peer group in arbitrary
order. Let   = ( 

0
())

0 and  = ( 
0
())

0 denote the vectors of types and abilities in 0
social group inclusive of herself.

The  individual’s neighborhood quality, , depends on the type and ability of her peers as

well as the vector of unobserved location characteristics  :

 = (
0
() 

0
() 

0
)
0

2.2 Potential outcomes notation

Our focus is on characterizing different (summary) features of the mapping from allocations into

outcomes. We assume that this mapping is individual-specific and given by

(g) g ∈ G (1)

where G denotes the set of all feasible allocations and the relation is individual specific due to its
(implicit) dependence on  and . The function (g) gives the potential outcome for individual
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 associated with allocation g ∈ G8,9
Tractability of our problem requires imposing restrictions on (g). Our first restriction rules

out cross location spillovers.

Assumption 2.1 (No Cross Neighborhood Spillovers) Let g and eg denote two feasible
allocations with associated neighborhood qualities for individual  of  and e. If  = e then

(g) = (eg)
Assumption 2.1 means that individual outcomes depend only upon own characteristics and

neighborhood quality; the type-structure, ability distribution, and location characteristics of, for

example, adjacent neighborhoods do not affect outcomes. In the case where locations are spatially

separated schools Assumption 2.1 may be reasonable. If locations represent residential neighbor-

hoods the assumption of no cross location spillovers is considerably stronger. Nevertheless some

restriction on the structure of dependence across locations is required for statistical analysis.

Under Assumption 2.1 we may write

(G) = ( () () ) = ()

Our next assumption restricts the structure of peer influences within a neighborhood. Let


 =

P−1
=1 () and 

 =
P−1

=1

¡
1− ()

¢
denote the total number of high and low type

peers for individual . Assume, without loss of generality, that () is ordered such that high

types appear first, followed by low types (i.e., () = (1     1 0     0)0). The  − 1 vector of
peer ‘abilities’ is arranged conformably such that () = (0

() 
0
())

0 where 
() equals the


 ×1 vector of abilities for each high type peer in individual 0 social group and 

() equals the

corresponding 
 × 1 vector of low type peer abilities.

Assumption 2.2 (Within-Type Peer Exchangeability) Let e() = ( e0
()

e0
())

0 wheree

() and
e

() are permutations of 

() and 

() and let
e () be a conformable re-ordering of

 () (note that
e () =  () by construction), for all such within-type permutations

(e ()
e() ) = ( () () )

8Associated with each assignment is a mechanism by which it came about. For example assignment may be by

lottery, tournament, or determined by a social planner. Implicit in (1) is the assumption that, conditional on the

induced assignment, the mechanism by which it was achieved does not affect outcomes. If a court-ordered mandatory

school busing plan induces the same allocation of students across schools as a lottery, then the associated outcome

distributions will also be identical. This may be a strong assumption in certain settings. Schofield (1995), in her

review of educational research on the impact of desegregation on black achievement, presents evidence suggesting

that the desegregation mechanism matters. Similar (implicit) assumptions underlie the program evaluation literature

(cf., Holland, 1986a).
9The potential outcomes notation is convenient for our purposes, however, we could also use the ‘production

function’ notation

 =  (G ) 

with  playing the role of a (non-separable) disturbance.
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The function ( () () ) is a continuous function of
³
() 

´
for all  ().

Assumption 2.2 implies that, among those of the same type, each of individual 0 peers are
equally influential. This restriction follows from standard exchangeability arguments. As such it is

a statement of researcher ignorance: a priori there is no reason to think that 0 ‘first’ high type
neighbor affects her differently than her ‘ninth’ (Rubin, 1981). Manski (2000) and Durlauf (2001)

have argued for improving data collection in order to avoid such restrictions. For example, if the

researcher knew that 0 ‘ninth’ high type neighbor was across the street, while her ‘first’ was two
blocks away, then Assumption 2.2 might be implausible. However, in most datasets, the structure

of within-group social networks is unavailable and hence Assumption 2.2 is an appropriate, as well

as unavoidable, representation of prior information.10

By Assumption 2.2 and theWeierstrass Theorem we can approximate the function ( () () )

by

( () () ) ≈ (− 
(

()) 
(

()) )

with 
(

()) denoting the vector of the first  symmetric polynomials in 

() and 

(
())

defined similarly (cf., Altonji and Matzkin, 2005, pp. 1062 - 1063).11

We emphasize that Assumption 2.2 allows for individuals to be differentially affected by the

ability structure of their high- and low-type peers. For example, outcomes may vary freely with the

average ability of low type peers and/or the average ability of high type peers (rather than being

restricted to vary with average ability taken across all peers). Some individuals, for example, may

be particularly sensitive to variation in high-type peer ability, while others to variation in low-type

peer ability.

Our final restriction on (g) follows from being precise about the meaning of an agent’s type.

Assumption 2.3 (Inclusive Definition of Type)  ⊥ 

10Calvó-Armengol, Patacchini and Zenou (2009) provide a nice example of how richer network data can be used to

study peer influences.
11For the case where 

() is scalar the elementary symmetric polynomials are of the form

0




()


= 1

1




()


=


1≤≤





()

2




()


=


1≤≤





()


()

3




()


=


1≤≤





()


()


()

...






()


= 


()1


()2


()3    



()



so that 



()


=

0



()


 1



()


     



()

0
 Weyl (1946) discusses such polynomials for the

multivariate case.
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Independence of  from  follows by definition of the phenomena we seek to characterize.

We are interested in whether, for example, an individual learns more when surrounded by female

classmates. Not whether he learns more when surrounded by female classmates once we condition on

their ‘disruptiveness’. If, across the population under consideration, girls tend to be less disruptive

than boys then these two questions have different answers. For the first question the appropriate

definition of  is precisely all individual heterogeneity that is independent of . We want our

notion of ‘gender’ to include, not exclude, systematic differences in behavior across boys and girls.12

Assumption 2.3 can always be imposed by a normalization. Assume that unnormalized ability

is ∗ , then normalized ability is given by  =  (∗ |). That is our definition of an individual’s
‘ability’ is their rank amongst those of their own type.13 Let  = (  − 

(
()) 

(
()) ) =

(− 
(

()) 
(

()) ) denote the i
th individual’s potential outcome given assignment

to a group with fraction  = − high type peers, peer abilities 
(

()) = 
(

()) and


(

()) = 
(

()) and location attributes  = . Assuming the distribution of  does not

depend on  does not restrict the conditional distribution of (− 
(

()) 
(

()) )
¯̄̄


so that Assumption 2.3 can be made without loss of generality.

The allocation response function (− 
(

()) 
(

()) ) defines an individual-specific

mapping from peer types, ability, and neighborhood characteristics into outcomes. In our frame-

work the ‘treatment’ induced by a given allocation is a specific configuration of peers, as summarized

by their observed type composition, − and unobserved ability, 
(

()) and 
(

()) Resi-

dence in a specific location, where specificity is indexed by the vector of unobserved characteristics

, is also a feature of the ‘treatment’.

The non-observability of () and  generates complications, relative to the standard poten-

tial outcomes model of causal inference (Neyman, 1923; Rubin, 1974; Holland, 1986a,b), because

it implies that we do not observe the full ‘treatment’. The observed treatment is an assignment

to a set of peers with a given type composition. However, because peers and locations are hetero-

geneous, observationally equivalent assignments may be associated with distinct treatments (and

hence potential outcomes). Assumptions 2.1 and 2.2 are not strong enough to ensure that the

observed treatment satisfies the homogenous treatment assumption that is part of Rubin’s Stable-

Unit-Treatment-Value-Assumption (SUTVA) (cf., Holland, 1986a,b; Rubin, 1990).14

To deal with this issue we define an intermediate object: the expected allocation response

12 If  indexes a manipulable ‘treatment’ then this assumption, of course, has more content. Our framework can

be adapted to this case (see Manski (2010) for an elegant development).
13Many of our results extend straightforwardly to the case where unnormalized ability is a  × 1 vector ∗ =

(∗1     
∗
)

0. In that case Assumption 2.3 is imposed by the one-to-one mapping

1 =  (∗1|)
2 =  (∗2|∗1 )

...

 =  (∗|∗1     ∗−1 ) 

14 In related work Sobel (2006a,b) conceptualizes neighborhood effects as violations of SUTVA.
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function. Individual’s 0 expected allocation response function is given by

 
 (−) =

Z Z
  

Z
(− 

(()) 
(()) )

⎧⎨⎩ Y
∈()

(())d()

⎫⎬⎭  ()d (2)

Equation (2) gives an individual’s expected outcome when assigned to a group with peer compo-

sition − = − when groups are formed in a certain way. The group formation process enters
into the definition of  

 (−) because it is meant to measure the expected effect of exogenous
changes in observed peer composition, −. For this effect to have a causal interpretation it should
be unconfounded by the effects of matching and/or sorting of peers.

Matching occurs if individuals choose (or are assigned to) a location on the basis of its unobserved

attribute  and the utility derived from that choice depends on own attributes ( ). Matching

implies that the vector (  ) of individual peer and own attributes at the location of  is related

to the unobserved location characteristic . Hence there is no matching if

(  ) ⊥ 

which implies the density factorization

 | ( |) = | (|) ()

Sorting is related to the distribution of | . Sorting occurs if, for example, an individual’s

unobserved ability, , is related to those of her peers, (). Such a dependence would arise if an

individual’s preference for a location (or the assignment rule used) depends on the attributes and

types of its residents and this preference varies systematically with ( ). The absence of sorting

therefore implies that

( () ()) ⊥ 

¯̄̄


so that, conditional on own type, own ability does not vary with the type or ability composition of

one’s peers. No sorting generates the density factorization (see Appendix B)

| (|) =
Y
=1

| ( |) =
Y
=1

()

where the final equality is due to Assumption 2.3 and we use a double subscript notation with 

indexing individuals within a group in arbitrary order. Note that sorting, as defined above, does

not preclude high types seeking out peer groups composed of many other high types (i.e., sorting

on observables is allowed). Consequently the distribution of peer composition across groups is not

restricted by the absence of sorting. There is neither matching nor sorting if, for a group of a given

type composition, high type members are random draws from the subpopulation of high types, low

type members are random draws from the subpopulation of low types, and the group, so formed,
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is randomly assigned to a specific location.

In the absence of both matching and sorting the joint density of   given   factors into

 | ( |) =
⎧⎨⎩

Y
=1

()

⎫⎬⎭  ()

which is the product of marginals being integrated over in (2), which defines  
 (−).

Averaging  
 (−) over the subpopulations of low and high types gives the type-specific mean

allocation response functions

∗ (−) = E [ 
 (−)| = 0]  ∗ (−) = E [ 

 (−)| = 1] 

In what follows it is convenient to instead work with the one-to-one mappings

 () = ∗

µ


 − 1
¶
  () = ∗

µ
 − 1
 − 1

¶
(3)

where  is the overall fraction of high types in a group (inclusive of oneself). That is, we let

 =
P

=1
1(=)


. denote the fraction of high types in location . Henceforth we refer to  as

a location ’s group composition.

The type-specific mean allocation response functions  () and  () feature in each of our

estimands. They equal the expected outcome, given exogenous assignment to a group of composition

 = , of a randomly selected member of, respectively, the subpopulation of high and low types if

groups are formed without matching and sorting. Most of our identification results follow directly

from identification of  () and  ().

The overall mean allocation response function is given by the composition weighted average

 () =  () + (1− ) ()  (4)

which is the expected outcome of a randomly selected member of the population when assigned to a

group of composition  = . This function is related to the average structural function of Blundell

and Powell (2003). A direct application of their definition would replace the average in (2) with

one over the joint distribution of (0  )
0 Such an average would not be causal in our setting as

it would be contaminated by sorting (correlation in ability across group members) and matching

(correlation between ability and location quality) (cf., Graham, 2008, 2009, forthcoming). This is

a one example of how the presence of heterogeneity from multiple individuals (as well as locations)

in the production function for each individual complicates analysis and requires extra care when

defining estimands.

