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1 Introduction

Recent years have seen substantial progress in asset return volatility measurement, with im-

portant applications to asset pricing, portfolio allocation and risk management. In particular,

so-called realized variances and covariances (“realized volatilities”), based on increasingly-

available high-frequency data, have emerged as central for several reasons.1 They are, for ex-

ample, largely model-free (in contrast to traditional model-based approaches such as GARCH

or stochastic volatility), they are computationally trivial, and they are in principle highly

accurate.

A tension arises, however, linked to the last of the above desiderata. Econometric theory

suggests the desirability of sampling as often as possible to obtain highly accurate volatility

estimates, but financial market reality suggests otherwise. In particular, microstructure

noise (MSN), such as bid-ask bounce associated with ultra-high-frequency sampling, may

contaminate the observed price, potentially rendering naively-calculated realized volatilities

unreliable.

Early work (e.g., Andersen et al., 2001a,b, 2003, Barndorff-Nielsen and Shephard, 2002a,b)

addressed the sampling issue by attempting to sample often, but not “too often,” implicitly

or explicitly using the volatility signature plot of Andersen et al. (2000) to guide sampling

frequency, typically resulting in use of five- to thirty-minute returns.2

Much higher-frequency data are usually available, however, so reducing the sampling

frequency to insure against MSN discards potentially valuable information. To use all infor-

mation, more recent work has emphasized MSN-robust realized volatilities that use returns

sampled at very high frequencies. Examples include Zhang et al. (2005), Bandi and Russell

(2008), Aı̈t-Sahalia et al. (2010), Hansen and Lunde (2006), and Barndorff-Nielsen et al.

(2008a, 2010). That literature is almost entirely statistical, however, which is unfortunate

because it makes important assumptions regarding the nature of the latent price, the MSN,

and their interaction, and purely statistical thinking offers little guidance. A central example

concerns the interaction (if any) between latent price and MSN. Some authors such as Bandi

and Russell assume no correlation (perhaps erroneously), whereas in contrast Barndorff-

Nielsen et al. (2008a,b) allow for correlation (perhaps unnecessarily).

To improve this situation, we explicitly recognize that MSN results from the strategic

behavior of economic agents, and we push toward integration of the financial economics of

market microstructure with the financial econometrics of volatility estimation. In particular,

1Several surveys are now available, ranging from the comparatively theoretical treatments of Barndorff-
Nielsen and Shephard (2007) and Andersen et al. (2010) to the applied perspective of Andersen et al. (2006).

2The volatility signature plot shows average daily realized volatility as a function of underlying sampling
frequency.

1



we explore the implications of microstructure theory for the relationship between latent

price and MSN, characterizing the cross-correlation structure between latent price and MSN,

contemporaneously and dynamically, in a variety of leading environments, including those

of Roll (1984), Glosten and Milgrom (1985), Kyle (1985), Easley and O’Hara (1992), and

Hasbrouck (2002).3

We proceed as follows. In section 2 we introduce our general framework, which nests a

variety of microstructure models. In sections 3 and 4 we provide detailed analyses of models

of private information, distinguishing two types of latent prices based on the implied level of

market efficiency. In particular, we treat strong form efficiency in section 3 and semi-strong

form efficiency in section 4. We sketch additional econometric implications of our findings

in section 5, and we conclude in section 6.

2 The Framework

We begin in section 2.1 by introducing our general framework relating latent prices, observed

prices, and MSN in a wide range of market-making environments. We then provide, in section

2.2, a generic (model-free) statistical result on the nature of correlation between latent price

and MSN. Finally, in section 2.3 we introduce several workhorse microstructural economic

models of market making, which we use heavily in subsequent analyses.

2.1 Latent Prices, Observed Prices and Microstructure Noise

Let p∗t denote the (logarithm of the) strong form efficient price of some asset in the calendar

time period t.4 This price, strictly exogenously changing every T th-period and at time t

known only to the informed traders, follows the process5

p∗t =

p∗t−1 + σεt, ∀t = κT, κ ∈ Z

p∗t−1, otherwise
(1)

εt ∼iid (0, 1). (2)

3For insightful surveys of the key models, see O’Hara (1995) and Hasbrouck (2007).
4We focus on the information conveyed by the trade direction only. Today’s markets are dominated by

orders split into many small trades, so that the size of individual orders is only minimally informative. Hence
we focus on the trade direction as primary source of trade-related information.

5The setup we present here is a slight generalization of the “generalized Roll model” of Hasbrouck (2007).
As common in the high-frequency literature, we drop the deterministic drift term, but our results hold for
any nonzero deterministic drift, if price changes are defined net of drift.

2



Order-splitting into many small trades has become dominant in recent years. In line with

recent developments we consider in this paper the limiting case of all trades being of unit

size. Under a suitable choice of calendar frequency, as illustrated by Figure 1, this allows us

to map any trading pattern into calendar time with unit trades.

Figure 1: Mapping Tick-Time into Calendar Time

quantity

Tick-
time

Sampling

frequency τTT =
least common multiple of all non-zero
time intervals between ticks

- time

r2
6 r3

r1
r2 r2 r2

r3

r1 r1

- time

quantity

Calendar-
time

Sampling

frequency τCT = τTT×
least common multiple of quantities
traded at any tick

11

6

0000

123456

6
1/6

111

0000000000000

1

0000000

11

000

11

000

11

0000000

111

000000000000000

1

0000000000000000000000000

1

0000000

1

Let qt denote the direction of the trade in period t, where qt = +1 denotes a buy, qt = −1

a sell, and qt = 0 that no trade occurs in the period. Define pet as the expected efficient price

directly before the trade occurs. The semi-strong form efficient price, which summarizes the

knowledge of the market maker after the trade,6 is

p̃et = pet + λtqt, (3)

where λt ≥ 0 captures the response to asymmetric information revealed by the trade direction

qt. At the beginning of each trading round, additional information about p∗t and εt might be

revealed by information diffusion from other markets. This information, summarized by ωt,

6This terminology is borrowed from the asset pricing literature. In contrast to the strong form effi-
cient price, which incorporates all public and private information, the semi-strong form efficient price only
incorporates all publicly available information (Fama, 1970).
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makes the market maker revise his price expectation for the next period according to7

pet = p̃et−1 + ωt. (4)

Assuming that the (logarithm of) price quotes are symmetric around the expected efficient

price before the trade,8 the (logarithm of the) observed transaction price can be written as

pt = pet + stqt, (5)

where st is one-half of the spread. In particular, the bid price is pbidt = pet − st, the ask price

is paskt = pet + st, and the mid price is pmidt = pet . These prices and their relationships are

illustrated by Figure 2.

Figure 2: Timing of Information and Prices
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Strong form efficient returns in periods t = κT are therefore

∆p∗t ≡ p∗t − p∗t−1 = σεt, (6)

and zero in all other periods. Semi-strong form efficient returns are

∆p̃et ≡ p̃et − p̃et−1 = λtqt + ωt, (7)

and market returns are

∆pt ≡ pt − pt−1 = ∆pet + stqt − st−1qt−1
= ∆p̃et + (st − λt)qt − (st−1 − λt−1)qt−1.

7In periods in which p∗t−1 becomes public information, this becomes pet = p∗t−1 + ωt.
8We use the approximation ln(P + S) = ln

(
P
(
1 + S

P

))
= p+ ln

(
1 + S

P

)
≈ p+ S

P ≡ p+ s, where P and
S denote price and spread before taking the natural logarithm, respectively.
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We use the term “latent price” as a general term comprising both types of efficient

prices. The two latent prices defined here are conceptually very distinct and appeal to

distinct audiences. For example, on the one hand, a pure theorist may want to understand

the properties of the full-information price, and is thus interested in an estimate of the

volatility of the strong form efficient return (6). One the other hand, a market maker may

need a volatility measure to calculate risk exposure, thus his relevant price for the asset is

p̃et , the price at which he keeps the asset on his accounts. It is the volatility of (7), and not

of (6), that affects his balance sheet.

Microstructure noise (MSN) is the difference between the observed market return and

the latent return. Depending on whether one considers the strong form efficient return or

the semi-strong form efficient return, the noise is defined either as strong form noise

∆ut ≡ ∆pt −∆p∗t ,

or as semi-strong form noise9

∆ut ≡ ∆pt −∆p̃et . (8)

As we show in this paper, these two types of noise differ fundamentally in their cross-

correlation properties. It is therefore essential for a researcher to be clear in advance what

type of latent price the object of interest is, because each type of efficiency requires different

procedures to remove MSN appropriately.

A convenient estimator of the variance of the strong form efficient return, σ2, is the

realized variance Andersen et al. (2001b). Realized variance during the time interval [0, T ]

is defined as the sum of squared market returns over the interval, i.e. as

V ar(∆pt) =
T∑
t=1

∆p2t .

In the presence of MSN, the realized variance is generally a biased estimate of the variance

of the efficient return, σ2. To see this, decompose the noise into two components, i.e. ∆ut =

∆ubat +∆uasyt . The first component, ∆ubat , is assumed to be uncorrelated with the latent price

of interest, reflecting for example the bid-ask bounce in a market populated with uninformed

traders only. The second component, ∆uasyt , is correlated with the efficient price, and reflects

for example the effect of asymmetric information. Realized variance can now be decomposed

9We assume throughout that market conditions are stable and that market prices pt adjust sufficiently
fast so that the noise process ∆ut is covariance stationary.
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– here shown for the strong form efficient price – as

V ar(∆pt) = V ar(∆p∗t + ∆ubat + ∆uasyt )

= σ2 + V ar(∆ubat ) + V ar(∆uasyt ) + 2Cov(∆p∗t ,∆u
asy
t ).

The bias of the realized variance can stem from any of the last three terms, which are all

nonzero in general. Realized variance estimation under the independent noise assumption

accounts for the second and third positive terms, but ignores the last term, which is typically

negative (Hansen and Lunde, 2006). Correcting the estimates for independent noise only,

always reduces the volatility estimate. But because such a correction ignores the last term,

which is the second channel through which asymmetric information affects the realized vari-

ance estimate, the overall reduction might be too much. Further, serial correlation of noise,

or equivalently a cross-correlation between noise and latent returns at nonzero displacement,

requires the use of robust estimators for both the variance and the covariance terms. In

this paper we determine what correlation and serial correlation market microstructure the-

ory predicts, and how market microstructure theory can be useful for obtaining improved

estimates of integrated variance.

2.2 Statistical Characterization of Return/Noise Correlations

We focus in this paper on the cross-correlation between latent returns and noise contem-

poraneously and at all displacements. Throughout, we refer to this quantity simply as the

“cross-correlation”.

Here we present a simple but important insight about the cross-correlation, true under

very general conditions because it follows directly from the definition of covariance. In

particular, for the price processes given by (1)–(5) the contemporaneous cross-correlation

Corr(∆p∗t ,∆ut) is positive only if the market return, ∆pt, is more volatile than the latent

return. More precisely, for strong form efficient returns10

Corr(∆p∗t ,∆ut) > 0⇔ E(∆pt∆p
∗
t ) > V ar(∆p∗t )⇔ Corr(∆pt,∆p

∗
t ) >

√
V ar(∆p∗t )

V ar(∆pt)
, (9)

10To see this for strong form efficient returns, simply note that the unconditional expectation of both
microstructure noise and the latent price change is zero (E(∆ut) = 0, E(∆p∗t ) = 1

T σE(εt) = 0), so that the
contemporaneous cross-covariance between strong form efficient returns and noise is

Cov(∆p∗t ,∆ut) = E(∆p∗t (∆pt −∆p∗t )) = E(∆p∗t∆pt)− V ar(∆p∗t ).

The logic for semi-strong form efficient returns is analogous, because E(∆p̃et ) = 0.
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and for semi-strong form efficient returns

Corr(∆p̃et ,∆ut) > 0⇔ E(∆pt∆p̃
e
t ) > V ar(∆p̃et )⇔ Corr(∆pt,∆p̃

e
t ) >

√
V ar(∆p̃et )

V ar(∆pt)
.

Cross-correlations at displacements τ ≥ 1 are positive if and only if the current market

price responds stronger in the direction of a previous latent price change than the current

latent price itself. More precisely, for strong form efficient returns11

Corr(∆p∗t−τ ,∆ut) > 0⇔ E(∆pt∆p
∗
t−τ ) > 0, (10)

and for semi-strong form efficient returns

Corr(∆p̃et−τ ,∆ut) > 0⇔ E(∆pt∆p̃
e
t−τ ) > E(∆p̃et∆p̃

e
t−τ ).

The statistical insight offered here is helpful at a broad conceptual level – without re-

ferring to any specific model of market participants’ behavior, we can nevertheless isolate

the properties of ∆pt that determine the cross-correlation pattern – but it offers no insight

into the nature of cross-correlation patterns induced by strategic economic behavior. In

the financial economic environments that will concern us, the properties of ∆pt, and hence

the cross-correlation patterns, are determined by (1) the market microstructure, and (2) the

market maker’s loss function. Hence we introduce them now in some detail.

2.3 Introducing Markets and Market Makers

Whereas the strong form efficient price (1) is an exogenous stochastic process, the semi-strong

form efficient price (3) and the market price (5) are an outcome of the market participants’

optimizing behavior. As such the latter are not time series of unknown properties generated

by a black box. Instead, key properties of the data generator – the financial market – are

often observable and allow inferring properties of these price series. This is what we do in

this paper.

Generally speaking, the market price depends on the information available about the

11These results follow again from the definition of covariance; the cross-covariance at nonzero displacements
between latent returns τ ≥ 1 periods ago and noise is

Cov(∆p∗t−τ ,∆ut) = E(∆p∗t−τ (∆pt −∆p∗t )) = E(∆p∗t−τ∆pt)− E(∆p∗t−τ∆p∗t ).

Independence of strong form efficient price changes and non-forgetting immediately implies (10). The logic
for semi-strong form efficient returns is again analogous, except that serial correlation of semi-strong form
efficient returns, ∆pet , must be taken into account.
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strong form efficient price and the market participants’ response to this information. The

information process matters in two ways: First, via its information content, and second,

via the time span T in which it is not publicly known but valid. The price updating rule

determines how, and how quickly, market prices respond to new information. Of particular

importance is whether the market maker can quote prices dependent on the direction of

trade, i.e. whether he is free to charge any spread, because direction-dependent quotes allow

prices to react instantaneously.