Equation (4) can be viewed as a statistical analog of the deterministic production technology

that features prominently in the theoretical public finance literature on multi-community models

(e.g., de Bartolome, 1990; Benabou, 1993, 1996; Durlauf, 1996a,b; Becker and Murphy, 2000).
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In order to provide a clean characterization of locational equilibrium as well as the solution to

the social planner’s problem, the multi-community literature has generally placed strong a priori

restrictions on (). A typical set of assumptions is that ()− ()  0 for all  ∈ S and that
2 () 2 is either positive or negative for all  ∈ S. Fernández (2003) provides an extensive
discussion of the role of these assumptions in this literature. In contrast, other than smoothness

assumptions, we leave  () completely unrestricted.

Differentiating  () with respect to  gives the marginal effect of changes in group composition

on group average outcomes:

∇ () =  () +  () 

where

 () =  ()− ()   () = ∇ () + (1− )∇ () 

The derivative of  () with respect to group composition consists of two parts. The first part,

 (), is the effect of changing group composition on expected outcomes holding spillover strength

constant. It is the compositional effect of changing group composition on expected group average

outcomes. Irrespective of the presence of social spillovers, average outcomes will rise because the

composition of the group has shifted toward high types. This effect is private, in the sense that it

reflects benefits that are entirely confined to the entering high type.

The second component,  (), measures the spillover or external effect associated with increasing

. The introduction of an additional high type individual into the group creates a spillover which

raises outcomes for all individuals in the group. Benabou (1996) and others have emphasized that,

since agents do not internalize the second effect when choosing locations, decentralized equilibria

may be inefficient.

Our final three main assumptions ensure that  ()   () and their derivatives, ∇ ()

and ∇ (), are nonparametrically identified. Nonparametric identification requires imposing

strong assumptions on the group formation process. In particular, while we allow for matching and

sorting on observables, we rule out the presence of these behaviors on unobservables (see Section 5).

This assumption is easiest to justify when the assignment is administratively determined, but under

certain information structures it may also hold when the assignment corresponds to a decentralized

equilibrium.

We emphasize that semiparametric or parametric identification of  () and  () is gen-

erally possible under weaker assumptions on the group formation process (e.g., Nesheim, 2002,

2009; Graham, 2009). The trade-off between the identifying power of a priori restrictions on the

production technology versus the assignment process is explored more fully in Graham (forthcom-

ing). Different researchers will find different combinations of assumptions appropriate depending

on the application at hand. Our application, being based on a randomized experiment, allows us to

leave  () and  () fully nonparametric. We consequently develop estimation and distribution

theory appropriate to this case, although our estimands apply generally.

First we make an assumption on the status quo assignment mechanism. In particular, we assume

12



the absence of matching and sorting on unobservables, as defined above.

Assumption 2.4 (No Matching and Sorting On Unobservables)

(  ) ⊥  ( () ()) ⊥ 

¯̄̄


Assumption 2.4 will be satisfied if groups are formed, and locations selected at random, (i.e.

under a double randomization scheme). To describe this scheme assume that the social planner

first chooses a feasible distribution of group compositions


sq
 () 

where the ‘sq’ superscript denotes ‘status quo’ and the density is across groups (i.e., it describes

composition for the population of locations/groups). Feasibility of the status quo (as well as that

of any other allocation), requires that it satisfies a restriction. Because the fraction high types 

is fixed, and all groups are equally-sized, feasibility requires that

 =

Z 1

0

sq
 ()d (5)

where we treat  as a continuously-valued random variable (as would be appropriate if the common

group size,  , is large).

After choosing a feasible joint distribution for group composition the planner fills high and low

type spaces in each group by randomly sampling from the high and low type subpopulations. This

ensures, along with Assumption 2.3, satisfaction of the second part of Assumption 2.4. The social

groups, so formed, are then randomly assigned to a specific location. Random assignment at this

stage ensures that the first part of Assumption 2.4 is satisfied.

As discussed above Assumption 2.4 rules out matching and sorting (on unobservables) (cf.,

Graham, 2008, forthcoming). It does not, however, restrict the degree of status quo segregation or

integration (
sq
 () is unrestricted beyond the requirement of feasibility). Consider the example

where locations are schools and  = 1 for white students and  = 0 for black students. In that case

Assumption 2.4 implies that the ability distribution of blacks is similar across schools regardless of

the degree to which they are segregated. Furthermore it requires that unobserved teacher quality is

independent of the degree to which a school is segregated. Clearly these are rather strong restrictions

outside of explicitly experimental settings. Nevertheless, by initially maintaining Assumption 2.4

in what follows, we are able to develop some results on the effects reallocations in a reasonably

straightforward way. In Section 5 we show how the presence of observable location-level attributes

may be used to weaken Assumption 2.4.

Our next assumption ensures that the gradients, ∇ () and ∇ (), are identified.

Assumption 2.5 (Continuous Variation) If  sq ()  0 then 
sq
 (

0)  0 for all 0 in a neigh-
borhood of  ⊂ S.
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Assumption 2.5 only makes sense if it is legitimate to treat group composition, , ‘as if’ it were

a continuously distributed random variable. Such an approximation requires that the common

group size,  , be relatively large. Thus our estimands and estimators are not appropriate for

situations where groups are small (e.g., college roommates).

Finally we assume the availability of a random sample of locations.

Assumption 2.6 (Random Sampling) {   }=1 is a random sample of  neighborhoods of

 =  individuals.

These last three assumptions, as well as the restrictions on each individual’s allocation response

function implied by Assumptions 2.1 to 2.3, ensure that  ()   () and their derivatives with

respect to  are asymptotically revealed.

Proposition 2.1 Under Assumptions 2.1 to 2.6 (i)  () and  () are identified for all  such

that 
sq
 ()  0 by the conditional expectation functions (CEFs):

E[| = 0  = ] = () E[| = 1  = ] = ()

and (ii) ∇ ( ) and ∇ ( ) are identified by the derivative of these CEFs with respect to

.

Proof See Appendix B.

3 Characterizing the effects of social spillovers

In this section we introduce new estimands which characterize different features of the outcome

effects of social spillovers. Prior work on the empirics of social interactions has emphasized testing

for their presence and/or measuring their average strength. We therefore begin by proposing a

simple measure of average spillover strength. The primary goal of this section, however, is to

present summary measures of the effect of local reallocations on the distribution of outcomes. In

particular we consider the outcome and inequality effects of a class of reallocations which increase

segregation marginally.

3.1 Measuring spillover strength

Manski (1993), Brock and Durlauf (2001), Glaeser and Scheinkman (2003) and Graham (2008)

emphasizes the notion of a social multiplier or the ratio of the full effect of marginal changes in

group composition to the private effect:

∇ ()

 ()
= 1 +

 ()

 ()
 for  () 6= 0

The social multiplier is an intuitive measure of spillover strength and has the virtue of being

unitless. Nevertheless, for simplicity, as well as technical reasons, we instead suggest a direct
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measure of average spillover strength. Conditional on  =  the average external effect is given by

 (). Averaging over individuals gives an overall average spillover effect (ASE) of

ase = E [ ()  ()] = E [ () {∇ () + (1− )∇ ()}]  (6)

where  () is a fixed trimming function that gives zero weight to values of  () near the boundary

of the support of , specifically,

 () = 1 (  + )1 (  − )   ⊂ S = [ ]

The introduction of fixed trimming into the definition of ase is somewhat awkward, but is required

to ensure that (i) the semiparametric efficiency bound for ase is non-zero and (ii) to avoid boundary

bias problems associated with nonparametric estimation of  () and  () (cf., Newey and

McFadden, 1994; Newey and Stoker, 1993).

Equation (6) equals the mean external effect, or spillover benefit, of an unit increase in the

fraction of high type individuals in each group. Identification of ase follows directly from Propo-

sition 2.1 and random sampling. While it is easy to construct examples where the outcome effects

of reallocations are nontrivial even if ase = 0 (and vice versa), it is nevertheless a simple summary

measure of spillover strength; being a nonparametric generalization of the target estimand of a large

empirical literature (e.g., Coleman et al., 1966; Mayer and Jencks, 1989; Solon, 1999; Angrist and

Lang, 2004; Ciccone and Peri, 2006; Graham, 2008). While ase is arguably of scientific interest it

does not, since the peer structure of all individuals cannot be simultaneously improved, measure

the effects of an implementable policy.

3.2 Measuring the effects of reallocations

The average spillover effect measures the outcome benefit of an infeasible increase in the population

frequency of high types. In contrast reallocations of individuals across groups, since they leave the

population type distribution unchanged, are, at least in principal, implementable policies. Before

considering the effects of a reallocation of individuals across groups, we define the general class of

reallocations under consideration. We assume that the social planner, or allocating agency, observes

each individual’s type,  and initial assignment (i.e., the planner observes 
sq
 (), the distribution

of  under the status quo, and ) The planner also knows the high- and low-type mean allocation

response functions  () and  (). The planner does not observe  or  (or is institutionally

constrained to not act on this knowledge).

We consider reallocations obeying the feasibility constraintZ 1

0
 r () d =   (7)

Equation (7) says that  r () cannot imply an augmentation of resources, in this case the population

frequency of high types. The set of reallocations satisfying condition (7) is very large. In Section
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6 we characterize average outcome-maximizing reallocations. Here we consider estimands which

characterize the effects of a specific class of local reallocations.

Our local reallocation estimands measure the effects of a particular parameterization of a small,

segregation increasing (relative to the status quo), reallocation. Specifically they give the sign of a

small such increase in segregation on average outcomes and inter-type inequality.

The reallocation density we consider takes the form

 r(; ) =


1 +  ()

sq


µ
+  () 

1 +  ()

¶
 (8)

where  = E [|  () = 1] is the trimmed population frequency of high types (i.e., the fre-
quency of high types with status quo assignments to groups with group compositions in the interior

of S) Appendix B demonstrates that (8) is a feasible reallocation.
Implementing the allocation defined by (8) is equivalent to altering the composition of the 

group according to the rule

r =  +  () ( − )  (9)

so that (8) is effectively a mean-preserving spread of 
sq
 () when   0 . For   0 (8) increases

segregation across those groups with status quo compositions, , within the interval from + to

− It leaves group composition unchanged across those groups that are initially highly segregated
such that  ≤ +  or   − . Implementing (8) involves moving high type individuals from

groups where the fraction of high types is below their trimmed population frequency (  ), to

groups where it is above that frequency (  ). Such moves are accommodated by switching

each high type with a corresponding low type individual. Highly segregated group compositions

are left unchanged by (8) to (i) ensure feasibility (it is difficult to increase segregation in a group

that is already very segregated) and (ii) for technical reasons. We assume that  is small enough,

or equivalently,  large enough, to ensure that r ∈ [0 1] for all groups.
From (9) average outcomes after an segregation increasing reallocation are given by

E [ (r )] = E [ ( +  () ( − ))] 

We are interested in the direction of the effect of implementing (8) on average outcomes when

 → 0 This corresponds to a small increase in segregation. Differentiating the above expression

with respect to  and evaluating at  = 0 gives the desired local segregation outcome effect (LSOE):

lsoe = E [ ()∇ () ( − )] = C (∇ ()  |  () = 1)  (10)

with  = Pr ( () = 1) 

Equation (10) is an intuitive condition. If groups where the fraction of high type agents exceeds

the trimmed population mean (  ) tend also to be relatively responsive to changes in  (i.e.,

∇ () is larger than average), then reallocations that reinforce any existing segregation across

groups will tend to raise average outcomes. In contrast, if groups with a low fraction of high type
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agents are very responsive to changes in , then reallocations that reinforce existing segregation

will tend to lower average outcomes.

To highlight the structure of lsoe, and connect it to theoretical work on neighborhood sorting,

it is helpful to consider the decomposition

lsoe = lppe + lepe

where

lppe = C ( ()  |  () = 1)  lepe = C ( ()  |  () = 1) 

Under the current setup, local reallocations may alter population average outcomes for two

distinct reasons. First, peer quality changes for those individuals who change groups as part of the

reallocation, called ‘movers’. This is an internalizeable or private peer effect. Second, peer quality

changes for those individuals who do not switch groups as part of the reallocation, called ‘stayers’,

we call this the external peer effect.

First, consider the private peer effect. If the benefits of improved peer quality for high type

movers entering groups with an initially above average fraction of high types exceed the costs for low

type movers leaving such groups, then implementing (8) will tend to raise the average achievement

of movers. Observe that the private peer effect will be zero when outcomes are separable in own

and peer types (as is often assumed in empirical work), positive when they are complementary (as

is typically assumed in theoretical work on sorting) and negative when they are substitutable. The

sign of the private effect on average outcomes is captured by lppe Positivity of lppe suggests the

presence of private incentives for further, segregating-increasing, sorting.

Second consider the external peer effect. This term captures changes in average outcomes

operating through the reallocation’s effect on average spillover strength. If the marginal benefit

of an additional high type on stayers is greater in groups with a large fraction of high types (i.e.,

lepe  0), then increased segregation will raise average outcomes by raising average spillover

strength. This term is only non-zero in the presence of some form of social spillover. The sign of

lepe determines the direction of the external effect associated with implementing (8). This effect

is not internalized by individuals as they negotiate switches in group membership.

The next theorem makes the above statements more precise and explicitly connects lsoe to the

theoretical work on segregation and efficiency done by de Bartolome (1990), Benabou (1993, 1996),

Becker and Murphy (2000) and others.

Theorem 3.1 Under Assumptions 2.1 to 2.6 lsoe = lppe + lepe with (i)

lppe = V (|  () = 1)E [() {∇ ()−∇ ()}|  () = 1]
lepe = V (|  () = 1)

× E [() {∇ ()−∇ () + ∇ () + (1− )∇ ()}|  () = 1]] 
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where E [()] = 1 with

 () =
1

|() (|  () = 1)

× E [ − |    () = 1]
¡
1− |() (|  () = 1)

¢R =1
=0 E [ − |    () = 1]

¡
1− |() (|  () = 1)

¢
d



and (ii) the averages lppe and lepe give maximal weight to values at  =  and minimal weight

to those at  = +  and  = − 

Proof See Appendix B.

Theorem 3.1 provides a mathematical representation of the private and external effects discussed

above. Theorem 3.1 implies that a small increase in segregation raises average outcomes if

2E [() {∇ ()−∇ ()}|  () = 1] (11)

+ E [() {∇ () + (1− )∇ ()}|  () = 1]

is greater than zero. The two terms in the above expression, to use the language of Benabou (1996),

are respectively weighted averages of the degree of complementarity and curvature. They are local

statistical analogs of identically named global deterministic objects discussed by Benabou (1996),

Fernández (2003) and others.

Theoretical work has generally assumed that ∇ () − ∇ ()  0 for all  ∈ (0 1) or
that own and peers’ type are global complements. Global complementarity ensures that high type

residents will always benefit more from improvements in peer quality than their low type neighbors.

While the empirical evidence for such a strong form of complementarity is mixed, theoretical work

nevertheless takes it as a primitive since it induces equilibrium stratification.15

Theorem 3.1 indicates that a measure of local average complementarity,

E [ () {∇ ()−∇ ()}|  () = 1] 

is important for determining whether small increases in segregation raise the average outcome. If,

in the neighborhood of  = , own and peers’ type tend to be complementary, then the first

term in (11) will be positive. This is a ‘force’ in favor of a local increases in segregation being

outcome-raising. It is also suggestive of the existence of incentives for further segregation relative

to the status quo.

The theory literature also discusses the importance of curvature for determining whether segre-

gation is outcome-maximizing. Curvature, equal to ∇ () + (1− )∇ (), determines

whether there are diminishing returns to peer quality at the neighborhood level. Theoretical

work emphasizes the case where curvature is such that 2 {∇ ()−∇ ()} + ∇ () +

15 If the marginal benefit of an additional high type is greater for high types than it is for low types, then high

types will be willing to pay more to live in high quality neighborhoods in equilibrium
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(1− )∇ () is negative for all  ∈ S (i.e., global concavity of  () in group composition).
In that case complementarity of own and peer quality induces equilibrium segregation, but such

segregation is inefficient in the sense that it does not maximize average outcomes (cf., Benabou,

1996, Proposition 7). In such a situation within a neighborhood high types always benefit more

from improvements in peer quality than do low types, while across neighborhoods areas with few

high types benefit more from increases in peer quality than do areas with many high types. This

situation, where the private and social incentives for sorting are misaligned has been emphasized

by Benabou (1993, 1996) and others.

Theorem 3.1 indicates that a measure of local average curvature,

E [ () {∇ () + (1− )∇ ()}|  () = 1] 

is important for determining whether segregation is outcome raising in the current context as well.

If, again in the neighborhood of  =  the marginal benefit of an additional high type peer

tends to decline more with  for high relative to low types, then the second term in (11) will be

negative.

To summarize Theorem 3.1 indicates that the average outcome effects of small increases in

segregation depend on the relative magnitudes of local average complementarity and local aver-

age curvaturve. These are statistical analogs of well-known deterministic objects from the multi-

community models literature. The novelty here, besides the introduction of statistical content, is

that the interpretation of lsoe does not depend on a priori restrictions on  (). The cost of such

flexibility is that lsoe provides only local information about the relative average outcome effects of

segregation versus integration.

The LSOE provides an indication of the likely effects of small increases in segregation on average

outcomes. An abiding concern of the literature on segregation, however, is the potential for an

equity versus efficiency trade-off. Even if increases in segregation raise average outcomes, such

efficiency gains may be unacceptable if they increase inequality across groups. On the other hand,

reallocations which both reduce inter-type inequality and raise average outcomes are especially

compelling.

Our next estimand measures the sign of the change in the high-low outcome gap associated with

a segregation-increasing reallocation. This object, the local segregation inequality effect (LSIE),

along with the LSOE defined above, allows one to test for the presence of a local equity-efficiency

trade-off.

The average outcome of a high type individual under the status quo is given by, using iterated

expectations,

E [ ()| = 1] = E
∙
 ()



¸
= E

∙



 ()

¸


with a similar expression holding for low types. Therefore, after reallocation the high-low outcome
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gap is given by

E
∙
r


 (
r
 )

¸
− E

∙
1− r
1− 

 (
r
 )

¸
=

E
∙
( +  () ( − ))


 ( +  () ( − ))

¸
− E

∙
(1−  −  () ( − ))

1− 
 ( +  () ( − ))

¸


Differentiating with respect to  and evaluating at  = 0 gives a local segregation inequality effect

of, or the sign of the reallocation’s effect on the high versus low type average outcome gap equal

to,

lsie = E
∙
 ()


{ () + ∇ ()} ( − )

¸
(12)

− E
∙
 ()

1− 
{− () + (1− )∇ ()} ( − )

¸


4 Estimation

Our approach to estimation of ase lsoe and lsie involves forming sample analogs of the right-

hand-sides of, respectively, (6), (10) and (12) above. In order to do this we must replace  () 

 () and/or their derivatives with estimates (along with replacing  and, for the case of 
lsie,

 with estimates). We propose to use kernel smoothing methods to estimate each of these objects.

Let K () denote a kernel function that integrates to one and satisfies other conditions. Define
(− ) = −1K((− )). Our estimates of  () and  () are given by

b () =
b1 ()b2 ()  b () =

b1 ()b2 () (13)

where

̂1() =
1

1

1X
=1

(− ) ̂1() =
1

0

X
=1+1

(− )

̂2() =
1

1

1X
=1

(− ) ̂2() =
1

0

X
=1+1

(− )

We assume that the sample is ordered so that the 1 high types appear first followed by the

0 =  − 1 low types.
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We estimate the derivatives of  () and  () by the derivatives of their estimates:

∇ b () =
1b2 () [∇b1 ()−∇b2 () b ()] (14)

∇ b () =
1b2 () [∇b1 ()−∇b2 () b ()] 

Finally we estimate  and  by

b =
1


P
=1  ()

1


P
=1  ()

 b = 1



X
=1

 (15)

We begin by describing our average spillover effect estimator, which is

base = 1



X
=1

 () {∇ b () + (1− )∇ b ()} 

The next proposition characterizes the large sample properties of base
Proposition 4.1 Under regularity conditions base is √ consistent with an asymptotic sampling

distribution of √

³base − ase

´
→ N

³
0E

heei´ 
where, e = P

∈{:=}
 ()  and  (), the efficient influence function, is given by

 () =
 ()



½
 ()− ase − ∇ ()

 ()
( − ())

−
µ∙




− (1− )

1− 

¸
− [ ()− ()]

¶¾


Proof See the Supplemental Web Appendix.

Observe that the asymptotic variance formula base is of the ‘clustered’ variety. Independence
of outcomes holds across groups but not within them due to the presence of unobserved locational

heterogeneity, .
16 The form of the influence function is also instructive. The first term would be

the influence function if  () we known. The second two terms therefore capture the effects of first-

step nonparametric estimation of  ()  Of these two terms the first is identical to the correction

term associated with semiparametric average derivative estimation (cf., Härdle and Stoker, 1989;

Powell, Stock and Stoker, 1989; Newey and McFadden, 1994). This follows from re-expressing the

estimand as the difference

ase = E [ ()∇ ()]− E [ () { ()− ()}] 
16Newey (1994a, p. 1367) notes that dependence of this type does not affect the form of the efficient influence

function.
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Thus the first of the two correction terms captures the sampling uncertainty from having to estimate

∇ (), while the second is due to sampling error in the estimate of the difference  () −
 () 

The Supplemental Web Appendix derives the form of  () using the methods described by

Newey (1994a). It does not provide primitive conditions for
√
 consistency and asymptotic nor-

mality. This can be done along the lines of Newey and McFadden (1994, Section 8). Here we make

only a few comments that are particular to our problem. First, the weight function  () serves

two distinct purposes. First, it ensures that the product  ()  () is zero on the boundary of the

support of . The pathwise derivative calculations in the appendix make clear that such a condition

is required for the semiparametric variance bound to be finite. Analogous weight functions play

a similar role in average derivative estimation as elegantly explained in Newey and Stoker (1993,

p. 1206). A second concern is boundary bias in our first step estimates ∇ b () and ∇ b ().

Eliminating such bias is required for the remainder term from linearization (of our second step

moment) to be small. The  () weight effectively eliminates this problem by requiring us to only

estimate ∇ b () and ∇ b () on the interior of the support of . As is usual in semiparametric

estimation, higher order kernels are required for bias reduction, although the use of such kernels in

practice may be ill-advised.

Estimation of lsoe parallels that of ase. Using the first step estimates defined in (13), (14) and

(15) above we form the sample analog of (10):

blsoe = 1



X
=1

 () [b ()− b () + ∇ b () + (1− )∇ b ( )] ( − b) 

Proposition 4.2 Under regularity conditions blsoe is √ consistent with an asymptotic sampling

distribution of √

³blsoe − lsoe

´
→ N

³
0E

heei´ 
where, e = P

∈{:=}
 ()  and  (), the efficient influence function, is given by

 () =
 ()



n
∇ () ( − )− lsoe

− ∇ ()

 ()
( − ()) ( − )−  () [ − ()]

−E [∇ ()|  () = 1] ( − )} 

Proof See the Supplemental Web Appendix.

As discussed in Section 3 above is interesting to decompose lsoe into is private (mover), lppe,
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and spillover (stayer) components, lepe. These components may be estimated by

blppe = 1



X
=1

 () [b ()− b ()] ( − b)

blepe = 1



X
=1

 () [∇ b () + (1− )∇ b ()] ( − b) 

The next two propositions characterizes the large sample properties of these estimators.