We consider limit-order markets, populated by informed and uninformed traders. Market

makers are the counterparty of all trades. Each trading round they quote price pmidt and

spread st for one unit of the asset. Thereafter, as shown in figure 3, informed traders

screen the market with probability α for profitable trading opportunities. They buy if

p∗t > paskt ≡ pmidt +st, sell if p∗t < pbidt ≡ pmidt −st, and refuse to trade otherwise. In periods of

no informed trade, uninformed traders trade instead with probability β, buying and selling

with equal probability.12

Figure 3: Sequence of Informed and Uninformed Trading Decisions
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Informed
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Active
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55
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��

p∗ < pbid // Informed
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β/2
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Buy q = +1
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1

When trading with an informed trader the market maker always loses. His expected loss

12Easley et al. (2008) estimate time-varying arrival rates of informed and uninformed traders, which they
find mutually dependent.
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is

Ln
(
pt, F (·; p, p)

)
= −

∫ p

p

|(pt − p∗t )E(qt |p∗t , pt, st )|n f (p∗t ) dp
∗
t , (11)

where E(qt |pt + st < p∗t ) = α, E(qt |pt − st > p∗t ) = α, E(qt |pt − st ≤ p∗t ≤ pt + st ) = 0, and

n reflects the risk aversion of the market maker. F (·) and f(·) denote the cdf and pdf with

support
[
p, p
]

of the market maker’s belief about the latent price. The market maker faces

a tradeoff between avoiding losses today and learning quickly.13

We add the following assumption, which helps us in greatly simplifying the model without

affecting its basic behavior.

Assumption 1 Ex ante (t = 0) buys (qt = +1) and sells (qt = −1) are equally likely,

so that E(qt) = 0. There is no “momentum” in uninformed trading, and thus trades are

not serially correlated beyond the time of a strong form efficient price change, that is,

E(qκT+τ1|qκT−τ2) = 0 ∀κ, τ1 ∈ N0,∀τ2 ∈ N.

In the following sections 3 and 4 we look at specializations of this general market maker

problem and examine the effect of various model setups on the cross-correlation function.

For both strong form and semi-strong form efficient returns we first examine the multiperiod

case, where private information is not revealed until after many periods. We then specialize

to the one-period case, a case where private information becomes public, and worthless,

after only one period, where we specifically address the effect of a risk-averse market maker

(n > 1).

3 Return/Noise Cross-Correlations in Economic Envi-

ronments I: Strong Form Efficient Prices

Here we characterize cross-correlations in an environment of strong form efficient prices.

Accordingly, in this section “efficient price” means “strong form efficient price”.

Suppose there is a single change in the strong form efficient price at a known time at

which the previous change becomes public knowledge. To fix ideas, let this change occur

every T periods.14 This allows studying the effect of one efficient price change in isolation.

13We describe this market maker problem in more detail in Appendix A.
14The average time T between two changes in the strong form efficient price could be several days, or,

more likely, just a few hours. Engle and Patton (2004) and Owens and Steigerwald (2005), for example, find
evidence of multiple information arrivals during a calendar day.
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We first calculate the correlations between strong form efficient returns

∆p∗t = ∆p∗κT =

{
σεκT ∀κ ∈ Z

0 ∀κ /∈ Z
(12)

and the corresponding noise,

∆ut = ∆pt −∆p∗t = ∆pet + stqt − st−1qt−1 −∆p∗t . (13)

3.1 The General Multi-Period Case

In the period of a change in the strong form efficient price, the expectation about this price

changes by15

∆pe0 = pe0 − pe−1

= σε−T −
T∑
t=2

(λ−tq−t + ω−t)− ω−1 + ω0,

and in all other periods by

∆pet = λt−1qt−1 + ωt.

From (13) we get for t = κT

∆u0 = σ(ε−T − ε0) + s0q0 − s−1q−1 −
T∑
t=2

(λ−tq−t + ω−t)− ω−1 + ω0 (14)

and ∀t 6= κT

∆ut = λt−1qt−1 + stqt − st−1qt−1 + ωt, (15)

where the first term reflects information-revealing trades, the second and third term reflect

the bid-ask bounce, and the last term new non-trade information.

This immediately leads to the contemporaneous cross-covariance

Cov(∆p∗t ,∆ut) =
σ

T
[s0E(q0ε0)− σ + E(ω0ε0)] . (16)

For cross-covariance at higher displacements τ ∈ [1;T − 1] we get

Cov(∆p∗t−τ ,∆ut) =
σ

T
[(λτ−1 − sτ−1)E(qτ−1ε0) + sτE(qτε0) + E(ωτε0)] , (17)

15As a shorthand notation we use px ≡ pκT+x ∀κ, x ∈ Z.
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for cross-covariance at displacement T

Cov(∆p∗t−T ,∆ut) =
σ

T

[
σ − sT−1E(qT−1ε0)−

T−2∑
i=0

λiE(qiε0)−
T−1∑
i=0

E(ωiε0)

]
, (18)

and for all higher order displacements τ > T

Cov(∆p∗t−τ ,∆ut) = 0. (19)

Now consider V ar(∆p∗t ) and V ar(∆ut). The strong form efficient price has unconditional

variance

V ar(∆p∗t ) =
1

T
V ar(σε0) =

σ2

T
, (20)

and the corresponding noise has unconditional variance

V ar(∆ut) =
1

T

T−1∑
i=0

V ar(∆ui)

=
1

T

{
2σ2 +

T−1∑
i=0

(
φis

2
i + φi−1s

2
i−1
)
− 2σsT−1E(qT−1ε0)− 2σ

T−2∑
i=0

λiE(qiε0)

− 2σs0E(q0ε0) + 2sT−1

T−2∑
i=0

λiE(qiqT−1) + E

(T−2∑
i=0

λiqi

)2
+ E(ω2

0)

+ E

[
T−1∑
i=0

ω2
i

]
+ 2s0E(q0ω0)− 2σ

T∑
i=0

E(εiωi) + 2sT−1

T−1∑
i=0

E(qT−1ωi)

+
T−1∑
i=1

(φi−1λi−1 (λi−1 − 2si−1) + 2(λi−1 − si−1)(siE(qi−1qi) + E(qi−1ωi))

+ E(ω2
i ) + 2siE(qiωi)

)}
, (21)

where

φt = E(q2) = E [Prob(q = +1 ∨ q = −1)] = β + (1− β)α [1− F (pet + st) + F (pet − st)] .

Using (16) the contemporaneous cross-correlation is

Corr(∆p∗t ,∆ut) =
s0E(q0ε0)− σ + E(ω0ε0)√

T V ar(∆ut)
. (22)

All other cross-correlations can be obtained analogously using (17) to (19).
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The term E(qτε0) enters the expressions for the cross-covariance (16)–(18) linearly and

enters the denominator of the cross-correlation under a square root. Because this term de-

creases the share of uninformed trades, the contemporaneous cross-correlation is the smaller,

the less informed traders are active. Only in absence of any informed traders we have

E(qτε0) = 0, and the market microstructure reduces to a bid-ask bounce, as in Roll (1984).

Even in this case, shown in the first row of Table 1, the latent price and noise are not inde-

pendent. The contemporaneous cross-correlation (16) is negative, the cross-correlations at

displacement T is positive and all other cross-correlations are zero.

Because of order splitting, effective spreads have become very small for liquid assets. If

the spread sufficiently small,16 the contemporaneous cross-correlation is negative, because in

this case pt shows barely any instantaneous reaction to ∆p∗t .
17 Likewise, if the spread roughly

matches the adverse selection coefficient, by (17) the cross-correlations at displacements one

up to T − 1 are positive, which reflects that the more the market maker learns, the closer pt

gets to p∗t , and the more noise shrinks to zero. If, additionally, the adverse selection coefficient

λ and extra information ω in all periods are sufficiently small, by (18) the cross-correlation

at displacement T is positive.

In general, however, the sign of the cross-correlations depends on the behavior of the

market maker and traders. We now turn to models that allow us to introduce these explicitly.

3.2 Special Multi-Period Cases

Because the market maker loses in every trade with an informed trader, he has an incentive

to find out the strong form efficient price. He learns about the informed traders’ private

information by setting prices and observing the resulting trades. As he learns over time “by

experimentation”,18 the value of private information of the informed trader slowly vanishes.

Although there are many possible interactions of strategic actions by market participants,

we will see that rational behavior ensures that they all share the same cross-correlation sign

pattern and differ only in the absolute value of the cross-correlation.

The market maker does not observe p∗t directly, but only signals which allow him to

narrow down the range of the current p∗t level. He observes in particular the response of

traders to his previous price quote and uses this signal to revise his quote. Because the

strong form efficient price, p∗t , by assumption (12) does not change after the initial jump for

T periods, the market maker can use the entire sequence of signals to learn p∗t over time. His

16A sequence of only bid prices (or only ask prices) is equivalent to st = 0 ∀t.
17ρ0 is negative, but strictly larger than negative one. This obtains, because pt responds every period to

noisy signals about p∗0, which increases the noise variance.
18Aghion et al. (1991), Aghion et al. (1993)
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optimization task is to quote prices that minimize his losses by learning about p∗t as quickly

as possible.

The recursive problem of the market maker is hard to solve, and in particular there are

in general no closed form policy functions pbidt and paskt . Therefore we follow the market

microstructure literature by discussing interesting polar cases, which can be solved because

f(p∗t ) is degenerate.19

3.2.1 No Strategic Traders

Consider a market in which the market maker observes only a noisy signal of whether p∗t
has changed, but in which traders do not behave strategically yet. The market maker has to

learn both about the quality of the signal and about the latent price. Glosten and Milgrom

(1985) describe a market maker who – as in our general setup – does not know whether he is

trading with an informed or an uninformed trader and thus cannot tell whether the direction

of trade, qt, contains information. For example, the market maker cannot tell whether a

“buy” originates from an informed trader, in which case it would indicate an increase in the

strong form efficient price, or whether it is just a random trade of an uninformed trader.

Thus, a noisy “buy” increases the likelihood of an increase in the strong form efficient price

less than a “buy” in a“perfect signal” environment.

As useful illustration is the stylized model of Easley and O’Hara (1992), which allows

us to derive the cross-correlation pattern explicitly. As in our general setup in section 2.3

informed traders are active with probability α. The two possible latent price levels, p∗ and

p∗ > p∗,20 and the probability γ of a low latent price are publicly known, but the actual

realization of p∗t is not.

The direction-of-trade signal, qt, is thereby uncertain in two ways.21 Not only does the

market maker not know if a specific trade originates from informed traders, thereby being

informative; the market maker does not even know if there are any informed traders. He

learns by updating in a Bayesian manner his belief about the probabilities that nobody

observed a signal, that informed traders observed a high p∗t , or that they observed a low p∗t ,

using his information set of all previous quotes and trades, Ωt. Even non-trading intervals

contain information about p∗t , because they lower the probability that informed traders are

19See Appendix A.2. We assume in the following section 3.2.1 that market makers are risk neutral (n = 1)
and limit our discussion to the mid price under a constant spread in order to study the learning effect in
isolation.

20The strong form efficient price is not a martingale here.
21The case of signal certainty, which implies the absence of any uninformed traders, is trivial here: Because

p∗t can assume only one of two price levels, the first trade reveals the true strong form efficient price. Until
the first trade occurs, the expected efficient price is γp∗ + (1− γ)p∗.
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active.22

Denote βτ,{p∗} the belief at time t+τ that a high latent price has been observed, βτ,{p∗} the

belief that a low latent price has been observed and βτ,{} the belief that nobody has observed

any signal, all conditional on Ωt ∪ {qt}. The market maker sets under perfect competition

pbidτ − p∗ = βτ,{p∗}(1− βτ,{})p∗ + βτ,{p∗}(1− βτ,{})p∗ + βτ,{}
p∗ + p∗

2
− p∗

=

(
βτ,{p∗} +

βτ,{}
2

)(
p∗ − p∗

)
.

A sufficiently large τ allows invoking a law of large numbers for the observations included in

the market maker believes. Easley and O’Hara (1992) show for the case that traders observe

a low latent price that βτ,{p∗} = exp(−r1τ) and βτ,{} = exp(−r2τ) for some r1, r2 > 0. Hence

for large τ the bid price pbidt converges to p∗ almost surely at the exponential learning rate

r = min(r1, r2) in clock time.

pbidt
a.s.→ p∗

An analogous result applies to the convergence of the ask price to p∗. Thus transaction prices

converge to the strong form efficient price in clock time at exponential rates for large τ .23

The following proposition summarizes the cross-correlations in Easley and O’Hara (1992)-

type models. It considers only the dominant exponential learning pattern, and ignores all

terms which disappear at a faster rate as τ gets large.

Proposition 1 (Cross-correlations in the Easley-O’Hara model)

The contemporaneous cross-correlation in the Easley and O’Hara (1992) model is

Corr (∆p∗t ,∆ut) = −1 + e−r(T−1)

2
√
K

< 0,

and the cross-correlations at sufficiently large nonzero displacements follow

Corr
(
∆p∗t−τ ,∆ut

)
=
er − 1

2
√
K
e−rτ > 0, ∀τ ∈ [1, T − 1]

Corr
(
∆p∗t−T ,∆ut

)
=
e−r(T−1)

2
√
K

> 0,

22A variation of this setup is the model of Diamond and Verrecchia (1987), where short selling constraints
cause periods of no trading to be a noisy signal of a low latent price.

23This corresponds to proposition 6 in Easley and O’Hara (1992). The result has been derived for calendar
time sampling. Tick time sampling leads to lower convergence rates, because it misses the no-trade periods,
which reveal information as well: During trading days in which no trader has observed the latent price there
are more no-trade periods than during trading days in which some have.
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where K = K(r, T ).

Proof: See Appendix B.1.

As before, the contemporaneous correlation is negative, and approaches its minimum for

small r and small T . Furthermore, for τ ∈ [1, T − 1],

Corr
(
∆p∗t−τ ,∆ut

)
=

(
1

er

)τ−1
Corr

(
∆p∗t−1,∆ut

)
.

That is, the cross-correlation of the strong form efficient price decays geometrically to zero

until τ = T .