Proposition 4.3 Under regularity conditions blppe is √ consistent with an asymptotic sampling

distribution of √

³blppe − lppe

´
→ N

³
0E

heei´ 
where, e = P

∈{:=}
 ()  and  (), the efficient influence function, is given by

 () =
 ()



n
 () ( − )− lppe

+

½µ




¶
 − ()

¾
( − )−

½µ
1− 

1− 

¶
 − ()

¾
( − )

−E [ ()|  () = 1] ( − )} 

Proof See the Supplemental Web Appendix.

Proposition 4.4 Under regularity conditions blepe is √ consistent with an asymptotic sampling

distribution of √

³blepe − lepe

´
→ N

³
0E

heei´ 
where, e = P

∈{:=}
 ()  and  (), the efficient influence function, is given by

 () =
 ()



n
 () ( − )− lepe

− ∇ ()

 ()
( − ()) ( − )− [ − ()]

−
½µ





¶
 − ()

¾
( − ) +

½µ
1− 

1− 

¶
 − ()

¾
( − )

−E [ ()|  () = 1] ( − )} 

Proof See the Supplemental Web Appendix.

Note that the sum of the influence functions for blppe and blepe equal that of blsoe.
Finally our estimate of lise the effect of a small increase in segregation on the high-low outcome
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gap, is given by

blise =
1



X
=1

 ()b {b () + ∇ b ()} ( − b)

−1


X
=1

 ()

1− b {−b () + (1− )∇ b ()} ( − b) 

Proposition 4.5 Under regularity conditions blise is √ consistent with an asymptotic sampling

distribution of √

³blise − lise

´
→ N

³
0E

heei´ 
where, e = P

∈{:=}
 ()  and  (), the efficient influence function, is given by

 () =
 ()



½
1


{ () + ∇ ()} ( − )

− 1

1− 
{− () + (1− )∇ ()} ( − )− lise

− 1



∇ ()

 ()
( −  ()) ( − )

+
1

1− 

∇ ()

 ()
((1− ) − (1− ) ()) ( − )

− 1


( −  ()) +

1

1− 
((1− ) − (1− ) ())

− 1


E
∙




[ () + ∇ ()]

¯̄̄̄
 () = 1

¸
( − )

+
1

1− 
E
∙
1− 

1− 
[− () + (1− )∇ ()]

¯̄̄̄
 () = 1

¸
( − )

¾


Proof See the Supplemental Web Appendix.

5 Incorporating additional covariates

The identification and estimation results presented so far maintain strong assumptions on the form

of the status quo assignment. In this section we briefly discuss how the availability of individual-

and location-level covariates may be used to accommodate richer patterns of matching and sorting

in the status quo. Let  and  respectively denote vectors of observed individual- and location-

level covariates (e.g., student and teacher characteristics or class size). We replace Assumptions

2.3 and 2.4 with the conditional analogs:

Assumption 5.1 (Inclusive Definition of Type)  ⊥ |
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Assumption 5.2 (No Matching and Sorting On Unobservables)

(  ) ⊥ |  ( () () ()) ⊥ 

¯̄̄


Assumption 5.1 establishes a different normalization for unobserved ability: we now conceptu-

alize ‘ability’ as one’s rank within the subpopulation of individuals homogenous in type (), other

observed individual attributes (), and observed location characteristics ().

Assumption 5.2 substantively weakens the requirements placed on the status quo allocation. The

first part of the assumption implies that location-specific unobservables, , vary independently of

the type and ability structure of a group (  ). This independence, however, now needs to

hold only conditionally (on group members’ observed characteristics,  , and location-specific

characteristics, ). This assumption rules out matching on unobservables, whereby groups with

particular type and ability structures are able to systematically secure locations with particular

unobserved characteristics. It does allow observed group member and location attributes (i.e.,

  and ) to covary with unobserved location quality. That is, it allows agents to match on

observables.

The second part of the assumption implies that conditional on own- and location-specific ob-

servables each agent’s ability is independent of the abilities, types and other characteristics of their

peers. Conditional on own observed characteristics, individuals with higher ability, for example,

are not able to sort into groups with peers of above average ability. Importantly, this assumption

does allow for sorting on observables. For example, high type individuals may be more likely to

co-locate with other high types and, similarly,  may covary with  ().

One way to ensure the satisfaction of Assumption 5.2 is to adopt the following assignment

scheme. The planner begins by choosing a feasible joint distribution for (  ). Second, the

planner forms classrooms with specific racial ( ) and socioeconomic configurations ( ). These

classes must obey the constraints imposed by the joint distribution of  and  in the population.

Third, the planner assigns each class configuration to a certain type of teacher, defined in terms

of their value for  (e.g., a measure of teaching experience). Fourth, to fill a  =  and  = 

slot the planner draws a student at random from that subpopulation. To fill an  =  teaching

slot, the planner draws a teacher at random from that subpopulation.17 Assumption 5.2 is also

consistent with endogenous group formation under particular (and strong) informational structures

(cf., Heckman and Vytlacil, 2007a,b).

Assumption 5.2 allows for richer assignment patterns. For example, blacks in predominately

black classrooms may be poorer (i.e., more likely to be eligible for free or reduced price school

lunch), than blacks in predominately white classrooms. Observed measures of teacher quality may

also vary with class composition.

17This scheme approximates that used by the Berkeley Unified School District for elementary school enrollment.
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Adapting the argument used in the proof to Proposition 2.1 (see Appendix B) we can show that

Assumptions 5.1 and 5.2 yield the density factorization:

 | ( |  ) =

⎧⎨⎩
Y
=1

( |  )

⎫⎬⎭  (| )

so that the regression function

E [| = 1  =   =  = ] =  (  )  (16)

gives the expected outcome for a high type individual with observed characteristic  = , given

exogenous assignment to a group of composition  =  with observed peer and location character-

istics  () = () and  = . The proxy variable regression function for low types,  (  ),

is analogously defined.

The reallocation estimands defined in Section 3 remain valid after replacing  () and  ()

with  (  ) and  (  ). The influence functions given in Section 4 remain valid after

replacing  () and  () with  (  ) and  (  ) and  () with  (  ).

Integrating over ( ) and invoking Assumptions 5.1 and 2.3 yieldsZ Z
  

Z
 |( |  )( )d1    dd

=

Z Z
  

Z ⎧⎨⎩
Y
=1

( |  )

⎫⎬⎭  (| )( )d1    dd

=

⎧⎨⎩
Y
=1

()

⎫⎬⎭  ()

so that we can recover  () directly by the partial mean

 () = E [E [| = 1  =  ]]

under appropriate support conditions and similarly for  () 

6 The social planner’s problem

In this section we characterize the structure of average outcome maximizing assignments of indi-

viduals to groups. We allow group size to vary, but only consider reallocations which leave the

marginal distribution of group-size fixed. Let group size  ∈ {1     } with   = Pr ( = ) ;

the class of reallocations we study is completely characterized by the  = 1      conditional group-

composition cumulative distribution functions: | (|). The social planner’s problem is thus a

functional (i.e., infinite-dimensional) optimization one. Such problems are typically quite difficult

to solve, standard mathematical programming results being inapplicable.
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In our case we show, by exploiting the special structure of the planner’s problem and the feasibil-

ity constraint, that a direct solution is available, easily characterized and computationally feasible.

This result allows us to identify the maximum average outcome level available via reallocation. A

comparison of the maximum average outcome with that observed under the status quo provides a

measure of efficiency of the status quo (cf., Bhattacharya, 2009). Consider a school board pondering

open enrollment. If current achievement levels are near the maximum attainable via reallocation,

then a costly change in the assignment mechanism may be less attractive.

Analysis of the planner’s problem also provides insight into the interaction of the production

technology and resource constraint (i.e., the fraction of high types in the population) in determining

the optimal allocation. Below we provide examples where, holding technology fixed, the optimal

allocation is either integrating or segregating depending on the type structure of the population.

This highlights the danger of informally inferring the optimality of segregation versus integration

by inspection of the production technology alone (as is common in practice).

We assume that the planner knows the mean allocation response function,  ( ), the status

quo assignment, 
sq
 ( )  and the population fraction of high types,  . Her problem is to

choose an allocation which maximizes expected average outcomes:

max
| ( ·|1)| ( ·|)

X
=1

∙




Z
 ( ) | (|) d

¸
  (17)

subject to restriction
X
=1





∙Z
| (|) d

¸
  =   (18)

with  = E []  Weighting by  ensures that the planner maximizes average individual

outcomes (and not the average of mean group outcomes).

Our characterization of the solution to (17) involves two steps. First, we solve a simplified

problem. In the simplified problem all groups are of the same size. In this case the only observable

dimension distinguishing groups is their composition. We show that the optimizing planner chooses

the allocation,  ∗ (), in a way that implicitly ‘concavifies’ the mean allocation response function,
 () (we suppress the  argument when discussing the simplified problem). One intuition for our

result follows from the observation that an optimizing planner behaves similarly to that of a cost

minimizing producer facing (possibly) nonconvex isoquants (McFadden, 1978).

Second, using our first step result we show that the original problem can be broken into two

simple steps. Let  denote the fraction of high types in the subpopulation of individuals assigned to

groups of size  (as part of a candidate reallocation). Conditional on choosing such an allocation,

the optimal conditional allocations | (|1)      | (|) are determined by our first result.
Since  =

R
| (|1) d we can re-write the feasibility constraint (18) as

X
=1






sq
 =  
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Figure 1: Optimal allocations for different  () and 
NOTES: Each panel plots a different expected allocation response function,  () (solid dark line).
The concave envelopes of these expected allocation response functions,  ()  are the given by the
dashed lines at or above  ()  The vertical dashed lines indicate the population frequency of high
types,   For figures with two such lines the second line (i.e., the right-most line) gives the location

of a second population frequency, 0  The point labeled  marks the location of (  ()). The
points labeled  and  mark the locations of, respectively, ( ()) and (  ( )) (when
 6=  ) The point labeled 0, if present, marks the location of (0  (0)).

and hence show that the original problem is equivalent to a finite-dimensional optimization problem

where the planner chooses the vector  = (1     )
0. Furthermore we show that the equivalent

problem is a concave one and hence that the Kuhn-Tucker conditions are both necessary and

sufficient. This allows us to provide a fairly complete characterization of the planner’s problem.

Numerical computation of an outcome maximizing allocation is straightforward. We can therefore

estimate the maximum attainable average outcome. A similar argument can be used to characterize

the problem of minimizing expected average outcomes.

The concave envelope of  ( ) plays an important role in our argument. The following

definition, adapted from Horst, Pardalos and Thoai (2000), defines this object.

Definition 6.1 Let  : S → R1 be a continuous function with S = [ ] (a convex set in R1), then
the concave envelope of  () taken over S is a function  () such that
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(i)  () is concave on S, (ii)  () ≥  () for all  ∈ S, (iii) if  () is any concave func-
tion defined on S such that  () ≥  () for all  ∈ S, then  () ≥ () for all  ∈ S.

Formally  () is the function whose truncated lower epigraph coincides with the convex hull

of the truncated lower epigraph of  () (cf., Rockafellar, 1970). Intuitively it is the uniformly best

concave overestimator of  () 

We begin by considering the planner’s problem when all groups are equally-sized. Outcome

maximizing allocations in that setting are characterized by the following theorem.

Theorem 6.1 Consider the problem

max
(·)∈Γ

Z
 ()  () d s.t.

Z
 () d =   (19)

where  ∈ S = [ ] with  ≥ 0  ≤ 1 Γ is the space of all probability measures on S, and
 = E []  then, with  ∗ (·) denoting a solution to (19),Z

 () ∗ () d = () (20)

and

 ∗ () = (1− )1 ( ≥ ) + 1 ( ≥  )   =

(
−
−   

12  = 
(21)

where

 = max { :  ≥   ≤    () =  ()}   = min { :  ≤   ≥    () =  ()} 

Proof See Appendix B.

Theorem 6.1 shows that an outcome maximizing allocation may be constructed by a group

composition density with just two mass points. The location of these mass points coincide with the

s-axis values of the first extreme points to the ‘right’ and left’ of (  ())  To see why this is

the case it is helpful to examine some examples in detail.18 Figure 1 plots four different forms for

 (). Consider Panel A of the figure. In that panel  () is globally convex. The concave envelope

of  () is equal to the straight line passing through the points B, A and C. The vertical dashed

line in this figure depicts the population frequency of high types,  . If ‘production’ on  ()  the

concave envelope of  (), were feasible, then, by Jensen’s inequality, an optimal allocating would

clearly be integrating: all groups would have a fraction of high types equal to  . While this is

not possible, this same average outcome is achievable by a segregating allocation with groups of all

low or high types. In Panel B of the figure,  () is globally concave. In that case  () and its

concave envelope  () coincide such that the integrated allocation maximizes average outcomes.

These two cases correspond to those emphasized in the multi-community models literature.

18We thank Emmanuel Saez for providing some of these examples. His intuitive insight was key in being able to

show Theorem 6.1.
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Panels C and D depict more complicated examples. In Panel C  () has both concave and

convex regions. If  = 02, shown by the left-most vertical dashed line in the figure, then the

social planner will form some groups with no high types (point B in the figure) and some partially

integrated groups (point C in the figure). The proportion of each type of groups is determined by

the feasibility constraint. This example illustrates the key idea of the theorem: because groups can

be formed with different proportions of high types, the output level  () is attainable. Since

 () ≥  () for all  ∈ [0 1] and is concave it follows that  () equals the maximal attainable

average outcome level. Mathematically the result follows from that fact that any point on the

convex hull of a set of points can be represented as a linear combination of extreme points on the

hull.

Panel C highlights a second feature of our problem. As discussed above, when  = 02 (left-

most vertical dashed line),  () ≥  () so that the social planner will choose a segregating

allocation. In contrast when  = 08 (right-most vertical dashed line)  () =  () so that

the social planner will choose a perfectly integrated allocation. This provides a simple, albeit

stylized, example of how knowledge of the production technology alone is not sufficient for solving

the planners problem. Panel D gives a further example of an average outcome response function

with both convex and concave portions.

The solution to the original social planner’s problem is characterized by the following corollary

to Theorem 6.1.

Corollary 6.1 A solution to the social planner’s problem defined by (17) and (18) is given by

 ∗| (|) = [1−  ()]1 ( ≥  ()) +  ()1 ( ≥  ())

where

 () =

(
−()

 ()−()  ()   ()

12  () =  ()

for  = 1      and

 () = max { :  ≥   ≤   ( ) =  ( )}
 () = min { :  ≤   ≥   ( ) =  ( )} 

with  ( ) the concave envelope of  ( ) on  ∈ S and 1      the solution to the concave
programming problem

max
1∈S∈S

X
=1




 ( )   s.t.

X
=1




  =   (22)

Proof See Appendix B.

Corollary 6.1 provides a simple algorithm for calculating the maximum attainable average out-

come available via reallocation. First, compute  ( ) for each of the  group sizes. Second,
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solve the concave program (22). Third, compute the value of
P

=1



 ( )   at the solution.

Our final identification result follows directly:

Proposition 6.1 If (i) Assumptions 2.1 to 2.6 hold and (ii) 
sq
| (|)  0 for all  ∈ S and

 = 1      then (a)  ∗
| (|) is identified and (b) so is the efficiency measure

esq =
X
=1

∙




Z
 ( ) 

∗
| (|) d

¸
  − E [ ] 

The efficiency of the status quo measure (ESQ), esq, equals the maximum average outcome

gain, relative to the status quo, available via reallocation.

7 Empirical illustration

Here we apply our methods to an analysis of classroom gender composition on student achievement.

The data were collected as part of a randomized study of the effects of class size on student perfor-

mance (Project STAR). They have been previously analyzed by, among others, Whitmore (2005),

Krueger and Whitmore (2001), and Graham (2008). The study involved randomized assignment

of both teachers and students to classrooms, a design feature important to our analysis. We focus

on the question of the effect of segregation by sex in classrooms.

We have information on 5,781 kindergarten students in 325 classrooms (on average 18 per class).

We focus on math achievement as the outcome, normalized to have zero mean and unit variance.

The average test score for girls is 0.08 and -0.08 for boys. Girls make up 49% of the sample. Figure

2 presents average achievement scores, averaged over all children in the class, as a function of the

proportion of girls in the class. There is a clear upward slope in the regression function, implying

that, on average, classes with more girls perform better than classes with few girls. This regression

function by itself does not provide any evidence of spillover effects. The second panel in the figure

presents a histogram of the proportion of girls in the 325 classrooms, ranging from 0.28 to almost

0.80.

Figure 3 presents estimates of () and () (the regression functions for girls and boys

respectively) separately. The estimation procedure is as described in Section 4 above with the

modifications needed for the presence of additional observables implemented as described in 5.

Other particulars of the estimation procedure are detailed in the notes to the tables and figures.

These nonparametric estimates underly our estimates of the reallocation effects studied above.

In Table 1 we present estimates of our various estimands. In Panel A we present the preferred

nonparametric estimates. In the first row the results for the average spillover effect ase are reported.

The estimates suggest that, on average (averaged over both girls and boys), kids benefit from having

more girls in the class. This provides strong, nonparametric, evidence of peer spillovers from gender

composition (cf., Whitmore, 2005). The next row of estimates gives the local segregation outcome

effect, lsoe. It shows that, although on average kids benefit from having more girls as classmates,
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Figure 2: Average math achievement and classroom gender composition, Project STAR Kinder-

garten Students

Notes: The left-hand-side of the figure plots kernel partial mean estimates of  () =
E [ ( ) + (1− )  ( )] where   is empty and  includes total school enroll-

ment, fraction female in the school, and class size. A multivariate standard normal kernel was used

with a bandwidth matrix proportional to the covariance matrix of the regressors. The degree of

proportionality was chosen by leave-own-school-out cross-validation. The dashed lines are pointwise

90 percent confidence intervals calculated using the approach of Newey (1994b) (modified to allow

for within-school dependence across observations). Units attending schools with enrollments below

50 or above 150 and/or those in schools with fraction female below 0.35 or above 0.65 were trimmed

when forming the partial mean (about 9 percent of the students). Valid test scores, standardized

to be mean zero with unit variance, were available for  = 5 871 students in  = 325 classrooms
located across 79 different schools. The right-hand-side of the figure plots a histogram of peer

composition at the individual level.
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Figure 3: Average math achievement by gender and classroom gender composition, Project STAR

Kindergarten Students

Notes: The figure plots kernel partial mean estimates of  () = E [ ( )] and  () =
E [ ( )]. Bandwidths, regressors, trimming and confidence intervals are as described in
the notes to Figure 2. A total of 2,857 students are used to compute the girls’ figure and 3014

students for the boys’ figure.
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reallocating students to make classes slightly more segregrated by sex would not change average

outcomes much. Girls would benefit from such segregation, but boys would suffer to approximately

the same extent. The latter is shown directly by the last estimand, the local segregation inequality

effect, lsie. Increasing the segregation by a small amount increases the average test score difference

between girls and (lower performing) boys. Because the average effect of additional segregation on

outcomes is close to zero, it is not surprising that breaking this down into a private and public

component lppe and lepe does not show much of an effect either.

The last two columns of the table present estimates based on parametric models. The first of

these is the widely used linear-in-means model. In this model the effect of the class composition is

identical for all children. As a result the reallocation effects, lsoe, lppe and lepe are constrained

to equal zero. Although consistent with our nonparametric estimates, the linear-in-means estimate

of the average spillover effect is considerably larger. The same holds for the second parametric

model that allows the for heterogeneity in peer effects by type (e.g., Angrist and Lang, 2004).

Taking the partial mean estimates of the conditional means () and () as given, we can

informally solve the social planner’s problem discussed in Section 5. Because we have no classrooms

in the sample with very small or large fractions of girls, we restrict the allowable allocations to

those with fractions girls in the range [03 07]. Inspection of Figure 2 suggests that average math

achievement will be maximized when approximately two thirds of classrooms are 40% girls and

60% boys, and the remaining one third of classrooms 70% girls and 30% boys (as segregrated as

allowed).19 This would raise average test scores by about 0.04 standard deviations relative to the

status quo.

8 Summary

In this paper we have developed a unified framework for the analysis of the effects of segregation in

the presence of social spillovers. We provide nonparametric identification and estimation results for

our proposed estimands when match and sorting is on observables alone. We also explore features

of the social planner’s problem and illustrate our methods by studying the effects of sex segregation

in kindergarten classrooms.

Several areas potentially merit further study. The approach taken in this paper has been to

leave  () and  () nonparametric. The price for this flexibility is that our identification

and estimation procedures require strong conditions on the status quo assignment mechanism. It

would be interesting to explore whether the imposition of various a priori restrictions on  ()

and  () might facilitate the development of positive identification results under less stringent

restrictions on the status quo. An exploration of partially identifying assumptions, as in Manski

(2010), might also be fruitful.

Finally, we have not formally developed an estimator for esq, our measure of the efficiency of

the status quo assignment. While showing consistency of the simple plug in estimator (informally)

19For simplicity we assume that all classes have the average number of students (about 18).
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used in the application should be straightforward, the characterization of its asymptotic sampling

properties appears more difficult (cf., Graham, forthcoming).
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Table 1: Nonparametric and parametric estimates of spillover strength and reallocation effects

(math achievement, Project STAR Kindergarten Students)

Panel A: Nonparametric Panel B: Parametric

Linear-in-Means Type-Specific

(1) (2) (3) (4) Linear-in-Means

ase
02273
(01432)

02600
(01352)

03065
(01345)

03469
(01341)

04433
(01995)

04728
(02007)

lsoe
−00104
(00238)

−00108
(00236)

−00075
(00229)

−00004
(00205)

− 00006
(00067)

lppe
−00003
(00027)

00002
(00027)

00004
(00027)

00009
(00027)

− −00003
(00034)

lepe
−00101
(00240)

−00111
(00238)

−00079
(00230)

−00012
(00206)

− 00009
(00036)

lsie
00552
(00250)

00521
(00274)

00474
(00296)

00548
(00266)

00628
(00264)

00656
(00266)

h CV/RT 5/6 of CV/RT 2/3 of CV/RT 1/2 of CV/RT − −

Notes: The estimates reported in Panel A of the Table were calculated use the kernel procedure outlined

in the main text. Estimated standard errors are in parentheses. A multivariate standard normal kernel

was used with a bandwidth matrix proportional to the covariance matrix of the regressors (fraction female

in the classroom, total school enrollment, fraction female in the entire school and class size). In the first

column of Panel A the degrees of proportionality used for estimating (  )and (  ) were
chosen by leave-own-school-out cross validation. The bandwidths for∇( )and ∇(  ) were
then taken to be rescaled versions of the corresponding cross-validated ones. The chosen rescaling reflects

the differential MSE-optimal bandwidth for pointwise conditional mean and derivative estimation. The

estimated standard errors are calculated using nonparametric estimates of the relevant influence functions.