Figure 4: Cross-Correlation Functions ρτ of the Strong Form Efficient Price

(a) Noisy Signal (r=0.5, T=5)
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in Easley-O'Hara Model (K=1, r=0.5, T=5) (b) Noisy Signal (r=2, T=5)
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Cross-Correlations of Strong Form Efficient Prices
in Easley-O'Hara Model (K=1, r=2, T=5)

(c) Strategic Traders (T=5)
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in Kyle Model (T=2)

(e) Low Risk Aversion (T=1)
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with High Risk Aversion (T=1)

In the first row of Figure 4 we graph this cross-correlation function. We show the cross-
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correlation pattern for an Easley-O’Hara (1992)-type model for a learning rate of r = 0.5 in

the upper left panel, and for a faster learning rate of r = 2 in the upper right panel.

We summarize the results for the Easley-O’Hara (1992) model in the third row of Table

1. This decay pattern is not unique to the Easley-O’Hara (1992) model. In Appendix C we

show that this cross-correlation pattern holds under signal certainty as well. In this case it is

optimal for market markers to learn the latent price by repeated bisections. Often, optimal

learning stops before p∗ is reached (Aghion et al., 1991), e.g. if the spread is large or if risk

aversion is small. In that case the cross-correlations cut off at some τ < T .

More generally, Glosten and Milgrom (1985) show that if learning is costless, the expec-

tations of market makers and traders necessarily converge as the number of trades increases.

We summarize these qualitative results in the second row of Table 1. Because of the uncer-

tainty of whether a trade reflects information or just noise, the market maker faced with a

noisy signal adjusts only partially. Therefore, whereas the cross-correlations under a noisy

signal have the same signs as under signal certainty, their absolute values are all dampened

toward zero.

Table 1: Strong Form Efficient Cross-Correlations in Multi-period Models

p∗t mar- signal traders ρ0 ρτ ρT ρτ
tingale strategic τ ∈ [1, T − 1] τ > T

yes none n.a. ρ0 < 0 0 −ρ0 0

yes
certain/

noisy
no ρ0 < 0 ρτ−1 > ρτ > 0 ρT > 0 0

no noisy no −1+e−r(T−1)

2
√
K(r,T )

−e−rτ+e−r(τ−1)

2
√
K(r,T )

e−r(T−1)

2
√
K(r,T )

0

yes noisy yes −
√

T
T 2+1

√
1

T (T 2+1)

√
1

T (T 2+1)
0

Notes: We show ρτ = Corr(∆p∗t−τ ,∆ut) in multiperiod models (T > 1) under risk neutrality (n = 1).

3.2.2 Strategic Traders

Because the market maker cannot distinguish informed trades from uninformed ones, in-

formed traders can act strategically. The aim of strategic behavior of informed traders is to

make the signals about p∗t conveyed by their orders as noisy as possible, while still executing

the desired trades. By mimicing uninformed traders they keep the market maker unaware

about the change in p∗t . Because the market maker observes the order flow and uses it to

detect informed trading, the informed traders stretch their orders over a long time period

such that detecting an abnormal trading pattern becomes difficult. The market maker will,
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of course, notice the imbalance in trades over time. By sequentially updating his belief

about p∗t based on the history of trades he still learns about p∗t , but, because of the strategic

behavior of traders, at the slowest possible rate.

Markets of this type have been described in Kyle (1985) and Easley and O’Hara (1987). In

the following we discuss the cross-correlation function implied by the Kyle (1985) model. The

strategic behavior described by Kyle (1985) requires that exactly one trader is informed, or

that all informed traders build a monopoly and coordinate trading. Here, the market maker

does not maximize a particular objective function, he merely ensures market efficiency, i.e.

sets the market price such that it equals the expected strong form efficient price, pet , given

the observed aggregate trading volume from informed and uninformed traders. The only

optimizer in this model is the (risk neutral) informed trader who optimally spreads his orders

over the day to minimize the (unfavorable) price reaction of the market maker. Thereby he

maximizes his expected total daily profit using his private information and taking the price

setting rule ∆pt(Ωt) of the market makers as given. Effectively, the informed trader trades

most when the sensitivity of prices to trading quantity is small.

Kyle (1985) assumes a linear reaction function of the market maker, which implies λt = λ

∀t ∈ [1, T ], and a linear reaction function for the informed trader, which implies qt = q

∀t ∈ [0, T − 1]. Under these assumptions he shows that in expectation the market price

approaches the latent price linearly, not exponentially. The reason for this difference is that

the market maker in Easley and O’Hara (1992) updates his beliefs in a Bayesian manner,

whereas in Kyle (1985) the market maker’s actions are constrained to market clearing. The

other key feature of this model is that by the end of the trading day – just before p∗t would

be revealed – the market price reflects all information.

From the continuous auction equilibrium in Kyle (1985) the price change at time t is

dpe(t) =
p∗ − pe(t)
T − t dt+ σdz, t ∈ [0, T ].

The innovation term dz is white noise with dz ∼ N(0, 1) and reflects the price impact of

uninformed traders. This stochastic differential equation has the solution

pe(t) =
t

T
p∗ +

T − t
T

pe(0) + (T − t)
∫ t

0

σ

T − sdBs,

where dBs ≡ dz.24 The increments of the expected price over a discrete interval of time

24The third term reflects uninformed trading. It has an expected value of zero, and the impact of this
random component increases during the early trading day and decreases lateron – its contribution to pe(t)
is therefore hump-shaped over time.
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follow therefore

∆peτ =
∆p∗0
T

+ (T − τ)

∫ τ

τ−1

σ

T − sdBs −
∫ τ−1

0

σ

T − sdBs. (23)

The following proposition presents the cross-correlations for the Kyle (1985) model.

Proposition 2 (Cross-correlations in the Kyle model)

The contemporaneous cross-correlation in Kyle (1985) is

Corr (∆p∗t ,∆ut) = −
√

T

T 2 + 1
,

the cross-correlations at displacements τ ∈ [1;T ] are

Corr
(
∆p∗t−τ ,∆ut

)
=

√
1

T (T 2 + 1)
,

and all higher order cross-correlations are zero.

Proof: See Appendix B.2.

The cross-covariance at nonzero displacements is positive because of market maker learn-

ing. It is constant because of the strategic behavior of traders, which spread new information

equally over time. This maximizes the time it takes the market maker to include the entire

strong form efficient price change in his quotes. The more periods, the more pronounced is

the negative contemporaneous cross-correlation, and the smaller are the cross-correlations

at nonzero displacements.

We plot the cross-correlation function given by Proposition 2 in the second row of Figure

4. We show the cross-correlation function a Kyle (1985)-type model under modestly frequent

changes in the latent price (T = 5) in the left panel, and for more frequent changes (T = 2)

in the right panel. Table 1 compares standard multiperiod market microstructure mod-

els. In contrast to markets with nonstrategic traders, which display decaying lagged cross-

correlations (row 3), markets with strategic traders display constant lagged cross-correlations

(row 4).

3.3 One-Period Case

In this section we consider the extreme case of markets in which p∗t automatically becomes

public information at the end of each period, i.e. ωt = p∗t−1 − p̃et−1 and T = 1. This

allows us to investigate the impact of risk aversion for the cross-correlation pattern. p∗t−1

18



is thus known when the market maker decides on pt, and by (1) and (4) pet = p∗t − σεt.

The free distribution of information removes any incentive for informed traders to behave

strategically. They therefore react immediately, which implies E(qt−τεt) = 0 ∀τ 6= 0 and

trades are serially uncorrelated, i.e. E(qt|qt−1) = 0. For the market maker all periods are

identical, and therefore the spread and reaction parameters are both constant over time, i.e.

st = s and λt = λ ∀t.
Because T = 1 the market maker’s recursive problem25 collapses to a sequence of single

period problems. This by itself pins down the shape of the cross-correlation function. By

(16) and (18) the cross-correlation at displacement one has the opposite sign and same

absolute value as the contemporaneous cross-correlation, and by (19) all cross-correlations

at displacements larger than one are zero.

In order to pin down the contemporaneous cross-correlation, we now turn to specific

models.

3.3.1 No Market Maker Information

We start with our baseline assumption that the market maker at time t has no information

whatsoever about ∆p∗t . Plugging T = 1, st = s, and λt = λ, and thus φt = φ, into the

general multiperiod results derived in section 3.1 gives

Proposition 3 (Strong form cross-correlation, one period model)

Corr(∆p∗t ,∆ut) =
1√
2

sE (qtεt)− σ√
φs2 + σ2 − 2sσE(qtεt)

, (24)

Corr(∆p∗t−1,∆ut) = −Corr(∆p∗t ,∆ut).

Proof : See Appendix B.3.

As the following Proposition 4 shows, if there is trading in every period (β = 1), and

thus φ = 1), then the cross-correlation (24) can be bounded from above and below.

Proposition 4 (Bounds of contemporaneous cross-correlation)

− 1√
2
≤ Corr(∆p∗t ,∆ut) ≤ 0

25See Appendix A.2.
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Proof: See Appendix B.4.

Note that the cross-correlation reaches the lower bound for zero spread. Thus for mid

prices, or extremely small spreads due to order splitting, the cross-correlation is highest. For

transaction prices the contemporaneous cross-correlation is less pronounced. The contempo-

raneous cross-correlation for mid prices is negative, because pmidt does not react at all to the

change in the strong form efficient price in the same period.26 It differs from negative unity

because market prices move in adjustment to the strong form efficient return one period

earlier.

We summarize these results in the upper two rows of Table 2. Compared to the multi-

period case (T > 1) the absolute value of the cross-correlation at lag one is large, because

all information is revealed. Cross-correlations at any displacement beyond one, in contrast,

are all zero.

Table 2: Cross-Correlations in One-period Models

efficient spread loss ρ0 ρ1 ρτ
price function τ > 1

strong 0 any − 1√
2

1√
2

0

strong ≥ 0 any − 1√
2
≤ ρ0 < 0 −ρ0 0

strong ≥ 0
high n+
extra info

ρ0 > 0 −ρ0 0

semi-strong ≥ 0 quadratic − 1√
2
≤ ρ0 ≤ 1√

2
−ρ0 0

semi-strong ∈ [0, λ[ any ambiguous ρ1 > 0 0
semi-strong λ any 0 0 0
semi-strong ≥ λ any ambiguous ρ1 < 0 0

Notes: The upper half of the table reports ρτ = Corr(∆p∗t−τ ,∆ut) under no extra market maker information

in rows 1 and 2, and under extra market maker information {sgn(εt)} in row 3. The lower half reports

ρτ = Corr(∆p̃t−τ ,∆ut).

3.3.2 Incomplete Market Maker Information and Risk Aversion

Previously our market maker set prices knowing p∗t−1 but without information about the

strong form efficient return in period t. Now we show that under risk aversion the existence

of extra information about the direction of the change in the latent price, i.e. {sgn(εt)},
26This is an instance of the price stickiness that Bandi and Russell (2006) show to generate “mechanically”

a negative contemporaneous cross-correlation.
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can invert the cross-correlation pattern. Observing {sgn(εt)} before setting his price pmidt ≡
pet allows the market maker to adjust the mid price before any informed trader can take

advantage of the latent price change. The market maker updates his prior belief about p∗t ,

summarized by the distribution p∗t ∼ f(p∗t−1, σ
2), with the signal {sgn(εt)}. For convenience

of exposition we use

Assumption 2 The probability density function of εt is symmetric around its zero mean,

monotonically increasing on ]−∞; 0] and monotonically decreasing on [0;∞[.

The updated distribution f̃(·) differs from f(·) in that it is truncated from below or

above at p∗t = p∗t−1 when sgn(εt) > 0 or sgn(εt) < 0, respectively. The left panels of Figure 5

illustrate the posterior distribution after observing the signal {sgn(εt) = +1} and {p∗t−1 = 0}:
If the prior is a normal distribution, the posterior is given by the half normal in the upper left

panel. If the prior is a tent distribution, the posterior is given by the triangular distribution

in the lower left panel.

Figure 5: Optimal Predictor p(n) under Half-Normal and Triangular Distributions

(a) Half-Normal Distribution
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(b) Optimal Predictor for Half-Normal
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(c) Triangular Distribution

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
 Triangular Distribution

 p*

 f(
p*

)

(d) Optimal Predictor for Triangular

5 10 15 20 25 30
0

0.5

1

1.5

 Optimal Predictor p(n) at Risk Aversion  n
  su=0, so=1

 n

 p
(n

)

Notes: The left panels are two examples of market maker believes about the strong form efficient price

after observing {sgn(εt) = +1}. The right panels show the corresponding optimal predictors, pmid(n), as a

function of risk aversion n. The dotted line marks E(∆p∗t ), and the dashed line marks σ
E(|∆p∗t |) =

√
E(ε2)

E(|ε|) .
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After observing this signal and p∗t−1, the market maker quotes a bid and an ask price for

the following period, taking the spread s as given:

pt = p∗t−1 + sqt +R({sgn(εt)}). (25)

This equation resembles (5), augmented by the market maker response function R(·) to the

extra information.27 The function R(·) depends in particular on the market maker’s risk

aversion, n.

An approximation28 to the problem of choosing pmidt (n) based on loss function (11) is

pmid(n) = argmax
x∈[p∗,p∗]

−
∫ x

p∗
(x− p∗)n f(p∗)dp∗ −

∫ p∗

x

(p∗ − x)n f(p∗)dp∗. (26)

For some values of n, explicit solutions to (26) are available, which we list in the following

proposition.

Proposition 5 (Optimal mid price)

pmid(1) = Median(p∗t )

pmid(2) = E(p∗t )

pmid(∞) = Midsupport(p∗t ).

Proof: See Appendix B.5.

The higher the risk aversion n, the more sensitive is the expected loss, Ln
(
pt, F (·, p∗, p∗)

)
,

to the support of p∗t , that is, to p∗ and p∗. A well-known result is that the optimal choice

for a risk neutral market maker (n = 1) is to set pmidt equal to the median of f(·), and for a

modestly risk averse market maker (n = 2) to the mean. An extremely risk averse (n→∞)

market maker follows the most robust pricing role possible: He minimizes his expected loss

at the price in the middle of the support of f(·), i.e. pt =
p∗+p∗

2
.

The right panels of Figure 5 illustrate this. They plot the market price as a function of

risk aversion n and show that as risk aversion n grows, pmid(n) moves monotonically from the

median of f(·) to the midpoint of the support of f(·).29 The upper right panel shows this for

27The release of p∗t−1 is captured by ωt = p∗t−1 − pt−1 + (st−1 − λt−1)qt−1.
28This approximation is exact for s = 0 or, more generally, for∫ pmid(n)

pmid(n)−s

(
pmid(n)− p∗

)n
f(p∗)dp∗ +

∫ pmid(n)+s

pmid(n)

(
p∗ − pmid(n)

)n
f(p∗)dp∗ = 0.

29See Appendix D for details.
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a right-skewed distribution f(·) with infinite support, namely the halfnormal distribution.

Indeed, pmid(n) increases in n, starting from the median for n = 1, monotonically without

bound. If, in contrast, f(·) has finite support, then pmid(n) increases from the median

monotonically toward a finite asymptote pmid(∞).30 This is shown in the lower right panel

of Figure 5 for the triangular distribution defined on [0, 1]. We use these observations in the

proof of the following proposition:

Proposition 6 (Cross-correlation under market maker information)

If Ωt = {sgn(εt), p
∗
t−1} and Assumption 2 holds, then the optimal market maker response

R({sgn(εt)}) strictly increases in risk aversion, n ≥ 1, without bound. If, further, the

distribution of the expected latent price with support [p∗, p∗] satisfies[
p∗
t

+ p∗t
2

− p∗t−1
]

sgn(εt) > s+
σ

E(|εt|)
, (27)

then ∃n0 > 1 such that ∀n > n0 it holds that Corr(∆p∗t ,∆ut) > 0.

Proof: See Appendix B.6.

Condition (27) holds, for example, for normally distributed ∆p∗t , but not for tent dis-

tributed ∆p∗t .

Comparing these results in the third row of Table 2 with the other model setups, it

appears that even though the contemporaneous cross-correlation can be positive for high

risk aversion levels, the usual case is that it is negative. For the halfnormal distribution in

the upper left panel of Figure 5, for example, we need a rather high risk aversion of n ≥ 8.

Nevertheless, changes in risk aversion of the market maker have a distinctive impact on the

cross-correlation. Hansen and Lunde (2006) note as their “Fact IV” that “the properties of

the noise have changed over time.” Because they base this observation on a comparison of

year 2000 with year 2004 it is possible that the underlying cause is a change in risk aversion.

The link between properties of noise and risk aversion offers itself as a way to estimate

the time path of risk aversion from the cross-correlation pattern of market prices. In stable

periods with low risk aversion the contemporaneous cross-correlation is negative, but as

uncertainty shoots up, contemporaneous cross-correlation shoots up with it. In periods of

crisis this can lead to the extreme case of an inverted cross-correlation pattern that we have

described in this section. The lower row of Figure 4 illustrates this inversion: it shows the

typical cross-correlation pattern of strong form efficient prices in a one-period model with

modest risk aversion on the left, and under higher risk aversion on the right.

30Analogously, for left-skewed distributions with infinite support, pmid(n) decreases in n from the median
monotonically without bound, and with finite support toward a finite asymptote pmid(∞).
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The negative contemporaneous cross-correlation in Hansen and Lunde (2006) indicates

that during their sample period the risk aversion of market makers was rather low.31

3.4 Frequent Price Changes

Until now we discussed models, where the old strong form efficient price becomes public

information before any new shift in the latent price. In general, however, the latent price

may change again before the old latent price becomes fully publicly known. In this case

the old p∗t−1 still contains unrevealed information about the new p∗t . As p∗t−1 is not precisely

known itself, potentially the entire history of market prices contains information about p∗t .

More specifically, suppose that at any point in time the T most recent changes in the

strong form efficient price are private information. The signal {sgn(pt− p∗t )} is now different

from the signal {sgn(εt)}. Under the former signal and with Corr(p∗t ,∆p
∗
t−τ ) > 0 ∀τ > 0

the information set Ωt contains information about p∗t−τ not contained in Ωt−1. By (10) the

signs of the cross-correlations at nonzero displacements remain unchanged even if p∗t changes

frequently. All that is needed is that in expectation market price changes in t are affected by

latent price changes in t− τ , τ > 0, by learning. The more often p∗t changes during [t, t− τ ],

the closer to zero is the cross-correlation Corr(p∗t ,∆p
∗
t−τ ), the less informative is the signal

in t about ∆p∗t−τ , and thus the closer to zero is the cross-correlation between latent returns

and noise. For both signals the contemporaneous cross-correlation is dampened toward zero,

because the signal {sgn(pt−p∗t )}mixes up information on ∆p∗t with information on ∆p∗t−τ , and

the signal {sgn(εt)} is related only to a small component of ∆ut. Overall, slowly decaying

private information keeps the cross-correlation sign pattern unchanged, but dampens its

absolute values toward zero.

In summary we have shown in this section that many market properties leave their mark

on the cross-correlation pattern: The displacement beyond which correlation is zero gives an

indication of the frequency of information events. The larger the correlation is in absolute

value terms the fewer uninformed trades occur in the market. If contemporaneous strong

form cross-correlation is high and positive, then market makers are very risk averse and

have access to extra information. If the cross-correlations at nonzero displacements decay

31Note that in this section from the point of view of the market maker all periods are ex ante identical.
Every period the market maker gets the same type of new information (p∗t−1, and either sgn(εt) = 1, or
sgn(εt) = −1), thus st is the same in every period. Only a small change in the model allows for time
variation in spreads (Demsetz, 1968). If – contrary to the maintained assumptions – we assigned nonzero
probability mass to the information event {sgn(εt) = 0} and kept V ar(εt) = 1 by moving probability mass to
the tails of the distribution, then observing this signal would ensure the market maker of no informed trading
in this period. Therefore, the competitive spread in this period would be zero. A subsequent sgn(εt) = ±1
then would not only trigger a shift in pmidt , but also an increase in spread.
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quickly, then market makers learn fast. If they do not decay at all, then informed traders

act strategically.

4 Return/Noise Cross-Correlations in Economic Envi-

ronments II: Semi-Strong Efficient Prices

Now we base the cross-correlation calculation on another latent price, the semi-strong form

efficient price, p̃t. Equivalently we could interpret this setup as an endogenous latent price

process, determined by an exogenous trading process qt, because the strong-form efficient

price remains unobserved and enters the model only via the informed trades. This setup is

closely related to the generalized Roll (1984) bid-ask model in Hasbrouck (2007).

4.1 The General Multi-Period Case

In the period of a change in the strong form efficient price, in which also the previous strong

form efficient price becomes public information, the semi-strong form efficient return is32

∆p̃e0 = λ0q0 + σε−T −
T∑
i=1

(λ−iq−i + ω−i) + ω0,

where the first term reflects the market maker’s guess about the new strong form efficient

return based on a trade, the second term internalizes the new information about the previous

return, and as a countermove the sum undoes the now obsolete guesses about the previous

return. In all other periods the semi-strong form efficient price changes by

∆p̃et = λtqt + ωt.

From (8) we get for ∀t

∆ut = (st − λt)qt − (st−1 − λt−1)qt−1, (28)

where the first two terms reflect information-revealing trades, and the second two terms

reflect the bid-ask bounce.

Using Assumption 1 this immediately leads to an expression for the contemporaneous

covariance33

32We use again the shorthand notation p0 ≡ pκT ∀κ ∈ Z, and likewise p−x ≡ pκT−x ∀κ, x ∈ Z.
33To keep the terms manageable, we assume no extra information here, i.e. ωt = 0 ∀t.
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Cov(∆p̃et ,∆ut) =
1

T
{−φ0λ0(λ0 − s0) + σ(λ−1 − s−1)E(q−1ε−T )

−
−T∑
i=−1

(λ−1 − s−1)λiE(qiq−1)

+
T−1∑
i=1

(−φiλi(λi − si) + λi(λi−1 − si−1)E(qiqi−1))

}
, (29)

for covariance at higher displacements τ ∈ [1, T − 1]

Cov(∆p̃et−τ ,∆ut) =
1

T
{−λ0(λτ − sτ )E(q0qτ )

+ λ0(λτ−1 − sτ−1)E(q0qτ−1) + λT−τ (λT−1 − sT−1)E(qT−τqT−1)

+
T−1∑
i=τ+1

[λi−τ (−λi + si)E(qi−τqi) + λi−τ (λi−1 − si−1)E(qi−τqi−1)]

}
, (30)

for covariance at displacement T

Cov(∆p̃et−T ,∆ut) =
1

T
λ0 (λT−1 − sT−1)E(q0qT−1), (31)

and for all higher order displacements τ > T

Cov(∆p̃et−τ ,∆ut) = 0.

Under semi-strong market efficiency (st = λt ∀t) the cross-correlation function is zero

for all displacements. Hence all of the special cases that we now discuss assume lack of even

this weak form of market efficiency.

4.2 Special Multi-Period Cases

The cross-correlations for semi-strong form efficient prices stem from a gap between the

spread, st, and the adverse selection parameter, λt. Such a gap can result from processing

costs (st > λt), from legal restrictions (st < λt), or merely from suboptimal behavior of

the market maker. Noisy signals or strategic behavior do not affect the semi-strong cross-

correlations – all what matters is that the market maker’s knowledge passes into market

prices one-to-one.

In Easley and O’Hara (1992), for example, prices are semi-strong form efficient by defi-

nition, and therefore the semi-strong form cross-correlation function is zero always.
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The Kyle (1985) model assumptions λt = λ and st = s ∀t give with (30)

Cov(∆p̃et−τ ,∆ut) =
λ(λ− s)

T

{
E(qT−τqT−1) +

T−1∑
i=τ

[E(qi−τqi−1)− E(qi−τqi)]

}
.

If λ = 0, then this cross-correlation is flat at zero. Likewise, if additionally E(qi−τqi) is

a positive constant between the time of the latent price change and its announcement,

the cross-correlation is flat and proportional to λ(λ−s)
T

. More generally, because typically

E(qiqj) > E(qi−τqj) > 0 ∀i ≤ j, ∀τ > 0, the cross-correlation decreases in τ .

4.3 One-Period Case

The simpler case of markets in which all information is revealed after one period without

any extra information, i.e.

∆p̃et = λ(qt − qt−1) + σεt−1 (32)

offers itself again for illustration of these cross-correlation effects. In the one period case the

semi-strong form efficient prices follow a martingale, but unlike their strong form counterpart

the semi-strong form efficient returns do not follow a martingale difference sequence.34 We

see in the following proposition that in contrast to the strong form correlations, the absolute

value of semi-strong form cross-correlation at displacement zero and one usually differs.

Proposition 7 (Semi-strong form cross correlation, one-period model)

The contemporaneous cross-correlation is

Corr(∆p̃et ,∆ut) =
2φλ− σE(qtεt)√

σ2 − 2σλE(qtεt) + 2φλ2
sgn(s− λ)√

2φ
.

The cross-correlation at displacement one equals

Corr(∆p̃et−1,∆ut) =
−φλ√

σ2 − 2σλE(qtεt) + 2φλ2
sgn(s− λ)√

2φ
.

All cross-correlations at higher displacements are zero.

Proof: See Appendix B.7.

Bounds on the contemporaneous cross-correlation can be obtained by assuming a specific

market marker loss function and then solving for the market maker’s optimal λ. For example,

34In multiperiod models strong form efficient prices follow a martingale, but semi-strong form efficient
prices do not.
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suppose the market maker has a quadratic loss function, then

λopt = argmin
λ

E
[
(p̃et − p∗t )2

]
,

which becomes

λopt = argmin
λ

φλ2 − 2σλE (qtεt) ,

and therefore λopt = σ
φ
E (qtεt) > 0. At λopt we have

Corr(∆p̃et ,∆ut) = E(qtεt)
sgn(s− λopt)√

2φ
,

Corr(∆p̃et−1,∆ut) = −E(qtεt)
sgn(s− λopt)√

2φ
,

and because 0 ≤ E (qtεt−τ ) < 1, ∀t,∀τ.35

|Corr(∆p̃et ,∆ut)| =
∣∣Corr(∆p̃et−1,∆ut)∣∣ ≤ 1√

2φ
.

Under a quadratic market maker loss function and an uninterrupted flow of trades (φ = 1),

the absolute value of cross-correlations is bounded from above by 1√
2
.

Proposition 7 shows that the size of the spread matters only relative to the adverse

selection parameter. The cross-correlation at displacement one, for example, is negative if

and only if the spread exceeds the adverse selection cost. s > λ is reasonable, because the

spread must cover the order processing cost. It also entails, however, that the average trader

in expectation incurs a loss with every transaction. Hasbrouck (2007) justifies this with the

liquidity needs of traders.

The sign of contemporaneous cross-correlation is ambiguous in general. As in Diebold

(2006), no matter what loss function applies, for s sufficiently large and λ > σ
2φ
E(qtεt) = λopt

2

the model predicts a cross-correlation pattern that is the opposite of the empirical pattern

in Hansen and Lunde (2006). We illustrate this again in the last row of Figure 4, which on

the left shows the cross-correlation function for a relatively small spread (0 ≤ s < λ), and

on the right for a typical, wider spread (s > λ > 0). If sufficiently many lags are included,

the Hansen and Lunde estimator is unbiased for the strong form efficient price defined as in

(1) and (2), but by construction not for its semi-strong form counterpart.

35See equation (38) in Appendix A.2.
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All it takes to generate such a large spread without violating the market maker’s zero-

profit condition is high risk aversion. By the same reasoning as in section 3.3.2,36 there

exists a minimal risk aversion level n0 such that all n > n0 generate a spread s > λ.

Thus if additionally λ > σ
2φ
E(qtεt), then there exists n0 such that all n > n0 generate a

positive contemporaneous cross-correlation and a negative cross-correlation at displacement

one. Note that unlike for the strong-form efficient prices discussed in section 3.3.2 positive

contemporaneous cross-correlation for semi-strong form efficient prices obtains even though

the market maker does not observe a signal. We summarize the results in the lower four

rows of Table 2.

Summing up, what sign of contemporaneous cross-correlation does market microstruc-

ture theory predict? Positive contemporaneous cross-correlations occur for (1) strong form

efficient prices under sufficiently high risk aversion if a signal is observed, and (2) semi-strong

form efficient prices for large spreads. Various market arrangements and sampling speeds

can dampen the contemporaneous cross-correlation to zero, but the negative sign main-

tains except in the two aforementioned cases. Bandi and Russell (2006) and Diebold (2006)

rightly wonder whether a negative cross-correlation is inevitable. In contrast to Hansen and

Lunde (2006), Bandi and Russell (2008) find no “obvious evidence of a significant, negative

correlation.” These seemingly contradictory results might stem from the inability of purely

statistical estimators to clearly distinguish strong form from semi-strong form efficient prices.