The bandwidth used for the joint density of ( ) which appears in the influence functions, is
a multivariate version of Silverman’s ‘rule-of-thumb’ bandwidth (cf., Wand and Jones, 1995, p. 111). The

bandwidth used for ∇(  ) is a rescaling of this rule-of-thumb bandwidth. Columns 2 through
4 report undersmoothed estimates based on bandwidth values equal to, respectively, 5/6, 2/3 and 1/2 of

the column one bandwidth values. Panel B of the table reports estimates based on parametric models for

(  ) and (  ). Standard errors were calculated taking into account the sequential nature of
the estimation procedure. In both the nonparametric and parametric cases standard errors appropriately

account for arbitrary within-school dependence in outcomes across individuals. See the notes to Figure 2 for

additional details on the estimation sample.
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Appendices

A Some preliminary results

Lemma A.1 For  a continuous random variable, with (i) compact support X = [ ]  (ii) cumulative distribution
function  (), and (iii)  (·) a continuously differentiable function on the support of :

1. The slope coefficient of the (mean squared error minimizing) linear predictor (LP) of  () given  has a

weighted average derivative representation of

B =
C ( () )

V ()
= E


 ()

 ()






where

 () =
1

 ()

E [ −  | ≥ ] (1−  ()) =
=

E [ −  | ≥ ] (1−  ()) d
 E [ ()] = 1

and

2. B gives maximum weight to values of
()


for  close to its mean,  = E [], and minimum weight when

 is near the boundaries of its support.

The proof for the first result of the Lemma is similar to that of Lemma 5 of Angrist, Graddy and Imbens (2000).

The second result of the Lemma, i.e., the precise characterization of the weighting process follows from a simple

integration by parts argument. Observe that  ()−  () =
 =
=

()


d and that E [ () ( − )] = 0. Under
weak conditions we therefore have

C ( () ) = E [ () ( − )]

= E
 =

=

 ()


( − ) d


= E

 =

=

 ()


( ≥ ) ( − ) d


=

 =

=

 ()


E [( ≥ ) ( − )] d

=

 =

=

 ()


E [ −  | ≥ ] (1−  ()) d

The variance of  can be written as

V () = E

 ( − )

0
= E

 =

=

1 ( − ) d


=

 =

=

E [ −  | ≥ ] (1−  ()) d

The first result follows for  () as given in the Lemma. To show the second result, that the weighted average

derivative representation of B gives the most emphasis to values of ()


for  close to its mean, begin by noting

that

E

 ()

 ()




=

 =
=

()


E [ −  | ≥ ] (1−  ()) d =
=

E [ −  | ≥ ] (1−  ()) d


Therefore the size of the weight on
()


is proportional to

E [ −  | ≥ ] (1−  ()) 
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Integration by parts (with  = 1−  () and  = ) gives 



[1−  ()] d = [1−  ()] | +
 



 () d (23)

= − [1−  ()]+

 



 () d

We then write




{E [ −  | ≥ ] (1−  ())} = 



 



  () d− 


[1−  ()]

=




 



  () d+  ()

Using (23) to substitute for 


 

  () d gives




{E [ −  | ≥ ] (1−  ())} = 




[1−  ()]+

 



[1−  ()] d


+  ()

= [1−  ()] +




 



[1−  ()] d

− (− )  ()

= [1−  ()]− [1−  ()]− (− )  ()

= − (− )  () 

This gives 

{E [ −  | ≥ ] (1−  ())} = 0 at  =   This derivative is negative for    and positive

for    , hence it attains a maximum at  =  and its minimum at the boundaries of the support of 

B Identification proofs

Proof of Proposition 2.1: First we show that Assumptions 2.3 and 2.4 imply the density factorization

| ( |) =



=1

()


 () (24)

as claimed in the main text. We begin by considering the implications of the second part of Assumption 2.4. Start

with the case where  = 2 (i.e., groups consist of two individuals). In this case the second part of Assumption 2.4
becomes

2 2 ⊥ 1|1 1 1 ⊥ 2|2
The first of these conditions generates the density factorization

 (1 2 1 2) =  (1| 1)  (2 1 2) 

while the second the factorization

 (1 2 1 2) =  (2| 2)  (1 1 2) 

These two factorizations give the conditional density factorizations

| (1 2| 1 2) =  (1| 1)  (2| 1 2) =  (2| 2)  (1| 1 2) 

Integrating over 1we get

 (2| 1 2) =  (2| 2) 
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which after substitution yields

| (1 2| 1 2) =  (1| 1)  (2| 2) 

Now consider the  = 3 case. The second part of Assumption 2.4 now implies

 (1 2 3 1 2 3) =  (1| 1)  (2 3 1 2 3)
 (1 2 3 1 2 3) =  (2| 2)  (1 3 1 2 3) 

so that after dividing through by  (1 2 3) and integrating over 3 we get the equalities

 (1 2| 1 2 3) =  (1| 1)  (2| 1 2 3)
 (1 2| 1 2 3) =  (2| 2)  (1| 1 2 3) 

Integrating over 1then yields the equality

 (2| 1 2 3) =  (2| 2) 

The same argument also gives the equalities

 (1| 1 2 3) =  (1| 1)
 (3| 1 2 3) =  (3| 3) 

Now observe that, using the results above,

| (1 2 3| 1 2 3) =  (1| 1)  (2 3| 1 2 3)
=  (1| 1)  (2| 2)  (3| 1 2 3)
=  (1| 1)  (2| 2)  (3| 3) 

Finally Assumption 2.3 gives

| (1 2 3| 1 2 3) =  (1)  (2)  (3) 

The above argument can be generalized to groups of arbitrary size such that under Assumption 2.4 we have

| (|) =

=1

()

Now using the first part of Assumption 2.4 we get

| ( | ) = | (|) () 

which along with the factorization of | (|) derived above gives the needed result.
Now using (24) we can write

| ( | ) = 

 (·) 

  (·) (25)

= 

 (·) 

  (·) 
=  ()


∈(·)



(·)


 ()

= 

 (·) 

   
where the second equality follows from that fact that − is a deterministic function of (·) the third equality from
(24), and the fourth by inspection of the second and third density representations.

Recall that Assumptions 2.1 and 2.2 give  = (−  (

()) (


()) ) Writing

(−  (

()) (


()) ) = (  −  (


()) (


()) )
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we therefore have, using (25),

E [| = 1  = ] = E

(  −  (


()) (


()) )

 = 1  = 


=


  


(1  −  (


(·)) (


(·)) )


 (·) 

  d
 
∈(·)

d(·)

d
=

 
  


(1  −  (


(·)) (


(·)) )

×
 
∈(·)



(·)


d(·)

  () d

  () d

Let


 (  −) =


  


(  −  (


(·)) (


(·)) )

 
∈(·)



(·)


d(·)

  () d

Observe that  (  −) =  
 (−)  therefore by Assumption 2.3 we have


 (1  −)  () d =



 (1  −) | (| = 1) d

= E [ 
 (−)| = 1] =  () 

as claimed. The result for  () follows analogously. Identification of the two gradient function then follows directly
from Assumption 2.5.

Feasibility of local reallocation density: Feasibility of (8) follows from the fact that, making the change of

variables  = (+ )  (1 + ), and decomposing the integral, 1

0


r
(; )d =

 1

0



1 +  ()

sq



+  () 
1 +  ()


d

=

 +

0


sq

() d+

 −

+



1 + 

sq



+ 

1 + 


d+

 1

−


sq

() d

= Pr ( ≤ + )E [| ≤ + ]

+

 −

+

{(1 + )  − }  sq()d

+Pr ( ≥ − )E [| ≥ − ]

= E [ () {(1 + ) − }]
+ Pr ( ≥ − )E [| ≥ − ]

=  

as required.

Proof of Theorem 3.1: The result follows directly from Lemma A.1 above.

Proof of Theorem 6.1: Consider the problem

max
(·)∈Γ


 ()  () d s.t.


 () d =   (26)

where  () is the concave envelope of  () on S By concavity of  () and Jensen’s inequality we have
 ()  () d ≤ (E []) 

Feasibility requires that E [] =  , therefore

max
(·)∈Γ


 ()  () d ≤() (27)
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Observe that this upper bound is attained by the degenerate distribution concentrated at  (i.e., ∗ = ()).
Since  () ≥  () for all  ∈ S we have the inequalities

() ≥


 ()  () d ≥


 ()  () d

for all feasible  (·)  Therefore any feasible  ∗ () such that  () =

 () ∗ () d must be a solution to the

planner’s problem.

By the definition of  ()   and  we have that  () is linear on the interval  ∈ [  ], i.e.,

 () = +   ∈ [  ]

with

 =  ()−

 ( )− ()

 − 


  =

 ( )− ()

 − 


This gives

 () =  ()−

 ( )− ()

 − 


 +


 ( )− ()

 − 




=  ()


1−  − 

 − 


+ ( )

 − 

 − 

= (1− ) () +  ()

=


 () ∗ () d

Since

∗ () d =   and therefore 

∗
 () feasible, we have that 

∗
 () is a solution to the planner’s problem as

claimed.

Proof of Corollary 6.1: Conditional on setting the fraction of high types assigned to groups of size  equal

to  we know, by Theorem 6.1, that  ∗| (|) is an outcome-maximizing allocation. Since, again conditional
on ,


 ( ) 

∗
| (|) d =  (), we may therefore choose 1      by solving (22) which is concave by

inspection.
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Measuring the effects of segregation
in the presence of social spillovers: a nonparametric approach,
supplemental material: proofs of Propositions 4.1 to 4.5

This appendix details the derivation of the influence functions associated with the estimators described in Section

4 of the main paper. Equation number continues in sequence with that of the main paper. All notation is as established

in the main paper unless stated otherwise. In this appendix all expectations are with respect to the population of

individuals unless noted otherwise. The  subscripts on random variables are omitted to simplify the notation.

We begin by noting that ase lsoe and lsie are unrestricted parameters in the sense that their definitions do

not place substantive restrictions on the joint distribution of  = (  )0 20 Newey (1990, pp. 106 - 107) notes
that the pathwise derivative of such unrestricted parameters will be unique. This implies that any regular estimator

will have an influence function equal to the unique pathwise derivative. Furthermore, as described in Newey (1994),

the semiparametric efficiency bound for such parameters can be calculated as the variance of the pathwise derivative

of the parameter with respect to the distribution of the data. The large sample characterization of the two-step M-

estimators described in the main text follows from these observations. While we do not provide regularity conditions

ensuring
√
 consistency and asymptotic normality of our proposed estimators, our calculations do provide a formula

for their large sample variance. Note that we do provide conditions that guarantee finiteness of the semiparametric

efficiency bound, hence
√
 consistency is achievable under suitable regularity conditions. Our approach is similar in

spirit and implementation to that of Newey and Stoker (1993) in their analysis of weighted average derivatives.

To describe our calculations further we let  () denote the true density of  = . A parametric submodel or

path is a parametric family of densities  (; ) containing the ‘truth’ (i.e.,  (; 0) =  () for some 0) Let  ()
denote the population value of the parameter in question when  is distributed according to  (; ). The pathwise
derivative is the function  () such that

∇ ()|=0 = E

 () S ()0


(28)

where S () = ∇ (; 0)  (; 0) denotes the score of  (; ) at  = 0 .
21 By the delta method the Cramer-Rao

variance bound for  () in the parametric submodel is

∇ ()E

S ()S ()0

−1∇ ()
0 = E


 ()S ()0


E

S () S ()0

−1 E S () ()0 
Since S () is unrestricted the supremum of all such Cramer-Rao bounds, or the semiparametric variance bound, is

obviously

E

 () ()0




By the arguments of Newey (1994) the asymptotic variance of any regular estimator of  is given by this bound.