Without controlling for market features, which the realized volatility literature so far largely

ignores, the estimate may pick up any of the two prices. As we have seen, a positive cross-

correlation is possible, but a negative cross-correlation appears most realistic for strong form

efficient prices.

5 Additional Discussion

We have already drawn some econometric implications insofar as we have shown that market

microstructure models predict rich cross-correlation patterns between latent prices and mi-

crostructure noise, which have yet to be investigated empirically. Here we go farther, sketch-

ing some specific aspects of such empirics, including the relationship between theory-based

and data-based (sample) cross-correlation functions, strategies for using microstructural in-

formation to obtain improved “structural” volatility estimators, and comparative aspects of

structural and non-structural volatility estimators.

36The spread affects the market maker price conditional on the trade direction, thus the market maker
belief conditional on the trade direction is truncated on one side at pet .
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5.1 Effects of Sampling Frequency on Return/Noise Correlations

We have thus far focused on sampling at the rate corresponding exactly to the market maker’s

reaction time. Sampling at faster or slower rates will affect the shape of cross-correlation

functions. This has immediate implications for the shape of empirically estimated (sample)

cross-correlation functions, because the reaction speed of the market maker is generally

unknown, so that econometric sampling may proceed at faster or slower rates.

Consider first the effects of sampling “too fast.” Suppose we sample m times during

an interval of no changes in both latent and market prices, and record each time the most

recently realized prices. Then all returns except for the first one are zero and thus the

cross-correlation function becomes a spread-out version of the cross-correlation functions

derived in the previous sections: after each non-zero cross-correlation follow m − 1 zero

cross-correlations, as in the second row of Table 3. Zeros in the middle of a cross-correlation

function thus indicate overly fast sampling.

Table 3: Cross-Correlation Patterns at Various Sampling Frequencies

sampling rate cross-correlation function note
τ = 0 1 2 3 4 5

optimal ρ0 ρ1 ρ2 ρ3 ρ4 ρ5
> latent price frequency ρ0 0 0 ρ1 0 0

> market maker update freq. ρMM
0 0 ρMM

1 0 ρMM
2 0 ρMM

i > ρi ∀i
< latent price frequency ρSL0 ρSL1 ρSL2 ρSL3 ρSL4 ρSL5 ρSLi < ρi ∀i

A variant of sampling “too fast” is sampling exactly at trading frequency, but with a

market maker in the background who updates pet infrequently, for example only every second

period. After a latent price change at t = 0, he updates his quotes for the first time at

t = 2, and then, observing the trades in between, again at t = 4, t = 6, and so forth. The

expected noise pattern is therefore −∆p∗t , 0,∆p2, 0,∆p4, . . .. Trading activity in the interim

period provides information about ∆p∗t and thus ∆p2 is more correlated with ∆p∗t than under

period-by-period updating. But because the quote in the interim period is fixed, the two

periods together provide less additional information than under period-by-period updating.

Whereas the variance of ∆p∗t is unchanged, the (unconditional) variance of noise shrinks to

somewhat more than half the variance that obtains when the market maker updates pt every

period. The cross-correlation function therefore oscillates, as in the third row of Table 3.

Now consider the effects of sampling “too slowly”. Suppose, for example, that in the

one-period model of section 4.3 we sample only every n-th tick, where t̂ indexes the n-tick
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blocks. Then (32) becomes

∆p̃et̂ =
t̂n∑

i=(t̂−1)n+1

∆p̃ei = λ(qt̂n − q(t̂−1)n) + σ
t̂n−1∑

i=(t̂−1)n

εi,

and the variance increases to V ar(∆pe
t̂
) = 2φλ2+nσ2−2λσE(qtεt). Assuming that the statis-

tical properties of the interim periods are the same as the properties of the sampled periods,

the expressions for noise (28), its variance V ar(∆ut̂), and the covariance Cov(∆p̃e
t̂
,∆ut̂)

remain unchanged. Thus

|Corr(∆p̃t̂,∆ut̂)| =
∣∣∣∣∣ 2φλ− σE(qtεt)√

2φ
√
nσ2 − 2λσE(qtεt) + 2φλ2

∣∣∣∣∣ < |Corr(∆p̃t,∆ut)| ,
so that increasing the sampling interval averages the initial market price reaction with later

price changes, thereby dampening the entire cross-correlation pattern toward zero. The most

informative cross-correlations are therefore obtained by sampling sufficiently fast to capture

every tick separately. Hansen and Lunde (2006) find a negative contemporaneous cross-

correlation between returns and noise, which diminishes as more ticks are combined into

one market price sample. Our results show that this can stem from two different sources:

Either from the averaging effect across latent price changes just described, or from cross-

correlations at nonzero displacements offsetting the contemporaneous correlation for the

same latent price change. This ambiguity can be resolved by evaluating the entire cross-

correlation function, especially its cutoff, which shows the importance of not limiting noise

analysis to the contemporaneous cross-correlation.

The upshot is that sampling frequency does not change the sign pattern of cross-correlati-

ons but can severely impact their absolute values, as summarized in Table 3. At low sampling

rates the cross-correlations become empirically indistinguishable from zero, whereas at higher

sampling frequencies the cross-correlation structure of the noise needs to be addressed. In

the next section we suggest strategies for doing so in parsimonious fashion by exploiting

market microstructure theory.

5.2 Structural Volatility Estimation via Microstructural Restric-

tions

In the introduction we highlighted the key issue of estimation of integrated volatility (IV )

using high-frequency data, the potential problems of the first-generation estimator (simple

realized volatility – RV ) in the presence of MSN, and subsequent attempts to “correct” for

31



MSN.

In an important development, Hansen and Lunde (2006) suggest making RV robust to

serial correlation via HAC estimation methods, which are asymptotically justified under

very general conditions. That asymptotic generality is, however, not necessarily helpful in

finite samples. Indeed the frequently unsatisfactory finite-sample performance of nonpara-

metric HAC estimators leads Bandi and Russell (2010) to suggest sophisticated alternative

statistical approaches.

Here we explore aspects of a different approach that specializes the estimator in accor-

dance with the implications of market microstructure theory. As we have seen, dynamic

market microstructure models imply that noise decays geometrically over time after dis-

placement one, with two polar cases of immediate decay (as in section 3.3) and no decay (as

in section 3.2.2). That knowledge can be used to construct volatility estimators that exploit

the restrictions implied by market microstructure theory37

Consider first a “bid-ask bounce estimator”, based on a one-period model without extra

information and constant spread. The only action in the market price is then the bid-ask

bounce. Suppose we are interested in the volatility of the strong form efficient price. From

(4) and (5) we obtain ∆pt = ∆p∗t + ∆ut with ∆ut = σ(εt−1 − εt) + s(qt − qt−1). It follows

that

E
[
(∆p∗t )

2
]

= E
[
(∆pt −∆ut)

2] = E
(
∆p2t

)
+ 2s (σE(qtεt)− φs) .

Simple calculations reveal that the last term equals twice the first-order autocorrelation of

market returns, so that, even if E(qtεt) 6= 0, a consistent estimator for IV of the strong form

efficient price is38

ÎV = RV + 2E(∆pt∆pt−1). (33)

It is interesting to note the resemblance to the Roll (1984) estimator.

As another example, consider a “learning estimator”. Suppose ∆pt follows an MA(∞)

process in the innovations for the latent price,

∆pt = σ

(
α1εt +

∞∑
τ=1

ατ2εt−τ

)
. (34)

37We do not claim optimality; instead we show the practical relevance of tailoring the estimator to the
market at hand. As emphasized before, optimality of a RV estimate must be defined relative to the user’s
objective.

38Hasbrouck (1993) and recently Hansen et al. (2008) show how to embed (33) into general moving av-
erage (MA)-based estimators. Such general MA-estimators are warranted if the researcher has only limited
information about the microstructure of the market or has interest different from IV estimation, such as fore-
casting the latent price process. If, however, the microstructure is known and interest centers on estimating
IV, as we assume here, then our estimator may be more appealing.

32



This form of ∆pt accommodates very persistent cross-correlations, similar to the idea behind

the sequence of examples in Oomen (2006). If our knowledge of the market is this compre-

hensive, we can obtain a consistent estimate for IV = σ2 from (34) in a GMM framework

using three moments.39 For example, a learning model with T =∞ and frequent latent price

changes might predict

∆pt ≈ 0 · σεt +
∞∑
τ=1

(
−e−rτ + e−r(τ−1)

)
σεt−τ = σ (er − 1)

∞∑
τ=1

e−rτεt−τ .

The IV (= σ2) can then be consistently estimated directly by GMM. The resulting estimate

of IV is a scaled version of standard RV 40

ÎV =
1− e−2r̂

1− 2e−r̂ + e−2r̂
·RV, (35)

where the scaling factor requires a consistent estimator of only one parameter, the market

maker’s learning rate, r.

The expression for ÎV in (35) offers a structural interpretation to estimates of noise

and IV, such as those in Table 3 of Hansen and Lunde (2006). The model of Easley and

O’Hara (1992) predicts that the noise decreases with the learning rate. Slow learning implies

a very persistent cross-correlation between noise and latent returns, and hence persistent

autocorrelation of noise, so that fluctuations in noise tend to dominate the IV.41

Figure 6 provides some perspective. It is based on the noise-to-IV ratios reported by

Hansen and Lunde (2006), which are (unfortunately) derived under the assumption of inde-

pendent noise. The ratio of noise to IV shrinks with the number of price-changing quotes

per day. If the number of times that the market maker changes his price quote during a

trading day is indicative of his speed of learning, then MSN indeed decreases as the learning

rate of the market maker increases. Thus, even though these ratios may not be directly

applicable, they seem to support the multiperiod learning model.

Furthermore, the recent decline in noise-induced bias of RV (Hansen and Lunde’s fact III)

suggests that the learning rate r has increased. Meddahi’s (2002) finding that the standard

39The proof, which we sketch here, is straightforward. Recast the price process (1) and (2) in continuous
time, so that ∆pt = ∆p∗t + ∆ut/

√
m, with m denoting the number of subintervals, tm equal to one unit of

calendar time, and the scale of t suitably redefined. Then under standard assumptions r is invariant to m
and local infill asymptotic theory can be applied.

40Hansen et al. (2008) present an estimator of IV which, like (35), is a scaled variant of RV. The key differ-
ence between the two estimators is that we exploit (that is, condition on) the relevant market microstructure,
whereas Hansen et al. (2008) attempt to achieve robustness to a wide range of possible microstructures.

41Kelly and Steigerwald (2004) take this a step further by linking information persistence and frequency
with the difference between prices and trades in the decay rate of autocorrelations.
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deviation of the bias is large relative to the IV suggests that the learning rate itself may

have fluctuated considerably around its increasing trend.

Figure 6: Ratio of Noise to Integrated Variance, as a Function of Quotes per Day

Notes: The vertical axis measures the noise-to-signal ratio as 100 times noise divided by IV under the

assumption of independent noise. The horizontal axis gives the number of quotes per day with a price

change. Data are for 30 NYSE and NASDAQ equities in 2000, obtained from Hansen and Lunde (2006)

Tables 1 and 3. The solid line is a fitted trend.

Table 4 reveals that both the learning and bid-ask estimators explain at least one third

of noise. Learning appears to be very fast for the Alcoa stock (high r), which implies quick

decay of the MA terms, such that essentially only the MA(1) term matters. As a result

the learning and bid-ask volatility estimates are very similar. Based on this evidence, the

MA(1) captures both the learning and bid-ask bounce effects.42 These are the two most

common microstructure effects, which we indeed want to remove. But what about the

other two thirds of the “noise”? It is not clear whether the difference between the bid-

ask and Hansen-Lunde estimates, say, is really “noise”, unless one has in mind a distorting

microstructure effect other than learning and bid-ask bounce. Hence our perspective warns

against removing “noise” from a volatility estimate when the noise does not have a plausible

noise interpretation.

42All estimators in the table except the standard estimator allow for correlation between noise and latent
price. The bid-ask bounce we remove thus includes both uninformed and informed components. The
uninformed component alone can be calculated by taking s directly from the difference between bid and ask
in the data, and φ as the number of seconds with a trade or quote.
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Table 4: Comparison of Realized Volatility Estimators

RV estimator price mid bid ask

RVStandard 2.487 1.601 2.726 2.679
RVLearning 2.373 1.544 2.525 2.477
RVBid−ask 2.370 1.543 2.517 2.468

RVHansen−Lunde 2.142 2.138 2.250 2.253
RVSemi−strong 2.258 1.517 2.352 2.297

Notes: The price data are second-by-second for Alcoa Inc. (AA) in 2004, from Barndorff-Nielsen et al.
(2009). RVStandard is simple realized volatility, ∆p2

t . RVLearning is the strong form efficient price estimator
under asymmetric information, and RVBid−ask is the strong form efficient price estimator accounting for
a non-zero spread, as described in section 5.2. RVHansen−Lunde is the statistical estimator of Hansen and
Lunde (2006). RVSemi−strong is the semi-strong form efficient price estimator as defined in section 5.3.

5.3 On Structural vs. Non-Structural Volatility Estimators

Here we emphasize that the more the econometrician knows about the price process of

relevance, the more the noise correction can be tailored to it by exploiting microstructure

theory. This is important, because as discussed in section 2, the price process of interest may

differ across users of volatility estimates (e.g., many users are likely to be interested in price

processes different from (1), which has implications for appropriate volatility estimation.

The estimate of the volatility of strong form efficient return, (20), the theoretical price under

full information, differs both conceptually and numerically from the volatility of semi-strong

form efficient returns,

E
[
(∆p̃et )

2
]

=
1

T

σ2 +
T−1∑
i=0

φiλ
2
i + E

( −T∑
i=−1

λiqi

)2
− 2σ

−T∑
i=−1

λiE(qiε−T )

 , (36)

which is the volatility that affects the balance sheet of the market maker. Thus studies of

market maker behavior should be based on a RV estimate E [(∆p̃et )
2], not E [(∆p∗t )

2]. For

example, consider again T = 1, in which case strong form volatility (20) is σ2 and semi-strong

volatility (36) simplifies to

E
[
(∆p̃et )

2
]

= σ2 + 2φλ2 − 2σE(qtεt) 6= σ2.