The specific structure of each of our estimators can be used to simplify the calculation of  (). In particular
each of our estimators can be formulated as a two-step M-estimator with a nonparametric first step (cf., Newey and

McFadden, 1994). As shown by Newey (1994) such problems have certain features which can be exploited in order

to calculate the pathwise derivative. Let  be a function of , the arguments of which are suppressed in order to

simplify notation; each our estimators can be defined as the solution to

1





=1
( ) = 0

20 In such models the allowable set of scores can approximate any mean zero function of  (with finite variance).
21The form of (28) and a simple argument due to Newey (1990, pp. 106 - 107) shows why  () is unique when

 is an unrestricted parameter. Let  () and  () denote two pathwise derivatives (centered to be mean zero), by
(28) we have

E


 ()−  ()S ()0 = 0
When  is an unrestricted parameter the set of valid scores, or the tangent set, for the model is given by T =
{S () : E [S ()] = 0}  Since  ()−  () belongs to this set orthogonality requires that

E


 ()−  ()0  ()−  () = 0
or, equivalently, the equality  () =  ()  A simple intuition for this result, also due to Newey (1990), is that when
the model places no restrictions on the distribution of the data  is just identified.
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where  (  ) is some known function and  is a preliminary ‘first step’ nonparametric estimate of .
Let  ( ) =  ( 0 ). Application of the chain rule yields

∇E0 [ (  ())] =

∇ (  ())  () d +


 ( 0) S ()0  () d

= ∇E0 [ (  ())] + E0

 ( 0)S ()0




where E [·] denotes expectations taken with respect to the density  (; ) (throughout E [·] = E0 [·]). Noting that
E0 [ (  ()   ())]|=0 = 0 a direct application of the implicit function theorem and the previous result then

gives

∇ ()|=0 = − [∇E0 [ ( 0  (0))]]
−1 ×∇E0 [ ( 0  (0))]

= −Γ−1 E  ( 0)S ()0+∇E [ (  (0))]


with Γ = ∇E [ (  0)]|=0 (assumed nonsingular). If we can find at function  () such that

∇E [ (  ())] = E

 () S ()0


 (29)

then the influence function for any regular estimator of , by the results of Newey (1990, 1994) and equation (28)

above, will be

 () = −Γ−1 { ( 0) +  ()} 
As explained by Newey (1994) and also Newey and McFadden (1994), the function  () may be viewed a correction
term which accounts for first step estimation of . Below we use the structure of (29) to calculate the appropriate

correction term for each of our estimators. In particular we begin by linearizing  (  ()) around the truth 0

With  ( )−  ( 0) ' Ψ ( − 0)  Ψ ( ) linear in , and (29) we then have

∇E [ (  ()− 0)] = ∇E [Ψ (  ())] = E

 ()S ()0


 (30)

Finding the form of  () thus involves finding an ‘integral representation’ for E [Ψ (  ())]. The bulk of our

derivations detailed below are devoted to this step.

Once the form of  () has been calculated, the asymptotic variance formulae given in Section 4 follow directly.
A minor complication involves appropriately accounting for within-group dependence in the data induced by the

presence of unobserved location-specific attributes. As noted by Newey (1994, p. 1367), such dependence does not

affect the form of  () and so can be accounted for relatively easily. Note that  can be equivalently expressed as
the solution to

1




=1


∈{:=}

( ) = 0
with independence across groups so that the second step moment function is the within-group summation  (  ) =

∈{:=} (  ) Let

 = ∇E


∈{:=}
(  0)


=0



and  = −−1
∈{:=}

 ( 0) +  ()




so that the appropriate asymptotic sampling distribution is

√
( − 0)

→ N

0E

0 
In all of the estimators considered here  = −E [] = −  so that  = −1


∈{:=}  ( 0) +  ()



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B.1 Influence function derivation for lsoe
We begin with the local segregation outcome effect (LSOE) defined in Section 3:


lsoe
0 = E [ ()∇ () ( − )] = E


 ()∇


10 () + 20 ()

30 ()


 − 40 ()

50 ()




where  = ( )0 (such that  = (0)0) and

10 () =  ()E [ | = ] =  ()  () (31)

20 () =  ()E [ (1−  ) | = ] =  () (1− ) ()

30 () =  ()

40 () = E [ () ]
50 () = E [ ()] 

Let  () = (1 ()  2 ()  3 ()  4 ()  5 ())
0
 For what follows it is helpful to note that  | ( | ) =  (1− )1− 

The second step moment restriction defining lsoe0 is

E





lsoe
0  0


= 0

with



 

lsoe
 

=  ()∇


1 () + 2 ()

3 ()


×

− 40 ()

50 ()


− 

lsoe


Let 

 lsoe0  


=  ( )  linearizing  ( ) about 0 gives

 ( )−  ( 0) ' Ψ ( − 0) 

where Ψ ( − 0) is linear in  − 0 The precise form of Ψ ( − 0) is obtained by expanding the two ratios
entering  () pointwise. Since − 00 = −10


1− −1 (− 0)


[(− 0)− (00) (− 0)]  the linearization

of  around 00 is given by 
−1
0 [(− 0)− (00) (− 0)]  This fact and the product rule allow us to write

Ψ ( − 0) =  ()∇

 1

30 ()


1 1−10 () + 20 ()

30 ()

 1 ()− 10 ()
2 ()− 20 ()
3 ()− 30 ()


×

− 40 ()

50 ()


−  ()∇


10 () + 20 ()

30 ()


× 1

50 ()


1−40 ()

50 ()


4 ()− 40 ()
5 ()− 50 ()




Differentiating the first term in {·} with respect to , collecting terms, and rearranging yields

Ψ (  ()) = 0 ()
0
 () +∇ ()

0
0 () + 0 ()

0
 ()  (32)

where

0 () =  ()
− 

 ()
(− () − () −∇ () + ()  ()  0 0)0

0 () =  ()
− 

 ()
(1 1− ()  0 0)0

0 () = −  ()

E [ ()]
∇ () (0 0 0 1−E [ |  () = 1])0

with

 () =
∇ ()

 ()
  () =

10 () + 20 ()

30 ()


As noted above the influence function for lsoe will take the form  ( 0 0) +  (), where  () is the term
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which ‘corrects’ for first stage nonparametric estimation. From (32) and (30) this term solves

∇E

0 ()

0
 (; )


+∇E

∇ (; )
0
0 ()


+∇E


0 ()

0
 (; )


= E


 () S ()0




To apply this result we begin by evaluating the expectations of on the left-hand-side of the above equation

term-by-term. By iterated expectations we have, for the first term in (32),

E

0 ()

0
 (; )


=


 ()

− 

 ()
(− () − () −∇ () + ()  ())

×
  (; ) E [ | = 1  = ]

 (; ) (1− )E [ | = 0  = ]
 (; )

 0 () d

=


 () (− ) (− () − () −∇ () + ()  ())

×
 E [ | = ]
E [ (1−  ) | = ]

1

  (; ) d

= E

1 ()  () {1   (1−  ) }0 

where the second equality follows from the fact that  | ( | ; ) =  (1− )1− does not depend on  and

1 () = (− ) {−∇ () + ()  ()  0− () − ()}0 

To evaluate the second term of (32) we use integration by parts as in Powell, Stock and Stoker (1989) (with

() = 0 () 0 ()
0
and  () =  (; )) to obtain a representation directly in terms of  (; ). Using the fact that

0 () and  (; ) vary in  alone, as well as the density factorization 0 () =  (1− )1− 0 ()  we have

E
∇ (; )

0
0 ()


=


0 () 0 ()

0 [∇ (; )] d

=

 =1

=0


=01


 (1− )1− 0 () 0 ()

0 [∇ (; )] d

=

 =1

=0

0 () 0 ()
0 [∇ (; )] d

=

0 () 0 ()

0
 (; )

1
0
−
 =1

=0

∇


0 () 0 ()

0
 (; ) d

= 0−
 =1

=0

∇


0 () 0 ()

0
 (; ) d

= E

2 ()  () {1   (1−  ) }0 

with

2 () = (− ) {∇ ()  0 0 0}0 + { ()  0−1−1}0 
This follows from the fact that 0 () 0 () = 0 at  = 0 1 since  (0) =  (1) = 0 and also that

∇


0 () 0 ()

0 = ∇


 () (− ) {1 1− ()  0 0}0


=  () (− ) {0 0−∇ ()  0 0}0

+  () {1 1− ()  0 0}0 
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Finally we take the expectation of the final term in (32):

E

0 ()

0
 (; )


= −


 ()

E [ ()]
∇ () (0 0 0 1−E [ |  () = 1])0  (; ) 0 () d

= −


 ()

E [ ()]
∇ () (E [ () ]− E [ ()]E [ |  () = 1]) 0 () d

= −


 ()

E [ ()]
∇ () 0 () d


E [ () ( − )]

= −E [∇ ()|  () = 1]E [ () ( − )]

= E

3 ()  () {1   (1−  ) }0 

where

3 () = E [∇ ()|  () = 1] {−1 0 0}0 
Combining terms gives

E [Ψ (0)] = E

 ()  () {1   (1−  ) }0 

with  () = 1 () + 2 () + 3 () or, equivalently,

 () = { () + (− ) ()  () + E [∇ ()|  () = 1] 
−E [∇ ()|  () = 1] − (− )  ()− 1− (− )  ()− 1} 

Differentiating with respect to  gives

∇E

 ()  () {1   (1−  ) }0 = E  ()  () {1   (1−  ) }0 S0


and hence a correction term of  () =  ()  () {1   (1−  ) }0 or


lsoe () = − () ∇ ()

 ()
( − ()) (− ) (33)

−  () ( − ())− E [∇ ()|  () = 1]  () (− ) 

as claimed.

B.2 Influence function derivation for lppe
The local private peer effect (LPPE) of Section 3 is given by


lppe
0 = E


 ()


10 ()

30 ()
− 20 ()

(1− )30 ()


 − 40 ()

50 ()




with  () = (1 ()  2 ()  3 ()  4 ()  5 ())
0
as defined in (31) above. Linearizing the implied moment function

gives

Ψ (  ()) = 0 ()
0
 () + 0 ()

0
 ()  (34)

where

0 () =
 ()

 ()


− 


−− 

1− 
− [ ()− ()] (− )  0 0




0 () = − ()  ()− ()

E [ ()]
{0 0 0 1−} 
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Taking expectations of 0 ()
0
 (; ) yields

E

0 ()

0
 (; )


=


 ()

 ()


− 


−− 

1− 
− [ ()− ()] (− )



×
  (; )E [ | = ]

 (; )E [ (1−  ) | = ]
 (; )

  () d

=


 ()


− 


−− 

1− 
− [ ()− ()] (− )



×
 E [ | = ]
E [ (1−  ) | = ]

1

  (; ) d

= E

1 ()  () {1   (1−  ) }0 

where

1 () =


− [ ()− ()] (− )  0

− 


−− 

1− 




Now taking expectations of 0 ()
0
 (; ) we get

E

0 ()

0
 (; )


= −


 ()

 ()− ()

E [ ()]
{1−}


E [ () ]
E [ ()]


 () d

= −


 ()
 ()− ()

E [ ()]
 () d


× E [ () ( − )]

= −E


 ()

E [ ()]
( ()− ())


× E [ () ( − )]

= −E [ ()− ()|  () = 1]× E [ () ( − )]

= −E

2 ()  () {1   (1−  ) }0 

with

2 () = E [ ()− ()|  () = 1] {− 1} 
Using (34) and (30), these calculations suggest a correction term of the form


lppe () =  ()







 − ()


(− )−  ()


1− 

1− 


 − ()


(− ) (35)

− E [ ()− ()|  () = 1]  () (− ) 

as claimed.