But the RV estimator promoted by Hansen and Lunde (2006) is

RV 1tick
AC1

= ∆p2t + ∆pt−1∆pt + ∆pt∆pt+1,
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which for T = 1 is

E
(
RV 1tick

AC1

)
= E [(s(qt − qt−1) + σεt−1)× (σ(εt + εt−1 + εt−2) + s(qt+1 − qt−2))] = σ2.

Hence although RV 1tick
AC1

is unbiased for σ2, it is in general biased with ambiguous direction

for V ar(∆p̃et ), because by construction a noise-robust estimator with lag window T correctly

removes any microstructure and other correlation effects. For this estimator to work, the

latent price process of interest must follow a martingale difference sequence (MDS). Even

though semi-strong form prices with T = 1 form a martingale, their returns are not an MDS.

They are serially correlated and inevitably RV 1tick
AC1

is biased relative to V ar(∆p̃et ).

Consider, for example, a “semi-strong form efficient price estimator”. We work in a one-

period model without extra information and constant spread, but we are now interested in

the volatility of the semi-strong form efficient price. From (4) and (5), using (32), we obtain

∆pt = ∆p̃et + ∆ut with ∆ut = σ(εt−2− εt−1) + s(qt− qt−1) + λ(−qt + 2qt−1− qt−2). It follows

that

E
[
(∆p̃et )

2
]

= E
(
∆p2t

)
+ 2sφ(λ− s).

One can show that the last term equals twice the difference of the first- and second-order

autocorrelations of market returns; hence a consistent estimator for IV of the semi-strong

form efficient price is

ÎV = RV + 2 [E(∆pt∆pt−1)− E(∆pt∆pt−2)] . (37)

The obvious difference between (33) and (37) emphasizes the importance of carefully defining

the latent price series of interest. Note also that whereas sampling only every second price

would remove all microstructure noise from the RV estimate of the strong form efficient

price in (33) (and thus ÎV
bae

= RV ), it would not remove all noise from the RV estimate

of the semi-strong form efficient price (37), because E(∆pt∆pt−2) = s(σE(qtεt)− φλ) 6= 0.

We show estimates for the volatility of semi-strong form efficient prices in the bottom

row of Table 4. The strong form efficient price estimator (i.e., the bid-ask estimator) would

overstate the volatility of semi-strong form efficient prices by five percent or more. This

emphasizes quantitatively the potential importance of tailoring the noise correction to the

latent price of interest.

In this paper we model the strong form efficient price as an MDS, and indeed this latent

price series is of interest on its own. We doubt, however, that this is the unique latent price

of interest in volatility estimation. Efficient prices from an informed trader’s perspective
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could themselves be seen as the result of a learning process about the state of the economy,43

which implies that the p∗t of interest is often not an MDS, but instead has the properties

that we have derived in this paper for the semi-strong form efficient price p̃t.

Suppose, for example, that the strong form efficient prices violate (2) and are themselves

the result of learning by informed traders about fundamentals, ηt, which follow a random

walk,

∆p∗t = σ
T∑
τ=1

(
−e−r1τ + e−r1(τ−1)

)
ηt−τ .

Suppose as well that market prices follow the usual process of market maker learning,

∆pt =
T∑
τ=1

(
−e−r2τ + e−r2(τ−1)

)
∆p∗t−τ .

Then mechanically calculating RV 1tick
AC(T ) gives the variance of the fundamental, not the vari-

ance of the strong form efficient price. Obviously, a purely statistical noise correction cannot

distinguish between cross-correlation caused by fundamentals and cross-correlation caused

by MSN.44 This is where market microstructure theory can contribute new insights to RV

estimation. By providing distinctive but flexible relationships between noise and latent re-

turns, we can decompose the agnostic statistical noise estimate into its various components,

such as MSN and fundamental correlation in the strong form efficient price (in our example

discussed previously). Our example uses a MA(2T ) process with only two free coefficients,

but the large sample sizes typical with high frequency data can accommodate much richer

specifications. Empirical work in market microstructure tends to favor extreme parametriza-

tions, ranging from the very parsimonious as in the regressions of Glosten and Harris (1988),

to the profligate as in the vector autoregressions of Hasbrouck (1996). For RV noise correc-

tion the most useful parametrizations may be intermediate, imposing a general correlation

pattern but avoiding highly situation-specific assumptions.

43Also, they might be the result of learning about information of other market participants, as in Foster
and Viswanathan (1996).

44Standard RV is unbiased if sampling frequency is sufficiently low so that microstructure effects are
averaged out. In a volatility signature plot for our dataset (see the upper panels for 2004 of Figure 1 in
Hansen and Lunde (2006), up to 30 minute sampling cycle duration) the standard RV seems to decline with
sampling frequency. RVACNW (30) deviates considerably from the low frequency level of standard RV, and
thus whereas it might remove high-frequency noise, it appears biased at small frequencies, at least in small
samples. Thus “noise-corrected” RV estimators should only be applied to data sampled at frequencies at
which microstructure effects can conceivably exist, e.g. above 0.01 per second. Applying them to data at
lower frequencies results in biased estimates, because at lower frequencies slow moving features of the price
process are removed, not microstructure noise.
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6 Concluding Remarks

The recent realized volatility literature provides statistical insights into microstructure noise

(MSN) and its effects. In this paper we have provided complementary economic insights,

treating MSN not simply as a nuisance, but rather as the result of financial economic deci-

sions, which we seek to understand.45 In that regard, we derived the predictions of economic

theory regarding correlation between MSN and two types of latent price, characterizing and

contrasting the entire cross-correlation functions in a variety of market environments, with

a variety of results.

Some results are generic. For example, cross-correlations between strong form efficient

price and MSN at displacements greater than zero have sign opposite to that of the contem-

poraneous correlation.

Some results are not generic but nevertheless quite robust to model choice. For example,

all models predict negative contemporaneous correlation between latent price and MSN, so

long as the risk aversion of market makers is not too high.

Finally, some results are highly model-specific. For example, the cross-correlation pat-

terns and absolute magnitudes depend critically on the frequency of latent price changes,

the presence of bid/ask bounce, the timing of information and actions, and the degree of

market maker risk aversion.

We hope that the results of this paper will promote the use of theory in disciplining

data. We have shown, for example, that attention to market microstructure theory enables

us to assess the likely validity of the independence assumption, to offer explanations of em-

pirically observed cross-correlation patterns, to predict the existence of as-yet undiscovered

patterns, and to make informed suggestions for improving volatility estimation methods.

And conversely, of course, additional work along our lines may help promote the use of

data in disciplining theory, by helping to sift the comparative merits of various competing

theoretical microstructure models.

Novel uses of our results may also be possible. For example, the rate of decay of cross-

correlations might be used to assess the extent to which strategic traders are active in the

market, and the sign and size of the contemporaneous correlation might be used to assess

the degree of market maker risk aversion. Indeed market maker risk aversion might be

time-varying, with associated time-varying cross-correlation structure between latent price

and MSN. During crises, for example, market makers may be more risk averse, as bor-

rowing and hedging possibilities are reduced. If so, the “normal pattern” of negative con-

45For an interesting related perspective, see Engle and Sun (2007). Their approach and environment
(conditional duration modeling), however, are very different from ours.
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temporaneous cross-correlation and positive higher-order cross-correlations might switch to

a “crisis pattern” of positive contemporaneous cross-correlation and negative higher-order

cross-correlations. Such possibilities await future empirical exploration.
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Appendices

A Market Microstructure

A.1 Market Setup

Let Ωt denote all public information available at time t. The market maker in particular

has no information beyond Ωt.
46 We analyze limit-order markets, populated by informed

and uninformed traders. There are many market makers engaged in perfect competition and

serving as counterparty to all trades.47 The timing of information and actions in any given

period, t, which is infinitely often repeated, is as follows:48

1. p∗t−1 becomes public information, thus
{
p∗t−1

}
∈ Ωt.

2. p∗t changes randomly.

3. The market maker observes Ωt which contains at least all transaction prices and trades

up to the previous period, i.e. {pi, qi} ∈ Ωt ∀i < t. Ωt may contain additional infor-

mation ωt about the current strong form efficient price, p∗t , for example the direction

of the price innovation, {sgn(εt)}. Conditional on this, the market maker forms his

price expectations pet .

4. The market maker quotes a pricing scheme for period t, i.e. a mid price pmidt and a

spread 2st ≥ 0. The market maker is bound to transact one unit at this price.

5a. Informed traders are “active” with probability α. An α < 1 can be interpreted as

inattention of traders or as occasional absence of a signal about p∗t . If they are active,

they observe p∗t and the market maker pricing scheme {pmidt , st}. If based on their

private knowledge p∗t > paskt ≡ pmidt + st, then they try to buy an infinite amount,

whereas if p∗t < pbidt ≡ pmidt − st, they try to (short-) sell an infinite amount. However,

the market maker fills the demand only up to his commitment limit, one unit. If a

transaction takes place, the transaction price is pt = paskt or pt = pbidt , respectively. If

46Variance σ2 and the probability density function of εt are public knowledge. We assume perfect memory,
Ωi ⊂ Ωt ∀i ≤ t, and that given the information set Ωt the market participants’ optimizing behavior
determines a unique market price p(Ωt), with corresponding market return ∆p(Ωt,Ωt−1).

47At a minimum, we require one market maker and many potential competitors.
48The setup is similar to Easley and O’Hara (1992), where steps 5a and 5b are sequential, i.e. uninformed

traders step in if the informed refuse to trade. A variant is the model of Kelly and Steigerwald (2004) with
a random draw between steps 5a and 5b. That is, if the informed trader (5a) is drawn, and he refuses to
trade, then the period ends without a trade.
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neither buy nor sell is profitable, or if informed traders are not active in this period,

then no informed trade occurs.

5b. If there is no informed trade, uninformed traders trade instead randomly for exogenous

reasons with probability β. If they trade, buying at paskt and selling at pbidt has equal

probability, which allows market makers to earn the spread without risk. The maker

maker cannot distinguish informed from uninformed traders – the latter, however, are

his only source of revenue.

6. If private information is valid for only one period, then the market continues with step

1. Otherwise, if information remains private for T > 1 periods, no further information

is revealed at this moment and the market continues with step 3. Eventually after T

loops p∗t becomes public information and the market continues with step 1.

A.2 Decision Problem of Market Maker

Having detailed the market microstructure, we now describe the behavior of the market

maker. The loss function of the market maker pins down the optimal spread size and the

response to a trade, and is thus a key determinant of the sign of the cross-correlations.

Before trading occurs, the market maker has a belief about p∗t , summarized by the prior

probability density function f(p∗t ). We require f(p∗t ) = f(p∗t−1 + εt) to be consistent with

Assumption 2 and denote the corresponding cumulative distribution function with F (·). Let

p and p denote the lower and upper end of the support of f(p∗t ) that the market maker has

determined by previous experimentation.49 We define the loss function of a market maker

with risk aversion parameter n ≥ 1 as ln(x) = − |x|n.

The market maker’s loss in periods of informed trading is a function of the gap between

the strong form efficient price and the transaction price. In periods without any informed

trading the market maker suffers no loss, because any potential loss to a noise trade on the

one side of the market is offset by an even larger (by 2s) gain from a noise trade on the other

side of the market. The expected loss in period t when the market price is set at pt is

Ln
(
pt, F (·; p, p)

)
= −

∫ p

p

|(pt − p∗t )E(qt |p∗t , pt, st )|n f (p∗t ) dp
∗
t ,

where E(qt |pt + st < p∗t ) = α, E(qt |pt − st > p∗t ) = α, and E(qt |pt − st < p∗t < pt + st ) =

0.50 Throughout most of the paper, we consider the case of a risk-neutral market maker

49In the first period, either p and p are known, or are set to p = −∞ and p =∞.
50Ln(pt, F (·; p, p))1/n is related to the `n metric. However, it differs in that it is reweighted, and sums over
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(n = 1). This assumption reflects that the market maker has a transaction limit of one unit

per period. As long as one unit is small relative to market maker wealth, his risk aversion

is negligible. An important special case for cross-correlations appears, however, in markets

where one unit of q is large relative to market maker wealth and thus risk aversion does

matter. We will discuss the risk aversion case in section 3.3.2.

This setup has an immediate implication. If no informed traders are present in the mar-

ket, then E (qtεt−τ ) = 0 ∀t, ∀τ , because uninformed trades are unrelated to p∗t . In contrast,

for informed trades and sufficiently small risk aversion of the market maker E(qtεt−τ ) ≥ 0

∀t,∀τ ≥ 0, because informed traders buy only if the strong form price increased, and sell if

it fell. Taken together it holds that51

0 ≤ E (qtεt−τ ) ≤ E (|εt|) < 1, ∀t,∀τ. (38)

The market maker wants to pick bid and ask prices that meet two competing objectives:

on the one hand, minimizing current period losses to informed traders and simultaneously

maximizing spread income from uninformed traders, and on the other hand, learning as much

as possible about the latent price in order to provide a more accurate quote and thus incur

smaller losses in future periods. Denoting the market maker’s value function at time t by

Vt(Ft(·, pt, pt)) and his discount factor by δ, the market maker solves the recursive problem

Vt(Ft(·; pt, pt)) =
∑
ωt+1

P (ωt+1) max
pbid,pask

{
αLn(pbid, Ft(·; pt, p

bid))

+ δVt+1(F̃t+1|qt = −1)

[
(1− α)β

2
+ α

(
β

2
Ft(p

ask) +

(
1− β

2

)
Ft(p

bid)− Ft(pt)
)]

+
pask − pbid

2

[
1− α + α

(
Ft(p

ask)− Ft(pbid)
)]

+ δVt+1(F̃t+1|qt = +1)

[
(1− α)β

2
+ α

(
Ft(pt)−

(
1− β

2

)
Ft(p

ask)− β

2
Ft(p

bid)

)]
+ α Ln(pask, Ft(·; pask, pt))

}
, (39)

where F̃t+1 is the update of Ft using information {ωt+1, qt}, with pt+1 and p
t+1

being the

infinitely many elements. In particular under zero spread and always active informed traders (|E(qt |p∗t , pt )| =
1 ∀pt 6= p∗t ), we have for n→∞

Ln→∞(pt, F (·; p, p))1/n = −sup
{
|pt − p∗t | , p∗t ∈

{
p|p ≤ p ≤ p, f(p) > 0

}}
= −sup

{
|pt − p| ,

∣∣pt − p∣∣} .
51Note that [E (|εt|)]2 < E

(
|εt|2

)
= E

(
ε2
t

)
= 1, where the first inequality follows from Jensen’s inequality.

Taking the square root we therefore get E(|εt|) < 1.

46



updated upper and lower bound of this distribution, and P (ωt+1) is the probability that the

market maker observes the signal ωt+1. The recursive problem (39) encompasses most cases

that we discuss in this paper.

If ωt+1 contains only information about period t and earlier, but no signal about t + 1

values, and if the market maker takes the spread as given,52 then the market maker’s only

choice variable is the location of the spread interval, pmid. Assuming that informed traders

are active (α = 1), (39) simplifies to

V (F (; p, p)) = max
pmid

[
Ln
(
pmid − s, F (·; p, pmid − s

)
+ δV

(
F̃ (·; p, pmid + s)

)[(β
2
F (pmid + s) +

(
1− β

2

)
F (pmid − s)− F (p)

)]
+ sβ

[
F (pmid + s)− F (pmid − s)

]
+ δV

(
F̃ (·; pmid − s, p

)[(
F (p)−

(
1− β

2

)
F (pmid + s)− β

2
F (pmid − s)

)]
+ Ln

(
pmid + s, F (·; pmid + s, p)

)]
. (40)

Unfortunately, (39) and even (40) are hard to solve – in general the policy functions pbid(·)
and pask(·) are not available in closed form.53

In the paper we look at specializations of the general market maker problem (39) and

examine the effect of various model setups on the cross-correlation function. For both strong

form and semi-strong form efficient returns we first examine the multiperiod case (δ > 0),

where private information is not revealed until after many periods. In subsections 3.3 and

4.3 we specialize to the one-period case (δ = 0), a case where private information becomes

public, and worthless, after only one period.

B Proofs of Propositions

B.1 Proof of Proposition 1

Proposition (Cross-correlations in the Easley-O’Hara model)

The contemporaneous cross-correlation in the Easley and O’Hara (1992) model is

Corr (∆p∗t ,∆ut) = −1 + e−r(T−1)

2
√
K

< 0,

52The spread might be pinned down by competition (see Appendix E) or given exogenously by regulation.
53For characterizations of the general solution see Aghion et al. (1991) and Aghion et al. (1993). Their

solution shows that in general optimal learning requires λt in (3) to vary over time.
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and the cross-correlations at sufficiently large nonzero displacements follow

Corr
(
∆p∗t−τ ,∆ut

)
=
er − 1

2
√
K
e−rτ > 0, ∀τ ∈ [1, T − 1]

Corr
(
∆p∗t−T ,∆ut

)
=
e−r(T−1)

2
√
K

> 0,

where K = K(r, T ).

Proof:

Following the setup in Easley and O’Hara (1992), suppose the strong form efficient price

process switches between a high state p, a neutral state, and a low state p, where χ is the

probability of a non-neutral state and γ the probability of a high state given that the state

is non-neutral.

p∗t =


p with probability χγ

γp+ (1− γ)p w.p. 1− χ
p w.p. χ(1− γ)

Therefore, for t = κT , κ ∈ Z

∆p∗t =



p− p w.p. χ2γ(1− γ)

γ(p− p) w.p. 2χ(1− χ)(1− γ)

0 w.p. (1− χ)2 + χ2(γ2 + (1− γ)2)

γ(p− p) w.p. 2χ(1− χ)γ

p− p w.p. χ2γ(1− γ)

and ∆p∗t = 0 otherwise. Prices have the properties

E[(∆p∗t )
2] =

(p− p)2
T

[
2γ2χ(1− χ)(1− γ) + χ2γ(1− γ) + 2γ2χ(1− χ)γ + χ2γ(1− γ)

]
=

(p− p)2
T

2χγ(γ + χ− 2χγ) ≡ σ2

T
,

E(∆p∗t∆pt) = 0,

E(∆p∗t−τ∆p
∗
t ) = 0.

For ease of exposition let us focus on the case γ = 1/2 and χ = 1, i.e. latent prices are

high and low with equal probability. Using the result from Easley and O’Hara (1992) that
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transaction prices converge to the strong form efficient price at an exponential rate we get

∆p0 =
p− p

2

(
e−r(T−1) − 1

)
sgn

(
p∗−T −

p+ p

2

)

∆pτ =
p− p

2

(
e−r(τ−1) − e−rτ

)
sgn

(
p0 −

p+ p

2

)
∆u0 =

p− p
2

(
e−r(T−1) − 1

)
sgn

(
p∗−T −

p+ p

2

)
−∆p∗0

∆uτ =
p− p

2

(
e−r(τ−1) − e−rτ

)
sgn

(
p0 −

p+ p

2

)
The contemporaneous cross-covariance (τ = 0) is

Cov (∆p∗t ,∆ut) =
1

T
E (∆p∗0∆u0)

= − σ
2

2T

[
1 + e−r(T−1)

]
.

The second term inside the brackets is an artifact of p∗t not following a martingale. In

the period of the efficient price change it is optimal for the market maker to set pt to the

unconditional mean of p∗t , thereby offsetting the effect of all previous learning, which the

efficient price change rendered obsolete.

The cross-covariance for τ ∈ [1;T − 1] is

Cov
(
∆p∗t−τ ,∆ut

)
=

1

T
E (∆p∗0∆uτ )

=
σ2

2T

(
−e−rτ + e−r(τ−1)

)
,

and for τ = T we have

Cov
(
∆p∗t−T ,∆ut

)
=

1

T
E
(
∆p∗−T∆u0

)
=

σ2

2T
e−r(T−1).
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The variance of the noise is

V ar(∆ut) =
1

T

[
(p− p)2

T

(
e−r(T−1) − 1

)2
+ σ2 + 2

(p− p)2
4

(
e−r(T−1) − 1

)
+

T−1∑
τ=1

(p− p)2
4

(
−e−rτ + e−r(τ−1)

)2]

=
σ2

T

[
1

2
e−2r(T−1) +

1

2
+

1

2
(−er + 1)2

(e−2r)T−1 − 1

e−2r − 1

]
.

Denoting the term in brackets by K = K(r, T ) we get for the contemporaneous cross-

correlation

Corr (∆p∗t ,∆ut) = −1 + e−r(T−1)

2
√
K

,

for the cross-correlation at displacements τ ∈ [1;T − 1]

Corr
(
∆p∗t−τ ,∆ut

)
=
−e−rτ + e−r(τ−1)

2
√
K

,

and for the cross-correlation at displacement T

Corr
(
∆p∗t−T ,∆ut

)
=
e−r(T−1)

2
√
K

.

Q.E.D.

B.2 Proof of Proposition 2

Proposition (Cross-correlations in the Kyle model)

The contemporaneous cross-correlation in Kyle (1985) is

Corr (∆p∗t ,∆ut) = −
√

T

T 2 + 1
,

the cross-correlations at displacements τ ∈ [1;T ] are

Corr
(
∆p∗t−τ ,∆ut

)
=

√
1

T (T 2 + 1)
,

and all higher order cross-correlations are zero.

Proof:

In order to present a closed-form solution we use continuous time, t ∈ [0, T ], but note
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that Kyle (1985) discussed the discrete time case as well. The discussion is based on the

assumption of Kyle (1985) that the reaction functions for quantity demanded and prices are

linear, i.e. that λt = λ, and st = s. Nonlinear solutions might nevertheless exist as well.

We assume semi-strong market efficiency, and so s = λ. We get from (16)

Cov (∆p∗t ,∆ut) = −σ
T

(λE(qε0)− σ) < 0.

From (17) the cross-covariance function at nonzero displacements

Cov
(
∆p∗t−τ ,∆ut

)
=
σ

T
λE(qε0) > 0

is constant ∀t ∈ [1, T − 1], and zero ∀t ≥ T .

More specifically, we derive based on (23) for the noise (assuming zero spread)

∆u0 =
∆p∗−T
T
−
∫ T−1

0

σ

T − sdBs −∆p∗0

and for τ ∈ [1, T − 1]

∆uτ =
∆p∗0
T

+ (T − τ)

∫ τ

τ−1

σ

T − sdBs −
∫ τ−1

0

σ

T − sdBs.

The variance of the noise is therefore

V ar(∆ut) =
1

T

[
E(∆u20) +

T−1∑
t=1

E(∆u2t )

]

=
σ2

T

[
T + 1

T
+
T − 1

T
+

(T − 1)2

T

]
=

σ2

T 2

(
T 2 + 1

)
.

The covariances are simply, at displacement zero

Cov(∆p∗t ,∆ut) =
1

T
Cov(∆p∗0,−∆p∗0) =

−σ2

T
,

and at higher order displacements

Cov(∆p∗t−τ ,∆ut) =
1

T
Cov(∆p∗0,

∆p∗0
T

) =
σ2

T 2
,

which leads directly to the cross-correlations given by Proposition 2. Q.E.D.
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B.3 Proof of Proposition 3

Proposition (Strong form cross-correlation, one period model)

Corr(∆p∗t ,∆ut) =
1√
2

sE (qtεt)− σ√
φs2 + σ2 − 2sσE(qtεt)

Corr(∆p∗t−1,∆ut) = −Corr(∆p∗t ,∆ut)

Proof:

With T = 1, no extra information, λt = λ, st = s, and thus φt = φ ∀t, the variance term

(21) simplifies to V ar(∆ut) = 2(σ2 + φs2) − 4sσE(qtεt). Plugging this into (22) gives the

desired result. Q.E.D.

B.4 Proof of Proposition 4

Proposition (Bounds of contemporaneous cross-correlation)

− 1√
2
≤ Corr(∆p∗t ,∆ut) ≤ 0

Proof:

Negativity can be seen as follows. Uninformed traders trade randomly (E(qt|εt) = 0),

thus for them we have sE(qut εt) = 0. In contrast, informed traders buy (qt = +1) only when

σεt > s and sell (qt = −1) only when σεt < −s. Thus in a market of only informed traders

σqitεt > s ≥ 0 ∀t. Therefore we can write

1 = E(qi 2t ε
2
t ) > E

( s
σ
qitεt

)
> E

(
s2

σ2

)
> 0,

so in particular σ > sE(qitεt) > 0. Combining informed and uninformed trades we have

σ ≥ sE(qtεt) > 0,

which implies that the contemporaneous cross-correlation (24) is negative.

Further, (24) is bounded from below by −1/
√

2, which we prove by contradiction. Sup-

pose this was not the case, then from (24)

sE (qtεt)− σ < −
√
φs2 + σ2 − 2sσE(qtεt).
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Squaring both sides and simplifying gives the condition

[E (qtεt)]
2 > φ, (41)

but by Jensen’s inequality and β = 1

[E (qtεt)]
2 ≤ E

(
q2t ε

2
t

)
= 1,

which contradicts (41). Q.E.D.

B.5 Proof of Proposition 5

Proposition (Optimal Mid Price)

p(1) = Median(p∗t )

p(2) = E(p∗t )

p(∞) = Midsupport(p∗t ).

Proof:

The first two equations in the proposition54 are the well-known result that the median

is the best predictor under linear (absolute) loss, whereas the mean is the best predictor

under squared loss. The third equation is obtained by first noting that for any density f(·),
which has all moments, we can apply Leibnitz’s rule. Thus we obtain for (26) the first order

condition ∫ p(n)

p

(p(n)− p∗)n−1 f(p∗)dp∗ −
∫ p

p(n)

(p∗ − p(n))n−1 f(p∗)dp∗ = 0. (42)

Rewriting (42) as a metric

lim
n→∞

(∫ p(n)

p

(p(n)− p∗)n−1 f(p∗)dp∗
)1/(n−1)

= lim
n→∞

(∫ p

p(n)

(p∗ − p(n))n−1 f(p∗)dp∗
)1/(n−1)

,

54We assume n ≥ 1 throughout, because this implies realistic market maker preferences. However, (26)
can be solved for any n ≥ 0. In particular, pmid(0) is the mode of f(·) when s = 0, or the highest density
(connected) region when s > 0. For n /∈ {1, 2,∞} no explicit solution exists, and for n > 25 even obtaining
numerical solutions creates difficulty for non-trivial distribution functions f(·).
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which after taking the limit degenerates to the sup norm

sup
p∗∈[p,p(∞)]

(p(∞)− p∗) = sup
p∗∈[p(∞),p]

(p∗ − p(∞)) ,

gives

p(∞) =
p+ p

2
. (43)

Thus, by monotonicity (43) solves (42) for n→∞. Q.E.D.

B.6 Proof of Proposition 6

Proposition (Cross-correlation under market maker information)

If Ωt = {sgn(εt), p
∗
t−1} and Assumption 2 holds, then the optimal market maker response

R({sgn(εt)}) strictly increases in risk aversion, n ≥ 1, without bound. If, further, the

distribution of the expected latent price with support [p∗, p∗] satisfies[
p∗
t

+ p∗t
2

− p∗t−1
]

sgn(εt) > s+
σ

E(|εt|)
,

then ∃n0 > 1 such that ∀n > n0 it holds that Corr(∆p∗t ,∆ut) > 0.

Proof:

The new information ωt is now replaced by two parts: The first part reflects as before

information about p∗t−1, i.e. ωt = p∗t−1 − pt−1 + (st−1 − λt−1)qt−1. The second, and new,

part reflects the extra information about ∆p∗t , and the response of the market maker to it.

To be specific, we assume that this extra information is the direction of the latent price

change {sgn(εt)}. If the distribution of expected latent price changes at the beginning of

each period is the same, we can write the market maker response to this extra information

as R(sgn(εt)) = R sgn(εt). From (25) ∆pt = −pt−1 + p∗t−1 + sqt +R(·), and

E (∆ptεt) = E
[(
−pt−1 + p∗t−1 + sqt +R(·)

)
εt
]

=
1

2
E [(sqt +R(·))εt |εt > 0] +

1

2
E [(sqt −R(·))εt |εt < 0]

= RE (|εt|) + sE (qtεt) . (44)

Plugging (44) with E (∆pt∆p
∗
t ) = σE (∆ptεt) into (9) implies that the contemporaneous

cross-covariance is positive if and only if

R >
σ − sE (qtεt)

E (|εt|)
. (45)
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Because E(qtεt) > −E(|εt|) we have as sufficient condition

R > s+
σ

E (|εt|)
. (46)

To satisfy (46) we need for pet = p∗t−1 +R(·) = p∗t−1 +R sgn(εt) that

pet

> p∗t−1 + s+ σ
E(|εt|) for ε > 0

< p∗t−1 − s− σ
E(|εt|) for ε < 0.