B.3 Influence function derivation for lepe
The local external peer effect (LEPE) of Section 3 is given by


lepe
0 = E


 ()


∇


10 ()

30 ()


+ (1− )∇


20 ()

(1− )30 ()


 − 40 ()

50 ()


with  () = (1 ()  2 ()  3 ()  4 ()  5 ())

0
as defined in (31) above. Linearizing the implied moment function

gives

Ψ (  ()) =  () ∇


1

 ()


1


− ()


1 ()− 10 ()
3 ()− 30 ()


(− )

+  () (1− )∇


1

 ()


1

1− 
− ()


2 ()− 20 ()
3 ()− 30 ()


(− )

−  () (∇ () + (1− )∇ ())
1

50 ()


1−40 ()

50 ()


4 ()− 40 ()
5 ()− 50 ()



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By the chain rule we have

 () ∇


1

 ()


1


− ()


1 ()− 10 ()
3 ()− 30 ()


(− )

=  ()∇


1 ()− 10 ()
3 ()− 30 ()

0
− 

 ()
[1− ()]

0
+  ()

− 

 ()


−1

−  ()   ()  ()− ∇ ()


1 ()− 10 ()
3 ()− 30 ()




where  () = ∇ ()  () as above. Similarly we have

 () (1− )∇


1

 ()


1

1− 
− ()


2 ()− 20 ()
3 ()− 30 ()


(− )

=  ()∇


2 ()− 20 ()
3 ()− 30 ()

0
− 

 ()
[1− (1− ) ()]

0
+  ()

− 

 ()


1

1− 
−  ()   () (1− ) ()− (1− )∇ ()


2 ()− 20 ()
3 ()− 30 ()




Collecting terms and reorganizing yields the linearization

Ψ (  ()) = 0 ()
0
 () +∇ ()

0
0 () + 0 ()

0
 ()  (36)

where

0 () =  ()
− 

 ()


−1

−  () 

1

1− 
−  ()   () ()−  ()  0 0




0 () =  ()
− 

 ()
{1 1− ()  0 0} 

0 () = −  ()

E [ ()]
 () {0 0 0 1−} 

recalling that  () = ∇ () + (1− )∇ () 
Evaluating the expectation of E


0 ()

0
 (; )


yields

E

0 ()

0
 (; )


=


 ()

− 

 ()


−1

−  () 

1

1− 
−  ()   () ()−  ()




×
  (; )E [ | = ]

 (; )E [ (1−  ) | = ]
 (; )

  () d

=


 () (− )


−1

−  () 

1

1− 
−  ()   () ()−  ()



×
 E [ | = ]
E [ (1−  ) | = ]

1

  (; ) d

= E

1 ()  () {1   (1−  ) }0 

where

1 () =


(− )

∇ ()

 ()
 ()−  ()


 0

(− )


−1

− ∇ ()

 ()


 (− )


1

1− 
− ∇ ()

 ()



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From the analysis of lsoe above we have
E
∇ (; )

0
0 ()


= E


2 ()  () {1   (1−  ) }0 

with

2 () = (− ) {∇ ()  0 0 0}0 + { ()  0−1−1}0 
Finally we evaluate the expectation of 0 ()

0
 (; ):

E

0 ()

0
 (; )


= −


 ()

E [ ()]
 () (0 0 0 1−E [ |  () = 1])0  (; ) 0 () d

= −


 ()

E [ ()]
 () (E [ () ]− E [ ()]E [ |  () = 1]) 0 () d

= −


 ()

E [ ()]
 () 0 () d


E [ () ( − )]

= −E [ ()|  () = 1]E [ () ( − )]

= E

3 ()  () {1   (1−  ) }0 

where

3 () = E [ ()|  () = 1] {−1 0 0}0 
The form of 1 ()  2 () and 3 () together imply a correction term of


lepe () = − () ∇ ()

 ()
( − ()) (− )

−  () ( − ())

−  ()







 − ()


(− ) +  ()


1− 

1− 


 − ()


(− )

− E [ ()|  () = 1]  () (− ) 

as claimed. Note that lppe () + lepe () = lsoe () as would be expected.

B.4 Influence function derivation for ase
The average spillover effect is given by


ase
0 = E [ ()  ()]

= E

 ()∇


10 () + 20 ()

30 ()


−  ()

30 ()


10 ()


− 20 ()

1− 




where 10 ()  20 () and 30 () are as defined in (31) above. Linearizing the implied moment function gives

Ψ (  ()− 0 ()) =  ()∇

 1

30 ()


1 1−10 () + 20 ()

30 ()

 1 ()− 10 ()
2 ()− 20 ()
3 ()− 30 ()


−  ()

30 ()


1


− 1

1− 
−

10 ()

30 ()
− 20 ()

(1− )30 ()

 1 ()− 10 ()
2 ()− 20 ()
3 ()− 30 ()

 

Differentiating the first term in {·} with respect to  and collecting terms yields

Ψ (  ()) = 0 ()
0
 () +∇ ()

0
0 () + 0 ()

0
 () (37)
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with  () = (1 ()  2 ()  3 ())
0
and

0 () =
 ()

 ()
(− () − () −∇ () + ()  ())0 

0 () =
 ()

 ()
(1 1− ())0 

0 () = − ()

 ()


1


− 1

1− 
− [ ()− ()]




where

 () =
∇ ()

 ()
  () =

10 () + 20 ()

30 ()
  () =

10 ()

30 ()
  () =

20 ()

(1− )30 ()


Taking expectations of the first term in Ψ (  ()) we have

E

0 ()

0
 (; )


=


 ()

 ()
(− () − () −∇ () + ()  ())

×
  (; ) E [ | = 1  = ]

 (; ) (1− )E [ | = 0  = ]
 (; )

 0 () d

=


 () (− () − () −∇ () + ()  ())

×
 E [ | = ]
E [ (1−  ) | = ]

1

  (; ) d

= E

1 ()  () {1   (1−  ) }0 

where the second equality follows from the fact that  | ( | ; ) =  (1− )1− does not depend on  and

1 () = {−∇ () + ()  ()  0− () − ()} 

To evaluate the second term of (37) we use integration by parts (with () = 0 () 0 ()
0
and  () =  (; )) to

obtain a representation directly in terms of  (; ). As in our analysis of lsoe above we use the fact that 0 () and
 (; ) vary in  alone, as well as the density factorization 0 () =  (1− )1− 0 ()  to get

E
∇ (; )

0
0 ()


= 0−


∇


0 () 0 ()

0
 (; ) d

= E

2 ()  () {1   (1−  ) }0 

with

2 () = {∇ ()  0 0 0}0 
This follows from the fact that

∇


0 () 0 ()

0 = ∇


 () (1 1− ())0


=  () (0 0−∇ ())

0

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Evaluating the expectation of the third term in (37) gives

E

0 ()

0
 (; )


= −


 ()

 ()


1


− 1

1− 
− [ ()− ()]



×
  (; )  (; )

 (; ) (1− ) (; )
 (; )

  () d

= −


 ()


1


− 1

1− 
− [ ()− ()]



×
 E [ | = ]
E [ (1−  ) | = ]

1

  (; ) d

= E

3 ()  () {1   (1−  ) }0 

with

3 () =


 ()− ()  0−1



1

1− 




Together these calculations suggest a correction term of the form


ase () = − () ∇ ()

 ()
( − ()) (38)

−  ()







 − ()


−


1− 

1− 


 − ()


as claimed.

B.5 Influence function derivation for lsie
The local segregation inequality effect (LSIE) is given by


lsie
0 = 

lsie
 − 

lsie


where


lsie
 = E


 ()


{ () + ∇ ()} ( − )


= E


 ()


1

40 () 50 ()


10 ()

30 ()
+ ∇


10 ()

30 ()


 − 40 ()

50 ()


and


lsie
 = E


 ()

1− 
{− () + (1− )∇ ()} ( − )


= E


 ()

1− 40 () 50 ()


− 20 ()

(1− )30 ()
+ (1− )∇


20 ()

(1− )30 ()


 − 40 ()

50 ()




with  () = (1 ()  2 ()  3 ()  4 ()  5 ())
0
as defined in (31) above.
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We begin by analyzing the first component of the estimand, lsie . Linearizing the moment defining lsie we get

Ψ (  ()− 0 ()) =

 ()


1

 () 

− 


− 1

 ()

− 


 () 

− 1

E [ ()]


2
[ () + ∇ ()] 

1

E [ ()]



[ () + ∇ ()]



×


1 ()− 10 ()
3 ()− 30 ()
4 ()− 40 ()
5 ()− 50 ()


+  ()




∇


1

 ()


1


− ()


1 ()− 10 ()
3 ()− 30 ()


(− ) 

Differentiating the second term in {·} with respect to  yields

 ()



∇


1

 ()


1


− ()


1 ()
3 ()


(− )

= ∇


1 ()
3 ()

0 
 ()





− 

 ()


1


− ()

0
+


1 ()
3 ()

0
 ()





− 

 () 
{−1−  ()   ()  ()− ∇ ()}0 

where  () = ∇ ()  () as above.
Collecting terms allows us to write

Ψ (  ()) = 0 ()
0
 () +∇ ()

0
0 () + 0 ()

0
 () 

with

0 () =  ()


− 1



− 

 ()
 ()  0

1



− 

 ()
( ()  ()− ∇ ()− ())  0 0


0 () =  ()

1



− 

 ()
{1 0− ()  0 0}

0 () = −  ()

E [ ()]



[ () + ∇ ()]


0 0 0

1


−1




Taking the expectation of the first component of Ψ (  (; )) yields

E

0 ()

0
 (; )


=

 
=01

 ()


− 1



− 

 ()
 () 

1



− 

 ()
( ()  ()− ∇ ()− ())


×


 (; ) E [ | = 1  = ]
 (; )



 (1− )1−  () d

=


 ()


−− 


 () 

− 


( ()  ()− ∇ ()− ())


×


E [ | = 1  = ]
1


 (; ) d

= E [1 ()  () {1   (1−  ) }] 

where

1 () =


− 


[− () +  () ()− ∇ ()]  0−− 


 ()  0



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To take the expectation of the second component of Ψ (  ()) we use integration by parts:

E
∇ (; )

0
0 ()


=


0 () 0 ()

0 [∇ (; )] d

=

 =1

=0

0 () 0 ()
0 [∇ (; )] d

=

0 () 0 ()

0
 (; )

1
0
−

∇


0 () 0 ()

0
 (; ) d

= 0−

∇


0 () 0 ()

0
 (; ) d

= E

2 ()  () {1   (1−  ) }0 

with

2 () =
1


(− ) { () + ∇ ()  0 0 0}0 +  ()


{ ()  0−1 0}0 

This follows from the fact that

∇


0 () 0 ()

0 = ∇


 ()  ()

1



− 

 ()
{1 0− ()  0 0}


= ∇


 ()

− 


{1 0− ()  0 0}


=

 ()


(− ) {0 0− ()− ∇ ()  0 0}

+
 ()


{1 0− ()  0 0} 

Finally the expectation of the third term is given by

E

0 ()

0
 (; )


= −


 ()

E [ ()]



[ () + ∇ ()]


1


−1


E [ () ]
E [ ()]


0 () d

= −


 ()

E [ ()]



[ () + ∇ ()]


E [ () ]


− E [ ()]


0 () d

= −


 ()

E [ ()]


2
[ () + ∇ ()] 0 () d


E [ () ( − )]

= − 1


E





[ () + ∇ ()]

  () = 1E [ () ( − )]

= E

3 ()  () {1   (1−  ) }0 

with

3 () = − 1


E





[ () + ∇ ()]

  () = 1 {− 1 0 0 0} 
The correction term portion of the efficient influence function will take the form lsie () = lsie ()−lsie (). The

forms for 1 ()  2 () and 3 () given above suggest that


lsie
 () = − ()



∇ ()

 ()
( −  ()) (− )

−  ()


( −  ())

−  ()


E





[ () + ∇ ()]

  () = 1 (− ) 

The second part of the correction term, lsie (), can be derived similarly to the first. This derivation, which is
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omitted, yields


lsie
 () = −  ()

1− 

∇ ()

 ()
((1− )  − (1− ) ()) (− )

−  ()

1− 
((1− )  − (1− ) ())

− 
 ()

1− 
E

1− 

1− 
[− () + (1− )∇ ()]

  () = 1 (− ) 

and hence lsie () = lsie ()− lsie () equal to


lsie () = 

lsie
 ()− 

lsie
 ()

= − ()



∇ ()

 ()
( −  ()) (− )

+
 ()

1− 

∇ ()

 ()
((1− )  − (1− ) ()) (− )

−  ()


( −  ()) +

 ()

1− 
((1− )  − (1− ) ())

−  ()


E





[ () + ∇ ()]

  () = 1 (− )

+
 ()

1− 
E

1− 

1− 
[− () + (1− )∇ ()]

  () = 1 (− )

as claimed.
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