From Proposition 5 for any p(n) ∈
[
Median(p);

p+p

2

]
there is a risk aversion level n such

that market makers will – after observing the signal {sgn(εt)} – quote this price as mid

price pet . Therefore, for all distributions f(p∗) which satisfy (27), a sufficiently large n leads

to a market maker response which satisfies (45) and thus to a positive contemporaneous

cross-covariance. Q.E.D.

B.7 Proof of Proposition 7

Proposition (Semi-strong form cross-correlation, one period model)

The contemporaneous cross-correlation is

Corr(∆p̃et ,∆ut) =
2φλ− σE(qtεt)√

σ2 − 2σλE(qtεt) + 2φλ2
sgn(s− λ)√

2φ
.

The cross-correlation at displacement one equals

Corr(∆p̃et−1,∆ut) =
−φλ√

σ2 − 2σλE(qtεt) + 2λ2
sgn(s− λ)√

2φ
.

All cross-correlations at higher displacements are zero.

Proof:

The expressions for the cross-correlations follow directly from their multiperiod counter-

parts. In the setup of section 4.1 the semi-strong form efficient price has the unconditional
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variance (36) and the corresponding noise has an unconditional variance of

V ar(∆ut) =
1

T

T−1∑
t=0

V ar(∆ut)

=
1

T

{
T−1∑
i=0

[
φi(λi − si)2 + φi−1(λi−1 − si−1)2

]
− 2

T−1∑
i=1

E(qtqt−1)(λi − si)(λi−1 − si−1)
}
. (47)

The contemporaneous cross-correlation is

Corr(∆p̃et ,∆ut) =
Cov(∆p̃t,∆ut)√
V ar(∆p̃et )V ar(∆ut)

.

where Cov(∆p̃et ,∆ut) is given by (29). All other cross-correlation can be obtained analo-

gously.

For T = 1, spread and adverse selection parameter are constants, i.e. st = s and λt = λ

∀t, and the variance terms (36) and (47) simplify radically to

V ar(∆p̃et ) = σ2 − 2σλE(qtεt) + 2φλ2,

V ar(∆ut) = 2φ(s− λ)2,

where we have used that qt is serially uncorrelated. Finally, from (29) and (31), we get for

T = 1 the covariances

Cov(∆p̃et ,∆ut) = (s− λ) [2φλ− σE(qtεt)]

and

Cov(∆p̃et−1,∆ut) = φλ(λ− s).

Combining these with the variances immediately gives the cross-correlations stated in propo-

sition 7. Q.E.D.

C Example of Optimal Learning

Here we show that under signal certainty, the cross-correlation at nonzero displacements falls

with τ . Consider a signal that is known to be free of noise and strategic manipulation by

market participants. To learn as much as possible the market maker minimizes the length of
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the interval in which p∗t may be located. Even with a uniform prior belief, F , the posterior

F̃ is not uniform (as in Aghion et al. (1991)), but step-uniform, because of the noise induced

by uninformed trading. For the upper and lower end of the distribution to be a sufficient

statistic for market maker believes, we have to additionally assume the absence of noise

traders (β = 0). With these assumptions (40) collapses to

V (p, p) = max
pmid

−
∫ pmid−s

p

∣∣pmid − s− p∗∣∣
pmid − s− p dp∗ + δV

(
p, pmid − s

) (
pmid − s− p

)
+ δV

(
pmid + s, p

) (
p− pmid − s

)
−
∫ p

pmid+s

∣∣p∗ − pmid − s∣∣
p− pmid − s dp∗.

A solution to this example is the market maker to do repeated bisections, setting pmidt =
pt+pt

2
in every period. To see this, let us assume risk neutrality (n = 1), always active

informed traders, and no uninformed trades (for which a zero spread is sufficient, but not

necessary) which simplifies this recursive problem to

V (p, p) = max
p

[
−
∫ p−s

p

(p− s− p∗)f(p∗)dp∗ + V (p, p− s)F (p− s)

+ V (p− s, p+ s) (F (p+ s)− F (p− s)) + V (p+ s, p) (1− F (p))

−
∫ p

p+s

(p∗ − p− s)f(p∗)dp∗
]
. (48)

To simplify the problem further, we assume as in the example in Aghion et al. (1991)

that f(·) is uniform. Then, in fact, the location of the interval [p, p] does not matter for

describing information content. The length of it alone, m = p− p, summarizes the state of

learning. (48) becomes with p = αm+ p

V (m) = max
α

− 1

2m
(αm)2 + δV (αm)α

− 1

2m
((1− α)m)2 + δV ((1− α)m)(1− α) + V (2s)

2s

m

= max
α

δV (αm)α + δV ((1− α)m)(1− α)− 1

2m

(
(αm− s)2 + ((1− α)m− s)2

)
= max

α
δV (αm)α + δV ((1− α)m)(1− α)

− 1

2m

(
2α2m2 + 2s2 +m2 − 2αm2 − 2ms

)
.

From the first order condition for the maximum we get α = 1/2, thus optimal learning is

achieved by repeated bisections.

This result is driven by uniformity and the zero spread, which ensures that Assumption
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2 holds in every period, in particular that f(·) in (48) is always symmetric. Thereby, the

term in brackets in (48) is symmetric around the symmetry point of f(·) as well, and the

optimal pmid equals the median, and the midpoint of the support of f(·). For non-uniform

f(·) the solution path over time is specific to the shape of f(·) and has to be determined

numerically.

Therefore, the market maker’s optimal pricing rule follows repeated bisections, i.e. he sets

pmidt =
pt+pt

2
in every period. Therefore pmidt converges, in smaller and smaller steps, towards

p∗, and the probability of p∗ ∈ [pmid−s, pmid+s] converges to unity. The smaller the interval

[p, p] of possible p∗ becomes, the less likely will the choice of pmid allow profitable informed

trades. Therefore E(q0ε0) decreases over time. Likewise, as more and more information

is already contained in [p, p], E(ωtε0) decreases as well. Overall, the cross-correlation at

nonzero displacements falls with τ .

D Effect of Risk Aversion on Optimal Price

Here we show that high risk aversion pushes the optimal price toward the midpoint of the

support. In other words, if f(·) is without loss of generality right-skewed, then p(n) is

increasing in n, ∀n ≥ 1. First, note that p(n), p(n) ∈ [p, p],55 is continuous. If p or p

are infinite, we replace these bounds with a function of n, thereby making the domain of p

compact. As f(·) and all components of the integral are continuous functions, the theorem

of the maximum gives continuity of p(n).

Next, to evaluate how the optimal price p(n) responds to changes in risk aversion n, take

the total differential of (42) and rearrange to obtain

dp(n)

dn
=

1

n− 1
×

−
p(n)∫
p

(p(n)− p∗)n−1 ln (p(n)− p∗) f(p∗)dp∗

+

p∫
p(n)

(p∗ − p(n))n−1 ln (p∗ − p(n)) f(p∗)dp∗


/


p(n)∫
p

(p(n)− p∗)n−2 f(p∗)dp∗ +

p∫
p(n)

(p∗ − p(n))n−2 f(p∗)dp∗

 . (49)

In the following argument we use that f(·) is monotone and assume without loss of

55We suppress the asterisk from p∗ and p∗ and replace pmidt (n) by p(n) to simplify notation.

58



generality that f(·) is monotonically decreasing. This means f(·) is right-skewed on
[
p, p
]
,

which occurs if the market maker has some information that the strong form efficient price

has increased. Under this assumption (49) is positive. To see this, note first that both terms

in the denominator are positive. To economize notation we replace p ≡ p(n), d ≡ p(n) − p
and x ≡ p∗. The numerator can be broken up into three parts:

−
p∫
p

(p− x)n−1 ln (p− x) f(x)dx+

p∫
p

(x− p)n−1 ln (x− p) f(x)dx

= −
p−1∫
p−d

(p− x)n−1 ln (p− x) f(x)dx+

p+d∫
p+1

(x− p)n−1 ln (x− p) f(x)dx

−
p∫

p−1

(p− x)n−1 ln (p− x) f(x)dx+

p+1∫
p

(x− p)n−1 ln (x− p) f(x)dx

+

p∫
p+d

(x− p)n−1 ln (x− p) f(x)dx. (50)

The first term, which exists only for d > 1, gives

−
p−1∫
p−d

(p− x)n−1 ln (p− x) f(x)dx+

p+d∫
p+1

(x− p)n−1 ln (x− p) f(x)dx

= −
p+d∫
p+1

(x− p)n−1 ln (x− p) f(2p− x)dx

+

p+d∫
p+1

(x− p)n−1 ln (x− p) f(x)dx

=

p+d∫
p+1

(x− p)n−1 ln (x− p) [−f(2p− x) + f(x)] dx

≥
p+d∫
p+1

(x− p)n−1 ln (d) [−f(2p− x) + f(x)] dx

= −
p−1∫
p−d

(p− x)n−1 ln (d) f(x)dx+

p+d∫
p+1

(x− p)n−1 ln (d) f(x)dx. (51)
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The second term is for d ≥ 1

−
p∫

p−1

(p− x)n−1 ln (p− x) f(x)dx+

p+1∫
p

(x− p)n−1 ln (x− p) f(x)dx

= −
p+1∫
p

(x− p)n−1 ln (x− p) f(2p− x)dx

+

p+1∫
p

(x− p)n−1 ln (x− p) f(x)dx

=

p+1∫
p

(x− p)n−1 ln (x− p) [f(x)− f(2p− x)] dx ≥ 0. (52)

For d < 1 the last inequality of the calculations for the second term is instead

p+1∫
p

(x− p)n−1 ln (x− p) [f(x)− f(2p− x)] dx

≥
p+d∫
p

(x− p)n−1 [f(x)− f(2p− x)] dx ln (d) ≥ 0. (53)

And for the last term we can write

−
p∫

p+d

(x− p)n−1 ln (x− p) f(x)dx > −
p∫

p+d

(x− p)n−1 ln (d) f(x)dx. (54)

Using (51), (52), and (54), (50) becomes

(50) >

− p−1∫
p−d

(p− x)n−1 f(x)dx+

p∫
p+1

(x− p)n−1 f(x)dx

 ln(d)
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>

− p−1∫
p−d

(p− x)n−1 f(x)dx−
p∫

p−1

(p− x)n−1 f(x)dx

+

p+1∫
p

(x− p)n−1 f(x)dx+

p∫
p+1

(x− p)n−1 f(x)dx

 ln(d)

=

− p∫
p−d

(p− x)n−1 f(x)dx+

p∫
p

(x− p)n−1 f(x)dx

 ln(d)

= 0,

where the inequality follows from the monotonicity of f(·), and the last equality follows

from the first order condition (42).

Likewise, for d < 1, using (53) we have

(50) >

− p∫
p−d

(p− x)n−1 f(x)dx+

p∫
p

(x− p)n−1 f(x)dx

 ln(d)

= 0.

Therefore the numerator is positive and

dp(n)

dn
> 0

for right-skewed distributions. Combining this with the fact that p(1) = Median(p∗) and

p(∞) = Midsupport(p∗) we conclude that p(n) monotonically increases from the median to

the midpoint of the support of the efficient price distribution f(·), if f(·) is right-skewed.

Analogously, for left-skewed f(·), p(n) monotonically decreases from the median to the mid-

point of the support.

E Zero Profit Condition Under Perfect Competition

In the following example we show that s is uniquely determined as a competitive outcome.

Under perfect competition the zero profit condition requires the market maker’s losses in

trades with informed traders to exactly offset the spread earned from trades with uninformed

traders. An increase in the spread benefits the market maker in three ways: it increases his

spread income from uninformed traders, makes uninformed trades more likely, and reduces
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his losses to informed traders. This can be written as

−
∫ pbid

−∞

(
pbid − p∗

)n
f(p∗)dp∗ −

∫ ∞
pask

(
p∗ − pask

)n
f(p∗)dp∗

+

(∫ pask

pbid
f(p∗)dp∗

)
pask − pbid

2
= 0. (55)

Clearly, as in section 3.3.2 the bid and ask price grow in n, without bound as n→∞ if f(·)
has unbounded support.

For simplicity, we now assume risk neutrality (n = 1) in a one-period model (δ = 0),

where informed traders are always active. Using the symmetry of the expected density f(p∗)

around pmid, (55) becomes a problem of setting pmid and s.

−
∫ pmid−s

−∞

(
p∗ − pmid + s

)
f(p∗)dp∗ =

(∫ pmid

pmid−s
f(p∗)dp∗

)
s. (56)

Then, with F (·) denoting the cumulative density function of f(·) (whose expected value

is assumed to exist)

−
(
E(p∗)

∣∣∣pmid−s−∞ · F (pmid − s)− (pmid − s)F (pmid − s)
)

=
(
F (pmid)− F (pmid − s)

)
s, (57)

where E(p∗) |p−∞ denotes the expectation of p∗ over the distribution f(p∗) restricted to the

interval [−∞, p]. pmid is given by the optimal learning rule. (57) is one equation in the one

unknown, s.

pmid − E(p∗)
∣∣∣pmid−s−∞ =

sF (pmid)

F (pmid − s) (58)

The left-hand side (LHS) is monotonically increasing in s from some positive number to

positive infinity. The right-hand side (RHS) is monotonically increasing in s, from 0 to

positive infinity. It can be shown that the RHS increases faster than the LHS and that

this difference in slope does not go to zero as s becomes larger. Differentiating (56) using

Leibnitz’s rule, we get

−
(
pmid − s− pmid + s

)
f(pmid − s)

(−1

2

)
−
∫ pmid−s

−∞

1

2
f(p∗)dp∗

< −f(pmid − s)
(−1

2

)
s+

1

2

(∫ pmid

pmid−s
f(p∗)dp∗

)
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and

−1

2
F (pmid − s) < s

2
f(pmid − s) +

1

2

(
F (pmid)− F (pmid − s)

)
.

Therefore

0 < sf(pmid − s) + F (pmid),

which holds always by definition. This shows two things: Firstly, the RHS in (56) is increasing

faster than the LHS. And secondly, the difference in slope is always at least F (pmid) > 0.

Hence we have proven that there is a single crossing and s is determined uniquely.

If the LHS in (58) is very small because the support of the distribution became very

small by learning, then s must be small as well. Hence, as market makers learn, the spread

s in the market shrinks. If some market maker learned more slowly than his peers, he would

make losses at least until the next change in p∗.
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